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Abstract

Assessment of the quality of auditory spaces is essential in room acoustics and speech
signal processing. In room acoustics, the sound characteristics of auditoriums are related
to the quality of life in different aspects. In emergency circumstances, e.g., earthquake
or flood, emergency announcements and alarm sounds need to be easily audible and
intelligible so that we can follow the safety procedures appropriately. In theaters or
concert halls, excellent sound characteristics and superior acoustics are ideal environments
for performances. The sounds of live performances should be clear and transparent so
that attendees can enjoy the entertainment. Additionally, speech signal processing, such
as speech dereverberation and noise suppression, would benefit in which the sound quality
and speech intelligibility can be improved based on the room characteristics.

Intelligibility of speech and pleasure to music are subjective descriptions. It is difficult
to convey such descriptions from listeners to architects who are responsible for designing
auditoriums or diagnosing acoustic problems. Conventionally, speech intelligibility and
sound quality can be determined by conducting listening experiments with a group of
listeners. Unfortunately, the experiments are expensive, unreliable, and time-consuming.
It is also impractical for real-time applications, such as hearing aids, automatic speech
recognition, and speaker verification. Thus, the quality of a sound field and subjective
aspects are defined through room acoustic parameters and objective indices related to the
physical properties of a sound field. Hence, architects, acousticians, and signal processing
algorithms, can justify acoustic conditions by measuring acoustical parameters.

Several useful room acoustic parameters and objective indices have been standardized.
In IEC 60268-16 : 2020, the speech transmission index (STI), which is an objective index,
is used to predict speech intelligibility from the quality of a speech transmission channel.
The STI is calculated based on the concept of the modulation transfer function (MTF).
The MTFs of seven-octave bands with their weighting values are converted to be a real
number from 0 to 1. In addition, ISO 3382: 2009, specifies methods for measurement the
reverberation times (T60 or T30) and other room-acoustic parameters, including early decay
time (EDT), clarity (early-to-late-arriving sound energy ratios: C80 or C50), Deutlichkeit
(early-to-total sound energy ratio: D50), and center time (Ts). These parameters are
derived from measuring the room impulse response (RIR).

In the time domain, an RIR completely describes the characteristics of a sound
field. Similarly, a system transfer function in the frequency domain and the MTF in
the modulation-frequency domain are the counterparts. In general, the RIR or MTF
needs to be measured. However, it is difficult to measure RIR or MTF in daily-life
places where people cannot be excluded, e.g., public stations, airports, and department
stores. Moreover, by the nature of such public areas, room acoustics are prone to be a
time-varying system. Sound absorption, reverberation, or other acoustical parameters are
changed by varying occupants and object arrangements. Thus, acoustic parameters that
were measured complying with the standards might be different from the current one.
Hence, many methods have been proposed to estimate an acoustical parameter without
measuring the RIR, known as blind estimation methods.

The blind estimation of an acoustical parameter is an ill-posed condition because both
sound source and RIR are unknown. The ill-posed or blind inverse problem is challenging
since it needs additional assumptions or complementary prior knowledge to formulate the
estimation. Furthermore, the robustness of the estimator against various rooms (e.g.,
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diffuse/non-diffuse field and connected chamber) and background noise need to be taken
into account. To this end, this research presents blind estimation methods for estimating
five-room acoustic parameters, STI, and SNR from a speech signal in noisy reverberant
environments using a single-channel microphone and the concept of the MTF.

A speech signal can be decomposed into a fine structure and temporal structure. For
temporal structure, a power envelope (PE) or temporal amplitude envelope (TAE) is
used as a feature. On the basis of the MTF, PE or TAE represents the modulation
distortion caused by reverberation and noise of the transmission channel (sound field).
The TAE also plays an important role in speech intelligibility. In the proposed scheme,
these features are extracted from an observed signal by using Hilbert transform and a low-
pass filter. An observed signal in a given room is regarded as the output of the convolution
between the RIR and speech signal. Hence, the modulation features (TAE/PE) and the
convolution operation using one-dimensional convolutional neural networks (CNNs) were
deployed. A more sophisticated deep neural network (DNN), such as a combined network
between CNNs and long short-term memory (LSTM) networks, was also utilized. These
DNNs were trained from the pairs of TAE/PE and the parameters of RIR models. In
addition, data augmentation techniques were used for synthesising the dataset due to
limited measured RIRs.

Here, an unknown RIR is modeled by using a stochastic RIR model. Two RIR
models were investigated: Schroeder’s RIR model and the extended RIR model. The
reverberation time is an only parameter in Schroeder’s RIR as a simple exponential decay
(TR). The extended RIR model is an extended version of Schroeder’s RIR model. It
consists of three parameters, including rising parameter (Th), peak position (T0), and
exponential decay parameter (Tt). Thus, the extended RIR model is much more accurate
and flexible. Here, the parameter TR in Schroeder’s RIR and the three parameters of the
extended RIR model are blindly estimated. Sub-band analysis is used as the same as
the algorithm for calculating the STI. The distortion in seven-octave bands is estimated
through the parameters of the RIR model. The approximated RIR for each sub-band
can be reconstructed from their envelope modulated with band-limited noise. The wide-
band RIR is also approximated from the summation of the sub-band signals based on the
superposition principle. Therefore, the estimated acoustical parameters and STI for both
sub-band and wide-band can be derived.

The effectiveness and performance of the proposed methods were evaluated. Simula-
tions were performed by estimating the parameters from reverberant and noisy reverberant
speech signals. The accuracy of the estimated acoustical parameters was compared with
baselines calculated from measured RIRs and existing works. The robustness against
various background noise was also evaluated by adding four types of noise with different
SNR levels into the reverberant speech signals. The experimental results suggest that the
proposed method can correctly, blindly, and simultaneously estimate five-room acoustic
parameters, STI, and SNR from a speech signal in reverberant and noisy reverberant
environments. The accuracy in terms of standard derivation of the error of the estimator
for each parameter, i.e., T60, EDT, C80, D50, Ts, and STI, was 9.4%, 10.5%, 2.7 dB, 14%,
45 ms, and 0.05, respectively. These results of the estimated parameters were close to the
standard measurement derived from the RIR.

Keywords: room impulse response, speech transmission index, blind parameter estima-
tion, modulation transfer function, convolutional neural networks.
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Chapter 1

Introduction

1.1 Significance and challenges

Speech communication and sound perception are the human basis. Humans take hearing
for granted. We gain information by hearing, enjoy music, and convey our thought to the
world. The world may be communication between people as well as people to machine or
machine to people, e.g., smart assistant, speech-to-speech translation, and car navigation.
The world also covers the physical spaces or sound fields. The quality of sound fields
affects our lives in many aspects since we live mainly in enclosures surrounded by walls
and ceilings. Such surfaces reflect or diffuse a sound wave across the area, known as
reflection and reverberation. Additionally, most areas contain unwanted sounds or noise.
Inappropriate reverberation and background noise degrade our intelligibility of speech, as
well as enjoyment in music [5,6]. Each building or auditory space is designed for different
purposes, so the acoustic quality of each place is considered differently.

In lecture halls and meeting rooms, high quality and intelligibility of speech are
expected. Hence, many works regarding acoustics of such auditoriums and hearing were
studied [7, 7–10]. A well-designed concert hall or theater can give enjoyment in music,
or live performance [11]. The reputation of such halls related to income and benefits
primarily depends on the acoustic quality as one of the justifications. Although different
areas have different expectations, one of the mutual purposes of every area is safe from
unintelligible or misunderstanding in conversation. In common spaces, such as airports,
department stores, and stations, acoustic properties are much more crucial because hear-
ing is related to safety, e.g., emergency announcements or fire alarm sound [12]. Hence,
architects or acousticians must carefully design and evaluate the acoustic properties of
the sound fields corresponding to the purposes of such areas.

Furthermore, the characteristics of a sound field are of interest to many research
issues and applications of signal processing. In terms of research issues, the related topics
are echo cancellation, noise suppression, and source separation. For speech processing
applications, automatic speech recognition (ASR), speaker verification systems, hearing-
aided devices, and sound reproduction can make use of the information of the sound field
from its acoustical indices. Thus, researchers and engineers give attention to deal with
undesired sound environments. Measuring acoustic properties and predicting of user’s
experience can provide more advantages.

User’s experience or subjective aspects, i.e., speech intelligibility and transparency as
well as clarity in music, can be evaluated by conducting subjective experiments. A group
of listeners is asked to give a score to each sound they heard in a particularly tested
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auditorium. However, listening test is expensive, time-consuming, and unreliable. It is
still difficult to exchange such subjective descriptions, scores, or feelings from a group of
listeners to architects responsible for designing auditoriums or diagnosing acoustic prob-
lems. Moreover, it is impractical for real-time applications. Therefore, such subjective
descriptions of an acoustic environment are represented by physical properties of room
acoustics [13].

In signal and system theory, the relationship of sounds and physical properties of a
room, such as absorption coefficient, size, and volume of a room, can be described by
room impulse response (RIR) [14]. The RIR can fully represent an enclosure from the
source position to the receiver position in the time domain. In the frequency domain, the
system transfer function of an acoustic environment can be described by the modulation
transfer function (MTF) [15,16].

The RIR is used to derive room acoustic parameters that represent those subjective
perceptions. Likewise, the MTF is used for calculating speech transmission index (STI)
for predicting speech intelligibility [17]. Hence, RIR and MTF need to measure in
general. Room acoustic parameters or objective indices are derived from the RIR or
MTF into well-defined values. Those values represented room acoustic characteristics help
architects understand listeners, musicians, and audiences explicitly. Architects, musicians,
and sound engineers always utilize room acoustics parameters and objective indices in
analyzing a sound field [18].

Many room acoustic parameters and objective indices have been studied [13, 19, 20].
Five useful acoustic parameters and one objective index that are often used in an archi-
tectural and acoustic field are focused on in this work. For example, reverberation time
(T60) is one of the most influential parameters related to the absorption and reflection of
a sound wave. The details of the parameters and indices of interest are described in the
next chapter. Those parameters and indices are standardized by ISO and IEC [3,21].

However, it is difficult to measure RIR or MTF in common spaces where people cannot
be excluded. Estimating room acoustic parameters and objective indices from an observed
signal are therefore necessary. A running speech signal recorded from a general activity in
a room can be used rather than well-designed experiments [22]. Estimating room-acoustic
parameters and indices without measuring RIR or MTF is the so-called blind estimation.

Blind parameter estimation is challenging not only for room acoustics but also in
many fields [23–25]. Because blindly estimating an unknown system is regarded as an ill-
posed inverse problem since only an observed signal is measurable. This blind estimation
problem is similar to blind deconvolution or blind identification that is an active topic in
many fields [23, 24, 26]. Once we can accurately estimate a system transfer function or
impulse response, the original data (speech or music) can be restored [2, 27–29].

In addition, evaluating background noise level is also important since both our hearing
and speech processing, such as speech enhancement, emergency announcement, speaker
localization, and privacy protection, are all suffering at a low signal-to-noise ratio (SNR).
Interestingly, there is no existing method could simultaneously estimate room acoustic
parameter with the noise level. Hence, an interesting research issue is blindly and simul-
taneously accurate estimation of various room acoustic parameters, STI, and SNR from an
observed signal in noisy and reverberant environments. In particular, the estimated STI
is deployed in speech privacy protection for a semi-open space [30,31]. Lastly, this study
might be extended and be beneficial for other applications in many fields, such as blind
equalization of transmission channels, seismic analysis, forensics, sound reproduction,
virtual reality, and vital medical signs [23,25,32–35].
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1.2 Motivation and research goal

The motivation for this research has started from my interest in the relationship between
hearing perception and characteristics of a sound field. Then, more curiosity followed:
what can we do once we are in unknown and difficult to control auditory spaces. From a
control engineering point of view, we cannot do anything if we cannot observe them. The
questions are how to observe and what parameters of a sound field need to measure. The
theory of system identification clearly explains that we need to stimulate the system with
well-designed signals [36]. The aforementioned challenges are presented. Is it possible
to bring a de facto concept of the MTF incorporating into emerging deep learning to
overcome these challenging issues? It is anticipated that the critical problem could be
overcome. Therefore, this motivation becomes the research goal that is to propose blind
methods for estimating room acoustic parameters and speech transmission index from an
observed signal in noisy reverberant environments. Estimating room acoustic parameters
from degraded speech signals is an active research question. Contribution to the field of
research is needed for many current and future applications. Blind parameter estimation
is also a challenging issue. Since many existing pieces of research, which are explained
in Chapter 2, could provide one or two parameters, it is inadequate to describe room
acoustics completely. Estimating multiple parameters is, therefore, much more fruitful.
Thus, this estimation is similar to standard methods that can derive multiple parameters
from measured RIR. Moreover, the robustness to background noise and a level of noise
has not been studied explicitly.

1.3 Research philosophy

The philosophy of this work is one of the truths of the universe that is Causality and
the Evidence of that truth. It is the so-called “evidence-based estimation from
cause and effect of such a thing.” As a noisy and reverberated speech signal is a
result of characteristics of a sound field, and such an observed signal is then the effect
of reverberation and noise. This phenomenon of caused and effect between speech signal
and a sound field can be described by the MTF.

The MTF is used to describe the physical properties of a sound wave in a transmission
channel. The signal from a speaker to a listener is smeared by background noise and
reverberation. Hence, speech quality and speech intelligibility are reduced according to
a reduction of the modulation depth [16, 37,38]. From psychoacoustics studies, temporal
amplitude envelope (TAE) is an important cue to predict speech intelligibility [39]. The
TAE and power envelope of the observed signal are considered as physical and psychoa-
coustical meaningfully features. Furthermore, the STI, one of the parameters of interest
used for predicting speech intelligibility, is based on the MTF.

However, the knowledge of the cause and effect based on the MTF cannot fully apply
since the reverberated signal is the only information we can measure. Lack of the well-
defined modulated input signal causes blind estimation of room acoustic parameters as
solving an ill-posed problem. The relevant assumption needs to formulate the appropriate
estimator. We assume the reverberation channel as a random process so that in the time
domain, such a system can be approximated by using a stochastic RIR model.

A stochastic RIR model for representing an unknown RIR is the second pillar of belief.
With regard to an RIR model, many models have been proposed. Each model might be
suitable for a particular assumption and the following algorithm. Some of them might
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be suitable for a specific case. In this study, we also believe in a principle of garbage in,
garbage out, so an inaccurate RIR model is prone to provide inaccurate estimated results
because of model mismatch with real auditory conditions. After RIR models have been
investigated, a new RIR model is introduced to approximate the unknown RIR from noisy
reverberant speech signals.

The third pillar of belief is the evidence or data-driven. This is also the basis of
statistics and probability theorem. Once we have gathered enough evidence from the
cause and effect, we are interested in that is room acoustics. The adequate data that
cover as much as the possibility of the relation can help construct a model. The model
that has been trained from the appropriate amount of data can be used to predict the
relationship of the MTF.

From this philosophy, this research can yield the original and significant contributions
to knowledge as the following. For the field of research, this work does not focus on
estimating only a specific room acoustic parameter but also expands to five room-acoustics
parameters and STI. The extended RIR model and estimating techniques of its parameters
have been proposed so as to improve the accuracy of the approximate unknown RIR.
The proposed method also correctly estimates those acoustical parameters even if the
reverberation consists of background noise. Consequently, the SNR of such conditions is
also estimated along with those acoustical parameters.

These contributions make this work different from existing works and bridge the gaps
in the field. The estimated acoustical parameters can be used in various speech processing
applications, such as dereverberation and speech enhancement, or for improving the
quality of emergency announcements. Furthermore, this blind estimation method for
parameters of a transmission channel might be applied to other fields. For example,
blind kernel estimation for deblurring images, blind equalization of transmission channels,
seismic data analysis, and crime scenes identification.

1.4 Dissertation outline

The organization of this dissertation is shown in Figure. 1.1. The rest of this dissertation
has been organized as follows.

Chapter 2 introduces background knowledge regarding speech signal in a sound field,
characteristics of room acoustics, and some important room-acoustic parameters for de-
scribing characteristics of such a giving space. Also, how to obtain these parameters from
the direct measuring method and its limitation is presented. The current methods of
blind estimation are discussed so that the research gaps are addressed.

Chapter 3 reports the preliminary study for blindly estimating the STI in realistic
environments. A method incorporating temporal amplitude envelope into convolutional
neural networks is investigated whether or not it can blindly estimate the STI.

Chapter 4 introduces a scheme for simultaneously estimating five-room acoustic pa-
rameters and STI rather than formulating a method for estimating a particular parameter.

in Chapter 5 describes a more accurate estimation method by repressing a conventional
RIR model with the extended RIR model.

Finally, Chapter 6 summarizes this research. The contributions and recommendations
for further research are also pointed out.
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Figure 1.1: Organization of this dissertation.

5



Chapter 2

Literature review

This chapter introduces theories and concepts of room acoustics related to speech and
sound. Some properties of the speech signal and auditory perception are briefly presented
so as to understand the effects of room acoustics with speech intelligibility. Then, some
of the essential room-acoustic parameters of interest are described. In the last section,
the literature on existing techniques for blindly estimating these parameters are reviewed.
The advantages and disadvantages of them are thoroughly discussed.

Figure 2.1: Block diagram of speech communication in an enclosure.
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2.1 Speech and hearing

Since this research focuses on characteristics of room acoustics related to hearing per-
ceptions, some backgrounds of auditory perception and properties of the speech signal
are firstly reviewed. It is well-known that speech is the most natural and effective
communication method of humans and humans with machines (human-machine interface),
e.g., speech recognition and speaker verification systems. Figure. 2.1 shows primary
factors for conversation in bounded spaces, including speakers (sound source), listeners
(receiver), and transmission channels (sound field). Knowledge of speech and hearing helps
understand the importance of obtaining room-acoustic parameters. Many studies have
revealed that the human perceptual system has remarkable ability and more extraordinary
than any machine hearing [5, 6, 40]. Hence, acoustic characteristics affect our hearing
ability and performance of devices differently, as presented in the following.

2.1.1 Some properties of speech

Auditory systems and speech production are related to speech intelligibility in any situa-
tion no matter in room acoustics or in any communication channels. Basic properties
of speech are therefore useful for understanding the reasons that why room acoustic
parameters and objective indices can be used to predict speech intelligibility as well as
speech quality.

Characteristics of speech are dynamic and non-stationary signals. Spectral information
is important in speech perception as well as the perception of musical instruments. The
smallest unit of speech is called phoneme. Each phoneme has a specific spectrum. The
peaks in the spectra are called formants. The first peak is called the fundamental frequency
(F0). In a complex sound as speech, F0 is varied along with an utterance. F0 also
represents the information of the speech production (i.e., glottal or vocal-fold) [5]. Hence,
many speech applications use F0 as an important cue. Besides F0, level is varied to
emphasize individual syllables, words, or entire sentences. The level can express non-
linguistic information (e.g., vocal-emotion recognition). Also, different speeds can convey
some meaning such as a feeling of urgency. The speed variation is called tempo. A
combination of these variations in speech is called prosody.

Speech signal can be regarded as a combination of fine structure and temporal com-
ponent. In particular, the modulation frequencies between 1 Hz and 16 Hz contribute to
intelligibility, and the dominant frequency is at 4 Hz [39,41,42].

2.1.2 Speech intelligibility

There might be some confusion between two terminologies: speech intelligibility and speech
quality. Speech intelligibility is a subjective quantity while speech quality can be measured
by using multi-dimensional manners [43]. Yet, speech intelligibility depends on sound
quality. In other words, speech intelligibility is regarded as one of aspects of speech
quality [43]. Speech intelligibility also has a high correlation to clarity of speech.

On the other hand, speech quality covers more dimensions than speech intelligibility
[44]. The speech quality can be evaluated by using a method, i.e., the perceptual evalu-
ation of speech quality (PESQ) [45]. To understand speech intelligibility, psychoacoustic
studies have revealed the important dimensions of auditory perception as follows.

• Sound intensity or sound pressure level (SPL), as defined as perceived loudness
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• Major frequency components, as defined as a perceived pitch

• Temporal pattern and rhythm, as defined as fluctuations

• Interaural disparities (i.e., differences across the ears) related to spatial location

By definition, speech intelligibility is comprehensible or recognizable in a message of
a speaker [5, 46]. It can be assessed by a proportion of speech (i.e., syllables, words,
or sentences) that is correctly repeated by a group of listeners (normal hearing) in a
given experiment. In the experiments, a set of words should follow the word familiarity-
controlled word-lists [47, 48]. Each word is played only one time, and listeners write the
words they heard. The number of corrected words that subjects can repeat is used to
calculate articulation index (AI) [49]. Later, speech intelligibility index (SII), which is
the extended index from the AI, has been standardized [50,51].

Even though subjective tests by a group of listeners can be conducted, it is imperfect,
unreliable, time-consuming, and expensive. Therefore, many objective methods have
been proposed such as hearing aid speech intelligibility index (HASPI) [52,53] and short-
time objective intelligibility (STOI) [54]. The underline concept of STOI is based on a
correlation between the temporal envelope of clean speech and noisy speech signals. An
example of the temporal envelope of a speech signal under noisy and noise-free condition
is shown in Fig 2.2 (a). In [55], the STOI was compared with the STI for predicting
intelligibility. Nevertheless, it was found that the STI, which is described later, is more
suitable for applying in acoustic spaces whereas the STOI is recommended for general
speech communication systems.

In the early psychoacoustic study, a transmission channel referred to telephone commu-
nication [56]. However, a transmission channel in this study means room acoustics which
is of great importance regardless of the quality of sound sources or receivers since noise
and reverberation degrade speech quality and intelligibility [16,38,57,58]. A condition of
background noise and speech can be expressed by the signal-to-noise ratio (SNR). SNR is
a ratio between the energy of signal and noise. The SNR greater than 30 dB is regarded
as a clean speech signal, and 0 dB SNR is the equal level of the signal and noise. To
be intelligible, the threshold of speech intelligibility in terms of the SNR, it should be
greater than −30 dB [59]. More details of noise are presented in Chapter 4. Secondly,
the characteristics of room acoustics in an assumption of the noise-free condition can be
characterized by using measuring room impulse response (RIR).

2.2 Room acoustics and its impulse response

In a room, a sound wave propagates in all directions from the source position before
reaching the listener. Let’s assume an enclosure as a LTI system, an energy of a sound
wave (speech or music) that travel in a sound field can be expressed a convolution of an
sound source and room impulse response (RIR), that is

y(t) = x(t) ∗ h(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ. (2.1)

where y(t) is the observed signal, x(t) is the original signal, h(t) is the RIR, and the
asterisk (’∗’) indicates convolution operation. Also, an energy of a signal, g(t), is a signal
with finite energy, that satisfies
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∫ ∞
−∞
|g(t)|2dt <∞. (2.2)

The listener perceives the sound not only a single path from sound sound but also
the multiple reflections. Those reflections are caused by the walls, floors, ceiling, and
furniture in a room and reach the listener at various times and energy. The direct sound
wave from the source to the listener calls direct sound. In room temperature of 20 °C,
the speech of sound waves through the air is about 343 m/s. The time delay between
the source to listener positions depends on the distance. In the standard procedure, the
minimum distance between source and microphone is 1.5m [3]. The energy of the reflect
components that close to the direct sound is called early reflection. The last component
of the reflection is referred to as the reverberation. Figure 2.3 shows an ideal reflection
component of an RIR.

In a rectangular room, the amplitude of the reflect component decays exponentially
with time. Figure 2.3 depicts a simple reflection diagram of a reverberant environment.
It can see that the first component might take a few milliseconds from the sound source
position. This might be caused by the reflection of a sound with a surface before reach to
the receiver. The later components are the sound energy that reflects from any surfaces
of a room, e.g, walls, ceiling, partitions, floor, and furniture as well as occupants.

2.2.1 Measuring room impulse response

Obtaining RIR or transfer function is a complete description of a linear time-invariant
(LTI) system. This kind of system identification needs a wide frequency spectrum as
much as possible. In theory, Dirac delta function/impulse, δ, which is infinity power at
time zero, is defined. In practice, a short unit impulse signal is used, such as a gunshot,
bursting balloons, or any stimulus covering the full spectrum of interest [13]. The stimulus
signal (sound source) must have enough energy in that range and reliable for many points
of measurements. As a result, white noise, which is a flat spectrum, or pink noise is
often used. Besides the stimulus signal, equipment needs to be well prepared, as in
ISO 3382 − 1 source requirements [3]. A loudspeaker is used to excite the signal. It is
preferred to generate the excitation signals for all directions. Thus, an omnidirectional
loudspeaker that bundles with 10 to 20 loudspeakers, , e.g., a so-called Dodecahedron
loudspeaker, is recommended. A high-quality microphone also needs omnidirectional
receiving characteristics. The output of this method is the measured RIR.

Furthermore, there are two more complicated methods that need post-processing:
maximum length sequences (MLS) and exponential swept sine (ESS) method [13,60,61].
First, the MLS are periodic binary sequences, e.g. , −1 and +1. They are generated
by the period length of L, and L = 2n − 1. Figure 2.4 (a) shows an example of a binary
sequence. The 3th order of the shift register generate the sequence while the outputs of
a certain stage is fed back to the input. The autocorrelation function of a discrete signal
is applied. Second, exponential swept sine method is varying frequency of sinusoidal
signal with constant magnitude, as shown in Fig.2.4 (b). Then, the measured RIR is
calculated from matched filtering that is the inverse Fourier transform of the system.
See in [13] for more detail. It was found that ESS has some advantages over MLS in
terms of robust to background noise and non-linearity of a system [62, 63]. Lastly, the
impulse response is needed to be passed through octave band filtering. The following
room acoustic parameters are then calculated for each sub-band. The octave bands are
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range from 125 Hz to 4000 Hz [64].
As room temperature and pressure affect the speed of sound, a thermometer is re-

quired. A sound field is regarded as a linear system. In the time domain, room impulse
response (RIR) fully represents the acoustic characteristics. In the frequency-domain,
system transfer function using Fourier transform of an RIR is also preferred [65–67]. The
realistic impulse response and its power envelope are shown in Fig. 2.3.

2.2.2 Schroeder’s RIR model

According to the definition of the reverberation time introduced by Sabine, the relation
between delta function excitation in a rectangular room can be expressed as

−60 = 10 log 10 exp(−2δT60). (2.3)

Hence, the reverberation time is follows

T60 = 3 ln(10)/δ ≈ 6.91/δ. (2.4)

Manfred R. Schroeder proposed a stochastic model based on the above assumption,
i.e., exponential decaying function, namely Schroeder’s RIR model [15]. Schroeder’s RIR
model is defined as

h(t) = e(t)n(t) = a exp(−6.9t/T60)ch(t), (2.5)

where h(t) represents room impulse response, e(t) is envelope of the RIR, a is a gain
factor of RIR, TR is reverberation time, and n(t) is a stationary white-noise process [68].

2.2.3 The generalized RIR model

Later, Unoki et al. introduced a more flexible RIR model by modifying from Schroeder’s
RIR, namely the generalized RIR model [1]. The generalized RIR model has one more
parameter, so-called parameter b. Hence, it is more flexible and well fit to measure RIRs
than Schroeder’s RIR. The generalized RIR model is defined as

h(t) = e(t)n(t) = atb−1 exp(−6.9t/TR), (2.6)

where b is the order of the RIR. This equation become the same as Schroeder’s RIR at
a = 1. The comparison between Schroeder’s RIR and the generalized RIR is shown in
Fig. 2.6. Unfortunately, the parameter b of the generalized RIR model has no physical
meaning in representing the shape of the envelope of RIR. Therefore, this model is not
included in the next investigation.

2.3 Modulation transfer function

The modulation transfer function (MTF) is a concept that is widely used in fields of physic,
optic, and acoustics [69]. In room acoustics, M.R. Schroeder first proposed the definition
of the MTF and its measurement method for auditory system [15]. In the meantime,
Houstgast and Steeneken proposed an objective index to predict speech intelligibility
from the quality of a transmission channel based on the MTF [16]. Figure 2.7 shows the
concept of the MTF.
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Figure 2.4: Measurement methods of room impulse response: (a) maximum length
sequence with n = 3 and (b) sine sweep signal.
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Figure 2.5: Example of room impulse response (RIR): (a) RIR signal and (b) its power
envelope.

Figure 2.6: Comparison between Schroeder’s RIR and the generalized RIR model in fitting
to the envelope of the measured RIR [1].
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Figure 2.9: The MTFs, m(fm), of different noisy environments.
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The characteristics of an auditory space that consist of reverberation and/or noise
can be represented by the MTF. Figure 2.11 shows the relationship between reverberation
and/or noise and MTF.

RIR is used to characterize a sound field in the time domain. In the frequency
domain, a system transfer function in terms of the MTF describes the same system by the
modulation distortion between input and output modulated signals. The MTF is derived
by a fraction between the Fourier transform of squared RIR and its total energy. The
complex MTF is defined as

m(fm) =

∫ ∞
0

h2(t) exp(−j2πfmt)dt∫ ∞
0

h2(t)dt

(
1

1 + 10(−SNR/10)

)
, (2.7)

where m(fm) is the MTF at modulation frequency fm and h(t) is an room impulse
response. The term in parenthesis is defined later in order to take SNR into account.
Figure 2.11 shows the MTF concept.

2.4 Room acoustic parameters

Subjective aspects in speech and music assessments, such as speech intelligibility and mu-
sic clarity, can be objectively expressed by using room acoustic parameters and objective
indices [4, 13]. Many useful room acoustic parameters have been studied to describe the
physical properties of an acoustic environment. The physical properties of a given room
are related to architectural acoustics such as reverberation.

2.4.1 Reverberation time

In the early 19th century, P.E. Sabine was the first researcher, who formulated a mea-
surement of reverberation in a room [19]. With only his ears and a stopwatch, he could
measure the time after the last sound source has been emitted. This time of sound
energy reflected by room acoustic is reverberation time. Reverberation time represents
the physical property of a source field related to energy reflecting of source wave and a
room. The reverberation time (T60) is the duration of sound decay in seconds. T60 is
derived from an energy decay curve (EDC) of the RIR. The EDC is calculated from the
energy of the RIR in dB as follows.

EDC = 10 log10 h
2(t). (2.8)

Moreover, reverberation time is frequency-dependence. Thus, it is usually considered
in octave bands [64]. The energy decay curve is fitted by using linear regression. T60 is
the time period that the fitted line intersects with −60 dB. In practice, the decay curve
between −5 dB and −35 dB below the maximum initial level is recommended to avoid
interference of noise [3]. Figure 2.10 shows an example of the energy decay of an RIR and
its fitting lines. T60 is calculated from the slope of the fitting line between −5 dB and
−35 dB as

T60 =
60

slope
. (2.9)
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Figure 2.10: Deriving the reverberation time and early decay time from the energy decay
curve of the RIR.
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Note that ISO 3382 specifies a minimum distance between source and receiver at least
1.5m [3]. This distance is known as the critical distance.

2.4.2 Early decay time

Some room acoustic parameters have mutual relation [70]. The energy decay curve was
studied in terms of perception with respect to reverberation property [20]. It was found
that early of the energy decay curve between initial to 10 dB is strongly related to the
perception of reverberation than T60 [71]. This regression using the early energy decay
curve is defined as the early decay time (EDT).

2.4.3 Clarity

Clarity index or (C80) and (D50) are related to the energy ratios between the early and
late reflection of the RIR. C80 is used to characterize the transparency of music halls in
dB units, while C50 indicates the transparency of speech. C80 is defined as

C80 =10 log10

∫ 80ms

0

h2(t)dt∫ ∞
80ms

h2(t)dt

. (2.10)

2.4.4 Deulitchkeit

Deulitchkeit, D50, is also related to the energy ratios between the early and late reflection
of the RIR. Note that, in some documents, D50 might be named as Definition [13]. D50

is used to evaluate the speech intelligibility of lecture halls or classrooms (in percentage).
D50 is defined as

D50 =

∫ 50ms

0

h2(t)dt∫ ∞
0

h2(t)dt

× 100. (2.11)

2.4.5 Center time

The center time, Ts, is the period at the center of gravity of the RIR. Ts shows the balance
between the clarity and reverberation related to speech intelligibility. Ts is defined as

Ts=

∫ ∞
0

h2(t)t dt∫ ∞
0

h2(t)dt

. (2.12)

For speech, a low value of Ts indicates the high speech intelligibility. It was recom-
mended that should not exceed about 80 ms [13].

2.4.6 Spatial parameters

Even though this research focuses on estimating room acoustic parameters from a single-
channel input, subjective descriptions related to the sense of space and direction of sound
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are useful in speech applications. Hence, some interesting acoustic parameters to express
spatial perception or sensation of space are briefly provided. The following parameters
need at least two measuring points of receivers (i.e., binaural impulse response) or more.

Lateral energy fraction (LEF) and the late lateral energy (LG80):

LEF=

∫ 80ms

5ms

(h(t) cos θ)2 dt∫ 80ms

5ms

h2(t)dt

, (2.13)

where θ is the angle between the direction of sound source and the ears of a listener.
Inter-aural cross-correlation coefficient (IACC): It is the maximum delay time interval

of the cross-correlation function between the left and right ear. IACC is defined as

Ψrl=

(∫ ∞
0

h1(t)h2(t+ τ)dt

)
/

(∫ ∞
0

h21(t)dt

∫ ∞
0

h22(t)dt

) 1
2

, (2.14)

IACC=max |Ψrl|, −1ms < τ < 1ms, (2.15)

where Ψrl is the normalised inter-aural cross correlation function, h1(t) and h2() are the
impulse response at the left and right ear.

Lastly, there are some remaining parameters that are not defined as architectural
acoustic parameters as the aforementioned parameters. However, they are interested in
the engineering field and could be used to characterize auditory spaces. In 2015, the
acoustic characterization of environments (ACE) challenge was held to determine the
state-of-the-art in blind acoustic parameter estimation [72]. Besides reverberation time
(T60), the direct-to-reverberation ratio DRR is another parameter that might need to
estimate blindly [29,73]. The DRR is similar to those energy ratio parameters with a few
different calculations [74]. The DRR is defined as

DRR = 10 log 10


∫ nd+n0

nd−n0

h2(t)dt∫ nd−n0

0

h2(t)dt+

∫ ∞
nd+n0

h2(t)dt

 , (2.16)

where nd is the time of the direct sound and n0 is 2.5 ms. Note that n0 is defined
specifically by the ACE to represents the time of an additional path difference in their
setup [72].

2.5 Speech transmission index

The speech transmission index (STI), which is an objective index, is used to predict speech
intelligibility and listening difficulty. The quality of a transmission channel from a talker
to a listener can be indicated by a signal number. Houstgast and Steeneken proposed the
STI based on the modulation transfer function (MTF) [17,21,75].

The MTF can be regarded as transfer function of a linear system. The MTF represents
the characteristics of a transmission channel as a function of the modulation frequency and
the decrease of modulation depth [13]. The power envelope of any amplitude modulated
AM signal is observed. In room acoustics, the MTF concept is used to quantify the
effects of reverberation and noise. The higher reverberation, the lower the modulation
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Table 2.1: Numerical representation of a relation between speech intelligibility and STIs.

Quality Bad Poor Fair Good Excellent
STI 0.0 - 0.30 0.30 - 0.46 0.46 - 0.60 0.60 - 0.74 0.75 - 1.0

depth of modulated signals that pass through the room. A nonlinear relationship be-
tween reverberation time and MTF can be demonstrated in Fig. 2.8. The modulation
distortion ratios between the input envelopes and the corresponding outputs are known
as modulation indices. The magnitude MTF is defined as

m(fm) =

∣∣∣∣∫ ∞
0

h2(t) exp(−j2πfmt)dt
∣∣∣∣∫ ∞

0

h2(t)dt

, (2.17)

where m(fm) is the MTF at modulation frequency fm and h(t) is an room impulse
response.

Figure 2.11: Block diagram of the set-up for measuring and calculating the STI.

The STI method has been standardized by IEC 60268 − 16 [21]. Fig. 2.11 shows
a diagram of the setup for measuring and calculating the STI. A total of 98 modulated
stimuli are used to calculate the distortion ratios between the inputs and observed signals.
The stimuli are amplitude-modulated signals from seven-octave bands of carriers and 14
modulation frequencies, fm. The modulation distortion ratio, N , is calculated as

N(k, i) = 10 log10

(
m(fmi,k

)

1−m(fmi,k
)

)
, (2.18)

where i = 1 to 14 and k = 1 to 7. Those values are limited to the range of −15 dB to
+15 dB and are normalized, called transmission indices (TIs). For each k and i, the TI,
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T (k, i), is calculated by normalizing the corresponding modulation distortion, N(k, i).

T (k, i) =


1, if 15 < N(k, i),

1
30 (N(k, i) + 15) , if − 15 ≤ N(k, i) ≤ 15,

0, if N(k, i) < 15.

(2.19)

Then, the modulation transmission indices (MTIs), M(k), are calculated by averaging
N(k, i) as

M(k) =
1

14

14∑
i=1

N(k, i). (2.20)

Finally, STI is calculated from multiply with weighting factors, as

STI =
7∑

k=1

W (k)M(k) (2.21)

where W (k) represents the octave band weighting factors. The contributions to the index
are W1 = 0.129, W2 = 0.143, W3 = 0.144, W4 = 0.114,W5 = 0.186, W6 = 0.171,
and W7 = 0.143. The STI is a real number on a scale between 0 and 1. Instead of a
direct method based on measuring the distortion ratios of the 98 stimuli, the STI can be
calculated from the RIR according to Eq. (2.17), known as the indirect method [21].

2.6 Blind estimation techniques: state-of-the-art

Blind estimation of the above parameters and indices is interesting. In the past decade,
many researchers have proposed techniques to solve this issue. Those methods can be
considered in three approaches: (1) methods based on the MTF concept, (2) statistical
approach, and (3) machine learning approach.

2.6.1 Methods based on the MTF concept

From the above definition of the MTF, Unoki et al. proposed methods based on the
MTF concept to estimate T60 and STI [1, 76, 77]. The authors also used the similar
concept in speech applications, such as dereverberation, envelope of original speech, and
voice activity detection [78]. From the observation of a reverberant signal and the MTF,
there are there useful characteristics that were used to formulate the constraints of the
estimations. First, a DC signal does not affect by reverberation, so the MTF of any signal
at zero Hz is equal to one. Second, the MTF of a dominate frequency is close to the MTF
of the input signal. Third, the MTF of the input signal decreases when the reverberation
increases. Based on these properties, the power envelope of an input signal could be
restored by using an inverse MTF method. The method provided coefficients of the IIR
filter of the inverse MTF. Figure 2.12 shows a diagram of the method based on the MTF
concept.

Later, Unoki et al. proposed a blind method for estimating the STI. This method is
based on the generalized RIR model and the basic concept of the MTF. According the
MTF concept, the power envelope of an observed signal, y(t), is approximated as

e2y(t)=e2x(t) ∗ e2h(t) + e2n(t). (2.22)
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Figure 2.12: Diagram of the previous method based on the MTF concept.

The definition of the MTF of a system, namely, its frequency transmission character-
istics, is presented by the fraction of the Fourier transform of the response of the system
and its total energy [16]. The MTF at a modulation frequency fm, m(fm), is defined as

m(fm) =

∫ ∞
0

h2(t)e−j2πfmtdt∫ ∞
0

h2(t)dt

, (2.23)

The unknown RIR can be obtained by estimating two parameters, i.e, T60 and b in
Eq. (2.6). The STI can be then calculated indirectly from this estimated RIR using the
definition of the MTF in Eq. (2.17). T60 and b are estimated on the three specific conditions
and assumptions: the MTF at 0 Hz is 0 dB, the original modulation spectrum at the
dominant modulation frequency fd is the same as that at 0 Hz, and the entire modulation
spectrum of the reverberant signal is proportionally reduced by the reverberation time [1].
Thus, these relations can be used for estimating the TR and b of the RIR model by
minimizing the root mean square (RMS), defined as

RMS(T60, b) =

√√√√1

2

2∑
l=1

[|Ey(fml
)| −m(fd, T60, b)2], (2.24)

where Ey(fml
) is the modulation spectrum of the envelope of a reverberant signal y(t) at

a specific frequency fml
and m(fd, TR, b) is the derived MTF at the frequency fd from the

RIR model, as in Eq. (2.7). The SNR is estimated from the mean power ratio of speech
sections to noise sections using robust voice activity detection. This estimated RIR is
then used to calculate MTF and STI.

In their proposed methods, the RIR was first approximated using Schroeder’s RIR
model and later by the more general model, namely the generalized RIR model. The
concept of the MTF was used to restore the modulation spectrum from the observed
signal. Then, the optimal parameters of the RIR models were calculated. The estimated
STI was derived from the MTF of the generalized RIR model. The generalized RIR
model has proposed by modifying Schroeder’s RIR model [1]. The generalized RIR model
is more accurate and closer to the measured RIRs than Schroeder’s RIR model. The
model has two parameters. The first parameter (i.e., TR) represents reverberation time,
but the second parameter (i.e., the parameter b) has no physical meaning [1].

2.6.2 Maximum likelihood estimator

A maximum likelihood estimation (MLE) is based on statistics for estimating parameters
from observed data. Ratnam et al. first proposed a maximum-likelihood procedure
for estimating reverberation time. They modeled impulse response as an exponentially
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damped Gaussian white noise process [79]. Later, Kendrick et al. used a similar method to
approximate energy decay curves from reverberant speech and music, but they proposed
a new decay model, i.e., multiple decay curves [80–82]. In the meantime, J. Wen deployed
the MLE into a number of statistical models for estimating decay rates from those
models [83]. As the above mention, the energy decay curve is used for calculating the
reverberation time and early decay time.

A maximum likelihood estimator (MLE) is a statistical method to estimate an un-
known parameter θ [84]. A statistical process is described by the probability density
function (PDF).

Let θ be a parameter of interest (unknown) and x1, . . . , xn be a random sample that
are identical and independent distributed (i.i.d). A function that describes a result of
a process in terms of sample data x1, . . . , xn related to parameter θ is called likelihood
function. A likelihood function of a parameter θ is express as L(θ|x1, . . . , xn).

Figure 2.13 shows an example of a likelihood function of a parameter θ as a normal
distribution. Hence, the peak position of the function is the so-called maximum likelihood.

To obtain such a likelihood function, joint PDF is used to describe the likelihood
function of the observed sample. The PDF of samples, x1, . . . , xn, denotes as f(x1, . . . , xn |
θ).

Then, taking the derivative to get the maximum point of the likelihood function.

∂L(θ)

∂θ
= 0. (2.25)

The result is the value of the unknown parameter θ. Computing MLE is usually by taking
log into the function to make it easier. It is known as the Log-likelihood estimator. In
Kendrick’s works, quadratic programming is the technique to search the maximum value
of the likelihood function. The MLE approach has been used until nowadays research
with different additional methods after formulating those likelihood functions from the
observed data, e.g., in [85].

2.6.3 Multi-channel blind estimation

Blind channel identification has been studied for speech processing and communication
applications in order to avoid a time period for identification with an exciting input.
A number of state-of-the-art adaptive blind channel algorithms have been proposed.
High order statistics (HOS), which have greater than second order, were proposed. Two
conditions are necessary and assumed to formulate a blind acoustic channel based on a
single input multiple outputs (SIMO) system. First, all the channels do not share any
common zeros. Second, the autocorrelation matrix of the input signal is full rank.

• Least mean square

• Newton algorithm

However, those algorithms have many drawbacks and limitations. For example, since the
algorithm requires a greater number of outputs than the inputs, the system needs more
receivers (microphones) placed in different positions. The accuracy of HOS also depends
on a number of observations. A small number of receivers cannot be accurately computed.
Moreover, the algorithms are intensive computational complexity, slow convergence, and
local minimum. This approach also requires multiple channels and multiple receivers, so
these requirements are far beyond the scope of this study which is taking only a single
channel of observed signal.
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Figure 2.13: Example of likelihood function of unknown parameter θ from observed data.

Figure 2.14: Diagram of a single-input multi-channel system: (a) a multichannel model
and (b) a sub-channel matching algorithm.
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2.6.4 Machine learning and artificial neural networks

In the last two decades, machine learning and artificial neural networks (ANN) are applied
in many areas of researches and applications. Particularly, in room acoustic parameters
estimations, techniques based on machine learning were successfully employed to estimate
T60, EDT, C50, C80, and STI [72, 81, 86–100]. The technique based on machine learning
and artificial neural networks for estimating room acoustic parameters can be categorized
as depicted in Fig. 2.15. On one hand, some meaningful acoustic features are extracted
before training and estimating from neural networks. On the other hand, modern neural
networks, such as convolutional neural networks (CNN) and long short-term memory
networks (LSTM) directly map a speech signal (either in the time domain or time-
frequency domain) to the target parameter. The latter approach is called an end-to-end
approach.

In an early state, a multi-layer perceptron was used to estimate the STI [86, 101]. It
is a kind of shallow neural network (i.e., one input, one output, and one hidden layer)
to avoid a vanishing gradient problem [102]. The vanishing gradient is the situation that
deeper layers do not learn anything. The learning means updating parameters or weights
of the network. Those weights are calculated by backpropagation algorithm. It calculates
the difference or gradient between the targets and its estimated results for each node.
A stochastic gradient descent cannot return the gradient back since the value is smaller
and vanished before update the weight of the higher layers. Besides the shallow network,
the dimensions of the input or a number of features are also limited. Then, a machine
learning technique for reducing dimensions, namely principal component analysis (PCA),
was employed. A noisy reverberant speech signal is used for calculating its envelope
spectrum, as shown in Fig. 2.2 (b). The output of the PCA is only 14 values to represent
the whole envelope spectrum. Finally, the multi-layer perceptron that was trained from
the convolution of clean speech signals and RIRs with additive noise could estimate the
STI from those PCA features [88].

Since the emerging of deep learning and parallel computing, many deep neural net-
works (DNNs) have been proposed for estimating acoustic parameters. An insight al-
gorithm of DNNs is somewhat different from the original concept that tried to mimic
a network of a biological brain. Mathematically, an algorithm, which is updates the
parameters of a network, can provide the convergence algorithm. Consequently, the global
minimum is exist so that impressive results could be obtained. A convolutional neural
network (CNN), which is trained from massive reverberant speech signals, could estimate
the STI efficiently without feature extraction, known as end-to-end model [91].

For T60 estimation, many approaches have been evaluated in the Acoustic Characteri-
zation of Environments (ACE) challenge [72]. For example, Gamper and Tashev proposed
a CNN with spectra-temporal features in the time-frequency domain [96]. Recently, a
combination of a CNN and long short-term memory (LSTM) network has been proposed
[92]. These two works showed that a method using either CNN or CNN with LSTM
is computationally efficient, and only a few seconds of the observed speech signal is
sufficient for reasonable accuracy. Parada et al. proposed bidirectional LSTM to estimate
clarity index at 50 ms (C50) using a spectral envelope in the modulation-domain as an
input [93, 94]. A similar architecture, i.e., CNN-LSTM with input features in the time-
frequency domain using a short-time Fourier transform, known as a spectrogram, also
achieved good performance [99].

Interestingly, only a few of the current methods could estimate more than one param-
eter. Xiong et al. proposed a classification method rather than regression as usual to
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estimate T60 and early-to-late reverberation ratio [97]. Similarly, in [103], T60 and DRR
were blindly estimated by using sub-band speech decomposition. Decomposition speech
signal into sub-bands before further processing has been proved that it can improve the
accuracy of the estimation. A recent work proposed by Looney et al. provided three
outputs that are T60, DDR, and SNR [104]. Also, in [105], Mel-frequency Cepstral
coefficients (MFCC) from a mixture of speech and music data were used as a feature
so that a combined architecture of CNN and one of RNNs, namely gated recurrent unit,
could map to T60, C50, and DRR.

2.6.5 SNR estimation

Background noise level or signal-to-noise ratio (SNR) is regarded as a significant indicator
for more complete evaluation of the acoustical quality of rooms. The SNR is also an
important information for speech enhancement algorithms in which they can enhance the
speech before presenting it to compensate for degradation.

In measurement of room-acoustic parameters, as in ISO-3382, the requirement for
the reverberation time is at least 35 dB SNR. Consequently, the estimated results are
prone to be inaccurate due to the high level of background noise. However, none of the
current approaches yield SNR along with estimating room acoustic parameters of interest
to the best of our knowledge. Even though the CNN framework reported in [104] shows
the SNR as one of the outputs, only the result of estimated T60 was evaluated. Hence,
background noise level is unclear whether or not it can be accurately estimated along with
the acoustical parameters [73] [106]. As in common places, background noise is inevitable,
the SNR is also estimated in this research.

Noise might be classified into two sub-classes: stationary noise and non-stationary
noise. Stationary noise means that its amplitude and spectrum remain almost constant
over time, e.g., fan noise and air duct, whereas non-station noise is not, e.g., multiple
people talking called babble noise [59]. This study uses four noise types from NOISEX-
92 [107]. The NOISEX-92 corpus is used in speech recognition systems and consists of
stationary and non-stationary noises.

The SNR is the energy ratio between speech signal and noise. The problem is how to
discriminate between speech and non-speech from a mixture signal. Identifying portions
of speech and non-speech from mixed signals is a straightforward strategy. This technique
is called voice activity detection (VAD). The estimating STI based on the MTF concept,
as the above mention [1], is also used VAD in the algorithm [78]. As there is a variety
of noise, and it affects the signal in each frequency differently. Detecting voice and none
voice from sub-band processing make much more accurate than with the global full-band
method. Thus, Morita et al. proposed the estimating SNR using sub-band VAD [108], as
shown in Fig. 2.16.

2.7 Summary

This chapter introduced the background of room acoustics. The current blind methods for
estimating room-acoustic parameters were reviewed. The MTF-based methods, utilizing
the relationship of modulation spectrum and the basis of the MTF, provided the correct
results. These intuitive methods rely on the physic representation of reverberation and
noise affecting the power envelope of the signal. On the other hand, many methods
using machine learning and DNNs can obtain impressive results. However, these DNNs

26



approaches have limitations in estimation only one or two of room-acoustic parameters.
They might be re-trained for a new target, but the re-training process with a new dataset
is expensive. To this end, a more comprehensive method will be investigated in the
following three chapters.
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Figure 2.15: Estimating room acoustic parameter based on artificial neural networks.

Figure 2.16: Framework of estimating SNR using sub-band VAD (Morita et al.).
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Chapter 3

Blind estimation of speech
transmission index

This chapter introduces a preliminary study for blindly estimating one of the room-
acoustic indices, i.e., the speech transmission index (STI). The previous chapter shows
that the STI is calculated from the measured MTFs of a given room. Hence, a basis of
the MTF is investigated whether or not by using some features based on the MTF with
a nonlinear regression technique can be used for estimating the STI. Two features based
on the MTF are studied. A temporal amplitude envelope (TAE) of a reverberant signal
is firstly used in this chapter, while a power envelope of a signal will be used later.

3.1 Temporal amplitude envelope of speech and the

MTF

A speech signal can be regarded as a combination of a temporal amplitude envelope
(TAE) with temporal fine structure. From the previous chapter, a TAE of a speech signal
has been studied in which it plays an important role in speech intelligibility [39]. Hence,
the TAE of a speech signal in noisy reverberant environments is a crucial feature for
estimating the STI.

Figure 3.1 shows an example of a speech signal when it passes through a reverberant
and noisy reverberant environment. The modulation depth (or modulation index, m, in
the modulation frequency domain) of an original speech signal is reduced, corresponding
to the degree of reverberation and background noise. This basis can be represented in the
characteristics of TAE, ey, and power envelope, e2(t).

From an observed signal, the TAE can be extracted by applying Hilbert transform
H(·) and a lowpass filter (LPF). Since, the modulation frequency between 4 to 16 Hz has
highly contribution for speech communication both linguistic and non-linguistic, these
region is then considered in designed the lowpass filter. The TAE of reverberant signal is
obtained by applying the following equation.

ey(t)=LPF [|y(t) + jHilbert(y(t))|] . (3.1)

As both TAE and power envelope contained the modulation distortion information of
a given transmission channel, they are considered to be a feature in the core structure of
this study. To clear understand how close they are, the TAE and power envelope extracted
from the same reverberated speech signal are then shown in Fig. 3.2.
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Figure 3.1: Example signals of (a) clean speech, (b) reverberant speech (T60 = 0.43 s), and
(c) noisy reverberant speech (babble noise, 5 dB SNR) and T60 = 0.43 s). Dashed lines
are power envelopes of each signal
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Figure 3.2: Comparison between TAE and power envelope extracted from the same
reverberated speech signal.
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3.2 Core structure of blind STI estimation

Mapping characteristics of the TAE of a speech signal under noisy reverberant conditions
to STI is the core structure of this study. The studies proposed by Unoki et al. have
revealed that the characteristics of the MTF and its properties are successful for estimating
the reverberation time and STI [1, 27, 32, 109, 110] . However, there is some remaining
error that might be caused by the mismatch between the stochastic models and real
environments. Therefore, the useful concept of the MTF is then incorporated into a
nonlinear regression trained from big data. As a result, a neural network trained from
data in various reverberation times and noise is introduced to overcome this issue.

The convolution operation in the time domain is the main idea in designing the neural
network. Thus, the convolutional neural network (CNN) is employed. A number of
RIRs from synthetic and measured RIRs with different reverberation times as well as
background noise were exploited. Based on an assumption of solving a regression problem,
the estimated STI is mapped from the distortion of the TAE. The CNN is deployed to
map the characteristics of the TAE to the estimated STI. The robust STI estimation
scheme is shown in Fig. 3.3.

3.3 Implementation and evaluation

The CNN trained with observed reverberant envelopes at various noise types and levels can
determine the associated STIs. We assume a blind STI estimation as a blind deconvolution
with a regression problem. As a blind deconvolution problem, this CNN performs the
deconvolution operation of the observed envelope and solves the regression problem. The
CNN consists of three convolutional layers and complementary layers.

In design a reasonable CNN, a convolution operation in the time domain of an envelope
signal is represented by one-dimensional convolution in the first layer. Another one-
dimensional convolution is applied again to construct a new two-dimensional data inspired
by the deep CNN [91]. The last two convolutional layers apply the two-dimensional
convolutional filters to perform a regression task. In a mathematical viewpoint, high-
dimensional spaces expand a possibility for problem-solving. Similarly, in neuroscience,
the middle layer of the perceptron model has more number of neurons than the other
layers. Thus, the middle layer is assigned with more number of filters. The numbers
of filters in these layers are assigned to be 32 and 16, respectively For complementary
layers, a pooling unit accompanies a convolution layer for down-sampling and reducing
variation of the input. Here, max pooling, which is non-linear operation, corrects the
highest value from their neighbors. The outputs are then passed through an activation
function, which is a rectified linear unit (ReLU). The ReLU function has been proposed to
deal with a vanishing gradient problem, which behaves as a half-wave rectifier according
to f(x) = max(x, 0). The ReLU output is 0 when input x < 0, and is a linear function
when x ≥ 0. We also employ a batch-normalization to scale the values to be a unit
norm. A regularization technique called dropout is set with a probability of 0.2 to avoid
an over-fitting and memorizing problem. A flattening layer or fully connected layer is an
operator that converts a two-dimensional array into a vector. The last layer, named dense
layer, estimates output by a sum of products between the vectors and its weights, so that
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Table 3.1: Network architecture of the robust STI estimator.

No. Layer Type Parameters

1 Input Input shape = 374× 1
2 Convolution1st 128 filters, filter size =128× 1, ReLU
3 Pooling Max pooling, size = 2, stride = 1

4 Convolution2nd 128 filters, filter size =5× 1, ReLU
5 Reshape filter size =128× 21

6 Convolution3rd 32 filters, filter size =90× 64, ReLU
7 Pooling Max pool, size = 2, stride = 1
8 Batch Normalization -
9 Dropout 0.2

10 Convolution4th 16 filters, filter size =23× 32, ReLU
11 Fully Connected Sigmoid
12 Regression Output Mean-square-error

the estimated STI as the output can be presented as

ˆSTI = SIGM

(
j∑
i=1

W ⊗ ai + b

)
, (3.2)

where ˆSTI is an estimated STI, SIGM is a sigmoid function, W is weight matrix, ai is an
input from a previous layer for i to the total elements j, “⊗” is element-wise operation,
and b is bias. The RMSprop is an optimization algorithm to minimize the cost function,
which is mean square error (MSE), and the optimizer is set a learning rate of 0.001.
These tunable filters are updated along with the training process. The CNN architecture
is detailed in Table. 3.1.

3.3.1 Experimental setup

There are three groups of data used along with this study: (1) room impulse response, (2)
speech signals, and (3) noise types and conditions. First, the RIR signals can be separated
into two groups that are measured RIRs and synthesized RIRs. The main dataset is the
43 measured RIRs from SMILEdataset [111]. There are also some sharing dataset, such
as seven RIRs in ACEdataset [72] and three RIRs in the REVERB challenge [112], and
two RIRs from the Architectural Institute of Japan [64]. Second, speech signals are from
two databases. One is Japanese utterances from the ATR database [113]. They consist of
long sentences, uttered by ten speakers (five male and five female). The other is English
utterances from the VCTK corpus [114]. They consist of one hundred English speakers
that are randomly selected from various ages, genders, accents, and regions. The third
group is the noise data. Noise data are from the NOISEX-92 [107]. Four noise types were
used, including white, pink, factory, and bubble noise. The levels of noise conditions were
SNRs of 20, 15, 10, and 5 dB.

As measuring RIR needs specific procedures and equipment, as mentioned in Chapter
2, the measured RIRs from real environments are limited, in particular for DNN approach
as the proposed methods. Therefore, a data augmentation technique was used to generate
a sufficient amount of training set. There are a few data augmentation methods to
generate simulated RIRs [115, 116]. In recent work, some room acoustic parameters are
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used to synthesis RIR. The parameters are T60, EDT, and DRR as well as one parameter
of the RIR called the initial time delay gap, which is similar to parameter T0 of the
extended RIR model [116]. However, in the work, one conventional method based on
geometrical acoustics, known as an image-source method, and the two RIR models were
used [117,118].

For the first set of RIR, an image-source method was used. The image-source method
can generate different RIR from its setup. The setup parameters include positions of a
sound source and a receiver, reverberation time, and absorption coefficient. One hundred
RIRs were then generated by varying such parameters of the image-source method. The
second and the third dataset of simulated RIRs were synthesized based on Schroeder’s
RIR model and the extended RIR model. According to Schroeder’s RIR model, the
reverberation time, T60, as in Eq. (2.5), was varied from 0.3 to 4.0 s with a step size of 0.01
s. The synthesized envelope was modulated with a different random seed WGN carrier.
There are a hundred different WGN carrier seeds. Those RIRs were then convoluted with
speech signals. A total of 29, 000 reverberant speech signals were generated.

The reverberant and noisy reverberant speech signals were the results of the convolu-
tion between the RIR and speech signal and with the additive noise for the latter.

From calculating the ground-truth parameters of the extended RIR model, it was
found that 29 RIRs or 75% of the realistic RIRs in the SMILEdataset might be fit well
with a simple exponential decay. This means that such RIRs can be represented by
Schroeder’s model. Nevertheless, the mismatch issue was found for 14 RIRs, as shown in
Fig. 5.3. Therefore, the dataset from Schroeder’s RIR was added with the dataset from
the extended RIR model for training the proposed method. For such signals, Th and T0
were set to zero. Therefore, a total of 50, 000 signals can be used for the proposed method
based on the extended RIR. All signals had a five-second period, a sampling rate of 16
kHz, 32-bit quantization, and one channel.

3.3.2 Evaluation matrices

As estimating STI is a regression problem, the two metrics are used to evaluate the perfor-
mance of the proposed method: root-mean-square error RMSE and Pearson’s correlation
coefficient . The low RMSE and high correlation ρ indicate the high performance of the
STI estimator. Note that RMSE is the square root of MSE, as used in the optimization
of the filters of the CNN, to make the scale of the estimation error to be the same as the
scale of STI. RMSE is defined as

RMSE =

√√√√ 1

N

N∑
n=1

(
ˆSTIn − STIn

)2
, (3.3)

where ˆSTIn is the estimated STI, STIn is the ground truth calculated from RIR and SNR
as in Eq. (2.17), n is an index of observed signal, and N is a total number of the signals.
The second evaluation metric, i.e., correlation (ρ), is defined as

ρ =

N∑
n=1

( ˆSTIn − ˆSTIn)
2(STIn − STIn)

2

√√√√ N∑
n=1

( ˆSTIn − ˆSTIn)
2
N∑
n=1

(STIn − STIn)
2

, (3.4)
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Table 3.2: Estimated STIs in various conditions from SMILE corpus in the metrics of
RMSE and correlation (ρ) from SMILEdataset.

Noise Method
RMSE

ρ
20 dB 5 dB

White
MTF-based 0.25 0.33 0.72

White deep CNN 0.09 0.10 0.89
Proposed 0.07 0.09 0.90

Pink
MTF-based 0.20 0.23 0.71

Pink deep CNN 0.13 0.14 0.89
Proposed 0.08 0.14 0.85

Babble
MTF-based 0.29 0.12 0.64

Babble deep CNN 0.12 0.11 0.90
Proposed 0.11 0.12 0.92

Factory
MTF-based 0.37 0.11 0.74

Factory deep CNN 0.11 0.15 0.89
Proposed 0.13 0.18 0.82

where ˆSTIn is the average of ˆSTIn, and STIn is the average of STIn.

3.4 Results and discussion

Figures 3.4–3.7 show the estimated STIs from observed speech signals in reverberant
environments with four types of background noise.

As the MTF concept assumes noise as white Gaussian noise (WGN), noise in real
environment is, however, different from the model. For example, babble noise and factory
noise that are non-stationary yield some mismatch and error in the existing MTF-based
estimation. On the other hand, the proposed method that uses the CNN learned from
various noise types can overcome this problem, and the accuracy of the estimation in
such background noise and reverberation environments can be maintained. However,
estimating STIs from observed speech signals with factory noise is still challenging because
some inconsistencies of the estimated results remain.

The proposed not only satisfies the accuracy and robustness, but also has other
advantages in additional aspects. First, the proposed model can reduce the operation time
from the conventional STI measurement time of 15 minutes [16]. The proposed method
that takes only a short four-second speech segment can provide accuracy comparable
to that of the conventional method [21]. Hence, the operation time is reduced by 180
times. Second, the proposed model significantly reduces the computational time: it is
4, 666 times faster than the MTF-based because it does not need to search for the optimal
parameters. The optimal filters of the CNN can calculate STIs promptly.

Although the proposed method can successfully estimate the STI, there are two
concerning issues from this work that should be pointed out. First, since the machine
learning methods are based on several hyper-parameters, there are enormous possibilities
for designing network architecture, and this makes it difficult to reach an optimal solution.
A robust estimation model should be generalized enough for dealing with random data
by a large margin. The generalized model needs to compensate for the trade-off between
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(a) White noise

Figure 3.4: Estimated STIs from observed speech signals in reverberant environment with
white noise.
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(b) Pink noise

Figure 3.5: Estimated STIs from observed speech signals in reverberant environment with
pink noise.
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Figure 3.6: Estimated STIs from observed speech signals in reverberant environment with
babble noise.
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Figure 3.7: Estimated STIs from observed speech signals in reverberant environment with
factory noise.
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Table 3.3: Estimated STIs of speech signals in RIR and background noise from dataset
in the Acoustic Characteristic Environment challenge.

Noise Method
RMSE

ρ
20 dB 5 dB

Ambient
MTF-based 0.14 0.35 0.64

Ambient deep CNN 0.07 0.09 0.87
Proposed 0.07 0.11 0.86

Fan
MTF-based 0.17 0.18 0.73

Fan deep CNN 0.07 0.08 0.76
Proposed 0.08 0.09 0.83

Babble
MTF-based 0.18 0.26 0.63

Babble deep CNN 0.09 0.08 0.89
Proposed 0.13 0.15 0.86

high accuracy and model complexity. For example, we found that the more extended
envelope input the CNN takes (i.e., from one second to four seconds), the more accurate
the performance of the CNN. Thus, in this study, while we empirically propose the CNN
architecture to maintain the acceptable performance, it should be fine-tuned so as to
deliver an even better performance.

3.5 Summary

This chapter introduced a preliminary study that the proposed method can estimate the
STI in noisy reverberant environments. The results suggest that the proposed method
using CNN with the TAE extracted from an observed signal on the basis of the MTF
provided a robust estimator. Unfortunately, there are many room acoustic parameters
that can be beneficial and needed for difference purposes. This limitation of training the
model for only a single parameter will be considered and improved in the next chapter.
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Chapter 4

Blindly estimating parameter of RIR
model

This chapter introduces a more worthwhile estimation method that the unknown RIR is
estimated. Instead of modeling, training, and estimating a single room acoustic parameter
one by one, as the previous STI estimation, the unknown RIR is modeled and estimated.
Schroeder’s RIR is used for representing the unknown RIR. The proposed method intends
to estimate a parameter of the RIR model. The basis of the MTF concept is exploited
for sub-octave bands.

The main concept using Schroeder’s RIR is introduced. The nonlinear function approx-
imation using CNN is developed. The TAE feature with CNN is so-called the MTF-based
CNN framework. Later, the method based on the extended RIR model is studied. Thus,
five-room acoustic parameters and STI can be derived. The five room-acoustic parameters
include T60, EDT, C80, D50, and Ts.

We propose a scheme for estimating five room-acoustic parameters and an STI, namely
MTF-based CNNs, as shown in Fig. 4.1. The scheme incorporates the MTF concept into
a nonlinear regression using CNNs. The T60s for sub-bands are mapped in accordance
with the characteristics of the TAEs under reverberant conditions. RIR is approximated
from the estimated T60s to derive the five parameters and STI.

4.1 Sub-band analysis

The sub-band analysis for estimating room acoustic parameters is derived from the STI
algorithm, which is from the basis of the MTFs in seven-octave bands. Thus, we exploit
the relation between the MTF and RIR, as shown in Eq. (2.17), within the same bands as
the STI. The bands have center frequencies ranging from 125 Hz to 8 kHz. The normalized
reverberant-speech signal is the input. The signal is then decomposed to each sub-band
using octave-band filters.

Based on the MTF concept, a temporal envelope of any signal is a smoothed version of
the original signal when it is passed through a reverberant space [17]. We then utilize the
seven TAEs to represent the modulation distortion characteristics caused by reverberation
in the bands. The reverberation, in terms of the T60s, attenuates the observed TAEs. The
seven TAEs account for the accuracy enhancement of the estimating T60 and STI as well
as the other parameters.

The TAE in each band is extracted according to Eq. (4.1). The observed signal is
decomposed by using the Hilbert transform H(·) and a lowpass filter (LPF). The LPF is
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a sixth-order Butterworth filter with a cut-off frequency of 20 Hz. We downsample the
signal to 40 Hz to reduce the computation complexity. Then, the TAEs are mapped to
their associated T60s for the seven-octave bands by using CNNs.

ey(t)=LPF [|y(t) + jHilbert(y(t))|] . (4.1)

4.2 MTF-based CNN framework

We deploy one-dimensional CNNs for mapping the characteristics of the TAEs with their
associated T60s in each octave band. Each model consists of four convolutional layers.
The input layer takes a TAE to be convoluted with the filters. The regulated linear unit
(ReLU), f(x)=max(x, 0), performs nonlinear activation in all convolutional layer. Batch
normalization is applied after the first convolution. Max pooling is also used for reducing
the dimensions before the next layer. The dropout rate before the last layer is set to
20%. The fully connected layer is the output layer. The seven CNNs are trained from
the TAEs/T60s pairs. The trained models are supervised by the T60s ground-truths. The
ground-truths are calculated from simulated RIRs. The output of each CNN for each
sub-band is the estimated T60. The details of the MTF-based CNN model is shown in
Table. 4.1.

Table 4.1: Network architecture of the MTF-based CNN model.

No. Layer Type Parameters

1 Input TAE shape = 1× 200
2 Conv1D1st 32 filters, filter size =10× 1, ReLU
3 Pooling max pooling, size = 2, stride = 1
4 Conv1D2nd 16 filters, filter size =5× 1, ReLU
5 Pooling max pooling, size = 2, stride = 1
6 Dropout 0.2
7 Conv1D3rd 8 filters, filter size =5× 1, ReLU
8 Pooling max pooling, size = 2,
9 Conv1D4th 4 filters, filter size =5× 1, ReLU
10 Fully Connected 1 output (i.e., T60), ReLU
11 Regression Output mean-square-error (MSE)

4.3 RIR approximation

The estimated T60s are used to approximate RIR, ĥ(t) according to Schroeder’s RIR
model. As Schroeder’s RIR depends on only the reverberation time, the estimated T60
for each octave-band is used to construct the temporal envelope of the RIR, êh(t). The
temporal envelope of each band is modulated with a band-limited Gaussian noise with
a bandwidth of 1/3 of an octave. Then, the sub-band RIRs are then summed together.
The approximated RIR can be expressed as

ĥ(t)=
K∑
k=1

exp

(
− 6.9t

T60,k

)
ch,k(t), (4.2)
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where T60,k is the estimated T60 in the k-th band and K = 7, and ch,k(t) is band-limited
Gaussian noise. The STI can then be calculated from the estimated T60s based on the
basis of the MTF, as in Eq. (2.17). Also, the T60, EDT, C80, D50, and Ts can be calculated
according to the definitions, in Eqs. (2.10), (2.11), and (2.12), respectively.

4.4 Evaluations

A total of 29, 000 reverberant speech signals with a sampling rate of 16 kHz were generated
from the simulated RIRs convoluted with speech signals. The simulated RIRs are based
on Schroeder’s RIR model. The reverberation time of the RIRs varies from 0.2 to 3.0
s with a step size of 0.1 s. Each envelope with a different T60 was modulated with a
different random seed WGN carrier. There are a hundred different WGN carrier seeds.
The speech signals were ten short (five-second) Japanese sentences uttered by five men
and five women in [113]. These reverberant signals were separated into 70 % for training,
and the rest for testing the model (simulated RIR).

The proposed method is then evaluated whether or not it can estimate the parameters
and STI even though the acoustic characteristics might not follow Schroeder’s RIR model
by using reverberated speech signals in an unknown realistic environment. We utilized
43 measured RIRs from the SMILEdataset [111]. The RMSE and correlation coefficient
were the metrics for indicating the accuracy of the estimation.

4.5 Results and discussion

Figures 4.2-4.6 show the estimated results of the estimated room-acoustic parameters and
STI from speech signals in reverberant environments. The symbols “o” and “square”
correspond to the estimated parameters in the simulated room and realistic room, respec-
tively, where ‘*” is the value estimated using the previous methods. The horizontal axis
indicates the parameter directly calculated from the RIRs, and the vertical axis indicates
estimated values. It was found that the results from the simulated rooms were excellent
in all parameters. On the other hand, in the real rooms, the results suggested that the
proposed method can be used to estimate the five room-acoustic parameters and STI.
However, none of the current methods can estimate these parameters simultaneously. We
then directly compared only T60 and STI with the baseline methods proposed in [76,98].
The others were discussed from the results compared with their ground-truths.

The results of the estimated T60 and STI show that the proposed method outperforms
the previous methods since it provided significantly lower RMSEs. The estimated T60
was improved about 40%, and 25% for the STI compared with the previous methods,
respectively. For C80, D50, and Ts, the RMSE were 1.66 dB, 11.85%, and 0.06, respectively.
The results of the estimated C80 were close to the accuracy from the standard method
from measured RIRs [3]. However, the results of the estimated D50 and Ts have remaining
outliers. Those errors might be caused by a mismatch between the RIR model we used
and the real RIRs.

Table 4.2 shows the correlation coefficients between the estimated parameters and
ground-truths. The results show that the proposed method was successful in unseen
simulated rooms since the correlation coefficients were close to 1. For the real rooms, the
proposed method has high correlations in all parameters, but the estimated D50 and Ts
were slightly low.
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Figure 4.2: Estimated speech transmission index, STI, from reverberant speech signals.
The symbol “o” corresponds to the estimated value from the simulated RIR, “square”
indicates the estimated value from the measured RIR, “*” indicates the estimated result
using the method proposed by Unoki et al. [1], and the dashed line represents the ground-
truth calculated from the RIRs.
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Figure 4.3: Estimated reverberation time (T60: Previous method proposed by Unoki et
al. [2]) and early decay time (EDT) from reverberant speech signals.
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Figure 4.4: Estimated clarity index, C80, from reverberant speech signals.

Figure 4.5: Estimated Deutlichkeit, D50, from reverberant speech signals.
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Table 4.2: Correlation coefficients between the estimated and calculated parameters.

T60 EDT C80 D50 Ts STI

Simulated rooms 0.996 0.996 0.992 0.994 0.996 0.997

Real rooms 0.915 0.870 0.918 0.818 0.822 0.902

4.6 Summary

In this chapter, a blind method for estimating a parameter of Schroeder’s RIR model
was proposed. Hence, the target room-acoustic parameters, i.e., T60, EDT, C80, D50, and
Ts as well as the STI can be derived. The proposed method leveraged the relationship
between a stochastic RIR model and its MTF to estimate T60 for seven-octave bands.
The proposed scheme estimated T60 from the temporal amplitude envelope of an observed
signal in each band. The estimated T60s were used to approximate the MTF and RIR
for deriving of the room acoustic parameters and STI. Simulations were carried out to
determine whether the proposed method could estimate the room acoustic parameters and
STI from reverberated speech signals even if the RIRs were not the same as Schroeder’s
RIR model. The experimental results in terms of RMSEs and correlation coefficients
showed that the proposed method yielded a better accuracy, compared with the baselines
for the STI and T60. Also, the estimated EDT, C80, D50, and Ts were also close to the
standard methods.
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Figure 4.6: Estimated center time, Ts, from reverberant speech signals.
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Chapter 5

Blindly estimating room acoustic
parameters and STI based on the
extended RIR model

In the previous chapter, we presented the estimating parameter of Schroeder’s RIR so that
multiple-room acoustic parameters and STI can be estimated by using reverberant speech
signals. This chapter reports the results of the estimated acoustical parameters. Further-
more, the proposed scheme is modified such that the power envelope of the observed signal
is used rather than the TAE. The simulations are conducted to verify the proposed method
in both reverberant and noisy reverberant environments. In addition, the estimation
under noise conditions is investigated. Since Schroeder’s RIR model is an ideal exponential
decay function, it is valid for representing a geometrically simple enclosure, e.g., an empty
rectangular room without furniture and partitions. However, real spaces are often more
complicated. For instance, a department store contains shelves of products, as depicted in
Fig. 5.1. At some positions, a listener receives reflections from many surfaces with a delay
time. Hence, a simple exponential decay model such as Schroeder’s RIR model cannot
represent such a complicated environment. The mismatch between the actual RIR and
the model leads to inaccurately estimated acoustic parameters. Therefore, the modeling
of an actual RIR with a non-exponential decay needs to be improved [76,77].

Instead of using Schroeder’s RIR model, the extended RIR model is used. The
proposed method, the MTF-based CNNs with extended RIR model, is shown in Fig. 5.4.
The details of the proposed method are described as follows.

5.1 The extended RIR model

The extended RIR model is proposed to mitigate a limitation of Schroeder’s RIR model.
Thus, Schroeder’s RIR model was modified by adding two more parameters. The extended
RIR model, hext(t), is defined as

h(t) = hext(t− T0), T0 ≥ 0 (5.1)

hext(t) =

{
a exp(6.9t/Th)ch(t), t < 0
a exp(−6.9t/Tt)ch(t), t ≥ 0

(5.2)

where hext(t) represents the extended RIR model. T0 denotes the peak position of the
RIR. Th and Tt are the controlling parameters for raising and decreasing the envelope of
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the RIR, respectively. a is a gain factor, and ch is the WGN carrier, which is a random
variable.

In Eq. (5.1), the time-shifting property is used to provide a causal system and stable
impulse response, i.e., h(t)=0, t < 0. In Eq. (5.2), the three parameters of the extended
RIR model control the shape of the envelope of the RIR.

Figure 5.2 shows an example of the extended RIR. The time period from the sound
source (t=0) to the peak position of the RIR is controlled by parameters Th and T0. The
last parameter, Tt, represents the exponential decay of the RIR. In other words, Tt is the
reverberation time, T60. The envelope of the RIR is varied according to the three control
parameters, as shown in Fig. 5.2 (a), and Fig. 5.2 (b) shows the RIR after the envelope is
modulated by WGN. Note that if Th and T0 are equal to zero, the extended RIR model
is the same as Schroeder’s RIR model.

The extended RIR model is therefore more flexible and closer to the temporal envelope
of the real RIR. Figure 5.3 shows a comparison between the two RIR models to represent
an actual RIR. Nevertheless, a method for estimating the parameters of the extended RIR
model has not been developed. Thus, one of the main contributions to the complementary
prior knowledge of the proposed method is that the three parameters of the extended RIR
model, i.e., Th, Tt, and T0, are blindly estimated. Thus, according to the definition of the
MTF in Eq. (2.17), the complex MTF of the extended RIR model can be represented as

m(fm, Th, T0, Tt) =
exp(−j2πfmT0)√(

1 + (2πfm(Th/13.8))2
) (

1 + (2πfm(Tt/13.8))2
) . (5.3)

5.2 Core structure of the estimation

Previously, the MTF-based CNN framework has been proposed on the basis of Schroeder’s
RIR model. In this chapter, the proposed method is based on the previous scheme but
estimate the three parameters of the extended RIR model. Instead of estimating only
reverberation times, T60s, the CNNs is used for mapping Th, T0, and Tt with the sub-band
TAEs. The seven CNNs are trained from pairs of TAEs and the three parameters of the
extended RIR model. The ground-truths of Th, T0, and Tt are the targets of the CNNs.

As reverberant speech signal is decomposed into seven-octave bands, the seven iden-
tical CNN models for each band. Here, each CNN model consists of four convolutional
layers with 6381 parameters. The input layer takes TAEs for convolution with the filters.
The regulated linear unit (ReLU), f(x) = max(x, 0), performs nonlinear activation in
every convolutional layer. Batch normalization is applied after the first convolution. Max
pooling is also used to reduce the dimensions before the next layer. The dropout rate
before the last layer is set to 40% to avoid the memorization problem for some dominant
nodes. The fully connected layer with a linear function is the output layer. The details
of the MTF-based CNN model are shown in Table 5.1.

For reconstruct the RIR, this method replace replaces Eq. (4.2) of the original model
with Eqs. (5.1) and (5.2) of the extended RIR model. Then, the remaining calculations
are the same.
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Figure 5.1: Example of complex space and its impulse response.

Figure 5.2: Example of extended RIR model where Th = 0.08, T0 = 0.05 s, and Tt = 1.0:
(a) temporal envelope and (b) its corresponding RIR.
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Figure 5.3: Fitting results of two RIR models with temporal amplitude envelope of
measured RIR: envelopes in time domain (a) and in modulation-frequency domain (b).
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Table 5.1: Network architecture of MTF-based CNN model.

No. Layer Type Parameters

1 Input TAE shape = 1× 200
2 Conv1D1st 32 filters, filter size =10× 1, ReLU
3 Pooling max pooling, size = 2, stride = 1
4 Conv1D2nd 16 filters, filter size =5× 1, ReLU
5 Pooling max pooling, size = 2, stride = 1
6 Dropout 0.4
7 Conv1D3rd 8 filters, filter size =5× 1, ReLU
8 Pooling max pooling, size = 2,
9 Conv1D4th 4 filters, filter size =5× 1, ReLU
10 Fully Connected 3 outputs (Th, T0, T t), relu
11 Regression Output root-mean-square error (RMSE)

5.2.1 Objective function

The objective function or cost function, J(θ), is used in the optimization algorithm during
training. The filters of the CNNs are convoluted with the input for each layer. The back-
propagation algorithm is used to compute the error that is the difference between the
estimated parameters and the targets. This kind of parameter estimation problem aims
to minimize the error between the estimation and the ground-truths. The optimization
algorithm of the proposed method minimizes the error of the three parameters of the
extended RIR model. In addition, the algorithm takes the target acoustic parameters
into account to enhance the accuracy of estimating STI and room-acoustic parameters.
Therefore, the objective function is the RMSE of the estimated parameters of the RIR
model and the target acoustic parameters. It is defined as

J(θ) =

√√√√ 1

N

N∑
n=1

α
(
Thn − T̂hn

)2
+

√√√√ 1

N

N∑
n=1

β
(
T0n − T̂0n

)2
+

√√√√ 1

N

N∑
n=1

γ
(
Ttn − T̂tn

)2
,

(5.4)
where n is the index of the estimated parameters, N is the batch size for each iteration,
α, β, and γ are weighting factors of the three controlling parameters, Th, T0, and Tt,
respectively. Since the scale of Th and T0 is comparatively smaller than Th, the weighting
factors are necessary. Here, the weighting factors of Th, T0, and Tt are 0.1, 0.3, and 0.6,
respectively.

5.3 Implementations and evaluations

Here, the similar MTF-based CNN framework were implemented using the extended RIR
model. The reverberant TAEs extracted from the observed speech in the seven-octave
bands were the inputs for the two models. The CNNs of the proposed method were set
as close to the CNNs that were used in the previous method. The main difference is
the number of estimated parameters, i.e., one parameter for Schroeder’s model (T60) and
three for the extended RIR model (Th, T0, and Tt). The RMSE and Pearson correlation
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coefficient were the evaluation metrics. The errors were calculated from the difference
between the ground-truths and estimated parameters.

5.3.1 Data augmentation

A data augmentation technique is used to generate a sufficient training set. There are
several data augmentation methods used in room acoustics. For example, a geometrical
acoustic technique, i.e., an image-source method, was used previously [98, 117]. Here,
we synthesized various RIR on the basis of Schroeder’s RIR model and the extended
RIR model. The simulated RIRs were synthesized by varying the parameters of the RIR
models.

According to Schroeder’s RIR model, the reverberation time, T60, in Eq. (2.5), was
varied from 0.3 to 4.0 s with a step size of 0.01 s. The synthesized envelope was modulated
with a different random-seed WGN carrier. There are a hundred different WGN carrier
seeds. The RIRs were then convoluted with speech signals. The speech signals were
ten Japanese sentences uttered by five men and five women from the ATR dataset [113].
Therefore, a total of 29, 000 reverberant speech signals were prepared.

Similarly, the three parameters of the extended RIR model were varied to cover the
possible range of realistic RIRs. The possible range of each parameter was derived from
fitting the envelope of the 43 RIRs. The rising parameter, Th, was fitted by using nonlinear
regression to fit the rising part in Eq. (5.2). Peak position, T0, was peak of the envelope
of the RIRs. The last parameter, Tt, was the same as T60. These calculated parameters
were the ground-truths for evaluating the proposed method.

From calculating the ground-truth parameters of the extended RIR model, it was
found that 29 RIRs or 75% of the realistic RIRs in the SMILEdataset might fit well with
a simple exponential decay. This means that such RIRs can be represented by Schroeder’s
model. Nevertheless, a mismatch was found for 14 RIRs, as shown in Fig. 5.3. Therefore,
the dataset from Schroeder’s RIR was added with the dataset from the extended RIR
model for training the proposed method. For such signals, Th and T0 were set to zero.
Therefore, a total of 50, 000 signals could be used for the proposed method on the basis of
the extended RIR. All signals had a five-second period, a sampling rate of 16 kHz, 32-bit
quantization, and one channel.

The CNNs were trained by using 80% of the total data. The rest of the data was used
to validate the model and to fine-tune the hyperparameters, such as filter size as well as
the number of filters and layers. Although finding the optimal parameters of the RIR
model is an optimization problem, training the model is slightly different from ordinary
optimization. In the training process, solutions are found for a subset from the entire
dataset, known as a mini-batch. Here, we set the batch size to 64 records. We trained
the model for a maximum of a hundred iterations (or epochs). An early stop was set so
that the training stopped when the solution reached the global minimum. We used the
RMSprop optimizer, which is an optimization algorithm based on the stochastic gradient
descent algorithm [119]. The RMSprop algorithm is recommended for solving such a
regression problem. We set the learning rate to start at 0.001. In training, the learning
rate was gradually decreased in relation to the rate of convergence, which is called a
momentum method [119]. The initial parameters for each convolutional layer were set by
using the normalized values of the training set. We implemented and trained the CNN
models with Python. Keras with TensorFlow 2.0 was the main library.

Since measuring the RIR requires sophisticated equipment, it is expensive. Datasets
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of real RIRs are limited. This study used 43 realistic RIRs from the SMILE database and
2 RIRs for benchmark algorithms for acoustical parameters [64, 111]. The realistic RIRs
were used in the final evaluation only. The measured RIRs are in a single channel. They
were resampled equally to 16 kHz. Summarized information on the RIRs is in [1, 64].
However, the MTF-based CNN framework for estimating acoustical parameters and STI
needs more data. Hence, this study utilized the extended RIR model to generate RIRs.
A training dataset was synthesized so that the CNNs could estimate the parameters with
high accuracy without overfitting and be retrained.

5.3.2 Evaluating estimated parameters of RIR models

Simulations were carried out using reverberant speech signals to determine whether the
proposed method can correctly estimate the parameter(s) of the RIR models. For the
model based on Schroeder’s RIR, the reverberation time was the only estimated parameter
for each band. Ten speech signals were the inputs for each real RIR. Figure 5.5 shows
an example of the estimated results. The results of the seven bands had different values
according to the frequency-dependence of the reverberation time [64]. However, the middle
bands, i.e., 500 to 2 kHz, were more consistent than the lower and upper bands since the
estimated values were distributed in a smaller range.

The three parameters of the extended RIR model were simultaneously estimated for
each sub-band. The results are shown in Fig. 5.6. Then, the estimated parameters of the
RIR model were used to reconstruct the approximated RIR. Figure 5.7 shows a comparison
between the reconstructed envelope of the RIR and the ground-truth. The RMSE was
0.083. It was close to the reference using its fitting parameters, i.e., an RMSE of 0.074.

5.3.3 Evaluating estimated MTFs

Figure 5.8 shows an example of the MTFs approximated from a speech signal in a sim-
ulated room (“o”) and real room (“*”), where T60 = 0.7 s. The dashed lines indicate
the estimated MTFs, and the solid line is the ground-truth. The estimated MTFs were
derived from the MTF of the extended RIR, as in Eq. (5.3). We averaged the 14 MTFs
of the seven-octave bands for clarity. It was found that the shapes of the approximated
MTFs were similar to the ground-truths within an RMSE of 0.15 dB.

5.3.4 Evaluating estimated room-acoustic parameters and STI

The previous method could estimate five-room-acoustic parameters and the STI without
having to measure the RIR in reverberant environments. However, the accuracy of the
estimated parameters was unreliable as the RIR model did not match many realistic
rooms. This critical issue was then evaluated by using the proposed method based on the
extended RIR model.

The results of the estimated reverberation time and early decay time are plotted in
Fig. 5.9. Note that all of the estimated parameters and STI are plotted in the same
manner as follows. The horizontal axis indicates a parameter directly calculated from
the measured RIRs, and the vertical axis indicates the estimated values. The symbol “o”
corresponds to the estimated parameters from the previous method, and the “square”
corresponds to the results from the proposed method. The dashed line represents the
optimal values for each parameter. For the proposed method, the RMSEs of the estimated

56



125 250 500 1000 2000 4000 8000

0.2

0.25

0.3

0.35

0.4

0.5

Figure 5.5: Example of estimated parameter T60 based on Schroeder’s RIR model in
octave bands. Horizontal dashed line is ground-truth calculated in full-band (T60 = 0.36
s). Solid line (red) in each box is median of samples. Size of box represents distribution
of estimated values, where ten reverberant speech signals were inputs. Symbol “+” is
outlier.
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Figure 5.6: Results of estimated parameters of extended RIRs: (a) raising parameter Th,
(b) peak position parameter T0, and (c) decay parameter Tt.
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Figure 5.7: Actual and reconstructed RIR using proposed method.

Figure 5.8: Example of MTF estimated from reconstructed RIR. Dashed lines are
estimated MTFs where “o” indicates MTFs estimated from simulated room and “*”
is MTF estimated from real room. Solid line is ground-truth calculated from RIR.
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Figure 5.9: Estimated reverberation time (T60) and early decay time (EDT) from
reverberant speech signals.
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Figure 5.10: Estimated clarity index, C80, from reverberant speech signals.

Figure 5.11: Estimated Deutlichkeit, D50, from reverberant speech signals.
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Table 5.2: Correlation coefficients between estimated and calculated parameters.

T60 EDT C80 D50 Ts STI

Previous 0.915 0.870 0.918 0.818 0.822 0.902

Proposed 0.918 0.873 0.943 0.903 0.836 0.913

Table 5.3: Comparison between standard derivation (SD) of estimated error and just
noticeable difference (JND) of acoustical parameters [3, 4].

Parameter T60 EDT C80 D50 Ts STI

JND 5% 5% 1 dB 5% 10 ms 0.03

SD 9.4% 10.5% 2.7 dB 14% 45 ms 0.05

T60 and EDT were 0.393 and 0.472, respectively. In comparison, the RMSEs with the
previous method were 0.440 and 0.478. These two parameters were closely related as they
are derived from the same decay curve of the RIR. Therefore, the results showed the same
trend. The estimated decay parameter of the two RIR models, i.e., T̂60 and T̂t, were also
the same. Thus, the results of the proposed method were close to those of the previous
method.

The parameters related to the energy ratio of early and late reflection, C80, D50, and
Ts, are plotted in Fig. 5.10 and Fig. 5.12, respectively. For C80, the RMSEs were 2.105
with the proposed method and 3.600 with the previous method. For D50, the RMSEs
were 2.105 with the proposed method and 3.600 with the previous method. For the
estimated Ts, the RMSEs were 0.040 s with the proposed method and 0.043 s with the
previous method. These results revealed that the proposed method could estimate these
energy-ratios parameters with a higher accuracy.

Figure 5.13 plots the STIs estimated from reverberant speech signals. This figure
indicates that the estimated STIs were accurate for both methods because they were
close to the optimal dashed line. Here, the RMSEs were 0.040 with the proposed method
and 0.043 with the previous method.

Table 5.2 shows the correlation coefficients between the estimated parameters and
ground-truths. The results show that the proposed method was closer to the ground-
truths than the previous method. This means that it could effectively estimate the
parameters and STI from speech signals for realistic room acoustics even if the RIR
is not approximated as Schroeder’s RIR model.

The accuracy of acoustical parameters related to subjective perception can be rep-
resented by the sensitivity of the listeners to a change in a given parameter, called the
just noticeable difference (JND) [3]. The JNDs of all acoustical parameters are shown in
Table 5.3. Then, the standard derivation of the estimated error was used for comparison
with the JND of each parameter.
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Figure 5.12: Estimated center time, Ts, from reverberant speech signals.

Figure 5.13: Estimated speech transmission index, STI, from reverberant speech signals.
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5.4 Estimation in noise environments

In common spaces (e.g., restaurants, department stores, and concourses), background
noise, which is a condition of a sound field, is almost inevitable. As background noise
degrades speech quality and speech intelligibility, many speech applications, such as
speech recognition systems and speaker verification systems, need to consider a level
of background noise [59]. Those applications might estimate noise level in terms of a
signal-to-noise ratio (SNR) to adapt their parameters and to maintain the performance.
Similarly, robustness to background noise is also important for estimating room acoustic
parameters.

Background noise is a critical problem not only in estimating acoustic parameters
from speech signals but also in the standard procedure from measuring the RIR [3,
21]. The previous chapter studies a method of blindly estimating the extended RIR
model parameters for deriving five room-acoustic parameters and STI under reverberant
conditions only [120,121]. However, background noise was not included in the model. The
accuracy of the estimated parameters might be drastically reduced in noisy reverberant
environments.

Thus, background noise is taken into account for estimating room acoustic parameters
and STI. The main goal of this study is deployed to estimate the five acoustical parameter
and STI. In addition, SNR is estimated along with those parameters since the proposed
method takes the SNR into account. As a result, the SNR is then one of the estimated
values. The results of estimated SNRs for each band and the global SNRs are the following.

5.5 Discussion

In the above evaluations, the proposed method incorporating the extended RIR model was
compared to the previous method that is based on Schroeder’s RIR model. The overall
estimated results were improved. However, the advantages, limitations of the proposed
method, and some remaining issues concerning the scope of this work need to be discussed.

First, the accuracy of the estimated acoustical parameters and STI depends on the
accuracy of the model and its estimated parameters. The estimated five room-acoustic
parameters and STI were determined from the approximated RIR. We approximate the
unknown RIR based on the impulse response model. Hence, we need to consider which
model is appropriate to represent actual RIRs. Schroeder’s RIR model was used previ-
ously. The method based on Schroeder’s RIR model provided the remaining significant
errors. The errors were caused by the mismatch between Schroeder’s RIR model and many
of the realistic RIRs. In contrast, the extended RIR model was taken into account whether
or not it could be a better model. With the fitting parameters of the RIR models from the
realistic RIRs, the accuracy of the extended RIR model is more accurate than Schroeder’s
RIR model. Consequently, we hypothesis that the accuracy of the estimated room-acoustic
parameters based on the extended RIR model would be better. The model mismatch
problem is resolved by incorporating the extended RIR into the proposed framework.

Second, the estimated acoustical parameters and STI have been improved. The
parameters that are mainly related to reverberation, i.e., T60, EDT, and STI, were slightly
improved. It is because the extended RIR model and Schroeder’s RIR model describe the
reverberation time by using the same exponential decay function. The center time, Ts,
which is related to the center of gravity of the RIR, has been improved by about 35%.
This significant improvement of estimated Ts is from the correct estimation of the peak
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Figure 5.15: Results of the estimated T60 in noisy reverberant environments.

Figure 5.16: Results of the estimated STI in noisy reverberant environments.
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positions of the RIRs. Also, the estimated C80 has been improved by about 40%. It was
revealed that the proposed method could overcome the previous issue. It could correctly
estimate those acoustical parameters in realistic acoustic environments even their RIRs are
non-exponential decay. Note that since the proposed scheme approximated an unknown
RIR in seven-octave bands, the estimated acoustical parameters could be showed for
each band according to the requirements of architects, as reported in [64]. However, the
estimated D50 was insignificantly improved. The reason for the minor improvement is
still unclear. Furthermore, a few outliers of the estimated parameters have remained.
These outliers are caused by some complicated environments that the RIR models could
not represent well. Therefore, precisely estimating the parameters of the extended RIR
model and dealing with complicated impulse responses need further investigation.

5.6 Summary

This chapter presents a more accurate method for blindly estimating five-room acoustic
parameters and STI. The main idea is an accurate stochastic RIR model for representing
the unknown RIR. The extended RIR model is used such that its parameters are estimated
from the reverberant speech signal. The CNNs are employed for mapping the relationship
between TAE of reverberant speech signal and parameters of the RIR model for seven-
octave bands. Later, the power envelope of the observed signal is applied, corresponding
to the concept of the MTF. Furthermore, robustness against background noise was inves-
tigated whether or not the concept of the MTF can be fully applied. Thus, the proposed
method does estimate not only the RIR but also the SNR. Simulations were carried out
by using speech signals under realistic reverberant and noisy reverberant conditions. The
experimental results suggest that the proposed method can blindly estimate the RIR and
the MTF to derive the five-room acoustic parameters and STI correctly. However, the
result of the estimated SNRs and the room acoustic parameters under noisy conditions
need further consideration since the accuracy of the estimated SNRs remained lower than
the baseline.
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Figure 5.17: Results of the estimated SNRs for sub-bands from reverberant speech signals.
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Chapter 6

Conclusion

This chapter summarizes the studies reported in Chapter 3 to Chapter 5. The contribu-
tions to knowledge are highlighted. Finally, some remaining limitations and interesting
for further improvements are discussed.

6.1 Summary

This dissertation proposed methods for blindly estimating room-acoustic parameters from
a speech signal in noisy reverberant environments. Since it is difficult to conduct a
direct measurement in places where people exist, the STI was first studied. The STI
was estimated by using TAE as a feature incorporated into a CNN model. The CNN
models motivated by convolution operation were employed for mapping a TAE of the
observed speech signal to the STI. Later, instead of estimating the STI or a single
acoustical parameter, the unknown RIRs were approximated by using stochastic RIR
models. Therefore, multiple room-acoustic parameters can be estimated. From the
evaluation results, the objectives of this research have been achieved.

To be crystal clear, the basis of this work can be broken down as follows.

• The concept of the MTF that represents the effect of reverberation and background
noise of room acoustics is used through the temporal amplitude envelope and power
envelope of the observed signal, so-called the MTF-based feature.

• TAE and one-dimensional CNN, as a preliminary scheme, was proposed to estimate
the STI [98]. The robustness of the estimator can be improved by taking noisy
reverberant TAEs into account.

• The power envelope of a noisy reverberant speech as the input can provide a similar
result as the TAE.

• Sub-band analysis by following the STI algorithm, i.e, seven-octave bands can
improve the accuracy of the estimation and provide estimated parameter of each
band.

• The CNN models motivated by convolution operator in the theory of a linear system
were exploited, by considering as a blind deconvolution operation for estimating
parameters of the RIR models.
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• The impulse response of a room can be modeled by using stochastic models. Schroeder’s
RIR model and the extended RIR model were used for approximating the unknown
RIR.

• The parameter(s) of these RIR model were estimated on the basis of the MTF.

• Five room-acoustic parameters, including T60, EDT, C80, D50, and Ts, and STI (an
objective index), as well as SNR (background noise condition) can be calculated
from the RIR and the MTF.

• The unknown RIRs were reconstructed from blindly estimating their model parame-
ters so that the above acoustical parameters can be blindly estimated simultaneously.

• The extended RIR model can deal with a more variations of sound fields compared
with Schroeder’s RIR. Consequently, the proposed method using the extended RIR
model incorporated into the MTF-based CNN framework outperforms than that of
Schroeder’s RIR [121].

• Simulations were carried out to determine whether the proposed methods can cor-
rectly estimate the acoustic parameters and STI in unseen reverberant or noisy
reverberant environments. A few realistic RIRs measured from various sound fields
and artificial RIRs from image-source method and stochastic RIR models were used.

• The experimental results in terms of RMSEs and correlation coefficients suggest
that the proposed methods can correctly estimate the STI and five room-acoustic
parameters. The estimated results were close to the standard method using mea-
sured RIR.

6.2 Contributions

This study contributes to the areas of room acoustics and speech signal processing. The
significant and original contribution to knowledge from this work can be listed as follows.

• Physical features based on the concept of the MTF (TAE/PE) with convolution-like
operator using a machine learning (CNNs) for solving blind estimation problem

• Blindly and correctly estimating the parameters of the extended RIR model

• Simultaneously estimating five room-acoustic parameters and speech transmission
index from speech signals in noisy reverberant environments.

• Robust estimation for the quality of sound transmission channel under background
noise

• Applicable to use in common spaces with people for quasi-real-time applications
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6.3 Recommendation and future works

The following interesting issues are recommended to be investigate further.

1. The quality of sound sources has not been considered yet. This study was limited
to estimating the physical properties of a sound field to express subjective aspects. Such
subjective perceptions predicted from those room acoustic parameters and STI are only
one of three parts of speech communication in an enclosure.

2. Phase response in the MTF domain should be taken into account, e.g., phase shift
of the observed signal.

3. Besides noisy reverberant speech signals, a signal from music (e.g., music instru-
ments and/or generic audio signals) is interesting. Based on the literature review, none
of the current work could achieve good accuracy of estimating room acoustic parameters
and STI from music.

4. The variation of source and receiver position need to be verified the robustness of
the proposed method. Since ISO 3382 defines a minimum distance at 1.5 m for measuring
T60 and other critical distances for other parameters, these critical distances are related
to the sound pressure level.

5. The extended RIR model need further verification whether or not it can correctly
represent non-diffused spaces.

6. The number of people and their positions might affect the absorption and reflection
of a sound wave. Hence, the proposed method should be evaluated in real environments
with people.

7. Multichannel approaches using a microphone array (e.g., beamformming algorithm)
are interesting for blindly estimating room-acoustic parameters. It might be used to
improve the propose method based on a single channel estimation. Moreover, some
acoustical parameters related to the spatial domain (e.g., IACC and LEF) should be
included.
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Appendix A

Controlling estimated STI for
protecting privacy of conversation

This study is one of the applications that utilize the estimated STI with the extended
RIR model for controlling a level of speech intelligibility. In this case, maintaining the
low intelligibility for outside the conversation zone can provide speech privacy.

Protecting the privacy of conversations containing confidential and sensitive infor-
mation in semi-open rooms, such as in banks and hospitals, is essential because their
acoustical characteristics, such as room impulse response (RIR) and background noise, are
unknown and prone to change [122]. In the previous work [123], a method, manipulating
parameters Th and Tt of the extended RIR model was used to simulate RIR with low STI.
This study proposes a scheme for protecting the privacy of conversations on the basis of
feedback control of an estimated speech transmission index (STI). The STI is an objective
index related to listening difficulty and is a function of RIR. Without measuring the RIR
of the environment where a supposedly private conversation occurs, an STI-estimation
method and one RIR model are utilized.

Figure A.1 shows the scheme of the proposed method. The scheme modifies speech
signals in such a way that, for an unintended listener, the signals are as unintelligible as
they would be in a room with a low STI. To control the late reverberant parameter of the
RIR model, a proportional-integral-derivative (PID) controller is used whose controller
gains are tuned by using a differential evolution optimizer [124]. The algorithm of the
differential evolution is provided. For more details of this study, please see in [30].

A.1 Feedback controller

This work applies a well-known control algorithm that is proportional-integral-derivative
controller (PID). A PID or three-term controller is a closed loop system incorporating
feedback to control the process variables within a set point. The controller comprises
three components serving different purposes. First, the proportion term, a function of
present value of the error, provides an overall proportion to the error. Second, the integral
term which accumulates the error overtime, minimizes the steady-state error. Third, the
derivative term improves transient response using differential compensation. These three
parallel terms are defined as

u(t) = KP e(t) +KI

∫
e(t)dt+KD

d

dt
e(t), (A.1)
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where e(t) represents the difference between estimated STI and the desired value
(error). KP , KI , and KD are non-negative values denoted as proportional, integral, and
derivative gain, respectively. PID parameters are tuned experimentally to achieve the
desired STI of 0.3 with an acceptable error margin of 0.01 within 20 iterations of the
controller.

A.2 Differential evolution optimization

The differential evolution algorithm is a parallel direct search method that optimizes a
problem by iterative improving solutions with a cost function and a set of constraints.
Differential evolution is an appreciate optimization algorithm for the following reasons.
First, differential evolution is a multi-point optimizer. Thus, it can effectively handle
the starting point problem. Second, differential evolution is a derivative-free approach.
Third, it is the fastest algorithm in the evolutionary computation class. Without loss
of generality, we assume that the problem is to find a D-dimensional target vector x
such that the cost value C(x) is minimized. Differential evolution algorithm consists of
four processes, that are, initialization, mutation, crossover, and selection, as illustrated in
Fig. A.2.

Figure A.2: Differential evolution algorithm.

1. Initialization. The initial target vectors xi,G of the generation G = 1, for i =
1, 2, .., NP , where NP is the total population, are randomly generated. Note that these
initial target vectors should cover the entire solution space.

2. Mutation. Each target vector xi,G is used to generate a mutant vector vi,G+1 by the
following formula.

vi,G+1 = xr1,G + F · (xr2,G − xr3,G), (A.2)

where i, r1, r2, and r3 are distinct and randomly chosen from {1, 2, .., NP}, and the
predefined constant F is in the interval [0, 2]. This constant determines the convergence
rate of the algorithm.

3. Crossover. Each pair of target vector xi,G and its mutant vector vi,G+1 is used to
generate a trial vector ui,G+1 by the following formula.

ui,G+1 =


u1i,G+1

u2i,G+1
...

uDi,G+1

 ,

uji,G+1 =

{
vji,G+1, if Ξ(j) 6 CR or j = υ,

xji,G, otherwise,
(A.3)
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where Ξ(j) is a uniform random number generator with a result in the interval [0, 1], the
crossover constant CR is a predefined constant in [0, 1], and υ is chosen randomly from
{1, 2, ..., D} to ensure that the trial vector gets at least one element from the mutant
vector.

4. Selection. C(xi,G) and C(ui,G+1) are compared, where C is the cost function.
The one with the less cost value survives for the next generation G+ 1. That is, if
C(xi,G) ≤ C(ui,G+1), then xi,G+1 =xi,G; otherwise, xi,G+1 =ui,G+1. Once all NP members
of generation G+1 are obtained, they iterative continue until some condition or constraint
is satisfied. The solution is the vector xi from the last generation that yields the lowest
cost.

A.3 Evaluation and discussion

Simulations of the controlling estimated STIs and subjective tests are conducted to
evaluate the performance of the proposed method. The stimuli consist of 16 Thai short
commands of three syllables spoken by Thai female announcer [125]. For the subjective
test, the stimuli are divided into two groups. The first group includes eight stimuli that
are generated from hL(t) with a fixed value of 10.5 second. This constant value is selected
from the appropriate value for masking a signal in a specific room. The second group
includes eight stimuli that are generated as a result of the proposed method, i.e., PID-DE
control algorithm. These two groups are compared to study whether the proposed method
outperforms the open-loop method.

The objective metric is the actual estimated STIs, which is controlled to be poor
intelligibility. The datasets used in this test include 12 three-syllable Thai voice command,
43 RIRs in [111], pink noise with a signal-to-noise ratio (SNR) equal to 20 dB. The target
speech signals are generated by convoluting speech with RIR and adding noise.

The optimal gains of three PID parameters (i.e., KP , KI , and KD) are obtained from
the DE. The system performance is then evaluated when it reaches the maximum iteration
or converses to the target STI. The error is determined by the absolute difference between
the target and the actual of the estimated STIs. The simulation result of the estimated
STIs in the reverberant room and of the target signal corrupted with pink noise (i.e., 20
dB SNR) are shown in Fig. A.3. In addition, the proposed method in various rooms,
which is different RIRs, is shown in Fig. A.4. The results showed that the average error
between the actual and target STIs converse to zero within ten iterations. The average
error at steady-state of clean reverberant signal and signal with pink noise is 0.01 and
0.02, respectively. Note that these errors are not significant according to the limitation
of the STI-estimator.

From the subjective results, as shown in II, the proposed method can manipulate the
target speech signals to make them unintelligible. The proposed method has a lower
WIR and a higher LDR than the open-loop method. However, the proposed method
provides slightly higher annoyance than the open-loop method. From the proposed
method results, the higher annoyance might cause the lower STI (which is better for
masking the information in conversations). The results of the study in [123] are shown
as a reference for supporting the relationship between the controlled STI and the three
subjective indicators. According to the three subjective indicators, an STI of 0.3 causes
the speech signal y(t) to be unintelligible. Hence, the proposed method takes this STI
value as the setpoint.
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Figure A.3: The proposed method under two conditions of background noise: (a) the
estimated STI at each iteration and (b) the average error.
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Figure A.4: The proposed method under variations room conditions: (a) the output of
the estimated STIs and (b) the controlled parameter of the extended RIR model, Tt.

77



A.4 Summary

The proposed method extended the method proposed by Unoki et at.. This scheme is
available to control the estimated STI in real-time. Hence, it can be used under variations
of noisy reverberant conditions. Note that the results of the method in [123] used a
different language (Japanese) and with different subjects (native Japanese speakers).
Moreover, the calculation and the familiarity of words are different. Therefore, biases
in the comparison exist, and more research is needed.
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Appendix B

Room impulse responses:
SMILEdataset
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Table B.1: Dataset of room impulse responses (RIRs).

No. Index Description T60 STI

1 301 Multi-purpose hall 1 (with reflex board) 1.09 0.80
2 302 Multi-purpose hall 1 (without reflex board) 0.80 0.63
3 303 Multi-purpose hall 2 (with reflex board) 1.44 0.51
4 304 Multi-purpose hall 2 (without reflex board) 1.04 0.57
5 305 Multi-purpose hall 3 (with reflex board) 1.93 0.44
6 306 Multi-purpose hall 3 (without reflex board) 1.35 0.53
7 307 Multi-purpose hall 3 (with absorption board) 1.42 0.55
8 308 Multi-purpose hall 4 (with absorption board) 1.54 0.52
9 319 Multi-purpose hall 5 (14000 m3) 1.47 0.53
10 321 Multi-purpose hall 6 (19000 m3) 2.16 0.43

11 309 Concert hall 1 (5600 m3) 2.52 0.40
12 310 Concert hall 1 (d = 6 m) 2.39 0.41
13 311 Concert hall 1 (d = 11 m) 2.51 0.40
14 312 Concert hall 1 (d = 15 m) 2.45 0.40
15 313 Concert hall 1 (d = 19 m) 2.60 0.39
16 314 Concert hall 2 (6100 m3) 1.16 0.57
17 315 Concert hall 3 (20000 m3) 1.96 0.43
18 316 Concert hall 4 (with absorption curtain) 1.86 0.47
19 317 Concert hall 4 (without absorption curtain) 2.60 0.43
20 323 Concert hall 5 (17000 m3) 2.35 0.62
21 324 Concert hall 6 (front) 1.65 0.47
22 325 Concert hall 6 (side) 1.74 0.46
23 326 Concert hall 6 (3F) 1.89 0.45

24 201 Lecture room with flatter echoes 1.30 0.54
25 318 Theater hall (3900 m3) 0.91 0.61
26 401 Meeting room (130 m3) 0.60 0.69
27 402 Lecture room 1 (400 m3) 0.93 0.60
28 403 Lecture room 2 (2400 m3) 1.17 0.65
29 404 General speech hall (11000 m3) 1.55 0.48
30 405 Church 1 (1200 m3) 0.73 0.65
31 406 Church 2 (3200 m3) 1.53 0.50
32 407 Event hall 1 (28000 m3) 3.40 0.36
33 408 Event hall 2 (41000 m3) 3.60 0.34
34 409 Gym 1 (12000 m3) 2.98 0.37
35 410 Gym 2 (29000 m3) 1.70 0.47
36 411 Living room (110 m3) 0.34 0.80
37 412 Movie theater (560 m3) 0.31 0.81
38 413 Atrium (4000 m3) 1.32 0.50
39 414 Tunnel (5900 m3) 3.88 0.40
40 415 Concourse in train station 1.98 0.50
41 416 General speech hall 2 (1F front) 1.52 0.52
42 417 General speech hall 2 (1F center) 1.57 0.50
43 418 General speech hall 2 (1F balcony) 1.48 0.52

44 C-11 Concert hall of about 500 people 7.34 0.67
45 C-12 Echoic chamber 1.83 0.73
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Figure B.1: Examples (I): room impulse responses (RIRs), its envelopes (black
dotted line), and RIR models. Solid line is the extended RIR model with
model’s parameters and dashed line is Schroeder’s RIR model. Cross symbol is
a position of the Center time, Ts.
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Figure B.2: Examples (II): room impulse responses (RIRs), its envelopes (black
dotted line), and RIR models. Solid line is the extended RIR model with
model’s parameters and dashed line is Schroeder’s RIR model. Cross symbol is
a position of the Center time, Ts.
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Appendix C

Variation of CNNs for blind
parameter estimation

In this dissertation, a few neural network models have been proposed. Most of
them are CNN because the convolution operation of the CNN is similar to the
basis of the operation between the input signal and the RIR. However, estimat-
ing RIR models are focused. Other different CNN models are investigated in
this section.

C.1 Experiments and evaluations

Since there are many variations of the CNN architecture, this section presents a
few experiments regarding the effect of different CNN models and performance
of the estimator. Some of state-of-the-art CNN architectures are investigated,
such as VGG, ResNet, DenseNet, and EfficientNet. Unfortunately, all of them
are developed for image processing. In this study takes a power envelope of a
speech signal as one-dimension input feature. In addition, the dataset used in
this study is small comparing with the original data of a few million images to
train these DNNs. Thus, the transfer learning and fine-tuning technique is used
to avoid the overfitting problem. The baseline CNN model have been extended
to different models.

The computational time and complexity of the proposed method were con-
sidered. The proposed method is applicable for real-time assessments for two
reasons. The first is a short period of recording a reverberant speech signal.
The proposed method needs only five seconds of a reverberant speech signal.
The second is that a few computational time is required. We evaluated the
computational time on general processors (i.e., Intel Core i7 processors). The
STI and five acoustic parameters could be calculated within 0.26 s. Also, the
one-dimensional CNNs we used need significantly least computing power than
general two-dimensional CNNs, such as images and spectrogram features. Note
that a graphic processing unit was used only in the training process for faster
optimization. The evaluation results can be summarized, as shown in the table
and figure below.
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baseline wider deeper higher res all scaled up
No. of parameters 6,419 893,699 3,919,043 125,467 4,734,403
RMSE 0.022 0.013 0.008 0.020 0.006
Improvement - 41% 64% 10% 73%
Computational time 0.26 s 0.38 s 0.41 s 0.31 s 0.74 s

Table C.1: Comparison results of variation of CNN Scaling in the MTF-based
parameter of the extended RIR model estimation.

C.2 Discussion

From the result, the different CNN models have significantly different perfor-
mances. The baseline used in Chapter 4 − 5 provides acceptable accuracy. At
the same time, it is the fastest in terms of computational time. It is also more
generalized than the deeper CNNs, since the baseline is the smallest parameter.
On the other hand, the all-dimension scaling up model contains a huge number
of parameters (4.7M), which is 737 times larger than the baseline. Although
this deep CNN can provide the highest accuracy (the lowest RMSE), we have
to trade-off with the higher computational time as well as it has a likelihood to
overfit to the training set.
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Appendix D

Supplementary materials

The supplementary materials developed in this dissertation are provided in the
following online sources.

• Source code:

https://github.com/GolfSuradej/Room-acoustic-parameters-estimation-based-
on-the-concept-of-the-MTF

• RIR database: Duangpummet, Suradej (2021), “Room Impulse re-
sponses”, Mendeley Data, V1, doi: 10.17632/28hfxyrnwj.1

• Speech and noise database: https://github.com/GolfSuradej/Noise-
dataset

• Demo and application: http://www.suradejresearch.com/

• Recorded Presentations: https://youtu.be/X6HoNpKualA
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