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Abstract: Recently, room categorization as part of indoor robot localization has become a vital topic for semantic
mapping. One approach is implemented via scene understanding by integrating available object information in the scene.
In this paper, a novel room association approach is proposed based on the prior knowledge of the object appearance
frequency in the specific room category inside the house. The front interface of the proposed technique employs a state-
of-the-art YOLOv2-based object detection framework. Detected objects and their prior appearance frequency information
form the input to the proposed room association through a novel scoring approach. This scoring function avoids any
limit on the number of detected objects and is capable of operating with a low object detection confidence level. The
experimental results of the novel proposed technique show significant improvement over the previously developed room
categorization approach. On average, the correctness score increased up to 0.8387 while the indecisiveness level of the
object detection framework decreases.

Keywords: simultaneous localization and mapping, semantic localization, room categorization, object detection, object-
room information sharing

1. INTRODUCTION

We need to accelerate the development and deploy-
ment of domestic service robots, increasing their poten-
tial in response to changes or disturbances in the sur-
rounding environment. Several robotics-related research
domains (e.g., robotic mapping and localization, human-
robot interaction and understanding, and many others)
have been established in past decades in order not only
to create an improved capability of the robot but also to
develop a safe working environment between humans and
robots. One topic on these domains is called Simultane-
ous Localization and Mapping (SLAM). By far, SLAM
has been an active topic of research in recent years due
to the increasing demand of robotic exploration in un-
known environments with improved sensor capabilities
and computing resources. Diverse robotic platforms [1,2]
also have become practical applications either in real life
or simulation-based experimental tests, where the imple-
mentations have been further researched either on single
individual agents or multi-robot agents famously called
swarm topology.

Semantic localization as part of SLAM has been
proposed as one solution to overcome the robot self-
localization challenge by incorporating the prior or ex-
pert information of the environment. Semantics in terms
of the robotics field can be described as the meaning of
existing things of places, objects, and other entities oc-
cupying the environments, or even the languages used in
communicating between robots and humans or between
robots themselves [3]. Several previously related pieces
of research on the semantics-based mapping and localiza-
tion have been proposed based on the monocular visual-
based perception [4, 5], multi-view perspectives [6], fu-
sion approach of multiple sensor data [7, 8], and many

more. Several kinds of research have also implemented
semantic mapping for the application of room categoriza-
tion [9,10], gas-leaking source localization [11], and cre-
ated an open-source library for semantic-based localiza-
tion and mapping framework [12].

The Room categorization technique as part of the
semantic-based mapping and localization is proposed and
studied to improve the robot’s intelligence and capabil-
ity in indoor environments. One example of these ad-
vancements is the capability of the robot to assign the task
given to them based on their location information or envi-
ronmental condition. Another future progress is the abil-
ity of the robot to predict the future mission based on their
location information without the needs of the prelimi-
nary task definition. Several previous types of research
have further advanced the features of the room catego-
rization approach by improved the robot’s capability for
an enhanced task and ability [13, 14]. Several strategies
to solve the problem in the room categorization-based re-
search have been studied through machine learning-based
classifiers identifying the geometric or appearance fea-
tures of the room [15, 16]. On the other side, there have
been approaches utilizing object detection frameworks
based on the understanding and application of the object
and their location via their valuable information [17, 18].

Over the last few years, several frameworks for ad-
vanced object detection (e.g., YOLOv2 [20], Faster R-
CNN [23], and Mask R-CNN [19]) have been developed.
Furthermore, the availability of the public datasets on
the image categorization (e.g., COCO dataset [22]) has
greatly helped to improve the capability of the object
detection frameworks. Integrating the object detection
framework with the room categorization approach, it is
expected that the correctness and confidence level can be
further enhanced.



In this paper, we proposed an improved version of the
previously developed semantic-based room categoriza-
tion method [9]. Specifically, we designed a novel score
function on the object-room association framework with-
out limiting the number of the detected objects within
a scene through the development of an ontology-like
knowledge base of the object-room relation probability.
This score function improves the room categorization ap-
proach and helps the robot to be able to define and locate
itself inside the specific room category based on the prob-
ability scores of each room category coming from the ap-
pearances of detected objects in the room.

2. METHODOLOGY

The primary motivation of this research is to improve
the existing room categorization approach implemented
in [9]. Specifically, the proposed research aims to claim
and validate a general approach to room categorization
for indoor semantic localization through the integration
of the ontology as the prior knowledge base and the pro-
posed room association score. The existing room cat-
egorization approach in [9] has several drawbacks such
as the limitation of the numbers of the detected objects,
high threshold of the confidence level on the object detec-
tion framework, and especially on the proposed Bayesian
probability framework. Another approach of room cate-
gorization is developed via the deep learning algorithms
[4–8]. They have shown significant improvements but
suffer from some drawbacks mainly due to the availabil-
ity and disparity of the datasets that tend to lead to over-
fitting and the need for high computing resources.

The overview of the proposed room association frame-
work is given in Fig. 1 and Algorithm 1. The proposed
procedure initially makes use of a pre-trained object de-
tection network with input RGB images. Detected ob-
jects and their detection confidence scores are passed to
the next step of the scene categorization method incor-
porating the novel association score function. On the
other hand, using existing datasets [24], prior informa-
tion on object appearance frequency according to the
room categories is computed and used as semantic knowl-
edge. The object-to-room probability information ex-
tracted from the knowledge base is utilized in the room
association computation with the novel score function.
In the end, the computational results of several associa-
tion scores (as many as room categories) become the final
measure where the robot most likely to be located.

The YOLOv2 algorithm [20] is selected and used
as the object detection algorithm. The state-of-the-art
YOLOv2 framework extends the capability of the previ-
ous algorithm through improvements on the recall and lo-
calization errors [20]. YOLOv2 improved real-time per-
formance and capability of operating over a wide variety
of object classes. In our experiments, the detectıon confi-
dence level and label are utilized as the inputs of the prior
information retrieval through the detected object’s label
and the proposed room association score calculation.

2.1 Semantic Knowledge Understanding
Semantic knowledge is one part of the knowledge rep-

resentations and could be further enlarged as the prior
or expert knowledge by developing a customary under-
standing of a specific topic or domain. One common
approach to semantic knowledge representation can be
implemented through the creation of ontology. Ontol-
ogy is similar to the knowledge base where the required
information can be acquired by the specific command
or request based on the query languages. The applied
ontology-like knowledge base of the relation of the ob-
ject(s) and the possible room location of the object(s) is
developed from the Place365 dataset [24]. The knowl-
edge base is used when calculating the appearance prob-
ability of the detected objects on specific room categories.

2.2 Proposed Room Association Scoring Approach
The probability of the possible room localization of

the robot can be represented by the common understand-
ing of the detected object’s information. One of the ap-
plied object’s information is the prior knowledge of the
object-room knowledge base based on the relationship
between the detected object and their room location. This
knowledge base excerpt the object appearance probabil-
ity in specific room categories. First, we defined the kinds
or number of the room categories to be considered; for
example: Kitchen, Living Room, Bedroom, Bathroom 1.
Using the Place365 dataset [24], we run object detection
framework on images belonging to the room categories.
For each object category, we counted the total number of
detection over images from room categories. Then we
compute the probability of object categories appearing in
a certain room by dividing the total number of its appear-
ance in all room categories as given in Eq. 1.

P(R j|Oi) =
Oi j

∑
nrc
j=1(Oi j)

(1)

where Oij is the number of occurrences (or frequency) of
the object category i in the room category j, while nrc is
the total number of room categories, which is set to 4 in
this study.

In order to improve the accuracy of room association,
we propose to use the following score function given be-
low in Eq. 2. This function is designed to incorporate
both the object-room appearance probability computed in
Eq. 1 and the object detection confidence level informa-
tion:

S j =
∑

n
i=1

(
wi× e(P(R j |Oi)−0.5))

∑
n
i=1 wi

− e(−0.5) (2)

where S j is the association score computed for room cat-
egory j over the total number of objects detected repre-
sented by n, while wi represents the detection confidence
level from the object detection framework. Multiple in-
stances of the detected objects from the same category
can be dealt with by computing their average detection
1Please be noted that we excluded the Dressing Room category since it
uncommonly exists in datasets.



Fig. 1. The overview of the proposed room association approach

confidence level. The term e(−0.5) is used as a correction
term to make the association score zero when the object-
room appearance probability is equal to zero. This score
function is designed in a way to put more emphasis on the
objects with higher object-room probability (e.g., ≥ 0.5)
while acknowledging the contribution of all detected ob-
jects.

On each scene, the room association score values is
computed and the room category with the maximum
score value is selected as the final decision.

Algorithm 1 Proposed Room Association Approach
1: SET frame rate and detection confidence level
2: INPUT RGB images
3: LOAD object detection framework
4: for every set of images with frame rate do
5: RUN object detection framework
6: for every detected object(s) do
7: RETRIEVE detected object(s) information:

object label(s), confidence level(s)
8: EXTRACT object-room probability: Eq. 1
9: end for
10: CALCULATE room association scores: Eq. 2
11: SORT room association scores
12: DEFINE final room location: max room associa-

tion score
13: end for

3. EXPERIMENTAL PROCEDURES

Experiments have been carried out using RGB images
obtained from four houses available in the Robot@Home
dataset [21], namely: Alma, Anto, Pare, and RX2. The
YOLOv2 was employed as the object detection step and
it was pre-trained using the COCO dataset [23] to retrieve
the possible object labels. We used three different con-
fidence scores in the ranges of 0.2, 0.5, and 0.7 based
on the reason of the number of detected objects on the
scene. The lower detection scores increase the number of
the detected objects means more objects are found on the
scene and improve the correctness of the possible room or
scene location. The RGB images taken from each room

on these houses were entered the object detection frame-
work at first. The label and detection confidence level
information of the detected objects were obtained as a re-
sult of the object detection framework.

Labels of detected objects are used to retrieve prior
object-room probability information obtained previously
using Eq. 1 over the Places365 dataset [24]. Retrieved
probabilities along with detection confidence values are
later applied to calculate room association score via the
proposed function in Eq. 2. The calculation of the room
association score is performed on each room category.
The room category with the maximum score is defined
as the location of the robot.

During the experiments, we applied five different
frame rates from 5 to 25. Therefore, a different number
of time-consecutive images are fed to the object detec-
tion. There is no limit on the total number of detected
objects in our framework different from its counterpart
in [9], where the limit was set to 5. Also, our object-room
probability prior information is retrieved via a data-driven
approach using a large dataset in contrast to ad hoc defi-
nition in [9].

In order to make a comparison, we also carried out ex-
periments with the score function based on multiplying
the object-room probabilities with detection confidence
levels similar to the one proposed in [9]. This score func-
tion is given in Eq. 3 and referred to as the baseline in the
experimental results. This function was devised based on
the Bayes rule.

S j =
n

∏
i=1

wi×P(R j|Oi) (3)

where P(R j|Oi) is the object-room association probabil-
ity and wi is detection confidence level, while n is the
total number of the detected objects.

4. EXPERIMENTAL RESULTS

Experiments were carried out using five different
frame rates with three different confidence levels of the
object detection framework. The average of the correct
and incorrect associated scene with the total number of



the available set of images per room category were re-
ported. We also showed the ratio of cases where there
was no object detected in a set of input images. Such
cases are referred to as indecisive since no score compu-
tation could be carried out.
Table 1. Room Categorization Results for All Houses on
the Confidence Level of 0.2

Room House
New Score Baseline Bayesian

IndecisiveFunction Function
Correct Incorrect Correct Incorrect

Bedroom

Alma 0.7310 0.2670 0.3940 0.6040 0.0020
Anto1 0.6920 0.3080 0.4100 0.5900 0.0000
Anto2 0.4580 0.5420 0.3050 0.6950 0.0000
Pare1 0.5440 0.4560 0.3370 0.6630 0.0000
Pare2 0.7620 0.2380 0.5800 0.4200 0.0000
RX2 0.9830 0.0170 0.8740 0.1100 0.0170

Bathroom

Alma 0.8870 0.1080 0.5160 0.4790 0.0500
Anto1 0.9040 0.0960 0.4360 0.5640 0.0000
Anto2 0.9970 0.0000 0.0540 0.9430 0.0030
Pare1 0.9480 0.0520 0.5090 0.4910 0.0000
Pare2 0.9960 0.0040 0.6480 0.3520 0.0000
RX2 0.8360 0.1640 0.3890 0.6110 0.0000

Kitchen

Alma 0.9500 0.0500 0.9850 0.0150 0.0000
Anto 0.8630 0.1370 0.7590 0.2410 0.0000
Pare 0.8820 0.1180 0.7920 0.2080 0.0000
RX2 0.7980 0.2020 0.9310 0.0690 0.0000

Living

Alma 0.8330 0.1670 0.7100 0.2900 0.0000

Room

Anto 0.8390 0.1610 0.8670 0.1330 0.0000
Pare1 0.9960 0.0040 0.9890 0.0110 0.0000
Pare2 0.9480 0.0520 0.9340 0.0660 0.0000
RX2 0.8540 0.1460 0.0960 0.9040 0.0000

The experimental results on all houses for the pro-
posed approach compared with the one in [9] using the
object detection framework confidence level of 0.2 are
presented in Table 1. The presented numbers are the av-
erage of the room categorization results of each room cat-
egory over five different frame rates. From Table 1, it can
be concluded that the proposed score function achieved
better accuracy on almost all rooms compared with the
baseline Bayesian score function in Eq. 3.

The results of Table 2 for the room categories of Bed-
room and Bathroom in the house of Anto, and the same
room categories plus Living Room in Pare are the aver-
aged one since these houses are having more than one
above-stated room categories. From the results reported
in Table 2, the new score function could improve the
correctness scores by around 22 percent with a low in-
decisiveness score. Meanwhile, from the experimental
results with the object detection confidence level of 0.5,
the proposed approach could improve the correct associ-
ation rates by 4 percent with an indecisiveness score of
around 2 ∼ 3 percent. Using the confidence level of 0.7
on the object detection framework, we found that the cor-
rect association rates between the proposed score func-
tion and the baseline Bayesian probability function are
on the same level. On the other hand, the total number
of indecisive cases arise significantly to a value of around
19 percent. This is mainly due to the low total number of
objects detected in the input images.

The confusion matrices for each of the tested confi-
dence levels of the object detection framework on the new
score function are provided in Table 3 and the baseline
Bayesian probability function in Table 4, respectively.
As can be noted, all the defined room categories have the
highest classification rates on the confidence levels of 0.2

Table 2. Average Correct, Incorrect, and Indecisive Ra-
tios for the Experimental Results

Confidence Level 0.2

House
New Score Baseline Bayesian

IndecisiveFunction Function
Correct Incorrect Correct Incorrect

Alma 0.8421 0.1562 0.6371 0.3612 0.0017
Anto 0.7974 0.2022 0.5289 0.4708 0.0004
Pare 0.8511 0.1489 0.6956 0.3044 0.0000
RX2 0.8748 0.1203 0.5808 0.4143 0.0049

Global
0.8387 0.1600 0.6167 0.3820 0.0013Average

Confidence Level 0.5

House
New Score Baseline Bayesian

IndecisiveFunction Function
Correct Incorrect Correct Incorrect

Alma 0.7745 0.1839 0.7518 0.2066 0.0416
Anto 0.8538 0.1330 0.7628 0.2240 0.0132
Pare 0.8221 0.1455 0.8204 0.1472 0.0324
RX2 0.7888 0.2003 0.7207 0.2684 0.0109

Global
0.8162 0.1591 0.7732 0.2021 0.0247Average

Confidence Level 0.7

House
New Score Baseline Bayesian

IndecisiveFunction Function
Correct Incorrect Correct Incorrect

Alma 0.5125 0.2355 0.5307 0.2172 0.2521
Anto 0.7143 0.1280 0.7047 0.1377 0.1576
Pare 0.6468 0.1050 0.6491 0.1027 0.2482
RX2 0.6701 0.2270 0.6707 0.2265 0.1029

Global
0.6458 0.1578 0.6473 0.1563 0.1965Average

and 0.5, where the lowest indecisiveness scores appeared
on Kitchen and Living Room. The highest indecisive-
ness score emerged on the room category of Bedroom as
shown in the confusion matrices of all of the confidence
levels of the object detection framework due to several
common objects appeared and detected on the room.

Based on the experimental results, the proposed score
function improved the correct associations on the room
categorization technique and reduced the indecisiveness
levels. When the object detection framework ran on the
confidence level of 0.7, the indecisiveness level was sig-
nificant and made several possible important or primary
objects in the rooms unable to detect. In other words,
there is less number of object categories on the images
possible to be recognized on the confidence level of 0.7
compared to the number of the detected object on the
other two confidence levels. In the end, this problem pro-
duced no difference in the correctness scores between the
new score function and the baseline Bayesian probability
function. It can be concluded that the new score func-
tion is still working on the high confidence level of the
object detection framework but has not achieved its best
performance.

When the confidence level of the object detection
framework was selected as low as 0.2, whereby more
numbers of the object were detected, the new score func-
tion can produce better association accuracy due to its
emphasis on the objects with higher object-room prob-



Table 3. Confusion Matrices and the Indecisiveness Lev-
els for the New Score Function

Confidence Level 0.2
Kitchen Living Room Bedroom Bathroom Indecisive

Kitchen 0.8694 0.0670 0.0088 0.0548 0.0000
Living Room 0.0767 0.8895 0.0335 0.0003 0.0000

Bedroom 0.1129 0.1632 0.7050 0.0154 0.0034
Bathroom 0.0353 0.0353 0.0024 0.9256 0.0014

Confidence Level 0.5
Kitchen Living Room Bedroom Bathroom Indecisive

Kitchen 0.7324 0.0969 0.0391 0.1262 0.0054
Living Room 0.0446 0.8529 0.0910 0.0000 0.0115

Bedroom 0.0695 0.1191 0.7598 0.0062 0.0455
Bathroom 0.0143 0.0258 0.0010 0.9266 0.0324

Confidence Level 0.7
Kitchen Living Room Bedroom Bathroom Indecisive

Kitchen 0.4927 0.1918 0.0303 0.1282 0.1570
Living Room 0.0237 0.6597 0.1576 0.0000 0.1590

Bedroom 0.0209 0.0770 0.6626 0.0017 0.2379
Bathroom 0.0000 0.0191 0.0000 0.7525 0.2284

Table 4. Confusion Matrices and the Indecisiveness Lev-
els for the Baseline Bayesian Function

Confidence Level 0.2
Kitchen Living Room Bedroom Bathroom Indecisive

Kitchen 0.8464 0.1531 0.0005 0.0000 0.0000
Living Room 0.1217 0.7242 0.1538 0.0003 0.0000

Bedroom 0.1964 0.3015 0.4952 0.0034 0.0034
Bathroom 0.5346 0.0415 0.0076 0.4149 0.0014

Confidence Level 0.5
Kitchen Living Room Bedroom Bathroom Indecisive

Kitchen 0.7432 0.1541 0.0475 0.0499 0.0054
Living Room 0.0338 0.8354 0.1192 0.0000 0.0115

Bedroom 0.1023 0.1588 0.6889 0.0044 0.0455
Bathroom 0.0792 0.0272 0.0262 0.8350 0.0324

Confidence Level 0.7
Kitchen Living Room Bedroom Bathroom Indecisive

Kitchen 0.4868 0.2192 0.0318 0.1052 0.1570
Living Room 0.0181 0.6764 0.1464 0.0000 0.1590

Bedroom 0.0195 0.0770 0.6639 0.0017 0.2379
Bathroom 0.0119 0.0191 0.0000 0.7406 0.2284

ability. The baseline Bayesian probability framework
could not solve this situation, since its probability func-
tion will produce near-zero scores at the end, when the
number of detected objects increase.

5. CONCLUSIONS AND FUTURE WORK

Localization plays an important role in SLAM. In this
paper, we proposed a semantic localization framework
for domestic service robots navigating freely in indoor
environments. The proposed framework is composed of
the state-of-the-art YOLOv2 object detection framework
and the newly designed score function. The proposed ap-
proach has shown improved results shown in the exper-
imental results without limiting the number of detected
objects inside the scene while maintaining the correct
association. An ontology-like knowledge base was em-
ployed in this study as the semantic-based information
representation containing the preceding information on
the probabilities of the occurrences of the detected ob-
jects that existed inside the specific room categories.

Our proposed novel room association approach for
indoor localization implementation has been tested and

evaluated by applying the Robot@Home dataset using
the available RGB images under specific room categories.
The proposed approach has shown to be effective in rec-
ognizing the representative room categories with the cor-
rectness score up to around 0.8387 on average. Besides
that, the proposed room association approach could de-
crease the indecisiveness score setting the lower confi-
dence level of around 0.2 on the object detection frame-
work.

For future work and the improvement of the capa-
bility of the proposed approach, we plan to integrate it
into a more advanced framework. The future framework
will attempt to utilize the progressive scene understand-
ing framework combining the object detection framework
and feature-based scene recognition.
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[13] Uršič, Peter, Aleš Leonardis, and Matej Kristan.
”Part-based room categorization for household ser-
vice robots.” in Proceeding of 2016 IEEE Inter-
national Conference on Robotics and Automation
(ICRA), 2016, IEEE.

[14] Chaves, D., et al. ”Integration of CNN into a robotic
architecture to build semantic maps of indoor en-
vironments.” in Proceeding of International Work-
Conference on Artificial Neural Networks, 2019,
Springer, Cham.

[15] Pronobis, Andrzej, et al. ”Multi-modal semantic
place classification.” The International Journal of
Robotics Research, 29.2-3, pp. 298-320, 2010.

[16] Quattoni, Ariadna, and Antonio Torralba. ”Recog-
nizing indoor scenes.” in Proceedings of 2009 IEEE
Conference on Computer Vision and Pattern Recog-
nition, 2009, IEEE.

[17] Pronobis, Andrzej, and Patric Jensfelt. ”Hierar-
chical Multi-Modal Place Categorization.” ECMR.
2011.

[18] Pereira, Ricardo, et al. ”Deep-Learning based
Global and Semantic Feature Fusion for Indoor
Scene Classification.” in Proceedings of 2020 IEEE
International Conference on Autonomous Robot
Systems and Competitions (ICARSC), 2020, IEEE.

[19] He, Kaiming, et al. ”Mask r-cnn.” in Proceedings
of the IEEE international conference on computer
vision, 2017.

[20] Redmon, Joseph, and Ali Farhadi. ”YOLO9000:
better, faster, stronger.” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, 2017.
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