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Abstract: Computer vision coupled with machine learning algorithms has greatly helped mobile robotic platforms be-
come more intelligent and capable of performing in the real world. Specifically, Convolutional Neural Networks (CNNs)
have achieved a high accuracy on a range of visual perception tasks (e.g., object detection, classification, segmentation,
and similar others). One of the bottlenecks in CNNss is their high computational requirement. This makes most of them
not easily deployable on robotic platforms, since their on-board computational power is limited. Recently, Involution
successfully reduced the number of parameters of CNNs by replacing all the 3 x 3 convolution kernels with involution
kernels, which use 1 x 1 convolution for the kernel generation. Filter pruning methods have also successively reduced
the number of parameters in CNNs. Notably, however, Involution has reshaping layers and the kernel size is unknown
when loading the pre-trained model. In this paper, we propose a pruning method named Model Diet that can be applied
to Involution and other CNNs. We present experimental results showing that it has better results compared with randomly

initialized weights.
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1. INTRODUCTION

Modern neural networks[1-4] especially in the form
of Convolutional Neural Networks (CNNs) have been ac-
tively employed in numerous tasks within robotic plat-
forms thanks to their generalization capability and high
accuracy (e.g., achieved nearly 90% accuracy on the Im-
ageNet dataset [5]). However, their main drawback is the
total number of parameters used since most of the time it
is tremendously large. The most widely used CNN mod-
els for mainly image recognition tasks are VGG16[6], In-
ceptionV3[7], and ResNet18[8], which have 138M, 24M,
11M parameters respectively. This brings the require-
ment of high computational power and time leading to
limitations on their usage on mobile platforms. On the
other hand, the number of parameters in deep learning
models are important as they mean the power of expres-
sion for a given dataset. Therefore reducing the parame-
ter also means losing the power for generalizing the data.

Recent CNN models reduced the redundancies by re-
placing big kernels with smaller ones like Inception[7],
or even generate the kernels for convolution with 1 x 1
convolution like Involution [9]. Although the aforemen-
tioned models have great performance on image classi-
fication tasks, they still require high computational cost,
which makes the usage of deep neural networks on mo-
bile devices still challenging.

Attempts for deploying deep neural nets on mobile de-
vices have been studied. An object detection model using
depthwise convolution were proposed in [10]. Depthwise
convolution is an algorithm, which uses the same convo-
lution kernel for every channel. Models proposed in [11]
and [12] are image classification models that use chan-
nel shuffle for group convolution to reduce the compu-
tational complexity. Their proposal ghost module uses a
low computational costly operation to reduce the number

of parameters and computational complexity. However
depthwise convolution has less power of expression, and
channel shuffle regard the channel groups mutually inde-
pendent therefore the information within channel groups
is not exchanged.

Several approaches have been presented to reduce the
number of parameters while trying not to lose the perfor-
mance. Knowledge distillation[13] is a method that uses
a dense network as a teacher model, and a sparse network
as a student model. The term distillation means that the
student model learns the soft label of the teacher model.
By learning both hard label, which is the loss function
of the prediction and the ground truth, and the soft label
i.e. the loss between the prediction of the student and
the teacher model, so that the student model can mimic
the output of the teacher model. If properly trained, the
student model will act similarly with the teacher model
with fewer parameters. Filter pruning[14] is a method
for reducing the number of filters in CNN. When prun-
ing the convolution filters, it is necessary to sort by the
sum of weights for each kernel for every layer. Since
kernels with weights close to 0 will not affect much of
the performance of the model, therefore when given a
proper threshold it is possible to reduce the model and ob-
tain a sparse model with similar performance. Duo Li et
al.[9] defined that convolution has both “channel-specific
and spatial-agnostic” features. The term spatial-agnostic
means that the we limit the receptive field of convolu-
tion kernels to extract the features in various positions.
However, if we have same features with different scale
or features that are far apart, convolution lacks the abil-
ity of capturing these kind of features. This yielded to
make filters that capture different features of the same ob-
ject, causing the inter channel redundancy. In summary,
the main problems when pruning Involution kernels are



twofold: (1) Involution kernels can have arbitrary size but
the saved weight file does not contain information about
the kernel size. (2) Even if the kernel size is known, there
are still extra manipulations needed e.g., summation and
sorting.

This research aims to reduce the redundancies of CNN
using involution[9] and prune the network while keep-
ing the implementation as simple as possible. Involution
kernels are different from convolution kernels as they in-
clude reshaping layers. Therefore if the filters are sorted
similarly in conventional methods[14], it causes the invo-
lution kernel to lose the spatial information. In this paper,
we propose a method, which is easy to implement and re-
duces 50% of the model’s convolution filters. Moreover,
we show that this method could be applied in other CNN
models without losing much accuracy.

Our main contributions are summarized as follows:

« Remove a certain portion of weights regardless of the
kernel size.

« Model diet does not require extra manipulation opera-
tion.

« It can be applied to other CNN models.

Since many robotic vision applications such as depth
estimation, object detection, image segmentation highly
rely on visual features and Image classification is a task to
test the ability of a model how well it extracts the visual
features from an image, our computational experiments
have been carried out on image classification models.

2. BACKGROUND AND RELATED WORK

2.1 Involution

Involution is proposed aiming to reduce the inter-
channel redundancy of CNNs. It reversed the inherence
of convolutions and has spatial-specific and channel-
agnostic features. This means that involution kernels re-
fer to the channels for each pixel when generating the
kernel values. Involution makes use of linear transforms
for each pixel and reshapes the output for a given ker-
nel size. Therefore every pixel has different kernel values
when they have different pixel values. Unlike randomly
initialized weights of the kernel as in CNNss, the kernel of
involution is conditioned by the values for each pixel.

Let X € REXWxCi pe a feature map and X; ; € R
be a pixel in the feature map where C; denotes the num-
ber of channels of the feature map. We also define the
involution filters # € RAXWXKXKXCi and the involu-
tion filter H;; € REXEXC:  We then define a linear
projection W : R s RE**Ci where K denotes the
involution kernel size. For each pixel X ;, linear projec-
tion W will be operated and the output will be reshaped
into C; number of K x K shaped kernels. Since the invo-
lution filter is a concatenated tensor of involution kernels,
the entire kernel generation can be written as below.

H;; = Reshape(W (X, ;)) (1)

The kernel generation function is defined as ¢ : R

REXEXCi guch that
Hij = o(Xi ;). )

Once the involution kernel is generated, we perform a
multiply-add operation through the channel dimension.
The difference between convolution and Involution is that
for convolution, every pixel shares the same kernel. On
the other hand, for Involution, the values of the kernel
vary depending on the pixels channel therefore all pixels
have different kernels.

2.2 Model compression

Hinton et al.[13] proposed knowledge distillation to
train a sparse network i.e., the student model by learn-
ing the soft labels of the dense network i.e., the teacher
model. The student model uses both hard labels from the
ground truth and the soft labels from the teacher model.
The term “soft” comes from the temperature constant ap-
plied in the softmax function. We can penalize the soft-
max function using the temperature constant 7'. Then the
penalized softmax can be written as below.

Softmaxy,(x;) = —exp(zi/T) 3)

>, exp(x;/T)

As T gets bigger, the difference of each element of = gets
smaller and as T gets smaller, the difference gets bigger.
If the elements have big difference we can say that the
output of the softmax is close to the ground truth i.e. the
hard label, and the small difference result in all elements
having similar values i.e. the soft label. We define the
soft label loss i.e. kd loss Lip as

Lixp = Softmax,(MSE(S(x,0s),T(x,0r)),T)
“4)

where M SE is the mean square error, 7 is the tempera-
ture constant and S(z, 0s), T'(z,0r)) stands for the out-
put of the student and teacher model respectively. The
hard label loss is the common cross entropy loss for multi
label classification.

Log =CE(S(z,0s),T(x,07)) (®)]
The overall loss function is defined as

L= Lxp+Lecr (©)
B

which means the sum of all losses along the batch dimen-
sion. The penalized softmax function makes the student
model to mimic the characteristics of the teacher model,
where the hard label from the ground truth guarantees the
accuracy of the prediction. If successfully learned, we
can train a model which acts similar with fewer parame-
ters.

2.3 Pruning

Pruning was widely used throughout deep learning
models. Dropout[15] is a technique that removes some
weights in order to avoid overfitting. Pruning can also



be used in model compression. Hao Li et.al. [14] pro-
posed a filter pruning algorithm to reduce the number of
weights in CNN. [16] proposed a filter attenuation algo-
rithm which prunes the filters by using several different
criteria. For each filter in the network, the sum of all
weights in the filter are calculated and then sorted the fil-
ters by the sum of their weights. If the sum is smaller
than a certain threshold, we discard the filter. Filters with
weights that are close to 0 means that they are most likely
to have less effect on the performance. Removing the fil-
ters that less affect the performance can result in reducing
the parameters of the network.

3. PROPOSED MODEL DIET

In order to use pre-trained models, the weights of the
model need to be loaded and the weights of the saved
model differ from their shape. For example, convolu-
tional layers are saved as (output channels, input chan-
nels, K, K) where K stands for the kernel size, and lin-
ear projection layers are saved as (output features, input
features). Since Involution kernels are generated from
linear projection and a reshaping layer, the linear projec-
tion of the involution kernel is saved as (output features,
input features). The saved model does not contain the re-
shaping layer since reshaping is an operation rather than
a neural network layer.

The reshaping permutes the output of the linear projec-
tion into a convolution kernel, therefore the kernel size
is unknown when the weights of the pre-trained model
are loaded. Since the kernel size could be an arbitrary
number, the entire model structure is needed to be known
and read from the file in order to use the conventional fil-
ter pruning methods. To overcome the unknown kernel
size problem we intended to keep the algorithm as sim-
ple as possible. The term diet comes from reducing the
weights in half while maintaining the model depth. Let N
be the number of the weights. The weights are first split
into g groups, where each group G takes the index from
(N/g) xito(N/g) x (i + 1) where ¢ is a natural num-
ber smaller than g. Then the weights of each group are
summed and the group that has the biggest sum is used
for the diet model. Since the bias and batch normalization
with the convolution results must be matched, the sum of
groups is needed instead of the sum of kernels. Our aim is
to change the shape of the weight (output channel, input
channel, K, K) into (output channel/g, input channel/g,
K, K) therefore the weights from index (IN/g) X i to in-
dex (N/g) x (i + 1) where i indicates the index of the
group which has the max sum of elements are kept. Any
whole number g where g is a divisor of N/K? can be
chosen. For example, if g = 2, half of the weights will
be used. Fig. 1 depicts the graphical explanations of con-
ventional pruning methods and the proposed model. The
left vector corresponds to a weight vector of a linear pro-
jection. The right side indicates the involution kernel af-
ter the reshaping layer. Note that the darker color means
the bigger value of the weight and the red cross means

that the weight is pruned. In order to prune the correct
filter, we need to add K2 number of weights before sort-
ing where K is the kernel size. However saved model
files does not provide any information about the kernel
size therefore deep technical details about the model are
needed in order to apply pruning methods.

Algorithm 1 Model diet pseudo code

1: Load Full model state dict

2: for each key in Full model do

3: for i, g in enumerate(groups) do

4: start=(N/g) * i

5: end=(N/g)* (i+ 1)

6: if full[key].shape is not diet[key].shape then
7: if len(full[key].shape) is 1 then
8: glkey]=full[key][start:end]

9: groupsum|[g]+=sum(g[key])
10: end if

11: if len(full[key].shape) is 2 then
12: glkey]=full[key][:, start:end]
13: groupsum|[g]+=sum(g[key])
14: end if

15: if len(full[key].shape) is 4 then
16: glkey]=full[key][start:end,start:end,:,:]
17: groupsum|[g]+=sum(g[key])
18: end if

19: end if

20: end for

21: end for

22: diet = group[argmax(groupsum)]

23: Save diet as state dict

Algorithm 1 shows the pseudo code of the diet opera-
tion. State dict is the dictionary where the model weights
are saved. When the full model’s state dict is loaded, the
algorithm first checks the type of weight. Length 1 cor-
responds to the bias of a layer, length 2 corresponds to
the weights to a fully connected layer and length 4 corre-
sponds to the weights of a convolutional layer. The term
half means the half of the shape with the corresponding
dimension. As can be seen in the algorithm, diet opera-
tion can be done regardless of the kernel size.

4. EXPERIMENTAL RESULTS

We follow the work in [9] using RedNet model to test
our method. RedNet is a successor model of ResNet [8]
in image recognition but the convolution layers are re-
placed with Involution layers. The full model refers to
the model without the diet while the diet model is the
model after applying the diet algorithm. A randomly ini-
tialized model is a model that has the same architecture as
the diet model but has random weights. First, we test the
models using RedNet to show that diets are effective to
Involution. Then we use different CNN models [6, 8] to
show that diet also works with conventional CNNs. Con-
ventional CNNs follow the implementation of PyTorch.
The test accuracy was measured with both diet only and
knowledge distilled model.
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Fig. 1. Conventional filter pruning (top), the actual involution kernel (middle), and the diet operation (bottom). The green
and brown indicates different kernels and K; stands for the i-th kernel. If the results are different from the middle, the
spatial information is lost. Conventional pruning sorts the weights before reshaping therefore the result differs from
the actual kernel. Diet in contrast prunes the weights before reshaping therefore the results are equal to the actual

kernel.

4.1 Dataset

The Imagenette ! dataset is a small subset of the Im-
ageNet dataset [5] that is composed of 10 different class
labels for image classification. It contains about 9000 im-
ages for training and 3000 images for testing. Imagenette
is a useful subset as it allows for faster processing. Since
benchmark datasets usually have millions of images, it
might require more computational power and time to pro-
cess.

We first fine tune the ImageNet pre-trained full model
with Imagenette. Then we diet the full model reducing
the number of weights and build a new diet model. We
compare the change of top-1 classification accuracy dur-
ing the training epochs between the diet models i.e. the
model that inherits the pre-trained weights and the model
that was randomly initialized.

4.2 Parameter setup

Images in the dataset are 3-channel RGB. The values
of the channels are biased, an image of a red flower will
have high pixel values for red channels, while an image
of a blue sky might have large values for blue channels.
This bias will affect the ability to capture the visual pat-
terns therefore we apply normalization each channel to
remove the channel bias. All the input images are nor-
malized with the mean (0.4914, 0.4822, 0.4465) and the
standard deviation (0.247, 0.243, 0.261) indicating for
each channel correspondingly. We crop each image with
random axes and flip the image with 0.5 probability to
avoid overfitting. We also used constant learning rate of
le — 5 with batch size 32 using Adam optimization. The
training epochs were same during training both the diet
model and the randomly initialized model.

4.3 Computational Results and Analysis

Table 2 and Table 3 shows the number of parameters
and the test accuracies before and after diet. We could
reduce the number of parameters more than half by sim-
ply halving the number of filters. The diet could reduce

Lhttps://github.com/fastai/imagenette

up to approximately 75% of the parameters. Table 1 and
Fig. 2 shows the size in MB of each model and the test ac-
curacy respectively. Although the accuracy was lowered
about 7% compared to the full model, the results still re-
main in a reasonable area. The accuracy is lower than the
previous work but its implementation is much easier as
well as the computational cost needed. Model diet can be
operated by simply using if-then rules depending on the
weight shape without requiring extra data manipulation
operations such as adding or sorting.

Table 4 shows the number of floating-point operations
in a billion scale. It can be seen that the floating-point
operations have reduced about 50-60%. This difference
will make a drastic difference in the inference time when
it is needed to operate in real time.

Model diet has its limitations on the program design
since it becomes complicated to implement when the
model architecture does not consist of basic blocks. Py-
torch implements ResNet by using basic block layers and
RedNet implementation follows the work of Pytorch. Al-
though the diet algorithm can still be applied to those
models, its implementation may not be as simple as done
by if-then rules. Also, more sophisticated methods can be
developed on how to choose weights that would be kept
in the reduced model.

5. CONCLUSIONS AND FUTURE WORK

In this research, we proposed a novel method for
compressing the neural network models by reducing the
weights used. Our experimental results provided that it
can reduce up to 75% of the parameters without requir-
ing much computational efforts. Also Involution kernels
have reshaping layers so the kernel size remains unknown
from weight files. Even if the kernel size is known, we
still need extra manipulation such as summation and sort-
ing. The proposed Model diet overcomes these limita-
tions since it does neither need the kernel size nor require
extra manipulation. Diet models can learn faster com-



Table 1. Size comparison for each model (in MB)

RedNet26 ResNet18 VGG16
Model Size ) Reduction ) Reduction ) Reduction
Full Diet Rate Full Diet Rate Full Diet Rate
Inference 492.54 287.04 41.72% 62.79 52.06 17.09% || 322.13 161.07 50.00%
Paramaters 27.48 7.00 74.53% 4265 11.21 73.72% || 512.35 128.15 74.99%
Total 520.60 297.62 42.83% || 106.01 63.84 39.78% || 835.06 289.79 65.30%
Table 2. Top 1 accuracy(%) of the diet model.

Model | Full | Diet | with KD | random initialized

RedNet26 | 93.9% | 86.7% 89.5% 0.60%

ResNetl8 | 97.4% | 90.2% 90.8% 0.75%

VGGI16 98.2% | 89.7% 90.8% 0.79%

Train Accuracy Test Accuracy
1.0 1.0
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Fig. 2. The train, test accuracy of random initialized and the diet model(Tested with Involution).

Table 3. Number of parameters (x10°) before and after
diet.

Model | Full | Diet | Reduction Rate
RedNet26 7.20 1.84 74.44%
ResNet18 11.18 2.94 73.70%
VGG16 134.31 | 33.59 74.99%

pared to randomly initialized models and can be applied
on conventional CNN models as well. The accuracy is
decreased by approximately 7% but still remains on a
reasonable area. Since diet RedNet26 only have 1.84M
parameters, model diet can be applied on devices that re-
quire less parameters such as mobile devices or mobile
robots.

For future work, some experimental and performance

Table 4. Number of GFLOPs before and after diet.

Model ‘ Full ‘ Diet ‘ Reduction Rate
RedNet26 1.75 | 0.67 61.71%
ResNet18 1.83 | 0.92 49.72%
VGG16 15.54 | 3.93 74.71%

analysis will be targeted in other models for object detec-
tion, depth estimation and similar other tasks. Also, more
sophisticated ways to select a group of weights apart from
the summation of weights will be studied.
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