
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title ブーリアンネットワークのアトラクタ検出と最適制御について

Author(s) Trinh, Van Giang

Citation

Issue Date 2021-12

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/17599

Rights

Description Supervisor:平石　邦彦, 先端科学技術研究科, 博士

On Attractor Detection and Optimal Control of
Boolean Networks

Trinh Van Giang

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

On Attractor Detection and Optimal Control of
Boolean Networks

Trinh Van Giang

Supervisor : Professor Kunihiko Hiraishi

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Information Science
December, 2021

Abstract

Boolean Networks (BNs) are simple but efficient mathematical formalism for model-
ing and analyzing complex biological systems, such as, gene regulatory networks, signal
transduction networks. Beyond systems biology, BNs have widely been applied to var-
ious other areas, such as, mathematics, neural networks, social modeling, robotics, and
computer science. Besides a plenty of applications, BNs are also interesting mathematical
objects that have recently attracted various work in theory. Attractor detection and opti-
mal control of BNs are two crucial but challenging issues of research on BNs. They have
also become hot topics in many research communities. However, the existing theories and
methods for these issues mainly focus on synchronous types of BNs and few ones focus
on asynchronous types of BNs. Moreover, the existing methods are inefficient when the
size of the network becomes large or the structure of the network becomes more complex.
Hence, we focus in this dissertation on developing theories as well as efficient methods for
attractor detection and optimal control of different types of BNs.

In theoretical aspects, we explore a number of new theoretical results that contribute
to understanding the dynamics of BNs. First, we discover several relations in dynamics
between different types of BNs. In addition, we also obtain several relations in dynamics
between BNs and other conventional models. In particular, we demonstrate that these
findings pave the potential ways to analyze different types of BNs as well as many other
conventional models. Second, we discover several relations between the dynamics of a BN
and its network structures. More specifically, we formally state and prove several relations
between the dynamics of a BN and a feedback vertex set of its interaction graph. Notably,
these relations do not depend on the updating scheme of the BN. Furthermore, we also
state and prove a theorem on relations between the dynamics of an asynchronous Boolean
network and a negative feedback vertex set of its interaction graph. Finally, we introduce
several complexity analysis on three meaningful optimal control problems of deterministic
asynchronous probabilistic Boolean networks.

In practical aspects, we develop several algorithms and methods for attractor detection
and optimal control of different typical types of BNs. These algorithms and methods are
mainly based on the new theoretical results obtained along with the reasonable use of
formal techniques. We implement software tools for all the proposed algorithms and
methods as well as conduct experiments to evaluate their performance. The experimental
results on various classes of networks show that our algorithms and methods outperform
the corresponding state-of-the-art ones and can handle large-scale networks. In particular,
our method for finding attractors of an asynchronous Boolean network can handle very
large networks with up to 1000 nodes in term of randomly generated networks and more
than 300 nodes in terms of real biological networks. Notably, the principle that we propose
in our algorithms and methods is general, thus enabling us to apply it to many types of
BNs as well as paving potential ways to improve these algorithms and methods.

Keywords: Boolean networks, gene regulatory networks, attractor detection, optimal
control, formal methods.

i

Acknowledgments

First and foremost, I owe my deepest gratitude to my dissertation supervisor, Prof.
Kunihiko Hiraishi, for his continual encouragement and kind guidance during my doctoral
research. Prof. Kunihiko Hiraishi has guided me from every aspect of research, and has
been very supportive by offering me the freedom to explore while making himself avail-
able for discussions whenever needed. This dissertation would not have been completed
without him being my supervisor.

I would like to express my sincere appreciation to collaboration efforts from Prof.
Tatsuya Akutsu. His great collaboration had helped me to obtain several important
results included in this dissertation.

I would like to thank my second supervisor, Prof. Kazuhiro Ogata, my minor research
supervisor, Prof. Ryuhei Uehara, and Assoc. Prof. Nao Hirokawa for their support in my
research and education life at the Japan Advanced Institute of Science and Technology
(JAIST).

I wish to express my deep acknowledgements to the committee members consisting of
Prof. Kunihiko Hiraishi, Prof. Tatsuya Akutsu, Assoc. Prof. Koichi Kobayashi, Prof.
Mineo Kaneko, and Assoc. Prof. Daisuke Ishii, who gave valuable comments to help me
improve the quality of this dissertation.

I would like to acknowledge the Japanese Government for supporting the scholarship
(MEXT) for financing the study. In addition, I would like to thank the Japan Advanced
Institute of Science and Technology (JAIST) for providing the financial support that
enables me to present my work at international conferences.

Last, but not least, I would like to dedicate this dissertation to my family for their
constant love, support, understanding, and encouragement.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Dissertation Structure . 4

2 Preliminaries 5
2.1 Boolean Networks . 5
2.2 Probabilistic Boolean Networks . 9
2.3 Attractors . 11
2.4 Interaction Graphs . 11
2.5 Petri Nets and their Unfoldings . 13

I Attractor Detection 15

3 Attractor Detection in Generalized Asynchronous Boolean Networks
(GABNs) 16
3.1 Introduction . 16
3.2 Dynamical Properties . 17
3.3 Relations in Dynamics between GABNs and Synchronous Boolean Networks 17
3.4 BDD-Based Algorithms . 18

3.4.1 Algorithm FR-BR-BDD-1 . 19
3.4.2 Algorithm FR-BR-BDD-2 . 20
3.4.3 Algorithm filtBDD . 21
3.4.4 Evaluation . 22

3.5 Near-Exact Algorithm Using SAT-Based Bounded Model Checking 24
3.5.1 Algorithm filtSAT . 24
3.5.2 Evaluation . 27

3.6 Relations in Dynamics between GABNs and Asynchronous Boolean Networks 32
3.6.1 Relations . 32
3.6.2 Application . 33
3.6.3 Evaluation . 35

3.7 Discussion . 37

iii

CONTENTS

4 Attractor Detection in Large-Scale Asynchronous Boolean Networks 40
4.1 Introduction . 40
4.2 Related Work . 41
4.3 Feedback Vertex Sets and Boolean Networks 42
4.4 FVS-Based Method . 45

4.4.1 General Approach . 45
4.4.2 Computing Feedback Vertex Sets 47
4.4.3 Computing Fixed Points . 47
4.4.4 Preprocessing . 50
4.4.5 Reachability Analysis . 52

4.5 Experiments . 54
4.5.1 Experimental Results on Real Biological Networks 54
4.5.2 Experimental Results on Randomly Generated Networks 56

4.6 Improvements . 58
4.6.1 Improvement in Reachability Analysis 59
4.6.2 Use of Negative Feedback Vertex Sets 60
4.6.3 Correctness . 64
4.6.4 Evaluation . 64

4.7 Discussion . 67

5 Attractor Detection in Deterministic Generalized Asynchronous Boolean
Networks (DGABNs) 69
5.1 Introduction . 69
5.2 Extended State Transition Graph . 71
5.3 Relations in Dynamics between DGABNs and Other Models 74

5.3.1 Relations to Deterministic Asynchronous Models 74
5.3.2 Relations to Block-Sequential Boolean Networks 75
5.3.3 Relations to Generalized Asynchronous Boolean Networks 77
5.3.4 Relations to Mixed-Context Boolean Networks 78

5.4 Computing Attractors . 80
5.4.1 SMT-Based Method . 80
5.4.2 Case Study . 82
5.4.3 Verifying the Previous Insights . 84

5.5 Experimental Results . 85
5.6 Discussion . 86

II Optimal Control 88

6 Optimal Control of Deterministic Generalized Asynchronous Boolean
Networks 89
6.1 Introduction . 89
6.2 Problem Formulation . 90
6.3 SMT-Based Method for the Time-Sensitive Mode 91
6.4 SMT-Based Method for the Non-Time-Sensitive Mode 92
6.5 Case Study . 94
6.6 Evaluation . 95
6.7 Discussion . 97

iv

CONTENTS

7 Optimal Control of Deterministic Asynchronous Probabilistic Boolean
Networks 98
7.1 Introduction . 98
7.2 Preparations . 99
7.3 Problem Formulation . 101
7.4 Complexity Analysis . 102

7.4.1 Complexity of Problem OptC-1 . 103
7.4.2 Complexity of Problem OptC-2 . 104
7.4.3 Complexity of Problem OptC-3 . 105
7.4.4 Remarks . 106

7.5 Proposed Solution Approaches . 107
7.5.1 Probabilistic Model Checking-Based Approach 107
7.5.2 Stochastic Satisfiability Modulo Theory-Based Approach 109
7.5.3 Polynomial Optimization Problem-Based Approach 111
7.5.4 Remarks . 112
7.5.5 Case Study . 113

7.6 Experiments . 114
7.6.1 Experimental Results on Problem OptC-1 115
7.6.2 Experimental Results on Problem OptC-3 116
7.6.3 Summary of the Experimental Results 119

7.7 Discussion . 119

8 Conclusions and Future Work 121
8.1 Conclusions . 121
8.2 Future Work . 123

Publications and Awards 141

v

List of Abbreviations and Math
Notations

BN(s) Boolean Network(s)

PBN(s) Probabilistic Boolean Network(s)

SBN(s) Synchronous Boolean Network(s)

ABN(s) Asynchronous Boolean Network(s)

GABN(s) Generalized Asynchronous Boolean Network(s)

DGABN(s) Deterministic Generalized Asynchronous Boolean Network(s)

SPBN(s) Synchronous Probabilistic Boolean Network(s)

DA-PBN(s) Deterministic Asynchronous Probabilistic Boolean Network(s)

GRN(s) Gene Regulatory Network(s)

SAT Satisfiability

BDD(s) Binary Decision Diagram(s)

SMT Satisfiability Modulo Theory

STG(s) State Transition Graph(s)

SCC(s) Strongly Connected Component(s)

TS Transition System

FVS(s) Feedback Vertex Set(s)

PFVS(s) Positive Feedback Vertex Set(s)

NFVS(s) Negative Feedback Vertex Set(s)

PN(s) Petri Net(s)

BMC Bounded Model Checking

QBF Quantified Boolean Formula

OOM OutOfMemory

vi

CONTENTS

AAN(s) Asynchronous Automata Network(s)

ROABN(s) Random Order Asynchronous Boolean Network(s)

ESTG(s) Extended State Transition Graph(s)

DA Deterministic Asynchronous

DABN(s) Deterministic Asynchronous Boolean Network(s)

BSBN(s) Block-Sequential Boolean Network(s)

MxBN(s) Mixed-Context Boolean Network(s)

STP Semi-Tensor Product

PMC Probabilistic Model Checking

SSMT Stochastic Satisfiability Modulo Theory

POP Polynomial Optimization Problem

MDP(s) Markov Decision Process(es)

ILP Integer Linear Programming

PCTL Probabilistic Computation Tree Logic

SSAT Stochastic Satisfiability

CNF Conjunctive Normal Form

N The set of natural numbers

R The set of real numbers

N+ The set of positive natural numbers

N+
≤k The set of natural numbers from 1 to k

B The set of Boolean values

|S| The cardinality of a set S

A> The transpose of a matrix A

Nm×n The set of m× n natural number matrices

Rm×n The set of m× n real matrices

dxe The smallest integer number that is not smaller than x

P (·) The probability of an event

E[·] The expectation of an event

vii

List of Figures

2.1 STGs of (a) the SBN counterpart, (b) the GABN counterpart, and (c) the
ABN counterpart of the BN shown in Example 2.1.1. 7

2.2 STG of the SPBN shown in Example 2.2.1. States are shown by rounded
rectangles, whereas probability transitions are shown by arcs along with
real numbers. For clarification, only arcs from states 000, 010, 100, and
110 are shown here. 10

2.3 Interaction graph of the example BN. 13
2.4 (a) A 1-safe PN and (b) its reachability graph with the initial marking

{p1}. In (b), the text above each arrow denotes the fired transition. 14

3.1 A counter example for the claim that dS ≥ dG. (a) and (b) show parts of
the STGs of the SBN S and the GABN G, respectively. Herein, dS = 1
(the longest shortest path is, for example, s2 → s0), whereas dG = 3 (the
longest shortest path is, for example, s0 → s1 → s2 → s3). 25

3.2 STGs of (a) the GABN counterpart and (b) the ABN counterpart of the
BN shown in Example 3.6.1. 33

4.1 (a) Interaction graph of the BN shown in Example 4.3.1. (b) STG of the
ABN counterpart of the BN shown in Example 4.3.1. 43

4.2 Reduced STGs of the ABN counterpart of the BN shown in Example 4.3.1
corresponding to (a) U = {x1, x2}, b1 = 0, b2 = 0 and (b) U = {x1, x2}, b1 =
0, b2 = 1. 44

4.3 An example ABN with its interaction graph (a) and its STG (b). 50
4.4 Experimental results of M2, genYsis, and CABEAN on randomly gen-

erated networks. 58
4.5 (a) STG and (b) interaction graph of the ABN given in Example 4.6.1. . . 62
4.6 Reduced STGs of the ABN given in Example 4.6.1 with respect to (a) U−min

and B− and (b) U+
min and B+, respectively. 63

5.1 Dynamics of the DGABN shown in Example 5.2.1. 72
5.2 (a) ESTG of the DGABN shown in Example 5.2.1. (b) ESTG of the

DGABN shown in Example 5.2.2. 74
5.3 (a) STG of the BSBN shown in Example 5.3.1 and (b) ESTG of the encoded

DGABN of this BSBN. 75
5.4 STG of the GABN shown in Example 5.3.2. 77
5.5 ESTG of the MxBN shown in Example 5.3.3. 79
5.6 Average number of attractors varying the number of nodes. 85

viii

LIST OF FIGURES

5.7 Average percentage (log scale) of attractor states varying the number of
nodes. 85

7.1 Dynamics of the DA-PBN shown in Example 7.2.1. Extended states are
shown by rounded rectangles, whereas probability transitions are shown by
arcs along with real numbers. The initial extended state is shown by the
dashed rounded rectangle. 101

7.2 Experimental results on Problem OptC-1. The x-axis denotes the target
time M , whereas the y-axis denotes the running time (in seconds) with a
logarithmic scale of base 10. 115

7.3 Experimental results on Problem OptC-3 with n = 30. 117
7.4 Experimental results on Problem OptC-3 with n = 50. 118

8.1 Blueprint for attractor detection in various types of BNs. 123

ix

List of Tables

3.1 Experimental results of FR-BR-BDD-1, FR-BR-BDD-2, and filtBDD
on real biological networks. 23

3.2 Experimental results of FR-BR-BDD-1, FR-BR-BDD-2, and filtBDD
on artificial networks. 24

3.3 Experimental results of filtBDD and filtSAT on real biological networks. 29
3.4 Experimental results of filtBDD and filtSAT on N -K networks. 30
3.5 Experimental results of filtBDD and filtSAT on scale-free networks. . . . 31
3.6 Experimental results of ApproABN, genYsis, and CABEAN on real

biological networks. ”-” stands for the case of timeout. 39

4.1 Experimental results of M1, M2, genYsis, and CABEAN on real bio-
logical networks. 57

4.2 Numbers of failures of FVS-ABN* and FVS-ABN on N -K networks. . 65
4.3 Numbers of failures of FVS-ABN* and FVS-ABN on canalyzing and

scale-free networks. 66
4.4 Experimental results of FVS-ABN* and iFVS-ABN on real biological

networks. 66

5.1 BN model of the cell cycle network. 83
5.2 Details of DGABN attractors of the cell cycle network. 84
5.3 Experimental results of DA-SMT-Att on randomly generated networks. . 86

6.1 Result of the optimal control problem shown in Example 6.2.1 with M = 4
under the time-sensitive mode. 93

6.2 BN model of the apoptosis network. 94
6.3 Results on optimal control of the apoptosis network. 95
6.4 An artificial example for optimal control of DGABNs. 96
6.5 Results of DA-SMT-Con-TS on the artificial example. 96

7.1 Reachability probability and expected cost with all possible control sequences.102
7.2 DA-PBN models of the WNT5A network. 113

x

Chapter 1

Introduction

1.1 Motivation

Boolean Networks (BNs) are simple but efficient mathematical formalism for modeling and
analyzing complex biological systems (e.g., gene regulatory networks, signal transduction
networks) [1, 2, 3]. A BN includes n nodes; each node can receive either 0 or 1, and
can be associated with one Boolean function. Probabilistic Boolean Networks (PBNs)
are a stochastic extension of BNs where each node can be associated with one or more
Boolean functions, and each Boolean function has a probability for selection [4]. Beyond
systems biology, BNs and PBNs have widely been applied to various other areas, such as,
mathematics, neural networks, social modeling, robotics, and computer science (see, e.g.,
[5, 6, 7]). Besides a plenty of applications, BNs or PBNs are also interesting mathematical
objects that have recently attracted various work in theory [6].

The updating scheme of a BN specifies the way that the nodes of this BN update
their states through time evolution [5]. There are two major classes of updating schemes:
synchronous [8] (all the nodes are updated simultaneously at each time step) and asyn-
chronous [9] (not all the nodes are updated simultaneously at each time step). The asyn-
chronous updating class is divided into several sub-classes. Three popular ones among
them are fully asynchronous [9, 10], generalized asynchronous [11, 12], and determinis-
tic asynchronous [9, 13]. According to these classes of updating schemes, we have four
typical types of BNs: Synchronous Boolean Networks (SBNs) [8], Asynchronous Boolean
Networks (ABNs) [10], Generalized Asynchronous Boolean Networks (GABNs) [14], and
Deterministic Generalized Asynchronous Boolean Networks (DGABNs) [13], respectively.
Similar to BNs, different updating classes can also be employed for PBNs. A Synchronous
Probabilistic Boolean Network (SPBN) [4] that employs the synchronous updating class
is the most popular PBN variant. When the information about the time scales of com-
ponents is available, a Deterministic Asynchronous Probabilistic Boolean Network (DA-
PBN) [15, 16] is considered more useful. These typical types of BNs and PBNs have been
widely studied as well as found various applications [6, 17, 18, 19, 20].

Attractor detection and optimal control of BNs are difficult and interesting in the-
ory but also have a plenty of applications in many areas [21]. First, in the landscape of
dynamics of a dynamical system, we can distinguish between the transient and long-run
dynamics. In BNs or other qualitative models, the long-run dynamics is referred to as
attractors. An attractor of a BN is a set of states such that the BN cannot escape from
this set once entered it. In the biological context, attractors of a BN are linked to pheno-

1

1.1. MOTIVATION

types [22] or functional cellular states (e.g., proliferation, apoptosis, or differentiation) [23].
Thus, analysis of attractors could provide new insights into systems biology [24] (e.g., the
origins of cancers [25, 26, 27], SARS-CoV-2 [28, 29, 30], HIV [31]). Furthermore, attrac-
tors also play an important role in the development of new drugs [32, 33, 34]. Therefore,
attractor detection is of great importance in analyzing biological systems modeled as BNs.
In addition, attractors of BNs were also used to study various other systems, such as, mul-
tivariate systems [35], complex systems [36]. Second, optimal control of BNs is defined as
the design of intervention strategies (control policies) to beneficially alter the dynamics
of the considered system [16, 21]. For example, in the BN model of a Gene Regulatory
Network (GRN), it is possible to control one or more genes such that the BN moves out of
undesirable states (e.g., disease or cancerous states) and moves into desirable ones (e.g.,
healthy or normal states). Since BNs are logical dynamical and highly non-linear systems,
control of BNs has become a hot topic in the control community [21, 37]. It has been
found in various applications in many areas, such as, systems biology [38, 39, 40, 41], fault
detection of logic circuits [42], industry [20]. Note that attractor detection also gives a
starting point for many control approaches for biological systems [39, 40].

For attractor detection, many methods and tools [43, 44, 45, 46, 47, 48, 49, 50] have
been proposed in the efforts to efficiently solve this problem. However, they are mainly
designed for SBNs, the simplest type of BNs. Few methods and tools [43, 45, 49] have been
proposed for ABNs, the more complex type of BNs but considered more suitable than
SBNs in modeling biological systems [9, 51]. Whereas the SAT-based methods [44, 48] for
attractor detection in SBNs are efficient and can handle very large networks, the presence
of complex attractors in an ABN makes these SAT-based methods hard to extend to
those for ABNs [49]. Moreover, the previous methods for attractor detection in ABNs,
such as, the BDD-based methods [43], the decomposition-based methods [49], are unable
to robustly handle large networks (e.g., networks with more than 100 nodes). Several
efficient approximation methods [52, 53, 54] have also been proposed; however, their
results may be of course not exact. In addition, there are the lacks of practical methods
for other more complex types of BNs such as GABNs and DGABNs.

For optimal control, many methods and tools have been proposed in recent years.
However, they are mainly designed for SBNs [55, 56], ABNs [57, 58, 59, 60, 61, 62, 63],
or especially SPBNs [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74]. There are the lacks of
practical methods for more complex types of BNs and PBNs such as DGABNs and DA-
PBNs, respectively. Note that DGABNs offer an interesting compromise between SBNs
and ABNs, which could provide a suitable modeling formalism of various types of systems
especially when the information about the time scales is known [75]; whereas, DA-PBNs
are a generalization of both DGABNs and SPBNs [15]. Very few methods [76, 77] have
also been proposed for optimal control of DGABNs or DA-PBNs; however, they are
impractical due to they require to compute transition probability matrices of exponential
size with respect to the number of nodes. Moreover, although some of the proposed
methods for optimal control of SPBNs can avoid computing transition probability matrices
of exponential size [68, 69, 72], they are still needed to improve due to their applicable
ranges are still limited to medium problem instances [21].

Motivated by the aforementioned facts, in this dissertation, we aim to develop theories
as well as efficient methods for attractor detection and optimal control of different types
of BNs. A natural question is that why we need to consider different types of BNs? First,
each type of BNs has its part in real life and can be suitable for modeling a specific type

2

1.2. CONTRIBUTIONS

of systems; the choice among them in a specific circumstance depends on the available
data and application [77]. Second, relations in dynamics between different types of BNs
can be exploited to efficiently analyze BNs. For example, attractors of an SBN can be
used to efficiently find attractors of its ABN counterpart [43]. Finally, this consideration
may provide new theoretical insights to the theory of BNs [78].

1.2 Contributions

We consider in this dissertation the attractor detection and optimal control issues of
Boolean networks. We give a brief overview of the key contributions of this dissertation
as follows.

In theory, we obtain a number of new theoretical results that contribute to the under-
standing of the dynamics of BNs. First, we discover several relations in dynamics between
different types of BNs. More specifically, we formally state and prove several relations
between the dynamics of a GABN and that of its SBN (or ABN) counterpart (Chap-
ter 3). In addition, we also obtain several relations in dynamics between DGABNs and
other conventional models including deterministic asynchronous models [9, 79, 80], block-
sequential Boolean networks [81, 82], generalized asynchronous Boolean networks [14],
and mixed-context Boolean networks [13] (Chapter 5). In particular, we demonstrate
that these findings pave the potential ways to analyze different types of BNs as well as
many other popular models. Second, we discover several relations between the dynamics
of a BN and its network structures. More specifically, we formally state and prove several
lemmas and theorems on relations between the dynamics of a BN and a feedback vertex
set of its interaction graph (Chapter 4). Furthermore, we also state and prove a theorem
on relations between the dynamics of an ABN and a negative feedback vertex set of its
interaction graph. Finally, we discover the computational complexity of three meaningful
optimal control problems of DA-PBNs (Chapter 7).

In practice, we develop several algorithms and methods for attractor detection and
optimal control of different typical types of BNs. These algorithms and methods are
mainly based on the new theoretical results mentioned in the previous paragraph along
with the reasonable use of formal techniques (e.g., binary decision diagrams, satisfiability,
satisfiability modulo theory, bounded model checking, Petri nets). First, we propose three
BDD-based algorithms and one SAT-based algorithm for finding attractors of a GABN
(Chapter 3). These algorithms are the first analytical and practical methods for analyzing
GABNs. In particular, the experimental results on various classes of networks show
that the SAT-based algorithm can handle large GABNs. As an application of the SAT-
based algorithm, we propose an efficient method for approximating attractors of an ABN.
Second, we propose a method that efficiently and exactly computes all the attractors of
an ABN (Chapter 4). This method is then enhanced with two substantial improvements.
The proposed method outperforms the state-of-the-art methods and now can handle very
large networks with up to 1000 nodes in terms of randomly generated networks and more
than 300 nodes in terms of real biological networks. In particular, the principle of this
method can be applied to many other types of BNs and can pave potential ways to
improve itself. Third, we propose one SMT-based method and two SMT-based methods
for attractor detection and optimal control of DGABNs (Chapters 5 and 6), respectively.
Note that there is no previous method specifically designed for DGABNs. Although

3

1.3. DISSERTATION STRUCTURE

the proposed methods for DGABNs are extensions of the previous SAT-based methods
for SBNs, we demonstrate that they contain substantial differences from the previous
ones. Furthermore, the experimental results on randomly generated networks and artificial
networks justify their efficiency. Fourth, we propose three approaches for solving the three
optimal control problems of DA-PBNs (Chapter 7). One of these approaches is completely
new, whereas two of these approaches are (non-trivial) extensions of the previous ones
for SPBNs. These proposed approaches can handle large problem instances in terms of
optimal control of DA-PBNs. Finally, we have developed software tools implementing all
the proposed algorithms, methods, and approaches.

1.3 Dissertation Structure

The main content of this dissertation is composed of two parts, Part I and Part II. Part I
focuses on attractor detection in BNs, and discusses computational methods for attractor
detection in GABNs (Chapter 3), ABNs (Chapter 4), and DGABNs (Chapter 5). Part II
focuses on optimal control of BNs, and discusses several methods for optimal control of
DGABNs (Chapter 6) and DA-PBNs (Chapter 7).

In Chapter 2, we first provide preliminaries on BNs and their variants, attractors,
interaction graphs, and Petri nets.

In Chapter 3, we introduce several relations in dynamics between GABNs and other
types of BNs including SBNs and ABNs. Based on these relations, we propose three
BDD-based algorithms for exactly computing attractors of a GABN. We then propose
a near-exact algorithm for finding attractors of a GABN based on SAT-based bounded
model checking. As an application of this algorithm, we propose an efficient method for
approximating attractors of an ABN. This chapter is written using the content of three
publications: two conference papers [83, 84] and one journal paper [85].

In Chapter 4, we introduce several relations between the dynamics of a BN and a
feedback vertex set of its interaction graph. We then present the proposed method for
exactly and efficiently finding attractors of an ABN as well as present its improved version.
This chapter is written using the content of two publications: one journal paper [86] and
one conference paper [87].

In Chapter 5, we introduce the concept of an extended state, leading to establishing
the concept of an extended state transition graph to capture precisely the whole dynamics
of a DGABN. We then present theoretical results on several relations in dynamics between
DGABNs and other popular models as well as an SMT-based method for finding attractors
of a DGABN. In Chapter 6, based on the concept of an extended state transition graph,
we propose two SMT-based methods for optimal control of DGABNs under two control
modes, the time-sensitive mode and the non-time-sensitive mode, respectively. Chapters 5
and 6 are written using the content of one journal paper [88].

Chapter 7 focuses on DA-PBNs, a probabilistic extension of DGABNs. We formulate
three optimal control problems of DA-PBNs based on several typical aims of control. For
each problem, we state and prove its hardness as well as show that it is in PSPACE.
We then propose three solution approaches for solving these problems. This chapter is
written using the content of one journal paper [89], which is being in preparation.

Finally, Chapter 8 summarizes the results on attractor detection and optimal control
of different types of BNs and points out future research directions.

4

Chapter 2

Preliminaries

Let N and R denote the set of natural and real numbers, respectively. Denote by N+

the set N\{0} and by N+
≤k the set {i ∈ N+ : i ≤ k}. B := {T ≡ 1, F ≡ 0} denotes the

Boolean domain. Rm×n denotes the set of m× n real matrices. Denote by P (·) and E[·]
the probability and the expectation of an event, respectively.

2.1 Boolean Networks

A Boolean Network (BN) is is a simple but efficient model that has been applied to various
areas. The concept of BNs was first introduced in 1969 by Stuart Kauffman for modeling
and analyzing dynamical behavior of gene regulatory networks [1]. In this section, we
shall show the formal definition, dynamics, and multiple variants of Boolean networks.

Definition and Dynamics

Definition 2.1.1. A Boolean Network (BN) is defined as a 2-tuple (V, F), where V =
{x1, ..., xn} (n ≥ 1) is the set of nodes and F = {f1, ..., fn} is the set of Boolean functions.
Each node xi is identified as a Boolean variable, and is associated with a Boolean function
fi : B|IN (fi)| → B, where IN (fi) is the set of input nodes of fi. xi(t) ∈ B and x(t) =
(x1(t), ..., xn(t))> denote the state of node xi and the state of the BN at time t, respectively.

Definition 2.1.1 gives the formal definition of a BN. At each time step, node xi can
update its state by

xi(t+ 1) = fi(x(t)).

For simplicity, we use the notation fi(x(t)) even if IN (fi) ⊂ V . An updating scheme
of a BN specifies the way that the nodes of the BN update their states through time
evolution [5]. Following the updating scheme, the BN transits from a state to another state
(possibly identical). This transition is called the state transition. Then, the dynamics of
a BN can be represented by all possible states of the BN along with all possible state
transitions from each state.

We note that, in general, a Boolean function can be formed by any combinations
of any logical operators (e.g., CONJUNCTION ∧, DISJUNCTION ∨, NEGATION ¬,
and BI-IMPLICATION ↔) on variables associated with its input nodes. Many types
of BNs with special types of Boolean functions have been studied, such as, canalyzing

5

2.1. BOOLEAN NETWORKS

functions and nested canalyzing functions [90, 91], AND-OR functions [92, 93], conjunctive
functions [94]. However, we here focus on general BNs where there is no restriction on
Boolean functions.

Classification

There is an infinite number of possible updating schemes for Boolean networks [95]. How-
ever, we only consider typical updating classes that have been widely used in systems
biology and many other research fields. We use the BN shown in Example 2.1.1 as a
straight illustrative BN.

Example 2.1.1. Consider a BN N of three nodes associated to three variables (x1, x2,
x3). Its Boolean functions are given by

f1 = x1 ∨ (¬x1 ∧ ((¬x2 ∧ x3) ∨ (x2 ∧ ¬x3))),

f2 = (¬x1 ∧ ¬x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ ¬x2),

f3 = ¬x1 ∨ (x1 ∧ (¬x2 ∨ (x2 ∧ ¬x3))).

There are two major classes of updating schemes: synchronous [8] (all the nodes are
updated simultaneously at each time step) and asynchronous [9] (not all the nodes are
updated simultaneously at each time step). In the biological context, the asynchronous
updating class, in which all genes take different time to change their expression levels,
is closer to biological phenomena [10, 43, 96]. For example, very recent work [97] has
explicitly backed up the necessity of asynchronous models for modeling GRNs over a
realistic proof-of-concept case study. The asynchronous updating class is then divided
into several sub-classes. Three popular ones among them are fully asynchronous [9, 10],
generalized asynchronous [11, 12], and deterministic asynchronous [9, 13]. According
to these updating classes, there are four typical types of BNs: Synchronous Boolean
Networks (SBNs) [8], Asynchronous Boolean Networks (ABNs) [10], Generalized Asyn-
chronous Boolean Networks (GABNs) [14], and Deterministic Generalized Asynchronous
Boolean Networks (DGABNs) [13], respectively. Hereafter, we shall introduce each type
in detail.

An SBN is the simplest BN model. At each time step, all its nodes will update their
values simultaneously. Since the state transitions from a state of the SBN are time-
invariant, the whole dynamics of an SBN can be captured by a State Transition Graph
(STG). An STG is a directed graph in which each node corresponds to a state of the BN
and each arc corresponds to a state transition between two states (possibly identical). One
important property of the STG of an SBN is that each node has exactly one outgoing arc.
Hence, the STG of an SBN of size n has 2n nodes and 2n arcs. For example, Figure 2.1a
shows the STG of the SBN counterpart of the BN shown in Example 2.1.1. Herein, the
SBN counterpart (also the ABN or GABN counterpart) can be seen as a more concrete
object of the BN, where they share the same the structure information (the sets of nodes
and Boolean functions) but the SBN is specified with an updating scheme. In addition,
the STG of an SBN S can be seen as a Transition System (TS) with the transition formula

T S(x(t), x(t+ 1)) :=
n∧

i=1

{xi(t+ 1)↔ fi(x(t))} .

6

2.1. BOOLEAN NETWORKS

000

001

010

011

100 110

101 111

(a)

000

001

010

011

100 110

101 111

(b)

000

001

010

011

100 110

101 111

(c)

Figure 2.1: STGs of (a) the SBN counterpart, (b) the GABN counterpart, and (c) the
ABN counterpart of the BN shown in Example 2.1.1.

An ABN can be seen as the most popular BN model. The updating scheme of an
ABN is fully asynchronous. That is, at each time step, a single node is randomly and
uniformly selected in order to be updated. By this updating scheme, a state of the ABN
has n outgoing state transitions, making the dynamics of an ABN non-deterministic. Like
SBNs, the whole dynamics of an ABN can be also captured by an STG. The STG of an
ABN of size n has 2n nodes and n × 2n arcs. This property makes the analysis of an
ABN more difficult. One more important property of the STG of an ABN is that two
consecutive nodes (states) differ in at most one binary value. For example, Figure 2.1b
shows the STG of the ABN counterpart of the BN shown in Example 2.1.1. The transition
formula of an ABN A is

T A(x(t), x(t+ 1)) :=
n∨

i=1

{
[xi(t+ 1)↔ fi(x(t))] ∧

∧
j 6=i

[xj(t+ 1)↔ xj(t)]

}
.

GABNs can be seen as a generalization of ABNs. At each time step, a GABN randomly
selects any number of nodes to update synchronously. This means that the GABN can
update synchronously no node, only one node, some nodes, or all the nodes. The whole
dynamics of a GABN can be also captured by an STG. The STG of a GABN of size n has
2n nodes and 2n × 2n arcs, making its analysis more difficult. For example, Figure 2.1c
shows the STG of the GABN counterpart of the BN shown in Example 2.1.1. The
transition formula of a GABN G is

T G(x(t), x(t+ 1)) :=
n∧

i=1

{[xi(t+ 1)↔ fi(x(t))] ∨ [xi(t+ 1)↔ xi(t)]} .

Besides the sets of nodes and Boolean functions, more information (called context) is
added to a DGABN [13]. Then the evolution of the DGABN is specified by its context,
and is time-dependent. Hence, the dynamics of the DGABN is not directly captured by
an STG like SBNs, ABNs, or GABNs. Since there is no previous formal description for
the dynamics of a DGABN, we shall provide detailed discussions in Section 5.2.

7

2.1. BOOLEAN NETWORKS

Useful Definitions and Notations

For convenience, we shall give several useful definitions and notations used in the rest of
this dissertation. Note that some of these definitions are adjusted from [98].

Definition 2.1.2. The successor of a state s of a BN N is the set of all states s′ such
that s has one state transition to s′.

Definition 2.1.3. The predecessor of a state s of a BN N is the set of all states s′ such
that s′ has one state transition to s.

Definition 2.1.4. The forward (resp. backward) image of a set S of states of a BN
N , denoted by FIN (S) (resp. BIN (S)), is the union of immediate successors (resp.
predecessor) of the states in S.

Definition 2.1.5. The forward (resp. backward) reachable set of a set S of states of a
BN N , denoted by FRN (S) (resp. BRN (S)), is the set of all the states that can be reached
from (resp. can reach) at least one state in S. Specifically,

FRN (S) = S ∪ FIN (S) ∪ FIN (FIN (S)) . . . ,

and

BRN (S) = S ∪ BIN (S) ∪ BIN (BIN (S)) . . .

Definition 2.1.6. The restricted backward image (resp. reachable set) of a set S of states
of a BN N under a set S ′ of states, denoted by BINres(S, S

′) (resp. BRNres(S, S
′)), is defined

as

BINres(S, S
′) := BIN (S, S ′) ∩ S ′

(resp.

BRNres(S, S
′) := BRN (S, S ′) ∩ S ′

).

Let us discuss how to compute these image and reachable sets of a BN. For the
case that a state transition of the BN can be expressed as a propositional formula (e.g.,
SBNs, ABNs, GABNs), we can easily use BDDs to compute these sets. Specifically, the
forward image, backward image, forward reachable set, and backward reachable set of a
set of states S can be computed by using the procedures proposed in [98]. The restricted
backward image and restricted backward reachable set of S under S ′ can also be computed
with a little adjustment. The restricted backward image is computed by replacing the
whole transition system of the BN by a partial transition system of S ′ of the BN (i.e., this
partial transition system only contains state transitions starting from S ′). See Section 2.2
of [98] for more details. The restricted backward reachable set is calculated by replacing
forward images and backward images in Algorithm 1 of [98] by restricted forward images
and restricted backward images, respectively. For the case that a state transition of the
BN cannot be expressed as a propositional formula, it is difficult to directly use BDDs.

8

2.2. PROBABILISTIC BOOLEAN NETWORKS

Besides the explicit method (i.e., explicitly computing the successor or the predecessor of
a state), further methods may be required in this case.

Finally, we present more notations as follows. G(N) denotes the STG of a BN N .
FINxi

(S) denotes the forward image set of the set S by updating node xi, i.e., the set of
successors of the states in S by updating only node xi. T N denotes the transition formula
of a BN N .

2.2 Probabilistic Boolean Networks

Various stochastic extensions of BNs have been proposed. Among them, a Probabilistic
Boolean Networks (PBN) is the most extensively studied model [4]. In this section, we
shall show the formal definition, dynamics, and multiple variants of Probabilistic Boolean
networks.

Definition and Dynamics

Definition 2.2.1. A Probabilistic Boolean Network (PBN) is defined as a triple (V, F, C),
where V = {x1, ..., xn} (n ≥ 1) is the set of nodes, F = {F1, ..., Fn}, and C = {C1, ..., Cn}.
Each node xi is identified as a Boolean variable, and is associated with a non-empty set of
Boolean functions, Fi = {f (i)

1 , ..., f
(i)
li
}, li ≥ 1. Each Boolean function f

(i)
j has a probability

of selection associated with it, c
(i)
j . Thus, Ci =

{
c

(i)
1 , ..., c

(i)
li

}
such that

∑li
j=1 c

(i)
j = 1. The

state of a node or a PBN at time t is defined as same as that of a BN.

Definition 2.2.1 gives the formal definition of a PBN. At each time step, node xi
updates its state by

xi(t+ 1) = f
(i)
j (x(t)),

where f
(i)
j is a Boolean function selected from Fi with the probability c

(i)
j . Similar to BNs,

an updating scheme of a PBN specifies the way that the internal nodes of the PBN update
their states through time evolution. Following the updating scheme, the PBN transits
from a state to another state (possibly identical) with a probability. This transition is
called the probability transition. Then, the dynamics of a PBN can be represented by all
possible states of the PBN along with all possible probability transitions from each state.

Classification

There are two typical types of PBNs. The first one is Synchronous Probabilistic Boolean
Networks (SPBNs) [4], where all the nodes are updated simultaneously. The second
one is Deterministic Asynchronous Probabilistic Boolean Networks (DA-PBNs) [15, 16].
Roughly speaking, SPBNs and DA-PBNs are probabilistic extensions of SBNs and DGABNs,
respectively. Like DGABNs, the dynamics of a DA-PBN is not well-described. Hence,
we shall provide more detailed discussions in Section 7.2. Hereafter, we shall introduce
SPBNs in detail.

Like SBNs, the nodes of an SPBN update their values synchronously at each time step.
Then, the whole dynamics of an SPBN can be captured an STG in which a transition

9

2.2. PROBABILISTIC BOOLEAN NETWORKS

probability is attached to an arc. The probability of transiting from state a to state b is

P (x(t+ 1) = b|x(t) = a) :=
∑

j1∈N+
≤l1

,...,jn∈N+
≤ln

{
n∏

i=1

[
c

(i)
ji
× P (bi ↔ f

(i)
ji

(a))
]}

.

See Example 2.2.1 for an SPBN and its STG. One important property of the STG of
an SPBN is that the sum of the probabilities of all probability transitions from a state
is equal to 1. Hence, the dynamics of an SPBN can be understood in the context of a
standard Markov chain. Consequently, the techniques developed in the field of Markov
chains can be applied to SPBNs.

Example 2.2.1. Consider an SPBN SP [21]

f (1) =

{
f

(1)
1 = x3, c

(1)
1 = 0.8,

f
(1)
2 = ¬x3, c

(1)
2 = 0.2,

f (2) = f
(2)
1 = x1 ∧ ¬x3, c

(2)
1 = 1.0,

f (3) =

{
f

(3)
1 = x1 ∧ ¬x2, c

(3)
1 = 0.7,

f
(3)
2 = x2, c

(3)
2 = 0.3.

Then, Figure 2.2 shows the STG of SP.

0 0 1

0 0 0 1 1 1

1 1 0

0 1 0

0 1 1 1 0 0

1 0 1

0.8

0.2

0.24 0.56

0.06

0.14

0.56

0.24
0.06

0.14

0.06

0.14

0.56

0.24

Figure 2.2: STG of the SPBN shown in Example 2.2.1. States are shown by rounded
rectangles, whereas probability transitions are shown by arcs along with real numbers.
For clarification, only arcs from states 000, 010, 100, and 110 are shown here.

10

2.3. ATTRACTORS

2.3 Attractors

Attractors are key dynamical behavior of a BN. Definition 2.3.1 gives the formal definition
of an attractor of a BN. This definition is general. Then, we can classify two main types
of attractors: singleton and cyclic attractors. A singleton attractor (or a fixed point) has
only one state. A cyclic attractor has at least two states, and is formed by overlapping
one or more cycles of states. In general, an attractor of a BN is equivalent to a bottom
(terminal) Strongly Connected Component (SCC) of the STG of this BN [43]. Since the
STG of a BN has 2n nodes and at least 2n arcs, naive approaches for finding attractors
(e.g, explicitly building the STG and then applying graph algorithms) are intractable
when n is large.

Definition 2.3.1 ([49]). An attractor of a BN is a set of states satisfying any state in
this set can reach any state (including this state) in this set and cannot reach any state
that is not in this set.

Based on [43], we can differentiate attractors of different types of BNs. Besides single-
ton attractors, we classify cyclic attractors into simple attractors and complex attractors.
First, a simple attractor is a cycle of at least two states such that each state has exactly
one successor state (excluding itself) and may have a self transition. Simple attractors
can again divided into two sub-classes: (1) type1 attractors where any two consecutive
states differ in at most one single node value (or one bit in binary representation) and (2)
type2 attractors where at least two consecutive states differ in more than one node value.
Second, a complex attractor is formed by overlapping multiple simple attractors.

Since an SBN can have only one transition from any state, it can have three types of
attractors: singleton attractors, type1 attractors, and type2 attractors. Since two consec-
utive states of an ABN differ in at most one node value, an ABN can have three types
of attractors: singleton attractors, type1 attractors, and complex attractors. Similarly, a
GABN can have three types of attractors: singleton attractor, type1 attractors, complex
attractors. Note that, since GABNs allow any number of node values change between any
consecutive states, they cannot have type2 attractors. If a GABN contains a type2 at-
tractor, then it contains a state that has more than one successor state (excluding itself).
This is contrary to the definition of a simple attractor.

Reconsider the BN shown in Example 2.1.1. Figures 2.1a, 2.1b, and 2.1c show the
STGs of its SBN, GABN, and ABN counterparts, respectively. As we can see, all these
counterparts have the same singleton attractor {011}. The SBN has a type2 attractor
{101, 111, 110}. The GABN and the ABN have the same complex attractor {110, 100,
101, 111}. However, the oscillation inside this complex attractor is different between the
GABN and the ABN.

2.4 Interaction Graphs

The interaction graph of a BN depicts the qualitative interactions between nodes and is
usually represented as a signed directed graph on the set of nodes (see Definition 2.4.1).
An arc from xj to xi indicates that the evolution of node xi depends on the evolution of
node xj. An interaction between two nodes can be positive or negative. We first introduce
some notations as follows. IG(N) denotes the interaction graph of a BN N . xi denotes
the state y such that yi = 1− xi and yj = xj for j 6= i. Then, the formal definition of an

11

2.4. INTERACTION GRAPHS

interaction graph is given in Definition 2.4.2. Note that the interaction graph can have
both a positive arc and a negative arc from one vertex to another one. Furthermore, the
computation of the interaction graph of a BN is often fast [78].

Definition 2.4.1 ([78]). A signed directed graph on V is a graph G whose set of vertices
is V and whose set of arcs is a subset of V × {+,−} × V . If (xj, s, xi) is an arc of G,
we say that G has an arc from xj to xi of sign s. s = + indicates a positive arc, whereas
s = − indicates a negative arc. A positive (resp. negative) cycle of G is an elementary
directed cycle that contains an even (resp. odd) number of negative arcs. The length of a
cycle is the number of arcs it involves.

Definition 2.4.2 ([78]). Let N = {V, F} be a BN, where V = {x1, .., xn} and F =
{f1, ..., fn}. The interaction graph of N is the signed directed graph on V defined by: for
all xi, xj ∈ V , there exists a positive (resp. negative) arc from xj to xi if and only if there
exists a state x ∈ Bn with xj = 0 such that fi(x) < fi(x

j) (resp. fi(x) > fi(x
j)).

Let G be a signed directed graph. A Feedback Vertex Set (FVS) of G is a set of vertices
U that intersects every cycle of G. In other words, G becomes acyclic after removing the
vertices in U from G. A Positive Feedback Vertex Set (PFVS) of G is a set of vertices U+

that intersects every positive cycle of G. A Negative Feedback Vertex Set (NFVS) of G is
a set of vertices U− that intersects every negative cycle of G. Equivalently, G−U+ (resp.
G − U−) has no positive (resp. negative) cycle. By the preceding definitions, an FVS is
also a PFVS or an NFVS. The problem of finding a minimum PFVS (resp. NFVS) has
been proved NP-complete [99]. The problem of finding a minimum FVS has also been
proved NP-complete [100].

Let us consider a BN N = {V, F}, where V = {x1, x2, x3} and F = {f1, f2, f3} with

f1 = x1 ∧ x2 ∧ x3,

f2 = x1 ∨ ¬x3,

f3 = (x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ x3).

Figure 2.3 shows the interaction graph of N (i.e., IG(N)). Arcs labeled with symbol
”+” denote positive arcs, whereas arrows labeled with symbol ”−” denote negative arcs.
IG(N) is constructed by determining arcs (positive or negative) ending at a vertex. For
example, consider ending vertex x2. Since x1 and x3 appear in f2, we need to determine
arcs from x1 and x3 to x2. We have f2[x1/0] = ¬x3 and f2[x1/1] = 1. If x3 = 1, then
f2[x1/0] < f2[x1/1]. In addition, there is no value of x3 to make f2[x1/0] > f2[x1/1].
Hence, there is only one positive arc from x1 to x2. Similarly, there is only one negative
arc from x3 to x2. Note that this procedure can be easily implemented by using BDDs.

The above interaction graph has one negative cycle of length one (x3
−−→ x3), one

negative cycle of length two (x3
−−→ x2

+−→ x3), one negative cycle of length three (x3
−−→

x2
+−→ x1

+−→ x3), one positive cycle of length one (x1
+−→ x1), two positive cycles of

length two (x1
+−→ x2

+−→ x1 and x1
+−→ x3

+−→ x1), and one positive cycle of length three

(x1
+−→ x2

+−→ x3
+−→ x1). It has two FVSs including {x1, x3} (the minimum one) and

{x1, x2, x3}. It has four NFVSs including {x3} (the minimum one), {x1, x3}, {x2, x3},
and {x1, x2, x3}. It also has four PFVSs including {x1} (the minimum one), {x1, x2},
{x1, x3}, and {x1, x2, x3}.

12

2.5. PETRI NETS AND THEIR UNFOLDINGS

x1 x2

x3

+
+

+

++

−

+

−

Figure 2.3: Interaction graph of the example BN.

2.5 Petri Nets and their Unfoldings

Petri nets [101] are basic modeling formalism for parallel and distributed systems. A
Petri Net (PN) is a bipartite graph whose nodes are either places or transitions. In this
dissertation, we only consider 1-safe Petri nets, where the number of tokens of each place
is either 0 (unmarked) or 1 (marked). The set of marked places forms a marking of the
PN. If the PN has an arc (p, t), then p is called an input place of t. If the PN has an arc
(t, p), then p is called an output place of t. A transition is enabled if all its input places
are marked. When a transition is enabled, it can fire. The firing of this transition makes
all its input places unmarked and then makes all its output places marked, modifying the
current marking of the PN. Note that when multiple transitions are enabled, only one
transition can fire.

Formally, a 1-safe PN is a tuple P = 〈P, T, pre, post,M0〉. P and T are sets of
places and transitions, respectively. pre ⊆ P × T is the set of all arcs from places to
transitions, whereas post ⊆ T × P is the set of all arcs from transitions to places. For
any place p, we say pre-set of p is the set •p = {t ∈ T |(t, p) ∈ post} and post-set of p
is the set p• = {t ∈ T |(p, t) ∈ pre}. For any transition t, we say pre-set of t is the set
•t = {p ∈ P |(p, t) ∈ pre} and post-set of t is the set t• = {p ∈ P |(t, p) ∈ post}. A subset
M ⊆ P of the places is called a marking. M0 is the initial marking of the PN.

A transition t of a 1-safe PN is enabled at a marking M if and only if •t ⊆ M . The
firing of t leads to a new marking M ′ specified by M ′ = (M\•t) ∪ t•. We denote this

marking transition by M
t−→ M ′. A marking M ′ is called reachable from a marking M

if there exists a firing sequence w = t1t2... over T such that M
t1−→ M1

t2−→ M2... −→ M ′.
A marking reachable from M0 is called a reachable marking of the PN. All reachable
markings of the PN and their marking transitions are represented by a directed graph
called the reachability graph.

Figure 2.4a shows an example 1-safe PN. The places are represented by circles and the
transitions are represented by squares. The arcs and the initial marking are represented
by the arrows and the dots in the marked places, respectively. Herein, M0 = {p1}. At
this marking, t1 and t2 are enabled. Figure 2.4b shows the reachability graph of this PN.

Petri net unfoldings [102] aim at representing the reachability graph of a 1-safe PN
by exploiting concurrency between transitions to prune redundant interleavings of these
transitions. The unfolding of a 1-safe PN P can be seen as an acyclic PN U that has the
same behavior as P . In general, U is infinite. However, there exists a finite prefix PU of U

13

2.5. PETRI NETS AND THEIR UNFOLDINGS

p1

t1 t2

p2

(a)

{p1}

{p2} ∅

t1 t2

(b)

Figure 2.4: (a) A 1-safe PN and (b) its reachability graph with the initial marking {p1}.
In (b), the text above each arrow denotes the fired transition.

because P is safe. Generally speaking, a finite prefix is an acyclic PN whose sets of places,
transitions, and arcs are finite and are subsets of the sets of places, transitions, and arcs
of U , respectively. PU is complete because every reachable marking of P has a reachable
counterpart in PU . Thus, PU represents the set of reachable markings of P . See [103]
for more details on finite complex prefixes. Regarding the reachability problem of 1-safe
Petri nets, we can build PU and then easily check whether a marking M reaches a marking
M ′. This function is implemented in Mole [104], which is an efficient tool for checking
reachability property of 1-safe Petri nets based on unfoldings. Mole also supports a
function allowing that building an unfolding immediately stops when a specific transition
t can be added to this unfolding.

Recently, some work has considered the link between Petri nets and Boolean networks.
The authors of [105] show that ABNs have high concurrency that is the essential property
of PNs. The method for encoding an ABN as a 1-safe PN has been proposed [103].
Thus, we can apply the algorithms [106] for checking the reachability in 1-safe PNs to the
reachability analysis on ABNs. Conversely, the reachability property of a 1-safe PN can
also be described by that of an ABN [105].

14

Part I

Attractor Detection

15

Chapter 3

Attractor Detection in Generalized
Asynchronous Boolean Networks
(GABNs)

3.1 Introduction

There are many theoretical studies on attractors of different types of BNs, such as, [22, 107]
for attractors in SBNs, [9, 14] for attractors in ABNs, [9, 11, 14] for attractors in GABNs
and DGABNs. In practice, many methods have been proposed for attractor detection (i.e.,
finding all possible attractors) in different types of BNs, such as, [44, 98, 108] for attractor
detection in SBNs, [43, 103, 108] for attractor detection in ABNs. As mentioned in
Chapter 1, asynchronous Boolean networks are considered more suitable than synchronous
ones in modeling biological systems. In addition, ABNs and GABNs are conventional
asynchronous models that are usually used in systems biology by the fact that precise
information on time scales of components is usually missing [9]. However, to our best
knowledge, there is no efficient method specifically designed for attractor detection in
GABNs. This fact motivates research on attractor detection in GABNs.

In this chapter, we focus on attractors of GABNs. GABNs are more general than
SBNs and ABNs because they can pick randomly any number of nodes to update syn-
chronously at each time step. They are also interesting mathematical objects themselves.
We first recall two dynamical properties of a GABN (Section 3.2). Then, we formally state
and prove several relations in dynamics between a GABN and its SBN counterpart (Sec-
tion 3.3). Based on these properties and relations, we propose three possible algorithms
for attractor detection in GABNs (Section 3.4). All these algorithms use Binary Decision
Diagrams (BDDs) [109] to represent components of the network (such as, Boolean func-
tions, sets of states, state transitions) and manipulate operations on these components.
We also formally prove the correctness of these algorithms. Furthermore, experiments are
also conducted on real and artificial networks to compare the performance of the proposed
algorithms.

The experimental results show that the three BDD-based algorithms still meet the
inherent problems of BDDs (e.g., extremely long computational time, high memory con-
sumption) when the network size is large (e.g., n > 30). Hence, we propose a new
algorithm, which is based on SAT-based Bounded Model Checking (BMC) [110], to over-
come these inherent problems (Section 3.5). The new algorithm is maybe not exact in

16

3.2. DYNAMICAL PROPERTIES

some cases because we use a bound, which is good enough but maybe not a complete-
ness threshold [110]. However, the experimental results on real biological and artificial
networks confirm the effectiveness (accuracy and efficiency) of the new algorithm.

Finally, to highlight the applications of the study on GABNs, we state and prove sev-
eral relations in dynamics between a GABN and its ABN counterpart (Subsection 3.6.1).
Based on these relations, we propose an efficient method for approximating attractors
of an ABN (Subsection 3.6.2). The experimental results on real biological networks are
promising because the approximation method outperforms the two state-of-the-art meth-
ods as well as can handle networks of size up to 101 (Subsection 3.6.3). These results also
justify the accuracy of the approximation method and consolidate the observation that
the number of attractors of an ABN is equal to that of its GABN counterpart in most
cases. This observation is useful in studying the dynamics of Boolean networks.

3.2 Dynamical Properties

Theorem 3.2.1. In a BN N , state s is an attractor state if and only if FRN ({s}) ⊆
BRN ({s}). State s is a transient state otherwise.

Lemma 3.2.1. In a BN N , if state s is transient, then states in BRN ({s}) are also all
transient. If state s is an attractor state, then all states in FRN ({s}) are also attractor
states. In the latter case, FRN ({s}) is an attractor and BRN ({s}) − FRN ({s}) are all
transient states.

Note that Theorem 3.2.1 and Lemma 3.2.1 are valid for all types of BNs. Their proof
can be found in [111].

3.3 Relations in Dynamics between GABNs and Syn-

chronous Boolean Networks

The following lemmas and theorems represent the relations in dynamics between a GABN
and its SBN counterpart.

Lemma 3.3.1. Let G be a GABN and S be its SBN counterpart. If s is a state of S,
then FRS({s}) ⊆ FRG({s}).

Proof. Since s (in G) has one state transition corresponding to the case that all nodes are
updated, FIS({s}) ⊆ FIG({s}). By the definition of a forward reachable set, we obtain
FRS({s}) ⊆ FRG({s}).

Lemma 3.3.2. Let G be a GABN and S be its SBN counterpart. G and S have the same
set of singleton attractors.

Proof. This lemma immediately holds by the finding of Gershenson [14], which is that
singleton attractors are the same for any type of BNs.

Lemma 3.3.3. Let G be a GABN and and S be its SBN counterpart. G and S have the
same set of type1 attractors.

17

3.4. BDD-BASED ALGORITHMS

Proof. Let att1 be a type1 attractor of S. Let s be an arbitrary state in att1 and s′ be its
successor state. Since s and s′ differ in exactly one bit (say the ith bit), the updating of
all the nodes in S changes only the ith bit of s. Thus, the updating of some nodes in G
changes the ith bit (node xi is in the set of updated nodes) or no bit (node xi is not in
the set of updated nodes) of s. This implies that FIG({s}) = {s, s′}. Since s is arbitrary,
att1 is also a type1 attractor of G (*).

Let att2 be a type1 attractor of G. Let s be an arbitrary state in att2 and s′ be
a successor state (excluding s) of s. Then, FIG({s}) = {s, s′}. We have FIS({s}) ⊆
FIG({s}). FIS({s}) = {s′} because if FIS({s}) = {s} then FIG({s}) = {s}. Since s is
arbitrary, att2 is also a type1 attractor of S (**).

From (*) and (**), we can conclude the proof.

Theorem 3.3.1. Let G be a GABN and S be its SBN counterpart. Any attractor of G
always contains an attractor of S.

Proof. Assume that there is an attractor att of G that does not contain any attractor of
S (*).

Let s be an arbitrary state in att. By Lemma 3.3.1, we have FRS({s}) ⊆ FRG({s}).
Since att is an attractor of G, att = FRG({s}). Hence, FRS({s}) ⊆ att.

Clearly, there is an attractor att′ of S such that att′ ⊆ FRS({s}). Then att′ ⊆ att
that is contrary to (*).

3.4 BDD-Based Algorithms

From the properties and relations presented in Sections 3.2 and 3.3, we propose three
algorithms (called FR-BR-BDD-1, FR-BR-BDD-2, and filtBDD, respectively) to
detect all reachable attractors of a GABN. All these algorithms use BDDs to represent
components of the network (such as, Boolean functions, sets of states, state transitions)
and manipulate operations on these components. Before presenting the three proposed
algorithms, we discuss the way of encoding a GABN using BDDs.

The STG of a GABN can be easily modeled as a TS. The authors of [98] have proposed
a method to encode the STG of an ABN as a TS. This encoding can be applied similarly
for GABNs. We can only replace the state transition formula of the ABN (see [98]) by
the state transition formula of the GABN G that is expressed by

T G(x, x′) =
n∧

i=1

{(x′i ↔ xi) ∨ (x′i ↔ fi(x))} ,

where x = (x1, ..., xn)> denotes the current state, x′ = (x′1, ..., x
′
n)> denotes the next state.

Note that T G(x, x′) is a propositional formula of 2n Boolean variables. It can be seen
as a Boolean function f : B2n → B; thus, it can be easily encoded into a BDD with the set
of 2n BDD variables V = {x1, ..., xn, x

′
1, ..., x

′
n}. Now, the forward (reps. backward) image

of a set of states of the GABN can be computed by using this BDD. Consequently, the
forward (resp. backward) reachable set of a set of states of the GABN can be computed
by using this BDD. The technical details are similar to those presented in [98].

18

3.4. BDD-BASED ALGORITHMS

3.4.1 Algorithm FR-BR-BDD-1

The idea of FR-BR-BDD-1 is inspired by the genYsis tool [98] that builds the total
transition system (for all states of the BN) and then calculates backward reachable sets.
Algorithm 1 shows the description of FR-BR-BDD-1. Herein, the variables att, FS, and
BS are BDDs, whereas the variables AStype2 and AG are lists of BDDs. The operator ’+’ is
the set operator that adds a new element to a set. The operator ’−’ is the set operator that
removes expansively elements from a set. For example, {{1, 2}, {3, 4}} − {1, 2, 3, 4} = ∅.
Algorithm 1 will terminate when AStype2 becomes empty.

Consider a running example. All running steps of FR-BR-BDD-1 for the GABN
counterpart of the BN shown in Example 2.1.1 are as follows. First, we obtain AStype2 =
{{110, 101, 111}} and AG = {{011}}. Next, we have att = {110, 101, 111}, FS =
{110, 100, 111, 101}, and BS = {110, 100, 111, 010, 101, 001, 000}. Since FS ⊆ BS, we
have FS is a new attractor and is added to AG. Now, AStype2 becomes empty, and FR-
BR-BDD-1 terminates.

Algorithm 1 FR-BR-BDD-1

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: ASsing ← the set of singleton attractors of S
4: AStype1 ← the set of type1 attractors of S
5: AStype2 ← the set of type2 attractors of S
6: AG ← ASsing ∪ AStype1
7: while AStype2 6= ∅ do
8: Randomly remove a type2 attractor att from AStype2
9: FS ← FRG(att)
10: BS ← BRG(att)
11: if FS ⊆ BS then
12: AG ← AG + FS {a new attractor}
13: AStype2 ← AStype2 − FS
14: end if
15: end while
16: return AG

Finally, we formally prove the correctness of FR-BR-BDD-1.

Theorem 3.4.1. The result of FR-BR-BDD-1 is correct, i.e., it finds correctly all
attractors of a GABN G.

Proof. First, the set of attractors AG is initialized the set of singleton and type1 attractors
of the SBN S. Based on Lemma 3.3.2 and Lemma 3.3.3, we have that the result of FR-
BR-BDD-1 contains exactly all singleton and type1 attractors of the GABN G (*).

Second, let s be an arbitrary state in att. By the updating scheme of a GABN, the
STG of G contains all state transitions of the STG of its SBN counterpart (say S). As
a consequence, att = FRS({s}) ⊆ FRG({s}) and att ⊆ BRS({s}) ⊆ BRG({s}). By
the definition of a forward reachable set, FRG(att) = FRG({s}). By the definition of

19

3.4. BDD-BASED ALGORITHMS

a backward reachable set, BRG(att) = BRG({s}). Then the condition FS ⊆ BS is
equivalent to the condition FRG({s}) ⊆ BRG({s}). Hence, following Theorem 3.2.1, a
new complex attractor found FR-BR-BDD-1 is an actual complex attractor of G.

By Theorem 3.3.1, AG (the result of FR-BR-BDD-1) will contain all complex attrac-
tors of G. Since the found attractor is excluded from AStype2 (Line 13 of Algorithm 1), AG

contains no duplicate complex attractors. Hence, the result of FR-BR-BDD-1 contains
exactly all complex attractors of the GABN G (**).

From (*) and (**), we can conclude the proof.

3.4.2 Algorithm FR-BR-BDD-2

In case of too large backward reachable sets, the running time of FR-BR-BDD-1 may
become extremely longer, even it fails to obtain the result due to the OutOfMemory
(OOM) error. With the special properties of attractors of GANs, the calculation of
(total) backward reachable sets is unnecessary. We here propose a new algorithm called
FR-BR-BDD-2 that improves FR-BR-BDD-1.

Algorithm 2 shows the description of FR-BR-BDD-2. There are two main differences
between FR-BR-BDD-2 and FR-BR-BDD-1. First, FR-BR-BDD-2 does not build
the total transition system of the GABN. It only builds partial transition systems. Since
the number of state transitions of a GABN is O(22n), the calculation of the total transition
system may lead to a context of too large BDDs, thus leading to OOM. Therefore, the
range of applicable networks of FR-BR-BDD-2 may be larger than that of FR-BR-
BDD-1. Second, FR-BR-BDD-2 calculates restricted backward reachable sets instead
of (total) backward reachable sets. BS ← BRG(att) in Algorithm 1 is replaced byBSres ←
BRGres(att, FS) (see Line 10 of Algorithm 2). When FS is not an attractor, BS may be
significantly larger than both FS and BSres. In this case, FR-BR-BDD-2 may be much
faster than FR-BR-BDD-1.

The running steps of FR-BR-BDD-2 for the GABN counterpart of the BN shown in
Example 2.1.1 are similar to those of FR-BR-BDD-1. However, BSres ({110, 100, 111, 101})
is smaller than BS ({110, 100, 111, 010, 101, 001, 000}).

Finally, we formally prove the correctness of FR-BR-BDD-2.

Theorem 3.4.2. The result of FR-BR-BDD-2 is correct, i.e., it finds correctly all
attractors of a GABN G.

Proof. Since FR-BR-BDD-2 only differs FR-BR-BDD-1 at the condition BSres ←
BRGres(att, FS) (Line 10 of Algorithm 2), we only need to show that a new complex
attractor found in FR-BR-BDD-2 is an actual complex attractor of G. Let s be an
arbitrary state in att.

Assume that FS is a complex attractor of G. Then s is an attractor state of G.
We have FS = FRG({s}) = FRG(att) and BRG(att) = BRG({s}). By Theorem 3.2.1,
FRG({s}) ⊆ BRG({s}). Thus, FS = FRG(att) ⊆ BRG(att). Then BRGres(att, FS) =
BRG(att) ∩ FS = FS. Hence, BSres = FS holds.

Assume thatBSres = FS holds. We have FS = FRG(att) = FRG({s}) andBRG(att) =
BRG({s}). Since BRGres(att, FS) = BRG(att)∩FS = BRG({s})∩FS, FS = BRG({s})∩
FS. Then FRG({s}) = FS ⊆ BRG({s}). By Theorem 3.2.1, s is an attractor state of G.
Hence, FS is a complex attractor G.

20

3.4. BDD-BASED ALGORITHMS

Algorithm 2 FR-BR-BDD-2

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: ASsing ← the set of singleton attractors of S
4: AStype1 ← the set of type1 attractors of S
5: AStype2 ← the set of type2 attractors of S
6: AG ← ASsing ∪ AStype1
7: while AStype2 6= ∅ do
8: Randomly remove a type2 attractor att from AStype2
9: FS ← FRG(att)
10: BSres ← BRGres(att, FS)
11: if BSres = FS then
12: AG ← AG + FS {a new attractor}
13: AStype2 ← AStype2 − FS
14: end if
15: end while
16: return AG

Now, we can conclude that the condition BSres = FS is equivalent to whether FS is
a complex attractor of G. Hence, a new complex attractor found in FR-BR-BDD-2 is
an actual complex attractor of G.

3.4.3 Algorithm filtBDD

Both FR-BR-BDD-1 and FR-BR-BDD-2 rely on the calculation of backward reach-
able sets (total or restricted). Hence, when the backward reachable sets become too large,
the algorithms may take extremely long computational even may fail to obtain the result
due to OOM. We here propose a new algorithm called filtBDD to overcome this problem.

The intuitive idea of filtBDD is as follows. By Theorem 3.3.1, for any attG ∈ AG,
there is an attS ∈ AS such that attS ⊆ attG. We then filter out the set AS to get the
new set ASnew that one-to-one corresponds to AG. The filtering process is: if attS reaches
other elements of AS in G(G), then attS is filtered out AS . The reachability property is
checked by calculating the forward reachable set FRG(attS). Now, for each att ∈ ASnew,
FRG(att) is an attractor of G. Note that FRG(att) has already calculated in the filtering
process. Furthermore, the reachability property can be on-the-fly checked. That is, in
each iteration of the algorithm for calculating FRG(att) (see [98]), we check whether
the current frontier set intersects attS . If yes, we can immediately stop the reachability
checking and return reachable.

Algorithm 3 shows the description of filtBDD. Note that, by Lemmas 3.3.2 and 3.3.3,
the filtering process can start with AStype2 instead of AS . Let us see a running example of
filtBDD for the GABN counterpart of the BN shown in Example 2.1.1. First, we obtain
the set of attractors AG = {{011}}, the filtering set AStype2 = {{101, 111, 110}}. Next,
we have attS = {101, 111, 110} and AStype2 = ∅. Then, FRG(attS) = {110, 100, 111, 101}.
Since this set does not contain any attractor in AStype2∪AG, it is a new complex attractor.

21

3.4. BDD-BASED ALGORITHMS

filtBDD terminates because AStype2 is empty.

Algorithm 3 filtBDD

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: ASsing ← the set of singleton attractors of S
4: AStype1 ← the set of type1 attractors of S
5: AStype2 ← the set of type2 attractors of S
6: AG ← ASsing ∪ AStype1
7: while AStype2 6= ∅ do
8: Randomly remove a type2 attractor attS from AStype2
9: if attS does not reach in G(G) any attractor in AStype2 ∪ AG then
10: AG ← AG + FRG(attS) {a new attractor}
11: end if
12: end while
13: return AG

Finally, we formally prove the correctness of filtBDD.

Theorem 3.4.3. The result of filtBDD is correct, i.e., it finds correctly all attractors of
a GABN G.

Proof. First, the set of attractors AG is initialized the set of singleton and type1 attractors
of the SBN S. Based on Lemmas 3.3.2 and 3.3.3, we have that the result of filtBDD
contains exactly all singleton and type1 attractors of the GABN G (*).

Second, in the case that attS reaches in G(G) an attractor in AStype2 ∪ AG (say att),
FRG(attS) is not added to AG. However, by the definition of an attractor, if attS belongs
to an attractor of G, then att also belongs to this attractor. By Theorem 3.3.1, when
AStype2 becomes empty, AG contains all attractors of G (**).

In addition, let FS be a new attractor found in filtBDD (i.e., FRG(attS) in Line 10
of Algorithm 3). FS is a new attractor because FS is not already in AG. Otherwise,
FS ∈ AStype2 ∪ AG that is contrary to the condition in Line 9 of Algorithm 3. Assume
that FS is not an actual new attractor of G. Then, FS must contain an attractor of G.
Since AStype2 ∪ AG always keeps the found attractors and remains possible attractors by
Theorem 3.3.1, we have FS must contain an element of AStype2 ∪ AG. That is contrary to
the condition in Line 9 of Algorithm 3. Hence, FS is an actual new attractor of G (***).

From (*), (**), and (***), we can conclude the proof.

3.4.4 Evaluation

We have implemented the three proposed algorithms. The implementation is in JAVA
language and uses JDD library [112] for BDD manipulation. We then conducted exper-
iments to compare the performance of these algorithms. Since the correctness of these
algorithms has been proved, the evaluation metric is here computational time.

All the experiments were conducted in a computer whose environment is CPU: Intel
Core i7 2.4 GHz, Memory: 16 GB, Windows 10 Home 64 bit. We used two sets of models.

22

3.4. BDD-BASED ALGORITHMS

The real biological networks that were obtained from the literature include the budding
yeast cell cycle regulation [113], the mammalian cell cycle regulation [114], the fission
yeast cell cycle regulation [113], the T-helper cell differentiation [115], and the T-cell
receptor signaling pathway [116]. The artificial networks are randomly generated with
Bool Net R package [117].

Table 3.1 shows experimental results on real biological networks. ”-” denotes the
case in which the algorithm failed to detect attractors due to OOM. Columns 1, 2, and 3
denote the name of the network, the number of nodes of the network, and the number and
size of attractors computed by the considered algorithms, respectively. In columns 7, 8,
and 9, we show the computational time (in seconds) of the three algorithms, respectively.
There are two remarks obtained from this table. First, FR-BR-BDD-2 is always better
than FR-BR-BDD-1 in four per five networks (except the T-cell receptor network in
which both FR-BR-BDD-1 and FR-BR-BDD-2 failed to obtain the result). Second,
filtBDD is insignificantly better than FR-BR-BDD-1 and FR-BR-BDD-2 in the four
networks. The reason may be due to small numbers of nodes or small attractors. However,
filtBDD outperforms both FR-BR-BDD-1 and FR-BR-BDD-2 in the T-cell receptor
network (a network with a larger number of nodes). Specifically, FR-BR-BDD-1 and
FR-BR-BDD-2 failed to obtain the result, whereas filtBDD succeeded in only 0.171
seconds.

Table 3.1: Experimental results of FR-BR-BDD-1, FR-BR-BDD-2, and filtBDD on
real biological networks.

Name n Number × size
of attractors

FR-BR-BDD-1
(seconds)

FR-BR-BDD-2
(seconds)

filtBDD
(seconds)

Mammalian cell 10 1 × 1, 1 × 128 0.130 0.121 0.119
Fission yeast 10 13 × 1 0.122 0.119 0.129

Budding yeast 12 7 × 1 0.153 0.128 0.127
T-helper cell 23 3 × 1 214.361 0.190 0.197

T-cell receptor 40 8 × 1 - - 0.171

Table 3.2 shows experimental results on artificial networks. Column 1 stands for the
name of the network. Column 2 stands for the number and size of attractors computed
by the considered algorithms. In columns 7, 8, and 9, we show the computational time (in
seconds) of the three algorithms, respectively. From these results, we obtain three remarks
as follows. First, filtBDD outperforms both FR-BR-BDD-1 and FR-BR-BDD-2 in
all succeeded cases (i.e., these cases in which at least one algorithm succeeded to obtain
the result). Second, there exist some networks in which all three algorithms failed to
obtain the result, such as, the 33-node, 36-node, 37-node, and 39-node networks. The
reason is that the BDD size of the forward reachable set is too large, leading to OOM.
Finally, the performance of these algorithms depends on not only the number of nodes but
also the structure and Boolean functions of the network. For example, filtBDD failed
with the 36-node network but still succeeded with the 40-node network.

23

3.5. NEAR-EXACT ALGORITHM USING SAT-BASED BOUNDED MODEL
CHECKING

Table 3.2: Experimental results of FR-BR-BDD-1, FR-BR-BDD-2, and filtBDD on
artificial networks.

Name Number × size of at-
tractors

FR-BR-BDD-1
(seconds)

FR-BR-BDD-2
(seconds)

filtBDD
(seconds)

20-node 2 × 6144, 2 × 12288 84.430 1.321 0.480
22-node 1 × 4194304 222.753 51.836 7.431
24-node 2 × 1 - 0.332 0.136
26-node 1 × 1048576 - 46.588 3.466
28-node 6 × 1 - 1.328 1.226
30-node 4 × 1 - - 14.674
31-node 1 × 4096, 1 × 8192 - - 6.083
32-node 4 × 128, 2 × 256 - - 212.927
33-node - - -
34-node 5 × 1 - - 81.797
35-node 2 × 32 - - 127.547
36-node - - -
37-node - - -
38-node 1 × 32 - 0.272 0.234
39-node - - -
40-node 4 × 6 - - 0.307

3.5 Near-Exact Algorithm Using SAT-Based Bounded

Model Checking

3.5.1 Algorithm filtSAT

filtBDD must first calculate forward reachable sets. This calculation may be extremely
long if the forward reachable sets are too large. Moreover, this calculation is based
on BDDs. Therefore, filtBDD may encounter OOM that is an inherent problem of
BDD-based methods. To overcome these problems, we here use SAT-based BMC [110]
for checking the reachability in GABNs without calculating forward reachable sets. In
addition, we do not need to calculate all states of an attractor; at least one state in the
attractor is enough. The reason is that we can enumerate the attractor by listing all
other states reachable from one state in this attractor. Then, we propose a SAT-based
algorithm called filtSAT for approximating attractors of a GABN.

Since filtSAT uses SAT-based BMC to check the reachability property, a good bound
d is important. The diameter of a graph is the length of the longest shortest path between
two states. In the field of model checking, it represents the smallest number of steps that
are needed to reach all reachable states. We here define a new concept called diameter
of attraction inspired by the concept of diameter in model checking. The diameter of
attraction of an STG is defined as the length of the longest shortest path from a state to
an attractor of the STG. Let dN denote the diameter of attractions of the STG of a BN
N . Consider the BN N shown in Example 2.1.1. Let S and G be the SBN and GABN
counterparts of N , respectively. Then, we have dS = dG = 1 (see Figure 2.1).

24

3.5. NEAR-EXACT ALGORITHM USING SAT-BASED BOUNDED MODEL
CHECKING

s0 s1

s2

s3 s4

(a)

s0 s1

s2

s3 s4

(b)

Figure 3.1: A counter example for the claim that dS ≥ dG. (a) and (b) show parts of the
STGs of the SBN S and the GABN G, respectively. Herein, dS = 1 (the longest shortest
path is, for example, s2 → s0), whereas dG = 3 (the longest shortest path is, for example,
s0 → s1 → s2 → s3).

Obviously, d must be at least dG to ensure the completeness of checking the reachability
in the GABN G. However, dG is very hard to compute. Even to compute its upper bound
(the diameter of the STG of G), we need to use a graph algorithm that is polynomial in
the size of the STG or a Quantified Boolean Formula (QBF) [110]. Unfortunately, the
size of the STG of a GABN is exponential in its number of nodes and QBF is PSPACE-
complete. Hence, we need a bound that is good enough and easy to compute. Although
dS ≥ dG does not always hold (see Figure 3.1), dS may be used as an efficient bound
because of the following reasons. First, since the outdegree of a state in a GABN is high
and the STG of the GABN contains all arcs of the STG of its SBN counterpart, if the
reachability property actually holds then there is a high probability that the reachability
property holds with the bound dS . Second, dS can be easily computed in the process of
finding SBN attractors. This reason is justified in the last paragraph of this subsection.

Algorithm 4 shows the description of filtSAT. χ(F, si) is the characteristic formula
representing the set F of states in term of variables of state si. The characteristic formula
of a set of states is defined based on the characteristic formula of a state: χ(F, si) =∨

s∈F χ(s, si). The characteristic formula of a state s in term of variables of state si is
defined as χ(s, si) =

∧n
j=1(sij ↔ sj). For example, if att = {00, 11}, then χ(att, s0) =

(s0
1 ↔ 0∧s0

2 ↔ 0)∨(s0
1 ↔ 1∧s0

2 ↔ 1). The formula φ represents a path with length d from
a state in attS to a state in flatten(A∪AStype2). Since A∪AStype2 is a set of sets of states,
we need to flatten it into a set of states. If the path does not exist (i.e., SAT(φ) = false),
attS corresponds to an attractor of the GABN G and is added to A. Correspondingly,
the state s randomly picked from attS is added to F Gcomp. At Line 16 of Algorithm 4, we
use attS instead of FRG(attS) because (1) FRG(attS) may be very large and we may take
much time/memory for calculating it; (2) when known at least one state of an attractor,
we can easily calculate all its states if needed. This is also one of the differences between
filtSAT and filtBDD. Note that, by Lemmas 3.3.2 and 3.3.3, A can start with the set of
singleton and type1 attractors of the SBN S. This can improve the efficiency of filtSAT
by two reasons: (1) singleton and type1 attractors can be easily classified in the process
of finding SBN attractors; (2) we do not need to take time for checking the reachability
property for these attractors by solving φ.

The result of filtSAT includes AGsing (the set of singleton attractors of G), AGtype1 (the

25

3.5. NEAR-EXACT ALGORITHM USING SAT-BASED BOUNDED MODEL
CHECKING

Algorithm 4 filtSAT

Input: A GABN G.
Output: AGsing, A

G
type1, F Gcomp.

1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: ASsing ← the set of singleton attractors of S
4: AStype1 ← the set of type1 attractors of S
5: AStype2 ← the set of type2 attractors of S
6: AGsing ← ASsing
7: AGtype1 ← AStype1
8: F Gcomp ← ∅
9: A← ASself ∪ AStype1
10: d← the diameter of attraction of S
11: while AStype2 6= ∅ do
12: Randomly remove a type2 attractor attS from AStype2
13: φpath ←

∧d−1
i=0 T (si, si+1)

14: φ← χ(attS , s0) ∧ φpath ∧ χ(flatten(A ∪ AStype2), sd)
15: if SAT(φ) = false then
16: A← A ∪ attS
17: Randomly pick a state s in attS

18: F Gcomp ← F Gcomp ∪ {s}
19: end if
20: end while
21: return AGsing, A

G
type1, F Gcomp

set of type1 attractors of G), and F Gcomp (a set of states of G). We say that F Gcomp covers
an attractor att if there is a state in F Gcomp such that this state belongs to att (formally,
F Gcomp ∩ att 6= ∅). F Gcomp is expected to cover exactly all the complex attractors of G (i.e.,
∀att ∈ AGcomp, F

G
comp ∩ att 6= ∅ and |AGcomp| = |F Gcomp|). Theorem 3.5.1 guarantees that all

the attractors of a GABN are always found by filtSAT. However, the result of filtSAT
may contain some redundant or spurious attractors (see Case 1-A and Case 1-B in the
proof of Theorem 3.5.1, respectively). Case 1-A and Case 1-B occur when attS reaches
A ∪ AStype2 but SAT(φ) = false holds because the bound d is not high enough. If Case
1-A and Case 1-B never occur, filtSAT can find exactly all attractors of the GABN. In
this case, we have a one-to-one correspondence between F Gcomp and AGcomp (i.e., the set of
complex attractors of G).

Theorem 3.5.1. Let G be a GABN. Then, all the attractors of G are covered by the result
obtained by applying filtSAT to G.

Proof. By Lemmas 3.3.2 and 3.3.3, the result of filtSAT contains all singleton and type1
attractors of G. Hereafter, we only consider complex attractors of G.

After finishing Lines 1-10 of Algorithm 4, any complex attractor of G contains at least
one SBN attractor in A ∪ AStype2 by Theorem 3.3.1 (*). In the first iteration of the while
loop (Lines 11-20 of Algorithm 4), we have all the possible cases as follows.
Case 1: SAT(φ) = false. Obviously, (*) still holds because A ∪ AStype2 is not changed.
However, there are two possible subcases that may make the result of filtSAT incorrect.

26

3.5. NEAR-EXACT ALGORITHM USING SAT-BASED BOUNDED MODEL
CHECKING

Case 1-A: attS is contained in an attractor attG of G and there is an att′ ∈ A contained
in attG. Then, attS will be a redundant attractor.
Case 1-B: attS is not contained in any attractor of G. Then, att will be a spurious
attractor.
Case 2: SAT(φ) = true. By the theory of bounded model checking, attS reaches A∪AStype2
in the STG of G. There are all two possible subcases.
Case 2-A: attS is contained in an attractor attG of G. There is an att′ ∈ A ∪ AStype2 such
that att′ ⊆ FRG(attS). att′ ⊆ attG because FRG(attS) = attG. Thus, (*) still holds.
Case 2-B: attS is not contained in any attractor of G. Obviously, (*) still holds.

We obtain that (*) is preserved after finishing the first iteration. Similarly, (*) is also
preserved after finishing the last iteration. Now, AStype2 = ∅, thus any complex attractor of
G contains at least one attractor in A. Since the attractors of G are pairwise disjoint, an
attractor in A cannot be contained in two attractors of G. Hence, A covers all the complex
attractors of G. Correspondingly, F Gcomp covers all the complex attractors of G.

Let l be the number of type2 attractors of the SBN S (i.e., l = |AStype2|). Obviously, the
number of iterations of filtSAT is always l. Since filtSAT is an SAT-based algorithm, its
efficiency obviously depends largely on the number of variables and the number of clauses
of the formula φ. From the description of filtSAT, the number of variables is n × d. It
is hard to estimate exactly the number of clauses because we cannot estimate exactly the
characteristic formulas of attS and flatten(A ∪AStype2). However, we can realize that the
number of clauses is proportional to n× l×d. Hence, the efficiency of filtSAT depends on
not only the network size but also the number of SBN type2 attractors and the diameter
of attraction. Note that, as many previous methods for BNs, the efficiency of filtSAT
also depends on the Boolean functions.

Finally, we discuss two possible methods for calculating dS . Let ALG be the algorithm
for finding SBN attractors. dS can be easily calculated in the running of ALG. If ALG is
a BDD-based method (e.g., [43]) then dS = max{t|t is the number of iterations in a call
of the backward set funtion}. If ALG is an SAT-based method (e.g., [44]) then dS can be
calculated by a simple procedure as follows. First, p← pstart and atts← the set of states
flattened from all the attractors of S. Second, if there exists a path of length p from s0 to
sp such that sp 6∈ atts, then p← p+step and go back to the first step. Otherwise, dS ← p
and the procedure terminates. In this dissertation, we use the SAT-based method by [44]
for finding SBN attractors. If we set pstart ← 1 and step ← 1, we can get exactly the
value of dS . However, the computational time of this procedure may be long because the
number of iterations is dS . Therefore, we empirically set pstart ← min(pd/2, 20), where
pd is the depth of unfolding (see [44]) and step ← 2. Herein, an upper bound of dS is
obtained.

3.5.2 Evaluation

We have implemented the proposed SAT-based method filtSAT. The implementation is
in JAVA language, uses JDD library [112] for BDD manipulation, and uses Z3 [118] as
the SAT solver. We then conducted experiments to evaluate the performance of filtBDD
and filtSAT. Note that each of these algorithms includes two steps: the first step is
the computation of SBN attractors and the second one is the computation of GABN
attractors. The evaluation metric is only the computational time of the second step
because filtBDD and filtSAT use the same algorithm for the first step. An SBN is

27

3.5. NEAR-EXACT ALGORITHM USING SAT-BASED BOUNDED MODEL
CHECKING

much simpler than its GABN counterpart. Therefore, the time limit for the overall was
set to three hours, whereas the time limit for the fist step was set to two hours.

All the experiments were run on a computer whose environment is CPU: Intel Core
i7 2.4 GHz, Memory: 16 GB, Windows 10 Home 64 bit. We used two sets of Boolean
networks. The first set includes 25 BNs of 25 real biological networks obtained from [119].
The second set includes random BNs generated with Bool Net R package [117]. Note
that a JAVA program will release OOM when it tries to allocate amount of memory
exceeding the available heap space. In our experiments, when we set the heap size to
4 GB, filtSAT never met OOM, whereas filtBDD met that before exceeding the time
limit in some of the BNs. Therefore, we here set the heap size to 6 GB. With this heap
size, both filtBDD and filtSAT never met OOM before exceeding the time limit.

Table 3.3 shows experimental results on the BNs of the real biological networks.
Columns 1 and 2 denote the name and the number of nodes of the network (i.e., n), re-
spectively. Column 3 denotes the number of singleton and type1 attractors (a1). Columns
4 and 6 denote the numbers of GABN attractors computed by filtBDD and filtSAT, re-
spectively. Columns 5 and 7 denote the computational time (in seconds) of filtBDD and
filtSAT, respectively. ”-” denotes the case of timeout. We here omit the 12/25 networks
in which both filtBDD and filtSAT failed to compute SBN attractors within two hours.
These 12 networks include Signaling pathway for Butanol Production (n = 66), CD4 T
Cell Signaling (n = 188), EGFR & ErbB Signaling (n = 104), Glucose Repression Signal-
ing 2009 (n = 73), HGF Signaling in Keratinocytes (n = 68), IL-1 Signaling (n = 118),
IL-6 Signaling (n = 86), Influenza A Virus Replication Cycle (n = 131), Lymphopoiesis
Regulatory Network (n = 81), Signal Transduction in Fibroblasts (n = 139), Signaling in
Macrophage Activation (n = 321), and Yeast Apoptosis (n = 73).

From Table 3.3, we report two observations as follows. First, in the 7/13 networks
in which both filtBDD and filtSAT succeed to obtain the result within three hours,
the numbers of GABN attractors computed by filtBDD and filtSAT are the same. In
addition, the computational time of filtSAT and filtBDD is comparable. Second, in all
the 6/13 remaining networks, filtSAT succeeded to obtain the result within three hours,
whereas filtBDD failed. In particular, for Bordetella Bronchiseptica, we can use some
theoretical results previously presented to reason the number of GABN attractors. Let a3

be the number of GABN attractors. Then, a3 ≥ a1 by Lemmas 3.3.2 and 3.3.3. Let aSAT

be the number of attractors computed by filtSAT. Then, a3 ≤ aSAT by Theorem 3.5.1.
If a1 = aSAT , we can imply that a3 = aSAT . Herein, a1 = aSAT = 3, hence a3 = 3, i.e., the
number of attractors computed by filtSAT is correct. These observations are evidence
for the effectiveness of filtSAT as compared to filtBDD.

Next, we randomly generated a set of BNs with network size n in the set {40, 50, 60,
70, 80, 90, 100, 200, 300, 400}. For each network size, five instances of N -K BNs [22]
and five instances of scale-free BNs [120] were generated. N -K and scale-free BNs are
two popular topology-based variations of BNs. In an N -K BN, each node has exactly
K input nodes. In a scale-free BN, the number of input nodes for each node follows the
scale-free Zeta distribution [120]. We set the maximum number of input nodes for each
node to three for scale-free BNs and K = 2 for N -K BNs. In total, we have 100 random
BNs.

Tables 3.4 and 3.5 show the experimental results on the randomly generated N -K and
scale-free BNs, respectively. We omit the 38/100 BNs in which both filtBDD and filtSAT
failed to compute SBN attractors within two hours. Almost of these BNs are N -K BNs

28

3.5. NEAR-EXACT ALGORITHM USING SAT-BASED BOUNDED MODEL
CHECKING

Table 3.3: Experimental results of filtBDD and filtSAT on real biological networks.

filtBDD filtSAT
Network name n a1 # atts time (s) # atts time (s)
Bordetella Bronchiseptica 33 3 - - 3 0.5
T-Cell Signaling 2006 40 7 - - 8 0.8
Apoptosis Network 41 0 8 3.3 8 8.9
Guard Cell Abscisic Acid Signaling 44 16 28 6.9 28 19.3
Stomatal Opening Model 49 48 48 0.2 48 0.5
Senescence Associated Secretory Phe-
notype

51 15 17 0.8 17 3.0

B Bronchiseptica and T Retortaeformis
Coinfection

53 30 30 34.8 30 8.8

MAPK Cancer Cell Fate Network 53 12 - - 18 13.6
T-LGL Survival Network 2011 60 118 - - 142 43.3
PC12 Cell Differentiation 62 3 3 0.2 3 0.4
Bortezomib Responses in U266 Human
Myeloma Cells

67 83 83 0.4 83 26.4

Colitis-Associated Colon Cancer 70 2 - - 5 113.7
T Cell Receptor Signaling 101 112 - - 128 21.5

(even with n = 100). It is reasonable because the method for finding SBN attractor [44]
is known inefficient for large-scale BNs with a relatively large average degree (i.e., average
number of input nodes). Column ”network name” denotes the name of the BN following
the format n-i-instance number for N -K BNs or n-s-instance number for scale-free BNs.
Columns ”l” and ”a1” denote the number of type2 attractors and the number of singleton
and type1 attractors of the SBN, respectively. Column ”# attractors” denotes the number
of GABN attractors, whereas Column ”time (s)” denotes the computational time (in
seconds). We classify the experimental results into four cases including Case 1: both
filtBDD and filtSAT succeeded to detect all GABN attractors within three hours; Case
2: filtBDD failed to detect all GABN attractors, whereas filtSAT succeeded to detect
those within three hours; Case 3: filtSAT failed to detect all GABN attractors, whereas
filtBDD succeeded to detect those within three hours; and Case 4: both filtBDD and
filtSAT failed to detect all GABN attractors within three hours. In total, we have 19/62
BNs of Case 1, 43/62 BNs of Case 2, 0/62 BN of Case 3, and 0/62 BNs of Case 4. From
these results, we report two observations as follows. These observations are evidence for
the effectiveness of filtSAT as compared to filtBDD.

First, in each BN of Case 1, the numbers of GABN attractors computed by filtSAT
and filtBDD are the same. This is evidence for the accuracy of filtSAT. In addition,
the computational time of filtSAT and filtBDD is comparable. Note that, in some
large-scale BNs (e.g., 90-i-4, 90-s-4, 300-s-3), l = 0 means that the GABN has no complex
attractors and filtBDD did not need to compute any forward reachable sets.

Second, in the 43 BNs of Case 2, filtSAT can handle large-scale networks (e.g., 300-
s-4, 400-s-1) and even large-scale networks with a relatively large average degree (e.g.,
80-i-5, 90-i-1). Furthermore, in the 9/43 networks (50-i-3, 60-i-1, 70-i-3, 80-i-5, 50-s-4,
70-s-3, 80-s-4, 200-s-3, 400-s-5), we can show that the result of filtSAT is correct by using
the reasoning that has already presented in the analysis of the experimental results on
real biological networks.

29

3.5. NEAR-EXACT ALGORITHM USING SAT-BASED BOUNDED MODEL
CHECKING

Table 3.4: Experimental results of filtBDD and filtSAT on N -K networks.

filtBDD filtSAT
network name l a1 # attractors time (s) # attractors time (s)
40-i-2 1 0 1 0.2 1 0.3
40-i-5 1 1 1 2.0 1 0.3
40-i-4 2 1 3 8.2 3 0.5
40-i-3 5 0 - - 1 1.0
40-i-1 10 2 2 0.8 2 3.1

50-i-2 4 1 1 36.4 1 2.0
50-i-4 6 0 4 0.3 4 3.7
50-i-5 6 0 - - 1 4.6
50-i-3 7 2 - - 2 3.1
50-i-1 32 0 2 221.1 2 28.8

60-i-3 3 0 - - 1 3.3
60-i-5 7 1 - - 2 11.1
60-i-2 8 4 4 4.2 4 3.8
60-i-4 13 0 - - 2 9.9
60-i-1 16 2 - - 2 12.7

70-i-4 0 1 1 0.2 1 0.2
70-i-3 3 1 - - 1 3.1
70-i-2 9 1 - - 2 9.1

80-i-3 4 0 - - 1 12.6
80-i-2 7 1 - - 2 9.4
80-i-5 14 3 - - 3 16.5
80-i-4 18 0 - - 3 22.4

90-i-4 0 3 3 0.3 3 0.4
90-i-3 2 0 - - 1 1.8
90-i-1 5 0 - - 1 2615.7

Moreover, as previously mentioned, there are some variables that may affect the ef-
ficiency of filtSAT such as the network size (i.e., n) and the number of SBN type2
attractors (i.e., l). From the experimental results, we can obtain the correlation between
l and the computational time of filtSAT. We observed the computational time of filt-
SAT for the BNs with the same n and the same form of network topology (scale-free
or N -K). In general, the computational time of filtSAT increases as l increases (see
Tables 3.4 and 3.5). It is reasonable because the number of iterations of filtSAT is equal
to l. This correlation suggests us that if we can early exclude from the filtering set (i.e.,
AStype2) the SBN attractors that cannot be in any GABN attractor, we can significantly
reduce the computational time of filtSAT. This is one of our future work.

30

3.5. NEAR-EXACT ALGORITHM USING SAT-BASED BOUNDED MODEL
CHECKING

Table 3.5: Experimental results of filtBDD and filtSAT on scale-free networks.

filtBDD filtSAT
network name l a1 # attractors time (s) # attractors time (s)
40-s-2 8 0 - - 1 2.4
40-s-1 13 7 7 0.2 7 2.1
40-s-4 28 5 6 728.0 6 5.6
40-s-5 40 0 - - 4 5.4
40-s-3 208 0 - - 2 104.0

50-s-2 2 0 - - 2 0.3
50-s-5 2 0 - - 1 0.4
50-s-3 11 1 - - 2 2.5
50-s-4 24 4 - - 4 4.9
50-s-1 240 0 8 3004.6 8 2314.4

60-s-3 3 0 - - 1 0.7
60-s-4 8 0 - - 2 1.8
60-s-5 11 0 - - 2 11.2
60-s-1 152 0 - - 1 351.9
60-s-2 422 5 - - 6 991.8

70-s-1 8 8 8 0.2 8 4.4
70-s-4 10 4 4 0.4 4 3.5
70-s-3 38 4 - - 4 27.6
70-s-2 265 1 - - 3 742.4

80-s-1 8 0 1 212.9 1 6.5
80-s-2 48 0 - - 2 14.3
80-s-4 212 4 - - 4 568.2

90-s-4 0 1 1 0.2 1 0.2
90-s-5 2 0 - - 1 1.3
90-s-1 24 0 - - 2 29.8
90-s-3 24 0 2 0.5 2 30.7
90-s-2 675 1 - - 2 8565.0

100-s-1 8 0 - - 1 14.1
100-s-2 24 2 - - 4 31.0
100-s-5 24 0 - - 1 31.7
100-s-3 486 12 - - 16 2400.5

200-s-3 3 1 - - 1 31.4

300-s-3 0 2 2 0.2 2 0.6
300-s-4 24 0 - - 2 727.3

400-s-2 32 0 - - 1 2275.6
400-s-5 36 4 - - 4 2247.4
400-s-1 204 0 - - 8 10034.0

31

3.6. RELATIONS IN DYNAMICS BETWEEN GABNS AND ASYNCHRONOUS
BOOLEAN NETWORKS

3.6 Relations in Dynamics between GABNs and Asyn-

chronous Boolean Networks

3.6.1 Relations

Proposition 3.6.1. Let A be an ABN and G be its GABN counterpart. Then A and G
have the same set of singleton attractors.

Proof. This proposition immediately holds because any type of BNs has the same set of
singleton attractors [14].

Proposition 3.6.2. Let A be an ABN and G be its GABN counterpart. Then A and G
have the same set of type1 attractors.

Proof. Let att1 be a type1 attractor of A. Let s be an arbitrary state in att1 and s′ be
its successor (excluding s). Since s and s′ differ in exactly one bit (say the ith bit), only
node xi changes its value. Thus, the updating of some nodes in G changes the ith bit
(node xi is in the set of updated nodes) or no bit (node xi is not in the set of updated
nodes) of s. This implies that FIG({s}) = {s, s′}. Since s is arbitrary, att1 is also a type1
attractor of G (*).

Let att2 be a type1 attractor of G. Let s be an arbitrary state in att2 and s′ be a
successor state (excluding s) of s. Then FIG({s}) = {s, s′}. Since G can update any
number of nodes synchronously, we have FIA({s}) ⊆ FIG({s}). FIA({s}) = {s′} or
FIA({s}) = {s, s′} because if FIA({s}) = {s} then FIG({s}) = {s}. Since s is arbitrary,
att2 is also a type1 attractor of A (**).

From (*) and (**), we can conclude the proof.

Proposition 3.6.3. Let A be an ABN and G be its GABN counterpart. Then FRA({s}) ⊆
FRG({s}) holds for any state s of A.

Proof. Since G can update any number of nodes synchronously, we have FIA({s}) ⊆
FIG({s}) for any state s. By the definition of a forward reachable set, we obtain
FRA({s}) ⊆ FRG({s}).

Theorem 3.6.1. Let A be an ABN and G be its GABN counterpart. Then there exists a
mapping m : AG → AA with m(att) ⊆ att for all att ∈ AG and m(att1) 6= m(att2) for all
att1, att2 ∈ AG, att1 6= att2. Intuitively, every attractor of G contains at least one attractor
of A.

Proof. Let att be an attractor in AG and s ∈ att. Clearly, FRG({s}) = att. By Proposi-
tion 3.6.3, FRA({s}) ⊆ FRG({s}). Thus, FRA({s}) ⊆ att.

Clearly, there is an attractor att′ ∈ AA such that att′ ⊆ FRA({s}). Thus, att′ ⊆ att.
Now, we can choose the mapping m : AG → AA such that m(att) = att′. Note that since
att′ may be not unique, the mapping m may not be uniquely determined.

Since attractors are pairwise disjoint, m(att1) 6= m(att2) for all att1, att2 ∈ AG, att1 6=
att2. Therefore, we can conclude the proof.

Corollary 3.6.1. The number of attractors of an ABN is greater than or equal to that of
its GABN counterpart.

32

3.6. RELATIONS IN DYNAMICS BETWEEN GABNS AND ASYNCHRONOUS
BOOLEAN NETWORKS

Proof. Let A be an ABN and G be its GABN counterpart. We show that |AA| ≥ |AG|.
By Theorem 3.6.1, there is a mapping m : AG → AA with m(att) ⊆ att for all att ∈ AG

and m(att1) 6= m(att2) for all att1, att2 ∈ AG, att1 6= att2. Obviously, m is an injection.
Hence, |AA| ≥ |AG|.

We here report an example (Example 3.6.1) for the inequality case of Corollary 3.6.1.
However, we observed that the equality case of Corollary 3.6.1 happens in most cases (see,
e.g., [5]). This suggests us to propose an efficient method for approximating the attractors
of an ABN based on the attractors of its GABN counterpart.

Example 3.6.1. Consider a BN of three nodes associated to three variables (x1, x2, x3).
Its Boolean functions are given by

f1 = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3),

f2 = (¬x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ x3),

f3 = ¬x1 ∨ (x1 ∧ ¬x2) ∨ (x1 ∧ x2 ∧ ¬x3).

The STGs of the GABN and ABN counterparts of this BN are given in Figure 3.2a
and Figure 3.2b, respectively. As we can see, the ABN has two attractors ({011} and
{001, 101, 111, 110, 100}), whereas the GABN has only one attractor ({011}).

000

001

010

011

100 110

101 111

(a)

000

001

010

011

100 110

101 111

(b)

Figure 3.2: STGs of (a) the GABN counterpart and (b) the ABN counterpart of the BN
shown in Example 3.6.1.

3.6.2 Application

As presented in Section 3.5, we have proposed an efficient method called filtSAT for
finding attractors of GABNs. This method relies on the relations in dynamics between
a GABN and its SBN counterpart. Although the result of filtSAT may be incor-
rect, its accuracy has been justified by the experiments on real biological and randomly
generated networks. In particular, filtSAT can handle large-scale networks (e.g., the
T Cell Receptor Signaling network with n = 101 [119]).

Inspired by the effectiveness of filtSAT and the relations in dynamics between ABNs
and GABNs presented in the previous subsection, we propose an efficient method called

33

3.6. RELATIONS IN DYNAMICS BETWEEN GABNS AND ASYNCHRONOUS
BOOLEAN NETWORKS

ApproABN for approximating attractors of ABNs. The description of ApproABN is
given in Algorithm 5. AAsing and AAtype1 are simply equal to AGsing and AGtype1 by Proposi-
tion 3.6.1 and Proposition 3.6.2, respectively. We now make a long random walk on the
set F Gcomp. A random step of this random walk is a state transition corresponding to the
updating of a random node in the STG of A. By Proposition 3.6.3, each state of F Gcomp

will reach an attractor of A. In addition, if s, s′ ∈ F Gcomp belong to two different attractors
of G, then they reach two different attractors of A because attractors of a BN are pairwise
disjoint. Making random walk aims at making F Gcomp approach attractor states of A. In
practice, we empirically used Imax = n × 20 and found that it is enough to reach an
attractor of A. Finally, we obtain FAcomp as the set of states of A, and each state of FAcomp

is expected to represent (i.e., belong to) a complex attractor of A. FAcomp is sufficient
because starting from a state s of an attractor of A, we can enumerate another states of
this attractor by listing all other states reachable from s (i.e., FRA({s}), which can be
easily implemented by using BDDs [43]).

Algorithm 5 ApproABN

Input: An ABN A.
Output: AAsing, A

A
type1, FAcomp is a set of states of A.

1: G ← the GABN counterpart of A
2: Apply filtSAT to G
3: AAsing ← AGsing
4: AAtype1 ← AGtype1
5: FAcomp ← F Gcomp

6: i← 1
7: while i ≤ Imax do
8: Choose randomly a node xj ∈ {x1, ..., xn}
9: FAcomp ← FIAxj

(FAcomp)
10: i← i+ 1
11: end while
12: return AAsing, A

A
typ1, FAcomp

Hereafter, we shall discuss the correctness of ApproABN. The result of ApproABN
may be incorrect in some cases as follows. First, FAcomp may contain redundant states be-
longing to the same attractor of A because F Gcomp may contain redundant states belonging
to the same attractor of G (see Section 3.5). Second, FAcomp also may contain spurious
states that do not belong to any attractor of A because the random walk does not guaran-
tee always reaching attractor states. Last, some attractors of A may not appear in FAcomp

because the number of attractors of A may be larger than that of G by Corollary 3.6.1.
The analysis in the previous paragraph is negative. However, the following reasons

convince the accuracy of ApproABN. First, the accuracy of filtSAT has been justified
by the experiments on many real biological and randomly generated networks (see Sec-
tion 3.5). This means that the result of filtSAT does not contain spurious or redundant
states in most cases. Consequently, ApproABN will not contain redundant states in
most cases. Second, a long random walk with a sufficient Imax usually makes a state in
F Gcomp reach an attractor of A. Even a state in F Gcomp has already belonged to an attractor
of A. Last, the number of attractors of an ABN is equal to that of its GABN counterpart
in most cases. Consequently, ApproABN will not miss any complex attractor of A in

34

3.6. RELATIONS IN DYNAMICS BETWEEN GABNS AND ASYNCHRONOUS
BOOLEAN NETWORKS

most cases.
Finally, we discuss the time complexity of Algorithm 5. Since there are 22n different

Boolean functions with n variables, the representation of a Boolean function may need
O(2n) space. Herein, we follow two assumptions on Boolean functions used in BNs in-
cluding (i) each Boolean function can be represented in a polynomial amount of space
and (ii) evaluation of each Boolean function can be done in polynomial time. Algorithm 5
includes two parts. The first part is the filtSAT method. The second part is the long
random walk whose time complexity is obviously polynomial with respect to n. The time
complexity of filtSAT must be not polynomial with respect to n because the problem
of finding a singleton attractor was proved NP-hard [121]. Thus, the time complexity of
Algorithm 5 is equivalent to the time complexity of filtSAT. filtSAT uses Z3 [118] and
some other tools as subroutines. Since the time complexity of such tools is unclear, it is
difficult to analyze the time complexity of filtSAT. We leave the analysis of theoretical
or practical computational complexity of ApproABN as future work.

3.6.3 Evaluation

We have implemented ApproABN in a JAVA tool. This tool uses the JDD library [112]
for BDD manipulation and uses Z3 [118] as the SAT solver. We then conducted experi-
ments on real biological networks obtained from the literature to evaluate the effectiveness
of ApproABN. All the experiments were run on a virtual machine whose environment
is CPU: Intel(R) Xeon(R) Silver 4116 4x2.10GHz, Memory: 24 GB, CentOS 7 64 bit.

We applied ApproABN, genYsis [43], and CABEAN [49] to BNs of 32 real biolog-
ical networks whose sizes range from 19 to 101. The Boolean functions of these 32 BNs
only include CONJUNCTION, DISJUNCTION, and NEGATION operators. We chose
genYsis and CABEAN because they are exact and famous tools for finding attractors of
ABNs. We used the executable files of genYsis and CABEAN that are online available.
Note that the result of genYsis or CABEAN is a set of attractors (i.e., AA), whereas
the result of ApproABN includes a set of singleton attractors (i.e., AAsing), a set of type1
attractors (i.e., AAtype1), and a set of states (i.e., FAcomp). CABEAN requires to use a
network reduction technique that removes all the leaf nodes [49] of a BN. This reduction
technique fully conserves the attractors of an ABN [122]. To ensure the fairness of the
experiments, we also used this reduction technique for all the considered methods. Let n′

be the number of nodes of the reduced network. For finding SBN attractors, ApproABN
uses the SAT-based method by [44] if n′ > 65 and uses the decomposition-based method
by [50] otherwise. Finally, the time limit for each BN was 10 hours because the running
time may be very long for large-scale networks.

Table 3.6 shows the obtained results. Columns ”name” and ”n” denote the name
and the number of nodes of a BN, respectively. Column ”c” denotes the number of
type2 attractors of the SBN counterpart of a BN. For each method (i.e., ApproABN,
genYsis, or CABEAN), |A| denotes the numbers of attractors obtained, ”time” denotes
the running time (in seconds). For ApproABN, Column ”SBN time” represents the
running time (in seconds) for finding SBN attractors of filtSAT and Column ”Correct?”
indicates whether ApproABN did or did not find exactly all the attractors of the ABN.
Hereafter, we present the way for validating the result of ApproABN based on the result
of CABEAN or genYsis (i.e., AA). If CABEAN succeeded to find attractors within
the time limit, we would use its result. Otherwise, we would use the result of genYsis

35

3.6. RELATIONS IN DYNAMICS BETWEEN GABNS AND ASYNCHRONOUS
BOOLEAN NETWORKS

if it succeeded to find attractors within the time limit. In the case that both CABEAN
and genYsis failed to find attractors within the time limit, we cannot determine the
correctness of ApproABN (i.e., N/A). Let AAcomp = AA\(AAsing ∪ AAtype1). We define a
number m as m = |{att ∈ AAcomp|att ∩ FAcomp 6= ∅}|. If m = |FAcomp| and m = |AAcomp|,
then we can conclude that the result of ApproABN is correct (i.e., Yes). Otherwise, the
result of ApproABN is incorrect (i.e., No). From the obtained results, we here report
some remarks as follows.

First, there are 26/32 networks in which CABEAN or genYsis succeeded to find at-
tractors within the time limit. In all these networks (except the T Cell Receptor Signaling
network), the result of ApproABN is always correct. In the T Cell Receptor Signaling
network, genYsis only returned the number of attractors, AA was not obtained be-
cause there are some unmanageable large attractors. Hence, we cannot determine the
correctness of ApproABN for this network. However, |A| of genYsis is equal to |A|
of ApproABN. This result justifies the accuracy of ApproABN. Furthermore, since
the accuracy of filtSAT has been justified (see Section 3.5), |A| of ApproABN seems
to be equal to the number of attractors of the GABN in most cases. This consolidates
the observation that the number of attractors of an ABN is equal to that of its GABN
counterpart in most cases [14].

Second, in the ApoptosisNetwork, HumanMyelomaCells, remy tumorigenesis, and
T Cell Receptor Signaling networks, CABEAN failed to find attractors within the time
limit, whereas genYis and ApproABN succeeded. In these networks, the running time
of ApproABN is much less than that of genYsis. Especially in the
T Cell Receptor Signaling network with n = 101, the running time of ApproABN
is even less than one minute. In the 28/32 remaining networks, CABEAN almost
outperforms genYsis. Thus, we only compare CABEAN with ApproABN. In the
IL 6 Signalling networks, both CABEAN and ApproABN failed to find attractors
within the time limit. There is room for improvement. In the 5/28 networks (e.g.,
the ButanolProduction network with n = 66, the Colitis associated colon cancer net-
work with n = 70), CABEAN failed to find attractors within the time limit, whereas
ApproABN succeeded. In particular, the running time of ApproABN for the Coli-
tis associated colon cancer network is even less than 15 minutes. In the 22/28 remaining
networks, both CABEAN and ApproABN succeeded to find attractors within the
time limit. In these networks, the running time of ApproABN is comparable to that of
CABEAN. To sum up, these results are evidence for the time efficiency of ApproABN
as compared to genYsis and CABEAN.

Third, in some networks (e.g., the Colitis associated colon cancer and Inflammatory-
BowelDisease networks), we can see that most of the running time of ApproABN was
spent for finding SBN attractors and the time for finding SBN attractors is large. Even in
the IL 6 Signalling network, ApproABN failed to find SBN attractors within the time
limit. We can easily see the high impact of finding SBN attractors on the performance
of ApproABN. ApproABN uses the SAT-based method by [44] or the decomposition-
based method by [50] for finding SBN attractors. These methods may be inefficient for the
above networks. Using a more efficient method or efficiently combining multiple methods
for finding SBN attractors may be a potential improvement.

Finally, in some networks (e.g., the Bcell, HGF Signaling in Keratinocytes, Septa-
tion Initiation Network, and YeastApoptosis networks), the running time of ApproABN
is much longer than that of CABEAN. In the ButanolProduction network, ApproABN

36

3.7. DISCUSSION

succeeded to obtain the result within the time limit, whereas both genYsis and CABEAN
failed. However, the running time is quite long (more than seven hours). We can see that
in these networks, the number of type2 attractors of the SBN counterpart is large. As
mentioned in Section 3.5, the number of iterations of filtSAT is equal to the number
of type2 attractors of the SBN counterpart. When this number is large, ApproABN
may be inefficient. Hence, excluding redundant SBN attractors before the filtering of
ApproABN may be a potential improvement.

3.7 Discussion

In this chapter, we have studied on several relations in dynamics between a GABN and its
SBN counterpart. Based on these relations as well as the dynamical properties previously
discovered, we have proposed three BDD-based algorithms for finding all attractors of
a GABN by using attractors of its SBN counterpart. The first algorithm (called FR-
BR-BDD-1) is inspired by the genYsis tool [98] that builds the total transition system
and then calculates backward reachable sets to find attractors of an ABN. The second
algorithm (called FR-BR-BDD-2) improves FR-BR-BDD-1 by building only partial
transition systems and calculating restricted backward reachable sets. The third algorithm
(called filtBDD) also builds partial transition systems like FR-BR-BDD-2, but it does
not calculate restricted backward reachable sets. This algorithm uses a filtering process.
Experiments were also conducted to compare the performance of these algorithms. The
experimental results show that filtBDD outperforms both FR-BR-BDD-1 and FR-
BR-BDD-2.

All FR-BR-BDD-1, FR-BR-BDD-2, and filtBDD must first calculate the forward
reachable set. The computation of the forward reachable set may be extremely long even
encounter OOM when the set becomes too large (usually when n is large). Hence, we
have then proposed a new method (called filtSAT) to overcome this problem. filtSAT
improves filtBDD by using SAT-based Bounded Model Checking (BMC) for checking the
reachability in GABNs. A new concept called diameter of attraction has been proposed
and used as a bound for the SAT-based BMC. Note that the result filtSAT is complete but
not sound, whereas the result of filtBDD is exact. That is, any attractor of an GABN will
be found by filtSAT but the result of filtSAT may contain spurious attractors. However,
the experimental results on both randomly generated and real biological networks confirm
the effectiveness (accuracy and efficiency) of filtSAT as compared to filtBDD.

Inspired by the above results, we have continued to explore relations in dynamics be-
tween GABNs and another popular type of BNs, ABNs. We have also obtained several
results that highlight the applications of the study on GABNs. First, we have formally
stated and proved several relations in dynamics between a GABN and its ABN counter-
part. These theoretical results not only contribute to the understanding of dynamics of
BNs but also can pave potential ways to analyze ABNs. We have developed a method
called ApproABN for efficiently approximating attractors of large-scale ABNs. We
have also conducted experiments on real biological networks obtained from the literature.
The experimental results justify the accuracy of ApproABN and the efficiency of Ap-
proABN as compared to the two state-of-the-art methods, genYsis and CABEAN.
Furthermore, these results also consolidate the observation that the number of attractors
of an ABN is equal to that of its GABN counterpart in most cases. This observation is

37

3.7. DISCUSSION

useful in studying dynamics of Boolean networks.
In many BNs of our experiments, most of the running time is spent for finding SBN

attractors. Therefore, we can improve the proposed methods by using a more efficient
method or efficiently combining multiple methods for finding SBN attractors. It is poten-
tially possible because there have recently been many efficient methods (e.g., [48, 50]) for
attractor detection in SBNs. Moreover, the number of iterations of the filtering process
of filtSAT is equal to the number of type2 attractors of the SBN counterpart. filtSAT
may be inefficient when this number is large. Hence, excluding redundant SBN attrac-
tors before the filtering process of filtSAT may be a potential improvement to filtSAT
(consequently ApproABN). It is also interesting to analyze the theoretical or practical
computational complexity of the proposed methods.

Roughly speaking, a GABN can be an intermediate model between its SBN and ABN
counterparts. The relations in dynamics between GABNs and SBNs as well as between
GABNs and ABNs have been explored in this chapter. However, to our best knowledge,
there is no existing work linking the cyclic attractors of an SBN and those of its ABN
counterpart. Hence, exploring the connection between SBNs and ABNs is theoretically
interesting and one of our future work. Furthermore, we also plan to extend our obtained
results to those for multi-valued networks that are an extension of BNs where each node
can receive more than two values.

38

3.7. DISCUSSION

T
ab

le
3.

6:
E

x
p

er
im

en
ta

l
re

su
lt

s
of

A
p

p
ro

A
B

N
,

g
e
n
Y

si
s,

an
d

C
A

B
E

A
N

on
re

al
b
io

lo
gi

ca
l

n
et

w
or

k
s.

”-
”

st
an

d
s

fo
r

th
e

ca
se

of
ti

m
eo

u
t.

g
e
n
Y

si
s

C
A

B
E

A
N

A
p
p
ro

A
B

N
n
am

e
n

c
|A
|

ti
m

e
|A
|

ti
m

e
S
B

N
ti

m
e

|A
|

ti
m

e
C

or
re

ct
?

A
p

op
to

si
sN

et
w

or
k

[1
19

]
41

25
8

55
0.

57
-

-
1.

12
8

6.
52

Y
es

A
u
ro

ra
K

in
as

eA
[1

19
]

23
36

32
2.

69
32

0.
48

0.
56

32
5.

29
Y

es
B

b
ro

n
ch

is
ep

ti
ca

T
re

to
rt

ae
fo

rm
is

[1
19

]
53

18
30

34
68

.2
2

30
42

1.
04

57
.9

9
30

60
.5

5
Y

es
B

ce
ll

[1
23

]
72

80
8

72
85

43
.6

3
72

29
.3

5
85

.5
0

72
11

15
.8

2
Y

es
B

or
d
et

el
la

b
ro

n
ch

is
ep

ti
ca

[1
19

]
33

1
3

1.
88

3
1.

73
0.

87
3

1.
41

Y
es

B
u
ta

n
ol

P
ro

d
u
ct

io
n

[1
19

]
66

13
31

2
-

-
-

-
10

0.
02

81
92

25
71

1.
04

N
/A

C
h
ol

es
te

ro
lR

eg
u
la

to
ry

P
at

h
w

ay
[1

19
]

34
17

4
4.

78
4

0.
47

1.
17

4
2.

82
Y

es
C

ol
it

is
as

so
ci

at
ed

co
lo

n
ca

n
ce

r
[1

19
]

70
84

-
-

-
-

70
1.

90
10

87
3.

26
N

/A
d
ah

lh
au

s
n
eu

ro
p
la

st
om

a
[1

24
]

23
34

32
2.

69
32

0.
51

0.
54

32
4.

93
Y

es
D

iff
er

en
ti

at
io

n
of

T
ly

m
p
h
o
cy

te
s

[1
19

]
50

24
0

-
-

20
50

85
.1

8
14

.3
0

20
50

25
1.

97
Y

es
D

ro
so

p
h
il
a

[1
25

]
52

0
-

-
12

8
19

80
.4

1
60

.5
5

12
8

66
.3

3
Y

es
F
A

B
R

C
A

p
at

h
w

ay
[1

19
]

28
0

1
15

.1
4

1
4.

15
1.

02
1

1.
41

Y
es

G
u
ar

d
C

el
lA

b
sc

is
ic

A
ci

d
S
ig

n
al

in
g

[1
19

]
44

92
28

7.
60

28
0.

82
0.

55
28

7.
71

Y
es

H
G

F
S
ig

n
al

in
g

in
K

er
at

in
o
cy

te
s

[1
19

]
68

27
57

72
11

58
.0

0
72

8.
47

26
.2

0
72

86
85

.9
3

Y
es

H
u
m

an
M

ye
lo

m
aC

el
ls

[1
19

]
67

13
9

83
12

65
6.

01
-

-
9.

18
83

16
.8

1
Y

es
IL

6
S
ig

n
al

li
n
g

[1
19

]
86

-
-

-
-

-
-

-
-

-
In

fl
am

m
at

or
y
B

ow
el

D
is

ea
se

[1
19

]
47

1
-

-
-

-
11

94
4.

1
1

11
94

8.
98

N
/A

L
y
m

p
h
oi

d
m

ye
lo

id
ce

ll
sp

ec
ifi

ca
ti

on
[1

19
]

33
0

21
21

.4
5

21
3.

32
1.

11
21

1.
94

Y
es

M
A

P
K

[1
19

]
53

28
-

-
-

-
17

.1
6

18
25

.1
5

N
/A

O
x
id

at
iv

eS
tr

es
sP

at
h
w

ay
[1

19
]

19
1

2
1.

43
2

0.
72

0.
07

2
0.

32
Y

es
P

C
12

C
el

lD
iff

er
en

ti
at

io
n

[1
19

]
62

0
3

4.
78

3
0.

59
0.

83
3

2.
44

Y
es

re
m

y
tu

m
or

ig
en

es
is

[1
26

]
35

42
25

15
.3

6
-

-
0.

90
25

4.
86

Y
es

S
en

es
ce

n
ce

[1
19

]
51

4
17

17
.7

3
17

2.
98

0.
66

17
3.

07
Y

es
S
ep

ta
ti

on
In

it
ia

ti
on

N
et

w
or

k
[1

19
]

31
16

00
64

0
49

.5
8

64
0

1.
21

1.
47

64
0

22
5.

30
Y

es
S
to

m
at

al
O

p
en

in
g

M
o
d
el

[1
19

]
49

12
48

29
.3

6
48

2.
35

0.
83

48
5.

01
Y

es
T

C
el

l
R

ec
ep

to
r

S
ig

n
al

in
g

[1
19

]
10

1
48

12
8

33
69

.8
9

-
-

3.
75

12
8

20
.8

4
N

/A
T

ce
ll
L

G
L

[1
19

]
60

98
14

2
20

98
7.

68
14

2
89

0.
47

54
.7

5
14

2
81

.1
8

Y
es

T
C

el
lS

ig
n
al

in
g

[1
19

]
40

3
8

0.
13

8
0.

03
0.

02
8

0.
25

Y
es

T
L

G
L

S
u
rv

iv
al

[1
19

]
61

26
8

-
-

-
-

90
.1

6
31

8
19

9.
96

N
/A

T
re

at
m

en
t

of
C

as
tr

at
io

n
R

es
is

ta
n
t

[1
19

]
42

0
16

38
4

18
.5

3
16

38
4

0.
71

4.
28

16
38

4
4.

41
Y

es
T

u
m

ou
rC

el
l

[1
19

]
32

6
9

2.
06

9
0.

51
0.

54
9

0.
85

Y
es

Y
ea

st
A

p
op

to
si

s
[1

19
]

73
97

28
84

48
45

.4
5

84
48

1.
15

14
.4

4
84

48
13

66
.3

7
Y

es

39

Chapter 4

Attractor Detection in Large-Scale
Asynchronous Boolean Networks

4.1 Introduction

There are two main types of BNs usually used for modeling biological networks: Syn-
chronous BNs (SBNs) and Asynchronous BNs (ABNs). The updating scheme of SBNs
is that all the nodes are updated simultaneously at each time step [43]. The updating
scheme of ABNs is that only one node is randomly and uniformly selected in order to
be updated at each time step [43]. In biology, the updating process of each gene may
spend various time from fractions of a second to hours [9]. Moreover, the information
on time scales of components is usually lacking [9]. Hence, ABNs are considered more
suitable [9, 51] for representing various time scales as well as dealing with the lack of
knowledge on time scales. However, whereas many efficient algorithms and tools (see,
e.g., [43, 44, 47, 48, 50]) have been developed for attractor detection in SBNs, few meth-
ods (see, e.g., [43, 45, 49]) have been proposed for attractor detection in ABNs due to the
high complexity of the STG of an ABN. A more detailed literature review on computa-
tional methods for attractor detection in BNs is provided in Section 4.2. Moreover, the
efficiency of these few methods is strictly prevented when the ABN becomes large, e.g.,
the number of nodes is over 100. Therefore, it is important and interesting to develop
efficient methods that can handle larger ABNs.

Inspired by the principle of reducing dynamics by [45], we propose a new method
to handle attractor detection in ABNs, especially for large ones (e.g., networks of over
100 nodes). The main idea of our method is similar to the idea of [45]. However, we
here present several generalized and improved results in both theoretical and practical
aspects. We first state and prove several relations between a Feedback Vertex Set (FVS)
of the interaction graph of a BN and the dynamics of the BN (Section 4.3). From these
relations, we propose an FVS-based method for detecting all possible attractors of an
ABN (Section 4.4). Our approach relies on an FVS of this ABN to get a candidate set
of states such that each attractor of the ABN contains at least one state of this set. We
then filter out the candidate set by performing the reachability analysis on the ABN. Our
method includes several constituent steps. For each step, we formalize the corresponding
problems, analyze them, and propose efficient solutions for them. The correctness of our
method is formally proved. We also propose several preprocessing procedures to reduce
the computational burden but the correctness of our method is still preserved. The

40

4.2. RELATED WORK

experimental results confirm the usefulness of the preprocessing procedures and are very
promising (Section 4.5).

Furthermore, we continue to propose an improved method that contains two substan-
tial enhancements to our method (Section 4.6). The first enhancement is a reasonable
combination of multiple previous techniques for checking the reachability in ABNs. The
second enhancement is to use an NFVS instead of an FVS to get the candidate set of
states. The theoretical foundation of this enhancement is a new theorem on a relation
between an NFVS of the interaction graph of an ABN and the dynamics of this ABN. We
also conduct experiments on various types of networks to evaluate the efficiency of the two
proposed enhancements. The experimental results show that the two enhancements are
effective and the improved method outperforms the original method. In particular, the
improved method can handle large networks with up to 1000 nodes in terms of randomly
generated networks and 321 nodes in terms of real biological networks.

4.2 Related Work

Attractor detection in BNs is a challenging problem that has been attracted much at-
tention from researchers in various fields, such as, systems biology, physics, mathematics,
formal methods. In this section, we briefly review several notably previous work related
to this problem.

The set of fixed points of a BN is invariant with respect to the updating scheme [14].
In other words, a BN and any its counterpart (e.g., ABN or GABN counterpart) have
the same set of fixed points. The computation of fixed points of a BN is also the simplest
case of the attractor detection in BNs. Many efficient methods [53, 127, 128, 129, 130]
have been proposed for this simplest case. Hereafter, we consider the general case of the
attractor detection in BNs, i.e., finding all possible attractors (fixed points and cyclic
attractors) of a BN.

Many algorithms and tools have been developed in the efforts to efficiently solve at-
tractor detection in BNs. For small networks (e.g., n ≤ 50), attractors can be simply
detected by various enumeration and simulation methods [47, 127, 131]. For larger net-
works, attractors can be efficiently detected with two techniques including BDDs and
SAT. In BDD-based methods [43, 98], the transition relation of a BN is encoded with
BDDs and the calculation of attractors exploits advantages of the efficient BDD opera-
tions. However, these methods still rely on the exhaustive traversal of the whole state
space, making their efficiency strictly prevented when the BN becomes large, e.g., n is
over 100. SAT-based methods [44, 93, 132] encode the attractor detection problem as a
satisfiability problem, then exploit the efficient implementation of SAT solvers. They can
handle larger networks within shorter time as compared to BDD-based methods. There
are also some methods [46, 47, 50, 127, 133] exploiting the relations between the network
structure and the network dynamics.

The above-mentioned methods are mainly designed for SBNs. Few methods have
been proposed in the efforts to efficiently solve attractor detection in ABNs. The first
effort is the BDD-based method [98] as an extension of that for SBNs. The authors
then improved this method by exploiting the relations between attractors of an ABN
and attractors of its SBN counterpart [43]. Their implemented tool (called genYsis)
has also been used widely in many research communities. There is also work [108] that

41

4.3. FEEDBACK VERTEX SETS AND BOOLEAN NETWORKS

slightly improves genYsis. In the field of formal methods, there are also some recent
work [134, 135] enhancing the BDD-based approach by symbolic state-space reduction
techniques. However, these methods [134, 135] are still basically based on the computation
of bottom SCCs of the STG of an ABN. This characteristic limits their efficiency. In 2011,
Skodawessely proposed a method [45] to detect ABN attractors based on FVSs and the
principle of reducing dynamics. This method seems to be promising but it can only
handle networks of up to 38 nodes. Recently, a decomposition-based method [49] was
proposed to deal with large ABNs. This method decomposes a large ABN into smaller
components (called blocks) based on the network structure, detects attractors in these
blocks, and then recovers the attractors of the original ABN. This method then was
enhanced by a technique for optimizing the decomposition of an ABN [136]. However,
the efficiency of the decomposition-based method largely depends on the sizes of the
decomposed blocks. Finally, we note that there are also several methods [52, 53, 54] for
approximating attractors of an ABN. Obviously, they however cannot guarantee finding
exactly all the attractors of an ABN.

4.3 Feedback Vertex Sets and Boolean Networks

We formally state and prove the below lemmas and theorems on relations between the
dynamics of a BN and its feedback vertex sets. Note that these lemmas and theorems do
not depend on the updating scheme of the BN.

Lemma 4.3.1. Let N be a BN whose interaction graph is acyclic. Then the STG of N
has no cycles.

Proof. We prove this lemma by using induction on the size n of N .
Let G be the STG of N . The case n = 1 is trivial since G has clearly only fixed points.

Assume that G has no cycles with n = k.
We consider the case n = k + 1. There exists a node xi without incoming arcs since

IG(N) is acyclic. Then, xi is fixed, i.e., fi = ai, ai ∈ B. In a cycle of G, the value
of xi must not be changed since xi is always ai once its value receives ai. xi can be
either 0 or 1. Let fN1 , ..., f

N
k+1 be Boolean functions of N . Then, N1 = (V N1 , FN1)

and N2 = (V N2 , FN2) be two BNs of k nodes where V N1 = V N2 = V N\{xi}, fN1
j =

fNj (x1, ..., xi/ai, xi+1, ..., xk+1), fN2
j = fN

j (x1, ..., xi/(1 − ai), xi+1, ..., xk+1) (j ∈ {1, ..., k +
1}, j 6= i). Let G1 and G2 be the STGs of N1 and N2, respectively. Obviously, a cycle
of G corresponds to a cycle of either N1 or N2. Since the interaction graphs of N1 and
N2 are acyclic and have k nodes, G1 and G2 have no cycles by the induction hypothesis.
Therefore, G has no cycles.

Lemma 4.3.2. Let N be a BN and its STG be G. Let U be an FVS of the interaction
graph of N . Then G has no cycles such that the values of the nodes in U do not change
through these cycles.

Proof. We prove this lemma by contradiction and using Lemma 4.3.1.
Let n be the number of nodes of N . Without loss of generality, we reorder the nodes

of N such that U = {x1, ..., xk} and V N\U = {xk+1, ..., xn}.
Assume thatG has a cycle such that the values of the nodes in U do not change through

this cycle (*). That is, the values of xi (i ∈ {1, ..., k}) are fixed. Let xi = ai, ai ∈ B

42

4.3. FEEDBACK VERTEX SETS AND BOOLEAN NETWORKS

(i ∈ {1, ..., k}). Then, N ′ = (V N
′
, FN

′
) be a BN of n − k nodes, where V N

′
= V N\U ,

fN
′

j = fNj (x1/a1, ..., xk/ak, xk+1, ..., xn) (j ∈ {k + 1, ..., n}). Let G′ be the STG of N ′.
Obviously, G′ has a cycle by (*). IG(N ′) is acyclic because U is an FVS. Hence, G′ has
no cycles by Lemma 4.3.1. This is a contradiction. Therefore, G has no cycles such that
the values of the nodes in U do not change through these cycles.

Theorem 4.3.1. Let N be a BN and its STG be G. Let U = {xi1 , ..., xik} be an FVS of
N . Let B = {bi1 , ..., bik} be a set of Boolean values corresponding to the nodes of U . G′ is

the graph obtained by removing all arcs (x, x′) from G where
∨k

j=1(xij ↔ bij∧x′ij ↔ 1−bij)
(*) holds. This means an arc (x, x′) will be removed if it changes at least one node xij ∈ U
from bij to 1− bij . In other words, the value of a node xij ∈ U in a state in G′ is retained
if this value is equal to bij . With this meaning, we call B as a set of ”retained” values.
Then G′ has no cycles.

Proof. We prove this theorem by using Lemma 4.3.2 to show that all cycles of G disappear
in G′.

Let c be an arbitrary cycle of G. By Lemma 4.3.2, there is a node xi ∈ {xi1 , ..., xik}
such that xi changes its value through this cycle. Since c is a cycle of states, it must
contain an arc (x, x′) such that xi = bi and x′i = 1 − bi. (x, x′) satisfies (*) and will be
removed. Then, c will disappear in G′.

Since c is arbitrary, all cycles of G will disappear in G′. Hence, G′ has no cycles. In
other words, G′ has only fixed points.

Example 4.3.1. Consider a BN N of three nodes associated to three variables (x1, x2,
x3). Its Boolean functions are given by

f1 = x2 ∨ x3,

f2 = x1 ∧ ¬x2,

f3 = x1.

Let A be the ABN counterpart of N . Figured 4.1a and 4.1 show the interaction graph of
N and the STG of A, respectively.

x1x2 x3

+ +

+ +

−

(a)

000 001

010

100

011

111 101 110

(b)

Figure 4.1: (a) Interaction graph of the BN shown in Example 4.3.1. (b) STG of the ABN
counterpart of the BN shown in Example 4.3.1.

43

4.3. FEEDBACK VERTEX SETS AND BOOLEAN NETWORKS

000 001

010

100

011

111 101 110

(a)

000 001

010

100

011

111 101 110

(b)

Figure 4.2: Reduced STGs of the ABN counterpart of the BN shown in Example 4.3.1
corresponding to (a) U = {x1, x2}, b1 = 0, b2 = 0 and (b) U = {x1, x2}, b1 = 0, b2 = 1.

Theorem 4.3.1 shows that the reduced STG of a BN has only fixed points. For example,
let us consider the ABN A shown in Example 4.3.1. Suppose that U is {x1, x2}. If
B = {b1, b2} = {0, 0}, then G′ is as in Figure 4.2a. The removed arcs are (001, 101),
(010, 110), (011, 111), (100, 110), and (101, 111). Obviously, G′ has only fixed points.

Intuitively, the removal of arcs of the STG of the BN may only increase the number
of attractors; each attractor of the original STG contains at least one attractor of the
reduced STG. The relations between the original STG and the reduced STG are given in
Lemma 4.3.3 and Theorem 4.3.2.

Lemma 4.3.3. Let N be a BN and its STG be G. G′ is the graph obtained by removing
an arc (x, y) from G. Let A and A′ be the sets of attractors of G and G′, respectively.
Then, there exists a mapping m : A→ A′ with m(att) ⊆ att for all att ∈ A and m(att1) 6=
m(att2) for all att1, att2 ∈ A, att1 6= att2 (*).

Proof. We consider all two cases as follows.
Case 1: (x, y) is not in any attractor of G. Obviously, all attractors of G are still in

G′. Choose the mapping m such that m(att) = att for all att ∈ A.
Case 2: (x, y) is in an attractor of G. Since attractors are pairwise disjoint, (x, y) is

only in one attractor of G say att. Obviously, x ∈ att and y ∈ att. Let F be the forward
reachable set of x in G′ (i.e., the set of all states reachable from x). Then F ⊆ att. There
is an attractor att′ of G′ such that att′ ⊆ F . So, att′ ⊆ att. All attractors of A\{att}
of G are still in G′. Choose the mapping m such that m(s) = s for s ∈ A\{att} and
m(att) = att′. Moreover, let Fy be the forward reachable set of y in G′. Then Fy ⊆ att.
There is an attractor att′y of G′ such that att′y ⊆ Fy. So, we can also choose the mapping m
such that m(s) = s for s ∈ A\{att} and m(att) = att′y. Since att′ may be different to att′y,
the mapping m may not be uniquely determined. For example, consider the ABN of the
BN in Example 4.3.1. Its STG G is as in Figure 4.1b. We have A = {{000}, {101, 111}},
G′ = G− (111, 101). Then, A′ = {{000}, {111}}. Obviously, there is a mapping m where
m({000}) = {000} and m({101, 111}) = {111}.

From Case 1 and Case 2, there exists a mapping m : A → A′ with m(att) ⊆ att for
all att ∈ A. Since attractors are pairwise disjoint, m(att1) 6= m(att2) for all att1, att2 ∈
A, att1 6= att2. Hence, m satisfies (*).

44

4.4. FVS-BASED METHOD

Therefore, we can conclude the proof.

Theorem 4.3.2. Let N be a BN and its STG be G. G′ is the graph obtained by removing
arcs from G. Let A and A′ be the sets of attractors of G and G′, respectively. Then, the
exists a mapping m : A → A′ with m(att) ⊆ att for all att ∈ A and m(att1) 6= m(att2)
for all att1, att2 ∈ A, att1 6= att2 (*).

Proof. We prove this theorem by using induction on p (the number of the removed arcs)
and using Lemma 4.3.3.

Without loss of generality, we order the removed arcs as e1, ..., ep, p ≥ 1. The base
case, p = 1, clearly holds. Indeed, there is a mapping m satisfying (*) by Lemma 4.3.3.
Assume that there is a mapping m satisfying (*) for all p ≤ k.

The inductive case, p = k + 1, also holds. G′ = G − {e1, ..., ek+1}. Let G′′ = G −
{e1, ..., ek} and A′′ be the set of attractors of G′′. By the induction hypothesis, we have
a mapping m1 : A → A′′ with m1(att) ⊆ att for all att ∈ A and m1(att1) 6= m1(att2) for
all att1, att2 ∈ A, att1 6= att2. G′ = G′′ − {ek+1}. By Lemma 4.3.3, we have a mapping
m2 : A′′ → A′ with m2(att) ⊆ att for all att ∈ A′′ and m2(att1) 6= m2(att2) for all
att1, att2 ∈ A′′, att1 6= att2. Choose m = m2 ◦m1. Clearly, m satisfies (*).

Therefore, we can conclude the proof.

Corollary 4.3.1. Let N be a BN and its STG be G. G′ is the graph obtained by removing
arcs from G. Let A and A′ be the sets of attractors of G and G′, respectively. Then,
|A′| ≥ |A|.

Proof. By Theorem 4.3.2, there is a mapping m : A → A′ with m(att) ⊆ att for all
att ∈ A and m(att1) 6= m(att2) for all att1, att2 ∈ A, att1 6= att2. Obviously, m is an
injection. Hence, |A′| ≥ |A|.

4.4 FVS-Based Method

From the relations presented in Section 4.3, we propose an FVS-based method (called
FVS-ABN) for finding all attractors (fixed points and cyclic attractors) of an ABN.
This method includes many constituent steps. We first show the general approach of
FVS-ABN. Then, we show each step in detail. More specifically, we formalize and
analyze the problems related to each step. Then, we propose methods to efficiently solve
these problems.

4.4.1 General Approach

The intuitive idea of FVS-ABN is as follows. Given an ABN A, let G be the STG of
A. FVS-ABN systematically removes arcs from G to obtain a new acyclic STG G′ (i.e.,
G′ contains only fixed points). Let F be the set of fixed points of G′. In G, FVS-ABN
then filters out F by using the reachability analysis on A. The obtained result is a set
of states that one-to-one corresponds to the set of attractors of A. This set is sufficient
because starting from a state s in an attractor, we can enumerate all other states of this
attractors by listing all states reachable from s. We can compactly represent FRA({s})
as a BDD [98] or a finite complete prefix [103]. Note that F also contains the set of fixed

45

4.4. FVS-BASED METHOD

points of the original STG G (say Ffix). Hence, FVS-ABN can remove Ffix from F
before filtering the set F .

Algorithm 6 shows the description of FVS-ABN. Note that the result of Algorithm 6
is a set of states where each state represents (i.e., belongs to) an attractor of the ABN.
Let see an example as follows. Consider the ABN of the BN shown in Example 4.3.1.
Suppose that U = {x1, x2}, b1 = 0, b2 = 1. The reduced STG G′ is given as in Figure 4.2b.
Then, F = {000, 010, 111} and Ffix = {000}. After finishing Line 8 of Algorithm 6, we
obtain F = {010, 111} and A = {000}. Suppose that s = 010 in the first iteration of the
while loop (Lines 9-14 of Algorithm 6). Since 010 reaches 000 in G, 010 is not added to
A. In the next iteration, s = 111, and it is added to A because 111 does not reach in G
any state in A ∪ F = {000}. Finally, A = {000, 111}, where 000 represents the attractor
{000} and 111 represents the attractor {111, 101}.

Algorithm 6 FVS-ABN

Input: An ABN A.
Output: A set A of states of A.
1: Find an FVS U = {xi1 , ..., xik} of A
2: Choose a set B = {bi1 , ..., bik} of retained values corresponding to the nodes of U
3: Let G be the STG of A
4: Let G′ be the reduced STG with respect to U and B
5: F ← the set of fixed points of G′

6: Ffix ← the set of fixed points of G
7: F ← F\Ffix

8: A← Ffix

9: while F 6= ∅ do
10: Remove a state s from F
11: if s does not reach in G any state in A ∪ F then
12: A← A ∪ {s}
13: end if
14: end while
15: return A

Theorem 4.4.1. Algorithm 6 finds exactly all attractors of an ABN.

Proof. By Theorem 4.3.1, G′ has no cycles. This means F is the set of all attractors of
G′.

After finishing Line 8 of Algorithm 6, each attractor of G contains at least one state
in A ∪ F by Theorem 4.3.2 (*). Through the while loop (Lines 9-14 of Algorithm 6), the
property (*) is preserved. Indeed, in each iteration, if s reaches a state s′ in A ∪ F and s
is in an attractor att of G, then s′ is also in att by the definition of an attractor.

After finishing the while loop, each attractor of G contains at least one state in A (a)
because F = ∅. We show that A has no two states s and s′ such that s and s′ are in the
same attractor of G (b). Indeed, if s and s′ is in the same attractor of G, then s (resp.
s′) reaches s′ (resp. s). If s is traversed before s′, then s cannot be added to A. If s′ is
traversed before s, then s′ cannot be added to A. Moreover, there is no state s in A such
that s is not in any attractors (c). Indeed, if such a state s exists, it must reach at least

46

4.4. FVS-BASED METHOD

an attractor, implying that it reaches A ∪ F . Hence, s cannot be added to A. This is a
contradiction.

From (a), (b), and (c), we have that A one-to-one corresponds to the set of attractors
of G. Therefore, Algorithm 6 finds exactly all attractors of the ABN.

4.4.2 Computing Feedback Vertex Sets

FVS is an important concept in graph theory. The problem of finding a minimum FVS is
known to be NP-hard [100]. Some approximation algorithms have been developed [137] to
solve this problem. However, such algorithms are usually complicated or only applicable
for undirected graphs. Hence, we here use a simple greedy algorithm for finding an
(not necessarily minimum) FVS. This greedy algorithm relies on Strongly Connected
Components (SCCs).

We first recall some definitions on graphs and an observation on FVSs. Let IG(N) =
(V,E) be the interaction graph of a BN N . Note that IG(N) is a signed directed graph.
We only consider the unsigned version of IG(N) that is obtained by: (1) removing the
sign in each edge of IG(N); (2) merging edges that have the same starting and ending
vertices into one edge. An SCC c is trivial if c is made of a single vertex v and (v, v) 6∈ E,
and is non-trivial otherwise. A vertex v is a self vertex if (v, v) ∈ E. Note that, if v is a
self vertex, all FVSs of IG(N) must contain v.

Algorithm 7 shows the description of our greedy algorithm. We here use Tarjan’s
algorithm [138] for finding the set of SCCs. Then, the set of non-trivial SCCs is easily
obtained. IG(N)[c] denotes the subgraph of IG(N) induced by the set of vertices c.
IG(N) − Vself is equivalent to IG(N)[V \Vself]. The outdegree of a vertex is defined as
the number of edges starting from this vertex.

Algorithm 7 The FindFVS algorithm for finding an FVS

Input: A directed graph IG(N) = (V,E).
Output: An FVS U of IG(N).
1: U ← ∅
2: Vself ← the set of self vertices of IG(N)
3: U ← U ∪ Vself
4: IG(N)← IG(N)− Vself
5: C ← the set of non-trivial SCCs of IG(N)
6: while C 6= ∅ do
7: Randomly pick an SCC c from C
8: Pick a vertex v with the maximum outdegree from c
9: U ← U ∪ {v}
10: Cc ← the set of non-trivial SCCs of IG(N)[c\{v}]
11: C ← C ∪ Cc

12: end while
13: return U

4.4.3 Computing Fixed Points

First, we consider the problem of computing the set of fixed points of the original STG
G of the ABN (see Line 6 of Algorithm 6). Ffix can be easily computed by using BDDs.

47

4.4. FVS-BASED METHOD

Specifically, Ffix can be represented as a BDD characterized by the propositional formula

n∧
i=1

(xi ↔ fi(x)).

Consequently, we can use SAT (All-SAT) to compute Ffix. In addition, we can also use
several other efficient methods [128, 129, 130] for solving this problem. For simplicity, we
here use BDDs and SAT. These techniques are enough for our experiments.

Second, we consider the problem of computing the set of fixed points of the reduced
STGG′ of the ABN (see Line 5 of Algorithm 6). We state this problem as in Problem 4.4.1.

Problem 4.4.1. Given an ABN A = (V A, FA), an FVS U of A, a retained set B. How
can we efficiently compute the set of fixed points of the reduced STG G′ with respect to U
and B?

In the ABN, a state s in G will become a fixed point in G′ if and only if the updating
of the node xi does not change si for all xi ∈ V A\U and the updating of the node xi does
not change si or changes si from bi to 1− bi for all xi ∈ U . Obviously, the set F of fixed
points of G′ can be characterized by a propositional formula. For example, consider the
ABN of the BN shown in Example 4.3.1. Suppose that U = {x1, x2}. Then, F can be
characterized by the formula

F char
U,B = {(x′1 ↔ x1) ∨ (x1 ↔ b1 ∧ x′1 ↔ 1− b1)}
∧ {(x′2 ↔ x2) ∨ (x2 ↔ b2 ∧ x′2 ↔ 1− b2)}
∧ (x′3 ↔ x3)

∧ (x′1 ↔ x2 ∨ x3) ∧ (x′2 ↔ x1 ∧ ¬x2) ∧ (x′3 ↔ x1),

where x and x′ denote the current state and the next state, respectively. Clearly, x′1, x
′
2, x
′
3

can be eliminated from F char
U,B . We obtain a new formula of F char

U,B whose variables are only
x1, x2, x3. Finally, we have

F char
U,B = {(x2 ∨ x3 ↔ x1) ∨ (x1 ↔ b1 ∧ (x2 ∨ x3 ↔ 1− b1))}
∧ {(x1 ∧ ¬x2 ↔ x2) ∨ (x2 ↔ b2 ∧ (x1 ∧ ¬x2 ↔ 1− b2))}
∧ (x1 ↔ x3).

We can generalize the formula F char
U,B as

F char
U,B =

{∧
xi∈U

[(fi(x)↔ xi) ∨ (xi ↔ bi ∧ fi(x)↔ 1− bi)]

}
∧

{∧
xi 6∈U

[fi(x)↔ xi]

}
.

Since U is an FVS, the value of xi 6∈ U is uniquely determined from the values of the
nodes of U . This means that we can obtain a formula that is equivalent to F char

U,B and
contains only the variables of the nodes in U . Thus, we can claim that |F | (the number
of fixed points of G′) is at most 2|U |. In real biological networks, the size of the minimum
FVS is often much smaller than n. Hence, |F | may be much smaller than the number of
possible states of the ABN (i.e., 2n) if we use a minimum FVS as U . Note that 2|U | is
only an upper bound of |F |, and |F | depends on both U and B. Hence, using a minimum
FVS may not ensure obtaining the smallest |F | (see Example 4.4.1).

48

4.4. FVS-BASED METHOD

Example 4.4.1. Consider the ABN counterpart of the BN shown in Example 4.3.1. The
interaction graph of this ABN has three FVSs including {x1, x2}, {x2, x3}, and {x1, x2, x3}.
Herein, {x1, x2} and {x2, x3} two minimum FVSs. If we choose U = {x1, x2}, b1 = 0, b2 =
1, then |F | = |{000, 010, 111}| = 3. If we choose U = {x1, x2, x3}, b1 = 0, b2 = 0, b3 = 0,
then |F | = |{000, 101}| = 2.

The authors of [45] used an enumeration-based approach that exhausts all 2|U | possible
values of the nodes of U . However, since F char

U,B is a propositional formula, we can use
some techniques, such as, BDDs or SAT (All-SAT). BDDs are often inefficient for large
networks. In our method, we therefore use BDDs and All-SAT to calculate F for networks
with n ≤ 60 and n > 60, respectively.

Obviously, |F | depends on the value of the set B. Consider the ABN of the BN in
Example 4.3.1. If we choose U = {x1, x2}, b1 = 0, b2 = 0, then |F | = |{000, 101}| = 2 (see
Figure 4.2a). If we choose U = {x1, x2}, b1 = 0, b2 = 1, then |F | = |{000, 010, 111}| = 3
(see Figure 4.2b). We expect that |F | is as small as possible because the number of
iterations of Algorithm 6 is clearly equal to |F | − |Ffix| and |Ffix| is fixed with respect to
a given ABN. Hereafter, we consider the problem of efficiently setting the set B to obtain
this expectation (see Problem 4.4.2).

Problem 4.4.2. Given an ABN A = (V A, FA), an FVS U of A, a retained set B. Find
a value for the retained set B such that the set of fixed points of the reduced STG G′ is
minimum.

In Algorithm 6, F is the set of fixed points of the reduced STG G′. By the afore-
mentioned analysis, F can be represented as a propositional formula F char

U,B of n Boolean
variables x1, ..., xn and m Boolean parameters bi1 , ..., bim , where 0 ≤ m ≤ n. Prob-
lem 4.4.2 aims at finding an assignment b∗i1 , ..., b

∗
im to bi1 , ..., bim such that the number sat-

isfying assignments of F char
U,B (bi1/b

∗
i1
, ..., bim/b

∗
im) to x1, ..., xn (the number of fixed points)

is minimum. For example, consider the ABN of the BN in Example 4.3.1. Suppose that
U = {x1, x2}. Then, F can be characterized by the formula

F char
U,B = {((x2 ∨ x3)↔ x1) ∨ (x1 ↔ b1 ∧ (x2 ∨ x3)↔ 1− b1)}
∧ {((x1 ∧ ¬x2)↔ x2) ∨ (x2 ↔ b2 ∧ (x1 ∧ ¬x2)↔ 1− b2)}
∧ (x1 ↔ x3).

If (b∗1, b
∗
2) = (0, 0), then the number of satisfying assignments of F char

U,B (b1/b
∗
1, b2/b

∗
2) is 2, i.e.,

|F | = 2 (see Figure 4.2a). If (b∗1, b
∗
2) = (0, 1), then the number of satisfying assignments

of F char
U,B (b1/b

∗
1, b2/b

∗
2) is 3, i.e., |F | = 3 (see Figure 4.2b).

Problem 4.4.2 is related to the problem of counting the number of satisfying assign-
ments of a propositional formula that is known as a #P-complete problem. Here, we con-
sider the constructive version of Problem 4.4.2 (i.e., the output of Problem 4.4.2 includes
the optimal assignment to bi1 , ..., bim and the minimum number of satisfying assignments
to x1, ..., xn). Problem 4.4.2 seems to be an optimization problem whose measure function
is a #P function, thus it seems to be in Opt#P [139]. The proof would be very technical
and long. However, we can see that it is too hard to solve Problem 4.4.2. Hence, we here
use a heuristic method to solve it.

Let us see the characterized formula F char
U,B of F . Intuitively, we need to assign the most

evaluation of fik (k ∈ {1, ...,m}) to bik . a ∈ B is the most evaluation of a function f if the

49

4.4. FVS-BASED METHOD

number of satisfying assignments on f ’s inputs of f ↔ a is greater than or equal to the
number of satisfying assignments on f ’s inputs of f ↔ 1−a. Assigning the most evaluation
of fik to bik makes the number of assignments to x1, ..., xn of (xik ↔ bik ∧fik(x)↔ 1− bik)
decreased. Since the number of assignments to x1, ..., xn of xik ↔ fik(x) does not depend
on bik , this rule can reduce the number of assignments to x1, ..., xn of {xik ↔ fik(x)∧(xik ↔
bik ∧ fik(x) ↔ 1 − bik)}. For example, the most evaluation of f1 = x2 ∨ x3 is 1 (from
the truth table, 1 (75%) and 0 (25%)), thus we assign 1 to b1. Similarly, b2 is assigned
to 0. Now, |F | is 2. The number of attractors of the ABN is 2, we thus obtain the
optimal value of |F | because the number of attractor of the ABN is a lower bound of |F |
by Theorem 4.3.2. Note that this idea follows a greedy manner, thus the optimality of
the solution is not guaranteed (see Example 4.4.2).

Example 4.4.2. Consider an ABN of three nodes (x1, x2, and x3). Its Boolean functions
are given by f1 = (¬x1∨¬x3)∧x2, f2 = ¬x1∨¬x2, f3 = ¬x2. Figures 4.3a and 4.3b denote
the interaction graph and the STG of the ABN, respectively. Suppose that U = {x1, x2}.
By the heuristic presented in the previous paragraph, we have b1 = 0, b2 = 1 and |F | =
|{010, 110}| = 2. However, if we choose b1 = 1, b2 = 1, we will obtain |F | = |{110}| = 1.

x1

x2 x3

−

+

−

−

−

−

(a)

000 010

001

110

011 111

101 100

(b)

Figure 4.3: An example ABN with its interaction graph (a) and its STG (b).

There is a small problem: How to efficiently calculate the most evaluation of fik?
Constructing a truth table of fik is a direct and simple way. However, when fik has many
input nodes, this way is inefficient because the number of rows of the truth table of fik is
2|IN (fik)|. Since fik can be encoded as a BDD, we can use the built-in SATCount function
in BDDs. The time complexity of SATCount is O(|IN (fik)|) [109]. In summary, we here
propose an algorithm for setting an assignment to B (see Algorithm 8). In this algorithm,
SATCount(fi) returns the number of satisfying assignments of fi. ctrue and cfalse denote
the numbers of assignments in which the values of fi are 1 and 0, respectively. In the for
loop, when ctrue = cfalse, we randomly assign either 1 or 0 to bi.

4.4.4 Preprocessing

As aforementioned in the previous subsection, the number of iterations of Algorithm 6
is equal to |F |. Note that all fixed points of the ABN have been excluded from F (see

50

4.4. FVS-BASED METHOD

Algorithm 8 Algorithm for setting an assignment to B

Input: B = {bi1 , ..., bim}.
Output: An assignment (b∗i1 , ..., b

∗
im) to bi1 , ..., bim .

1: for all i ∈ {i1, ..., im} do
2: ctrue ← SATCount(fi)
3: cfalse ← 2|IN (fi)| − ctrue
4: if ctrue > cfalse then
5: b∗i ← 1
6: else if ctrue < cfalse then
7: b∗i ← 0
8: else
9: b∗i ← randomly either 1 or 0
10: end if
11: end for
12: return (b∗i1 , ..., b

∗
im)

Line 7 of Algorithm 6). It is better if we can reduce the size of F but still retain the cor-
rectness of FVS-ABN. With this motivation, we here propose a preprocessing that aims
at shrinking the set F . We name this preprocessing as Preprocessing-SSF (Shrinking
the Set F). In each iteration of Preprocessing-SSF, we choose randomly a node xi to
be updated. Then, F ← FIAxi

(F), where FIAxi
(F) is the forward image set of F of the

ABN A by updating node xi (see Section 2.1). Note that FIAxi
(F) can be easily computed

by using BDDs (see [43]). The number of iterations can be empirically obtained. We
shall discuss this issue in more detail at the end of this subsection. Hereafter, we show
that Preprocessing-SSF preserves the correctness of Algorithm 6 by three following
properties of ABNs (see Propositions 4.4.1, 4.4.2, and 4.4.3). We omit the proofs of these
properties because they are obvious.

Proposition 4.4.1. Let F ′ be the forward image set of F by updating node xi. Then,
|F ′| ≤ |F |. In addition, two states of F may have the same next state by updating node
xi. In this case, we have |F ′| < |F |.

Proposition 4.4.2. If state s belongs to an attractor of the ABN, then s′ also belongs to
this attractor, where s′ is an arbitrary state reachable from s in the STG of the ABN.

Proposition 4.4.3. Let s be a state of the ABN A. Then, FRA({s′}) ⊆ FRA({s}),
where s′ is a next state of s in the STG of A.

Proposition 4.4.1 guarantees that the cardinilaty of F does not increase through these
iterations even may decrease. Proposition 4.4.2 guarantees that all cyclic attractors of
the ABN still appear in the set F , thus all attractors of the ABN still appear in A ∪ F .
Proposition 4.4.3 justifies the usefulness of Preprocessing-SSF for the next steps of
FVS-ABN because the forward reachable set of each state in F may be shrunk. Note
that after finishing iterative procedure, F may contain some fixed points of the ABN.
Hence, we need to again exclude the fixed points of the ABN from F , i.e., to again
perform Line 7 of Algorithm 6. Now, all attractors of the ABN still appear in A ∪ F .
Consequently, the correctness of FVS-ABN is retained.

51

4.4. FVS-BASED METHOD

To illustrate Preprocessing-SSF, we continue with the ABN A of the BN shown in
Example 4.3.1. Assume that U = {x1, x2}, b1 = 0, b2 = 1. Then, F = {000, 010, 111}
(see Figure 4.2b). After finishing Lines 7 and 8 of Algorithm 6, we have F = {010, 111}
and A = {000}. Assume that the number of iterations of Preprocessing-SSF is 2.
Let I = 〈xi1 , xi2〉 denote the sequence of the updated nodes. If I = 〈x1, x2〉, then
F = {010, 111} → F = {110, 111} → F = {110, 101} (see Figure 4.1b). Obviously, the
cardinilaty of F does not increase and all the attractors ({000} and {101, 111}) still appear
in A ∪ F through these iterations. We have FRA({110}) = {110, 100, 000, 101, 111} and
FR({010}) = {010, 110, 100, 000, 101, 111}. Proposition 4.4.3 holds because FRA({110}) ⊆
FRA({010}). If we choose I = 〈x1, x3〉, then F = {010, 111} → F = {110, 111} → F =
{111} (see Figure 4.1b). In this case, the cardinilaty of F even decreases. In addition,
if we choose I = 〈x2, x3〉, then F = {010, 111} → F = {000, 111} → F = {000, 111}
(see Figure 4.1b). The cardinilaty of F is unchanged. However, after excluding the fixed
points from F again, we have F = {111}, i.e., the cardinilaty of F decreases.

Finally, we discuss how to set the number of iterations of Preprocessing-SSF (say
Imax). Obviously, we expect that Imax is good enough, i.e., Imax is not too large and the
cardinilaty of F after Preprocessing-SSF is as small as possible. Preprocessing-SSF
is optimal when the cardinilaty of F after Preprocessing-SSF is equal to the number
of cyclic attractors of the ABN. We set Imax based on the following intuitions. First,
if n increases (resp. decreases) then Imax should increase (resp. decrease). Second, if
|F | increases (resp. decreases) then Imax should increase (resp. decrease). Third, if
Ffix increases (resp. decreases) then Imax should decreases (resp. increases). Last, Imax

however should not exceed a threshold. Combining with running some sample networks,
we empirically set Imax as

Imax = min(2× n1.5 × |F |/(1 + |Ffix|), 5000),

where we use 1 + |Ffix| to deal with the case |Ffix| = 0.

4.4.5 Reachability Analysis

Reachability is a central problem in systems science. It is also the key task in our method.
In theory, the reachability in ABNs has been proved PSPACE-complete [105]. Thus, it
is difficult to solve this problem. However, in practice, there are various methods for
checking the reachability in ABNs. Since the set of states reachable from the starting
state may be very large, the explicitly depth-first search and breadth-first search manners
are inefficient. We need a more efficient approach. The use of BDDs on a breadth-first
search-based method is a better solution. However, it still meets the inherent problems of
BDDs [110] (e.g., extremely long computational time, OOM). SAT-based BMC [110] is an
efficient approach. However, it is incomplete unless we use a completeness threshold that
is usually very hard to compute even for the case of SBNs [44]. Note that an ABN has
high concurrency [105]. Hence, we can use an unfolding-based approach that is known
to be an efficient approach that exploits the concurrency of asynchronous systems [106].
Recently, some efficient approximation methods (e.g., Pint [140], ASPReach [141]) have
been proposed for checking the reachability in ABNs. The authors reported that these
methods can handle large-scale networks. However, they are of course incomplete. More-
over, in the experiments reported in [140, 141], the start and target states only cover a
small set of nodes. We here aim at proposing an exact and efficient method for finding

52

4.4. FVS-BASED METHOD

all attractors of an ABN. Therefore, we focus on unfolding-based methods for checking
the reachability in ABNs.

The method for encoding an ABN as a 1-safe PN has been proposed [103]. Thus,
we can apply the algorithms [106] for checking the reachability in 1-safe PNs to those in
ABNs. Hereafter, we show how Line 11 of Algorithm 6 is performed. Obviously, we can
perform it by calling UnfReach(A, s, A∪F). The description of the function UnfReach
is shown in Algorithm 9. However, there are two problems needed to be considered. First,
in the case that the reachability holds, we do not need to build the whole finite complete
prefix PU . Second, MF is a set of markings. It is too waste when calling Mole |MF | times
due to the standard function of Mole is to check only whether a given 1-safe PN reaches
a desirable marking.

To deal with these problems, we here propose a new method (called OnTheFlyMole)
based on an on-the-fly manner. Note that the authors of [103] have also used Petri net
unfoldings for checking the reachability in ABNs. However, they have not shown in detail
their method. Our method may be similar to the method by [103]. We first add new
transitions to P . A new transition corresponds to a marking in MF . For each transition
tm(m ∈MF), we add new arcs from all places in m to tm. This means that when reaching
the marking m, tm is enabled. Then, in the process of building the finite complete prefix
PU , whenever at least one new transition is enabled (i.e., this transition will appear in PU)
we terminate the process and return true (i.e., reachable). When finishing the process,
we return false (i.e., unreachable). Mole also supports an on-the-fly manner. However, it
only deals with the case of one transition. Therefore, we have adjusted a little the source
code of Mole to implement our method.

Back to the UnfReach function, its special case is when F = ∅. For this case, we
simply return false (i.e., unreachable). When F 6= ∅, we set the corresponding mark-
ing of s in P (denoted by [[s]]P) as the initial marking of P and then simply call
OnTheFlyMole(P ,MF), where MF is the set of markings of P corresponding to the
states in F of A.

Algorithm 9 UnfReach

Input: An ABN A, a state s, a set F of states.
Output: Whether s reaches F in the STG of A?
1: F ← Preprocessing-BCN(s, F)
2: if F = ∅ then
3: return false
4: else
5: P ← the encoded 1-safe PN of A
6: M0 ← [[s]]P
7: Set M0 as the initial marking of P
8: MF ← {[[x]]P |x ∈ F}
9: return OnTheFlyMole(P ,MF)
10: end if

The size of the built prefix of an encoded 1-safe PN may be very large. In this case,
the computation of finite prefixes may be intractable. To mitigate this issue, we first use
a preprocessing step in the UnfReach function. This preprocessing aims at checking
the reachability in an ABN without building its prefixes or at least reducing the number

53

4.5. EXPERIMENTS

of target states (i.e., the states of F). The optimal case is when F = ∅, implying that
s does not reach F in the STG of A. Hereafter, we only show the description of this
preprocessing, its usefulness shall be discussed in Subsection 4.5.1.

We first define a special type of nodes in a BN as follows. A node xi, i ∈ {1, ..., n} is
called a zero-constant or one-constant node if fi ∧ ¬xi = 0 or fi ∨ ¬xi = 1, respectively.
In the biological context, a constant node will retain its value once it is set to a specific
value (0 or 1). For example, if fi = 0 or fi = xi∧ ..., then xi is called a zero-constant node.
On the other hand, if fi = 1 or fi = xi ∨ ..., then xi is called a one-constant node. The
proposed preprocessing is based on the properties of zero-constant and one-constant nodes.
We name this preprocessing as Preprocessing-BCN (Based on Constant Node). Let
V 0 and V 1 be the sets of zero-constant nodes and one-constant nodes of A, respectively.
For each node xi ∈ V 0, if si = 0 we can remove from F the state s′ such that s′i = 1. For
each node xi ∈ V 1, if si = 1 we can remove from F the state s′ such that s′i = 0. Now,
we obtain a new set F ′ satisfying s reaches F in the STG of A if and only if s reaches F ′

in the STG of A.

4.5 Experiments

We have implemented the proposed method for finding ABN attractors in a JAVA tool
with the same name FVS-ABN. FVS-ABN uses the JDD library [112] for BDD ma-
nipulation and Z3 [118] as the SAT solver. An executable file of FVS-ABN and some
examples of real biological networks are available at https://sites.google.com/site/
trinhgiangjaist/fvs-abn. To evaluate the efficiency of Preprocessing-SSF, we con-
ducted experiments to compare the performance of two variants of FVS-ABN. The first
variant (sayM1) does not use Preprocessing-SSF, whereas the second variant (sayM2)
uses Preprocessing-SSF. We also compare the performance among M1, M2, genY-
sis [43], and CABEAN [49]. We choose genYsis and CABEAN because they are exact
and famous tools for finding attractors of an ABN.

All the experiments were run on a virtual machine whose environment is CPU: Intel(R)
Xeon(R) Silver 4116 4x2.10GHz, Memory: 24 GB, CentOS 7 64 bit. We used two sets of
Boolean networks. The first set includes BN models of real biological networks obtained
from the literature. The second set includes BNs random generated with Bool Net
R package [117]. Note that FVS-ABN uses BDDs in Preprocessing-SSF and both
genYsis and CABEAN are BDD-based methods. Since high memory consumption is
an inherent problem of BDDs, memory needs to be considered. In our experiments, we
set the heap size to 16 GB. With this heap size, all these methods never met OOM before
exceeding the time limit in all networks.

4.5.1 Experimental Results on Real Biological Networks

We applied the four algorithms to BNs of 32 real biological networks whose sizes range
from 19 to 101. A BN can have some input nodes xi that do not change their values
through the evolution of the BN (i.e., fi = xi). We here consider the networks where
the value of an input node is not fixed to either 0 or 1. CABEAN requires to use a
network reduction technique that removes all the leaf nodes [47] of the BN. This reduction
technique fully conserves the attractors of an ABN [122]. To ensure the fairness of the
experiments, we also used this reduction technique for both FVS-ABN and genYsis.

54

https://sites.google.com/site/trinhgiangjaist/fvs-abn
https://sites.google.com/site/trinhgiangjaist/fvs-abn

4.5. EXPERIMENTS

Last, the time limit for each network was set to 10 hours because the running time may
be very long for large-scale networks.

Table 4.1 shows the experimental results. Columns 1, 2, 3, and 4 denote the name
of the network, the number of nodes (n), the size of the used FVS (|U |), and the num-
ber of attractors (|A|), respectively. Column ”|F |” denotes the size of the filtering set
F before using Preprocessing-SSF, whereas Column ”|F1|” denotes that after using
Preprocessing-SSF. Column ”time (s)” denotes the running time in seconds. ”-” stands
for the case of not obtaining the result within the time limit. We observed that in some
BNs, CABEAN terminated before exceeding the time limit and the Segmentation fault
error was printed. We guessed that in the computation of attractors, CABEAN will
terminate when meeting a criterion (e.g., the size of the computed attractor exceeds a
threshold). Anyway, CABEAN did not finish the computation of attractors in this
case. For these BNs, we reported the time when CABEAN terminated and used ”*” to
indicate the case. From these results, we obtain five remarks as follows.

First, the size of the FVS obtained by the FindFVS algorithm (see Algorithm 7) is
much smaller than the network size in all the networks (especially in, e.g., the
HGF Signaling in Keratinocytes network, the PC12CellDifferentiation network, the
T Cell Receptor Signaling network). This observation confirms that FindFVS is good
enough for finding a minimum or near minimum FVS.

Second, |F1| is smaller than |F | in 29/32 networks. In addition, M2 outperforms
M1 in most networks, especially in, e.g., the FA BRCA pathway network, the Bcell
network, and the MAPK network. Note that in some networks (e.g., the Differenti-
ation of T lymphocyte network, the YeastApoptosis network, the IL 6 Signalling net-
work), M2 is much slower than M1. This is apparent because we must take time for
Preprocessing-SSF. However, the difference between running time of M2 and M1 is
insignificant or the running time of M2 is reasonable (< 11 mins) in these networks.
These observations are evidence for the usefulness of Preprocessing-SSF.

Third,M2 outperforms genYsis in most networks. In 8/32 networks, genYsis failed
to obtain the result within the time limit, whereas M2 succeeded. In 1/32 network (the
YeastApoptosis network), M2 is slower than genYsis. However, the difference between
running time of M2 and genYsis is insignificant. In most of the 23/32 remaining net-
works, M2 is much faster than genYsis. Especially, the difference between the running
time of M2 and genYsis is very large in some of these networks, such as, the Bcell net-
work (22.59 and 8702.80), the HumanMyelomaCells network (47.00 and 12983.39), the
TcellLGL network (55.56 and 21198.63). Furthermore, M1 even completely outperforms
genYsis in some networks (e.g., the Colitis associated colon cancer network, the Differ-
entiation of T lymphocytes network, the IL 6 Signalling network). These observations
show the effectiveness of the FVS-based method as compared to genYsis.

Fourth, M2 also outperforms CABEAN in most networks. In 10/32 networks,
CABEAN failed to finish the computation of attractors, whereas M2 succeeded within
the time limit. Even the running time of CABEAN before terminating is greater (e.g.,
the T Cell Receptor Signaling network) or much greater (e.g., the InflammatoryBowelD-
isease network, the TLGLSurvival network, the Colitis associated colon cancer network)
than the running time ofM2. In 9/32 networks,M2 is slower than CABEAN. However,
the difference between the running time of M2 and CABEAN is insignificant (e.g., the
AuroraKinaseA network, the GuardCellAbscisicAcidSignaling network) or the running
time of M2 is reasonable (e.g., the Differentiation of T lymphocytes network, the Yeast-

55

4.5. EXPERIMENTS

Apoptosis network). In most of the 13/32 remaining networks, M2 is much faster than
CABEAN. Especially, the difference between the running time of M2 and CABEAN
is very large in some of these networks, such as, the TcellLGL network (55.56 and 916.23)
and the Drosophila network (4.88 and 1984.40). Furthermore, M1 even completely out-
performs CABEAN in some networks (e.g., the Colitis associated colon cancer net-
work, the Differentiation of T lymphocytes network, the IL 6 Signalling network, the
T Cell Receptor Signaling network). These observations show the effectiveness of the
FVS-based method as compared to CABEAN.

Last, M1 and M2 even can handle large networks in terms of attractor detection in
ABNs without using any network reduction technique. We here report the running time of
M1 andM2 for some large networks without using any network reduction technique. For
the IL 6 Signalling network (n = 86), the running time ofM1 andM2 is 1323.38 seconds
and 368.56 seconds, respectively. For the T Cell Receptor Signaling network (n = 101),
the running time ofM1 andM2 is 583.71 seconds and 1463.30 seconds, respectively. Note
that genYsis failed to obtain the result within the time limit in all the two networks.
The analysis for these networks was usually performed by using their reduced versions
(e.g., removing leaf nodes or fixing input nodes) because of the performance limitations
of the existing tools. Therefore, the advanced computation capability of our method can
enable biologists to conduct more accurate analysis on large networks.

In this end of this subsection, we shall discuss the usefulness of Preprocessing-BCN
presented in Subsection 4.4.5 as well as the impact of the picked FVS to the performance
of our method (i.e., M2).

By applying M2 without using Preprocessing-BCN on some real networks of the
benchmark, we observed that Preprocessing-BCN can accelerate the running time of
our method. In the remy tumorigenesis network, the speedup by using Preprocessing-
BCN is 9.13/3.35 = 2.73. Especially, in the IL 6 Signalling and T Cell Receptor Signaling
networks,M2 without using Preprocessing-BCN did not find all the attractors within
10 hours, whereasM2 with using Preprocessing-BCN found all the attractors in 297.51
seconds and 5.27 seconds, respectively (see Table 4.1).

By applyingM2 with randomly choosing an FVS on some real networks of the bench-
mark, we observed that the picked FVS may largely impact the performance of our
method. In the IL 6 Signalling network, we obtained the result as |U | = 25 and the
running time is 3337.85 seconds. The result by using Algorithm 7 for choosing an FVS
is |U | = 21 and the running time is 297.51 seconds (see Table 4.1). Especially, in the
ButanolProduction network, we obtained the result as |U | = 30 and M2 did not find all
attractors within 10 hours, whereas the result by using Algorithm 7 for choosing an FVS
is |U | = 18 and the running time is 324.22 seconds (see Table 4.1). We have shown in
Subsection 4.4.3 that having the minimum FVS may not ensure having the best perfor-
mance. However, using a minimum or nearly minimum FVS is still a good strategy to
obtain good performance at least in our benchmarks.

4.5.2 Experimental Results on Randomly Generated Networks

We randomly generated a set of N -K BNs [22] with network size n in the set {50, 55, 60,
65, 70, 75, 80, 85, 90, 95, 100, 105, 110} and K = 2 (i.e., each node has exactly K = 2
input nodes). For each network size, 20 instances were generated. In total, we have 260
random BNs.

56

4.5. EXPERIMENTS
T

ab
le

4.
1:

E
x
p

er
im

en
ta

l
re

su
lt

s
of
M

1
,
M

2
,
g
e
n
Y

si
s,

an
d

C
A

B
E

A
N

on
re

al
b
io

lo
gi

ca
l

n
et

w
or

k
s.

M
1

M
2

g
e
n

Y
si

s
C

A
B

E
A

N
n

et
w

or
k

n
am

e
n
|U
|

|A
|

|F
|

ti
m

e
(s

)
|F
|
|F

1
|

ti
m

e
(s

)
ti

m
e

(s
)

ti
m

e
(s

)
O

x
id

at
iv

eS
tr

es
sP

at
h
w

ay
[1

19
]

19
4

2
4

0.
71

4
1

0.
20

1.
4

0.
73

A
u

ro
ra

K
in

as
eA

[1
19

]
23

8
32

32
0.

61
32

16
0.

73
2.

75
0.

49
d

ah
lh

au
s

n
eu

ro
p

la
st

om
a

[1
24

]
23

8
32

32
0.

64
32

16
0.

65
2.

73
0.

54
F
A

B
R

C
A

p
at

h
w

ay
[1

19
]

28
11

1
13

-
13

2
0.

73
10

.0
2

4.
19

S
ep

ta
ti

on
In

it
ia

ti
on

N
et

w
or

k
[1

19
]

31
10

64
0

32
0

1.
43

32
0

0
1.

12
51

.9
2

1.
22

T
u

m
ou

rC
el

l
[1

19
]

32
13

9
11

7
1.

75
11

7
0

0.
60

2.
33

0.
51

B
or

d
et

el
la

b
ro

n
ch

is
ep

ti
ca

[1
19

]
33

9
3

18
61

.8
5

18
0

0.
55

2.
03

1.
73

L
y
m

p
h

oi
d

m
ye

lo
id

ce
ll

sp
ec

ifi
ca

ti
on

[1
19

]
33

8
21

35
1.

75
35

0
0.

59
21

.6
9

3.
51

C
h

ol
es

te
ro

lR
eg

u
la

to
ry

P
at

h
w

ay
[1

19
]

34
3

4
2

0.
44

2
0

0.
25

4.
85

0.
49

re
m

y
tu

m
or

ig
en

es
is

[1
26

]
35

16
25

89
2

72
.0

8
89

2
5

3.
35

15
.9

1
2.

49
*

T
C

el
lS

ig
n

al
in

g
[1

19
]

40
6

8
5

0.
46

5
1

0.
16

0.
22

0.
04

A
p

op
to

si
sN

et
w

or
k

[1
19

]
41

7
8

8
6.

08
12

8
7.

27
58

1.
07

6.
62

*
T

re
at

m
en

t
of

C
as

tr
at

io
n

R
es

is
ta

n
t

[1
19

]
42

14
16

38
4

0
0.

49
0

0
0.

13
18

.1
8

0.
73

G
u

ar
d

C
el

lA
b

sc
is

ic
A

ci
d

S
ig

n
al

in
g

[1
19

]
44

8
28

20
0.

61
32

15
1.

33
7.

90
0.

83
In

fl
am

m
at

or
y
B

ow
el

D
is

ea
se

[1
19

]
47

22
1

96
0

-
96

0
1

2.
47

-
12

.7
7*

S
to

m
at

al
O

p
en

in
g

M
o
d

el
[1

19
]

49
13

48
39

0
9.

48
24

3
14

10
.9

9
31

.2
2

2.
38

D
iff

er
en

ti
at

io
n

of
T

ly
m

p
h

o
cy

te
s

[1
19

]
50

18
20

50
55

81
80

.3
7

55
81

0
62

7.
76

-
89

.7
5

S
en

es
ce

n
ce

[1
19

]
51

12
17

84
13

.6
9

84
2

9.
93

18
.0

5
3.

00
D

ro
so

p
h

il
a

[1
25

]
52

14
12

8
84

1.
46

84
0

4.
88

-
19

84
.4

0
M

A
P

K
[1

19
]

53
10

18
10

2
-

22
6

6
8.

15
-

5.
54

*
B

b
ro

n
ch

is
ep

ti
ca

T
re

to
rt

ae
fo

rm
is

[1
19

]
53

15
30

29
8

77
94

.3
1

29
8

0
15

.6
1

35
56

.8
5

44
0.

16
T

ce
ll

L
G

L
[1

19
]

60
23

14
2

11
15

6
-

11
15

6
10

8
55

.5
6

21
19

8.
63

91
6.

23
T

L
G

L
S

u
rv

iv
al

[1
19

]
61

25
31

8
18

27
6

-
18

27
6

26
0

17
4.

66
-

14
79

.2
3*

P
C

12
C

el
lD

iff
er

en
ti

at
io

n
[1

19
]

62
3

3
0

0.
39

0
0

0.
20

5.
01

0.
59

B
u

ta
n

ol
P

ro
d

u
ct

io
n

[1
19

]
66

18
81

92
12

41
6

-
12

41
6

61
44

32
4.

22
-

24
.8

0*
H

u
m

an
M

ye
lo

m
aC

el
ls

[1
19

]
67

14
83

55
8

13
05

.7
5

55
8

0
47

.0
0

12
98

3.
39

0.
02

*
H

G
F

S
ig

n
al

in
g

in
K

er
at

in
o
cy

te
s

[1
19

]
68

10
72

25
6

5.
3

25
6

0
3.

79
12

00
.0

4
8.

75
C

ol
it

is
as

so
ci

at
ed

co
lo

n
ca

n
ce

r
[1

19
]

70
13

10
84

51
6.

06
10

0
14

39
1.

05
-

12
61

4.
96

*
B

ce
ll

[1
23

]
72

19
72

93
4

12
91

2.
62

93
4

69
22

.5
9

87
02

.8
0

29
.8

4
Y

ea
st

A
p

op
to

si
s

[1
19

]
73

17
84

48
43

52
3.

08
43

52
43

52
75

.3
2

45
.8

5
1.

16
IL

6
S

ig
n

al
li

n
g

[1
19

]
86

21
32

76
8

20
48

0
10

4.
14

20
48

0
40

96
29

7.
51

-
11

.7
1*

T
C

el
l

R
ec

ep
to

r
S

ig
n

al
in

g
[1

19
]

10
1

10
12

8
72

2.
89

72
24

5.
27

35
96

.6
5

6.
35

*

57

4.6. IMPROVEMENTS

We then appliedM2, genYsis, and CABEAN to the 260 random BNs and recorded
the number of failures (i.e., failed to obtain the result within 30 minutes). Since the
usefulness of Preprocessing-SSF has been justified in the previous subsection, we did
not apply M1 to these BNs. Note that we also used the network reduction technique
as in Subsection 4.5.1. The results are shown in Figure 4.4. As we can see, the number
of failures of genYsis or CABEAN rapidly approaches 20. On the other hand, M2

can even handle 30 or 55 percent of networks for n = 105 or n = 110, respectively. In
addition, in each network size, the number of failures of genYsis or CABEAN is always
larger than that of M2. These observations show that M2 is more scalable than both
genYsis and CABEAN in terms of N -K BNs.

For n = 110,M2 failed to obtain the result within 30 minutes in 45 percent of networks.
Note that these BNs have been reduced by using the network reduction technique based
on leaf nodes. In the biological context, 110-node networks are not very large because
comprehensive analysis of gene regulatory networks often requires formal models including
hundreds or even thousands of elements [49]. Thus,M2 (as also other previous methods)
is generally incapable of handling very large BNs (e.g., 500-node or 1000-node BNs).
Improving M2 to handle such BNs is one of our future work.

0 50 55 60 65 70 75 80 85 90 95100105110
0

4

8

12

16

20

Number of nodes

N
u

m
b

er
of

fa
il

u
re

s

genYsis
CABEAN
M2

Figure 4.4: Experimental results ofM2, genYsis, and CABEAN on randomly generated
networks.

4.6 Improvements

As presented in Section 4.5, FVS-ABN outperforms the two state-of-the-art methods,
genYsis [43] and CABEAN [49]. In particular, FVS-ABN can handle real biological
networks with up to 101 nodes without using any network reduction technique, whereas
the other methods cannot. In the biological context, 101-node networks are not very large
because the comprehensive analysis of biological networks often requires formal models

58

4.6. IMPROVEMENTS

that possess hundreds or even thousands of elements [49]. Moreover, FVS-ABN tends
to not work well in the case that the used FVS is large (e.g., having more than 25 nodes).
Hence, FVS-ABN needs to be improved to handle networks with larger n or FVSs.

In this section, we propose an improved method (called iFVS-ABN) that includes
two improvements to FVS-ABN. The first improvement is a new method (called AB-
NReach) for checking the reachability in ABNs. We present the details of ABNReach
in Subsection 4.6.1. The second improvement is to use an NFVS instead of an FVS to
get the candidate set of states. This use relies on a relation between an NFVS of the
interaction graph of an ABN and the dynamics of the ABN. We present the relation and
the use of NFVSs in Subsection 4.6.2. Specifically, iFVS-ABN uses ABNReach instead
of UnfReach at Line 11 of Algorithm 6 and finds an NFVS U− instead of an FVS U at
Line 1 of Algorithm 6, respectively. Other parts of iFVS-ABN are the same as those in
FVS-ABN. Finally, we show the correctness of iFVS-ABN in Subsection 4.6.3.

4.6.1 Improvement in Reachability Analysis

Checking the reachability in ABNs is the key task in FVS-ABN. In the previous experi-
ments (see Section 4.5), most of the running time was spent for checking the reachability
in ABNs. Even in some networks in which FVS-ABN failed to obtain the result within
the time limit, the main reason for the failure is that the time for checking the reachability
in ABNs is extremely long. Hence, it is needed to improve the UnfReach algorithm.

From the previous discussions (see Subsection 4.4.5), we can see that each previous
technique for checking the reachability in ABNs has its advantages and disadvantages.
Hence, combining multiple techniques may be potential. We here propose a new method
(named ABNReach) to check the reachability in ABNs. In general, ABNReach is
a reasonable combination of multiple previous techniques for checking the reachability
in ABNs. Algorithm 10 shows the description of ABNReach. In Algorithm 10, true
indicates reachable, whereas false indicates unreachable. ABNReach includes three de-
pendent phases as follows.

ABNReach starts its first phase by using PintReach (see Lines 1-8 of Algorithm 10).
PintReach is the method by [140] for checking the reachability in Asynchronous Au-
tomata Networks (AANs). We use PintReach in the first phase because this method
was reported able to check the reachability in very large networks with reasonable time.
The inputs of PintReach include an AAN, an initial state, and a set of target states.
Note that PintReach is only an approximation method; its output is one of three cases:
true (i.e., reachable), false (i.e., unreachable), inconclusive (i.e., cannot determine to be
either reachable or unreachable). If the output of PintReach(Q, sQ, FQ) is either true or
false, ABNReach simply returns this output (see Lines 4-7 of Algorithm 10). Otherwise,
the output of PintReach is inconclusive, and ABNReach must start its second phase.

When the output of PintReach is inconclusive, the result of the reachability analysis
tends to be reachable in most cases [141]. Hence, using SAT-based BMC with a low
bound is a good preprocessing step, since SAT-based BMC is efficient for large systems
in the case of using a low bound [110]. In the second phase, ABNReach therefore uses
SAT-based BMC to check the reachability in ABNs (see Lines 9-14 of Algorithm 10). d is
the bound for the SAT-based BMC, and is set to Dmax. In practice, Dmax should be low
(e.g., about 30-50 [110]). Herein, we empirically set Dmax as 30. T is the state transition
formula of the ABN, and has been well defined in [43]. φpath is a d-length unfolding of T

59

4.6. IMPROVEMENTS

and represents a d-length path in the STG of the ABN. Each arc of this path corresponds
to a state transition of the ABN. χ(A, si) is the characteristic formula representing the
set of states A in terms of variables of si. The characteristic formula of a set of states is
defined based on the characteristic of a state: χ(A, si) =

∨
s∈A χ(s, si). The characteristic

formula of a state is defined as χ(s, si) =
∧n

j=1(sij ↔ sj). Then φ represents a d-length

path satisfying its start state (i.e., s0) is s and its end state (i.e., sd) is in F . If SAT(φ),
ABNReach can return true. Otherwise, ABNReach must start its final phase because
SAT-based BMC is incomplete [110].

In the final phase, ABNReach simply uses the UnfReach algorithm presented in
Subsection 4.4.5 (see Line 15 of Algorithm 10). We put UnfReach at the end of ABN-
Reach because of the three following reasons. First, UnfReach still calculates the whole
or a part of the reachable set, whereas PintReach and SAT-based BMC do not. Sec-
ond, UnfReach is an on-the-fly method; it is also more efficient in the case of reachable.
Third, UnfReach is an exact algorithm for checking the reachability in ABNs. Thus, we
ensure that the result of ABNReach is correct.

Algorithm 10 ABNReach

Input: An ABN A, a state s, a set F of states.
Output: Whether s reaches any state in F in G(A)?
1: Q ← the encoded asynchronous automata network of A
2: sQ ← the state of Q corresponding to s of A
3: FQ ← the set of states of Q corresponding to the states in F of A
4: if PintReach(Q, sQ, FQ) = true then
5: return true
6: else if PintReach(Q, sQ, FQ) = false then
7: return false
8: else
9: d← Dmax

10: φpath ←
∧d−1

i=0 T (si, si+1)
11: φ← χ({s}, s0) ∧ φpath ∧ χ(F, sd)
12: if SAT(φ) then
13: return true
14: else
15: return UnfReach(A, s, F)
16: end if
17: end if

4.6.2 Use of Negative Feedback Vertex Sets

The size of the set U (see Line 1 of Algorithm 6) may largely impact the performance of
FVS-ABN (see Subsection 4.5.1). Using a smaller set of nodes may open a chance to get
a smaller candidate set of states; thus to accelerate the running time of FVS-ABN. In
a signed directed graph, the size of its minimum NFVS is less than or equal to the size of
its minimum FVS, since an FVS is also an NFVS [99]. In addition, it is known that the
presence of negative cycles is a necessary condition for the presence of cyclic attractors

60

4.6. IMPROVEMENTS

of an ABN (see Theorem 4.6.1 [142]). These observations suggest us to explore relations
between NFVSs and dynamics of ABNs.

For convenience, we first introduce some new notations as well as summarize some
previous notations. IG(N) denotes the interaction graph of a BN N . G(N) denotes the
STG of an BN N . F (G) denotes the set of fixed points of an STG G. RU,B denotes the
operation of systematically removing arcs from an STG with respect to a set U of nodes
and a set B of retained values corresponding to the nodes of U . RU,B(G) denotes the
reduced STG obtained by applying RU,B to an STG G.

Theorem 4.6.1. [142] Let A be an ABN. If the interaction graph of A (i.e., IG(A)) has
no negative cycle, then A has no cyclic attractor.

Theorem 4.6.2. Let A be an ABN. Let U− be an NFVS of IG(A) and B− be a set of
retained values corresponding to the nodes of U−. Let att be an attractor of A. Then
there exists a state s such that s ∈ att and s is a fixed point of the reduced STG (i.e.,
RU−,B−(G(A))).

Proof. We first define Σ(u, i) as the set of all states reachable from a state u by retaining
the values of all nodes xj, j ∈ {1, ..., i} and only updating the values of any node xj, j ∈
{i + 1, ..., n}. We can obtain a property (*) satisfying Σ(v, j) ⊆ Σ(u, i) with j ≥ i and
v ∈ Σ(u, i).

Without loss of generality, we can reorder the nodes ofA such that U− = {x1, ..., xk}, k ≥
0. If k = 0, then IG(A) has no negative cycle. In this case, A has only fixed points by
Theorem 4.6.1, and then the theorem immediately holds. Thus, we consider the case
k ≥ 1.

Let B− = {b1, ..., bk}. We proceed the following procedure. First, we set i as 1 and
randomly choose a state u0 in att. Second, if Σ(ui−1, i− 1) contains a state u′ such that
u′i = bi, then ui ← u′. Otherwise, ui ← ui−1. Third, we increase i by 1. If i ≤ k, we go
back to the second step. Otherwise, we stop this procedure. We now obtain a state uk.
Then we have (a) ∀i ∈ {1, ..., k}, either uii = bi or all states s ∈ Σ(ui−1, i − 1) satisfying
si = 1− bi.

We retain the values of all nodes xi, i ∈ {1, ..., k} in uk and only update node xi, i ∈
{k+1, ..., n}. Eventually, we will reach a state u∗ such that (b) ∀i ∈ {k+1, ..., n}, fi(u∗) =
u∗i , and (c) ∀i ∈ {1, ..., k}, either u∗i = bi or fi(u

∗) = u∗i = 1− bi.
Indeed, let Ak be the ABN obtained by removing all nodes xi, i ∈ {1, ..., k} from A

and substituting the values of all nodes xi, i ∈ {1, ..., k} in uk to all Boolean functions
fi, i ∈ {k + 1, ..., n}. Since U− = {x1, ..., xk} is an NFVS, IG(Ak) has no negative cycle.
Then Ak has only fixed points by Theorem 4.6.1. Hence, every state in Ak will eventually
reach a fixed point. We now can imply that (b) holds, since ∀i ∈ {1, ..., k}, uki = u∗i .

Assume that u∗i = 1 − bi, i ∈ {1, ...k}. We have uii = 1 − bi. By (a), all states s ∈
Σ(ui−1, i−1) must satisfy si = 1−bi. Let s′ be the next state of u∗ by updating only node
xi. By the definition of Σ, s′ ∈ Σ(u∗, i− 1). By (*), we have Σ(u∗, i− 1) ⊆ Σ(ui−1, i− 1),
since u∗ ∈ Σ(uk, k) ⊆ Σ(ui−1, i− 1). Hence, s′ ∈ Σ(ui−1, i− 1) leading to s′i = 1− bi. In
other words, fi(u

∗) = 1− bi. We now can imply that (c) holds.
Since u∗ satisfies (b) and (c), u∗ is a fixed point in RU−,B−(G(A)). u∗ is also in att,

since u0 ∈ att and att is an attractor. Therefore, we can conclude the proof.

Theorem 4.6.2 shows our new theoretical finding. Hereafter, we shall use an example
to illustrate Theorem 4.6.2, as well as to show that this theorem only holds for the

61

4.6. IMPROVEMENTS

case of NFVSs and does not hold for the case of PFVSs. Consider the ABN A given
in Example 4.6.1. IG(A) has a minimum PFVS (U+

min = {x1}), a minimum NFVS
(U−min = {x3}), and a minimum FVS (Umin = {x1, x3}). G(A) has one fixed point
({111}) and one cyclic attractor ({000, 010, 011, 001}). RU,B(G(A)) denotes the reduced
STG of G(A) corresponding to the set of nodes U and the set of retained values B (see
Section 4.3). RU−min,B

−(G(A)) with B− = {b3} = {0} is given in Figure 4.6a. As we can

see, F (RU−min,B
−(G(A))) = {010, 111}. This set covers all the attractors of A, i.e., each

attractor of A contains a fixed point of the reduced STG of A. RU+
min,B

+(G(A)) with

B+ = {b1} = {0} is given in Figure 4.6b. As we can see, F (RU+
min,B

+(G(A))) = {111}.
This set does not cover all the attractors of A, since it does not contain any state of the
cyclic attractor {000, 010, 011, 001}. This example shows that Theorem 4.6.2 does not
hold for the case of PFVSs.

Example 4.6.1. We give an ABN A = {V, F}, where V = {x1, x2, x3} and F =
{f1, f2, f3} with

f1 = x1 ∧ x2 ∧ x3,

f2 = x1 ∨ ¬x3,

f3 = (x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ x3).

Figures 4.5a. and 4.5b show the STG and the interaction graph of A, respectively.

010

000

110

011

100

001 101

111

(a)

x1 x2

x3

+
+

+

++

−

+

−
(b)

Figure 4.5: (a) STG and (b) interaction graph of the ABN given in Example 4.6.1.

By Theorem 4.6.2, the set of fixed points of the reduced STG (i.e., F (RU−,B−(G(A))))
covers all the attractors of A. Hence, F (RU−,B−(G(A))) is a sufficient candidate set of
states. As a consequence, iFVS-ABN can use an NFVS U− instead of an FVS U as
in FVS-ABN to get the candidate set. Note that the size of F (RU−,B−(G(A))) may be
larger than that of F (RU,B(G(A))). Hence, we propose an algorithm for calculating an
NFVS, which ensures that the candidate set obtained by iFVS-ABN is always a subset
of that obtained by FVS-ABN. The detail of this algorithm is as follows.

The problem of finding a minimum NFVS is NP-complete [99]. Since the problem of
finding a minimum FVS has been proved NP-complete [100], a simple greedy algorithm
(called FindFVS) has been proposed for finding an (not necessarily minimum) FVS (see
Subsection 4.4.2). From these observations, we here propose a simple greedy algorithm

62

4.6. IMPROVEMENTS

010

000

110

011

100

001 101

111

(a)

010

000

110

011

100

001 101

111

(b)

Figure 4.6: Reduced STGs of the ABN given in Example 4.6.1 with respect to (a) U−min

and B− and (b) U+
min and B+, respectively.

(named FindNFVS) for finding an (not necessarily minimum) NFVS of a signed directed
graph. Algorithm 11 shows the description of the proposed algorithm. Algorithm 11
follows the method by [143] for checking whether a signed directed graph IG has a negative
cycle. Herein, IG− U− is equivalent to IG[V \U−], where V is the set of vertices of IG.
We define the negative degree of a vertex v as the number of negative arcs starting or
ending at v. Remark 4.6.1 convinces the usefulness of Algorithm 11.

Algorithm 11 FindNFVS

Input: A signed directed graph IG.
Output: An NFVS U− of IG.
1: U− ← the set of vertices of IG having negative self loops
2: U−cand ← the FVS obtained by applying the FindFVS algorithm to IG
3: U−cand ← U−cand\U−
4: IG← IG− U−
5: while IG has a negative cycle do
6: Remove a vertex v from U−cand with a minimum of negative degree in IG
7: U− ← U− ∪ {v}
8: IG← IG− {v}
9: end while
10: return U−

Remark 4.6.1. The NFVS (say U−) obtained by FindNFVS is always a subset of the
FVS (say U) obtained by FindFVS. In other words, the NFVS used by iFVS-ABN
is always a subset of the FVS used by FVS-ABN. Let B be a set of retained values
corresponding to the nodes of U and let B− be a set of retained values corresponding to the
nodes of U−. Equation 4.1 (presented in Subsection 4.4.3) shows the propositional formula
that characterizes the set of fixed points of the reduced STG of A with respect to a set U
of nodes and a set B of retained values. If b−i = bi,∀xi ∈ U−, then F (RU−,B−(G(A))) ⊆
F (RU,B(G(A))). Indeed, following Equation 4.1, a fixed point of RU−,B−(G(A)) is also a
fixed point of RU,B(G(A)), since U− ⊆ U . As a consequence, the candidate set of iFVS-
ABN is always a subset of the candidate set of FVS-ABN if iFVS-ABN uses the
retained set that is a subset of the retained set used by FVS-ABN. Both iFVS-ABN

63

4.6. IMPROVEMENTS

and FVS-ABN use the same algorithm (i.e., Algorithm 8 presented in Subsection 4.4.3)
for setting the retained set. Hence, the candidate set of iFVS-ABN is always a subset of
the candidate set of FVS-ABN. In addition, F char

U,B is clearly more complex than F char
U−,B−,

since U− ⊆ U . Hence, the time for computing the candidate set of iFVS-ABN may be
shorter than the time for computing that of FVS-ABN.

F char
U,B =

{∧
xi∈U

[(fi(x)↔ xi) ∨ (xi ↔ bi ∧ fi(x)↔ 1− bi)]

}
∧

{∧
xi 6∈U

[fi(x)↔ xi]

}
(4.1)

4.6.3 Correctness

FVS-ABN is an exact method for finding attractors of an ABN (see Theorem 4.4.1).
iFVS-ABN has two changes from FVS-ABN. We shall formally prove the correctness
of iFVS-ABN as in Theorem 4.6.3. Note that this proof is similar to the proof for the
correctness of FVS-ABN. For convenience, we repeat some details of Theorem 4.4.1.

Theorem 4.6.3. iFVS-ABN finds exactly all attractors of an ABN.

Proof. Let A be an ABN. Let U− be the NFVS obtained by applying Algorithm 11 to
IG(A). Then, let B− be the chosen retained set obtained by using Algorithm 8.

By Theorem 4.6.2, every attractor of the STG of A (say G) always contains at least
one state that is a fixed point of the reduced STG of A (say G′). Hence, every attractor of
G contains at least one state in F after finishing Line 5 of Algorithm 6. As demonstrated
in Subsection 4.4.4, Preprocessing-SSF does not disappear cyclic attractors of G in F .
Therefore, every attractor of G contains at least one state in A∪F (*) when starting the
while loop of Algorithm 6. Through the while loop, the property (*) is preserved. Indeed,
in each iteration if s reaches in G a state s′ in A ∪ F and s belongs to an attractor att
of G, then s′ also belongs to att by the definition of an attractor. In this case, s is not
added to A∪F . However, att still contains s′ that is a state in A∪F . Note that we have
this preservation because the result of ABNReach is correct (see Subsection 4.4.5).

After finishing the while loop, each attractor of G contains at least one state in A (a),
since F = ∅. We show that A has no two states s and s′ such that s and s′ are in the
same attractor of G (b). Indeed, if s and s′ is in the same attractor of G, then s and s′

reach each other in G. If s is traversed before s′, then s cannot be added to A. If s′ is
traversed before s, then s′ cannot be added to A. Moreover, there is no state s in A such
that s is not in any attractor (c). Indeed, if such a state s exists, it must reach at least
an attractor, implying that it reaches A ∪ F in G. Hence, s cannot be added to A. We
have a contradiction.

From (a), (b), and (c), we have a one-to-one correspondence between A and the set
of attractors of G. Hence, the result of iFVS-ABN is correct, i.e., this method finds
exactly all attractors of A.

4.6.4 Evaluation

We have implemented iFVS-ABN in a JAVA tool. This tool uses the JDD library [112]
for BDD manipulation (e.g., storing Boolean functions or sets of states by BDDs) and

64

4.6. IMPROVEMENTS

Z3 [118] as the SAT solver for SAT-based BMC. An executable file of the implemented
tool and some examples of real biological networks are available at https://github.com/
giang-trinh/iFVS-ABN. We then conducted two experiments to evaluate the efficiency
of the two improvements. The first experiment aims at evaluating the efficiency of AB-
NReach (i.e., the new method for checking the reachability in ABNs). We compared
the performance of a variant of FVS-ABN (say FVS-ABN*) and FVS-ABN. FVS-
ABN* uses an FVS as FVS-ABN but uses ABNReach for checking the reachability
in ABNs. The second experiment aims at evaluating the efficiency of the use of NFVSs.
We compared the performance of FVS-ABN* and iFVS-ABN. All the experiments
were run on a virtual machine whose environment is CPU: Intel(R) Xeon(R) Silver 4116
4x2.10GHz, Memory: 24 GB, CentOS 7 64 bit.

In the first experiment, we randomly generated two sets of BNs by using Bool Net
R package [117]. The first set includes N -K BNs [1] with network size n in the set
{120, 130, 140, 150, 160, 170, 180, 190, 200} and K = 2 (i.e., each node has exactly
K = 2 input nodes). We used N -K BNs because they are commonly used for bench-
marking in existing literature (see, e.g., [10, 14]). For each network size, 20 instances
were generated using the generateRandomNKNetwork function. The second set in-
cludes canalyzing and scale-free BNs with network size n in the set {100, 150, 200, 250,
300, 350, 400, 500, 1000} and K = 10 (i.e., the maximum number of input nodes for
each node is K = 10). iFVS-ABN is applicable for any type of Boolean functions
or network topology. However, canalyzing functions are known as biologically relevant
functions [90]. In addition, many systems (including gene regulatory networks) possess
the scale-free topology in which the number of input nodes for each node follows the
scale-free Zeta distribution [120]. For each network size, 20 instances were also gener-
ated using the generateRandomNKNetwork function with the parameters: K = 10,
topology = ”scale free”, functionGeneration = ”generateCanalyzing”. We then ap-
plied FVS-ABN* and FVS-ABN to these randomly generated networks and recorded
the number of failures (i.e., failed to obtain the result within three hours). Note that
there is a network reduction technique that preserves all the attractors of an ABN [122].
Hence, we used this reduction technique for all the compared methods.

Table 4.2: Numbers of failures of FVS-ABN* and FVS-ABN on N -K networks.

n 120 130 140 150 160 170 180 190 200
FVS-ABN* 6 9 9 10 10 12 15 18 19
FVS-ABN 10 13 13 15 16 16 18 19 19

Table 4.2 shows the experimental results of FVS-ABN* and FVS-ABN on N -K
networks. As we can see, FVS-ABN and FVS-ABN* can handle networks of up to
200 nodes. In each network size (except n = 200), the number of failures of FVS-ABN
is always greater than that of FVS-ABN*. This observation shows the efficiency of
ABNReach in terms of N -K networks.

Table 4.3 shows the results on canalyzing and scale-free networks. In each network
size, the number of failures of FVS-ABN* is always much less than that of FVS-ABN.
Especially, for n = 1000, FVS-ABN* can even handle 8/20 instances, whereas FVS-
ABN failed in all instances. This observation shows the efficiency of ABNReach in
terms of canalyzing and scale-free BNs.

65

https://github.com/giang-trinh/iFVS-ABN
https://github.com/giang-trinh/iFVS-ABN

4.6. IMPROVEMENTS

Table 4.3: Numbers of failures of FVS-ABN* and FVS-ABN on canalyzing and scale-
free networks.

n 100 150 200 250 300 350 400 500 1000
FVS-ABN* 0 0 0 3 1 2 0 3 12
FVS-ABN 2 3 5 10 10 10 10 14 20

As we can see, the performance of FVS-ABN* for canalyzing and scale-free networks
is better than that for N -K networks. This observation is reasonable, since N -K networks
are generally more complex than canalyzing and scale-free networks. As many previous
methods (e.g., [43, 49]), FVS-ABN* seems to be less efficient for N -K networks (even
with K = 2). In addition, in most randomly generated networks, U = U− (i.e., the used
FVS is equal to the used NFVS); therefore, the performance of FVS-ABN* is generally
not different from the performance of iFVS-ABN. Hence, in the second experiment,
we used real biological networks to highlight the performance difference between FVS-
ABN* and iFVS-ABN.

In the second experiment, we used real biological networks obtained from The Cell
Collective [119]. To evaluate the efficiency of the use of NFVSs, we only chose the networks
where U 6= U− (i.e., the used FVS is not equal to the used NFVS). In total, we obtained
a set of 13 real biological networks whose sizes range from 26 to 321. We then applied
FVS-ABN* and iFVS-ABN to BNs of these networks. We set the time limit for each
network to 10 hours, since the running time may be very long for large-scale BNs. Note
that we also used the network reduction technique [122] as in the first experiment, since
this reduction technique preserves all the attractors of an ABN.

Table 4.4: Experimental results of FVS-ABN* and iFVS-ABN on real biological net-
works.

FVS-ABN* iFVS-ABN
name n |A| |U | time (secs) |U−| time (secs)

Differentiation of T lymphocytes 50 2050 18 952.73 6 578.09
HumanMyelomaCells 67 83 13 173.25 6 105.42

HGF Signaling in Keratinocytes 68 72 10 2.34 0 0.54
Influenza A Virus Replication Cycle 131 524 29 - 10 42.33
Signaling in Macrophage Activation 321 4096 16 21216.07 1 6712.42

Wg Pathway of Drosophila 26 16384 15 3.67 1 3.67
TumourCell 32 9 10 0.81 5 0.54

TCellSignaling 40 8 5 0.46 2 0.45
Treatment of Castration Resistant 42 16384 14 0.40 0 0.36

Senescence 51 17 10 22.91 5 18.94
PC12CellDifferentiation 62 3 2 0.45 0 0.46

YeastApoptosis 73 8448 16 76.20 3 76.74
IL 6 Signalling 86 32768 21 2127.45 10 2056.36

Table 4.4 shows the experimental results of FVS-ABN* and iFVS-ABN on real
biological networks. Columns ”name”, n, and |A| denotes the network name, the num-
ber of nodes, and the number of ABN attractors, respectively. Columns |U | and |U−|
denote the sizes of the used FVS and the used NFVS, respectively. Column ”time

66

4.7. DISCUSSION

(secs)” denotes the running time in seconds. ”-” stands for the case of timeout. In
5/13 BNs (e.g., the Differentiation of T lymphocytes network), iFVS-ABN is much
faster than FVS-ABN*. Especially in the Influenza A Virus Replication Cycle and Sig-
naling in Macrophage Activation networks, iFVS-ABN outperforms FVS-ABN*. In
these networks, |U−| is much less than |U |. In the 8/13 remaining BNs, the running time
of iFVS-ABN is comparable to the running time of FVS-ABN*. In some networks
(e.g., the YeastApoptosis network, the IL 6 Signalling network), iFVS-ABN is slower
than FVS-ABN* although |U−| is much less than |U |. We realized that |F | (before
applying Preprocessing-SSF) of FVS-ABN* and iFVS-ABN are the same in these
networks. Hence, this observation may be due to the randomness of Preprocessing-
SSF. However, the difference is insignificant. In particular, iFVS-ABN can handle the
Signaling in Macrophage Activation network (a large network with n = 321) in reason-
able time (less than two hours). Furthermore, the time for computing the used NFVS is
insignificant (less than two seconds in most cases). These observations show the efficiency
of the use of NFVSs.

4.7 Discussion

In this chapter, we have formally stated and proved the relations between an FVS of
a BN and the dynamics of this BN. These relations do not depend on the updating
scheme of the BN; thus, they can be used for analyzing different types of BNs, such
as, ABNs and GABNs. From these relations, we have proposed an FVS-based method
(called FVS-ABN) for finding all attractors of an ABN. Our approach relies on the
principle of removing arcs in the STG of the ABN to get a candidate set of states and
the reachability analysis on the ABN to filter out this candidate set. The obtained set
one-to-one corresponds to the set of attractors. We have also formally proved the cor-
rectness of FVS-ABN. In addition, we have proposed a preprocessing procedure (called
Preprocessing-SSF) to reduce the computational burden, whereas the correctness of
FVS-ABN is preserved. Finally, we have developed an unfolding-based and on-the-fly
method for checking the reachability in ABNs. In principle, FVS-ABN works well on
large networks having relatively small FVSs and not too large attractors. Fortunately,
these characteristics are often found in real biological networks [14, 45].

We have implemented FVS-ABN as a JAVA tool, and then used this tool to conduct
experiments on real biological networks and randomly generated N -K networks. The ex-
perimental results confirm the usefulness of Preprocessing-SSF and are very promising
because FVS-ABN can handle large networks of up to 101 nodes without using any
network reduction technique. These results also show the effectiveness of FVS-ABN
as compared to the two state-of-the-art methods, genYsis and CABEAN. Note that
the main advantage of our approach is to reduce the attractor detection in ABNs to the
reachability problem in ABNs. This advantage opens a chance to efficiently solve the
attractor detection in ABNs by applying the advents in reachability research that can
handle very large asynchronous networks [140, 141].

Since FVS-ABN encompasses many constituent steps, it is potentially possible to
improve it. There are some potential ways to improve FVS-ABN. The first way is to
reduce the number of fixed points of the reduced STG. We can use an exact method for
finding a minimum FVS (instead of using the greedy algorithm FindFVS) or a more

67

4.7. DISCUSSION

efficient heuristic for setting the retained set B. The second way is to propose an efficient
heuristic for variable ordering, since Preprocessing-SSF uses BDDs. A good variable
ordering can reduce significantly the computational time of Preprocessing-SSF. The
third way is to use a more efficient method or to efficiently combine multiple techniques
for checking the reachability in ABNs. We can consider some other techniques in terms of
Petri net unfoldings, such as, contextual Petri nets [144], merged processes [145], unrav-
elings [146]. Furthermore, we can also use some static analyzers (e.g., PintReach [140],
ASPReach [141]) in a preprocessing step.

Following the possible ways aforementioned, we have proposed a new method (called
iFVS-ABN) that includes the two substantial improvements to the previous method,
FVS-ABN. First, we have proposed the ABNReach algorithm that reasonably com-
bines multiple previous methods to efficiently check the reachability in ABNs. Second, we
have formally stated and proved the relation between an NFVS of the interaction graph
of an ABN and the dynamics of the ABN. This relation is a new theoretical finding and
can be extended to that for other types of BNs, such as, GABNs and a non-standard type
of asynchronous BNs, random order asynchronous Boolean networks [9, 10]. Based on
this relation, iFVS-ABN uses an NFVS instead of an FVS as FVS-ABN to obtain the
candidate set of states. In addition, we have also developed a simple but useful greedy
algorithm for calculating an NFVS that is used in iFVS-ABN. Then, we have formally
proved the correctness of iFVS-ABN. The efficiency of iFVS-ABN was evaluated by
the experiments on various types of networks. The experimental results show that the two
improvements are effective and iFVS-ABN outperforms the original one, FVS-ABN.
In particular, iFVS-ABN can handle large networks with up to 1000 nodes in terms of
randomly generated networks and 321 nodes in terms of real biological networks. This
advanced computation capability can enable biologists to conduct more accurate analysis
on large networks, then to discover more biological insights.

Although iFVS-ABN outperforms the previous method in terms of N -K networks [5],
it does not handle well large networks whose sizes start from 200 nodes. N -K networks
are one helpful tool, which allows investigating a variety of different dynamic properties of
BNs and regulatory systems [6]. In addition, N -K networks are usually used in statistical
studies [54, 107, 147, 148, 149] for discovering insights into the dynamics of BNs. Hence,
improving iFVS-ABN to handle well larger N -K networks is necessary. Moreover, the
applicable range of iFVS-ABN is so far from genome-scale networks that can possess
thousands of genes. Making iFVS-ABN capable to handle such networks is needed, and
is one of future work.

Finally, note that both FVS-ABN and iFVS-ABN use Mole and some other tools
as subroutines. Since the computational complexity of such tools is unclear, it is difficult
to analyze the computational complexity of the whole algorithm. We leave the analysis of
theoretical or practical computational complexity as future work. In addition, Random
Order Asynchronous Boolean Networks (ROABNs) [9, 10] are also a popular type of
asynchronous BNs and still get much attention from research communities [3, 9, 150, 151].
Hence, it is worth to study the dynamics of an ROABN. In the future, we intend to
extend our methods (FVS-ABN and iFVS-ABN) for ABNs to those for ROABNs. It
is interesting but challenging because ROABNs are generally more complex in dynamics
than ABNs [9].

68

Chapter 5

Attractor Detection in Deterministic
Generalized Asynchronous Boolean
Networks (DGABNs)

5.1 Introduction

In the biological context, the synchronous updating class (e.g., SBNs [1]) was criticized
because of the assumption that the dynamics of Gene Regulatory Networks (GRNs) is
deterministic and synchronous, i.e., all genes change their expression levels simultane-
ously [43]. Thus, the asynchronous updating class, in which all genes take different time
to change their expression levels, is closer to biological phenomena [10, 43, 96]. For exam-
ple, a very recent work [97] has explicitly backed up the necessity of asynchronous models
for modeling GRNs over a realistic proof-of-concept case study. The proposed alternative
is the non-deterministic asynchronous updating class (e.g., ABNs [10]) with the assump-
tion that only one randomly selected gene can be updated at a single step. However, it did
not give encouraging results, since the networks change drastically their properties due
to the non-determinism [13]. Moreover, this updating class has also some disadvantages
including the high complexity of the state transition graph and the inclusion of many
incompatible or unrealistic pathways [114]. With this motivation, a new class of updat-
ing schemes, asynchronous but deterministic, was proposed [14, 152]. The deterministic
asynchronous updating class can help us to model and analyze biological networks more
reasonably [9, 13]. For example, we can model asynchronous phenomena that are not
random, a thing that is quite difficult with the non-deterministic asynchronous updating
class [13]. Furthermore, models with deterministic asynchronous updating class are par-
ticularly useful when information about the kinetics of biological processes is known [19].

To date, there are various types of BNs with the deterministic asynchronous updating
class: Deterministic Generalized Asynchronous Boolean Networks (DGABNs) [14], De-
terministic Asynchronous Boolean Networks (DABNs) [14], Mixed-Context Boolean Net-
works (MxBNs) [13], Deterministic Asynchronous (DA) models [79], and Block-Sequential
Boolean Networks (BSBNs) [152]. They have been widely used in modeling and analysis
of GRNs [9, 79, 82, 153]. In this chapter, we focus on DGABNs that are a typical type of
deterministic asynchronous BNs. There are three reasons for this choice.

First, DGABNs offer an interesting compromise between SBNs and ABNs, thus could
provide a suitable modeling formalism of various types of systems [75]. For example, the

69

5.1. INTRODUCTION

authors of [154] applied the updating schemes of DGABNs and ABNs to the model of the
Spatial Prisoner’s Dilemma game, which is the most used game in the area of evolutionary
game theory. Based on simulations, they obtained that these two updating schemes lead
basically the same outcome of the model. Recently, Martin Schneiter et al. [155] used
different types of BNs to formulate a simplified pluricellular epithelium model, which
intends to present plausibly the self-organization of ciliary beating patterns as well as
of the associated fluid transport across the airway epithelium. The simulation results
show that DGABNs lead to more realistic dynamics (flexibility and robustness) and may
therefore be favored by evolution. Many other applications of DGABNs in various fields
can be found (see, e.g., [3, 156]).

Second, DGABNs are general and interesting mathematical objects because there is
no restriction on their Boolean functions and contexts. For example, SBNs are a special
case of DGABNs [14, 75]. In addition, studying DGABNs can be a good starting point
for further studies on more complex models such as DABNs or MxBNs [13]. This is
reasonable because both DABNs and MxBNs are constructed based on DGABNs and
seem to be more computationally complex than DGABNs [5, 13].

Third, to our best knowledge, all the previous studies on DGABNs are theoreti-
cal or simulation-based. For example, Carlos Gershenson first proposed DGABNs [14]
and analyzed their dynamics by simulations [13, 14]. Li et al. [157] proposed a semi-
tensor product-based framework to study many variants of asynchronous BNs including
DGABNs. This approach is deeply theoretical but not practical, since the sizes of the ma-
trices that need to be considered are exponential in the number of nodes. Hence, analytical
and practical studies for DGABNs are needed. In general, the deterministic behavior of
DGABNs makes them relatively easy to analyze as compared to non-deterministic asyn-
chronous BNs (e.g., ABNs) [14]. Since many analytical and practical studies have been
done for ABNs [19, 43], such studies for DGABNs are potentially possible.

In this dissertation, two central issues of GRNs (see, e.g., [21]), attractor detection and
optimal control, are well studied. We first formulate the Extended State Transition Graph
(ESTG) of a DGABN (see Section 5.2). The state transition is encoded as a Satisfiability
Modulo Theory (SMT) formula. This formulation is a starting point for further analysis
of DGABNs. Next, we formally state and prove several relations in dynamics between
DGABNs and other popular models (see Section 5.3) including deterministic asynchronous
models [79], block-sequential Boolean networks [152], generalized asynchronous Boolean
networks [14], and mixed-context Boolean networks [13]. We then propose one SMT-
based method for attractor detection (see Section 5.4) and two SMT-based methods for
optimal control of DGABNs, respectively. These methods are implemented in a JAVA tool
called DABoolNet. In order to highlight the scalability of the proposed methods, two
experiments on randomly generated networks (see Section 5.5) and one artificial network
are conducted. To our best knowledge, DABoolNet is the first analytical and practical
tool for attractor detection and optimal control of DGABNs. In addition, several case
studies are presented to show the applications of our methods. For attractor detection
in DGABNs, we apply DABoolNet to two real biological networks and compare the
obtained results to the previous insights into these networks found in the literature (see
Subsection 5.4.2). We also use DABoolNet to verify several insights into the dynamics of
random Boolean networks (i.e., N -K models) presented in [13, 14] (see Subsection 5.4.3).
For optimal control of DGABNs, we apply DABoolNet to one real biological network.

Since the dissertation is divided into two parts, the Attractor Detection and Optimal

70

5.2. EXTENDED STATE TRANSITION GRAPH

Control parts, this chapter only presents the obtained results on attractor detection in
DGABNs. The obtained results on optimal control of DGABNs shall be presented in
Chapter 6.

5.2 Extended State Transition Graph

A DGABN has a set of n nodes (V = {x1, ..., xn}). Each node xi is identified as a Boolean
variable, and is associated with a Boolean function fi (fi : B|IN(fi)| → B). Each node xi is
also associated with two parameters: pi ∈ N+ and qi ∈ N (qi < pi). pi defines the period
between two consecutive updates of node xi and qi determines the time to the first update
of node xi. We use Λ to denote a parameter indicating the maximum allowed period of a
node (i.e., pi ≤ Λ,∀i ∈ {1, ..., n}). We also use γ to denote the least common multiple of
all p’s. The set of all p′s and q′s is called the context of a DGABN. Example 5.2.1 is an
example of DGABNs.

Example 5.2.1. Consider a DGABN D of two nodes (x1, x2). Its Boolean functions and
context are given as

f1 = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2), f2 = x1;

p1 = 1, p2 = 2, q1 = 0, q2 = 0.

xi(t) ∈ B denotes the value of node xi at time t. A state of a DGABN at time t is
denoted by x(t) = (x1(t), ..., xn(t))>. At time t, node xi will be updated by xi(t + 1) =
fi(x(t)) when the modulus of time t over pi is equal to qi (i.e., t%pi = qi). For example,
at time t = 1, only node x1 of the DGABN shown in Example 5.2.1 will be updated. If
two or more nodes will be updated, they will be updated simultaneously (e.g., at time
t = 0, node x1 and node x2 of D will be updated simultaneously). Then, the current state
x(t) will transit to the next state x(t+ 1). This is a state transition. The dynamics of a
DGABN is deterministic because x(t+ 1) is uniquely determined for given x(t) and t. In
particular, if all p′s are 1, then a DGABN becomes a SBN in which all the nodes will be
updated simultaneously at any time t [14].

The dynamics of a DGABN depends on the initial state (the state of the DGABN
at time t = 0). There are 2n possible initial states. Since the evolution of DGABNs
is based on modulus arithmetic, we only need to consider the scaled time tscaled of t to
γ (i.e., tscaled = t%γ). Indeed, the pattern of updating nodes is repeated after each γ
time steps. Note that the visited states are not necessarily repeated. Figure 5.1 shows
the dynamics of the DGABN shown in Example 5.2.1. Herein, circles denote states and
dashed circles denote initial states of the DGABN. An arc and its above text denote a
state transition and the scaled time of t when the state transition occurs, respectively.
The DGABN is updated in a pattern with period of two: x1 and x2 together, x1 alone. If
the DGABN starts with state 10, then x1 and x2 will be updated simultaneously, leading
to state 01. Next, x1 will be updated, leading to state 01. In the next time step, the
pattern is repeated (i.e., x1 and x2 will be updated simultaneously). However, the next
state (i.e., 00) has not been visited.

Start from an initial state, the DGABN will eventually lead to an attractor because
the number of states of the DGABN is finite. Definition 2.3.1 is a general definition of

71

5.2. EXTENDED STATE TRANSITION GRAPH

00 10 01

11 10

00 10

01 00

0

1

0

1

0 1

01

0

1

0

1

Figure 5.1: Dynamics of the DGABN shown in Example 5.2.1.

an attractor for all types of BNs. An attractor is said to be a fixed point or a cyclic
attractor if it consists of only one state or at least two states, respectively. The fixed
points of a BN are the same regardless of its updating scheme. The cyclic attractors
of deterministic (e.g., DGABNs) and non-deterministic (e.g., ABNs) asynchronous BNs
can be different. In non-deterministic asynchronous BNs, the system oscillates irregularly
among the states of a cyclic attractor due to the randomness involved in the updating
scheme. In this case, the cyclic attractor is referred to as a loose attractor [10]. In
deterministic asynchronous BNs, the system oscillates regularly among the states in a
cyclic attractor due to the deterministic dynamics. In this case, the cyclic attractor is
referred to as a limit cycle [158]. However, there is no systematic definition for limit cycles
of a DGABN. Thus, we still use the term of cyclic attractors for DGABNs. Reconsider
the DGABN D shown in Example 5.2.1. If it starts from 11, it will reach a fixed point
({11}). If it starts from 00, it will reach a cyclic attractor ({00, 10}). If it starts from 01
or 10, it will reach the same cyclic attractor ({01, 00, 10}).

Although the definition of a DGABN enables us to study the behavior of a GRN in
the long run, it does not provide a systematic mean for its analysis. We here propose a
synchronization method for DGABNs, which provides a synchronous representation for
the dynamics of a DGABN. This method can pave potential ways for analysis and control
of DGABNs.

We define an extended state of a DGABN, which includes a state of this DGABN and
an embedded value that represents the scaled time tscaled of time t when reaching this state.
Formally, es ∈ Bn×{0, ..., γ− 1} is an extended state, where esi (i = 1, ..., n) denotes the
value of internal node xi and esn+1 denotes the value of the embedded time. We define the
image of an extended state es as a state [[es]]I ∈ Bn satisfying [[es]]Ii = esi, i = {1, ..., n}.
Furthermore, we have [[ES]]I =

⋃
es∈ES[[es]]I where ES is a set of extended states. For

clarification, we denote an extended stated es by ([[es]]I ,esn+1). For example, (00, 1)
means that x1 = 0, x2 = 0, and x3 = tscaled = 1. Then, the transition formula between
two extended states is given as in Equation 5.1, where esj denotes the current extended
state and esj+1 denotes the next extended state; ”%” is the modulus operator; ”=”
is the logical predicate EQUALITY. Herein, the scaled time of the current extended
state will increase by one; if it equals to γ, then it is set to 0. This characteristic is
presented by esj+1

n+1 = (esjn+1 + 1)%γ. The value of the ith node will be updated if the
modulus of time t over pi is equal to qi and be not changed otherwise. The former case
is presented by [esjn+1%pi = qi ∧ (esj+1

i = fi(es
j)], whereas the latter case is presented by

72

5.2. EXTENDED STATE TRANSITION GRAPH

[esjn+1%pi 6= qi ∧ (esj+1
i = esji)]. In addition, this transition formula is in form of an SMT

formula in infix notation [118]. Note that each esji (i = 1, ..., n) corresponds to a Boolean
SMT variable and each esjn+1 corresponds to an integer SMT variable.

T (esj, esj+1) :=
{
esj+1

n+1 = (esjn+1 + 1)%γ
}
∧

n∧
i=1

{[
esjn+1%pi = qi ∧ (esj+1

i = fi(es
j)
]
∨
[
esjn+1%pi 6= qi ∧ (esj+1

i = esji)
]} (5.1)

From the definition of an extended states and the transition formula between two
extended states, the whole dynamics of a DGABN can be captured by an Extended State
Transition Graph (ESTG). An ESTG is a directed graph such that a node represents
an extended states and an arc represents the transition between two extended states,
respectively. Hereafter, we discuss the number of extended states of the ESTG of a
DGABN. Since esn+1 ∈ {0, ..., γ − 1}, we can have γ × 2n possible extended states.
However, the number of possible initial extended states is only 2n instead of γ × 2n

because in an initial extended state, esn+1 is 0, i.e., the start time is always 0. Hence, the
ESTG may have less than γ × 2n extended states. The extended states, which are not in
the ESTG, are called spurious extended states. For example, consider a DGABN shown
in Example 5.2.2. Its ESTG is given in Figure 5.2b. As we can see, the extended state
(00, 1) is not in this ESTG, thus it is a spurious extended state.

Example 5.2.2. Consider a DGABN D of two nodes (x1, x2). Its Boolean functions and
context are given as

f1 = x1 ∨ (¬x1 ∧ x2), f2 = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2);

p1 = 2, p2 = 1, q1 = 0, q2 = 0.

By the definition of an ESTG, each extended state in the ESTG of a DGABN has
exactly one successor extended state. In the case that γ = 1, two consecutive extended
states of the ESTG may be the same because esn+1 is always 0. Thus, the ESTG can
have fixed points or limit cycles. We define a limit cycle of length p > 1 as the sequence
es0, ..., esp−1 of extended states such that esj are pairwise distinct, esj+1 is the next
extended state of esj in the ESTG for all j ∈ {0, p − 2}, and es0 is the next extended
state of esp−1 in the ESTG. Note that a fixed point can be seen as a limit cycle of length
one. In the case that γ > 1, two consecutive extended states are always different because
they at least differ in the embedded time. Hence, the ESTG has only limit cycles. In
addition, based on Equation 5.1, we can easily imply that the length of a limit cycle of
the ESTG is a multiple of γ.

Since an ESTG can capture the whole dynamics of a DGABN, the attractors of the
DGABN are represented by fixed points or limit cycles of its ESTG. Since a fixed point
may only appear when γ = 1, the length of an attractor (i.e., the length of a fixed point or
a limit cycle) is a multiple of γ. Especially, a fixed point {s} of the DGABN is represented
by a limit cycle c of its ESTG where the length of c is γ and any extended state es in
c satisfies [[es]]I = s (see Example 5.2.3). Note that since the ESTG of a DGABN may
have γ×2n extended states, naive approaches for finding attractors (e.g., constructing the
ESTG and then applying graph algorithms) are intractable when n is large. In Section 5.4,
we shall consider how to efficiently compute these attractors.

73

5.3. RELATIONS IN DYNAMICS BETWEEN DGABNS AND OTHER MODELS

Example 5.2.3. Reconsider the DGABN shown in Example 5.2.1. Its ESTG is shown in
Figure 5.2a. Since γ = 2, this ESTG has no fixed points. This ESTG has three limit
cycles including {(11, 0), (11, 1)}, {(00, 0), (10, 1)}, and {(01, 0), (00, 1), (10, 0), (01, 1)}.
{(11, 0), (11, 1)} corresponds to the fixed point {11} of the DGABN, whereas {(00, 0), (10, 1)}
and {(01, 0), (00, 1), (10, 0), (01, 1)} correspond to the two cyclic attractors {00, 10} and
{01, 00, 10} of the DGABN, respectively.

(00,0)

(10,1)

(11,1) (11,0)

(10,0) (00,1)

(01,1) (01,0)

(a)

(00,0) (01,1)

(11,0) (11,1)

(10,0) (10,1)

(01,0)

(b)

Figure 5.2: (a) ESTG of the DGABN shown in Example 5.2.1. (b) ESTG of the DGABN
shown in Example 5.2.2.

5.3 Relations in Dynamics between DGABNs and

Other Models

In this section, we shall analyze relations in dynamics between DGABNs and other models,
such as, Deterministic Asynchronous (DA) models [9, 79, 80], block-sequential Boolean
networks [81, 82], generalized asynchronous Boolean networks [14], and mixed-context
Boolean networks [13]. The obtained relations are theoretical findings contributing to
understanding the dynamics of Boolean networks. These findings also pave the potential
ways to analyze these other models based on DGABNs.

5.3.1 Relations to Deterministic Asynchronous Models

In a DA model, each node xi is associated with a pre-selected time unit γi ≥ 1 [9]. The
update of a node depends on the current time step by

xi(t+ 1) =

{
fi(x(t)) if t+ 1 = kγi, k ∈ {1, 2, ...},
xi(t) otherwise.

If multiple nodes can update at time t, then they will update synchronously.

Definition 5.3.1. Given a DA model. Let D be its corresponding DGABN. D and the
DA model share the same sets of nodes and Boolean functions. The context of D is as
follows: pi = γi, qi = pi − 1, i ∈ {1, ..., n}.

74

5.3. RELATIONS IN DYNAMICS BETWEEN DGABNS AND OTHER MODELS

Obviously, a DA model and its corresponding DGABN specified by Definition 5.3.1
have the same dynamical behavior. Indeed, assume that the node xi of the DA model
will be updated at time t, i.e., t + 1 = kγi, k ∈ {1, 2, ...}. In the DGABN, t%pi =
(kγi − 1)%γi = γi − 1 = qi, thus xi will also be updated at time t. This finding allows us
to directly apply the methods developed for DGABNs to DA models.

5.3.2 Relations to Block-Sequential Boolean Networks

A Block-Sequential Boolean Network (BSBN) [81, 82] is a tuple 〈V, F, d〉 where V =
{x1, ..., xn} is the set of nodes, F = {f1, ..., fn} is the set of Boolean functions associated
with the nodes, and d is a deterministic updating scheme (see Definition 5.3.2). At
each time step, nodes in a block are updated in parallel, but blocks follow each other
sequentially along with d, leading to a new state. Since each state has only one outgoing
transition, a BSBN may have two types of attractors including fixed points and limit
cycles [81]. Note that the time unit of a BSBN is nb(d) times of the time unit of SBNs or
DGABNs. Example 5.3.1 shows an example of BSBNs.

Definition 5.3.2 (Adapted from [81]). A deterministic updating scheme on the set V of
n nodes is a function d : {1, ..., n} → {1, ...,m},m ≤ n. A block of d is the set Bi = {v ∈
V |d(v) = i}, 1 ≤ i ≤ m. The number of blocks of d is denoted by nb(d) ≡ m. Frequently,
d will be denoted as a sequence of blocks, i.e., d = (j ∈ B1)(j ∈ B2)...(j ∈ Bnb(d)).

Example 5.3.1. Let B = 〈V, F, d〉 be a BSBN, where V and F are given as in DGABN
shown in Example 5.2.1 and d = (x1)(x2). The STG of B is given in Figure 5.3a. For
example, in state 00, x1 is updated, leading to a new state 10, then x2 is updated, leading
to a new state 11. Now, (00, 11) is a state transition of B. As we can see, B has only one
fixed point ({11}).

00

01

10

11

(a)

(00,0)

(10,1)

(11,1) (11,0)

(10,0) (00,1)

(01,1) (01,0)

(b)

Figure 5.3: (a) STG of the BSBN shown in Example 5.3.1 and (b) ESTG of the encoded
DGABN of this BSBN.

75

5.3. RELATIONS IN DYNAMICS BETWEEN DGABNS AND OTHER MODELS

Definition 5.3.3. Let B = 〈V, F, d〉 be a BSBN. Then, D is a DGABN such that its
set of nodes is V and its set of Boolean functions is F and its context is given as: pi =
nb(d), qi = j − 1, xi ∈ Bj, i ∈ {1, ..., n}. Given a state s of B, the corresponding extended
state of s is [[s]]D, where [[s]]Di = si, i ∈ {1, ..., n} and [[s]]Dn+1 = 0.

Definition 5.3.3 gives the encoding of a BSBN as a DGABN. Figure 5.3b shows the
ESTG of the encoded DGABN of the BSBN in Example 5.3.1. This ESTG has one limit
cycle of length two ({(11, 0), (11, 1)}). As we can see, a state s reaches a state s′ in the
BSBN if and only if the corresponding extended state of s reaches the corresponding
extended state of s′ in the encoded DGABN. For example, 00 reaches 11 if and only if
(00, 0) reaches (11, 0). We can also see that the set of attractors of the BSBN one-to-one
corresponds to the set of attractors of the encoded DGABN. Hereafter, we formalize the
relations in dynamics between a BSBN and its encoded DGABN (see Theorems 5.3.1
and 5.3.2). These relations allow us to apply our methods proposed for DGABNs to
BSBNs.

Theorem 5.3.1. Let B = 〈V, F, d〉 be a BSBN and D be its encoded DGABN by Defini-
tion 5.3.3. For any pair of states s and s′, we have s′ is reachable from s in B if and only
if [[s′]]D is reachable from [[s]]D in D.

Proof. Assume that s′ is the next state of s in B, i.e., s
B−→ s′, where

B−→ denotes a state

transition in B. Then, s
B1−→ s1...sm−1 Bm−−→ s′ where m = nb(d) and Bi is the ith block of d

and s
B1−→ s1 denotes that s1 is the state obtained by updating all nodes of B1 in parallel

with the current state is s. In [[s]]D, the nodes of B1 will be updated because [[s]]Dn+1 =

0, [[s]]Dn+1%pi = 0 = qi, xi ∈ B1. Then, [[s]]D
D−→ (s1, 1) where (s1, 1) is an extended state

of D with tscaled = 1. Similarly, we have [[s]]D
D−→ (s1, 1)...(sm−1,m − 1)

D−→ [[s′]]D. This
means that [[s′]]D is reachable from [[s]]D in D.

Assume that [[s]]D
D−→ (s1, 1)...(sm−1,m − 1)

D−→ [[s′]]D. Let V1 be the set of nodes
whose updates make D transits from [[s]]D to (s1, 1). Then, [[s]]Dn+1%pi = 0 = qi, i ∈ V1.

Thus, V1 = B1, implying that s
B1−→ s1 in B. Similarly, we have s

B1−→ s1...sm−1 Bm−−→ s′.
This means that s′ is reachable from s in B.

Now, we can conclude the proof.

Theorem 5.3.2. Let B = 〈V, F, d〉 be a BSBN and D be its encoded DGABN by Defini-
tion 5.3.3. Let AB and AD be the sets of attractors of B and D, respectively. Then, AB

one-to-one corresponds to AD. In addition, given an attractor att of B, its corresponding
attractor of D is att′ satisfying att = [[att′]]B, where [[ES]]B = {s|(s, 0) ∈ ES} with ES
is a set of extended states.

Proof. Assume that att is an attractor of B. Let FRB(S) denote the set of states reachable
from the set S of states in B. Let s be a state in att. Then, FRB({s}) = att. Let FRD(ES)
denote the set of extended states reachable from the set ES of extended states in D. Start
from [[s]]D, following the evolution of D, we will come back to [[s]]D by Theorem 5.3.1.
Since D has only fixed points or limit cycles, FRD({[[s]]D}) is an attractor of D. Moreover,
[[FRD({[[s]]D})]]B = FRB({s}) by Theorem 5.3.1. Thus, [[FRD({[[s]]D})]]B = att. (i)

Given att1, att2 ∈ AB, att1 ∩ att2 = ∅. Consider an arbitrary pair of states s1 ∈ att1
and s2 ∈ att2. If FRD({[[s1]]D}) ∩ FRD({[[s2]]D}) 6= ∅, then they are the same attractor

76

5.3. RELATIONS IN DYNAMICS BETWEEN DGABNS AND OTHER MODELS

since D has only fixed points or limit cycles. This implies that att1 = att2 contradicting
to att1 ∩ att2 = ∅. Thus, FRD({[[s1]]D}) ∩ FRD({[[s2]]D}) = ∅. (ii)

Assume that att′ is an attractor of D. Let att be a set of states in B such that
att = [[att′]]B. By Theorem 5.3.1, each state of att is reachable from any other state of
att. Suppose that there exists a state s 6∈ att such that it is reachable from att. Then
[[s]]D is not in att′ but is reachable from att′ by Theorem 5.3.1. This is a contradiction.
Thus, att is an attractor of B. (iii)

Given att′1, att
′
2 ∈ AD, att′1 ∩ att′2 = ∅. Oviously, [[att′1]]B ∩ [[att′2]]B = ∅. (iv)

There is an injection from AB to AD by (i) and (ii). There is also an injection from AD

to AB by (iii) and (iv). Thus, AB one-to-one corresponds to AD. In addition, att = [[att′]]B

with att is an attractor of B and att′ is its corresponding attractor of D. We also obtain
that |att′| = nb(d)× |att| because D has only fixed points or limit cycles.

5.3.3 Relations to Generalized Asynchronous Boolean Networks

Generalized Asynchronous Boolean Networks (GABNs) are interesting mathematical ob-
jects and have been widely studied [14, 150, 157] besides ABNs. GABNs have the asyn-
chronous and non-deterministic updating scheme. At each time step, they randomly
select any number of nodes to update synchronously. This means that a GABN can up-
date synchronously no node, only one node, some nodes, or all the nodes. The STG of a
GABN has 2n nodes and up to 22n arcs [14]. This maybe makes the analysis of a GABN
computationally hard.

Example 5.3.2. Let G be the GABN counterpart of the DGABN D shown in Exam-
ple 5.2.1 (i.e., the GABN shares the sets of nodes and Boolean functions with D). The
STG of G is shown in Figure 5.4. As we can see, each arc of the ESTG of D (see
Figure 5.2a) corresponds to an arc of the STG of G. For example, ((00, 0), (10, 1)) corre-
sponds to (00, 10) and ((10, 0), (01, 1)) corresponds to (10, 01). G has only one attractor
({11}), whereas D has three attractors. We can see that {11} corresponds to the attractor
{(11, 1), (11, 0)} of D.

00 01

10 11

Figure 5.4: STG of the GABN shown in Example 5.3.2.

Obviously, all state transitions of a DGABN will be covered in the STG of its GABN
counterpart by the updating scheme of GABNs. See Example 5.3.2 as an illustration.
Hereafter, we formally state and prove several relations in dynamics between a DGABN
and its GABN counterpart (see Lemma 5.3.1 and Theorem 5.3.3). Theorem 5.3.3 shows
that given a DGABN and its GABN counterpart, each attractor of the GABN contains
at least one attractor of the DGABN.

Lemma 5.3.1. Let D be a DGABN and G be its GABN counterpart. Let es be an extended
state of D and FRD({es}) be the set of extended states reachable from es in D. Then,
[[FRD({es})]]I ⊆ FRG({[[es]]I}).

77

5.3. RELATIONS IN DYNAMICS BETWEEN DGABNS AND OTHER MODELS

Proof. Let G(D) and G(G) be the ESTG and STG of D and G, respectively. If (es, es′) is
an arc in G(D), then ([[es]]I , [[es′]]I) is also an arc in G(G) because in GABNs, any number
of nodes can be synchronously updated. Thus, it is easy to imply that [[FRD({es})]]I ⊆
FRG({[[es]]I}).

Theorem 5.3.3. Let D be a DGABN and G be its GABN counterpart. Let AD and
AG be the sets of attractors of D and G, respectively. Then, there exists a mapping
m : AG → AD with [[m(att)]]I ⊆ att for all att ∈ AG. In addition, m(att1) 6= m(att2) for
all att1, att2 ∈ AG, att1 6= att2. This means that m is an injection.

Proof. Let att ∈ AG and s ∈ att be a state of G. Obviously, FRG({s}) = att.
Let es′ be an extended state of D such that es′i = si, i ∈ {1, ..., n} and es′n+1 =

0. By Lemma 5.3.1, we have [[FRD({es′})]]I ⊆ FRG({[[es′]]I}) = FRG({s}) = att.
Clearly, there is an attractor att′ of D such that att′ ⊆ FRD({es′}). Then, [[att′]]I ⊆
[[FRD({es′})]]I be the definition of images. Thus, [[att′]]I ⊆ att. We now can choose the
mapping m as m(att) = att′. Note that since att′ may not be unique, m may not be
uniquely determined.

For all att1, att2 ∈ AG, att1 6= att2, we have att1 ∩ att2 = ∅ since attractors of G
are pairwise disjoint. [[m(att1)]]I ⊆ att1 and [[m(att2)]]I ⊆ att2 imply that [[m(att1)]]I ∩
[[m(att2)]]I = ∅. Then, m(att1)∩m(att2) = ∅ by the definition of images. Thus, m(att1) 6=
m(att2). Therefore, m is an injection.

In Section 3.3, we have formally stated and proved several relations in dynamics be-
tween a GABN and its SBN counterpart. Theorem 3.3.1 shows that any attractor of a
GABN always contains an attractor of its SBN counterpart. Since an SBN is a special
DGABN, this theorem is a special case of Theorem 5.3.3.

5.3.4 Relations to Mixed-Context Boolean Networks

To deal with the lack of knowledge on real contexts of DGABNs, Carlos Gershenson pro-
posed a new type of Boolean models called Mixed-Context Boolean Networks (MxBNs) [5,
13]. He introduced the idea of mixed context, where a mixed context is a statistical mix-
ture of a set of pure contexts. The updating scheme of MxBNs is basically like that of
DGABNs. However, MxBNs have to make a random choice between pure contexts at
each time step, making their dynamics non-deterministic and generating a probability
structure that is non-Kolmogorovian (quantum-like) [13].

An MxBN is a DGABN with M ≥ 1 pure contexts. Each pure context consists of p’s
and q’s as in DGABNs. At each time step, we randomly select one pure context among
M pure contexts and use it in the DGABN. Hence, the dynamics of an MxBN can be
captured by overlapping the ESTGs of its M constituent DGABNs. See Example 5.3.3
for an example of MxBNs.

Example 5.3.3. Given an MxBN M of two nodes (x1, x2). Its Boolean functions and
M = 2 pure contexts are given by

f1 = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2), f2 = x1;

M1 : p1 = 1, p2 = 2, q1 = 0, q2 = 0;

M2 : p1 = 1, p2 = 1, q1 = 0, q2 = 0.

78

5.3. RELATIONS IN DYNAMICS BETWEEN DGABNS AND OTHER MODELS

Let D1 and D2 be the DGABNs corresponding to M1 and M2, respectively. Figure 5.5
shows the ESTG of M. This ESTG is formed by overlapping the ESTG of D1 (normal
lines) and the ESTG of D2 (dashed lines).

(00,0)

(10,1)

(11,1) (11,0)

(10,0) (00,1)

(01,1) (01,0)

Figure 5.5: ESTG of the MxBN shown in Example 5.3.3.

In Example 5.3.3,M has two attractors including {(11,0), (11,1)} and {(00,0), (10,1),
(10,0), (01,1), (01,0), (00,1)}. Note that an extended state of an MxBN may have more
than one outgoing transition by the introduction of non-determinism to MxBNs, leading
to the existence of complex attractors as in ABNs [43]. In addition, D1 has three attractors
including {(00,0), (10,1)}, {(11,0), (11,1)}, and {(10,0), (01,1), (01,0), (00,1)}; D2 has two
attractors including {(11, 0)} and {(00,0), (10,0), (01,0)}. We can see that each attractor
of M always contains at least one attractor of D1. This observation is also valid for the
case of D2. We generalize this observation in Theorem 5.3.4.

Theorem 5.3.4. LetM be an MxBN of M pure contexts. Let D be an arbitrary DGABN
among M constituent DGABNs of M. Let AM and AD be the sets of attractors of M
and D, respectively. Then, there exists a mapping m : AM → AD with m(att) ⊆ att for
all att ∈ AM. In addition, m(att1) 6= m(att2) for all att1, att2 ∈ AM, att1 6= att2. This
means that m is an injection.

Proof. Let att ∈ AM. Obviously, an attractor ofM always contains an extended state es
such that esn+1 = 0. Thus, there is an extended state es such that es ∈ att and esn+1 = 0.
Then, FRM({es}) = att. In addition, es is also an extended state of D.

Since the ESTG ofM contains the ESTG of D, FRD({es}) ⊆ FRM({es}). Obviously,
there is an attractor att′ of D such that att′ ⊆ FRD({es}). Then, att′ ⊆ FRM({es}) =
att. We now can choose the mapping m as m(att) = att′. Note that since att′ may not
be unique, m may not be uniquely determined.

For all att1, att2 ∈ AM, att1 6= att2, we have att1 ∩ att2 = ∅ because attractors of M
are pairwise disjoint. m(att1) ⊆ att1 and m(att1) ⊆ att1 imply that m(att1)∩m(att2) = ∅.
Thus, m(att1) 6= m(att2). Therefore, m is an injection.

Theorem 5.3.4 suggests us a promising way to find all attractors of an MxBN. First, we
can find attractors of one of its constituent DGABNs by applying our method presented in

79

5.4. COMPUTING ATTRACTORS

Section 5.4. Then, we can filter the set of DGABN attractors by checking the reachability
property in this MxBN. This idea is similar to the filtering algorithm for finding GABN
attractors based on SBN attractors, which is presented in Subsection 3.4.3. Proposing an
efficient method for attractor detection in MxBNs is one of our future work.

5.4 Computing Attractors

Attractor detection in various types of BNs has attracted much attention. Many studies
has been done but they mainly focus on SBNs (e.g., [43, 44, 50]) and ABNs (e.g., [43, 49]).
There are very few studies (e.g., [75, 80]) specifically done for DGABNs. Moreover, these
few studies are theoretical or simulation-based studies. These facts motivate algorithms
for analytically and practically finding attractors of a DGABN.

Dubrova and Teslenko proposed an efficient SAT-based method for finding attractors
of an SBN [44]. Since the ESTG of a DGABN is deterministic like the STG of a SBN,
there is a potential to extend the SAT-based method for SBNs to that for DGABNs.
However, it is difficult to directly use SAT for DGABNs because the transition formula
of an ESTG (see Equation 5.1) contains integer variables (e.g., xjn+1) and the modulus

operator. Since integers are bounded, we can encode xjn+1 by a bit-vector [118] of sizem (m
is the smallest integer larger than or equal to the logarithm to the base two of γ) and then
use the bit-blasting technique [159] to transform the transition formula to an equivalent
SAT formula. Satisfiability Modulo Theory (SMT) may provide a more natural encoding.
Modern SMT solvers (e.g., Z3 [118]) use the efficient algorithms of SAT solvers as their
solving cores, thus can handle very large problem instances. In addition, the bit-blasting
technique is also integrated into some SMT solvers as a solving tactic [118]. Therefore,
we here propose a new SMT-based method for finding attractors of an DGABN. Note
that proposing ESTG paves the way to extend the method by Dubrova and Teslenko for
SBNs to that for DGABNs.

5.4.1 SMT-Based Method

The intuitive idea of the proposed SMT-based method (named DA-SMT-Att) is as
follows. DA-SMT-Att searches for a p-length path (i.e., this path makes p transitions
between extended states) in the ESTG of a DGABN. Since a fixed point of the DGABN
is represented by a limit cycle of length γ in the ESTG of this DGABN, p can start with
γ (γ ≥ 1). If a path is found and it contains a limit cycle, DA-SMT-Att adds this limit
cycle to the set of marked attractors. In an ESTG, an extended state has a unique next
extended state, thus once a path reaches a limit cycle, it never leaves this cycle. This
suggests a way to check whether a path contains a limit cycle by checking whether the
last extended state of the path occurs at least twice in this path. In the next iterations,
DA-SMT-Att only searches for paths such that their last extended states are not in the
set of marked attractors. If a path is found and it contains no limit cycle, DA-SMT-Att
increases p (e.g., doubles p) and continues the search for a path with the new length.
If a path does not exist, DA-SMT-Att can terminate the search. Since the ESTG is
deterministic like the STG of an SBN, DA-SMT-Att always terminates and correctly
finds all attractors of the DGABN (see Theorem 5.4.1).

Theorem 5.4.1. DA-SMT-Att terminates and correctly finds all attractors of a DGABN.

80

5.4. COMPUTING ATTRACTORS

Proof. Let D denote the DGABN.
Until at least one attractor remains unmarked, we can find a path of any length such

that its last extended state is not in any marked attractors because we can cycle in an
attractor forever. This means that DA-SMT-Att will not terminate if at least one
attractor remains unmarked (a).

In the beginning of DA-SMT-Att, the number of marked attractors is 0. The length
of a path such that it does not contain any limit cycles must be less than the number
of extended states of the ESTG of D (b). A better upper bound is the diameter of the
ESTG. The diameter of a graph is defined as the length of the longest shortest path
between two nodes. Since p always increases when no limit cycle is found and the ESTG
has at least one limit cycle, we eventually find a path containing a limit cycle by (a).
Now this limit cycle is marked (i.e., it is added to the set of marked attractors). If all
attractors of D are marked, DA-SMT-Att must eventually terminate by (b). Otherwise,
M continues its search by (a). Since the number of attractors of D is finite, all attractors
will eventually be marked. Now, DA-SMT-Att can terminate by (b) and all attractors
of D are found.

In each iteration of DA-SMT-Att, the finding of a p-length path can be performed
by using an SMT solver (we here use Z3 [118]). Let A be the set of attractors that is
updated through the iterations. Note that such a path must satisfy two conditions. First,
the value of the scaled time of its starting extended state must be 0. As mentioned in
Section 5.2, there may be some spurious extended states that are not in the ESTG of
the DGABN. This condition guarantees that all extended states along with the path are
always in the ESTG because the starting extended state is one of the possible initial
extended states of the DGABN. Second, its ending extended state must be not in A as
mentioned in the previous paragraph. The path can be encoded as an SMT formula P
(see Equation 5.2). Then, we simply use Z3 to solve P .

P := (es0
n+1 = 0) ∧

{
p−1∧
j=0

T D(esj, esj+1)

}
∧ ¬χ(AF , esp) (5.2)

In Equation 5.2, esj denotes the (j + 1)th extended state of the path. Then, es0 and
esp denote the starting and ending extended states of the p-length path, respectively.
T D(esj, esj+1) represents the transition from esj to esj+1, where T D is the transition
formula of the DGABN D (see Equation 5.1). Thus,

∧p−1
j=0 T D(esj, esj+1) represents a

p-length path of D. (es0
n+1 = 0) represents the first condition of the path. ¬χ(AF , esp)

represents the second condition of the path, where AF is the flattened set of A (i.e., AF

is the set of extended states); χ(AF , esp) is the characteristic formula representing all
extended states of AF in terms of variables of esp. The characteristic formula of a set
of extended states is defined based on the characteristic formula of an extended state:
χ(AF , esp) =

∨
es∈AF χ(es, esp). The characteristic formula of an extended state es in

terms of variables of esp is defined as χ(es, esp) =
∧n+1

i=1 (esi = espi).
Let us see a running example of DA-SMT-Att on the DGABN D shown in Exam-

81

5.4. COMPUTING ATTRACTORS

ple 5.2.1. DA-SMT-Att starts with p = γ = 2 and A = ∅. We obtain

T D(es0, es1) = {es1
3 = (es0

3 + 1)%2} ∧ {(es0
3%1 = 0∧

(es1
1 = (es0

1 ∧ es0
2) ∨ (¬es0

1 ∧ ¬es0
2))) ∨ (es0

3%1 6= 0 ∧ es1
1 = es0

1)}
∧ {(es0

3%2 = 0 ∧ es1
2 = es0

1) ∨ (es0
3%2 6= 0 ∧ es1

2 = es0
2)};

T D(es1, es2) = {es2
3 = (es1

3 + 1)%2} ∧ {(es1
3%1 = 0∧

(es2
1 = (es1

1 ∧ x1
2) ∨ (¬es1

1 ∧ ¬es1
2))) ∨ (es1

3%1 6= 0 ∧ es2
1 = es1

1)}
∧ {(es1

3%2 = 0 ∧ es2
2 = x1

1) ∨ (es1
3%2 6= 0 ∧ es2

2 = es1
2)};

P = (es0
3 = 0) ∧ T D(es0, es1) ∧ T D(es1, es2).

DA-SMT-Att then uses Z3 to solve P . Clearly, a path is found. Suppose that this
path is (00, 0) → (10, 1) → (00, 0) (see Figure 5.2a). Since the last extended state
((00, 0)) occurs twice, we obtain a limit cycle of length 2. Now, we can add this limit
cycle ({(00, 0), (10, 1)}) to A. The flatted set AF is {(00, 0), (10, 1)} and χ(AF , es2) =
χ((00, 0), es2) ∨ χ((10, 1), es2) where χ((00, 0), es2) = (es2

1 = 0) ∧ (es2
2 = 0) ∧ (es2

3 =
0), χ((10, 1), es2) = (es2

1 = 1) ∧ (es2
2 = 0) ∧ (es2

3 = 1). In the next iteration, DA-
SMT-Att continues to search a path of length two with the new formula P = (es0

3 =
0) ∧ T D(es0, es1) ∧ T D(es1, es2) ∧ ¬χ(AF , es2). Suppose that the next found path is
(00, 1)→ (10, 0)→ (01, 1). This path is cycle-free because the last extended state ((01, 1))
occurs only one. Now, DA-SMT-Att increases p to four and starts the next iteration
with p = 4 and A = {{(00, 0), (10, 1)}}. By running two more iterations, DA-SMT-Att
terminates and all the attractors of D are detected with A = {{(00,0), (10,1)}, {(11,0),
(11,1)}, {(00,1), (10,0), (01,1), (01,0)}}.

In DA-SMT-Att, the last value of p is called the unfolding depth of the DGABN.
Obviously, in each iteration of DA-SMT-Att, the number variables and the number of
clauses of P depend on both n and p. In the ESTG of the DGABN, starting from an
extended state, we must go through at least γ − 1 different extended states to reach an
extended state with the same tscaled. It seems to make the diameter of the ESTG longer.
Thus, if γ is large even when n is small, the diameter may be very large. The diameter
of the ESTG is an upper bound of the unfolding depth, leading the unfolding depth of
the DGABN may be very large. In this case, P will have too many variables and clauses,
and the time for solving P may be extremely long.

5.4.2 Case Study

In this subsection, we apply our proposed method for attractor detection in DGABNs
(i.e., DA-SMT-Att) to two real biological networks and compare the obtained results
to the previous insights on these networks already explored in the literature.

The first network is the reduced network of the guard cell ABA signal transduction
network analyzed in [9]. The BN of this reduced network includes three nodes: x1 standing
for CIS, x2 standing for Ca2+

c , and x3 standing for Ca2+ATPase. Its Boolean functions
are given by

f1 = x2, f2 = x1 ∧ ¬x3, f3 = x2.

Each node xi is associated with a time unit γi, forming a DA model. Saadatpour et al. [9]
applied their method to this network with many different choices of time units (i.e., many

82

5.4. COMPUTING ATTRACTORS

different DA models). We here encode a DA model as a DGABN (see Subsection 5.3.1).
Then, we apply DA-SMT-Att to find attractors of the encoded DGABN. The obtained
results are given as follows.

For the case that γ1 = 2γ2, γ2 = 2k+ 1, γ3 = 2, k = 2, we have that the DA model has
a limit cycle of length γ2 + 1 + 2k = 4k+ 2 = 10 by Proposition 1 of [9]. Note that in [9],
the authors claimed that the cycle length is only 2k+ 2 because of their way for counting
the time staying each state. Following their proof for this proposition, the correct length
should be 4k+ 2. By applying DA-SMT-Att, the encoded DGABN has two limit cycles
of length 10. One of these two limit cycles is {(101,0), (111,9), (111,8), (111,7), (111,6),
(110,5), (100,4), (100,3), (100,2), (101,1)}. This result is consistent with Proposition 1
of [9].

For the case that γ1 = 2γ2, γ2 = 2k, γ3 = 2, k = 2, we have that the DA model has a
limit cycle of length γ2 +2k = 4k = 8 by Proposition 2 of [9]. Note that in [9], the authors
claimed that the cycle length is only 2k because of their way for counting the time staying
each state. Following their proof for this proposition, the correct length should be 4k.
By applying DA-SMT-Att, the encoded DGABN has two limit cycles of length 8. One
of these two limit cycles is {(110,5), (110,4), (100,3), (100,2), (101,1), (101,0), (111,7),
(111,6)}. This result is consistent with Proposition 2 of [9].

The second network is the mammalian cell cycle network analyzed in [82]. The BN of
this network includes 10 nodes (genes) and its detail is given in Table 5.1. The authors
of [82] analyzed this network under different deterministic updating schemes. For each
deterministic updating scheme, we encode the corresponding BSBN as a DGABN (see
Subsection 5.3.2). Then, we apply DA-SMT-Att to find attractors of the encoded
DGABN. The obtained results are given as follows.

Table 5.1: BN model of the cell cycle network.

Gene Boolean function
CycD CycD
Rb (¬CycD ∧ ¬CycB) ∧ ((¬CycE ∧ ¬CycA) ∨ p27)
E2F (¬Rb ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬Rb ∧ ¬CycB)
CycE (E2F ∧ ¬Rb)
CycA (¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ UbcH10)) ∧ (E2F ∨ CycA)
p27 (¬CycD ∧ ¬CycB) ∧ ((¬CycE ∧ ¬CycA) ∨ (p27 ∧ ¬(CycE ∧ CycA)))
Cdc20 CycB
Cdh1 (¬CycA ∧ ¬CycB) ∨ Cdc20 ∨ (p27 ∧ ¬CycB)
UbcH10 ¬Cdh1 ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB))
CycB ¬Cdc20 ∧ ¬Cdh1

For the case that the deterministic updating scheme is (CycD,Rb, Cdc20, Cdh1, CycA)
(p27, UbcH10, CycB)(E2F)(CycE), the BSBN has one fixed point with CycD = 0, a limit
cycle of length 4 with CycD = 1, and a limit cycle of length 8 with CycD = 0 (see Figure
7 of [82]). By applying DA-SMT-Att, the encoded DGABN has a limit cycle of length 4,
a limit cycle of length 16, and a limit cycle of length 32. Since γ of the encoded DGABN
is 4, three attractors of the encoded DGABN correspond to three attractors of the BSBN.
See Table 5.2 for details of these DGABN attractors. Herein, the order of the nodes in a
state is (CycD, p27, E2F,CycE,CycA, p27, Cdc20, Cdh1, UbcH10, CycB). Note that in

83

5.4. COMPUTING ATTRACTORS

each DGABN attractor, we only show the images of extended states whose tscaled are 0.
This result is consistent with the relations presented in Subsection 5.3.2.

For the case that the deterministic updating scheme is (CycD, p27, Cdc20, Cdh1, UbcH10,
CycB)(E2F)(CycE)(Rb,CycA), the BSBN has one fixed point with CycD = 0, a limit
cycle of length 2 with CycD = 0, a limit cycle of length 6 with CycD = 0, and a limit
cycle of length 6 with CycD = 1 (see Figure 8 of [82]). By applying DA-SMT-Att,
the encoded DGABN has a limit cycle of length 4, a limit cycle of length 8, and two
limit cycles of length 24. Since γ of the encoded DGABN is 4, four attractors of the
encoded DGABN correspond to four attractors of the BSBN. See Table 5.2 for details
of these DGABN attractors. This result is consistent with the relations presented in
Subsection 5.3.2.

Table 5.2: Details of DGABN attractors of the cell cycle network.

Figure 7
{0100010100}
{1011000100, 1000101010, 1000100011, 1000100100}
{0000100100, 0011000100, 0011001010, 0000010011, 0100100100,
0011010100, 0000101010, 0000100011}

Figure 8

{0100010100}
{0111110100, 0000000100}
{0000100011, 0000100000, 0011100100, 0011000110, 0011001110,
0000001011}
{1011001110, 1000001011, 1000100011, 1000100000, 1011100100,
1011000110}

5.4.3 Verifying the Previous Insights

Many numerical experiments were conducted to discover several insights into the dynamics
of DGABNs [13, 14]. However, their method is incomplete and is limited to small networks
(n ≤ 10). Since DA-SMT-Att can find exactly all the attractors of a DGABN and can
be applicable to large networks (see Section 5.5), we here reproduced these experiments
with larger networks to verify these insights. We hope that DA-SMT-Att will be helpful
in further research on DGABNs and their applications.

Following the experimental method by [13, 14], we randomly generated 1000 N -K
BNs with K = 3 (i.e., each node has exactly K = 3 input nodes) and different numbers of
nodes (n = 3, 4, ..., 15) by using Bool Net R package [117]. We then randomly generated
a context for each BN with Λ = 3. In total, we have 13000 randomly generated DGABNs.
We applied DA-SMT-Att to find attractors of each DGABN and its SBN counterpart
(i.e., Λ = 1). For each DGABN or its SBN counterpart, the number of attractors and the
percentage of extended states in attractors were reported.

Figure 5.6 shows the average number of attractors of the randomly generated networks
with different n. We can see that the average number of attractors of DGABNs for low Λ
(Λ = 1 and Λ = 3) has a linear increment proportional to n. This observation is consistent
with the insight on the average number of attractors presented in Section 3 of [13].

Figure 5.7 shows the percentage of attractor states (in a base-10 logarithmic scale) of
the randomly generated networks with different n. By observing this figure, we can see
that the percentage of attractor states seems to decrease exponentially as n increases for

84

5.5. EXPERIMENTAL RESULTS

both SBNs and DGABNs. However, the percentage of attractor states decreases slower
for low Λ (Λ = 1) than for a higher one (Λ = 3). This observation is consistent with
the insight on the percentage of attractor states presented in Section 3 of [13]. Another
observation, which can be obtained from this figure, is that SBNs (Λ = 1) have more
states in attractors than DGABNs (Λ = 3). This is consistent with the insight on the
percentage of attractor states presented in Subsection 3.2 of [14].

3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Number of nodes

A
ve

ra
ge

n
u
m

b
er

of
at

tr
ac

to
rs SBNs

DGABNs

Figure 5.6: Average number of attractors varying the number of nodes.

3 4 5 6 7 8 9 10 11 12 13 14 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Number of nodes

A
ve

ra
ge

p
er

ce
n
ta

ge
of

at
tr

ac
to

r
st

at
es

SBNs
DGABNs

Figure 5.7: Average percentage (log scale) of attractor states varying the number of nodes.

5.5 Experimental Results

We have implemented the proposed method (i.e., DA-SMT-Att) in a JAVA tool inte-
grating the Z3 solver called DABoolNet. An executable file of DABoolNet and several

85

5.6. DISCUSSION

example networks are available at: https://github.com/giang-trinh/daboolnet. To
our best knowledge, BooleanNet [80] is the sole practical tool for analysis of DA models.
However, a DA model is only a special DGABN (see Subsection 5.3.1) and BooleanNet
is only a simulation tool. Thus, it is difficult to compare DABoolNet with other previous
tools with respect to attractor detection in DGABNs. We here only focus on how well
DA-SMT-Att scales up.

In order to evaluate the scalability of DA-SMT-Att, we applied this method to ran-
domly generated DGABNs. We randomly generated 24 DGABNs with different numbers
of nodes and Λ = 3. All the 24 DGABNs have the same γ = 6. We then ran DABool-
Net to find attractors of these DGABNs. The time limit was set to four hours for each
DGABN. The running environment is a PC with CPU: Intel Core i7 2.4 GHz, Memory:
16 GB, Windows 10 Home 64 bit.

Table 5.3 shows the obtained results. Column ”n” stands for the number of nodes.
Column ”a× l” stands for the number and length of attractors computed by DA-SMT-
Att. The computational time (in seconds) is given in Column ”time (s)”. From these
results, we see that DA-SMT-Att can find attractors of large DGABNs within practical
computational time.

Table 5.3: Experimental results of DA-SMT-Att on randomly generated networks.

n a× l time (s) n a× l time (s)
10 2 x 6 2.40 130 16 x 12 2312.64
20 8 x 6 14.49 140 14 x 12 342.61
30 10 x 6 49.37 150 8 x 6, 8 x 12, 4 x 36 711.71
40 16 x 6, 8 x 12 124.72 160 24 x 12 11996.69
50 10 x 12, 2 x 24, 4 x 36 529.95 170 6 x 12 1135.65
60 8 x 24 318.25 180 2 x 12 132.50
70 5 x 12 210.00 190 16 x 12 657.86
80 9 x 12, 2 x 24 324.91 200 4 x 6, 8 x 18, 2 x 36, 2 x 72 2902.37
90 8 x 6 304.19 250 10 x 6, 12 x 30 11338.33
100 4 x 6 136.90 300 5 x 6, 1 x 12, 12 x 30 8290.07
110 3 x 6, 1 x 12 88.64 350 timeout timeout
120 24 x 12 820.93 400 timeout timeout

5.6 Discussion

In this chapter, we have proposed the formulation of an ESTG. An ESTG captures the
whole dynamics of a DGABN and paves potential ways to analyze this DGABN. Based
on this formulation, we have proposed an SMT-based method (called DA-SMT-Att) for
attractor detection in DGABNs, which is one of central issues in systems biology. The
experimental results show that DA-SMT-Att can handle well large networks. We have
also stated and proved several relations between DGABNs and other models including
DA models, BSBNs, GABNs, and MxBNs. These relations not only contribute to under-
standing the dynamics of Boolean networks but also pave potential ways to analyze these
models based on DGABNs.

86

https://github.com/giang-trinh/daboolnet

5.6. DISCUSSION

To show the applications of DA-SMT-Att, we have applied this method to find
attractors of two real biological networks. The results obtained by DA-SMT-Att are
consistent with the previous insights on these real networks in the literature. We have
also used DA-SMT-Att to verify several previously numerical insights into the dynamics
of SBNs and DGABNs.

Note that, in our experiment, DA-SMT-Att suffers from an inherent problem of
SMT. When γ of a DGABN is large (e.g, γ ≥ 30), the unfolding depth in DA-SMT-Att
may be too large even for DGABNs with small n. In this case, the SMT formula P
will have too many variables and clauses, and the time for solving P may be extremely
long. To mitigate this problem, further improvements for SMT (e.g., variable ordering)
are needed.

87

Part II

Optimal Control

88

Chapter 6

Optimal Control of Deterministic
Generalized Asynchronous Boolean
Networks

6.1 Introduction

Control of biological systems is one of the central issues in systems biology [38]. In
theory, biological systems are complex and contain highly non-linear components and
thus existing methods in control theory cannot be directly applied to control of biological
systems. In practice, control of cells may be useful for systems-based drug discovery and
cancer treatment [19, 38, 39]. Thus, it is an important and interesting challenge to develop
theories and methods for control of biological systems [21]. Since BNs are highly non-
linear systems and have been widely used in modeling biological systems, it is reasonable
to try to develop methods for control of BNs.

In recent years, several approaches have been developed for control of BNs. We can
classify them into two main directions. The first one (e.g., [39, 58, 59, 60, 61, 62, 63])
uses node perturbations, whereas the second one (e.g., [55, 56, 57]) uses external inputs
to control a BN. The second direction assumes that the set of control inputs is known
and fixed for a finite sequence of steps. Somehow this is not very realistic, concerning the
effort in searching for potential drug targets [21]. However, this direction is still useful
because (a) extensive studies have been done on selecting and analyzing the minimum
set of control nodes [160, 161] and (b) some methods of the first direction can be cast
into the second direction [59]. To our best knowledge, there is no study specifically
designed for DGABNs. Although optimality may rarely be the main constraint compared
to correct behavior of systems in experiments, the optimal control problem is still useful
and interesting because it is more general than the standard control problem [21, 56].
Therefore, we focus on optimal control of DGABNs.

We formulate the optimal control problem of DGABNs in Section 6.2. We then propose
two SMT-based methods for solving the formulated problem under the two control modes,
time-sensitive (see Section 6.3) and non-time-sensitive (see Section 6.4). To show the
applications of the proposed methods, we apply the proposed methods to optimal control
of a real biological network (see Section 6.5), the apoptosis network [162]. Finally, we
evaluate the scalability of the proposed methods by conducting an experiment on an
artificial network (see Section 6.6).

89

6.2. PROBLEM FORMULATION

6.2 Problem Formulation

Before defining the problem of optimal control of DGABNs, we introduce DGABNs with
control nodes. In the rest of this chapter, we refer a DGABN as a DGABN with control
nodes.

Definition 6.2.1. A BN with control nodes is defined as a triple (V, F, U), where V =
{x1, ..., xn} (n ≥ 1) is the set of internal nodes, F = {f1, ..., fn} is the set of Boolean
functions, and U = {u1, ..., um} (m ≥ 0) is the set of external (control) nodes. Each
node xi is identified as a Boolean variable, and is associated with a Boolean function
fi : Bn × Bm → B. Also, each node ui is identified as a Boolean variable. xi(t) ∈ B and
ui(t) ∈ B denote the state of internal node xi and the state of external node ui at time t,
respectively. x(t) = (x1(t), ..., xn(t))> and u(t) = (u1(t), ..., um(t))> denote the state and
the control input of the BN at time t, respectively.

Definition 6.2.1 gives the definition of a BN with control nodes. Internal node xi
updates its state by xi(t + 1) = fi(x(t), u(t)), whereas a control node can receive an
arbitrary Boolean value at each time step. Then, a DGABN with control nodes is defined
in Definition 6.2.2.

Definition 6.2.2. A DGABN with control nodes is a BN with control nodes such that
each internal node xi is associated with two parameters, pi ∈ N+ and qi ∈ N, qi < pi.
Internal node xi can be updated at time t if t%pi = qi. If multiple internal nodes can be
updated, then all of them are updated simultaneously.

We here formally define optimal control of DGABNs as in Definition 6.2.3 adapted
from [21]. In this definition, internal nodes stand for usual nodes (i.e., genes or proteins),
external (control) nodes can stand for external interventions (e.g., drugs, radiation, or
chemotherapy), the initial state can stand for a disease or cancerous state, and the desired
state can stand for a healthy or normal state. Usually, ui(k) = 0 implies that ui is
not applied at time k, whereas ui(k) = 1 implies that ui is applied at time k with the
application cost gi. Note that the cost vector g may be fixed or not fixed over time. In
the biological context, g may depend on the current state of the system, i.e., g may be
represented as a function gf : U × Bn → N. In addition, we can consider various types of
cost, such as, the cost of applying drugs, the total harmful effects of the applied drugs, the
total concentration of some given genes [163]. Representing the function gf or these types
of cost as SMT formulas is easy thanks to the expressive power of SMT. For simplicity,
we assume that g is fixed over time and the cost function is the cost of applying control
nodes. Example 6.2.1 shows a DGABN with a setting for optimal control.

Definition 6.2.3. Given a DGABN including a set of internal nodes (X = {x1, ..., xn})
and a set of external (control) nodes (U = {u1, ..., um}), an initial state xini ∈ B1×n,
a desired state xdes ∈ B1×n, a target time M , and a cost vector g ∈ N1×m. Note that
control nodes can appear in Boolean functions of the DGABN, i.e., fi : Bn+m → B
(i = 1, ..., n). Let decide whether or not there exists a control sequence of 0-1 control
vectors 〈u(0), ..., u(M − 1)〉 such that x(0) = xini, x(M) = xdes, and the linear cost
function C =

∑M−1
j=0 (

∑m
i=1(ui(j)× g(ui))) is minimum. Then, output one if it exists.

90

6.3. SMT-BASED METHOD FOR THE TIME-SENSITIVE MODE

Example 6.2.1. A DGABN D includes three internal nodes (x1, x2, x3) and two control
nodes (u1, u2). Its setting for optimal control is given by

f1 = ¬u1, f2 = x1 ∧ u2, f3 = x1 ∨ x2;

p1 = 2, p2 = 1, p3 = 2; q1 = 1, q2 = 0, q3 = 0;

g(u1) = 1, g(u2) = 2; xini = 000, xdes = 011.

We here consider two control modes (time-sensitive and non-time-sensitive) for optimal
control of DGABNs as for optimal control of other systems [164]. In the time-sensitive
mode, the condition x(M) = xdes must be strictly satisfied, i.e., the DGABN must reach
the desired state at exactly the target time M (as in Definition 6.2.3). The time-sensitive
mode is often used in standard forms of optimal control problems of BNs [165]. It is
useful when we want, for example, to find a drug treatment over a given time frame
[0,M] minimizing the cost of using the drugs. In many applications, we may want, for
example, to find a drug treatment such that the cost of using the drugs is minimum
and the treatment time should be as early as possible before a given time M . In this
case, the non-time-sensitive mode is useful. In the non-time-sensitive mode, the condition
x(M) = xdes can be relaxed, i.e., the DGABN can reach the desired state before or at time
step M . Specifically, the two last sentences of Definition 6.2.3 are replaced by: Let decide
whether or not there exists a control sequence of 0-1 control vectors 〈u(0), ..., u(M ′ − 1)〉
such that

x(0) = xini, x(M ′) = xdes,M ′ ≤M,

and the linear cost function

C =
M ′−1∑
j=0

(
m∑
i=1

(ui(j)× g(ui)))

is minimum. Then, output one if it exists.

6.3 SMT-Based Method for the Time-Sensitive Mode

Langmead and Jha proposed an efficient SAT-based method for standard control of
SBNs [55]. Inspired by this SAT-based method, we propose two methods for optimal
control of DGABNs under the two control modes called DA-SMT-Con-TS and DA-
SMT-Con-NTS, respectively. However, there are some differences between our methods
and the SAT-based method. First, the SAT-based method is only applicable to SBNs,
whereas our methods are applicable to DGABNs, which are more general than SBNs.
Second, the SAT-based method solves the standard control problem, whereas our meth-
ods solve the optimal control problem, which is more general than the standard control
problem. Third, the SAT-based method only supports the time-sensitive mode, whereas
our methods support both the time-sensitive and non-time-sensitive modes.

For the time-sensitive mode, the intuitive idea of DA-SMT-Con-TS is as follows.
Let est be the corresponding extended state of state x(t), where esti = xi(t), i ∈ {1, ..., n}

91

6.4. SMT-BASED METHOD FOR THE NON-TIME-SENSITIVE MODE

and estn+1 = t%γ. Let ut denote the control input at time t. We first encode an M -
length path from es0 to esM in the ESTG of the DGABN D as an SMT formula P (see
Equation 6.1), which is based on the transition formula between two extended states of
the DGABN. We then solve P under minimizing the cost function C in Z3 (see [166] for
optimization in Z3). If SAT(P), then a control sequence and an optimum cost, which can
be easily obtained from the satisfying assignments of the corresponding SMT variables,
are released. Otherwise, ”there are no control policies” is released.

In Equation 6.1, Tstart (see Equation 6.2) expresses that the path starts with xini at
time t = 0 and Tend (see Equation 6.3) expresses that the path ends with xdes at time
t = M . Clearly, we can easily adjust Tstart and Tend to express the case of multiple initial
states or multiple desired states. This is useful because in the biological context we often
only consider the values of some dominant genes, other genes can receive arbitrary values.
TM stands for M transitions of this path. Note that T D(esj, esj+1) in Equation 6.5 is
the transition formula between two extended states of the DGABN D, which is defined
in Equation 6.4.

P := Tstart ∧ TM ∧ Tend (6.1)

Tstart := (es0
n+1 = 0) ∧

n∧
i=1

(es0
i = xinii) (6.2)

Tend := (esMn+1 = M%γ) ∧
n∧

i=1

(esMi = xdesi) (6.3)

T D(esj, esj+1) :=
{
esj+1 = (esj + 1)%γ

}
∧

n∧
i=1

{[
(esj%pi = qi) ∧ (esj+1

i = fi(es
j, uj))

]
∨
[
(esj%pi 6= qi) ∧ (esj+1

i = esji)
]} (6.4)

TM :=
M−1∧
j=0

T D(esj, esj+1) (6.5)

Let us consider Example 6.2.1. In the time-sensitive mode, we obtain a control se-
quence as 〈(0, 0), (0, 0), (0, 0), (1, 1)〉 and the minimum cost is C = 3 for M = 4. This
result is shown in Table 6.1. In Table 6.1, Column ”t” denotes the time of evolution (not
scaled to γ) and Column ”Updated nodes” denotes the nodes that will be updated at
time t. When M = 5, there are no control sequences. However, in the non-time-sensitive
mode, we will obtain the control sequence as that for the case M = 4.

6.4 SMT-Based Method for the Non-Time-Sensitive

Mode

Obviously, optimal control of DGABNs in the non-time-sensitive mode is harder than
that in the time-sensitive mode. For standard control of DGABNs, we can simply find
the first target time Mfirst (0 ≤ Mfirst ≤ M) in which the control condition is satisfied
(i.e., there exists a control sequence driving the DGABN from xini to xdes at time Mfirst).

92

6.4. SMT-BASED METHOD FOR THE NON-TIME-SENSITIVE MODE

Table 6.1: Result of the optimal control problem shown in Example 6.2.1 with M = 4
under the time-sensitive mode.

Updated nodes t x1 x2 x3 u1 u2 cost
x2, x3 0 0 0 0 0 0 0
x1, x2 1 0 0 0 0 0 0
x2, x3 2 1 0 0 0 0 0
x1, x2 3 1 0 1 1 1 3

4 0 1 1

However, for optimal control of DGABNs, the minimum cost of the case that M = Mfirst

may not be the smallest minimum cost (the target time corresponding to this smallest
minimum cost is called Mmin, 0 ≤ Mmin ≤ M). Hence, exact methods are needed for
optimal control of DGABNs in the non-time-sensitive mode. We here propose a method
called DA-SMT-Con-NTS to solve this problem.

Based on the method for the time-sensitive mode, we modify the SMT formula P
(defined in Equation 6.1) to represent an M -length path from es0 to esM in the ESTG of
the DGABN such that along with this path, once we reach an extended state satisfying
the following condition, all next extended states of the path will be equal to this extended
state (i.e., there are no updates). The condition means that the values of internal nodes
of the extended state are same as those of the desired state xdes and is represented by∧n

i=1(esji = xdesi). The transition formula of such a path is shown in Equation 6.7. If the
condition does not hold, then we update the DGABN as usual by the state transition
formula T D. Otherwise, we do not update the DGABN. Note that we add a new variable
rj to indicate either the updating case (rj = 1) or the non-updating case (rj = 0). This
helps us to represent the new cost function and to easily obtain the real control sequence.

The modified formula P ′ is shown in Equation 6.6. The cost function is also adjusted
as

C ′ =
M−1∑
j=0

(
m∑
i=1

(ui(j)× g(ui)× r(j))),

where r(j) corresponds to the variable rj. We then solve P ′ under minimizing the cost
function C ′ in Z3. If SAT(P ′), then a control sequence and an optimum cost are released.
Otherwise, ”there are no control policies” is released. The optimum cost can be directly
obtained from the satisfying assignment of the SMT variable C ′. The control sequence
can be obtained by first obtaining a sequence of 0-1 control inputs 〈u(0), ..., u(M)〉 from
the satisfying assignments of the corresponding SMT variables, and then excluding the
spurious control inputs. A control input u(j) is said to be spurious if the satisfying
assignment of rj is 0. Note that Mmin can be determined as the number of control inputs
in the control sequence. Furthermore, if we want to minimize both the cost and the target
time, we can simply adjust the cost function, e.g,

C ′ =
M−1∑
j=0

(
m∑
i=1

(ui(j)× g(ui)× r(j))× (M + 1) + r(j)).

The adjusted cost function guarantees that the cost is always minimized first, then the

93

6.5. CASE STUDY

target time is minimized. However, since the cost function becomes more complex, the
running time may be longer.

P ′ := Tstart ∧ T ′M ∧ Tend (6.6)

T ′M :=
M−1∧
j=0

T ′D(esj, esj+1) (6.7)

T ′D(esj, esj+1) :=

{
T D(esj, esj+1) ∧ ¬

[
n∧

i=1

(esji = xdesi)

]
∧ (rj = 1)

}

∨

{[
n∧

i=1

(esj+1
i = esji)

]
∧

[
n∧

i=1

(esji = xdesi)

]
∧ (rj = 0)

} (6.8)

Let us reconsider the running example in Section 6.3 with M = 5 and the non-time-
sensitive mode. We here change the desired state xdes to 111. By applying DA-SMT-
Con-NTS, we can obtain the minimum cost C ′ = 2 and a sequence of control inputs
〈(0, 0), (0, 0), (0, 1), (0, 0), (0, 0)〉. We also have r0 = 1, r1 = 1, r2 = 1, r3 = 0, r4 = 0,
respectively. By excluding the spurious control inputs, we obtain a control sequence
〈(0, 0), (0, 0), (0, 1)〉. Herein, Mmin = 3 and is optimal.

6.5 Case Study

In this section, we applied our proposed methods for optimal control of DGABNs to
the apoptosis network, which is very important for programmed cell death and has been
widely studied [162]. The BN of this network includes 11 internal nodes and one control
node. Its details are given in Table 6.2. In this BN, x7 = 0 and x9 = 1 implies cell death,
whereas x7 = 1 and x9 = 0 implies cell survival.

Table 6.2: BN model of the apoptosis network.

Gene Node Boolean function
TNF u
T2 x1 ¬x8 ∧ u
IKKa x2 ¬x6 ∧ ¬x6 ∧ u
NFKB x3 ¬x5

NFKBnuc x4 x3 ∧ ¬x5

IKB x5 (¬x2∧x4∧u)∨(¬x2∧x4∧¬u)
A20a x6 x4 ∧ u
IAP x7 (x4∧¬x9∧u)∨(x4∧¬x9∧¬u)
FLIP x8 x4

C3a x9 ¬x7 ∧ x10

C8a x10 (x1 ∨ x9) ∧ ¬x11

CARP x11 (x4∧¬x9∧u)∨(x4∧¬x9∧¬u)

Then, we randomly generated four different contexts with Λ = 3 for this BN because
we do not know the knowledge on the real context of the apoptosis network. We now have

94

6.6. EVALUATION

four different random DGABNs. The setting for optimal control of all the four DGABNs
is given as follows. The initial state was set to (0, ..., 0)>. The values of x7 and x9 in the
desired state were set to 0 and 1, respectively. The other nodes in the desired state can
receive arbitrary Boolean values. This means that the objective of this control is to guide
the network toward cell death states. The target time M was set to 50. Since there is only
one control node, we simply set g(u) = 1. Herein, we considered the non-time-sensitive
mode.

Next, we applied DA-SMT-Con-NTS to the four random DGABNs. The obtained
results are given in Table 6.3. Column ”result” denotes whether a control sequence exists
(yes) or not (no). Column ”cmin” denotes the optimal cost. ”-” denotes the case there is
no control sequence, in which cmin and Mmin are undetermined. From these results, we
can see that the activation of cell death can be controlled by manipulating the value of
the control node (gene TNF).

Table 6.3: Results on optimal control of the apoptosis network.

Network Result cmin Mmin

random-1 yes 2 9
random-2 no - -
random-3 yes 1 7
random-4 yes 3 38

6.6 Evaluation

We have implemented the proposed methods (i.e., DA-SMT-Con-TS and DA-SMT-
Con-NTS) in a JAVA tool integrating the Z3 solver called DABoolNet. An executable
file of DABoolNet and some example networks are available at https://github.com/

giang-trinh/daboolnet. To our best knowledge, DABoolNet is the sole tool for opti-
mal control of DGABNs.

In order to evaluate the scalability of the proposed methods, we applied them to one
artificial example varying many parameters. The artificial DGABN includes nX internal
nodes and nU control nodes (nX > nU). Its nodes and Boolean functions are given in
Table 6.4. Its context was randomly generated with Λ = 3 (i.e., γ ≤ 6). Note that in
our proposed methods for optimal control of DGABNs, the number of variables and the
number of clauses of the path formula do not depend on γ but depend on the number
of nodes n and the target time M . Hence, we simply set Λ to 3. The cost vector was
set as g(ui) = 1 + i%2 (i = 1, ..., nU). The initial state was fixed to (1, ..., 1)> and the
desired state was obtained by randomly flipping some nodes in the initial state. Then,
we varied nX, nU , and M . Since optimal control of DGABNs in the non-time-sensitive
mode is harder than that in the time-sensitive mode, we only ran DA-SMT-Con-NTS
for each combination of nX, nU , and M . Since the time for solving optimal control is
usually less than the time for solving attractor detection, the time limit was set to one
hour (instead of three hours as in Section 5.5) for each combination. In addition, we
also applied two variants of DA-SMT-Con-NTS to each combination to compare their
performance. Herein, the first variant (say M1) corresponds to the case of minimizing
only the cost, whereas the second variant (sayM2) corresponds to the case of minimizing

95

https://github.com/giang-trinh/daboolnet
https://github.com/giang-trinh/daboolnet

6.6. EVALUATION

both the cost and the target time. Finally, the running environment is a PC with Intel(R)
Core(TM) i7 2.40 GHz processor and 16 GB of memory.

Table 6.4: An artificial example for optimal control of DGABNs.

Node Boolean function
x1 x1 ∧ x2 ∧ ¬u1

xi (i = 2, ..., nU) xi−1 ∧ xi ∧ xi+1 ∧ ¬ui
xi (i = nU + 1, ..., nX − 1) xi−1 ∧ xi ∧ xi+1

xnX xnX−1 ∧ xnX

Table 6.5: Results of DA-SMT-Con-TS on the artificial example.

M1 M2

nX nU M result Mmin time (s) Mmin time (s)
200 10 20 no - 1.04 - 0.98
200 10 40 no - 2.02 - 2.19
200 10 80 yes 7 37.23 7 37.91
200 20 20 no - 1.14 - 1.53
200 20 40 yes 1 7.72 1 6.49
200 20 80 no - 3.69 - 3.87
300 10 20 yes 3 2.66 3 2.70
300 10 40 no - 2.70 - 3.43
300 10 80 no - 5.61 - 5.78
300 20 20 yes 10 2.90 10 3.01
300 20 40 yes 23 10.19 5 18.35
300 20 80 yes 7 40.30 1 45.03
400 10 20 yes 19 3.01 4 3.01
400 10 40 yes 5 15.95 5 17.27
400 10 80 yes 4 119.86 4 130.80
400 20 20 no - 2.08 - 2.11
400 20 40 yes 8 20.17 8 20.85
400 20 80 yes 4 62.58 4 66.23
500 10 20 no - 2.58 - 2.41
500 10 40 no - 14.03 - 10.47
500 10 80 no - 9.52 - 9.60
500 20 20 yes 4 6.87 4 6.34
500 20 40 yes 6 21.93 2 21.83
500 20 80 yes 13 71.98 1 80.78

Table 6.5 shows the obtained results. Column ”result” denotes whether a control
sequence exists (yes) or not (no). Column ”time ” stands for the computational time (in
seconds) for each combination of nX, nU , and M . ”-” denotes the case that there are
no control sequences, in which Mmin is undetermined. In some combinations (e.g., nX =
300, nU = 20,M = 40), Mmin obtained by M2 is less than Mmin obtained by M1. In
addition,M2 is slower thanM1 in most combinations. These observations are consistent
with the analysis on M2 presented in Section 6.4. Furthermore, the computational time

96

6.7. DISCUSSION

of M1 and M2 for each combination is reasonable even when nX and M are large (e.g.,
nX = 500 and M = 80). To sum up, we see that DA-SMT-Con-NTS can solve optimal
control in the non-time-sensitive mode of large DGABNs within practical computational
time. We also suggest to preferably use M1 when we only focus on minimizing the cost
of applying control nodes and to preferably use M2 when we focus on minimizing both
the cost of applying control nodes and the target time.

6.7 Discussion

Besides attractor detection, optimal control is also one of central issues in systems biology.
In this chapter, based on the theoretical foundation for DGABNs proposed in Chapter 5,
we have developed the two SMT-based methods for optimal control of DGABNs under
the two control modes, time-sensitive (DA-SMT-Con-TS) and non-time-sensitive (DA-
SMT-Con-NTS). Then, we have shown the application of the proposed methods to a
real biological network. We have also applied the proposed methods to optimal control of
one artificial example varying many parameters. The experimental results show that our
methods can handle well large networks.

Since SMT supports a variety of data types and arithmetic operators, it is potentially
possible to extend the SMT-based methods for attractor detection and optimal control
of DGABNs (i.e., DA-SMT-Att, DA-SMT-Con-TS, and DA-SMT-Con-NTS) to
those for multi-valued models of DGABNs where each node can receive multiple values,
and more operators are introduced [167]. It is also interesting to extend DA-SMT-Att to
incorporate gene perturbation experiments in DGABNs or to extend DA-SMT-Con-TS
and DA-SMT-Con-NTS to incorporate node perturbations control of DGABNs (i.e.,
the first main control direction mentioned in Section 6.1).

DGABNs are particularly useful when the information about the kinetics of biological
processes is known [19]. However, the prior kinetic information is usually not available. In
this case, the context (i.e., p′s and q′s) can be randomly sampled from a time interval that
is within biological limitations [19, 150]. In addition, MxBNs are an non-deterministic
extension of DGABNs to deal with the case of lacking knowledge on real contexts. Deter-
ministic Asynchronous Probabilistic Boolean Networks (DA-PBNs) [165] are a stochastic
extension of DGABNs to deal with the case of lacking information on real Boolean func-
tions. Therefore, proposing efficient methods for attractor detection and optimal control
of MxBNs or DA-PBNs is one of our future work. In the next chapter, we shall consider
optimal control of DA-PBNs.

97

Chapter 7

Optimal Control of Deterministic
Asynchronous Probabilistic Boolean
Networks

7.1 Introduction

In recent years, control of deterministic or probabilistic BNs has received considerable
attention. Regarding deterministic BNs, two efficient SMT-based methods have been
proposed for optimal control of DGABNs under the two control modes (see Chapter 6).
In addition, the time-variant state feedback stabilization problem of DGABNs was stud-
ied in [76]. The proposed reachable set approach for solving this problem needs to handle
a matrix of size exponential in the number of nodes (i.e., O(2n × 2n)). Hence, the pro-
posed approach is only applicable to networks with small n. Regarding probabilistic
BNs, finite-horizon control of SPBNs and its variants (e.g., optimal control [64], control
with hard constraints [71]) are usually considered. The controllability and stabilization of
SPBNs were studied in [168, 169] by expressing an SPBN in an algebraic form based on
the Semi-Tensor Product (STP) [170]. Like [76], this STP-based approach also needs to
handle matrices of size exponential in the number of nodes. The dynamic programming-
based approach for solving optimal control of SPBNs was proposed and gradually im-
proved [64, 67, 70, 71, 73, 74]. In general, the methods of this approach rely on the theory
of discrete-time Markov decision process [64]. They require to compute transition prob-
ability matrices of size exponential in the number of nodes; hence, they are impractical
for large networks. To avoid computing transition probability matrices in finite-horizon
optimal control of SPBNs, several efficient approaches were proposed, such as, the integer
programming-based approach [65, 66, 71] (for some special variants), the optimization-
based approach [68], the model checking-based approach [69, 72].

In this chapter, we focus on optimal control of DA-PBNs because of the following
reasons. First, DA-PBNs are general models: A DGABN is a special DA-PBN and an
SPBN is a special DA-PBN [16]. Consequently, optimal control of DA-PBNs is harder
than that of DGABNs or SPBNs. In addition, developed methods for optimal control of
DA-PBNs can be directly applied for those of DGABNs or SPBNs. Second, in the context
of systems biology, DA-PBNs seem to be more suitable to model GRNs, since a DA-PBN
comprises all the synchronous, asynchronous, and probabilistic natures [16, 77]. Finally,
it lacks efficient methods for optimal control of DA-PBNs. To our best knowledge, [77]

98

7.2. PREPARATIONS

is the sole method for optimal control of DA-PBNs. However, this method is inefficient
because it requires to build transition probability matrices of size (γ2n)× (γ2n), where γ
is a given constant.

Based on several typical aims of control, which are mainly inspired by realistic ap-
plications in systems biology [21, 69], we formulate three finite-horizon optimal control
problems of DA-PBNs, called Problems OptC-1, OptC-2, and OptC-3 (see Section 7.3).
Problem OptC-1 (resp. OptC-2) aims at finding a control policy that maximizes (resp.
minimizes) the reachability probability from the initial state to the target state at a given
time step of the considered DA-PBN. Problem OptC-3 aims at finding a control policy
that minimizes a given cost function for applying interventions. For theoretical aspects,
we present several analysis on computational complexity of the three problems in both
the general and restricted cases (see Section 7.4). For practical aspects, we propose three
approaches for solving the three problems (see Section 7.5), which are based on Probabilis-
tic Model Checking (PMC) [171], Stochastic Satisfiability Modulo Theory (SSMT) [172],
and Polynomial Optimization Problem (POP) [173], respectively. The PMC-based and
POP-based approaches are not new but they are non-trivial extensions of those [68, 69]
for optimal control of SPBNs. In addition, two reduction rules are developed to reduce
the computational burden of the POP-based approach. The SSMT-based approach is new
and gives more potentials that come from efficient solving techniques for SSMT [172].

In addition to a case study on a realistic network (see Section 7.5), computational
experiments are performed to evaluate the performance of the three proposed approaches
(see Section 7.6). Based on the experimental results, we present experimental analysis
along with theoretical analysis on the effects of some factors (e.g., the number of nodes,
the target time step) on the performance of the proposed approaches. We also present
a comprehensive comparison among these approaches. These analysis and comparison
are significant contributions of this research because of the following reasons. In all
the previous work, the proposed approaches for optimal control of SPBNs or DA-PBNs
were only compared to the dynamic programming-based approach. It lacks a comparison
among different proposed approaches in both theoretical and experimental aspects. It
also lacks analysis on how the running time of the proposed approaches depends on some
factors in the control setting.

7.2 Preparations

Before defining the optimal problems of DA-PBNs, we briefly review PBNs with control
nodes. In the rest of this chapter, we refer a PBN as a PBN with control nodes.

Definition 7.2.1. A Probabilistic Boolean Network (PBN) with control nodes is defined
as a quadruple (V, F, U, C), where V = {x1, ..., xn} (n ≥ 1) is the set of internal nodes,
U = {u1, ..., um} (m ≥ 0) is the set of external (control) nodes, F = {F1, ..., Fn}, and
C = {C1, ..., Cn}. Each node xi is identified as a Boolean variable, and is associated

with a non-empty set of Boolean functions, Fi = {f (i)
1 , ..., f

(i)
li
}. Each Boolean function

f
(i)
j has a probability of selection associated with it, c

(i)
j . Thus, Ci =

{
c

(i)
1 , ..., c

(i)
li

}
such

that
∑li

j=1 c
(i)
j = 1. Also, each node ui is identified as a Boolean variable. xi(t) ∈ B and

ui(t) ∈ B denote the state of internal node xi and the state of external node ui at time t,
respectively. x(t) = (x1(t), ..., xn(t))> and u(t) = (u1(t), ..., um(t))> denote the state and

99

7.2. PREPARATIONS

the control input of the PBN at time t, respectively.

Internal node xi updates its state by

xi(t+ 1) = f
(i)
j (x(t), u(t)),

where f
(i)
j is a Boolean function selected from Fi with the probability c

(i)
j . A control node

can receive an arbitrary Boolean value at each time step. Similar to BNs, an updating
scheme of a PBN specifies the way that the internal nodes of the PBN update their
states through time evolution. Following the updating scheme, the PBN transits from
a state to another state (possibly identical) with a probability. This transition is called
the probability transition. From this, the dynamics of a PBN can be represented by all
possible states of the PBN along with all possible probability transitions from each state.

There are two typical types of PBNs. The first one is Synchronous Probabilistic
Boolean Networks (SPBNs) [4], where all the nodes are updated simultaneously. The sec-
ond one is Deterministic Asynchronous Probabilistic Boolean Networks (DA-PBNs) [15,
16] whose formal definition is given in Definition 7.2.2. Roughly speaking, SPBNs and
DA-PBNs are probabilistic extensions of SBNs and DGABNs, respectively.

Definition 7.2.2. A DA-PBN [15, 16] is a PBN such that each internal node xi is
associated with two parameters, pi ∈ N+ and qi ∈ N, qi < pi. The set of all p′s and
q′s is called the context of a DA-PBN. Let Λ denote the maximum value of all p′s (i.e.,
pi ≤ Λ,∀i ∈ {1, ..., n}). Internal node xi can be updated at time t if t%pi = qi. If multiple
internal nodes can be updated, then all of them are updated simultaneously.

In SBNs, ABNs, or SPBNs, the evolution of a state is time-invariant. However, in
DGABNs or DA-PBNs, the evolution of a state depends on the time of entering this
state. The concept of an extended state is defined in Section 5.2, allowing to express
the dynamics of a DGABN by extended states and state transitions starting from these
extended states. Analogously, we can use extended states and probability transitions
starting from these extended states to represent the dynamics of a DA-PBN.

ev ∈ Bn × {0, ..., γ − 1} is an extended state, where γ is the least common multiple
of all p’s. evi (i = 1, ..., n) denotes the value of internal node xi, whereas evn+1 denotes
the value of the embedded time. The number of possible extended states is γ × 2n; but,
there are only 2n possible initial extended states (i.e., the states satisfying evn+1 = 0)
of the DA-PBN. Note that the concept of an extend state is similar to the concept of
an augmented logical state [15]. However, an augmented logical state uses dlog2(γ)e new
Boolean variables to represent t%γ, whereas an extended state uses an integer variable.
Then, the probability of transiting from extended state a to extended state b under control
input u is

P (ev(t+ 1) = b|ev(t) = a, u(t) = u) = P (bn+1 = (an+1 + 1)%γ)

×
∏

i∈N+
≤n\Ω

P (bi ↔ ai)×
∑

j1∈N+
≤li1

,...,jk∈N+
≤lik

{
k∏

h=1

[
c

(ih)
jh
× P

(
bih ↔ f ih

jh
(a, u)

)]}
,

where Ω := {xi1 , ..., xik} is the set of updated nodes (i.e., an+1%pij = qij , j ∈ N+
≤k). See

Example 7.2.1 for a DA-PBN and its dynamics.

100

7.3. PROBLEM FORMULATION

(1, 0, 0, 0)>

(0, 1, 0, 1)>

(0, 1, 1, 1)>(1, 1, 1, 1)>

(1, 1, 0, 1)>

(0, 1, 0, 0)> (1, 1, 0, 0)>

0.24

0.560.14

0.06

1.0

0.8 0.2

0.8 0.21.0

Figure 7.1: Dynamics of the DA-PBN shown in Example 7.2.1. Extended states are shown
by rounded rectangles, whereas probability transitions are shown by arcs along with real
numbers. The initial extended state is shown by the dashed rounded rectangle.

Example 7.2.1. Consider the DA-PBN DP

f (1) =

{
f

(1)
1 = x3 ∧ u1, c

(1)
1 = 0.8

f
(1)
2 = ¬x3, c

(1)
2 = 0.2

, p1 = 1, q1 = 0;

f (2) = f
(2)
1 = x1 ∧ ¬x3, c

(2)
1 = 1.0 , p2 = 2, q2 = 0;

f (3) =

{
f

(3)
1 = x1 ∧ ¬x2, c

(3)
1 = 0.7

f
(3)
2 = x2 ∧ u1, c

(3)
2 = 0.3

, p3 = 1, q3 = 0.

Then, Figure 7.1 shows all probability transitions starting from (1, 0, 0)> of DP under
u1(0) = u1(1) = 0.

7.3 Problem Formulation

We formulate three optimal control problems of DA-PBNs: OptC-1, OptC-2, and OptC-3.
Problems OptC-1 and OptC-2 are generalized from the reachability problem and the safety
problem of SPBNs [69], respectively. See Example 7.3.1 for an illustration of Problems
OptC-1 and OptC-2. Problem OptC-3 is generalized from the expected cost problem of
SPBNs [68]. See Example 7.3.2 for an illustration of Problems OptC-3. Each of these
problems is suitable for a specific aim of control [68, 69].

Definition 7.3.1 (Problem OptC-1). Given a DA-PBN DP. Suppose that an initial state
of DP is xini and a desired state of DP is xdes. Find a control sequence 〈u(0), ..., u(M−1)〉
that maximizes the reachability probability from xini to xdes at time M .

Definition 7.3.2 (Problem OptC-2). Given a DA-PBN DP. Suppose that an initial
state of DP is xini, the unsafe state of DP is xdes, and ε ∈ [0, 1] is given. Find a control
sequence 〈u(0), ..., u(M − 1)〉 that minimizes the reachability probability from xini to xdes

at time M . If the minimum probability is at most ε, then DP is said to be safe.

101

7.4. COMPLEXITY ANALYSIS

Definition 7.3.3 (Problem OptC-3). Given a DA-PBN DP. Suppose that the initial state
of DP is xini and the control time M is given. Find a control sequence 〈u(0), ..., u(M−1)〉
that minimizes the expected cost

J = E

[
M−1∑
k=0

{Qx(k) +Ru(k)}+Qfx(M)

∣∣∣∣x(0) = xini

]
,

where Q,Qf ∈ R1×n,R ∈ R1×m are weighting vectors.

Table 7.1: Reachability probability and expected cost with all possible control sequences.

u1(0) u1(1) Reachability probability Expected cost
0 0 0.06 0
0 1 0.434 0.3
1 0 0.06 0
1 1 0.434 0.3

Example 7.3.1. Consider the DA-PBN in Example 7.2.1. Suppose that xini = (1, 0, 0)>,
xdes = (1, 1, 0)>, and M = 2. For u1(0) = u1(1) = 0, we have two 2-length paths from
(1, 0, 0, 0)> to (1, 1, 0, 0)> (see Figure 7.1). Thus, the reachability probability is 0.24 ×
0.2 + 0.06× 0.2 = 0.06. In a similar way, we can calculate the reachability probability for
other control sequences (see Table 7.1). The solution for Problem OptC-1 is 〈(0)>, (1)>〉
or 〈(1)>, (1)>〉 with Pmax = 0.434 (Pmax is the maximum reachability probability). The
solution for Problem OptC-2 is 〈(0)>, (0)>〉 or 〈(1)>, (0)>〉 with Pmin = 0.06 (Pmax is the
minimum reachability probability). If ε = 0.1, then the DA-PBN is safe. If ε = 0.01, then
the DA-PBN is not safe.

Example 7.3.2. Consider the DA-PBN in Example 7.2.1. Suppose that xini = (1, 0, 0)>,
M = 2, and J = E[x3(2)]. Relying on Figure 7.1, we have E[x3(1)] = 0.14 + 0.56 = 0.7,
E[x3(2)] = 0 if u1(0) = u1(1) = 0. In a similar way, we can calculate the expected cost for
other control sequences (see Table 7.1). The solution for Problem OptC-3 is 〈(0)>, (1)>〉
or 〈(1)>, (1)>〉 with Jmin = 0 (Jmin is the minimum expected cost).

In Problem OptC-3, we consider that a linear cost function is appropriate because
of the following reasons. For a binary variable δ ∈ B, the relation δ2 = δ holds. Thus,
in the cost function, the quadratic term such as x2

i (k) is not necessary. In control of
GRNs, the expression of a certain gene is frequently focused (see, e.g., [64]). Thus, in the
cost function, the quadratic term such as xi(k)xj(k), i 6= j is not necessary. By allowing
negative numbers in elements of weighting vectors, we can express more control aims. For
example, if we want to reduce the activity of a gene xi in affecting biological regulation,
we can set Qf (xi) as a large positive real number. On the other hand, if we want to
upgrade the activity of a gene xi in affecting biological regulation, we can set Qf (xi) as a
small negative real number.

7.4 Complexity Analysis

In this section, we give several analysis on the computational complexity of the three
optimal control problems of DA-PBNs. To analyze the time complexity with respect to

102

7.4. COMPLEXITY ANALYSIS

n and m, we assume that the target time (i.e., M) is polynomially bounded by n. Since
it is not realistic to consider an exponential number of time steps, this assumption is
reasonable. In addition, we assume that the time for evaluating a Boolean function is
polynomial. To analyze the space complexity with respect to n and m, we assume that
li, i = 1, ..., n are polynomially bounded by n and the amount of space for storing and
evaluating a Boolean function is polynomial.

7.4.1 Complexity of Problem OptC-1

Theorem 7.4.1. Problem OptC-1 is NP PP -hard.

Proof. We use a polynomial-time reduction from the E-MAJ-SAT problem to Problem
OptC-1. An E-MAJ-SAT instance is defined by a CNF Boolean formula ψ(y, z) over
Boolean variables y = [y1, ..., ym],m ≥ 1 and z = [z1, ..., zn], n ≥ 0. The task is to decide
whether there is a y-instantiation under which the majority of z-instantiations satisfying
the propositional formula ψ(y, z). E-MAJ-SAT is NPPP-complete [174].

From a given ψ(y, z), we construct a DA-PBN as follows:

V = {x1, ..., xm+n+1}, U = {u1, ..., um},
f (i) = ui ∧ ¬xm+n+1, i ∈ N+

≤m,

f
(m+i)
1 = xm+i ∧ ¬xm+n+1, c

(m+i)
1 = 0.5, i ∈ N+

≤n,

f
(m+i)
2 = ¬xm+i ∧ ¬xm+n+1, c

(m+i)
2 = 0.5, i ∈ N+

≤n,

f (m+n+1) = ψ[y1/x1, ..., ym/xm, z1/xm+1, ..., zn/xm+n],

pi = 2, i ∈ N+
≤m+n+1, qi = 0, i ∈ N+

≤m+n, qm+n+1 = 1.

In the constructed DA-PBN, both xi and ui correspond to yi for i ∈ N+
≤m, xm+i corre-

sponds to zi for i ∈ N+
≤n, and xm+n+1 corresponds to ψ(y, z). In addition, the updating

pattern is: xi, i ∈ N+
≤m+n are updated synchronously, then xm+n+1 is updated.

We let xini = (0, ..., 0)>, xdes = (0, ..., 1)>, and M = 3. We prove that the maximum
reachability probability of the constructed DA-PBN is larger than 0.5 if and only if the
result of E-MAJ-SAT is true.

Suppose that the result of E-MAJ-SAT is true for an assignment of y = [b1, ..., bm].
Then, it is straightforward to see that by letting u(0) = (b1, ..., bm)>, xm+n+1(2) = 1 holds
for the majority of choices of probabilistic rules on xm+i, i = 1, ..., n. Once xm+n+1(2) = 1
holds, the DA-PBN always reaches (0, ..., 1)> at time t = 3. Hence, the reachability
probability of reaching (0, ..., 1)> at time t = 3 is greater than 0.5. As a consequence, the
maximum reachability probability of the constructed DA-PBN is greater than 0.5.

Conversely, suppose that the maximum reachability probability of the constructed
DA-PBN is greater than 0.5 with a control sequence u = 〈u(0), u(1), u(2)〉. At time t = 2,
xm+n+1(3) = xm+n+1(2) holds. In addition, if xm+n+1(2) = 1, then xi(3) = 0 holds for
∀i ∈ N+

≤m+n. Hence, the maximum reachability probability is equal to the probability
of reaching state x(2) such that xm+n+1(2) = 1. From the definition of the reachability
probability, the majority of z-instantiations must satisfy ψ(y, z). We can choose an y-
instantiation as u(0). Now, the result of E-MAJ-SAT is true.

Since the reduction can be done in time polynomial in m and n, the theorem holds.

Theorem 7.4.2. Problem OptC-1 is in PSPACE.

103

7.4. COMPLEXITY ANALYSIS

Proof. We here show an algorithm for solving Problem OptC-1 and this algorithm re-
quires a polynomial amount of space. The algorithm tries all the 2m×M possible control
sequences. We use a binary counter of m × M bits. The counter increases from 0 to
2m×M − 1 and the counter value corresponds to a control sequence.

In each control sequence, we use another counter whose value corresponds to a choice
of Boolean functions of all the n nodes. Clearly, we need M ×

∑n
i=1dlog2(li)e bits for this

counter. For each choice, we cumulatively calculate the probability such that xM = xdes.
This computation only needs a polynomial space. We then compare this probability with
Pmax, and then update Pmax and the maximum control sequence if the current probability
is larger than Pmax.

Since M and li, i = 1, ..., n are polynomially bounded, the proposed algorithm only
needs a polynomial amount of space. Since PSPACE = NPSPACE, the theorem holds.

7.4.2 Complexity of Problem OptC-2

Theorem 7.4.3. Problem OptC-2 is NP PP -hard.

Proof. Similar to the proof of Theorem 7.4.1, we use a polynomial-time reduction from
E-MAJ-SAT to Problem OptC-2.

We modify the constructed DA-PBN for Problem OptC-1 as follows:

f (i) = ui ∨ ¬xm+n+1, i ∈ N+
≤m,

f
(m+i)
1 = xm+i ∨ ¬xm+n+1, c

(m+i)
1 = 0.5, i ∈ N+

≤n,

f
(m+i)
2 = ¬xm+i ∨ ¬xm+n+1, c

(m+i)
2 = 0.5, i ∈ N+

≤n.

We let xini = (0, ..., 0, 1)>, xdes = (1, ..., 1, 0)>, and M = 3. We prove that the minimum
reachability probability of the constructed DA-PBN is less than 0.5 if and only if the
result of E-MAJ-SAT is true.

Suppose that the result of E-MAJ-SAT is true for an assignment of y = [b1, ..., bm].
Then, it is straightforward to see that by letting u(0) = (b1, ..., bm)>, xm+n+1(2) = 1 holds
for the majority of choices of probabilistic rules on xm+i, i = 1, ..., n. If xm+n+1(2) = 1
holds, then xm+n+1(3) = 1 holds. Then, the probability of reaching (1, ..., 1, 0)> at time
t = 3 is less than 0.5. Hence, the minimum reachability probability of the constructed
DA-PBN must be less than 0.5.

Conversely, suppose that the minimum reachability probability of the constructed
DA-PBN is less than 0.5 with a control sequence u = 〈u(0), u(1), u(2)〉. Assume that the
result of E-MAJ-SAT is not true. Then, it is straightforward to see that the probability
of reaching a state x(2) such that xm+n+1(2) = 0 holds is greater than or equal to 0.5
for any control input u(0). Since u(1) and u(2) do not affect the value of xm+n+1, the
minimum reachability probability of the constructed DA-PBN must be greater than or
equal to 0.5, a contradiction. Hence, the result of E-MAJ-SAT is true.

Since the reduction can be done in time polynomial in m and n, the theorem holds.

Theorem 7.4.4. Problem OptC-2 is in PSPACE.

Proof. The proof is analogous to the proof for the PSPACE-ness of Problem OptC-1
(see Theorem 7.4.2). Specifically, in each control sequence, we only need to compare the
cumulatively computed probability with Pmin, and then update Pmin and the minimum
control sequence if the current probability is less than Pmin.

104

7.4. COMPLEXITY ANALYSIS

7.4.3 Complexity of Problem OptC-3

Theorem 7.4.5. Problem OptC-3 is NP PP -hard.

Proof. Similar to the proof of Theorem 7.4.1, we use a polynomial-time reduction from
E-MAJ-SAT to Problem OptC-3.

We modify the constructed DA-PBN for Problem OptC-1 as follows:

f (i) = ui, i ∈ N+
≤m,

f
(m+i)
1 = xm+i, c

(m+i)
1 = 0.5, i ∈ N+

≤n,

f
(m+i)
2 = ¬xm+i, c

(m+i)
2 = 0.5, i ∈ N+

≤n.

We let x0 = (0, ..., 0)>, M = 2, and J = 1− E[xm+n+1(2)]. We prove that the minimum
expected value of the constructed DA-PBN (say Jmin) is less than 0.5 if and only if the
result of E-MAJ-SAT is true.

Suppose that the result of E-MAJ-SAT is true for an assignment of y = [b1, ..., bm].
Then, it is straightforward to see that by letting u(0) = (b1, ..., bm)>, xm+n+1(2) = 1 holds
for the majority of assignments on [xm+1(1), ..., xm+n(1)]. Hence, E[xm+n+1(2)] > 0.5
holds. Then, J < 0.5. Since Jmin ≤ J , Jmin < 0.5 holds.

Conversely, suppose that Jmin < 0.5 holds with a control sequence u = 〈u(0), u(1)〉.
Then, E[xm+n+1(2)] > 0.5 holds. From the definition of the expected value, xm+n+1(2) = 1
holds for the majority of assignments on [xm+1(1), ..., xm+n(1)]. We can choose an y-
instantiation as u(0). Now, the result of E-MAJ-SAT is true.

Since the reduction can be done in time polynomial in m and n, the theorem holds.

Lemma 7.4.1 ([175]). Consider two binary variables δ1 and δ2. Then the following
relations hold.

1. ¬δ1 is equivalent to 1− δ1.

2. δ1 ∧ δ2 is equivalent to δ1δ2.

3. δ1 ∨ δ2 is equivalent to δ1 + δ2 − δ1δ2.

4. δ2
1 is equivalent to δ1.

By Lemma 7.4.1, a given Boolean function can be transformed into a polynomial on
the real number field. For example, (x2 ∨ x3) ∧ ¬x1 is equivalently transformed into
(x2 + x3 − x2x3)(1− x1). For simplicity of notation, the condition E [x(k) | ∗] is omitted.

f̂ (i) denotes the polynomial corresponding to the Boolean function f (i). f̂
(i)
j denotes the

polynomial corresponding to the Boolean function f
(i)
j .

Theorem 7.4.6. Given a DA-PBN DP. The expected value of a node, E[xi(k)] with
i = 1, ..., n, is expressed by

Σi(k) : E[xi(k + 1)] =

{
E[xi(k)] if k%pi = qi,∑li

j=1 c
(i)
j f̂

(i)
j (E[x(k)], u(k)) otherwise.

Proof. If k%pi = qi, then xi is not updated at time k. Immediately, E[xi(k+1)] = E[xi(k)]
holds.

The opposite part follows from [68].

105

7.4. COMPLEXITY ANALYSIS

Example 7.4.1. Suppose that xini = (1, 0, 0)>, u1(0) = u1(1) = 0. Relying on Theo-
rem 7.4.6, we have

E[x1(1)] = 0.8[x3(0)u1(0)] + 0.2[1− x3(0)] = 0.2,

E[x2(1)] = 1.0x1(0)[1− x3(0)] = 1.0,

E[x2(2)] = E[x2(1)] = 1.0,

E[x3(2)] = 0.7E[x1(1)](1− E[x2(1)]) + 0.3E[x2(1)]u1(1) = 0.

Theorem 7.4.7. Problem OptC-3 is in PSPACE.

Proof. We consider the brute-force algorithm that tries all the 2m×M possible control
sequences. We use a binary counter of m × M bits. The counter increases from 0 to
2m×M − 1 and the counter value corresponds to a control sequence.

Let Jmin and umin denote the minimum expected cost and the corresponding control se-
quence, respectively. For each control sequence, we can recursively calculate E[xi(k)], i ∈
{1, ..., n}, k ∈ {1, ...,M} by Theorem 7.4.6. Then, J can be directly obtained. If J < Jmin,
then Jmin ← J and umin ← the current control sequence.

We need m×M bits to store umin. In the calculation of E[xi(k)], we assume that the
amount of space for storing and evaluating Boolean functions is polynomial. Jmin and
E[xi(k)] are real numbers. In addition, the amount of space for storing E[xi(k)] can be
reused in the next control sequence. Since M is polynomially bounded, the amount of
space needed for this algorithm is polynomial. Since PSPACE = NPSPACE, the theorem
holds.

7.4.4 Remarks

From the obtained complexity results, we derive several remarks as follows.
First, if the propositional formula ϕ of E-MAJ-SAT is in 2CNF, then f (m+n+1) of the

constructed DA-PBN of Problem OptC-1 is also in 2CNF. In addition, f (i), i = 1, ...,m+n
can be converted into 2CNF in polynomial time. For example, we can add a dummy
variable xm+n+2 whose value is always 0 to the DA-PBN as follows:

f (i) = (ui ∨ xm+n+2) ∧ (¬xm+n+1 ∨ xm+n+2),

f
(m+i)
1 = (xm+i ∨ xm+n+2) ∧ (¬xm+n+1 ∨ xm+n+2),

f
(m+i)
2 = (¬xm+i ∨ xm+n+2) ∧ (¬xm+n+1 ∨ xm+n+2).

Since E-MAJ-SAT with the restriction that the formula ϕ is in 2CNF is still NPPP-
complete [174], Problem OptC-1 is still NPPP-hard with the restriction that Boolean
functions are in 2CNF. Analogously, we also have the same results for Problems OptC-2
and OptC-3.

Second, the Σp
2-hardness of the counterpart of Problem OptC-3 for SPBNs is proved

in [71]. By using similar reductions, we can easily obtain the Σp
2-hardness of the counter-

parts of Problems OptC-1 and OptC-2 for SPBNs. Thus, the optimal control problems of
DA-PBNs seem harder than the corresponding optimal control problems of SPBNs, since
Σp

2 ⊆ PH ⊆ NPPP [174]. It is reasonable because an SPBN is a special DA-PBN.
Third, both SAT and ILP are efficient techniques and have been applied to control

of SBNs [21]. ILP has even been applied to some special variants of optimal control of

106

7.5. PROPOSED SOLUTION APPROACHES

SPBNs [65, 71]. It is reasonable to develop similar SAT-based or ILP-based algorithms
for the three problems of DA-PBNs. However, it is not plausible that such algorithms
exist even in the case of SPBNs because SAT and ILP are NP-complete and NP ⊆ Σp

2 ⊆
PH ⊆ NPPP [174].

Finally, all the three problems are NPPP-hard. It is known that PH ⊆ NPPP ⊆
PSPACE [174]. Since all the three problems in PSPACE, their complexity is between
NPPP-hard and PSPACE-complete. Hence, these problems are hard to solve in general.
Moreover, in a crude sense, NPPP is very close to PSPACE. Therefore, to solve these
problems, we may have to encode them as PSPACE-complete problems.

7.5 Proposed Solution Approaches

We propose two solution approaches for solving Problem OptC-1. The first proposed
approach is based on Probabilistic Model Checking (PMC) [171] and can be seen as an
extension of that for SPBNs [69] to DA-PBNs. The second proposed approach is a new
approach that relies on Stochastic Satisfiability Modulo Theory (SSMT) [172]. With slight
modifications, the two approaches can be applied to Problems OptC-2 and OptC-3. For
Problem OptC-3, we propose a solution approach that relies on Polynomial Optimization
Problem (POP) [173]. The POP-based approach can be seen as an extension of that for
SPBNs [68] to DA-PBNs. However, we also design two new reduction rules to reduce the
computational burden.

7.5.1 Probabilistic Model Checking-Based Approach

For Problem OptC-1, the general idea of the PMC-based approach is to encode this prob-
lem as a PMC problem. We here use PRISM (a probabilistic symbolic model checker) [171]
to express and solve the encoded PMC problem. First, we model the DA-PBN with the
control setting as a PRISM model (see Definition 7.5.1). Then, we formulate a Proba-
bilistic Computation Tree Logic (PCTL) property ϕ corresponding to the control aim. In
this case, the PCTL is defined as

Pmax=?
[
F = M(x1 = xdes1 &...&xn = xdesn)

]
.

Note that we can easily describe multiple desired states. By the semantics of PCTL, the
result of verifying ϕ is equivalent to the result of Problem OptC-1.

Definition 7.5.1 (PRISM model for Problem OptC-1). Given a DA-PBN DP, the initial

state xini, the desired state xdes, and the control time M . Each Boolean function f
(i)
j of

DP is transformed into a polynomial on the real number field (denoted by f̂
(i)
j) by using

Lemma 7.4.1. First, the given system is described as a Markov Decision Process (MDP).

107

7.5. PROPOSED SOLUTION APPROACHES

Then, module iNode i, i = 1, 2, ..., n is described by

module iNodei

xi : [0..1];

[iNode1](mod(t, pi) = qi)→ c
(i)
1 : (x′i = f̂

(i)
1 (x, u)

+ ...+ c
(i)
li

: (x′i = f̂
(i)
li

(x, u));

[iNode1](mod(t, pi) != qi)→ 1.0 : (x′i = xi);

endmodule.

Next, module eNode i, i = 1, 2, ...,m is described by

module eNodei

ui : [0..1];

[iNode1]true→ (u′i = 0);

[iNode1]true→ (u′i = 1);

endmodule.

Next, module time described as

module time

t : [0..(γ − 1)];

[iNode1]true→ (t′ = mod(t+ 1, γ));

endmodule.

Finally, the initial state is described by

init x1 = xini1 &...&xn = xinin &t = 0 endinit.

For Problem OptC-2, we reuse the PRISM model for Problem OptC-1. However, we
slightly modify the PCTL property ϕ as

Pmin=?
[
F = M(x1 = xdes1 &...&xn = xdesn)

]
.

By the semantics of PCTL, the result of verifying ϕ is equivalent to the result of Problem
OptC-2.

For Problem OptC-3, we need substantial modifications. The general idea is to add
state rewards to the PRISM model for Problem OptC-1 to express the cost function; then
to use the property on reachability rewards to find the minimum expected cost of the DA-
PBN. Specifically, the modified model for Problem OptC-3 is shown in Definition 7.5.2.
The new PCTL property is

Rmin=? [F(t = M + 1)] .

By the definition of expected values of rewards, Rmin (i.e., the minimum expected reward)
is equivalent to Jmin of the DA-PBN.

108

7.5. PROPOSED SOLUTION APPROACHES

Definition 7.5.2 (PRISM model for Problem OptC-3). We modify the PRISM model for
Problem OptC-1 (see Definition 7.5.1) as follows. First, we replace module time by the
new one as

module time

t : [0..(M + 1)];

[iNode1]t < (M + 1)→ (t′ = t+ 1);

[iNode1]t = (M + 1)→ (t′ = M + 1);

endmodule.

Since we need to express states at time t (t = 0, ...,M), we do not use γ and % here. We
use M + 1 because we must consider x(M). Then, we add a reward item as

rewards ”cost”

t < M : {Qx(t) +Ru(t)};
t = M : Qfx(t);

endmodule.

Regarding verifying the PTCL property, PRISM also builds the transition probability
matrix of the model. However, it uses more efficient techniques (e.g., multi-terminal
decision diagrams, sparse-matrix construction) for this task [176].

7.5.2 Stochastic Satisfiability Modulo Theory-Based Approach

For Problem OptC-1, the general idea of the SSMT-based approach is to encode this
problem as an SSMT formula Φ. By the semantics of SSMT [172], the maximum reach-
ability probability is equivalent to the satisfaction probability of Φ (denoted by Pr(Φ)).
We then use SiSAT [177], an SSMT solver, to compute Pr(Φ).

Definition 7.5.3 (SSMT formula for Problem OptC-1). Given a DA-PBN DP, an initial
state xini, a desired state xdes, a target time M . We construct an SSMT formula Φ as
follows:

Φ := Q : ϕ, ϕ := ϕini ∧ ϕdes ∧ ϕtrans,

ϕini :=
n∧

i=1

{
x0
i ↔ vinii

}
, ϕdes :=

n∧
i=1

{
xMi ↔ vdesi

}
,

ϕtrans :=
M−1∧
t=0

T (xt, xt+1), T (xt, xt+1) :=
n∧

i=1

Ti(xt, xt+1),

Ti(xt, xt+1) :=
[
(t%pi 6= qi) ∧ (xt+1

i ↔ xti)
]
∨[

(t%pi = qi) ∧
li∨

j=1

{(ci = j) ∧ (xt+1
i ↔ f

(i)
j (xt, ut))}

]
,

Q∃ :=
(
∃u0

1 ∈ B...∃u0
m ∈ B

)
...
(
∃uM−1

1 ∈ B...∃uM−1
m ∈ B

)
,

Q R:=

R

dc1
c1 ∈ {1, ..., l1}...

R

dcncn ∈ {1, ..., ln}.

109

7.5. PROPOSED SOLUTION APPROACHES

Definition 7.5.3 shows the encoded SSMT formula for Problem OptC-1. Herein, vari-
able xji ∈ B expresses the value of internal node xi at time j. Variable uji ∈ B expresses
the value of external node ui at time j. Variable ci ∈ {1, ..., li} expresses which Boolean
function is chosen for the update of internal node xi. ∃, ∀, and

R

· denote the existential,
universal, and randomized quantifiers, respectively [172]. dci is the probability distribu-

tion of ci such that dci(j) = c
(i)
j , j ∈ {1, ..., li}. ϕini and ϕdes express the conditions for

the initial and desired states, respectively. By the syntax of SSMT, we can express the
condition for multiple initial or desired states. ϕtrans expresses state transitions of the
DA-PBN. Note that if li = 1, then we can remove the randomized variable ci from Q R

and remove the (ci = j)∧ part from Ti(xt, xt+1).
For Problem OptC-2, we only need to slightly modify the encoded SSMT formula for

Problem OptC-1. Specifically, we replace only Q∃ by Q∀ that is defined as(
∀u0

1 ∈ B...∀u0
m ∈ B

)
...
(
∀uM−1

1 ∈ B ... ∀uM−1
m ∈ B

)
.

By the semantics of SSMT, the minimum reachability probability of Problem OptC-2 is
equivalent to Pr(Φ). In addition, if we want only to know whether the system is safe or
not, then we can use thresholding to prune the search space. For example, we can use the
built-in option of SiSAT as ”–ut=ε” [177], i.e., the upper target threshold is ε.

For Problem OptC-3, the general idea is to use the conditional expectation semantics of
SSMT. Since only the maximum conditional expectation is defined as well as is supported
in SiSAT, we modify the encoded SSMT formula Φ for Problem OptC-1 as follows. First,
we add to Φ a new free variable y corresponding to the cost function J of Problem OptC-3.
However, we need to set y as −γ (where J = E[γ|x(0) = xini]) because we need to find
the minimum expected cost. This means that

y = −

{
M−1∑
k=0

(Qx(k) +Ru(k)) +Qfx
M

}
.

Let σ+(X) and σ−(X) denote the sum of all positive and negative elements of a vector X
of real numbers, respectively. Then, we specify the upper and lower bounds for the cost
variable as

uy = −
[
σ−(Q)×M + σ−(R)×M + σ−(Qf)

]
and

ly = −
[
σ+(Q)×M + σ+(R)×M + σ+(Qf)

]
,

respectively. Next, we also need to remove ϕdes from ϕ. By the semantics of the maximum
conditional expectation, the minimum expected cost of Problem OptC-3 is equivalent to
−Ey(Φ), where Ey(Φ) is the maximum conditional expectation of the SSMT formula Φ
with respect to variable y. Finally, we use SiSAT [177] to compute Ey(Φ).

In contrast to the PMC-based approach, the proposed SSMT-based approach builds
neither implicit nor explicit transition probability matrices. It exploits the efficient solving
techniques developed for SSMT solvers. As mentioned above, SiSAT supports threshold-
ing that may early exclude redundant parts of the search space in Problem OptC-2.
PRISM always builds transition probability matrices first. Moreover, PRISM does not

110

7.5. PROPOSED SOLUTION APPROACHES

support such kind of thresholding in verifying the PCTL property ϕ. Hence, this is also
another advantage of the SSMT-based approach as compared to the PMC-based approach.
Furthermore, if li ≤ 2, ∀i ∈ {1, ..., n}, the encoded SSMT formula of Problem OptC-1 can
be seen as a Stochastic Satisfiability (SSAT) formula. In this case, we can apply recent
advents in SSAT solvers (e.g., see [178]) to Problem OptC-1.

7.5.3 Polynomial Optimization Problem-Based Approach

Since pi and qi are fixed, and k is given, E[xi(k + 1)] can be expressed as a polynomial
(see Theorem 7.4.6). Thus, Problem OptC-3 is equivalent to Problem 7.5.1. In this
encoded POP, we see that E[x(k + 1)] ∈ [0, 1]n automatically holds; therefore, we set
E[x(k + 1)] ∈ Rn. Technically, this may accelerate the computational time for solving
this problem. In addition, the constraint ui(k)(ui(k) − 1) = 0 guarantees that ui(k) is a
binary variable. Since this constraint is non-convex, its existence may make the solving
time longer. In a practical manner, we can use the relaxed constraint 0 ≤ ui(k) ≤ 1
instead. Finally, we use SparsePOP [173] to solve the encoded POP.

Problem 7.5.1.

find E[x(0)] ∈ Rn, E[x(k + 1)] ∈ Rn, u(k) ∈ Rm,

k = 0, 1, ...,M − 1,

min J,

subject to System Σi(k), i = 1, 2, ..., n,

E[x(0)] = xini,

uj(k)(uj(k)− 1) = 0, j ∈ {1, ...,m}.

In contrast to the PMC-based approach, the proposed POP-based approach builds
neither implicit nor explicit transition probability matrices. It exploits the efficient solving
techniques developed for POP solvers. This is an advantage as compared to the PMC-
based approach. However, it is hard to apply the POP-based approach to Problem OptC-1
or OptC-2. Furthermore, we propose two reduction rules to reduce the number of decision
variables of the encoded POP, which largely affects the performance of the POP-based
approach.

The first rule is based on the cost function J . In the encoded POP, we find the
set of decision variables that properly contribute to J . We then remove all decision
variables that are not in this set from the encoded POP. Note that we also must remove
all the equations related to the removed decision variables. For example, consider the
instance of Problem OptC-3 shown in Example 7.3.2. With J = E[x3(2)], we only need to
consider variables E[x3(2)], E[x1(1)], E[x2(1)], E[x3(0)], and E[x1(0)]. Since the number
of decision variables (resp. equations) of Problem 7.5.1 is n × (M + 1) + m (resp. n ×
(M + 1) +m), the time for applying the cost-based reduction rule is polynomial.

The second rule is based on the context of the DA-PBN. Because of introducing
the context (i.e., p’s and q’s), the encoded POP may contain some equations in form
E[xi(t + 1)] − E[xi(t)] = 0 (when t%pi 6= qi). Now, we can remove decision variable
E[xi(t + 1)] and the above equation. Then, we must replace E[xi(t + 1)] by E[xi(t)]
everywhere E[xi(t+1)] appears in the encoded POP. The time for applying this reduction
rule is also polynomial.

111

7.5. PROPOSED SOLUTION APPROACHES

7.5.4 Remarks

First, we consider the issue of showing the control sequence when solving the problems.
From the output of SparsePOP, we can directly obtain the control sequence that leads
to the minimum expected cost. However, this task is difficult for the case of PRISM and
SiSAT due to their implementing limitations.

Second, we can consider other forms of the cost function in Problem OptC-3. For
example, the weighting vectors can be replaced by functions of x and u [21, 72]. By the
expressive power of PRISM, SiSAT, or SparsePOP, we can easily modify the proposed
approaches to handle a new form of the cost function.

Finally, we can consider adding hard constraints (i.e., adding an upper bound H for
the number of controls that can be applied to the network) into the problems. The number
of controls applied to the network is defined in [71] as

M−1∑
t=0

m∑
i=1

|ui(t)− ui(t+ 1)|.

The introduction of hard constraints is important for medical applications because the
number of treatments such as radiation and chemo-therapy is usually limited [71]. To
handle hard constraints, we only need some little modifications to the SSMT-based and
POP-based approaches because these approaches consider the values of control nodes at
each time step. We have that

|ui(t)− ui(t+ 1)| = (ui(t)− ui(t+ 1))2,

since

|ui(t)− ui(t+ 1)| ∈ B.

For the SSMT-based approach, we can, for example, modify ϕ to

ϕini ∧ ϕdes ∧ ϕtrans ∧ ϕhard,

where

ϕhard ≡
M−1∑
t=0

m∑
i=1

(ui(t)− ui(t+ 1))2 ≤ H.

For the POP-based approach, we can, for example, add the inequality

M−1∑
t=0

m∑
i=1

(ui(t)− ui(t+ 1))2 ≤ H

to the encoded POP. On the other hand, it is difficult to modify the PRISM-based ap-
proach to handle hard constraints. The reason is due to the expressive power of PCTL.

112

7.5. PROPOSED SOLUTION APPROACHES

Table 7.2: DA-PBN models of the WNT5A network.

Gene Node Boolean function (Probability)
pirin u1

WNT5A x1 ¬x5 (1.0)
S100P x2 ¬x6 (0.8), x2 (0.2)
RET1 x3 x3 (1.0)
MART1 x4 ¬x6 ∨ u1 (1.0)
HADHB x5 x2 ∨ x3 (1.0)
STC2 x6 x6 ∨ ¬u1 (0.8), x6 (0.2)

7.5.5 Case Study

We consider a WNT5A network [179], which is related to melanoma. The DA-PBN model
of this network is given in Table 7.2. Note that the second Boolean function for x2 or x6

is obtained by applying the synchronous and asynchronous semantics of BNs [69]. Since
it is hard to determine the context of the DA-PBN, we randomly generate the context
with varying Λ (Λ = 1 and Λ = 3). Now, we can obtain two DA-PBN models expressing
the WNT5A network.

In the WNT5A network, it is important to inhibit the concentration level of x1 (the
gene WNT5A) [179]. From the obtained DA-PBN models, we consider solving Problems
OptC-1, OptC-2, and OptC-3 with the control setting capturing this fact:

xini = (1, 1, 0, 1, 0, 0)>, xdes = (0,−,−,−,−,−)>,

M = 5,

Q = (1, 0, 0, 0, 0, 0),R = (1),Qf = (10, 0, 0, 0, 0, 0),

where − means an arbitrary Boolean value.
We then apply the proposed approaches to optimal control of the WNT5A network.

Regarding Problems OptC-1 and OptC-2, the results are the same for both the PMC-based
and SSMT-based approaches. The maximum reachability probability (say Pmax) is always
equal to 1 for all the two DA-PBNs. The minimum reachability probability (say Pmin)
is 0.104 (resp. 0.36) for the first DA-PBN with Λ = 1 (resp. the second DA-PBN with
Λ = 3). Therefore, it is possible to drive the DA-PBN from the initial state to the desired
state because Pmax is always equal to 1 and Pmin is always greater than 0. This means
that the inhibition of the gene WNT5A can be controlled by manipulating the value of the
control node (the gene pirin). Regarding Problem OptC-3, the results are the same for all
the approaches including the PMC-based approach, the SSMT-based approach, the POP-
based approach with reduction, and the POP-based approach without reduction. The
minimum expected cost (say Jmin) is 4 (resp. 3) for the first DA-PBN (resp. the second
DA-PBN). Specifically, for all the two DA-PBNs, we obtain E[x1(1)] = 1, E[x1(2)] = 1,
E[x1(3)] = 0, E[x1(4)] = 0, and E[x1(5)] = 0. Hence, we see that the concentration
level of the gene WNT5A is inhibited with time. In addition, the minimum cost without
control is 7 for all the two DA-PBNs. Therefore, the control objective is achieved.

113

7.6. EXPERIMENTS

7.6 Experiments

We conducted experiments on random DA-PBNs to evaluate the performance of the
proposed approaches for the three optimal control problems. First, we randomly generated
DA-PBNs according to the following factors:

n ∈ {30, 50},m ∈ {1, 2},Λ = 4, l ∈ {1, 4},

where l is the number of li such that li > 1. The control setting is given as follows:

xini = (0, 0, ..., 0)>,Q = (0, ..., 0)n,R = (1, ..., 1)m,

M ∈ {4, 6, 8, 10, 12, 14, 16}.

For xdes, we randomly chose kdes internal nodes and set them either 0 or 1, whereas the
remaining nodes can receive arbitrary Boolean values. For simplify, we set kdes = 2. We
say the set of kdes internal nodes as V des. For Qf , Qf (xi) = 10 if xi ∈ V des and xdesi = 0.
Qf (xi) = 1 if xi ∈ V des and xdesi = 1. Otherwise, Qf (xi) = 0.

We then applied the proposed approaches to the randomly generated instances of
the three optimal control problems. All the experiments were run on a virtual machine
whose environment is CPU: Intel(R) Core(TM) i7-3630QM 2.40GHz x 4, Memory: 8 GB,
Ubuntu 18.04.2 64 bit. The time limit is two hours for each instance. For each instance,
we reported the running time of each proposed approach.

Note that there are some special cases in the running of SiSAT. For Problem OptC-1
(resp. OptC-2), when the computed probability corresponding to an assignment to all
the existential (resp. universal) variables is 1 (resp. 0), SiSAT can immediately stop and
return 1 (resp. 0) as the satisfaction probability. For both Problems OptC-1 and OptC-2,
if Φ is not satisfiable for all assignments to all the existential or universal variables, SiSAT
can quickly return 0 as the satisfaction probability. In all the instances of Problem OptC-
1 (resp. Problem OptC-2), Pmax (resp. Pmin) is always 0 because Φ is not satisfiable. To
avoid this special case, we change Λ to 1 for all the instances of Problems OptC-1 and
OptC-2. For all the instances of Problems OptC-3, Λ is still 4.

With the new setting, the results of all the instances of Problem OptC-2 are still 0.
Hence, we only analyze the results of the instances of Problem OptC-1 and Problem OptC-
3. The obtained insights for Problem OptC-2 can be similarly deduced from those for
Problem OptC-1 because in general cases, i.e., Pr(Φ) ∈ (0, 1), the SSMT-based approach
must traverse all the assignments of all the quantified variables. For the PMC-based
approach, the PRISM models for Problem OptC-1 and Problem OptC-2 are the same. In
addition, the time complexity for checking the PTCL formula for Problem OptC-1 is the
same as that for checking the PCTL formula for Problem OptC-2.

Note that the instances of Problem OptC-1 and Problem OptC-3 used in the ex-
periment can be representative for a vast number of similar case studies because of the
following reasons. First, n is large enough, ensuring that the number of reachable states
as well as the transition probability matrix is large. Second, the result of Problem OptC-1
is in (0, 1) in most cases, indicating that the special cases of SiSAT did not occur in most
cases.

From the experimental results, we shall show several analysis on how the running time
of the proposed approaches depends on the factors and a comparison among the proposed
approaches.

114

7.6. EXPERIMENTS

7.6.1 Experimental Results on Problem OptC-1

4 6 8 10 12 14 16
10−2

10−1

100

101

102

103

m = 1,Λ = 1

4 6 8 10 12 14 16
10−2

10−1

100

101

102

103

m = 2,Λ = 1

PMC-based approach (l = 1) SSMT-based approach (l = 1)
PMC-based approach (l = 4) SSMT-based approach (l = 4)

(a) n = 30

4 6 8 10 12 14 16

10−1

100

101

102

103

m = 1, l = 1 m = 1, l = 4
m = 2, l = 1 m = 2, l = 4

(b) n = 50, SSMT-based approach

Figure 7.2: Experimental results on Problem OptC-1. The x-axis denotes the target time
M , whereas the y-axis denotes the running time (in seconds) with a logarithmic scale of
base 10.

Figure 7.2 shows the results on Problem OptC-1. First, the running time of the
PMC-based approach linearly increases as M increases. In the PRISM model of Problem
OptC-1 (see Subsection 7.5.1), M does not appear; thus, M does not affect the time for
building the transition probability matrix. The complexity of the algorithm for solving
a reachability formula is linear in M [180]. Hence, we have that the running time of the
PMC-based approach is linear in M .

Second, the running time of the PMC-based approach for the case l = 1 is less than
that for the case l = 4. When l increases, the number of possible Boolean functions for
node updating also increases. As a consequence, the number of reachable states of the
model may increase; leading the running time may increase.

Third, for the case n = 50, the PMC-based approach met the OutOfMemory (OOM)
error in all instances. This is the reason why we only show the results for the SSMT-

115

7.6. EXPERIMENTS

based approach in Figure 7.2b. The number of reachable states of the PRISM model
may increase exponentially as n increases. When n = 50 (a large number), the number
of reachable states of the PRISM model as well as the size of the transition probability
matrices may be very large; leading OOM. Practically, we can increase the memory size
but the time for building the transition probability matrices and verifying the PCTL
property may be extremely long.

Last, the running time of the SSMT-based approach exponentially increases as M
increases. Even for the cases m = 1, l = 4 and m = 2, l = 4, the SSMT-based approach
met timeout when M is only 6. The reason is as follows. The quantified variables of
the encoded SSMT formula include m ×M existential variables and l ×M randomized
variables. In general cases, the time for solving the SSMT formula is exponential in its
number of quantified variables [172]. The maximum probability is in (0, 1) in most cases.
Moreover, the algorithmic enhancements for SiSAT may be not effective. For example,
since we want to get the maximum satisfaction probability, thresholing is not effective in
this case. Due to the above reason, the SSMT-based approach can only handle the case
of small number of quantified variables.

In addition, we also obtain a comparison between the PMC-based approach and the
SSMT-based approach in terms of Problem OptC-1. In the case of small number of
quantified variables (e.g., m = 1, l = 1,M ≤ 10 or m = 2, l = 1,M ≤ 8), the SSMT-based
method is better than the PMC-based approach. In this case, the number of quantified
variables is moderate; thus, the SSMT-based approach can obtain better performance
because of the efficiency of solving algorithms for SSMT. When n = 50, the SSMT-based
approach outperforms the PMC-based approach. In this case, the PMC-based approach
meets OOM because the number of reachable states is too large. Whereas, the SSMT-
based approach can work well because the number of quantified variables is small and in
particular does not depends on n. When n = 30 and the number of quantified variables
is large, the PMC-based approach outperforms the SSMT-based approach. In this case,
the PMC-based approach did not meet OOM and its running time is only linear in M .
Whereas, the running time of the SSMT-based method is exponential in M .

7.6.2 Experimental Results on Problem OptC-3

Figures 7.3 and 7.4 show the results on Problem OptC-3 with n = 30 and n = 50,
respectively. Regarding the PMC-based approach for Problem OptC-3, we first see that
the running time of the PMC-based approach polynomially increases as M increases. The
reason is as follows. In the PRISM model of Problem OptC-3 (see Subsection 7.5.1), t
takes a value from 0 to M +1. Hence, the number of reachable states linearly increases as
M increases. In addition, the complexity of the method for solving a reward reachability
formula is cubic in the size of the system [180]. Second, for the case n = 30,m = 2, l =
4,Λ = 4, the PMC-based approach met OOM in all the cases of M (except M = 4).
The number of reachable states of the PRISM model is exponential in m and linear in
M . With these parameters, the number of reachable states as well as the size of the
transition probability matrix may be very large; leading OOM. Third, the running time
of the PMC-based approach for the case l = 1 is less than that for the case l = 4. Fourth,
for the case n = 50, the PMC-based approach met OOM in all instances. Note that the
two later observations are similar to those for Problem OptC-1.

Regarding the SSMT-based approach for Problem OptC-3, we first see that the running

116

7.6. EXPERIMENTS

4 6 8 10 12 14 16

10−1

100

101

102

103

Target time M

ti
m

e
(s

ec
on

d
s)

m = 1, l = 1,Λ = 4

4 6 8 10 12 14 16
10−1

100

101

102

103

Target time M

ti
m

e
(s

ec
on

d
s)

m = 1, l = 4,Λ = 4

4 6 8 10 12 14 16

10−1

100

101

102

103

Target time M

ti
m

e
(s

ec
on

d
s)

m = 2, l = 1,Λ = 4

4 6 8 10 12 14 16

100

101

102

103

Target time M

ti
m

e
(s

ec
on

d
s)

m = 2, l = 4,Λ = 4

PMC-based approach POP-based approach (without reduction)
SSMT-based approach POP-based approach (with reduction)

Figure 7.3: Experimental results on Problem OptC-3 with n = 30.

time of the SSMT-based approach exponentially increases as M increases. Second, the
SSMT-based approach can only handle the case of small number of quantified variables.
For the cases m = 1, l = 1 and m = 2, l = 1, the maximum M that the SSMT-based
approach can handle is 14. The cases m = 1, l = 4 and m = 2, l = 4 are only 4. However,
in this case, the SSMT-based approach can still handle the instances with n = 50. The
reasons for the above observations are similar to those for Problem OptC-1.

Regarding the POP-based approach for Problem OptC-3, we first see that the run-
ning time of the POP-based approach without reduction exponentially increases as M
increases. The reason is that the number of decision variables of the encoded POP is
linear in M and the running time of SparsePOP may exponentially increase as this num-
ber increases [173]. Second, the POP-based approach with reduction is much better than
the POP-based approach without reduction (the speedup is significant). However, the
running time of the POP-based approach with reduction still exponentially increases as
M increases. Clearly, the two reduction rules reduce significantly the number of decision

117

7.6. EXPERIMENTS

4 6 8 10 12 14 16

10−1

100

101

102

103

Target time M

ti
m

e
(s

ec
on

d
s)

m = 1, l = 1,Λ = 4

4 6 8 10 12 14 16
10−1

100

101

102

103

Target time M

ti
m

e
(s

ec
on

d
s)

m = 1, l = 4,Λ = 4

4 6 8 10 12 14 16

100

101

102

103

Target time M

ti
m

e
(s

ec
on

d
s)

m = 2, l = 1,Λ = 4

4 6 8 10 12 14 16

100

101

102

103

Target time M

ti
m

e
(s

ec
on

d
s)

m = 2, l = 4,Λ = 4

PMC-based approach POP-based approach (without reduction)
SSMT-based approach POP-based approach (with reduction)

Figure 7.4: Experimental results on Problem OptC-3 with n = 50.

variables as well as the number of equations of the encoded POP. However, the number
of decision variables of the encoded POP may be still linear in M . We also note that the
result of the POP-based approach is different from that of the PMC-based or SSMT-based
approach in some cases. The reason is that PRISM and SiSAT are exact tools; whereas,
SparsePOP is only an approximation tool [173].

Finally, we make a comparison among the three proposed approaches in terms of
Problem OptC-3. In the case of small M (e.g., M ≤ 12), the POP-based approach (even
without reduction) is much better than the PMC-based approach. In this case, the size of
POP is moderate. Thus, the POP-based approach (even without reduction) may be much
better than the PMC-based approach because it avoids building the transition probability
matrix that may be very large and time-consuming to compute when n is large. In the
case of large M (e.g., M ≥ 14), the PMC-based approach gradually becomes better than
the POP-based approach (even with reduction). The reason is, as explained above, that
the running time of the PMC-based approach linearly increases as M increases, whereas

118

7.7. DISCUSSION

the running time of the POP-based approach (with or without reduction) exponentially
increases as M increases. In the case of small number of quantified variables (e.g., m =
1, l = 1,M ≤ 10 or m = 2, l = 1,M ≤ 8), the SSMT-based approach is better than
the PMC-based approach, is comparable to the POP-based approach without reduction,
and is worse than the POP-based approach with reduction. In this case, the number
of quantified variables of the encoded SSMT formula is moderate; thus, the SSMT-based
approach may get better performance because of the efficient solving algorithms for SSMT.

7.6.3 Summary of the Experimental Results

To sum up, the experimental results confirm the advantages and disadvantages of each
proposed approach. For the PMC-based approach, the running time is linear or polyno-
mial in M . However, it may meet OOM or take extremely long time when the number
of reachable states of the PRISM model is too large. Moreover, the number of reach-
able states is exponential in n and m. For the SSMT-based approach, the running time
is exponential in M . However, it can handle the case of large n when the number of
quantified variables is small. For the POP-based approach, the POP-based method with
reduction gives the best performance overall, but the running time is still exponential in
M . Moreover, the result of the POP-based method is not exact in some cases. These
insights suggest that the proposed approaches can complement each other.

7.7 Discussion

In this chapter, we have formulated three meaningful optimal control problems of DA-
PBNs (i.e., Problems OptC-1, OptC-2, and OptC-3) based on different aims of control.
For theoretical aspects, we have shown the hardness of the problems. Specifically, we have
proved that the three optimal control problems are NPPP-hard even with the restriction
that Boolean functions of the DA-PBN are in 2CNF. In addition, we have also proved
that all three problems are in PSPACE. For practical aspects, we have proposed three
approaches to solve the problems. The PMC-based and SSMT-based approaches can be
applicable for all the problems, whereas the POP-based approach can only be applicable
for Problem OptC-3. In particular, the SSMT-based and POP-based approaches avoid
building transition probability matrices of the considered DA-PBN. For the POP-based
approach, we have also proposed two reduction rules to reduce the number of decision
variables of the encoded POP. We note that our proposed approaches open a chance
to apply various recent advents in many research fields (e.g., probabilistic model check-
ing [181, 182], stochastic satisfiability [178, 183], polynomial optimization [184, 185]) to
optimal control of DA-PBNs.

We have then applied the proposed approaches to optimal control of a real biological
network to show their applications. We have also conducted experiments to evaluate
the performance of the proposed approaches. From the experimental results, we have
presented theoretical and experimental analysis on the effects of some factors (e.g., n, M)
to the performance of the proposed approaches as well as a comprehensive comparison
among them. The obtained analysis suggests that each of the proposed approaches works
well for specific cases of control settings; hence, they can complement each other.

In the future, we plan to improve the proposed approaches to handle large-scale prob-
lem instances (e.g., the case of large networks or the case of long target time M). Poten-

119

7.7. DISCUSSION

tially, we can use the assume-guarantee verification technique [181] for the PMC-based
approach, the Craig interpolation technique [183] for the SSMT-based approach, or lin-
ear programming formulation technique [184] for the POP-based approach. We also plan
to extend the proposed approaches for DA-PBNs to those for hybrid models of DA-
PBNs [68, 186]. It seems promising because both PRISM and SiSAT support proba-
bilistic hybrid systems. Finally, it is important to consider the problem of calculating a
steady-state distribution on attractors of a DA-PBN [187].

120

Chapter 8

Conclusions and Future Work

8.1 Conclusions

Boolean networks are simple but efficient mathematical formalism that has widely been
applied in various research fields, such as, systems biology, mathematics, neural networks,
social modeling, robotics, and computer science. Attractor detection and optimal control
of BNs are crucial but challenging problems. Hence, they have recently attracted much
attention from many research communities. However, we are still facing profound chal-
lenges such as scalability or high computation cost for large-scale networks, the lack of
practical methods for complex types of BNs (e.g., GABNs, DGABNs, DA-PBNs), the lack
of theoretical results linking dynamics between different types of BNs. In this dissertation,
we have worked on fulfilling these challenges.

In theory, we have introduced a number of new theoretical results that contribute to
the understanding of the dynamics of BNs. Specifically, in Chapter 3, we have formally
stated and proved the relations between the dynamics of a GABN and that of its SBN
(or ABN) counterpart. In Chapter 5, we have introduced a new concept called extended
state transition graph for capturing the whole dynamics of a DGABN. Based on this
new concept, we have formally stated and proved several relations in dynamics between
DGABNs and other conventional models including DA models, BSBNs, GABNs, and
MxBNs. In particular, we have shown that the relations presented in Chapter 3 and 5
pave the potential ways to analyze different types of BNs as well as many other popular
models. In Chapter 4, we have discovered several relations between the dynamics of a
BN and its network structures. More specifically, we have formally stated and proved
several lemmas and theorems on relations between the dynamics of a BN and an FVS
of its interaction graph. Furthermore, we have also obtained a new theorem on relations
between the dynamics of an ABN and an NFVS of its interaction graph. Note that these
new findings are the theoretical foundations for our efficient methods for finding attractors
of an ABN. Finally, in Chapter 7, we have discovered the computational complexity of
three meaningful optimal control problems of DA-PBNs. Specifically, we have proved that
all the three problems (also their restricted versions) are NPPP-hard and in PSPACE.

In practice, we have developed several algorithms and methods for attractor detection
and optimal control of different typical types of BNs. Note that these algorithms and
methods are mainly based on the new theoretical results obtained in this research. In
Chapter 3, we have proposed three BDD-based algorithms and one SAT-based algorithm
for finding attractors of a GABN based on the attractors of the SBN counterpart of the

121

8.1. CONCLUSIONS

GABN. These algorithms are first analytical and practical methods for analyzing GABNs.
In particular, the experimental results on various classes of networks show that the SAT-
based algorithm outperforms the three BDD-based methods and can handle large GABNs.
Inspiring by the obtained relations between GABNs and ABNs as well as the observation
that the number of attractors of an ABN is equal to that of its GABN counterpart in
most cases, we have developed an efficient method for approximating attractors of an
ABN, which uses the SAT-based algorithm as a subroutine. The experimental results on
real biological networks are promising because the approximation method outperforms
the two state-of-the-art methods as well as can handle networks of up to 101 nodes.

In Chapter 4, we have proposed an efficient method for exactly computing all the
attractors of an ABN. The theoretical foundation of this method is the obtained relations
between the dynamics of a BN and an FVS of its interaction graph (Theorems 4.3.1
and 4.3.2). This method is then enhanced with two substantial improvements. In the
first improvement, we have explored several techniques for checking the reachability in
ABNs to develop an efficient combination. In the second improvement, the improved
method uses an NFVS instead of an FVS to get a candidate set of states. The theoretical
foundation of this improvement is the obtained relation between the dynamics of an ABN
and an NFVS of its interaction graph (Theorem 4.6.2). Now, the improved method
outperforms the state-of-the-art methods and can handle very large networks with up to
1000 nodes in terms of randomly generated networks and more than 300 nodes in terms
of real biological networks. In particular, the principle of this method can be applied to
many other types of BNs and pave potential ways to improve itself.

In Chapters 5 and 6, relying on our proposed concept (i.e., extended state transition
graph), we have proposed one SMT-based method and two SMT-based methods for at-
tractor detection and optimal control of DGABNs, respectively. Note that there is no
previous method specifically designed for DGABNs. Although they are extensions of
the corresponding previous SAT-based methods for SBNs, we have demonstrated that
they contain substantial differences from the previous ones. Furthermore, the experi-
mental results on randomly generated networks and artificial networks show that these
proposed methods are efficient and can handle large-scale networks. Inspiring by the de-
veloped methods for optimal control of DGABNs, in Chapter 7, we have proposed various
approaches for solving the three optimal control problems of DA-PBNs, a stochastic ex-
tension of DGABNs and a contextual extension of SPBNs. The SSMT-based approach
is completely new, whereas the PMC-based and POP-based approaches are (non-trivial)
extensions of the corresponding previous approaches for optimal control of SPBNs. In
particular, the POP-based approach is enhanced by the two proposed reduction rules.
The experimental results on artificial networks show that (1) the two reduction rules are
effective, (2) these proposed approaches can handle large problem instances in terms of
optimal control of DA-PBNs, (3) their performance is impacted by multiple parameters,
and (4) they can complement each other. Finally, we have developed software tools for
all the proposed algorithms, methods, and approaches for attractor detection and optimal
control of different typical types of BNs.

Especially, the principle that we developed in Chapter 4 for attractor detection in
ABNs can be generalized as a blueprint for attractor detection in various types of BNs
beyond ABNs. Figure 8.1 shows the description of this blueprint. First, we try to get
a candidate set of states that covers all or nearly all the attractors of a BN. There may
be many ways to get a candidate set. For example, in Chapter 4, we use an FVS or an

122

8.2. FUTURE WORK

NFVS to get the candidate set for the ABN, whereas in Chapter 3, we use the attractors
of an SBN to get the candidate set for its GABN counterpart. Second, we should shrink
the candidate set to reduce the computational burden. This step has been proved very
useful in FVS-ABN. Third, we use reachability analysis on the BN to filter out the
candidate set to obtain the result set that is expected to one-to-one correspond to the set
of attractors.

Getting a candidate set

Shrinking the candidate set

Using reachability analysis to filter out the candidate set

Figure 8.1: Blueprint for attractor detection in various types of BNs.

Finally, although systems biology has served as the main motivation for our research,
applications of this dissertation are by no means limited to biological systems. For exam-
ple, conjunctive BNs [94] are suitable to model water quality networks [188], in which each
Boolean variable can be viewed as the water quality within a pipe. The Boolean variable
takes value 1 if the water is not polluted, whereas value 0 if the water is polluted. As an-
other example, ABNs are useful in modeling, studying, and controlling nonlinear dynamics
in multivariate systems [35]. In addition, BNs provide a convenient modeling framework
to explore general properties of complex systems in general, such as, self-organization,
criticality, causality, canalization, robustness, and evolvability [36]. Other systems that
can be modeled by BNs include multi-agent systems (modeled by SBNs) [189], social
networks (e.g., information flow on Twitter or Facebook) [190], smart grids (modeled by
SPBNs) [191], and supply chain networks (e.g., movement of materials) [192]. Since we
consider general BNs (i.e., there is no restriction in Boolean functions) as well as different
types of BNs (GABNs, ABNs, DGABNs, DA-PBNs), the results (theoretical results and
computational methods) introduced in this dissertation can be applied to a wide range of
other systems.

8.2 Future Work

There are a number of research directions on BNs that could be pursued in the future,
and we mention here a few of them.

First, the theoretical results obtained in this dissertation could be further explored
to contribute more insights into the dynamics of BNs as well as pave potential ways for
developing more efficient methods for attractor detection and optimal control of BNs.
For example, although we have explored the relations in dynamics between GABNs and
SBNs (or ABNs) in Chapter 3, there is no previous work linking the cyclic attractors
of an SBN and those of its ABN counterpart to our best knowledge. Hence, exploring
the connection between SBNs and ABNs is theoretically interesting and one of our future
work. In addition, we have shown a counter example (Example 3.6.1) in which the number

123

8.2. FUTURE WORK

of attractors of an ABN is greater than that of its GABN counterpart. However, the
experimental results on real biological networks show that the numbers of ABN and
GABN attractors are identical in most cases. A possible future direction would be to
investigate what condition in which the number of attractors of an ABN is identical to that
of its GABN counterpart. It is potentially possible because there are some preliminary
results [11, 78, 148] following this direction. In Theorem 4.6.2 of Chapter 4, we have
introduced the relation between the dynamics of an ABN and an NFVS of its interaction
graph. One natural question is that whether this theorem still holds for other types of BNs,
such as, SBNs, GABNs, and ROABNs. This question is interesting because the obtained
relations in the case of FVSs do not depend on updating schemes and is important because
the size of a minimum NFVS is less than or equal to the size of a minimum FVS. In
Chapter 7, we have provided several complexity analysis on three optimal control problems
of DA-PBNs. However, the precise complexity of these problems is so far open to our best
knowledge. Moreover, the precise complexity of attractor detection and optimal control
problems of other types of BNs (e.g., ABNs, GABNs, DGABNs) is also still open so far.
Hence, one more possible direction is to study the computational complexity of problems
on BNs.

Second, the methods proposed in this dissertation could be further improved to handle
larger networks (targeting genome-scale networks that can possess thousands of compo-
nents [49, 54]). Although these proposed methods outperform the state-of-the-art corre-
sponding methods in the literature, their applicable ranges are so far from genome-scale
networks. Hence, it is important but challenging to improve the proposed methods. One
possible direction is to improve substituent steps in each method. For instance, as in Chap-
ter 3, most of the running time of filtSAT or ApproABN is spent for computing the
attractors of the SBN counterpart of the GABN. Then, we can improve filtSAT or Ap-
proABN by developing a more efficient method or efficiently combining multiple previous
methods for computing SBN attractors. In addition, excluding redundant SBN attractors
before the filtering process of filtSAT may be a potential improvement. For the case of
the iFVS-ABN method presented in Chapter 4, we may improve this method by consid-
ering several other techniques for checking the reachability in ABNs [141, 144, 145, 146] or
an exact method for finding a minimum NFVS. One more possible direction is to combine
the proposed methods with previously efficient approximation methods. For instance,
we may combine iFVS-ABN with the efficient approximation methods for computing
attractors of ABNs [53, 54]. It is promising because these approximation methods can
handle very large networks as reported by the authors. Furthermore, combining the pro-
posed methods with the decomposition-based [49, 181] or reduction-based [52, 67, 129]
approaches (especially in the case of DA-PBNs) may be of interest.

Third, both theoretical and practical results of this dissertation could be extended
to those for other less popular but more complex types of BNs such as ROABNs or
generalized to those for more general models such as multi-valued networks and hybrid
models. ROABNs are a non-standard type of asynchronous BNs. Initially, this type was
used in various biological research work [79, 158, 193]. However, ROABNs have gradually
been less popular due to their high complexity. Hence, research on the dynamics of
ROABNs as well as the development of efficient methods for attractor detection and
optimal control of ROABNs are interesting and challenging. Since the obtained relations
in the case of FVSs presented in Chapter 4 still hold for the case of ROABNs, it is potential
to extend the theoretical and practical results of Chapter 4 to those for ROABNs. In some

124

8.2. FUTURE WORK

cases, BNs are not expressive enough and we need to use their generalization, multi-valued
networks [167] or hybrid models [186]. In a multi-valued network, each node can receive
more than two expression levels. In a hybrid model, each node can receive a discrete
or a continuous value. Many methods have been proposed for converting a multi-valued
network into a BN whose dynamics is equivalent to that of the multi-valued network.
Then, we can apply directly the proposed methods to the encoded BN. However, the size
of the encoded BN may be unmanageable by the proposed methods. Hence, we need more
direct and efficient methods for multi-valued networks. It is also similar in the case of
hybrid models.

Last, but not least, research on the dynamics of several special classes of BNs such
as canalyzing and nested canalyzing BNs [90, 91], AND-OR BNs [92, 93], conjunctive
BNs [94], as well as their attractor detection and optimal control problems, may be of
interest. Since we in this dissertation consider general Boolean networks, the obtained
theoretical results and the developed methods can directly be applied to these special
classes of BNs. However, because of their special structures, deeper theoretical results
and more efficient methods may be obtained. This intuition is justified by various efficient
work on attractor detection of special classes of SBNs [21].

125

Bibliography

[1] Stuart A Kauffman. The origins of order: Self-organization and selection in evolu-
tion. OUP USA, 1993.

[2] Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory net-
works. Nature Reviews Molecular Cell Biology, 9(10):770–780, 2008.

[3] Shubhank Sherekar and Ganesh A Viswanathan. Boolean dynamic modeling of
cancer signaling networks: Prognosis, progression, and therapeutics. Computational
and Systems Oncology, 1(2):e1017, 2021.

[4] Ilya Shmulevich, Edward R Dougherty, Seungchan Kim, and Wei Zhang. Probabilis-
tic Boolean networks: a rule-based uncertainty model for gene regulatory networks.
Bioinformatics, 18(2):261–274, 2002.

[5] Carlos Gershenson. Introduction to random Boolean networks. In Proceedings of the
Ninth International Conference on the Simulation and Synthesis of Living Systems
(ALife IX), page 160–173. MIT Press, 2004.

[6] Julian D Schwab, Silke D Kühlwein, Nensi Ikonomi, Michael Kühl, and Hans A
Kestler. Concepts in Boolean network modeling: What do they all mean? Compu-
tational and Structural Biotechnology Journal, 18:571–582, 2020.

[7] Jose C Valverde, Henning S Mortveit, Carlos Gershenson, and Yongtang Shi.
Boolean networks and their applications in science and engineering. Complexity,
2020:6183798:1–6183798:3, 2020.

[8] Stuart A Kauffman. Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology, 22(3):437–467, 1969.

[9] Assieh Saadatpour, István Albert, and Réka Albert. Attractor analysis of asyn-
chronous Boolean models of signal transduction networks. Journal of Theoretical
Biology, 266(4):641–656, 2010.

[10] Inman Harvey and Terry Bossomaier. Time out of joint: Attractors in asynchronous
random Boolean networks. In Proceedings of the Fourth European Conference on
Artificial Life, pages 67–75. MIT Press, Cambridge, 1997.

[11] Mathilde Noual. General iteration graphs and Boolean automata circuits. arXiv
preprint arXiv:1104.4044, 2011.

126

BIBLIOGRAPHY

[12] Thomas Chatain, Stefan Haar, and Löıc Paulevé. Boolean networks: beyond gener-
alized asynchronicity. In International Workshop on Cellular Automata and Discrete
Complex Systems, pages 29–42. Springer, 2018.

[13] Carlos Gershenson, Jan Broekaert, and Diederik Aerts. Contextual random Boolean
networks. In European Conference on Artificial Life, pages 615–624. Springer, 2003.

[14] Carlos Gershenson. Classification of random Boolean networks. In Proceedings of
the Eighth International Conference on Artificial Life, pages 1–8. MIT Press, 2002.

[15] Babak Faryabi, Jean-Francois Chamberland, Golnaz Vahedi, Aniruddha Datta, and
Edward R Dougherty. Optimal intervention in semi-Markov-based asynchronous
genetic regulatory networks. In American Control Conference, pages 1388–1393.
IEEE, 2008.

[16] Ilya Shmulevich and Edward R Dougherty. Probabilistic Boolean networks: the
modeling and control of gene regulatory networks. SIAM, 2010.

[17] Panuwat Trairatphisan, Andrzej Mizera, Jun Pang, Alexandru Adrian Tantar,
Jochen Schneider, and Thomas Sauter. Recent development and biomedical ap-
plications of probabilistic Boolean networks. Cell Communication and Signaling,
11(1):1–25, 2013.

[18] Koichi Kobayashi and Kunihiko Hiraishi. Optimization-based approaches to control
of probabilistic Boolean networks. Algorithms, 10(1):31, 2017.

[19] Peter Bloomingdale, Van Anh Nguyen, Jin Niu, and Donald E Mager. Boolean net-
work modeling in systems pharmacology. Journal of Pharmacokinetics and Phar-
macodynamics, 45(1):159–180, 2018.

[20] Pedro J Rivera Torres, EI Serrano Mercado, and Luis Anido Rifón. Probabilistic
Boolean network modeling of an industrial machine. Journal of Intelligent Manu-
facturing, 29(4):875–890, 2018.

[21] Tatsuya Akutsu. Algorithms for analysis, inference, and control of Boolean net-
works. World Scientific, 2018.

[22] Stuart A Kauffman. The origins of order: Self-organization and selection in evolu-
tion. In Spin Glasses and Biology, pages 61–100. World Scientific, 1992.

[23] Sui Huang. Genomics, complexity and drug discovery: insights from Boolean net-
work models of cellular regulation. Pharmacogenomics, 2(3):203–222, 2001.

[24] Reka Albert and Juilee Thakar. Boolean modeling: a logic-based dynamic approach
for understanding signaling and regulatory networks and for making useful predic-
tions. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 6(5):353–
369, 2014.

[25] Shinya Yamanaka. Elite and stochastic models for induced pluripotent stem cell
generation. Nature, 460(7251):49, 2009.

127

BIBLIOGRAPHY

[26] Minsoo Choi, Jue Shi, Yanting Zhu, Ruizhen Yang, and Kwang-Hyun Cho. Network
dynamics-based cancer panel stratification for systemic prediction of anticancer drug
response. Nature Communications, 8(1):1–12, 2017.

[27] Jonas Béal, Lorenzo Pantolini, Vincent Noël, Emmanuel Barillot, and Laurence Cal-
zone. Personalized logical models to investigate cancer response to BRAF treatments
in melanomas and colorectal cancers. PLoS Computational Biology, 17(1):e1007900,
2021.

[28] Vincent Noël, Jose Carbonell, Miguel Ponce de Leon, Sylvain Soliman, Anna
Niarakis, Laurence Calzone, Emmanuel Barillot, Alfonso Valencia, and Arnau Mon-
tagud. PhysiBoSS-COVID: the Boolean modelling of COVID-19 signalling pathways
in a multicellular simulation framework allows for the uncovering of mechanistic
insights, November 2020. European Commission grants: INFORE project(H2020-
ICT-825070) and PerMedCoE project(H2020-ICT-951773).

[29] Manuel Azaid Ordaz Arias, Mariana Martinez Sanchez, and Yalbi Balderas Mar-
tinez. A Boolean network for studying the macrophages differentiation in SARS-
CoV-2 infection, 2021.

[30] Mahmoud AA Ibrahim, Alaa HM Abdelrahman, Tarik A Mohamed, Mohamed AM
Atia, Montaser AM Al-Hammady, Khlood AA Abdeljawaad, Eman M Elkady, Mah-
moud F Moustafa, Faris Alrumaihi, Khaled S Allemailem, et al. In silico mining
of terpenes from red-sea invertebrates for SARS-CoV-2 main protease (Mpro) in-
hibitors. Molecules, 26(7):2082, 2021.

[31] Oyebode J. Oyeyemi, Oluwafemi Davies, David L. Robertson, and Jean-Marc
Schwartz. A logical model of HIV-1 interactions with the T-cell activation signalling
pathway. Bioinformatics, 31(7):1075–1083, November 2014.

[32] Kyaw Tun, Marta Menghini, Lina D’Andrea, Pawan Dhar, Hiroshi Tanaka, and
Alessandro Giuliani. Why so few drug targets: a mathematical explanation? Cur-
rent Computer-Aided Drug Design, 7(3):206–213, 2011.

[33] Itziar Irurzun-Arana, José Mart́ın Pastor, Iñaki F Trocóniz, and José David Gómez-
Mantilla. Advanced Boolean modeling of biological networks applied to systems
pharmacology. Bioinformatics, 33(7):1040–1048, 2017.

[34] Matthew Putnins and Ioannis P Androulakis. Boolean modeling in quantitative sys-
tems pharmacology: Challenges and opportunities. Critical Reviews™ in Biomedical
Engineering, 47(6), 2019.

[35] Xiao Yang, Nilam Ram, Peter CM Molenaar, and Pamela M Cole. Describing
and controlling multivariate nonlinear dynamics: A Boolean network approach.
Multivariate Behavioral Research, pages 1–30, 2021.

[36] Alexander J. Gates, Rion Brattig Correia, Xuan Wang, and Luis M. Rocha. The
effective graph reveals redundancy, canalization, and control pathways in biochem-
ical regulation and signaling. Proceedings of the National Academy of Sciences,
118(12):e2022598118, March 2021.

128

BIBLIOGRAPHY

[37] Daizhan Cheng and Hongsheng Qi. Controllability and observability of Boolean
control networks. Automatica, 45(7):1659–1667, 2009.

[38] Hiroaki Kitano. Cancer as a robust system: implications for anticancer therapy.
Nature Reviews Cancer, 4(3):227–235, 2004.

[39] Célia Biane and Franck Delaplace. Causal reasoning on Boolean control networks
based on abduction: theory and application to cancer drug discovery. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 16(5):1574–1585, 2018.

[40] Nadia S Taou, David W Corne, and Michael A Lones. Investigating the use of
Boolean networks for the control of gene regulatory networks. Journal of Compu-
tational Ccience, 26:147–156, 2018.

[41] Rihab Gam, Minkyung Sung, and Arun Prasad Pandurangan. Experimental and
computational approaches to direct cell reprogramming: Recent advancement and
future challenges. Cells, 8(10):1189, 2019.

[42] Ettore Fornasini and Maria Elena Valcher. Fault detection analysis of Boolean con-
trol networks. IEEE Transactions on Automatic Control, 60(10):2734–2739, 2015.

[43] Abhishek Garg, Alessandro Di Cara, Ioannis Xenarios, Luis Mendoza, and Giovanni
De Micheli. Synchronous versus asynchronous modeling of gene regulatory networks.
Bioinformatics, 24(17):1917–1925, 2008.

[44] Elena Dubrova and Maxim Teslenko. A SAT-based algorithm for finding attractors
in synchronous Boolean networks. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics, 8(5):1393–1399, 2011.

[45] Thomas Skodawessely and Konstantin Klemm. Finding attractors in asynchronous
Boolean dynamics. Advances in Complex Systems, 14(03):439–449, 2011.

[46] Wensheng Guo, Guowu Yang, Wei Wu, Lei He, and Mingyu Sun. A parallel attractor
finding algorithm based on Boolean satisfiability for genetic regulatory networks.
PloS One, 9(4):e94258, 2014.

[47] Qixia Yuan, Hongyang Qu, Jun Pang, and Andrzej Mizera. Improving BDD-based
attractor detection for synchronous Boolean networks. Science China Information
Sciences, 59(8):080101, 2016.

[48] Qinbin He, Zhile Xia, and Bin Lin. P UNSAT approach of attractor calculation
for Boolean gene regulatory networks. Journal of Theoretical Biology, 447:171–177,
2018.

[49] Andrzej Mizera, Jun Pang, Hongyang Qu, and Qixia Yuan. Taming asynchrony
for attractor detection in large Boolean networks. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 16(1):31–42, 2018.

[50] Qixia Yuan, Andrzej Mizera, Jun Pang, and Hongyang Qu. A new decomposition-
based method for detecting attractors in synchronous Boolean networks. Science of
Computer Programming, 180:18–35, 2019.

129

BIBLIOGRAPHY

[51] René Thomas. Regulatory networks seen as asynchronous automata: a logical de-
scription. Journal of Theoretical Biology, 153:1–23, 1991.

[52] Jorge GT Zañudo and Réka Albert. An effective network reduction approach to find
the dynamical repertoire of discrete dynamic networks. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 23(2):025111, 2013.

[53] Hannes Klarner, Adam Streck, and Heike Siebert. PyBoolNet: a python package
for the generation, analysis and visualization of Boolean networks. Bioinformatics,
33(5):770–772, 2017.

[54] Jordan C Rozum, Jorge Gómez Tejeda Zañudo, Xiao Gan, Dávid Deritei, and Réka
Albert. Parity and time reversal elucidate both decision-making in empirical models
and attractor scaling in critical Boolean networks. Science Advances, 7(29):eabf8124,
2021.

[55] Christopher James Langmead and Sumit Kumar Jha. Symbolic approaches for
finding control strategies in Boolean networks. Journal of Bioinformatics and Com-
putational Biology, 7(02):323–338, 2009.

[56] Yuhu Wu, Xi-Ming Sun, Xudong Zhao, and Tielong Shen. Optimal control of
Boolean control networks with average cost: A policy iteration approach. Automat-
ica, 100:378–387, 2019.

[57] Koichi Kobayashi and Kunihiko Hiraishi. Optimal control of Boolean biological net-
works modeled by Petri nets. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 96(2):532–539, 2013.

[58] Hugues Mandon, Cui Su, Stefan Haar, Jun Pang, and Löıc Paulevé. Sequential
reprogramming of Boolean networks made practical. In International Conference
on Computational Methods in Systems Biology, pages 3–19. Springer, 2019.

[59] Soumya Paul, Cui Su, Jun Pang, and Andrzej Mizera. An efficient approach to-
wards the source-target control of Boolean networks. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 17(6):1932–1945, 2019.

[60] Cui Su, Soumya Paul, and Jun Pang. Controlling large Boolean networks with
temporary and permanent perturbations. In International Symposium on Formal
Methods, pages 707–724. Springer, 2019.

[61] Laura Cifuentes Fontanals, Elisa Tonello, and Heike Siebert. Control strategy iden-
tification via trap spaces in Boolean networks. In International Conference on
Computational Methods in Systems Biology, pages 159–175. Springer, 2020.

[62] Cui Su and Jun Pang. Sequential temporary and permanent control of Boolean net-
works. In International Conference on Computational Methods in Systems Biology,
pages 234–251. Springer, 2020.

[63] Cui Su and Jun Pang. A dynamics-based approach for the target control of Boolean
networks. In BCB ’20: 11th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics, Virtual Event, USA, September 21-
24, 2020, pages 50:1–50:8. ACM, 2020.

130

BIBLIOGRAPHY

[64] Aniruddha Datta, Ashish Choudhary, Michael L Bittner, and Edward R Dougherty.
External control in Markovian genetic regulatory networks. Machine Learning,
52(1):169–191, 2003.

[65] Koichi Kobayashi and Kunihiko Hiraishi. An integer programming approach to
control problems in probabilistic Boolean networks. In Proceedings of the 2010
American Control Conference, pages 6710–6715. IEEE, 2010.

[66] Koichi Kobayashi and Kunihiko Hiraishi. An integer programming approach to
optimal control problems in context-sensitive probabilistic Boolean networks. Au-
tomatica, 47(6):1260–1264, 2011.

[67] Xi Chen, Hao Jiang, Yushan Qiu, and Wai-Ki Ching. On optimal control policy for
probabilistic Boolean network: a state reduction approach. BMC Systems Biology,
6(1):1–8, 2012.

[68] Koichi Kobayashi and Kunihiko Hiraishi. Optimal control of probabilistic Boolean
networks using polynomial optimization. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 95(9):1512–1517, 2012.

[69] Koichi Kobayashi and Kunihiko Hiraishi. Symbolic approach to verification and
control of deterministic/probabilistic Boolean networks. IET Systems Biology,
6(6):215–222, 2012.

[70] Qiuli Liu. An optimal control approach to probabilistic Boolean networks. Physica
A: Statistical Mechanics and its Applications, 391(24):6682–6689, 2012.

[71] Xi Chen, Tatsuya Akutsu, Takeyuki Tamura, and Wai-Ki Ching. Finding optimal
control policy in probabilistic Boolean networks with hard constraints by using
integer programming and dynamic programming. International Journal of Data
Mining and Bioinformatics, 7(3):1–22, 2013.

[72] Ou Wei, Zonghao Guo, Yun Niu, and Wenyuan Liao. Model checking optimal finite-
horizon control for probabilistic gene regulatory networks. BMC Systems Biology,
11(6):75–88, 2017.

[73] Qiuli Liu, Yu He, and Junwei Wang. Optimal control for probabilistic Boolean
networks using discrete-time Markov decision processes. Physica A: Statistical Me-
chanics and its Applications, 503:1297–1307, 2018.

[74] Mitsuru Toyoda and Yuhu Wu. Mayer-type optimal control of probabilistic Boolean
control network with uncertain selection probabilities. IEEE Transactions on Cy-
bernetics, 2019.

[75] Florian Greil, Barbara Drossel, and Joost Sattler. Critical kauffman networks under
deterministic asynchronous update. New Journal of Physics, 9(10):373, 2007.

[76] Yalu Li and Haitao Li. Controllability and stabilization of periodic switched Boolean
control networks with application to asynchronous updating. Nonlinear Analysis:
Hybrid Systems, 41:101054, 2021.

131

BIBLIOGRAPHY

[77] Babak Faryabi, Jean-François Chamberland, Golnaz Vahedi, Aniruddha Datta, and
Edward R Dougherty. Optimal intervention in asynchronous genetic regulatory
networks. IEEE Journal of Selected Topics in Signal Processing, 2(3):412–423, 2008.

[78] Löıc Paulevé and Adrien Richard. Static analysis of Boolean networks based on
interaction graphs: A survey. Electronic Notes in Theoretical Computer Science,
284:93–104, 2012.

[79] Madalena Chaves, Eduardo D Sontag, and Réka Albert. Methods of robustness
analysis for Boolean models of gene control networks. IEE Proceedings-Systems
Biology, 153(4):154–167, 2006.

[80] István Albert, Juilee Thakar, Song Li, Ranran Zhang, and Reka Albert. Boolean
network simulations for life scientists. Source Code for Biology and Medicine, 3(1):1–
8, 2008.

[81] Julio Aracena, Jacques Demongeot, Eric Fanchon, and Marco Montalva. On the
number of different dynamics in Boolean networks with deterministic update sched-
ules. Mathematical Biosciences, 242(2):188–194, 2013.

[82] Gonzalo A Ruz, Eric Goles, Marco Montalva, and Gary B Fogel. Dynamical and
topological robustness of the mammalian cell cycle network: a reverse engineering
approach. BioSystems, 115:23–32, 2014.

[83] Trinh Van Giang and Kunihiko Hiraishi. Algorithms for finding attractors of gen-
eralized asynchronous random Boolean networks. In 2019 12th Asian Control Con-
ference (ASCC), pages 67–72. IEEE, 2019.

[84] Trinh Van Giang and Kunihiko Hiraishi. An efficient method for approximating
attractors in large-scale asynchronous Boolean models. In 2020 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 1820–1826. IEEE,
2020.

[85] Van Giang TRINH and Kunihiko HIRAISHI. A study on attractors of generalized
asynchronous random Boolean networks. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 103(8):987–994, 2020.

[86] G. V. Trinh, T. Akutsu, and K. Hiraishi. An FVS-based approach to attractor
detection in asynchronous random Boolean networks. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2020. in press.

[87] Trinh Van-Giang and Kunihiko Hiraishi. An improved method for finding attractors
of large-scale asynchronous Boolean networks. In 2021 IEEE International Confer-
ence on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB). IEEE, 2021.

[88] G. V. Trinh and K. Hiraishi. On attractor detection and optimal control of determin-
istic generalized asynchronous random Boolean networks. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 2020. in press.

[89] G. V. Trinh and K. Hiraishi. On optimal control of deterministic asynchronous
probabilistic Boolean networks. 2021. in preparation.

132

BIBLIOGRAPHY

[90] Stuart Kauffman, Carsten Peterson, Björn Samuelsson, and Carl Troein. Genetic
networks with canalyzing Boolean rules are always stable. Proceedings of the Na-
tional Academy of Sciences, 101(49):17102–17107, 2004.

[91] Tatsuya Akutsu, Avraham A Melkman, Takeyuki Tamura, and Masaki Yamamoto.
Determining a singleton attractor of a Boolean network with nested canalyzing
functions. Journal of Computational Biology, 18(10):1275–1290, 2011.

[92] Avraham A Melkman, Takeyuki Tamura, and Tatsuya Akutsu. Determining a
singleton attractor of an AND/OR Boolean network in O(1.587n) time. Information
Processing Letters, 110(14-15):565–569, 2010.

[93] Tatsuya Akutsu, Sven Kosub, Avraham A Melkman, and Takeyuki Tamura. Finding
a periodic attractor of a Boolean network. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 9(5):1410–1421, 2012.

[94] Eyal Weiss, Michael Margaliot, and Guy Even. Minimal controllability of conjunc-
tive Boolean networks is NP-complete. Automatica, 92:56–62, 2018.

[95] Julio Aracena, Eric Goles, Andrés Moreira, and Lilian Salinas. On the robustness
of update schedules in Boolean networks. BioSystems, 97(1):1–8, 2009.

[96] Jason A Papin, Tony Hunter, Bernhard O Palsson, and Shankar Subramaniam. Re-
construction of cellular signalling networks and analysis of their properties. Nature
Reviews Molecular Cell Biology, 6(2):99–111, 2005.

[97] Calin Guet, Thomas A Henzinger, Claudia Igler, Tatjana Petrov, and Ali Sezgin.
Transient memory in gene regulation. In International Conference on Computational
Methods in Systems Biology, pages 155–187. Springer, 2019.

[98] Abhishek Garg, Ioannis Xenarios, Luis Mendoza, and Giovanni DeMicheli. An
efficient method for dynamic analysis of gene regulatory networks and in silico
gene perturbation experiments. In Annual International Conference on Research
in Computational Molecular Biology, pages 62–76. Springer, 2007.

[99] Marco Montalva, Julio Aracena, and Anah́ı Gajardo. On the complexity of feedback
set problems in signed digraphs. Electronic Notes in Discrete Mathematics, 30:249–
254, 2008.

[100] David S Johnson and Michael R Garey. Computers and intractability: A guide to
the theory of NP-completeness. WH Freeman, New York, 1979.

[101] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[102] Javier Esparza and Keijo Heljanko. Unfoldings: a partial-order approach to model
checking. Springer Science & Business Media, 2008.

[103] Thomas Chatain, Stefan Haar, Löıg Jezequel, Löıc Paulevé, and Stefan Schwoon.
Characterization of reachable attractors using Petri net unfoldings. In International
Conference on Computational Methods in Systems Biology, pages 129–142. Springer,
2014.

133

BIBLIOGRAPHY

[104] Stefan Schwoon and S Romer. Mole—a Petri net unfolder. http://www.lsv.fr/

~schwoon/tools/mole/, 2016.

[105] Thomas Chatain, Stefan Haar, Juraj Kolčák, Löıc Paulevé, and Aalok Thakkar.
Concurrency in Boolean networks. Natural Computing, pages 1–19, 2019.

[106] Javier Esparza and Claus Schröter. Unfolding based algorithms for the reachability
problem. Fundamenta Informaticae, 47(3-4):231–245, 2001.

[107] Barbara Drossel, Tamara Mihaljev, and Florian Greil. Number and length of attrac-
tors in a critical Kauffman model with connectivity one. Physical Review Letters,
94(8):088701, 2005.

[108] Desheng Zheng, Guowu Yang, Xiaoyu Li, Zhicai Wang, Feng Liu, and Lei He.
An efficient algorithm for computing attractors of synchronous and asynchronous
Boolean networks. PloS One, 8(4):e60593, 2013.

[109] Randal E Bryant. Graph-based algorithms for Boolean function manipulation. Com-
puters, IEEE Transactions on, 100(8):677–691, 1986.

[110] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita, and Yunshan
Zhu. Symbolic model checking using SAT procedures instead of BDDs. In Proceed-
ings 1999 Design Automation Conference (Cat. No. 99CH36361), pages 317–320.
IEEE, 1999.

[111] Aiguo Xie and Peter A Beerel. Efficient state classification of finite-state Markov
chains. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 17(12):1334–1339, 1998.

[112] Arash Vahidi. JDD: a pure Java BDD and Z-BDD library. https://bitbucket.

org/vahidi/jdd, 2015.

[113] Fangting Li, Tao Long, Ying Lu, Qi Ouyang, and Chao Tang. The yeast cell-cycle
network is robustly designed. Proceedings of the National Academy of Sciences,
101(14):4781–4786, 2004.

[114] Adrien Fauré, Aurélien Naldi, Claudine Chaouiya, and Denis Thieffry. Dynamical
analysis of a generic Boolean model for the control of the mammalian cell cycle.
Bioinformatics, 22(14):e124–e131, 2006.

[115] Luis Mendoza and Ioannis Xenarios. A method for the generation of standard-
ized qualitative dynamical systems of regulatory networks. Theoretical Biology and
Medical Modelling, 3(1):13, 2006.

[116] Steffen Klamt, Julio Saez-Rodriguez, Jonathan A Lindquist, Luca Simeoni, and
Ernst D Gilles. A methodology for the structural and functional analysis of signaling
and regulatory networks. BMC Bioinformatics, 7(1):56, 2006.

[117] Christoph Müssel, Martin Hopfensitz, and Hans A Kestler. BoolNet—an R package
for generation, reconstruction and analysis of Boolean networks. Bioinformatics,
26(10):1378–1380, 2010.

134

http://www.lsv.fr/~schwoon/tools/mole/
http://www.lsv.fr/~schwoon/tools/mole/
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd

BIBLIOGRAPHY

[118] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[119] Tomáš Helikar, Bryan Kowal, Sean McClenathan, Mitchell Bruckner, Thaine Row-
ley, Alex Madrahimov, Ben Wicks, Manish Shrestha, Kahani Limbu, and Jim A
Rogers. The Cell Collective: toward an open and collaborative approach to systems
biology. BMC Systems Biology, 6(1):96, 2012.

[120] Maximino Aldana. Boolean dynamics of networks with scale-free topology. Physica
D: Nonlinear Phenomena, 185(1):45–66, 2003.

[121] Tatsuya Akutsu, Satoru Kuhara, Osamu Maruyama, and Satoru Miyano. A system
for identifying genetic networks from gene expression patterns produced by gene
disruptions and overexpressions. Genome Informatics, 9:151–160, 1998.

[122] Aurélien Naldi, Pedro T Monteiro, and Claudine Chaouiya. Efficient handling of
large signalling-regulatory networks by focusing on their core control. In Interna-
tional Conference on Computational Methods in Systems Biology, pages 288–306.
Springer, 2012.

[123] Pritha Dutta, Lichun Ma, Yusuf Ali, Peter MA Sloot, and Jie Zheng. Boolean net-
work modeling of β-cell apoptosis and insulin resistance in type 2 diabetes mellitus.
BMC Systems Biology, 13(2):36, 2019.

[124] Meike Dahlhaus, Andre Burkovski, Falk Hertwig, Christoph Mussel, Ruth Volland,
Matthias Fischer, Klaus-Michael Debatin, Hans A Kestler, and Christian Beltinger.
Boolean modeling identifies Greatwall/MASTL as an important regulator in the
AURKA network of neuroblastoma. Cancer Letters, 371(1):79–89, 2016.

[125] Mart́ın Rodŕıguez Vega. Analyzing toys models of Arabidopsis and Drosphila us-
ing Z3 SMT-LIB. In Independent Component Analyses, Compressive Sampling,
Wavelets, Neural Net, Biosystems, and Nanoengineering XII, volume 9118, page
911813. International Society for Optics and Photonics, 2014.

[126] Elisabeth Remy, Sandra Rebouissou, Claudine Chaouiya, Andrei Zinovyev, François
Radvanyi, and Laurence Calzone. A modeling approach to explain mutually exclu-
sive and co-occurring genetic alterations in bladder tumorigenesis. Cancer Research,
75(19):4042–4052, 2015.

[127] Shu-Qin Zhang, Morihiro Hayashida, Tatsuya Akutsu, Wai-Ki Ching, and Michael K
Ng. Algorithms for finding small attractors in Boolean networks. EURASIP Journal
on Bioinformatics and Systems Biology, 2007:1–13, 2007.

[128] Tatsuya Akutsu, Morihiro Hayashida, and Takeyuki Tamura. Integer programming-
based methods for attractor detection and control of Boolean networks. In Proceed-
ings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, pages 5610–5617. IEEE, 2009.

[129] Alan Veliz-Cuba, Boris Aguilar, Franziska Hinkelmann, and Reinhard Lauben-
bacher. Steady state analysis of Boolean molecular network models via model
reduction and computational algebra. BMC Bioinformatics, 15(1):1–8, 2014.

135

BIBLIOGRAPHY

[130] Julio Aracena, Luis Cabrera-Crot, and Lilian Salinas. Finding the fixed points of a
Boolean network from a positive feedback vertex set. Bioinformatics, 37(8):1148–
1155, 2021.

[131] Roland Somogyi and Larry D Greller. The dynamics of molecular networks: appli-
cations to therapeutic discovery. Drug Discovery Today, 6(24):1267–1277, 2001.

[132] Qinbin He, Zhile Xia, and Bin Lin. An efficient approach of attractor calculation
for large-scale Boolean gene regulatory networks. Journal of Theoretical Biology,
408:137–144, 2016.

[133] Yin Zhao, Jongrae Kim, and Maurizio Filippone. Aggregation algorithm towards
large-scale Boolean network analysis. IEEE Transactions on Automatic Control,
58(8):1976–1985, 2013.

[134] Nikola Beneš, Luboš Brim, Jakub Kadlecaj, Samuel Pastva, and David Šafránek.
AEON: Attractor bifurcation analysis of parametrised Boolean networks. In Com-
puter Aided Verification, pages 569–581. Springer International Publishing, 2020.

[135] Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek. Computing bottom
SCCs symbolically using transition guided reduction. In Computer Aided Verifica-
tion, pages 505–528. Springer International Publishing, 2021.

[136] Cui Su, Jun Pang, and Soumya Paul. Towards optimal decomposition of Boolean
networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2019. in press.

[137] Guy Even, J Seffi Naor, Baruch Schieber, and Madhu Sudan. Approximating min-
imum feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174,
1998.

[138] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[139] Tomoyuki Yamakami. Quantum optimization problems, 2002.

[140] Löıc Paulevé. Pint: A static analyzer for transient dynamics of qualitative networks
with IPython interface. In International Conference on Computational Methods in
Systems Biology, pages 309–316. Springer, 2017.

[141] Xinwei Chai, Tony Ribeiro, Morgan Magnin, Olivier Roux, and Katsumi Inoue.
Static analysis and stochastic search for reachability problem. Electronic Notes in
Theoretical Computer Science, 350:139–158, 2020.

[142] Adrien Richard. Negative circuits and sustained oscillations in asynchronous au-
tomata networks. Advances in Applied Mathematics, 44(4):378–392, 2010.

[143] Adrien Richard. Positive and negative cycles in Boolean networks. Journal of
Theoretical Biology, 463:67–76, 2019.

136

BIBLIOGRAPHY

[144] Paolo Baldan, Alessandro Bruni, Andrea Corradini, Barbara König, César
Rodŕıguez, and Stefan Schwoon. Efficient unfolding of contextual Petri nets. The-
oretical Computer Science, 449:2–22, 2012.

[145] César Rodŕıguez, Stefan Schwoon, and Victor Khomenko. Contextual merged pro-
cesses. In International Conference on Applications and Theory of Petri Nets and
Concurrency, pages 29–48. Springer, 2013.

[146] Giovanni Casu and G Michele Pinna. Flow unfolding of multi-clock nets. In In-
ternational Conference on Applications and Theory of Petri Nets and Concurrency,
pages 170–189. Springer, 2014.

[147] Björn Samuelsson and Carl Troein. Superpolynomial growth in the number of
attractors in Kauffman networks. Physical Review Letters, 90(9):098701, 2003.

[148] Amer Shreim, Andrew Berdahl, Florian Greil, Jörn Davidsen, and Maya Paczuski.
Attractor and basin entropies of random Boolean networks under asynchronous
stochastic update. Physical Review E, 82(3):035102, 2010.

[149] Meng Yang and Tianguang Chu. Evaluation of attractors and basins of asyn-
chronous random Boolean networks. Physical Review E, 85(5):056105, 2012.

[150] Masado Ishii, Jacob Gores, and Christof Teuscher. On the sparse percolation of
damage in finite non-synchronous random Boolean networks. Physica D: Nonlinear
Phenomena, 398:84–91, 2019.

[151] Aravind Karanam, David He, Po-Kai Hsu, Sebastian Schulze, Guillaume Dubeaux,
Richa Karmakar, Julian I Schroeder, and Wouter-Jan Rappel. BoolSim, a graphical
interface for open access Boolean network simulations and use in guard cell CO2
signaling. bioRxiv, 2021.

[152] François Robert. Discrete iterations: a metric study, volume 6. Springer Science &
Business Media, 2012.

[153] Eric Goles, Marco Montalva, and Gonzalo A Ruz. Deconstruction and dynamical
robustness of regulatory networks: application to the yeast cell cycle networks.
Bulletin of Mathematical Biology, 75(6):939–966, 2013.

[154] Carlos Grilo and Lúıs Correia. The influence of asynchronous dynamics in the spatial
prisoner’s dilemma game. In International Conference on Simulation of Adaptive
Behavior, pages 362–371. Springer, 2008.

[155] Martin Schneiter, Jaroslav Rička, and Martin Frenz. Self-organization of self-
clearing beating patterns in an array of locally interacting ciliated cells formulated
as an adaptive Boolean network. Theory in Biosciences, 139(1):21–45, 2020.

[156] Pramuditha Waidyarathne and Sandhya Samarasinghe. Boolean calcium signalling
model predicts calcium role in acceleration and stability of abscisic acid-mediated
stomatal closure. Scientific Reports, 8(1):1–16, 2018.

137

BIBLIOGRAPHY

[157] Zhiqiang Li, Huimin Xiao, and Jinli Song. Algebraic approach to asynchronous
Boolean networks. In 2011 Chinese Control and Decision Conference (CCDC),
pages 769–773. IEEE, 2011.

[158] Rui-Sheng Wang, Assieh Saadatpour, and Reka Albert. Boolean modeling in sys-
tems biology: an overview of methodology and applications. Physical Biology,
9(5):055001, 2012.

[159] Clark Barrett. ”Decision procedures: An algorithmic point of view,” by Daniel
Kroening and Ofer Strichman, Springer-Verlag, 2008. Journal of Automated Rea-
soning, 51(4):453–456, 2013.

[160] Jose C Nacher and Tatsuya Akutsu. Minimum dominating set-based methods for
analyzing biological networks. Methods, 102:57–63, 2016.

[161] Wenpin Hou, Peiying Ruan, Wai-Ki Ching, and Tatsuya Akutsu. On the number
of driver nodes for controlling a Boolean network when the targets are restricted to
attractors. Journal of Theoretical Biology, 463:1–11, 2019.

[162] Laurent Tournier and Madalena Chaves. Uncovering operational interactions in
genetic networks using asynchronous Boolean dynamics. Journal of Theoretical
Biology, 260(2):196–209, 2009.

[163] Suzanne Lenhart and John T Workman. Optimal control applied to biological models.
CRC press, 2007.

[164] Qinqin Chai and Wu Wang. A computational method for free terminal time optimal
control problem governed by nonlinear time delayed systems. Applied Mathematical
Modelling, 53:242–250, 2018.

[165] Babak Faryabi, Jean-François Chamberland, Golnaz Vahedi, Aniruddha Datta, and
Edward R Dougherty. Optimal intervention in asynchronous genetic regulatory
networks. IEEE Journal of Selected Topics in Signal Processing, 2(3):412–423, 2008.

[166] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νZ - an optimizing SMT
solver. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 194–199. Springer, 2015.

[167] Chao Luo and Xingyuan Wang. Algebraic representation of asynchronous multiple-
valued networks and its dynamics. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 10(4):927–938, 2013.

[168] Yin Zhao and DaiZhan Cheng. On controllability and stabilizability of probabilistic
Boolean control networks. Science China Information Sciences, 57(1):1–14, 2014.

[169] Mitsuru Toyoda and Yuhu Wu. On optimal time-varying feedback controllability
for probabilistic Boolean control networks. IEEE Transactions on Neural Networks
and Learning Systems, 31(6):2202–2208, 2019.

[170] Dai-zhan Cheng and Li-jun Zhang. On semi-tensor product of matrices and its
applications. Acta Mathematicae Applicatae Sinica, 19(2):219–228, 2003.

138

BIBLIOGRAPHY

[171] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In International Conference on Computer Aided
Verification, pages 585–591. Springer, 2011.

[172] Tino Teige. Stochastic satisfiability modulo theories: a symbolic technique for the
analysis of probabilistic hybrid systems. PhD thesis, Universität Oldenburg, 2012.

[173] Hayato Waki, Sunyoung Kim, Masakazu Kojima, Masakazu Muramatsu, and Hi-
roshi Sugimoto. Algorithm 883: SparsePOP—a sparse semidefinite programming
relaxation of polynomial optimization problems. ACM Transactions on Mathemat-
ical Software (TOMS), 35(2):1–13, 2008.

[174] Michael L Littman, Judy Goldsmith, and Martin Mundhenk. The computational
complexity of probabilistic planning. Journal of Artificial Intelligence Research,
9:1–36, 1998.

[175] H Paul Williams. Model building in mathematical programming. John Wiley & Sons,
2013.

[176] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker. Automated
verification techniques for probabilistic systems. In International School on Formal
Methods for the Design of Computer, Communication and Software Systems, pages
53–113. Springer, 2011.

[177] Tino Teige. Quick start guide and tutorial. 2012.

[178] Pei-Wei Chen, Yu-Ching Huang, and Jie-Hong R Jiang. A sharp leap from quantified
Boolean formula to stochastic Boolean satisfiability solving. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 3697–3706, 2021.

[179] Ashani T Weeraratna, Yuan Jiang, Galen Hostetter, Kevin Rosenblatt, Paul Duray,
Michael Bittner, and Jeffrey M Trent. WNT5A signaling directly affects cell motility
and invasion of metastatic melanoma. Cancer Cell, 1(3):279–288, 2002.

[180] Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model checking.
In International School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems, pages 220–270. Springer, 2007.

[181] Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu. Composi-
tional probabilistic verification through multi-objective model checking. Information
and Computation, 232:38–65, 2013.

[182] Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic model check-
ing: Advances and applications. In Formal System Verification, pages 73–121.
Springer, 2018.

[183] Ahmed Mahdi and Martin Fränzle. Generalized Craig interpolation for stochastic
satisfiability modulo theory problems. In International Workshop on Reachability
Problems, pages 203–215. Springer, 2014.

[184] Daniel Bienstock and Gonzalo Munoz. LP formulations for polynomial optimization
problems. SIAM Journal on Optimization, 28(2):1121–1150, 2018.

139

BIBLIOGRAPHY

[185] Jie Wang, Victor Magron, and Jean-Bernard Lasserre. Chordal-TSSOS: a moment-
SOS hierarchy that exploits term sparsity with chordal extension. SIAM Journal
on Optimization, 31(1):114–141, 2021.

[186] Calin Belta, Jonathan Schug, Thao Dang, Vijay Kumar, George J Pappas, Harvey
Rubin, and Paul Dunlap. Stability and reachability analysis of a hybrid model of
luminescence in the marine bacterium Vibrio fischeri. In Proceedings of the 40th
IEEE Conference on Decision and Control (Cat. No. 01CH37228), volume 1, pages
869–874. IEEE, 2001.

[187] Andrzej Mizera, Jun Pang, Cui Su, and Qixia Yuan. ASSA-PBN: A toolbox for
probabilistic Boolean networks. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics, 15(4):1203–1216, 2017.

[188] Zuguang Gao, Xudong Chen, and Tamer Başar. Controllability of conjunctive
Boolean networks with application to gene regulation. IEEE Transactions on Con-
trol of Network Systems, 5(2):770–781, 2017.

[189] Stepan Kochemazov and Alexander Semenov. Using synchronous Boolean networks
to model several phenomena of collective behavior. PLoS ONE, 9(12):e115156,
December 2014.

[190] David G. Green, Tania G. Leishman, and Suzanne Sadedin. The emergence of social
consensus in Boolean networks. In 2007 IEEE Symposium on Artificial Life, pages
402–408, 2007.

[191] Pedro J Rivera-Torres and Orestes Llanes Santiago. Fault detection and isolation
in smart grid devices using probabilistic Boolean networks. In Computational In-
telligence in Emerging Technologies for Engineering Applications, pages 165–185.
Springer, 2020.

[192] Geoff Easton, Roger J Brooks, Kristina Georgieva, and Ian Wilkinson. Under-
standing the dynamics of industrial networks using Kauffman Boolean networks.
Advances in Complex Systems, 11(01):139–164, 2008.

[193] Juilee Thakar, Ashutosh K Pathak, Lisa Murphy, Réka Albert, and Isabella M
Cattadori. Network model of immune responses reveals key effectors to single and
co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth.
PLoS Computational Biology, 8(1):e1002345, 2012.

140

Publications and Awards

Journals

[1] Trinh Van Giang, Tatsuya Akutsu and Kunihiko Hiraishi: “On dynamics of ran-
dom order asynchronous Boolean networks and an efficient FVS-based method for
approximating their attractors,” 2021, in preparation (not included in this disserta-
tion).

[2] Trinh Van Giang and Kunihiko Hiraishi: “Computing attractors of large-scale asyn-
chronous Boolean networks using minimal trap spaces,” 2021, in preparation (not
included in this dissertation).

[3] Trinh Van Giang and Kunihiko Hiraishi: “On optimal control of deterministic asyn-
chronous probabilistic Boolean networks,” 2021, in preparation.

[4] Trinh Van Giang and Kunihiko Hiraishi: “On attractor detection and optimal con-
trol of deterministic generalized asynchronous random Boolean networks,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2020, in press. https:
//doi.org/10.1109/TCBB.2020.3043785.

[5] Trinh Van Giang, Tatsuya Akutsu and Kunihiko Hiraishi: “An FVS-based approach
to attractor detection in asynchronous random Boolean networks,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2020, in press. https:
//doi.org/10.1109/TCBB.2020.3028862.

[6] Trinh Van Giang and Kunihiko Hiraishi: “A study on attractors of generalized
asynchronous random Boolean networks,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 103(8), 987-994, 2020.
https://doi.org/10.1587/transfun.2019EAP1163.

Conference papers

[7] Trinh Van Giang and Kunihiko Hiraishi: “An improved method for finding attrac-
tors of large-scale asynchronous Boolean networks”, accepted to 18th IEEE Inter-
national Conference on Computational Intelligence in Bioinformatics and Compu-
tational Biology (CIBCB 2021).

[8] Trinh Van Giang and Kunihiko Hiraishi: “An efficient method for approximating at-
tractors in large-scale asynchronous Boolean models,” 13th International Workshop

141

https://doi.org/10.1109/TCBB.2020.3043785
https://doi.org/10.1109/TCBB.2020.3043785
https://doi.org/10.1109/TCBB.2020.3028862
https://doi.org/10.1109/TCBB.2020.3028862
https://doi.org/10.1587/transfun.2019EAP1163

BIBLIOGRAPHY

on Biological Network Analysis and Integrative Graph-Based Approaches (IWBNA
2020), in Proc. IEEE International Conference on Bioinformatics and Biomedicine
(BIBM 2020), 1820-1826, 2020. https://doi.org/10.1109/BIBM49941.2020.9313230.

[9] Trinh Van Giang and Kunihiko Hiraishi: “Algorithms for finding attractors of gen-
eralized asynchronous random Boolean networks”, in Proc. 12th Asian Control
Conference (ASCC 2019), 67-72, 2019. http://ieeexplore.ieee.org/document/

8765169.

Awards

• JAIST President Award, September 2019.

142

https://doi.org/10.1109/BIBM49941.2020.9313230
http://ieeexplore.ieee.org/document/8765169
http://ieeexplore.ieee.org/document/8765169

	Introduction
	Motivation
	Contributions
	Dissertation Structure

	Preliminaries
	Boolean Networks
	Probabilistic Boolean Networks
	Attractors
	Interaction Graphs
	Petri Nets and their Unfoldings

	I Attractor Detection
	Attractor Detection in Generalized Asynchronous Boolean Networks (GABNs)
	Introduction
	Dynamical Properties
	Relations in Dynamics between GABNs and Synchronous Boolean Networks
	BDD-Based Algorithms
	Algorithm FR-BR-BDD-1
	Algorithm FR-BR-BDD-2
	Algorithm filtBDD
	Evaluation

	Near-Exact Algorithm Using SAT-Based Bounded Model Checking
	Algorithm filtSAT
	Evaluation

	Relations in Dynamics between GABNs and Asynchronous Boolean Networks
	Relations
	Application
	Evaluation

	Discussion

	Attractor Detection in Large-Scale Asynchronous Boolean Networks
	Introduction
	Related Work
	Feedback Vertex Sets and Boolean Networks
	FVS-Based Method
	General Approach
	Computing Feedback Vertex Sets
	Computing Fixed Points
	Preprocessing
	Reachability Analysis

	Experiments
	Experimental Results on Real Biological Networks
	Experimental Results on Randomly Generated Networks

	Improvements
	Improvement in Reachability Analysis
	Use of Negative Feedback Vertex Sets
	Correctness
	Evaluation

	Discussion

	Attractor Detection in Deterministic Generalized Asynchronous Boolean Networks (DGABNs)
	Introduction
	Extended State Transition Graph
	Relations in Dynamics between DGABNs and Other Models
	Relations to Deterministic Asynchronous Models
	Relations to Block-Sequential Boolean Networks
	Relations to Generalized Asynchronous Boolean Networks
	Relations to Mixed-Context Boolean Networks

	Computing Attractors
	SMT-Based Method
	Case Study
	Verifying the Previous Insights

	Experimental Results
	Discussion

	II Optimal Control
	Optimal Control of Deterministic Generalized Asynchronous Boolean Networks
	Introduction
	Problem Formulation
	SMT-Based Method for the Time-Sensitive Mode
	SMT-Based Method for the Non-Time-Sensitive Mode
	Case Study
	Evaluation
	Discussion

	Optimal Control of Deterministic Asynchronous Probabilistic Boolean Networks
	Introduction
	Preparations
	Problem Formulation
	Complexity Analysis
	Complexity of Problem OptC-1
	Complexity of Problem OptC-2
	Complexity of Problem OptC-3
	Remarks

	Proposed Solution Approaches
	Probabilistic Model Checking-Based Approach
	Stochastic Satisfiability Modulo Theory-Based Approach
	Polynomial Optimization Problem-Based Approach
	Remarks
	Case Study

	Experiments
	Experimental Results on Problem OptC-1
	Experimental Results on Problem OptC-3
	Summary of the Experimental Results

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Publications and Awards

