
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 電力制約通信のためのConstruction A及びD’格子

Author(s) 周, 帆

Citation

Issue Date 2021-12

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/17602

Rights

Description
Supervisor:KURKOSKI, Brian Michael, 先端科学技術

研究科, 博士

Construction A and D’ Lattices

for Power-Constrained Communications

Fan Zhou

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

Construction A and D’ Lattices

for Power-Constrained Communications

Fan Zhou

Supervisor: Professor Brian M. Kurkoski

Graduate School of Advanced Science and Technology

Japan Advanced Institute of Science and Technology

[Information Science]

December 2021

Abstract

Lattices have the potential to provide reliable and power-efficient data transmission in the next-
generation wireless communications. Information theory has provided remarkable insights into
lattices and their applications for practical communication systems. The benefits of lattices for
communications are: 1) high code rate 2) higher transmit power efficiency than conventional
quadrature amplitude modulation constellations and 3) they form an essential component of
compute-and-forward relaying, which provides high throughput and high spectral efficiency.

This dissertation addresses the designs and methods of nested lattice codes with good coding
properties, a high shaping gain, and low-complexity encoding and decoding. Construction D’
lattices based on quasi-cyclic low-density parity-check (QC-LDPC) codes are for coding and thus
contribute to reliable data transmission. Construction A lattices based on convolutional codes
are used to satisfy the channel power-constraint and provide shaping gain. These constructions
have group property and provide high code rates.

Two encoding methods and a decoding algorithm for Construction D’ coding lattices that
can be used with shaping lattices for power-constrained channels are given. The multistage
decoding algorithm uses successive cancellation by employing binary decoders of the component
binary codes that form a Construction D’ lattice. An indexing method for nested lattice codes is
modified to avoid an integer overflow problem at high dimension. Convolutional code generator
polynomials for Construction A lattices with the greatest shaping gain are given, as a result
of an extensive search. It is shown that rate 1{3 convolutional codes provide a more favorable
performance-complexity trade-off than rate 1{2 convolutional codes. For a given dimension,
tail-biting convolutional codes have higher shaping gain than that of zero-tailed convolutional
codes and truncated convolutional codes. A design for QC-LDPC codes to form Construction
D’ lattices is presented, where their parity-check matrices can be easily triangularized, thus
enabling efficient encoding and indexing when formed a nested lattice code. The resulting QC-
LDPC Construction D’ lattices are evaluated using four shaping lattices: the E8 lattice, the
BW16 lattice, the Leech lattice and the best-found convolutional code lattice, showing a shaping
gain of approximately 0.65 dB, 0.86 dB, 1.03 dB and 1.25 dB at dimension 2304.

Keywords: Construction D’ lattices, Construction A lattices, nested lattice codes, QC-
LDPC codes, shaping gain

I

Committee in charge:

Professor Brian M. Kurkoski, Chair
Professor Gregory Schwartzman
Professor Kiyofumi Tanaka
Professor Eiichiro Fujisaki
Professor Hideki Yagi

II

© Copyright
Fan Zhou, 2021

All rights reserved.

III

Acknowledgment

I gratefully appreciate Professor Brian M. Kurkoski for his constant advice and
help in many ways. His enthusiasm, genuineness, and diligence in research have
always been great encouragements to me. I learned from Brian to divide a
challenging problem into several practical targets, but think thoroughly about
the theoretical aspects. He is also a nice friend. Thank you.

Special thanks go to all team members in the BITS lab for their friendship,
and JAIST staff for providing a comfortable research environment.

I would like to express my sincere gratitude to the committee members:
Prof. Yagi, Prof. Tanaka, Prof. Fujisaki, and Prof. Schwartzman, for their careful
review and critical comments. It is their valuable and insightful suggestions that
enhance the quality of this dissertation.

IV

THIS DISSERTATION IS DEDICATED TO

MY CAT DANHUANG
FOR COMING INTO MY LIFE

MOM
FOR BEING MY FIRST TEACHER

DAD
FOR GIVING ME CONFIDENCE IN STUDYING

BAIJIANG
FOR FRIENDSHIP, LOVE, AND ENCOURAGEMENT

AND THE MEMORY OF MY GRANDPA ZHIYOU
WHOSE BELIEF IN ME HAS MADE THIS JOURNEY POSSIBLE

Acronyms

ALT approximate lower triangular
AWGN additive white Gaussian noise

BCH Bose–Chaudhuri–Hocquenghem
BP belief propagation

CCL convolutional code lattices

LDLC low-density lattice codes
LDPC low-density parity-check
LLR log-likelihood ratio

MMSE minimum mean-square error

NSM normalized second moment

PEG progressive edge-growth

QAM quadrature amplitude modulation
QC-LDPC quasi-cyclic low-density parity-check

SNR signal-to-noise ratio
SPC single parity-check

TBCC tail-biting convolutional codes

VA Viterbi algorithm
VNR volume-to-noise ratio

WAVA warp around Viterbi algorithm
WER word error rate

ZTCC zero-tailed convolutional codes

VI

Symbols

0 zero vector or zero matrix

A matrix with binary entries
a number of levels for Construction D’
A2 hexagonal lattice

b integer/information vector
BW16 16-dimensional Barnes-Wall lattice

C linear code or binary linear code
c binary codeword
C nested lattice code

D delay operator
Dec decoder

E8 Gosset lattice
Eb average transmitted power per bit
Eb{N0 signal-to-noise ratio per bit
Es average transmitted power per symbol

F2 binary field
Fq finite field of size q

G generator matrix
γs shaping gain
GpDq generator matrix in polynomial form
GF(2) binary field
Gs generator matrix of shaping lattice

H parity-check matrix or check matrix
Hc parity-check matrix of coding lattice
rH parity-check matrix with binary entries

VII

I identity matrix

k dimension of a finite field code
K scale factor

L hypercube range
Λ lattice
λpxq degree distribution of variable nodes
Λc coding lattice
Λ24 24-dimensional Leech lattice
Λs shaping lattice

m memory order
mod2 modulo-2 operation
mod˚ “triangle-function”

n lattice dimension or block length of finite field codes

R Euclidean space (real space)
r number of parity-check basis vectors
Rn n-dimensional Euclidean space
R code rate
ρpxq degree distribution of check nodes

σ2 noise variance

u binary information vector

w noise vector

x lattice point
px estimated lattice point

y received sequence or arbitrary point

z integer vector
Zn n-dimensional integer lattice

VIII

List of Figures

2.1 Example of a two-dimensional lattice Λ2. 17
2.2 Bad basis example that cannot generate Λ2. 18
2.3 Two-dimensional integer lattice Z2. 19
2.4 Scaled integer lattice 5Z2. 21
2.5 Coset of lattice 5Z2 with respect to a vector p2, 2q where 5Z2 is

marked as black circles and its coset is marked as red diamonds. . . 21
2.6 Lattice decomposed by 5Z2 (black circles) and 4 cosets of 5Z2 (red

triangles, green squares, blue asterisks and purple pluses). 22
2.7 Nested lattices example where a lattice is marked as black solid

circles and its sublattice is marked as red circles. 22
2.8 Two-dimensional hexagonal lattice A2 with lattice points and

Voronoi regions . 25
2.9 Two-dimensional Construction A lattice example. 33
2.10 Checkerboard lattice D2. 39

3.1 Block diagram of nested lattice codes with a dither variable U
uniformly distributed over the Voronoi region of Λs and a “Wiener
coefficient” α was chosen for MMSE. 53

4.1 Mapping from a real number y P R (horizontal axis) to a real number
y1 P r0, 1s (vertical axis) using the “triangle-function” y1 “ mod˚ pyq. 68

4.2 Block diagram of proposed encoding and decoding Construction
D’ lattices. mod˚ denotes the “triangle-function” mod˚ pyiq “
|mod2 pyi ` 1q ´ 1| where mod2 indicates a modulo-2 operation. . . 70

4.3 Block diagram of decoding Construction D’ lattices where re-
encoding corresponds to the alternative encoding method. 74

6.1 Rate 1{2 convolutional code nonsystematic feedforward encoder for
code generator polynomials p17, 13q. 97

6.2 Block diagram of Construction A lattices corresponding to Algo-
rithm 6.1. 103

IX

6.3 Best-found shaping gain of convolutional code lattices formed by
zero-tailed convolutional codes (ZTCCs) and tail-biting convolu-
tional codes (TBCCs) for rate 1/2 and 1/3 with various memory
orders m. The 0.65 dB, 0.86 dB and 1.03 dB shaping gains of the
E8 lattice, the BW16 lattice and the Leech lattice are also shown
for comparison. 105

6.4 Performance-complexity tradeoff of convolutional code lattices formed
by zero-tailed convolutional codess (ZTCCs) and tail-biting convo-
lutional codess (TBCCs) with various memory orders m where the
decoding employs the Viterbi algorithm (VA) for ZTCCs, the wrap-
around Viterbi algorithm (WAVA) (I “ 4 iterations) and the ad-hoc
method (J “ 4 repeated times) for TBCCs. 108

7.1 Simulation results over mod-2 additive white Gaussian noise (AWGN)
channel: word error rate of quasi-cyclic low-density parity-check
(QC-LDPC) Construction D’ lattices versus volume-to-noise ratio
(VNR) and word error rate of the underlying component codes
versus 1{σ2 . 112

7.2 VNR performance of proposed QC-LDPC Construction D’ lattices
in various dimensions. 113

7.3 Word error rate of shaping a 2304-dimensional Construction D’
lattice (formed by QC-LDPC codes) using E8 lattice shaping and
hypercube shaping at a variety of code rates. 114

7.4 Word error rate as a function of Eb{N0 using a variety of lattices
for shaping a 2304-dimensional Construction D’ lattice, where the
convolutional code lattices (CCL) is formed by a zero-tailed convo-
lutional code C6 with 128 states. 115

7.5 Word error rate as a function of Eb{N0 using various convolutional
code lattices (CCLs) based on C1-C5 with generator polynomials
in Table 6.2 for shaping n-dimensional Construction D’ lattices
where the code rate is listed in Table 7.1. 116

X

List of Tables

2.1 Normalized second moment (NSM) and corresponding shaping gain
of low-dimensional well-known lattices. 37

4.1 Check matrix of a 48-dimensional Construction D’ lattice. 77
4.2 Generator matrix GE8

s of a 48-dimensional lattice built from 16E8. . 78
4.3 Generator matrix GBW16

s of a 48-dimensional lattice built from
8
?

2BW16. 79
4.4 Generator matrix GLeech

s of a 48-dimensional lattice built from
16
?

2Λ24. 80
4.5 Generator matrix GCCL

s of a 48-dimensional convolutional code lattice. 81

5.1 Prototype matrix of H0 with Z “ 96 and n “ 2304 where ˚ denotes
a double circulant . 90

5.2 Prototype matrix of H1 with Z “ 96 and n “ 2304 where ˚ denotes
a double circulant . 90

6.1 All possible states of the encoder given in Figure 6.1. 97
6.2 Recommended convolutional code generator polynomials (repre-

sented in octal numbers corresponding to the encoder implemen-
tation in a descending order) for a range of dimension n based on
best-found convolutional code lattices for shaping, and asymptotic
shaping gain γs . 106

7.1 Code rate R of nested lattice codes using various convolutional code
C with memory order m, where the convolutional code lattice is
scaled by a factor K. The estimated shaping gain γs is given in
decibels. Hypercube side length L is chosen to achieve R1 « R . . . 118

B.1 Best-found shaping gain and corresponding generator polynomials
of convolutional code lattices based on rate 1{2 zero-tailed convolu-
tional codes. 123

XI

B.2 Best-found shaping gain and corresponding generator polynomials
of convolutional code lattices based on rate 1{2 tail-biting convolu-
tional codes. 124

B.3 Best-found shaping gain and corresponding generator polynomials
of convolutional code lattices based on rate 1{2 truncated convolu-
tional codes. 124

B.4 Best-found shaping gain and corresponding generator polynomials
of convolutional code lattices based on rate 1{3 zero-tailed convolu-
tional codes. 125

B.5 Best-found shaping gain and corresponding generator polynomials
of convolutional code lattices based on rate 1{3 tail-biting convolu-
tional codes. 125

B.6 Best-found shaping gain and corresponding generator polynomials
of convolutional code lattices based on rate 1{3 truncated convolu-
tional codes. 125

C.1 Prototype matrix of H0 with Z “ 209 and n “ 5016 where ˚ denotes
a double circulant . 126

C.2 Prototype matrix of H1 with Z “ 209 and n “ 5016 where ˚ denotes
a double circulant . 126

C.3 Prototype matrix of H0 with Z “ 417 and n “ 10008 where ˚
denotes a double circulant . 127

C.4 Prototype matrix of H1 with Z “ 417 and n “ 10008 where ˚
denotes a double circulant . 127

C.5 Prototype matrix of H0 with Z “ 2084 and n “ 50016 where ˚
denotes a double circulant . 128

C.6 Prototype matrix of H1 with Z “ 2084 and n “ 50016 where ˚
denotes a double circulant . 128

XII

Contents

Abstract I

Acknowledgment IV

Acronyms VI

Symbols VII

List of Figures IX

List of Tables XI

Contents XIII

Chapter 1 Introduction 1
1.1 A Brief Overview . 1

1.1.1 Modulation, Power Constraint, and Shaping 2
1.1.2 Finite Field Codes . 3
1.1.3 A General View of Lattices and Lattice Codes 3
1.1.4 A Little Story . 4

1.2 Motivation . 5
1.3 Related Work . 7
1.4 Contributions . 9

1.4.1 Construction D’ Encoding/Decoding 10
1.4.2 QC-LDPC Code Design for Construction D’ 10
1.4.3 Extensive Search for Convolutional Code Lattices 11
1.4.4 Modified Lattice Indexing Method 11
1.4.5 Nested Lattice Code Constructions 11

1.5 Dissertation Scope and Notation . 13

Chapter 2 Lattices and Lattices From Codes 15
2.1 Preliminaries . 16

2.1.1 Definition of Lattices . 16

XIII

2.1.2 Lattice Basis, Generator Matrix and Check Matrix 16
2.1.3 Lattice Cosets . 20
2.1.4 Lattice Quantization and Modulo 23
2.1.5 Voronoi Region and Its Volume 24
2.1.6 Identical Lattices, Lattice Scaling and Direct Sum 26
2.1.7 Properties for Coding and Shaping 28

2.2 Lattices From Linear Codes . 31
2.2.1 Construction A . 32
2.2.2 Construction D/D’ . 36

2.3 Well-Known Low-Dimensional Lattices 37
2.3.1 Zn, Dn, An Lattices . 37
2.3.2 E8 Lattice . 40
2.3.3 BW16 Lattice . 41
2.3.4 Leech Lattice . 42

2.4 Concluding Remarks . 44

Chapter 3 Nested Lattice Codes 45
3.1 Nested Lattice Codes . 46
3.2 Encoding . 47
3.3 Indexing . 48

3.3.1 Indexing of High-Dimensional Nested Lattice Codes 50
3.4 Coding Scheme . 52
3.5 Hypercube Shaping . 55

3.5.1 Simplified Method Performing Hypercube Shaping for Con-
struction D’ Lattices . 56

3.6 Concluding Remarks . 57

Chapter 4 Construction D’ Lattices 58
4.1 Lattices Based on Construction D’ 58

4.1.1 Nested Linear Codes . 58
4.1.2 Definition of Construction D’ 59

4.2 Encoding . 63
4.2.1 Encoding Method A . 63
4.2.2 Encoding Method B . 65

4.3 Decoding . 66
4.3.1 Lattice Component and Re-encoding 67
4.3.2 Mod-2 AWGN Channel in Multistage Decoding 68
4.3.3 Decoding Algorithm . 69

4.4 Alternative Encoding and Decoding 72
4.5 Shaping Construction D’ Lattices 73
4.6 Concluding Remarks . 82

XIV

Chapter 5 Design of LDPC Codes 83
5.1 Prototype Matrix of QC-LDPC Codes 84
5.2 Construction D’ Lattices Formed by QC-LDPC Codes 85
5.3 Binary Linear Programming for Prototype Matrix Construction . . 86
5.4 Easily Triangularizable QC-LDPC Code Design for Construction D’ 88

5.4.1 Design Requirements . 88
5.4.2 Resulting Design . 89
5.4.3 Triangular Matrix of Construction D’ Lattices 91

5.5 Concluding Remarks . 92

Chapter 6 Convolutional Code Lattices 93
6.1 Convolutional Codes . 93

6.1.1 Description of Binary Convolutional Codes 94
6.1.2 Termination of Convolutional Codes 97

6.2 Triangular Matrix of Construction A Lattices 100
6.3 Quantization of Construction A Lattices 101
6.4 Best-Found Convolutional Code Lattices 102

6.4.1 Exhaustive Search Procedure 104
6.4.2 Exhaustive Search Result . 107

6.5 Complexity of Quantization . 108
6.6 Concluding Remarks . 109

Chapter 7 Evaluation of QC-LDPC
Construction D’ Lattices for the Power-Constrained Channel 111
7.1 Power-Unconstrained AWGN Channel 112
7.2 Power-Constrained AWGN Channel 113

7.2.1 E8, BW16 and Leech Lattice Shaping 114
7.2.2 Convolutional Code Lattices for Shaping Construction D’

Lattices . 117
7.3 Concluding Remarks . 119

Chapter 8 Conclusion 120

Appendices 122

Appendix A Solutions of Congruences 122

Appendix B Best-Found Shaping Gains of Convolutional Code
Lattices 123

Appendix C QC-LDPC Prototype Matrices 126

XV

References 129

Publications 137

XVI

Chapter 1

Introduction

1.1 A Brief Overview

Lattices have been studied by mathematicians for their properties such as sphere
packing, covering and quantization, and serve as powerful tools with applications
in information theory, communications and cryptography. The main application
is to the channel coding problem, that designs signals for data transmission and
storage. For source coding (analog-to-digital conversion or data compression),
lattices tell us how the quantization problem is related to the shaping gain of
their Voronoi regions. The lattice quantizers can also be employed in the channel
coding.

In communications we are interested in how to reliably transmit information
through an unreliable channel. The information could be a text message, a piece
of audio or some data stored in a computer. An unreliable channel is noisy
medium physically passing the information from a point to another point, or
saving the information now and retrieving it later, such as Wi-Fi, an optical
fiber, a magnetic disk drive, and so on. In 1948, Claude E. Shannon published a
seminal paper entitled “A Mathematical Theory of Communication” [1], in which
he established the fundamental theorem for point-to-point communications, and
addressed that information can be efficiently and reliably transmitted by coding.
Let the unit information bits per channel bit denoted by R, called the code rate.
Shannon defined the maximum amount of information a channel can carry as the
channel capacity C, and showed that if R ă C such codes exist to achieve reliable
communications. Conversely, if the code rateR is greater than the channel capacity
C, it is not possible to have reliable transmissions.

Error-correcting codes can provide reliable communications over unreliable
channels, and are so named because they correct the errors that occur during
transmission. Error-correcting linear codes are mainly defined in finite fields1,

1A finite field Fq, also known as a Galois field, is a set of integers t0, 1, . . . , q ´ 1u defined

1

while a lattice is defined as a discrete additive subgroup of the n-dimensional Eu-
clidean space Rn. In channel coding, a code is mainly measured by two properties:
error-correction capability and code rate. The error-correction capability provides
reliable transmission, and high code rate allows larger amount of data transmission
per unit. Lattice codes can provide high code rates because they are constructed
by an alphabet of size larger than that of the finite field codes.

1.1.1 Modulation, Power Constraint, and Shaping

The signals containing data are sent to a channel by the transmitter. The norm of a
signal is called the signal power, which determines how much power is required for
transmission. In practice the transmitter never has an infinite power, and thus the
average transmit power shall be constrained. The n elements of a signal lie within
a sphere of radius

?
nP around the origin, where P defines a power constraint. In a

noisy channel, the power of the noise is determined by the variance and mean of the
distribution. The most important noisy channel to consider is the additive white
Gaussian noise (AWGN) channel, where the noise satisfies a Gaussian distribution.
The ratio between the signal power and the noise power is called the signal-to-noise
ratio (SNR). For high code rate, transmission needs high SNR.

Assume an arbitrary sequence of data. To transmit the sequence, its elements
need to be converted into a signal with the form appropriate for transmission
in the channel such that transmitted signals satisfy the power constraint and
have zero mean. This can be performed by a modulation technique. In modern
communication systems, digital modulations are used, where the constellation
consists of discrete points.

One of the widely used digital modulations is the quadrature amplitude modu-
lation (QAM), but QAM modulation scheme without probabilistic shaping [2] on
signals cannot achieve the AWGN channel capacity at high SNR. This is because
they do not produce Gaussian-like (or hypersphere-like) constellations, and such
a constellation is essential for approaching the capacity of the channel when SNR
is high. Lattices can provide better constellations than QAM by applying lattice
geometric shaping. In addition, at low dimensions the QAM modulation scheme
applied to finite field codes can also be regarded as a lattice constellation. The
effectiveness of constellation shaping techniques is measured by the normalized
second moment (equivalently, shaping gain)—it provides power reduction.

under modulo-q addition and modulo-q multiplication, where q is a prime number. The binary
field F2 is the simplest field that is most commonly used as the alphabet of code symbols for
error-correction codes.

2

1.1.2 Finite Field Codes

Error-correcting codes are mainly defined in finite fields, in both theory and
practice. An error-correcting code defined over Fq maps an information sequence
with k symbols to a codeword using n symbols. A codebook, the set of all
codewords, is generated using an alphabet t0, 1, . . . , q ´ 1u. Almost all error-
correcting codes used in practice are linear, and a linear code is defined as a
k-dimensional subspace of a vector space Fnq . Then the code is said to have block
length n, dimension k, and code rate R “ k{n, and the number of codewords is
M “ qk. Under some conditions, e.g., R ă C, the information can be recovered
even from a noisy channel.

Researchers and engineers had found many codes such as low-density parity-
check (LDPC) codes, turbo codes, polar codes, and Bose–Chaudhuri–Hocquenghem
(BCH) codes, that provide excellent error-correction performance.

1.1.3 A General View of Lattices and Lattice Codes

Lattices are discrete points in Rn. The set of points in Rn that have the closest
distance to a lattice point than to any other lattice points is called the Voronoi
region, thus a lattice point is at the center of the Voronoi region. Due to the
discreteness and symmetry of lattices, if a Voronoi region is shifted by every lattice
point, the union of the shifted Voronoi regions cover the whole space of Rn. More
importantly, a lattice is an infinite structure. For practical use, the signal power
must be constrained, thus a finite set of points of the lattice must be selected, e.g.,
the intersection of the lattice and some region. And this can be accomplished by
lattice geometric shaping using the zero-centered Voronoi region2 of some lattice,
combining coding with modulation. The lattice performing shaping is called a
shaping lattice, which needs to be a subset of the coding lattice, i.e., the lattice
used for coding. The resulting intersection as a set of lattice points of the coding
lattice that lie in the zero-centered Voronoi region of the shaping lattice is a nested
lattice code [3], also known as a Voronoi code/constellation [4,5]. Under this coding
scheme, the coding lattice corrects errors while the shaping lattice satisfies the
power constraint and provides the shaping gain—the nested lattice code provides
a high code rate.

The simplest lattice is the one-dimensional integer lattice consisting of every
integer as a lattice point. In the literature, several low-dimensional lattices [6] are

2Every lattice has an all-zero lattice point which is the origin, thus its Voronoi region is called
the zero-centered Voronoi region.

3

well-known especially for their good shaping gain of Voronoi regions, e.g., the E8

lattice, the BW16 lattice and the Leech lattice, where the decoding algorithms for
the BW16 lattice and the Leech lattice are not as efficient as decoding/quantizing
the E8 lattice. LDLC lattices [7], as an analog to LDPC codes, have good coding
properties but require a high decoding complexity. Lattices can also be built from
linear codes, using well-known methods such as Construction A, D, and D’ [6].
Applying these methods is to lift the codebook of linear codes from finite fields
to the real space Rn, and the resulting lattices are called Construction A lattices,
Construction D lattices, and Construction D’ lattices, respectively. Construction
D and D’ are applied to a family of nested binary linear codes. Construction
A is the one-level special case of Construction D suitable for an arbitrary linear
code, which can produce lattices good for quantization but is generally tricky for
achieving good coding properties unless applied to a nonbinary code. Construction
A and D use a generator matrix while D’ uses its inverse matrix called a check
matrix. There are some applications such as convolutional code lattices based on
convolutional codes and Construction A [8, 9], BCH code lattices based on BCH
codes and Construction D [10], LDPC code lattices based on LDPC codes and
Construction D’ [11,12].

A question is how to develop a pair of lattices: a coding lattice and a shaping
lattice, such that the error-correction capability, a high code rate and the shaping
gain are obtained using low-complexity encoding and decoding algorithms? Can
the two lattices be same or different? If such lattices are found, how can they
be efficiently implemented in a practical coding scheme? These questions will be
addressed in the remaining part of this dissertation.

1.1.4 A Little Story

Once upon a time in information-theory wonderland, Alice had a conversation
with Bob.

Alice: It is well-known that LDPC codes have been widely used in communi-
cations applications. You use them when making a phone call, viewing the world
using Google Earth or saving your favorite song in solid state drives.

Bob: Then I cannot live without LDPC codes. Why are they used everywhere?

Alice: Because LDPC codes have outstanding error-correction capability and
are friendly for hardware implementation. Does your smartphone support 5G?
LDPC codes are used for channel coding in 5G.

Bob: Yes, I am using 5G now. It’s great. A live show can be smoothly played

4

without lag. But I think it would be nice if the downloading speed can be improved.
The faster the better. The bad thing is that the smartphone needs recharge several
times a day!

Alice: Haha! Many people are addicted to internet. The problem you have
depends on the devices, but they can also be improved from channel coding. You
need a code with high rate. This requires high SNR. More importantly, shaping
saves the energy, for both your devices and base stations.

Bob: Shaping is amazing! Can we use LDPC codes at high SNR and have
shaping?

Alice: The answer is yes, in the context of lattices.

Bob: I love lattices! But codes are defined in finite fields and lattices are
defined in real space. How does a lattice be developed from a code?

Alice: There do exist several methods that lift a linear code to a real space,
such as Construction A and Construction D. Construction A uses a linear code.
Construction D is applied to a family of nested linear codes.

Bob: ...Oh, which one do you choose for LDPC codes?

Alice: LDPC codes are described by parity-check matrices, but both of the
above methods use generator matrices. Um...wait. There is one method, called
Construction D’ which is a friend of Construction D that can be used for LDPC
codes. And you will need another lattice for shaping. Maybe a Construction A
lattice is a good option.

1.2 Motivation

The capacity of the AWGN channel cannot be achieved when equiprobable
QAM signal constellations are used3 at high SNR [13], because they incur a
πe{6 p1.53 dBq loss as the dimension n Ñ 8. This loss can be overcome using
spherical constellations that produce Gaussian-like distributions, but decoding an
n-sphere is impractical. Constellation-shaping techniques that produce Gaussian-
like distributions with reasonable complexity are desirable.

Lattices are a natural fit for wireless communications because they provide
reliable transmission using real-valued algebra and higher transmit power efficiency

3Probabilistic QAM constellations can provide shaping gain [2], but probabilistic shaping is
not directly compatible with compute-and-forward. This dissertation instead considers geometric
shaping.

5

than the conventional QAM constellation at high SNR. They also provide high
code rate and that is essential for the next-generation wireless communications.
Lattices also form an important component of compute-and-forward relaying [14],
which provides high throughput and high spectral efficiency. Nested lattice codes,
constructed using a coding lattice Λc and a shaping lattice Λs, can be used for
power-constrained communications.

Erez and Zamir [3] showed that nested lattice codes can achieve the capacity of
the AWGN channel, if the coding lattice Λc is channel-good and the Voronoi region
of the shaping lattice Λs is hyperspherical, using dithering and minimum mean-
square error (MMSE) scaling techniques. In such a coding scheme, a coding lattice
Λc does the work for coding, that is, error-correction. Thus, a high coding gain is
appealing since it measures the error-correction capability. Also, a low-complexity
decoding algorithm is desirable for coding. There are some candidates suitable
as coding lattices such as the BCH code lattices, LDLC lattices, and LDPC code
lattices. The shaping lattice Λs contributes the shaping gain, which tells how good
the “shape” its Voronoi region is. The higher the shaping gain is, the more power
reduction it provides. The theoretical limit of the shaping gain is 1.53 dB when
the “shape” is a hypersphere and the lattice dimension approaches infinity. As a
lattice quantizer, the shaping lattice Λs requires a quantization algorithm costing
low complexity. If such an algorithm exists, the shaping gain is said to be efficiently
achievable.

In the context of lattice shaping (or quantization), the input source of a lattice
quantizer is a lattice point of the coding lattice Λc. The quantization error is
dependent of the input source distribution, especially at low SNR. This can be
improved by adding a sequence uniformly distributed in the Voronoi of Λs to
the input source, called a dither, such that the quantization error can be seen
independent of the source. And the technique is called dithering. A linear scalar
estimator with respect to MMSE needs to be included for the coding scheme
applied in the power-constrained AWGN channel. For high code rates, dithering
is not required [15] and the role of MMSE scaling becomes negligible [3].

Two lattices Λc and Λs are called self-similar if Λs is an integer-scaled version
of Λc. The design of Λc and Λs has competing requirements, as Λc demands
good coding properties and an efficient decoding algorithm while Λs needs good
shaping gains and low-complexity quantization. The design of Λc and Λs can
be separated, under the principle of the separation of coding gain and shaping
gain [13]. Rectangular encoding and indexing for non-self-similar nested lattice
codes were proposed in [16], and conditions on lattice constructions were given.

LDPC codes have been implemented in a wide variety of communications appli-

6

cations because of their capacity-achievability, efficient encoding, low-complexity
decoding, and suitability for hardware implementation. For these reasons, LDPC
codes are also suitable for constructing lattices. Lattices based on binary LDPC
codes using Construction D’ were first introduced in [11]. Recently Branco da Silva
and Silva [12] proposed efficient encoding and decoding for Construction D’
lattices, particularly for LDPC codes. A codeword and cosets of component linear
codes are used to form systematic codewords for Construction D’ lattices. This
encoding method naturally produces lattice points in a hypercube. However, a
hypercube does not provide shaping gain. A shaping lattice Λs is needed to do so.

Erez, Litsyn and Zamir showed that there exist Construction A lattices that
are asymptotically good regarding both coding and shaping [17]. However, under
practical considerations of finite length and computationally feasible quantization,
the lattices best for coding may not be the best for shaping. Convolutional code
lattices that are built from convolutional codes using Construction A are attractive
for shaping, because of their good shaping gain, flexibility for dimension, and
efficient quantization using the Viterbi algorithm [18].

The shaping gain of convolutional code lattices can be increased by increasing
the memory order of the convolutional code. This comes at the expense of
computational complexity. While it is known that there are lattices which are
simultaneously good when used for coding and shaping [17], within the family
of convolutional codes, and with finite length, the lattices best for coding may
not be the best for shaping. Past work also ignored the role of complexity in
performing the shaping operation, beyond the simple observation that complexity
increases with the memory order. Also, past work [17] considered BPSK and
4-PAM constellations, which does not reveal the precise shaping gain. Thus, in
the search for convolutional code lattices with good shaping gain, it is reasonable
that a wider variety of convolutional codes should be considered, including the
zero-tailed4 convolutional codes, tail-biting convolutional codes and truncated
convolutional codes.

1.3 Related Work

The two principal classes of codes at high SNR are trellis codes and lattices.
Forney proposed generalized cross constellations [19] and trellis shaping [20] that
can easily achieve a shaping gain of 1 dB, and claimed an asymptotic shaping gain
of 1.36 dB for trellis shaping, citing [21], using trellis coded modulation [22].

4This is the conventional termination.

7

Lattices from linear codes have potentials since the decoder for linear codes can
be employed to find the nearest lattice point given a point. Well-known methods
to build lattices from linear codes are Construction A and D/D’ [6, Ch. 5, 8].
Construction D/D’ generate lattices from multi-level nested binary linear codes.
Binary Construction A lattices are the special case of one-level Construction D
lattices. Unlike Construction A and D using generator matrices, Construction D’
describes lattices by check matrices and thus is suitable for LDPC codes.

Erez and ten Brink employed trellis shaping, constructing lattices based on
zero-tailed convolutional codes and Construction A that were used for vector
quantization in a dirty paper coding scheme [8]; four rate 1{2 convolutional codes
and their shaping gains were given. Kudryashov and Yurkov found generator
polynomials of rate 1/2 convolutional codes that provide the best asymptotic
shaping gain with respect to zero-tailed termination, and near-optimum shaping
gain at low dimensions with respect to tail-biting termination in [23] and [24],
respectively. This dissertation’s results extend their work addressing the optimality
of shaping gain to a wider range of dimensions and code rates, and additionally
consider the shaping gain-complexity tradeoff. Convolutional codes terminated by
direct truncation are also included.

Construction D produces lattices with good coding properties and low-
complexity decoding by employing the decoder for underlying linear codes. Con-
struction D was used to build turbo code lattices [25], polar code lattices [26] and
BCH code lattices [10]. Polar code lattices can achieve the capacity of the AWGN
channel using lattice Gaussian shaping [27].

Conway and Sloane proposed shaping on Voronoi constellations [4]. The
normalized second moment of a variety of low-dimensional (n ď 24) well-known
lattices were listed in [28, Table V]. See also [5] [6, p. 61]. These lattices provide
excellent shaping gain for their dimension.

Using self-similar nested lattice codes, a shaping gain of 0.4 dB was shown for
LDLC5 lattices [30], and a shaping gain of 0.776 dB was claimed at n “ 60 for
Construction A lattices based on QC-LDPC codes [31]. A shaping gain of 0.65 dB
and 0.86 dB was observed using the E8 lattice and the BW16 lattice for shaping
LDLC lattices, respectively [32]. Leech lattice has 1.03 dB shaping gain, and was
used to shape LDA lattices [33]. Convolutional code lattices to shape low-density
lattice codes (LDLC) lattices [9] a shaping gain of 0.87 dB was preserved at n “ 36.
A shaping gain of 0.63 dB was found using the E8 lattice for shaping BCH-code
based Construction D lattices [34].

5The work in [29] also constructed nested lattice codes using self-similar LDLC lattices.

8

1.4 Contributions

This dissertation addresses the following problems:

1. Develop encoding and decoding algorithms for Construction D’ such that
Construction D’ lattices can be used as coding lattices in power-constrained
channels.

2. Design QC-LDPC codes for Construction D’ such that the resulting QC-
LDPC Construction D’ lattices are suitable for coding in a practical coding
scheme.

3. Search for good lattices that can help Construction D’ lattices satisfy the
power constraint, and provide additional shaping gain. Convolutional code
lattices formed by Construction A and binary convolutional codes are used,
with aspects of design, performance and complexity considered.

The outcome of this work is a comprehensive solution of practically imple-
mentable lattice coding applications in communications, under the framework
of nested lattice codes. Two distinct constructions of lattices lifted from binary
linear codes are studied and designed. QC-LDPC Construction D’ lattices inherit
good coding properties from the widely practically used QC-LDPC codes, while
convolutional code lattices provide the prospect of satisfying power constraint for
QC-LDPC Construction D’ lattices. This dissertation provides a fundamental
strategy for Construction D’ lattices to be used under power constraint. Moreover,
the resulting nested lattice code constructions can provide a good coding gain, a
high shaping gain, efficient encoding and low-complexity decoding, which also
make them of interest for compute-and-forward.

The main contributions of this dissertation are classified into several categories:

1. Construction D’ encoding and decoding algorithms that can be applied to
a variety of nested linear codes for power-constrained channels under the
lattice framework.

2. Construction D’ lattice constructions and the design of the underlying nested
QC-LDPC codes, whose structure provides efficiency for lattice encoding and
indexing.

3. Extensive Construction A lattice constructions and evaluations with respect
to the best tradeoff between the shaping gain and the quantization complexity
provided by various binary convolutional codes with three trellis termination
methods, including zero-tailed termination, tail-biting termination, and

9

direct truncation.

4. Modification of nested lattice code indexing method to overcome the integer
overflow problem in high dimensions when implemented, and the resulting
method is applicable to all nested lattice codes if their generator matrix or
check matrix can be easily triangularized.

5. Nested lattice code constructions when distinct lattices are considered for
shaping Construction D’ lattices, which are the E8 lattice, the BW16 lattice,
the Leech lattice, and the best-found convolutional code lattice.

1.4.1 Construction D’ Encoding/Decoding

This dissertation tackles the encoding and decoding problem of Construction
D’ lattices to be used in power-constrained communications. Accordingly, two
encoding methods: Encoding method A and Encoding method B, and a decoding
algorithm of Construction D’ lattices suitable for satisfying target channels are
proposed. Encoding method A encodes integers with an approximate lower trian-
gular (ALT) check matrix. Encoding method B shows how binary information bits
are mapped to a lattice point using the check matrix of the underlying nested linear
codes for a Construction D’ lattice. Multistage successive cancellation decoding
algorithm employing binary decoders is used; the decoder uses re-encoding based
on encoding method B; this method is distinct from [12].

A definition of Construction D’ using check-matrix perspective is also given,
which is equivalent to the conventional congruences definition [6].

1.4.2 QC-LDPC Code Design for Construction D’

This dissertation constructs QC-LDPC codes to form Construction D’ lattices
(termed QC-LDPC Construction D’ lattices), because QC-LDPC codes are widely
used in recent wireless communication standards. In this dissertation, parity-
check matrices for nested QC-LDPC codes are designed such that they can be
easily triangularized and thus efficient encoding and indexing are allowed. An
existing Construction D’ lattice based on a QC-LDPC code and a single parity-
check (SPC) product-like code [35] is not suitable for indexing/shaping because
the SPC product-like code parity-check matrix cannot be efficiently triangularized.

Let H0 and H1 be the parity-check matrix of binary code C0 and C1 respectively.
A subcode condition C0 Ă C1 must be satisfied to form a 2-level Construction D’
lattice, and this is not straightforward. In [12], LDPC code parity-check matrix H0

10

was obtained from H1 by performing check splitting or progressive edge-growth
(PEG)-based check splitting. This dissertation presents a QC-LDPC design for
code C0, and the position of non-zero circulants (or blocks) in H0 is found by
binary linear programming. In contrast to [12], H1 will be constructed from H0.

This work also shows how to triangularize the parity-check matrices for QC-
LDPC codes with designed structure, and how to build a check matrix for a
Construction D’ lattice.

1.4.3 Extensive Search for Convolutional Code Lattices

A method to obtain triangular generator matrices for Construction A lattices
is given, as a modification of the classical method [6, p. 183] (also [36, pp. 32–
33]). The method in this dissertation allows forming the generator matrix without
swapping code bit positions for convolutional code lattices with underlying rate
1{2, 1{3, . . . binary convolutional codes. This is also valid for construction of
convolutional code lattices from both zero-tailed convolutional codes and tail-
biting convolutional codes with any code rate. The best-found shaping gain of
convolutional code lattices at various dimensions is obtained by an exhaustive
search over zero-tailed convolutional codes, tail-biting convolutional codes, and
truncated convolutional codes of rate 1{2 and 1{3 with a variety of numbers of
states. The asymptotic shaping gains and the tradeoff between the shaping gain
and the complexity of quantization are also studied.

1.4.4 Modified Lattice Indexing Method

Encoding and indexing, and construction of nested lattice codes are reviewed.
When applied to high-dimensional nested lattice codes, the conventional indexing
algorithm [16, Sec. IV-B] may encounter large-valued integers, which causes an
integer overflow problem when implemented—it may fail to recover information
even in the absence of noise. To solve this problem, this dissertation provides a
modified algorithm to bound the values of integers that are used internally, without
changing the solution.

1.4.5 Nested Lattice Code Constructions

Several nested lattice code constructions are given. The coding lattices are the de-
signed QC-LDPC Construction D’ lattices, while the shaping lattices are distinct,

11

including the E8 lattice, the BW16 lattice, the Leech lattice, and the convlutional
code lattices. These lattices as lattice quantizer can provide high shaping gains,
and the full shaping gains are 0.65 dB, 0.86 dB, 1.03 dB, and possibly greater than
1.25 dB respectively.

When a convolutional code lattice performs lattice quantization, the shaping
gain as high as 1.25 dB is preserved in a practical nested lattice coding scheme.
This is the best-found numerical result in the literature of lattice shaping.

Hypercube shaping is performed for comparison with a nested lattice code
using shaping lattices, with respect to the shaping gain, because a hypercubical
constellation provides no shaping gain. When generating a hypercubical constella-
tion for Construction D’ lattices, a method simpler than the conventional method
is described.

12

1.5 Dissertation Scope and Notation

The rest of this dissertation is organized as follows:

1. Chapter 2 introduces definitions and properties of lattices, as well as several
important transformations of lattices which are used in this work. Lattice
construction methods from linear codes are given, including Construction A
and D’. The well-known lattices in short dimensions are listed, including the
E8, BW16 and Leech lattices that will be employed for shaping.

2. Chapter 3 describes the encoding and indexing of nested lattice codes, and
addresses a modified indexing method for high dimensions. The nested
lattice coding scheme additionally including the indexing is introduced.
Hypercube shaping is also given.

3. Chapter 4 proposes encoding and decoding methods for Construction D’, as
a foundation for Construction D’ lattices to be used in power-constrained
channels.

4. Chapter 5 addresses QC-LDPC code design for Construction D’, and shows
how to generate a triangular check matrix for a QC-LDPC Construction D’
lattice.

5. Chapter 6 presents extensive Construction A lattice constructions and evalu-
ations using zero-tailed convolutional codes, tail-biting convolutional codes,
and truncated convolutional codes. The tradeoff between the lattice shaping
gain and quantization complexity is studied.

6. Chapter 7 shows numerical results for QC-LDPC Construction D’ lattices
(to be designed in Chapter 5) in a power-constrained channel under the
framework that will be described in Chapter 3, where the shaping lattices
include: the E8 lattice, the BW16 lattice, and the Leech lattice (that will be
introduced in Chapter 2), and the best-found convolutional code lattices (as
will be provided in Chapter 6), using the decoding algorithm to be proposed
in Chapter 4.

7. Chapter 8 addresses conclusions of this work, and discusses about related
future topics.

13

Notation

Generator vectors are written in columns, which is convenient when considering
the lattice check matrix that has basis (check) vectors in rows. This is distinct
from the convention used for finite field codes. A lattice point x is given as a
column vector, while sometimes written in the form px1, x2, . . . , xnq with respect
to its elements.

A tilde indicates a vector or matrix which has only 0s and 1s — rx and rH are
binary while x and H are not necessarily so. Operations over the real numbers R
are denoted `, ¨ (the operator ¨ is sometimes omitted) while operations over the
binary field F2 are denoted ‘,d. The binary field F2 is also written as GF(2).
The direct sum operation of two lattices is also denoted ‘. The matrix transpose
is denoted p¨qt. Element-wise rounding to the nearest integer is denoted t¨s.

14

Chapter 2

Lattices and Lattices From Codes

This chapter addresses how a lattice is generated from a basis, described using a
generator matrix or a check matrix and decomposed using a sublattice and cosets of
the sublattice. This chapter also introduces how to evaluate a lattice with respect
to its coding and shaping properties, and how this is connected to its Voronoi
region. A Voronoi region of a lattice plays a key role in both lattice decoding
and lattice quantization. If two lattices satisfy a sublattice condition, then the
intersection of the “super” lattice and the Voronoi region of the sublattice defines
a nested lattice code (also known as a Voronoi code). The super lattice is for
coding and the sublattice is for shaping.

Several important lattice transformations used in this dissertation are intro-
duced: identical lattices, lattice scaling and the direct sum of lattices. Two
lattices are identical if one basis can be obtained by multiplying another basis by a
unimodular matrix. Thus the resulting two distinct generator matrix can be used
interchangeably to describe the same lattice. Sometimes a triangular generator
matrix is desirable since it is convenient for lattice encoding and indexing, as will
be seen in Chapter 3. An equivalent lattice is produced if it is scaled by a real
nonzero number. The direct sum of two or more identical lattices can provide a
high-dimensional lattice without changing the shaping property. This construction
is employed when low-dimensional lattices are to be used in higher dimensions.

Two lattice constructions that build lattices from linear codes, Construction A
and Construction D’, are briefly described, which are used in lattice constructions
in this dissertation. Construction A is applied to generate convolutional lattice
codes as shaping lattices and the method will be given in Chapter 6. The
encoding/decoding of Construction D’ will be addressed in Chapter 4.

Several well-known low-dimensional lattices including the E8 lattice, the BW16

lattice and the Leech lattice that will be employed in the shaping lattice construc-
tions, are then introduced. By showing the definitions and several examples it will
be seen how these lattices are related to linear codes, as well as the methods for
construction.

15

2.1 Preliminaries

2.1.1 Definition of Lattices

Definition 2.1 A lattice Λ is a discrete additive subgroup of the n-dimensional
Euclidean space Rn.

A lattice is a vector subspace, because Rn is a vector space and Λ is a
subgroup—Λ is a set of points (called lattice points) closed under real addition. A
lattice possesses a linearity property: if lattice points x1,x2 P Λ, then the sum of
two lattice points x1 ` x2 P Λ. Let x P Λ, then there is x ` x ` ¨ ¨ ¨ ` x P Λ, thus
Λ has infinite size. Assume an integer α, then α ¨ x P Λ. Observe x´ x P Λ, thus
the origin (or the zero point) is always a lattice point.

Example 2.1 The set of all integers Z is a one-dimensional lattice. Consider two
lattice points 3 P Z and 1 P Z, then the sum 3`1 “ 4, 3`3 “ 6 are lattice points.
Since the reflected ´3 P Z, the origin 0 is a lattice point. Scaling the lattice point
3 by an integer ´5 gives ´15 P Z.

2.1.2 Lattice Basis, Generator Matrix and Check Matrix

If Λ is an n-dimensional lattice, this n-dimensional space can be spanned by a
basis which is a set of n linearly independent basis vectors (also called generator
vectors) g1,g2, . . . ,gn. A column vector

gi “

»
———–

g1

g2
...
gn

fi
ffiffiffifl (2.1)

represents a point in Rn for i P t1, 2, . . . , nu.

Let integers bj P Z be elements of a column vector b:

b “

»
———–

b1

b2
...
bn

fi
ffiffiffifl , (2.2)

for j P t1, 2, . . . , nu. Then the linear combination of the bases defines a lattice

16

-10 -5 0 5 10
-10

-5

0

5

10

Figure 2.1: Example of a two-dimensional lattice Λ2.

point x as

x “ g1b1 ` g2b2 ` ¨ ¨ ¨ ` gnbn, (2.3)

which is a vector of n real numbers:

x “

»
———–

x1

x2
...
xn

fi
ffiffiffifl . (2.4)

Recognize that the points g1, . . . ,gn are also lattice points.

Example 2.2 Let two linearly independent vectors g1 “ r1, 2s
t,g2 “ r2,´1st form

a basis. Then a two-dimensional lattice Λ2 is obtained and shown in Figure 2.1.

The basis for a lattice is not unique. The same lattice Λ2 in Example 2.2 can
be generated using bases such as

r´2, 1st, r3, 1st

(
,

r´1,´2st, r2,´1st

(
,

r1, 2st, r0, 5st

(
, . . . (2.5)

Can any 2 linearly independent vectors in Λ2 form a basis for Λ2? To answer
this, let us try the two vectors r3, 1st, r0, 5st P Λ2. Draw points that are integral
linear combinations of these two vectors in Figure 2.2. Observe that r5, 0st cannot
be produced by any integral linear combinations of r3, 1st ¨ α1 ` r0, 5s

t ¨ α2 for
α1, α2 P Z, but r5, 0st can be expressed as r1, 2st ¨ 1 ` r2,´1st ¨ 2 using the basis
given in Example 2.2 and thus is a lattice point of Λ2. And of course there are
other lattice points of Λ2 that cannot be generated by r3, 1st, r0, 5st. Thus the
answer to the question is no. How to select a basis is omitted.

17

-10 -5 0 5 10
-10

-5

0

5

10

Figure 2.2: Bad basis example that cannot generate Λ2.

Integer bases span lattices in Zn, which is straightforward. But a basis need
not have all integer values in order to generate a lattice, e.g., a basis with vectors
tr´1, 0st, r´1{2,´

?
3{2stu spans a lattice in Figure 2.8.

Remark 2.1 For a valid basis consisting of n linearly independent basis vectors
g1,g2, . . . ,gn in Rn, the subgroup of all linear combinations with integral coeffi-
cients of the basis vectors forms a lattice.

Write n generator vectors in a square matrix of order n, called a generator
matrix:

G “

»
——–

ˇ̌
ˇ

ˇ̌
ˇ

ˇ̌
ˇ

g1 g2 ¨ ¨ ¨ gnˇ̌
ˇ

ˇ̌
ˇ

ˇ̌
ˇ

fi
ffiffifl . (2.6)

Thus (2.3) can also be written by the matrix form as:

x “ G ¨ b. (2.7)

Example 2.3 The integer lattice Zn is the simplest lattice. The one-dimensional
integer lattice is the set of all integers:

-3 -2 -1 0 1 2

The two-dimensional integer lattice can be drawn and is given in Figure 2.3. A

18

´2 ´1 0 1 2

´2

´1

0

1

2

Figure 2.3: Two-dimensional integer lattice Z2.

natural generator matrix of Zn is the identity matrix In for dimension n:

In “

»
———–

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0
...

...
. . . 0

0 0 ¨ ¨ ¨ 1

fi
ffiffiffifl . (2.8)

A lattice Λ can also be described using the check matrix H “ G´1 which is
expressed by

H “

»
——————–

— h1 —

— h2 —
...

— hn —

fi
ffiffiffiffiffiffifl
, (2.9)

where each check basis vector hi is a row vector of n real-valued elements, for
i “ 1, 2, . . . , n. Then computing (2.7) is equivalent to solve

H ¨ x “ b. (2.10)

For a lattice with check matrix H, x is a lattice point if and only if H ¨x is a vector
of integers.

19

2.1.3 Lattice Cosets

A lattice coset is a discrete set of points which is a shift of a lattice by some vector.

Definition 2.2 A lattice coset of Λ with respect to a vector s is the set:

s` Λ “

s` x

ˇ̌
x P Λ

(
. (2.11)

A coset of a lattice is of infinite size, since a lattice is a set of infinite size. The
difference vector between every pair of two points of a lattice coset s` Λ is in Λ.
In general, a lattice coset is not a lattice as it does not contain the origin, unless
s P Λ.

If a lattice Λ1 contains all lattice points of another lattice Λ, written as Λ Ă Λ1,
then the Λ is a sublattice of Λ1. Since Λ is a subgroup of the group Λ1, the two
lattices form a quotient group denoted Λ1{Λ. A vector s P Λ1 can be used to
determine a coset of Λ relative to Λ1 where the relative coset is: s ` Λ. Since
Λ Ă Λ1, each relative coset belongs to Λ1. The set of relative cosets is Λ1{Λ:

s` Λ

ˇ̌
s P Λ1

(
. (2.12)

The union of Λ1{Λ covers Λ1 and then the size of Λ1{Λ is finite. Each coset can be
represented by an element, called a coset leader. The coset leaders can be selected
such that they form a codebook for a code—nested lattice code. More description
will be given in the next chapter. The following example shows another choice of
coset leaders.

Example 2.4 In Figure 2.4, a lattice 5Z2 is scaled by 5 from the integer lattice Z2

given in Figure 2.3, thus its lattice points are also integers. A coset of 5Z2 takes
a shift of all points in 5Z2 by a vector, e.g., p2, 2q ` 5Z2, shown as red diamonds
in Figure 2.5. Since p2, 2q ` p2, 2q “ p4, 4q is not an element of p2, 2q ` 5Z2,
p2, 2q ` 5Z2 is not a lattice. Consider the lattice Λ2 given in Example 2.2. Λ2 can
be constructed using the union of the lattice 5Z2 and its cosets with respect to
vectors si P tp0, 0q, p1, 2q, p2, 4q, p3, 1q, p4, 3qu, described as:

Λ “
4ď

i“0

psi ` 5Z2
q. (2.13)

Each coset is represented by a distinct marker in Figure 2.6. Observe that the
lattice 5Z2 is a sublattice of Λ2: 5Z2 Ă Λ2. See Figure 2.7.

20

-10 -5 0 5 10
-10

-5

0

5

10

Figure 2.4: Scaled integer lattice 5Z2.

-10 -5 0 5 10
-10

-5

0

5

10

Figure 2.5: Coset of lattice 5Z2 with respect to a vector p2, 2q where 5Z2 is marked
as black circles and its coset is marked as red diamonds.

21

-10 -5 0 5 10
-10

-5

0

5

10

Figure 2.6: Lattice decomposed by 5Z2 (black circles) and 4 cosets of 5Z2 (red
triangles, green squares, blue asterisks and purple pluses).

-10 -5 0 5 10
-10

-5

0

5

10

Figure 2.7: Nested lattices example where a lattice is marked as black solid circles
and its sublattice is marked as red circles.

22

2.1.4 Lattice Quantization and Modulo

For a lattice Λ, the nearest-neighbor quantizer (or decoder) finds the closest lattice
point x “ px1, x2, . . . , xnq P Λ given an arbitrary point y “ py1, y2, . . . , ynq P Rn

which is expressed as:

Qpyq “ arg min
λPΛ

}y ´ λ}2, (2.14)

where λ is some lattice point in Λ and } ¨ }2 denote the squared Euclidean distance
(or norm) that computes

}y ´ λ}2 “
nÿ

i“1

pyi ´ λiq
2. (2.15)

Lattice quantization (2.14) is also written by

x “ QΛpyq, (2.16)

that is read as the quantization of y to find its nearest x P Λ.

The quantization error vector

t “ y ´QΛpyq (2.17)

is usually written as:

t “ y mod Λ, (2.18)

and the operation is referred to as the lattice modulo operation. It will be shown
that t and y belong to the same coset of Λ where t is constrained in a shape called
the zero-centered Voronoi region, when a Voronoi codebook is applied. This is
applied when encoding nested lattice codes that will be introduced in Chapter 3.
The quantization effectiveness is measured by the shaping gain, which will be
described in Subsection 2.1.7.

Lattice Coset Decoding

A lattice Λ1 may be decoded using lattice coset decoding if Λ1 can be represented
by a union of cosets. Let Λ Ă Λ1 and decompose Λ1 by its sublattice Λ and cosets
of Λ as: Λ1 “

Ťl´1
i“0psi ` Λq where l ´ 1 denotes the number of cosets for which si

is a coset leader and s0 “ p0, . . . , 0q. Assume that how to find a nearest lattice
point for Λ is known. Given an arbitrary point y, then Λ1 can be decoded in the
following way. For i “ 0, 1, . . . , l´1, si is subtracted from y as y´ si, then decode
py1i “ si`QΛpy´siq. Let di denote the squared Euclidean distance between py1i and
y. The closest lattice point in Λ1 is py “ py1j corresponding to the smallest value dj
for some j P t0, 1, . . . , l´ 1u. This includes the quantization of a lattice coset, and
more on quantization will be introduced in the nest subsection.

23

2.1.5 Voronoi Region and Its Volume

Definition 2.3 For a lattice Λ, a fundamental region (or fundamental cell)
denoted F Ă Rn is a shape that, if shifted by each lattice point in Λ, will exactly
cover the whole Euclidean space Rn.

The Euclidean space Rn can be divided into disjoint congruent partitions where
each partition is a shift of the fundamental region, by a lattice point in Λ. A
fundamental region is a maximal set satisfying that the difference vector between
any pair of two points in F is not a lattice point. Any point in Rn is in exactly one
fundamental region. A coset s ` Λ can be represented by the unique intersection
point (called a coset representative) of the coset and F : ps`Λq XF . Thus F is a
complete set of coset representatives, and the set of all cosets is called the quotient
group Rn{Λ “

s` Λ

ˇ̌
s P F

(
.

The division is not unique thus there are different fundamental regions for a
lattice, and the most important one is the Voronoi region.

Definition 2.4 A Voronoi region Vpxq is defined as a set of all points nearest to
x P Λ than to any other lattice point.

Using the nearest-neighbor quantizer (2.16), a Voronoi region Vpxq can be
described as:

Vpxq “

y1 P Rn

ˇ̌
Qpy1q “ x

(
, (2.19)

which is a convex polytope since Euclidean distance is used. A line that connects
x to one of its neighbors1 is crossing orthogonally a hyperplane, which determines2

a face of Vpxq.

The Voronoi region does not depend on the generator matrix but relies on
lattice points. The zero-centered Voronoi region Vp0q corresponding to the origin
0 is simply denoted V . All shifts of V by lattice points x P Λ cover the entire
space Rn, thus any point in Rn can be represented as the sum of a lattice point
and a point in V where this point in V is the shortest vector in its coset, regarded
as a coset leader. The set of all coset leaders in V can be used to define a nested
lattice code if each is a lattice point of the “superlattice”, as will be introduced
in Chapter 3. Note that the lattice modulo operation (2.18) is to find the coset
leader for an arbitrary point in Rn.

1The neighbors of a lattice point x are defined as a set of all lattice points in Λ that have the
shortest distance to x than the distance between any other lattice point with x.

2There exist some points in Rn that have the same distance to two or more lattice points. In
order to keep the fundamental regions congruent, each point can belong to only one fundamental
region. This can be solved by a systematic tie-breaking rule for the quantizer Qpyq.

24

´2 ´1 0 1 2

´
?

3

´
?

3
2

0

?
3

2

?
3

Figure 2.8: Two-dimensional hexagonal lattice A2 with lattice points and Voronoi
regions .

Another commonly used fundamental region is the parallelotope region that
consists of all points which are linear combinations of the basis vectors g1, . . . ,gn
with coefficients between zero and one. It is convenient to use the parallelotope
region to enumerate the Voronoi codebook for a nested lattice code.

For a lattice Λ described by a generator matrix G, its various fundamental
regions have the same volume V pΛq, given by:

V pΛq “ det pΛq “ |det pGq|, (2.20)

where det p¨q computes the determinant.

Example 2.5 The 2-dimensional hexagonal lattice can be described by a generator
matrix:

«
1
2

1?
3

2
0

ff
, (2.21)

which has volume
?

3
2

. The lattice points and the Voronoi regions are shown
in Figure 2.8. The shape of the Voronoi region is a hexagon, thus the lattice is
called the hexagonal lattice, and it is equivalent to A2 lattice, as will be introduced
in Subsection 2.3.1.

25

2.1.6 Identical Lattices, Lattice Scaling and Direct Sum

2.1.6.1 Identical Lattices

Two lattices Λ1 and Λ2 are identical if all the lattice points are the same, called
identical lattices. A basis of Λ1 can be transformed into another basis representing
an identical lattice Λ2. That is to say, the generator matrix of a lattice is not
unique, and can be transformed to a distinct generator matrix which describes the
same lattice. This is performed by using a unimodular 3 matrix.

Proposition 2.1. Let an n-by-n matrix G be a generator matrix for a lattice Λ.
If W is a unimodular matrix then G¨W is also a generator matrix for Λ. Similarly,
let H “ G´1, then W1 ¨H is also a check matrix for Λ if W1 is unimodular.

2.1.6.2 Lattice Scaling

An n-dimensional lattice Λ is equivalent to a scaled version of Λ, and the coding
gain (2.34) does not change. Let K be a real nonzero number, then Λ1 “ KΛ is a
lattice scaled from Λ. For an arbitrary lattice point x P Λ, there is Kx P KΛ. Let
G be a generator matrix of Λ, then the lattice KΛ has a generator matrix KG.
The volume of KΛ is

V pKΛq “ det pKΛq “ |det pKGq| “ |Kndet pGq|. (2.22)

Given an arbitrary point y P Rn, the quantization using Λ1 “ KΛ can be performed
by

x1 “ QΛ1pyq “ QKΛpyq “ K ¨QΛpy{Kq, (2.23)

where a quantizer (2.16) for Λ is used and thus is straightforward.

Example 2.6 Let a lattice be scaled by
?

2 from the integer lattice Z3. Then?
2Z3 has a generator matrix

»
–
?

2 0 0
0

?
2 0

0 0
?

2

fi
fl , (2.24)

and volume 2
?

2.

3A unimodular matrix is an n-by-n matrix with integer entries and determinant ˘1. The
inverse of a unimodular matrix is also unimodular.

26

2.1.6.3 Direct Sum

A simple method to build a high-dimensional lattice from low-dimensional lattices
is using the direct sum4.

Let Λ1 and Λ2 be two lattices with dimensions n1 and n2, generator matrices
G1 and G2, respectively. Let the lattice points be denoted x P Λ1 and y P Λ2. An
n-dimensional lattice Λ can be produced using direct sum of Λ1 and Λ2, represented
by:

Λ “ Λ1 ‘ Λ2 “

"`
x,y

˘ ˇ̌
ˇ̌ x P Λ1,y P Λ2

*
, (2.25)

where n “ n1` n2. The generator matrix G of Λ is a block-diagonal matrix given
by

G “

„
G1 0
0 G2


. (2.26)

The volume of Λ “ Λ1 ‘ Λ2 has:

V pΛq “ det pΛq (2.27)

“ det pΛ1 ‘ Λ2q (2.28)

“ |det pGq| (2.29)

“ |det pG1q| ¨ |det pG2q| (2.30)

“ det pΛ1q ¨ det pΛ2q. (2.31)

Example 2.7 Consider two lattices 3Z3 and 2A2, where Z3 has a generator matrix
(2.8) and A2 has a generator matrix (2.21). Then a generator matrix of 3Z3‘ 2A2

is obtained:
»
———————–

3 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 1 2

0 0 0
?

3 0

fi
ffiffiffiffiffiffiffifl
, (2.32)

whose volume is p33 ¨ 1q ¨ p22 ¨
?

3
2
q “ 54

?
3.

4The direct sum of two lattices Λ1‘Λ2 is the same as their Cartesian product Λ1ˆΛ2. Here
the notation ‘ is the same as that of the addition operation used in binary field GF(2), but
there should be no ambiguity between the two distinct operations.

27

It is convenient to build a high-dimensional lattice Λ by the direct sum of a
sequence of identical low-dimensional lattices Λ1 as Λ “ Λ1 ‘ Λ1 ‘ ¨ ¨ ¨ ‘ Λ1. The
lattice Λ has the same shaping gain (2.42) as the component lattice Λ1. This
is often applied to well-known lattices such as the 8-dimensional E8 lattice, the
16-dimensional BW16 lattice and the 24-dimensional Leech lattice, which will be
introduced in Section 2.3 and will be employed when building high-dimensional
lattices for shaping in Chapter 7. Let an n-dimensional lattice Λ be the direct sum
of n{n1 copies5 of an n1-dimensional lattice Λ1, then the quantization of Λ can be
performed by quantizing each component lattice Λ1 for its corresponding elements,
that is, an estimated lattice point for Λ is produced by employing the quantizer of
Λ1 for n{n1 times.

2.1.7 Properties for Coding and Shaping

2.1.7.1 Coding Gain and Volume-to-Noise Ratio

Coding Gain

The minimum distance dmin indicates the error-correction capability of a code
C. If C is a block code defined in finite fields, dmin is defined as the minimum of
the Hamming distances between all distinct pairs of codewords x P C and y P C.
The Euclidean distance is used when considering Euclidean-space codes. It is
convenient to use the squared minimum distance d2

min.

Due to the linearity of a lattice Λ, the squared minimum distance is given by:

d2
min “ min

xPΛz0
}x}2. (2.33)

Scaling Λ by K produces a lattice with squared minimum distance of K2d2
min,

but the average transmitted power is also increased. Thus the coding gain γc

is defined as the normalized squared minimum distance which is independent of
lattice scaling, and is expressed as:

γc “
d2

min

V pΛq2{n
. (2.34)

Volume-to-Noise Ratio

The common notion signal-to-noise ratio (SNR) used for codes is not meaning-
ful for lattices because they are a set of infinite size. The transmitted sequences

5Here n{n1 must be a positive integer.

28

thus are included in an infinite constellation. This was modeled by Poltyrev [37],
such that a lattice-goodness can be evaluated in a power-unconstrained AWGN
channel, where the capacity is called Poltyrev limit (or Poltyrev capacity).

The volume-to-noise ratio (VNR) of a lattice Λ is defined as the ratio between
the normalized volume of Λ and the normalized volume of the noise sphere, given
by:

VNR “
V pΛq2{n

2πeσ2
, (2.35)

which is the distance to the Poltyrev limit. Let the probability of error for decoding
an n-dimensional lattice be Pepσ

2q using a minimum-distance decoder. Unless
V pΛq2{n ą 2πeσ2, Pepσ

2q cannot be small. Moreover, if V pΛq2{n « 2πeσ2 then
Pepσ

2q cannot be small unless n is large [38]. Thus the VNR is useful when
measuring error-correction performance of lattices, and is commonly given in
decibels as 10 log10 VNR. When VNR “ 1 (VNR “ 0 dB) the capacity is achieved

given a noise variance σ2 “
V pΛq2{n

2πe
.

2.1.7.2 Normalized Second Moment and Shaping Gain

Consider the lattice quantization (2.16) for a lattice Λ. The quantization error
vector (2.18) can be measured by the normalized second moment (NSM).

The NSM of a region R Ă Rn is defined:

GnpRq “
1

nV pRq1`2{n

ż

R
}x}2dx, (2.36)

which depends only on the “shape” of the region and does not change if is scaled.
The following three kinds of regions are of interest: hypercubes, n-spheres and
Voronoi regions.

NSM of Hypercubes

The NSM of an n-dimensional hypercube (also called an n-cube) is the same
as the NSM of the integer lattice Zn, given by

GnpZnq “
1

12
. (2.37)

It is clear that the NSM of an n-hypercube does not change when n is changed,
and thus is useful as a baseline when compared to a general lattice quantizer. This
will be addressed when introducing the shaping gain in the remaining part of this
subsection, and in Section 3.5.

29

NSM of n-Spheres

The NSM of an n-sphere Sn (or an n-ball6) is important because it has the
lowest possible value among all regions, and is found:

GnpSnq “
Γpn

2
` 1q2{n

πpn` 2q
, (2.38)

where Γp¨q is the Gamma function7.

At all dimensions, the NSM of all regions cannot be lower than that of the
sphere and thus is constrained by the sphere bound (2.38). The asymptotic value
can be obtained using the Stirling approximation:

Γp
n

2
` 1q “ p

n

2
q! « p

n

2e
q
n{2, (2.39)

and is given by:

lim
nÑ8GnpSnq “

1

2πe
. (2.40)

NSM of Voronoi Regions for Lattices

Monte Carlo integration [39, 40] can be applied to practically find the NSM
of a lattice Λ with unknown Voronoi region, and was used by Conway and
Sloane to estimate lattice quantizers [6]. Assume that N uniformly distributed
samples y1,y2, . . . ,yN are generated in Rn. Then the quantization error vectors
t1, t2, . . . , tN given by (2.18) are uniformly distributed in the zero-centered Voronoi
region V for Λ. The estimated NSM is given by:

xGnpΛq “
1

nNV pΛq2{n

Nÿ

i“1

}ti}
2. (2.41)

The precision of this value increases as N increases.

Shaping Gain

The shaping gain of a region R measures the improvement in NSM relative to
the hypercubes (2.37). It is defined (in decibels) as:

γspRq “ 10 log10

1{12

GnpRq
dB. (2.42)

6In lattice literature, the two terms: sphere and ball, are often used synonymously. The
volume of an n-ball concentrates on the surface which is an n-sphere as n Ñ 8, thus in this
dissertation the term n-sphere (or hypersphere) is used for simplicity.

7The Gamma function extends the factorial function to non-integer arguments, e.g., Γp 12 q “?
π. If a is a positive integer, then Γpa`1q “ aΓpaq “ a! and Γpa` 1

2 q “ pa´ 1
2 q¨pa´ 3

2 q¨¨ ¨ ¨¨ 12 ¨
?
π.

30

The hypercube has 0 dB of shaping gain.

As n Ñ 8, an n-sphere yields the theoretical limit of the shaping gain, given
by:

10 log10

πe

6
“ 1.53 dB, (2.43)

known as the asymptotic shaping gain.

The shaping gain depends on the “shape” of a region R. If R is scaled, the
shaping gain does not change. It measures the reduction in average transmitted
power with respect to a hypercubical constellation.

2.2 Lattices From Linear Codes

There exist several methods to build lattices from linear codes, including Con-
struction A, B, C, D/D’ and E, that lift code or codes to the Euclidean space Rn.
The simplest method is Construction A, which can use a binary code or a non-
binary code. The following methods: B, C, D/D’, E, are related to Construction
A. Construction B requires a binary code and is a special case of Construction
D. While Construction A and B can be applied to lattice constructions from
a linear code, Construction C, generalized from Construction A and B, can be
applied to a nested family of linear codes C0 Ď C1 Ď ¨ ¨ ¨ Ď Ca. As Construction
C can also be applied to codes that are not nested and to nonlinear codes, it
may not always produce lattice packings, but its variant Construction D does.
Construction D’ converts a set of parity-checks which define nested binary linear
codes into congruences for a lattice in the same way that Construction D converts
a set of generator vectors for nested binary linear codes into a basis for a lattice.
Construction E is a powerful generalization of most of the previous constructions
that can be applied recursively.

Among these constructions, Construction A and D’ are of greatest interest in
this dissertation, as it will be shown that Construction A provides low-complexity
quantization as well as a high shaping gain when applied to convolutional codes,
and Construction D’ can be applied to lattice constructions from a nested family
of powerful low-density parity-check (LDPC) codes, providing good coding prop-
erties.

31

2.2.1 Construction A

A lattice can be built from a q-ary8 linear code with Construction A, called a
Construction A lattice, or a modulo-q lattice.

Definition 2.5 Let C be a q-ary linear code of dimension k and block length n.
An n-dimensional Construction A lattice ΛA is generated by:

ΛA “ C ` qZn. (2.44)

ΛA is the set of all integer vectors whose modulo-q reduction are codewords of
C, where each is a lattice point x. Then (2.44) can also be expressed as:

ΛA “

x P Zn

ˇ̌
x mod q P C

(
. (2.45)

Properties

A Construction A lattice ΛA provides the following properties:

1. ΛA contains and is contained in integer lattices: qZn Ă ΛA Ă Zn, as will be
explained in Example 2.8.

2. The volume of ΛA is

V pΛAq “ qn´k. (2.46)

This is because a quotient group ΛA{qZn is formed, which has size

|ΛA{qZn| “
V pqZnq
V pΛAq

“
qn

V pΛAq
“ |C|, (2.47)

where |C| “ qk is the number9 of codewords of C if generated by a full-rank
n-by-k matrix GC.

3. ΛA is spanned by a basis of C and a basis of qZn, thus the generator matrix
is of size n-by-pn` kq, written as:

G1
ΛA
“
“
GC | qIn,

‰
(2.48)

where GC consists of k linearly independent basis vectors in column for C,
and qIn is a possible generator matrix for qZn naturally scaled by q from
(2.8).

32

-10 -5 0 5 10
-10

-5

0

5

10

Figure 2.9: Two-dimensional Construction A lattice example.

Example 2.8 The n “ 2-dimensional lattice given in Example 2.2 is a Construc-
tion A lattice Λ2

A, whose basis can also be g1 “ r1, 2s
t,g2 “ r0, 5s

t. To see this,
let g1 “ r1, 2st be a basis for a q “ 5 quinary linear code C over GF(5), whose
dimension (i.e., information vector length) is k “ 1 and block length is n “ 2.
The information can be a digit in t0, 1, . . . , 4u, thus all qk “ 5 codewords10 of C
are p0, 0q, p1, 2q, p2, 4q, p3, 1q, p4, 3q, which can be represented by the red markers
in Figure 2.9.

Applying Construction A to C lifts all codewords in C to Rn as Λ2
A “ C ` 5Z2.

The resulting lattice Λ2
A has dimension n “ 2. Since p0, 0q P C, 5Z2 is also included

in Λ2
A, shown as circles. A shift of 5Z2 by p1, 2q is a coset of 5Z2, and is drawn as

triangles. The resulting cosets of 5Z2 with respect to p2, 4q, p3, 1q, p4, 3q are shown
as squares, asterisks and pluses, respectively. The union of these cosets and 5Z2

itself is the Construction A lattice Λ2
A. The codewords of C can be regarded as

coset leaders. See also Example 2.4. Note that the codewords of C are integer
vectors and 5Z2 is a scaled integer lattice; their sum are integer vectors in Z2.
Thus 5Z2 Ă Λ2

A Ă Z2.

8Here q is a prime number.
9The codebook size of C is at most qk, with equality for information vector of length k ą 0

in t0, 1, . . . , q ´ 1uk and prime q.

10For example, information represented by 4 produces a codeword

„
1
2


¨ 4 mod 5 “

„
4
3


.

33

Triangular Generator Matrix

It is clear that the n-by-pn` kq matrix G1
ΛA

(2.48) is not full rank, which can
be reduced to a square matrix GΛA

of order n by eliminating k linearly dependent
columns, and GΛA

is not unique.

Let G1
C “ rIk; |; Ps

t be a systematic form of GC in (2.48) which always exists
as long as GC is full rank. Zamir [36, pp. 32-33] gave a systematic approach for
finding the generator matrix of a Construction A lattice ΛA, that is an n-by-n
lower-triangular matrix expressed as:

GΛA
“

«
G1

C

ˇ̌
ˇ̌ 0

qIn´k

ff
“

«
Ik | 0

P | qIn´k

ff
. (2.49)

For q “ 2, the generator matrix (2.49) is a transpose of [6, p. 183, eq. (5)] given
by Conway and Sloane, whose basis vectors are written in row, provided that

?
2

was omitted as mentioned in the remark.

A systematic matrix G1
C is not necessary. Another work [41, pp. 42-44] also

addressed a method to obtain a triangular generator matrix for Construction A
lattices, using the Hermite normal form11. The Hermite normal form in column
satisfies two conditions: (1) lower-triangular form and (2) the diagonal entry has
the maximum value for each row. The Hermite normal form can be computed
using the algorithm in [42, pp. 67-68].

Assume two positive integers n ď n1. Any n-by-n1 integer matrix A can be
reduced to an n-by-n matrix B in column Hermite normal form, expressed as:

A “
“
B | 0

‰
¨U, (2.50)

where U is an n1-by-n1 unimodular matrix and the size of the zero matrix 0 is n-
by-pn1´ nq. If A has full row rank n, then B is also full rank. When a systematic
form G1

C can be found, the connection from Hermite normal form to Zamir’s work
was shown in [41]. Even when some cases the resulting B is not in the Hermite
normal form, a triangular matrix can be found for ΛA.

This dissertation derives a systematic method to generate a lower-triangular
matrix for a Construction A lattice that is based on a binary code as will be
discussed in Chapter 6, which is straightforward to be applied to convolutional
codes. The resulting lower-triangular matrix also satisfies the column Hermite
normal form. The simplest Construction A lattice is using a q “ 2 binary linear

11The Hermite normal form is an analog to reduced echelon form in Zn.

34

code. In this work, Construction A is applied to binary convolutional codes to
build lattices suitable for quantization.

Quantization

Assume an n-dimensional Construction A lattice ΛA is obtained from a binary
linear code C. The quantization of ΛA is straightforward due to the fact that any
lattice point x P ΛA is congruent modulo 2 to a codeword in C (2.45). Thus given
an arbitrary point y P Rn, a lattice point py P ΛA which is closest to y than any
other lattice point can be found by employing a decoder for C. This is valid based
on the following lemma.

Lemma 2.1 Suppose y lies in the hypercube 0 ď yi ď 1 for i “ 1, 2, . . . , n. Then
no points of ΛA is closer to y than the closest codeword py of C.

Proof Suppose the contrary, and let py be a closest lattice point to y. By
hypothesis some yi are neither 0 nor 1. By subtracting a suitable vector 2z,
these coordinates can be changed to 0 or 1, depending on their parity, to produce
a point of ΛA that is in C, and is at least as close to y as py is, a contradiction. ˝

The steps of quantizating or decoding Construction A were given in [6, p. 450],
and are written in 0, 1 notation as:

1. Given an input y, reduce all yi to the range 0 ď yi ă 2 by subtracting a
vector 2z: y1 “ y ´ 2z, for z P Zn.

2. Let S denote the set of i for which 1 ď y1i ă 2. For i P S, replace y1i by 2´ y1i
resulting in a vector y2.

3. Since y2 is now in the cube 0 ď y2i ď 1, then apply the binary decoder Dec
to y2 (Lemma 2.1), obtaining an output c “ Decpy2q.

4. For i P S, change ci to 2 ´ ci: c1pSq “ 2 ´ cpSq. Then py “ c1 ` 2z is the
closest point of ΛA to y. Thus py is the output.

The above procedure12 is described in Algorithm 2.1. A binary decoder can
be employed when quantizing a Construction A lattice due to Lemma 2.1.
The quantization method will be described in a simpler way in Algorithm 6.1
in Section 6.3. In this dissertation, binary convolutional codes are considered
when building Construction A lattices, where convolutional codes can be decoded
using the well-known Viterbi algorithm proposed by Andrew Viterbi in 1967 [18]—
it provides optimality, feasibility and efficiency. More discussions will be given

12Here c1 need not be binary.

35

in Chapter 6.

Algorithm 2.1 Quantization of Construction A Lattices [6, p. 450]

Input: real-valued input y

Output: estimated lattice point py
Subtract a vector 2z: y1 “ y mod 2, where z Ð py ´ y1q{2

S Ð findpy1 ą 1q

y2 “ y1

for i P S do

y2i “ 2´ y1i
end for

Call the binary decoder: c “ Decpy2q

c1 “ c

for i P S do

c1i “ 2´ ci

end for

py “ c1 ` 2z

return the estimated lattice point py

2.2.2 Construction D/D’

Construction D generates a lattice from nested binary linear codes C0 Ď C1 Ď

¨ ¨ ¨ Ď Ca “ Fn2 where integer a ě 1. When a “ 1, Construction D is reduced to
Construction A for a binary linear code.

Construction D describes a lattice using a generator matrix, while Construction
D’ describes a lattice using a check matrix. It is convenient and natural to build
lattices using Construction D’ from LDPC codes, because they are described by
parity-check matrices. The main focus of this dissertation is Construction D’, as
will be addressed in Chapters 4, 5, and 7.

36

Table 2.1: Normalized second moment (NSM) and corresponding shaping gain of
low-dimensional well-known lattices.

Dimension Lattice Name NSM Shaping Gain (dB) Sphere Bound (dB) Related Code

1 Z1 integer 0.0833 0 0

2 A2 hexagonal 0.0802 0.17 0.20

3 D3 checkerboard 0.0787 0.25 0.34 single parity-check code

4 D4 checkerboard 0.0766 0.37 0.45 single parity-check code

5 D5 0.0758 0.41 0.54

6 E6 0.0743 0.50 0.61

7 E7 0.0732 0.57 0.67 p7, 4q Hamming code

8 E8 Gosset 0.0717 0.65 0.72 p8, 4q extended Hamming code

16 BW16 Barnes-Wall 0.0683 0.86 0.97 Reed-Muller code

24 Λ24 Leech 0.0658 1.03 1.10 extended binary Golay code

8 - - 0.0585 1.53 1.53 -

2.3 Well-Known Low-Dimensional Lattices

This section introduces the lattices with low dimensions 1 ď n ď 24 where each at
its dimension either is or nearly is the best appeared in the literature. The integer
lattice Zn, the Dn lattice and the An lattice are introduced in Subsection 2.3.1.
Then the E8 lattice, the BW16 lattice and the Leech lattice that will be employed
to build shaping lattices in this dissertation, are given in Subsection 2.3.2.

Table 2.1 lists a best-known lattice [6] in each dimension, and its related code if
it can be constructed from the code. Since searching for potential shaping lattices
is of interest, the normalized second moment (2.36) and the shaping gain (2.42)
are included, as well as the theoretical highest shaping gain13 of each dimension
provided by an n-sphere (2.38).

2.3.1 Zn, Dn, An Lattices

Integer Lattice Zn

The integer lattice (or cubic lattice) Zn is in Rn whose lattice points are n-
tuples of integers. A generator matrix for Zn is the n-by-n identity matrix In
(2.8). At dimension n “ 1 the integer lattice, denoted Z1, is important. The case
when n “ 2 as given in Figure 2.3 is also called the square lattice. There are

13The 1.53 dB asymptotic shaping gain cannot be achieved by any code at finite dimension.

37

several applications due to its good properties.

As addressed in the last section, Zn can be used to build Construction A, D/D’
lattices, where all codewords of a linear code or a family of binary linear codes are
lifted to the real space.

Another application of the integer lattice is to produce a hypercubical con-
stellation14 because the Voronoi region of Zn is a hypercube. Thus, instead
of transmitting a lattice point with arbitrary large power, the signal power is
constrained with respect to the size of a hypercube. However, a hypercubical
constellation provides no shaping gain, as explained in Subsection 2.1.7.2.

Dn Lattice

The Dn lattice consists of all integer vectors in Rn where the sum of n
coordinates of x “ px1, x2, . . . , xnq is even:

Dn “

#
x P Zn

ˇ̌
ˇ̌
ˇ

nÿ

i“1

xi ” 0 pmod 2q

+
. (2.51)

The lattice D2 , as shown in Figure 2.10, looks like a 2-checkerboard and thus is
also known as the checkerboard15 lattice. At dimension n “ 3, 4, 5 the Dn lattice
provides the best normalized second moment. A possible generator matrix for Dn

is an n-by-n matrix given by:
»
—————————–

´1 1 0 ¨ ¨ ¨ 0

´1 ´1 1 ¨ ¨ ¨ 0

0 0 ´1 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 1

0 0 0 ¨ ¨ ¨ ´1

fi
ffiffiffiffiffiffiffiffiffifl

. (2.52)

The Dn lattice is a Construction A lattice generated by a binary single parity-check
(SPC) code. And an alternative generator matrix for D4 is given by:

»
———–

1 0 0 0

´1 1 0 0

0 ´1 1 0

0 0 ´1 2

fi
ffiffiffifl . (2.53)

14It is indeed a nested lattice code, but this dissertation only refers to it as hypercube shaping.
In this work, a nested lattice code emphasizes that a shaping lattice with shaping gain is used.

15The Dn lattice is not similar to the n-checkerboard for n ą 4.

38

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 2.10: Checkerboard lattice D2.

An Lattice

An n-dimensional An lattice is a sublattice of Zn`1 that lies in the hyperplane
where the sum of the n`1 coordinates is zero (An Ă Dn`1 Ă Zn`1), and is defined
in Rn`1:

An “

#
x P Zn`1

ˇ̌
ˇ̌
ˇ
n`1ÿ

i“1

xi “ 0

+
, (2.54)

where x “ px1, x2, . . . , xn`1q. An pn` 1q-by-n generator matrix for An is:

»
—————————–

1 0 0 ¨ ¨ ¨ 0

´1 1 0 ¨ ¨ ¨ 0

0 ´1 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 1

0 0 0 ¨ ¨ ¨ ´1

fi
ffiffiffiffiffiffiffiffiffifl

. (2.55)

The A2 lattice provides the best shaping gain at this dimension, and is equivalent
to the hexagonal lattice given in Example 2.5. Thus (2.21) is also a generator
matrix for A2.

39

2.3.2 E8 Lattice

The E8 lattice is also known as the Gosset lattice, that is defined as:

E8 “

#
x P Z8

ˇ̌
ˇ̌
ˇ

nÿ

i“1

xi ” 0 pmod 2q or
nÿ

i“1

ˆ
xi `

1

2

˙
” 0 pmod 2q

+
, (2.56)

where x “ px1, . . . , x8q. A generator matrix is given by:

p
1

2
q ¨

»
——————————————————–

1 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0

1 ´2 2 0 0 0 0 0

1 0 ´2 2 0 0 0 0

1 0 0 ´2 2 0 0 0

1 0 0 0 ´2 2 0 0

1 0 0 0 0 ´2 2 0

1 0 0 0 0 0 ´2 4

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (2.57)

The E8 lattice is the most important lattice at n “ 8. There are also the
6-dimensional E6 lattice and 7-dimensional E7 lattice that are well-known at their
dimensions. Recall that a lattice point of E8 is denoted x “ px1, . . . , x8q P E8,
then E6 and E7 are defined in R8 as:

E6 “ tx P E8 | x1 “ x2 “ x3u, and (2.58)

E7 “ tx P E8 | x1 “ x2u, (2.59)

respectively.

The E8 lattice can be lifted from an extended Hamming code using Construc-
tion A. Let G8 be a generator matrix of an extended binary Hamming code with

40

block length n “ 8 and dimension k “ 4:

G8
“

»
—————————————–

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (2.60)

Then a lattice can be obtained by applying Construction A, using (2.49) the
following matrix

GΛ8
A
“

»
—————————————–

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 1 1 2 0 0 0

1 0 1 1 0 2 0 0

1 1 0 1 0 0 2 0

1 1 1 0 0 0 0 2

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffifl

(2.61)

is an alternative generator matrix for the E8 lattice.

The E8 lattice has a shaping gain of 0.65 dB, and can be efficiently quantized
using the algorithm in [43]. In this dissertation, the direct sum of multiple scaled
copies of the E8 lattice will be used to construct a high-dimensional lattice for
shaping a Construction D’ lattice, as will be given in Example 4.5 and in Chapter 7.

2.3.3 BW16 Lattice

The Barnes-Wall lattice BWn, introduced by [44], is defined in dimensions n “
22, 24, . . . and can be generated from the Reed-Muller codes using Construction B,
C, or D [6, pp. 129-131]. For n “ 16, if using Construction B, a generator matrix

41

of the BW16 lattice is given by:

p
1
?

2
q ¨

»
———————————————————————————–

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 2 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 2 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 2 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 2 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 2 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 2 0 0 0

1 0 1 1 1 0 0 0 0 0 0 0 0 2 0 0

1 0 0 1 1 0 0 0 0 0 0 0 0 0 2 0

1 0 0 0 1 2 2 2 2 2 2 2 2 2 2 4

fi
ffifl

, (2.62)

where the first five columns form a basis of a first-order Reed-Muller code.

When n “ 16, the Barnes-Wall lattice BWn can be decoded using [45]. A
maximum-likelihood decoding algorithm can be efficiently performed for small
n [46], but is impractical as n increases. For decoding BWn with large n,
bounded-distance decoder [47] and the recently proposed recursive bounded-
distance decoder [48,49] are suitable.

The BW16 lattice provides a shaping gain of 0.86 dB. Similar to the E8 lattice,
the BW16 lattice will also be employed to build a high-dimensional shaping lattice
in this dissertation.

2.3.4 Leech Lattice

At dimension n “ 24, the most famous lattice is the Leech lattice Λ24 introduced
by J. Leech in 1964 [50]. See also [51]. There have been developed a variety
of constructions for Λ24, and one of the constructions is related to the extended
binary Golay code C, defined by:

Λ24 “

"
x P Z24

ˇ̌
ˇ̌ xi ” a pmod 2q,

pxi ´ aq

2
P C,

24ÿ

i“1

xi ” 4a pmod 8q

*
. (2.63)

42

A generator matrix of the Leech lattice is given by:

p
1

2
?

2
q ¨

»
————————————————————————————————————–

1 0

1 2 0

1 0 2 0

1 2 2 2 0

1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 2 2 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 2 0 0 0 0 2 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 0 2 0 0 0 2 0 0 2 4 0 0 0 0 0 0 0 0 0 0

1 0 2 0 0 0 2 0 0 0 2 0 2 0 4 0 0 0 0 0 0 0 0 0

1 2 2 2 2 2 2 0 2 2 2 0 2 0 0 4 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

1 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 2 4 0 0 0 0 0 0

1 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 2 0 4 0 0 0 0 0

1 0 0 2 2 2 2 0 2 2 2 0 0 0 0 0 2 0 0 4 0 0 0 0

1 0 0 2 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 4 0 0 0

1 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 0 4 0 0

1 0 0 2 2 0 0 0 0 0 2 0 2 0 0 0 2 0 0 0 0 0 4 0

-3 0 0 0 2 2 2 4 2 2 2 4 2 4 4 4 2 4 4 4 4 4 4 8

fi
ffifl

.

(2.64)

There exist several algorithms for quantizing the Leech lattice [5, 45, 52–54].
More efficient algorithms were proposed in [55, 56]. Sphere decoding algorithms
given in [57,58] can also be used for quantization.

Due to its good shaping gain as high as 1.03 dB, the Leech lattice is also
suitable for shaping, and will be used for shaping high-dimensional coding lattices
in Chapter 7.

43

2.4 Concluding Remarks

This chapter addressed preliminaries, such as the definition and description of
lattices, the Voronoi region of lattices, and other important properties of lattices.
They all together form a basis for understanding the following chapters.

Lattice basis, lattice cosets, nested lattices, identical lattices, lattice scaling and
direct sum of lattices are corresponding to the design and construction of lattices
and lattice codes, as will be described in Chapters 3–7.

Lattices based on Construction A and Construction D’ are the main focus of
this dissertation. The encoding and decoding of Construction D’ will be addressed
in Chapter 4. Lattice constructions of using Construction A and Construction D’
will be given in Chapters 4–6.

Lattice quantization associated with the normalized second moment as well as
the shaping gain will be used for finding convolutional code lattices with best trade
off between the shaping gain and the quantization complexity. This part will be
presented in Chapter 6.

The E8 lattice, the BW16 lattice and the Leech lattice will contribute the
shaping gain by forming nested lattice codes with Construction D’ lattices, as will
be shown in Chapter 7.

44

Chapter 3

Nested Lattice Codes

A coding lattice Λc and a shaping lattice Λs are needed to form a nested lattice
code1. A nested lattice code is the intersection of Λc and the zero-centered Voronoi
region of Λs, and is also called a Voronoi code/constellation [4, 5]. The shaping
lattice Λs is used as a lattice quantizer [17] for the coding lattice Λc whose average
transmit power is thus reduced, and the power reduction is measured by the
normalized second moment (NSM) of the Voronoi region of Λs. The shaping gain
tells how good the NSM of a region is, comparing with the NSM of a hypercube—
the Voronoi region of an integer lattice Zn. Thus hypercubical constellations (or
Zn) have 0 dB of shaping gain.

A nested lattice code C can be constructed if and only if Λs is a sublattice
of Λc. This is introduced in Section 3.1. If the shaping lattice Λs is an integer-
scaled version of the coding lattice Λc, then Λs and Λc form a self-similar nested
lattice code. As pointed out in Chapter 2, lattice scaling does not change the
error-correction capability if the noise is suitably normalized, and it also scales the
Voronoi region but does not change the shaping gain. A self-similar C in general
does not necessarily provide both good coding and shaping properties because Λc

and Λs have competitive design requirements [30, 31]. A pair of distinct lattices
Λc and Λs forming a nested lattice code C is desirable, where Λc has good coding
properties and Λs has good shaping properties. When Λs is a sublattice of Λc but is
not an integer-scaled version of Λc, they form a non self-similar nested lattice code.
This was used in past work: shaping low-density lattice codes (LDLC) using the
E8 lattice and the BW16 lattice [32], convolutional code lattices [9], and shaping
LDA lattices using the Leech lattice [33]. These results show that Λc and Λs can be
designed to provide both good coding properties and efficiently achievable shaping
gains. Thus in this dissertation, non self-similar nested lattice codes are used.

Encoding maps information to lattice codewords, and indexing is the inverse
operation. Conway and Sloane [4] studied encoding and indexing which can only

1Some authors refer to a coding lattice as a fine lattice, and call a shaping lattice a coarse
lattice.

45

be applied to self-similar codes. The methods suitable for more general nested
lattice codes were proposed in [16, 59] and used in [32]. If the check matrix of
Λc and the generator matrix of Λs are triangularizable, the indexing of nested
lattice codes can be straightforwardly performed. In this chapter, the matrices
are assumed lower triangular for encoding and indexing. The encoding method
is briefly described, followed by the main contribution of this chapter, that is, an
indexing algorithm modified from [16, Sec. IV-B]. This modified method overcomes
the integer overflow problem for high-dimensional lattices since bounding values
for integers are found.

After that, the coding scheme used in this dissertation is addressed, which
additionally considers the indexing for nested lattice codes compared with [3],
approaching to practical applications. The shaping gain provided by a nested
lattice code with respect to the Λs can be observed when compared with hypercube
shaping, that instead uses a hypercubical constellation. Section 3.5 presents a
method to generate hypercubical constellations for Construction D’ lattices that
is simpler than the conventional method [30].

3.1 Nested Lattice Codes

A nested lattice code C is constructed using two lattices: a coding lattice Λc and
a shaping lattice Λs, that satisfy:

Λs Ď Λc, (3.1)

which is referred to as the sublattice condition [36, p. 179]. Let V be the zero-
centered Voronoi region of the shaping lattice Λs, then a nested lattice code is
defined by:

C “ Λc X V . (3.2)

A shift of Λs by a lattice point λ P Λc defines a relative coset (2.12) that
contains all lattice points of Λc relative to Λs with respect to a vector λ P Λc,
expressed as: λ ` Λs. The relative cosets form a quotient group Λc{Λs, and each
distinct relative coset can be represented by a unique coset leader in V . Thus C is
the set of coset leaders of Λc{Λs. The union of Λc{Λs is:

Λc “
ď

λ1PC
pλ1 ` Λsq, (3.3)

46

which can also be decomposed into the union of shifts of lattice codebook C by Λs

expressed as:

Λc “
ď

λ2PΛs

pλ2 ` Cq. (3.4)

A good property of nested lattice codes is that by shaping Λc with the Voronoi
region V of Λs the resulting codewords meet power constraint, and satisfy a
distribution with zero mean.

Let Gc and Gs be a generator matrix of a coding lattice Λc and a shaping
lattice Λs respectively. The check matrix of Λc is

Hc “ G´1
c . (3.5)

Lemma 3.1 [16, Lemma 1] Λs Ď Λc if and only if HcGs is a matrix of integers.

Proof Let Gsb P Λs. The point Gsb is a point in Λc if and only if HcGsb is a
vector of integers. For an arbitrary b P Zn, this is true if and only if HcGs is a
matrix of integers. ˝

The codebook size of C is given by

|C| “ |Λc{Λs| (3.6)

“
|1{V pΛcq|

|1{V pΛsq|
(3.7)

“
|V pΛsq|

|V pΛcq|
(3.8)

“

ˇ̌
det pGsq

ˇ̌
ˇ̌
det pGcq

ˇ̌ . (3.9)

Thus the rate of a nested lattice code C is defined:

R “
1

n
log2

ˇ̌
C
ˇ̌

(3.10)

“
1

n
log2

ˇ̌
det pGsq

ˇ̌
ˇ̌
det pGcq

ˇ̌ . (3.11)

3.2 Encoding

The mapping from integers to a lattice codeword in C is called encoding [16].
Assume that Hc and Gs are lower triangular. Let hi,i and gi,i be diagonal elements

47

of Hc and Gs for i “ 1, 2, . . . , n. It follows that

Mi “ hi,igi,i is a positive integer. (3.12)

Let information be represented by a vector of integers b where

bi P t0, 1, . . . ,Mi ´ 1u (3.13)

and position i encodes log2Mi bits. Encoding is bijectively mapping a vector of
integers b to a lattice codeword x1 P C, where the number of codewords (3.9) can
also be written as

|C| “
nź

i“1

Mi. (3.14)

The lattice codeword is given by:

x1 “ x mod Λs, (3.15)

where x P Λc can be found by solving2 Hcx “ b. Here Hc need not be lower
triangular but needs to be triangularizable using a unimodular transformation.

The lattice shaping operation is performed using (3.15). If a codebook (or a
constellation) is nonhypercubical, the shaping gain (2.42) can be obtained.

Note that dithering is omitted when encoding and indexing are discussed for
simplicity, and will be described in Section 3.4.

3.3 Indexing

The inverse of encoding is called indexing that maps a lattice codeword x1 P C to
the vector of integers b used by the encoder. Note that x1 and x “ Gcb are in
the same coset, so when x ‰ x1, in general, using Hcx

1 cannot recover b and thus
an indexing method is necessary. This can be done by a systematic procedure as
suggested in [16, Sec. IV-B]. The modulo-Λs expression (3.15) can also be written
as

x1 “ Gcb´QΛspGcbq, (3.16)

2As addressed in Subsection 2.1.2, solving Hcx “ b is equivalent to compute x “ Gcb for
Hc “ G´1

c , which is useful for Construction D’ lattices as will be introduced in the next chapter.

48

where QΛs is a lattice quantizer (2.16) that finds the nearest lattice point in Λs

given a point. Let

b1 “ Hcx
1. (3.17)

Multiply Hc on the left of both sides of (3.16) so that

b1 “ b´HcQΛspGcbq. (3.18)

The indexing can be performed by finding t P Zn that satisfies

QΛspGcbq “ Gst (3.19)

such that

b1 “ b´HcGst, (3.20)

where Gst is the nearest lattice point in Λs of the lattice point x “ Gcb P Λc.

The triangular structure of HcGs is used which is expressed as

HcGs “

»
———–

θ1,1 0 ¨ ¨ ¨ 0
θ2,1 θ2,2 ¨ ¨ ¨ 0

...
...

. . .
...

θn,1 θn,2 ¨ ¨ ¨ θn,n

fi
ffiffiffifl , (3.21)

where θi,i “ Mi as given in (3.12). The indexing algorithm was described in [16,
Sec. IV-B] and is quoted3 here.

3The notation was changed accommodate to the expression used in this chapter. Also, the
notation t and t used in this section is distinct from that of (2.18) and Section 3.5.

49

The first line of (3.20) is

b11 “ b1 ´M1t1, (3.22)

which has solution b1 and t1 given by

b1 “ b11 modM1, and (3.23)

t1 “
b1 ´ b

1
1

M1

. (3.24)

For following lines i “ 2, . . . , n:

b1i “ bi ´
` i´1ÿ

j“1

θi,jtj
˘
´Miti (3.25)

has solution

bi “
`
b1i `

i´1ÿ

j“1

θi,jtj
˘

modMi, and (3.26)

ti “
bi ´ b

1
i ´

ři´1
j“1 θi,jtj

Mi

. (3.27)

Consider high-dimensional nested lattice codes. As the integers bi, ti are found
sequentially (3.25), the values for ti (3.27) can become extremely large4 which
leads to an integer overflow problem in practical implementations, depending on
the elements of HcGs and especially when Gs has large scaling. An integer overflow
problem will cause a failure when recovering the information even in the absence
of noise, and thus needs to be avoided.

3.3.1 Indexing of High-Dimensional Nested Lattice Codes

Now a modified method suitable for indexing high-dimensional nested lattice codes
is proposed. This is to obtain the same solution of b P Zn given a lattice codeword
x1 P C without computing the sum of large-valued integers used internally. The

4For example, when performing the indexing for the code construction of using convolutional
code lattice scaled by 20 which is based on polynomials p73, 57, 41q as will be shown in
Subsection 7.2.2, it might involve the value of ti as large as 1030 at dimension n “ 1152 and 10300

at dimension n “ 10008. Even though t is only used internally, in MATLAB implementation,
the latter case will cause an integer overflow problem.

50

principle is to use the linearity. Since a lattice is linear, a lattice point can be
represented by the sum of two lattice points. A lattice is generated by the integer
combinations of its generator basis vectors and thus its corresponding integer
vector can also be written as the sum of two vectors of integers.

Instead of using (3.20) an integer vector s P Zn is introduced such that

b1 “ b`HcGss´HcGse, (3.28)

where

e “ t` s (3.29)

will be shown to be a vector of bounded-valued integers. The solution b can be
found without explicitly computing t and s, thus the integer overflow problem can
be avoided. How to obtain a value of s without changing the solution of b will be
given in Appendix A and the value might not be unique. However it needs not be
explicitly calculated as will be shown in the remaining of this subsection.

To find b and e, these equations are solved sequentially first for i “ 1, then
i “ 2, . . . , n. The first line of (3.28) is

b11 “ b1 `M1s1 ´M1e1. (3.30)

Then for i “ 2, . . . , n:

b1i “ bi `
i´1ÿ

j“1

θi,jsj `Misi ´
i´1ÿ

j“1

θi,jej ´Miei. (3.31)

Firstly, the solution of bi is found as follows. To obtain ei, write

qi “ si `
i´1ÿ

j“1

θi,j
Mi

sj (3.32)

but si need not be computed. Then qi should be chosen such that ei is bounded
and after ei is obtained as indexing proceeds, the value is used for i ` 1, . . . , n.
The solution b of (3.28) is the same as that of (3.20) by choosing qi such that

qi
lcm pMi`1, . . . ,Mnq

is an integer. (3.33)

The algorithm is given as follows. The solution of (3.30) is b1 and e1 given by

b1 “ b11 modM1, and (3.34)

e1 “
b1 ´ b

1
1

M1

mod lcm pM2,M3, . . . ,Mnq. (3.35)

51

Then for i “ 2, . . . , n, (3.31) has solution bi and ei given by

bi “ b1i `
i´1ÿ

j“1

θi,jej modMi, and (3.36)

ei “
bi ´ b

1
i ´

ři´1
j“1 θi,jej

Mi

mod lcm pMi`1, . . . ,Mnq (3.37)

where the integer 0 ď ei ă lcm pMi`1, . . . ,Mnq is thus bounded—this is practical.

Triangular Hc and Gs allow efficient encoding and indexing, where Hc and Gs

can be obtained from triangularizable full-rank check matrix and generator matrix
of Λc and Λs respectively. The author has not yet found a straightforward method
to index nested lattice codes using non-triangular matrices.

3.4 Coding Scheme

Erez and Zamir [3] proposed a coding scheme using nested lattice codes with dither-
ing and minimum mean-square error (MMSE) scaling techniques that can achieve
the capacity of the power-constrained AWGN channel, which is transformed into
a modulo-lattice additive noise channel. This dissertation uses a similar coding
scheme, but additionally include the indexing. Since this work considers primarily
high rate codes in the high-SNR domain, the MMSE scaling is close to 1. As
proven by di Pietro, Zémor, and Boutros [15], dithering is not mandatory because
lattice points of Λc at high code rate fill well in the Voronoi region of Λs.

Let the dither U be uniformly distributed in Voronoi region of Λs, which is
independent of the lattice point x of Λc. Instead of using (3.15), a vector

x2 “ x´U mod Λs (3.38)

is sent to the AWGN channel. The average transmitted power per symbol

Es “
1

n
Er}x2}2s “

1

n
E
“
}U}2

‰
, (3.39)

can also be represented by

Es “ NSM ¨ V 2{n
pΛsq, (3.40)

where NSM is the normalized second moment5 and V pΛsq is the volume of Λs. The
MMSE scaling coefficient α is defined

α “
Es

Es ` σ2
, (3.41)

5See equations (2.36) and (2.41).

52

M
o
d
u
lo
´

Λ
s

A
d
d
it

iv
e

N
oi

se
C

h
an

n
el

A
W
G
N

C
H
A
N
N
E
L

E
n
cpΛ

c
q

`
b

x

U

´
m

o
d

Λ
s

`w

x
2

Bα
y

2
` `

D
ec
pΛ

c
q

y
In

d
ex

p x2
p b

F
ig

u
re

3.
1:

B
lo

ck
d
ia

gr
am

of
n
es

te
d

la
tt

ic
e

co
d
es

w
it

h
a

d
it

h
er

va
ri

ab
le

U
u
n
if

or
m

ly
d
is

tr
ib

u
te

d
ov

er
th

e
V

or
on

oi
re

gi
on

of
Λ

s
an

d
a

“W
ie

n
er

co
effi

ci
en

t”
α

w
as

ch
os

en
fo

r
M

M
S
E

.

53

where 0 ď α ď 1.

The signal-to-noise ratio (SNR) is defined as

SNR “
Es

σ2
. (3.42)

Thus α can also be expressed

α “
SNR

1` SNR
. (3.43)

Given a received sequence

y2 “ x2 `w, (3.44)

where w is noise, the input to the decoder is computed

y “ αy2 `U. (3.45)

See [3, 33].

The average transmitted power per bit can be computed

Eb “
Es

R
. (3.46)

This dissertation measures the decoding error rate of nested lattice codes as a
function of SNR per bit, expressed as

Eb

N0

“
Eb

2σ2
(3.47)

“
SNR

2R
, (3.48)

where N0 is the noise power spectral density, and Eb{N0 is given in decibels as:
10 log10pEb{N0q dB. To observe the shaping gains, it is convenient to define the
Shannon limit in terms of Eb{N0 as

Eb

N0 Shannon limit

“ 10 log10

22R ´ 1

2R
(3.49)

given in decibels.

54

3.5 Hypercube Shaping

As addressed in Section 3.2, a nonhypercubical constellation provides the shaping
gain. For comparison, hypercube shaping is introduced. This was used for LDLC
lattices [30], the E8 lattice [60], and for Construction A lattices based on LDPC
codes [31]. Lattice points of Λc are transformed into lattice points in a hypercube6

B “ t0, 1, . . . , L´ 1un, (3.50)

for an even integer L. This allows lattices to be evaluated in a power-constrained
channel, but no shaping gain is obtained. How to generate a hypercubical
constellation is briefly described and then simplified especially for Construction
D’ lattices.

Given a vector of integers b:, in general a lattice point x: “ Gcb
: is not in B.

Note that Gc is not necessary because x: “ Gcb
: is equivalent to solve Hcx

: “ b:.
For i “ 1, 2, . . . , n, hypercube shaping [30, Subsec. III-A] finds integers bi “ b:i´Liti
such that a lattice point

x “ Gcb P B, (3.51)

for an integer

Li “ Lhi,i, (3.52)

where an integer b:i P t0, 1, . . . , Li ´ 1u and ti P Zn. This can be performed as
follows.

For i “ 1, . . . , n, the integer ti is found sequentially:

ti “

[
1

Li

´
b:i ´

i´1ÿ

j“1

hi,jxj

¯W
, (3.53)

where hi,j is an entry of Hc at row i, column j. The solution to (3.53) is

bi “ b:i ´ Liti, and (3.54)

xi “ bi ´
i´1ÿ

j“1

hi,jxj. (3.55)

6The intersection of Λc and B can form a nested lattice code with a hypercubical constellation.

55

In practice, a vector x´ L´1
2

that is uniformly distributed in a hypercube

#
´
L´ 1

2
,´

L´ 3

2
, . . . ,´

1

2
,
1

2
, . . . ,

L´ 3

2
,
L´ 1

2

+n

, (3.56)

is transmitted to the channel instead. This is to reduce the average transmitted
power, which is thus given by:

E 1s “
1

L

L´1ÿ

j“0

´
´
L´ 1

2
` j

¯2

. (3.57)

The code rate is defined

R1 “
1

n
log2

Ln

|det pGcq|
. (3.58)

3.5.1 Simplified Method Performing Hypercube Shaping
for Construction D’ Lattices

Consider an a-level Construction D’ lattice Λc. Let an integer L be a multiple of
2a. The procedure given above can be simplified. Let Λc be described by a lower-
triangular check matrix Hc with diagonal elements hi,i for i “ 1, . . . , n, and let LIn
be a generator matrix of the “shaping lattice” LZn where In is an identity matrix
of size n. Choose L such that the product of Hc and LIn is a matrix of integers.
The information vector consists of integers in t0, 1, . . . , Lhi,i ´ 1u. Performing
modulo-L on a lattice point x: of Λc is the “shaping” operation reducing x: into
a hypercube t0, 1, . . . , L´ 1un, written as

x “ x: modL, (3.59)

which does not require sequential computation. Recover the integers from an
estimated lattice point px is straightforward. Let pb “ tHc ¨ pxs, then

pb:i “ pbi modLhi,i (3.60)

is computed, for i “ 1, 2, . . . , n.

The work in [12] can also produce a hypercubical constellation for Construction
D’, but this dissertation performs hypercube shaping with respect to the decoding
algorithm that will be described in Chapter 4.

For an a-level Construction D’ lattice with hypercube shaping, it is natural to
use 2a-PAM signalling. For the shaped lattice codes in this dissertation, the lattice

56

points x are integers due the use of Construction D’ as will be introduced in the
next chapter; however greater than 2a modulation levels are required. Construction
D’ lattices with hypercube shaping can also use greater than 2a modulation levels,
but no shaping gain is provided.

3.6 Concluding Remarks

Nested lattice codes can provide both good coding properties and high shaping
gain, if the component lattices are chosen with desirable properties and using
a coding scheme described in [3]. And this nested lattice coding scheme was
extended in this dissertation such that indexing operation was included. If the
underlying lattices have high dimensions, an integer overflow problem might occur
when the existing indexing algorithm is implemented—this can be avoided using
the modified algorithm proposed in this chapter. Hypercube shaping was also
introduced for comparisons, as will be shown in Chapter 7.

57

Chapter 4

Construction D’ Lattices

Construction D’ lattices are built from nested binary linear codes. The definition
of nested binary linear codes is reviewed. Then a definition of Construction D’
using a check-matrix perspective which is equivalent to the congruences definition
is presented. After that, how to form lattices from nested binary codes using
Construction D’ is shown. Lastly two equivalent encoding methods and a decoding
algorithm for Construction D’ lattices to be used in power-constrained channels
are proposed. In this chapter the check matrix instead of the generator matrix
is used, because it provides the benefit for lattices designed using LDPC codes,
which are conveniently described by parity-check matrices.

4.1 Lattices Based on Construction D’

Lattices can be constructed using Construction D’ and nested binary linear codes.

4.1.1 Nested Linear Codes

Definition 4.1 Let row vectors h1,h2, . . . ,hn be a basis for Fn2 . For level a ě 1,
C0 Ď C1 Ď ¨ ¨ ¨ Ď Ca “ Fn2 are nested linear codes if hki`1, . . . ,hn are ri “ n ´ ki
parity-checks for Ci, where ki denotes the dimension of code Ci whose rate is Ri “

ki{n. That is, a codeword rx P Ci if and only if:

hj d rx “ 0, (4.1)

for j “ ki ` 1, ki ` 2, . . . , n and i “ 0, 1, . . . , a´ 1.

58

The n-by-n matrix of row vectors is denoted

rH “

»
——————–

— h1 —

— h2 —
...

— hn —

fi
ffiffiffiffiffiffifl

(4.2)

The matrix rH0 is the parity-check matrix for C0, and consists of r0 rows, from
hk0`1 to hn. The matrix rH1 is the parity-check matrix for C1, and consists of r1

rows, from hk1`1 to hn, and so on. This illustrates that the parity-check matrix for
C0 contains the check matrices for the supercodes C1, . . . , Ca´1. The basis vectors
h1 to hk0 do not contribute to the error-correction capability of the code, but are

selected so that rH is a unimodular 1 matrix.

4.1.2 Definition of Construction D’

Construction D’ converts a set of parity-checks defining nested linear codes
into congruences for a lattice [6, p. 235]. A vector x satisfies a congruence
h “ rh1, . . . , hns with respect to a modulo value q if:

h ¨ x ” 0 pmod qq. (4.3)

A congruence can be expressed in an equivalent way. Let h1 “ h{q. Then x
satisfies this congruence if and only if:

h1 ¨ x is an integer. (4.4)

Any x satisfying (4.3) will also satisfy (4.4).

Two equivalent definitions of Construction D’ are given. The conventional
definition of Construction D’ uses congruences of parity-checks of nested binary
codes.

Definition 4.2 [Construction D’ (congruences)] [6, p. 235] Let C0 Ď C1 Ď ¨ ¨ ¨ Ď

Ca “ Fn2 be nested binary linear codes. Let the dimension of Ci be ki. Let
h1,h2, . . . ,hn be a basis for Fn2 such that Ci is defined by n ´ ki parity-check
vectors hki`1, . . . ,hn. Then the Construction D’ lattice is the set of all vectors
x P Zn satisfying the congruences:

hj ¨ x ” 0 pmod 2i`1
q, (4.5)

1A unimodular matrix is a square integer matrix with determinant `1 or ´1.

59

for all i P t0, . . . , a´ 1u and ki ` 1 ď j ď n.

Instead of congruences, the following definition uses the check matrix which is
defined as H “ G´1 where G is a generator matrix. This is the definition used in
low-density lattice codes [7], and is distinct from the definition of [11]. Note also
that the check matrix of a Construction D’ lattice is related to, but distinct from,
the parity-check matrices of the corresponding binary codes.

Definition 4.3 [Construction D’ (check matrix)] Let a unimodular matrix rH be
the parity-check matrix of nested linear codes C0 Ă C1 Ă ¨ ¨ ¨ Ă Ca “ Fn2 . The
dimension of Ci is ki for i “ 0, 1, . . . , a, and it has ki ă ki`1. Let D be a diagonal
matrix with entries:

dj,j “ 2´i, (4.6)

for ki´1 ă j ď ki where k´1 “ 0 and ka “ n. Then the Construction D’ lattice is
the set of all vectors x satisfying:

H ¨ x are integers, (4.7)

where

H “ D ¨ rH (4.8)

is the lattice check matrix.

The following proposition shows that the two definitions are equivalent.

Proposition 4.1. Let h1, . . . ,hn in Definition 4.2 be the rows of rH in Def-
inition 4.3. Then the lattice given by Definition 4.2 is identical to the lattice
of Definition 4.3.

Proof It should be clear that because the congruences in (4.5) can be expressed
as (4.4), then relevant rows of check matrix H are an alternative form of the
respective congruences. However, the definition of check matrix H in this chapter
does not include Definition 4.2’s restriction to x P Zn. To achieve this, it is required
that rH is unimodular, so that the Construction D’ lattice in Definition 4.3 satisfies
Λ Ă Zn. To see this, G “ H´1 “ rH´1 ¨D´1. Since rH is unimodular, rH´1 is an
integer matrix. D´1 also is a matrix of integers. Thus G is an integer matrix and
Λ Ă Zn. ˝

As a matter of design, after rH0 to rHa´1 are fixed, the upper rows of rH should
be chosen such that rH is unimodular; it is also convenient to choose these upper
rows so that rH is approximate lower triangular (ALT) form.

60

Volume of Construction D’ Lattices

The volume of an n-dimensional Construction D’ lattice Λ is given

V pΛq “ 2an´
řa´1

i“0 ki , or (4.9)

“ 2
řa´1

i“0 ri . (4.10)

Since the code rate of Ci is Ri “ ki{n, the volume can also be expressed as

V pΛq “ 2an´n
řa´1

i“0 Ri . (4.11)

It will sometimes be convenient to write

V pΛq2{n “ 4a´
řa´1

i“0 Ri . (4.12)

Thus the VNR is simply computed using (2.35).

Example 4.1 Let nested binary codes C0 Ă C1 be described by parity-check
matrices rH0, rH1, given by:

rH0 “

»
–

1 0 0 1
0 1 1 1
1 0 1 0

fi
fl , and (4.13)

rH1 “
“
1 0 1 0

‰
, (4.14)

where the parity check of C1 is also a parity check for C0. The subcode C0 has
dimension k0 “ 1 and rate R0 “ 1{4. The supercode C1 has dimension k1 “ 3 and
rate R1 “ 3{4.

Add a top row r1, 0, 0, 0s to rH0 such that the resulting matrix

rH “

»
——–

1 0 0 0
1 0 0 1
0 1 1 1
1 0 1 0

fi
ffiffifl (4.15)

is unimodular. Let a diagonal matrix D be

D “

»
——–

1 0 0 0
0 1{2 0 0
0 0 1{2 0
0 0 0 1{4

fi
ffiffifl . (4.16)

61

Then the check matrix of an a “ 2-level Construction D’ lattice Λ4
D1 is obtained

using Definition 4.3:

H “ D ¨ rH (4.17)

“

»
——–

1 0 0 0
0 1{2 0 0
0 0 1{2 0
0 0 0 1{4

fi
ffiffifl ¨

»
——–

1 0 0 0
1 0 0 1
0 1 1 1
1 0 1 0

fi
ffiffifl (4.18)

“

»
——–

1 0 0 0
1{2 0 0 1{2
0 1{2 1{2 1{2

1{4 0 1{4 0

fi
ffiffifl , (4.19)

which is a real-valued square matrix. The volume of the n “ 4-dimensional lattice
Λ4
D1 is obtained using (4.11): V pΛ4

D1q “ 16.

Whether a vector is a lattice point of Λ4
D1 can be verified using (4.7). Given

two vectors

x1 “

»
——–

1
´36
35
3

fi
ffiffifl , and x2 “

»
——–

1
1
2
6

fi
ffiffifl . (4.20)

Observe that x1 P Λ4
D1 but x2 R Λ4

D1 . This is because

H ¨ x1 “

»
——–

1
2
1
9

fi
ffiffifl is a vector of integers, (4.21)

but

H ¨ x2 “

»
——–

1
7{2
9{2
3{4

fi
ffiffifl contains non-integer entries. (4.22)

If taking the inverse of H the generator matrix of Λ4
D1 is written as:

G “ H´1
“

»
——–

1 0 0 0
2 ´2 2 ´4
´1 0 0 4
´1 2 0 0

fi
ffiffifl , (4.23)

62

and any integer vector b P Z4 produces G ¨ b ‰ x2.

Also, the congruences perspective in Definition 4.2 can be used for verification.
Write the parity-check basis vectors of rH as h1 “ r1, 0, 0, 0s, h2 “ r1, 0, 0, 1s,
h3 “ r0, 1, 1, 1s, and h4 “ r1, 0, 1, 0s. When i “ 0, for x1 there are h2¨x1 mod 2 “ 0,
h3 ¨ x1 mod 2 “ 0, and h4 ¨ x1 mod 2 “ 0, but for x2 there are h2 ¨ x2 mod 2 “
1, h3 ¨ x2 mod 2 “ 1, and h4 ¨ x2 mod 2 “ 1. Similarly when i “ 1, there is
h4 ¨ x1 mod 4 “ 0 but h4 ¨ x2 mod 4 “ 3. Observe that x1 satisfies (4.5) but x2

does not, thus x1 is a lattice point in Λ4
D1 but x2 isn’t.

4.2 Encoding

Two equivalent encoding methods are given. Encoding method A finds a lattice
point x given b P Zn using its check matrix H in the ALT form. Encoding
method B describes explicitly how information bits ui of the component binary
linear code Ci are mapped to a vector of integers b and a lattice point. The
two encoding methods can be applied to produce nonhypercubical constellations,
which is distinct from the encoding in [12].

4.2.1 Encoding Method A

Near linear-time encoding of LDPC codes can be accomplished using parity-check
matrix in the ALT form [61]. This subsection draws inspiration from this idea, to
implement encoding of Construction D’ lattice Λ with a similar procedure. The
steps are distinct from [61] because check matrix H of Λ is a real-valued square
matrix.

A vector of integers b is provided and its corresponding lattice point x is found
by solving:

H ¨ x “ b. (4.24)

If H is not too big, then x can be found by matrix inversion:

x “ H´1
¨ b. (4.25)

If H is large but is sparse and in the ALT form, as may be expected for
Construction D’ lattices based on LDPC codes, then the following procedure can
be used.

63

Suppose that H is in the ALT form, that is, it is partially lower triangular.
Specifically, H can be written as:

H “

„
B A

X C


, (4.26)

where A is an s-by-s lower-triangular matrix with non-zero elements on the
diagonal; X is a g-by-g square matrix. The “gap” is g—the smaller the gap,
the easier the encoding. Let

∆ “ pX´CA´1Bq´1. (4.27)

The blockwise inverse [62] of H is:

H´1
“

„
´∆CA´1 ∆

A´1 `A´1B∆CA´1 ´A´1B∆


. (4.28)

Using the block structure, H ¨ x “ b can be written as:

„
B A

X C


¨

»
——————–

x1
...
xg
xg`1

...
xn

fi
ffiffiffiffiffiffifl
“

»
——————–

b1
...
bg
bg`1

...
bn

fi
ffiffiffiffiffiffifl
. (4.29)

To perform encoding, first x1, . . . , xg are found using (4.28):

»
–
x1
...
xg

fi
fl “

“
´∆CA´1 ∆

‰
¨ b. (4.30)

Then, coordinates xg`1, . . . , xn are found sequentially by back-substitution, using
the lower triangular structure of H which has entry hj,w in row j, column w. For
w “ g ` 1, . . . , n:

xw “
1

hj,w

ˆ
bj ´

w´1ÿ

l“1

hj,lxl

˙
(4.31)

where j “ w ´ g.

This method is efficient when g is small and H is sparse. It uses pre-
computation and storage of the g-by-n matrix in (4.30). The sum in (4.31) is

64

performed over the few non-zero terms in sparse H. If the check matrix H is
purely triangular, then encoding is simply performed by back-substitution.

Example 4.2 Consider a 10-dimensional Construction D’ lattice Λ10
D1 generated

by nested binary codes C0 Ă C1 with parity-check matrix rH0 and rH1, respectively.
Let Λ10

D1 be described by a check matrix H in the ALT form, expressed as:

H “

1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 0 1{2 1{2 0 1{2 0 0 0 0

1{2 0 0 1{2 0 1{2 1{2 0 0 0

1{2 0 1{2 1{2 0 0 0 1{2 0 0

0 0 0 1{2 1{2 0 0 1{2 1{2 0

0 0 0 1{4 1{4 0 1{4 1{4 0 1{4

1{4 1{4 1{4 0 0 1{4 0 0 0 1{4

1{4 0 1{4 1{4 0 1{4 1{4 0 1{4 0

»
—————————————————–

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

1
2
rH0

1
4
rH1

, (4.32)

where the block partition follows (4.26). Assume an integer vector b “

r1, 2, 0, 2, 4, 0, 2, 0, 2, 1st. Using (4.30) the first two positions of the lattice point
x are computed: x1 “ ´11, x2 “ 52. Then applying (4.31) a lattice point
x “ r´11, 52, 12,´10, 21, 2, 27, 9,´16,´47st is obtained.

4.2.2 Encoding Method B

Encoding can also be performed by mapping the message sequence consisting of
information vectors ui P Fki2 of the component binary codes Ci for i “ 0, 1, . . . , a´1
and an integer vector z P Zn to a lattice point x. In addition, how ui, z of method B
correspond to integers b of method A with respect to a lattice point x is explicitly
shown, to establish the equivalence of method A and method B.

For clarity, consider a “ 3. The integer vector b is related to u0,u1,u2 and z
as:

bj “ u0j ` 2u1j ` 4u2j ` 8zj, for 1 ď j ď k0 (4.33)
bj “ u1j ` 2u2j ` 4zj, for k0 ă j ď k1 (4.34)
bj “ u2j ` 2zj, for k1 ă j ď k2 (4.35)
bj “ zj, for k2 ă j ď n (4.36)

65

Let u1i be the zero-padded version of ui for i “ 0, 1, . . . , a´1, to have n components:

u1i “ rui1 , ui2 , . . . , uiki , 0, . . . , 0loomoon
n´ki

s
t. (4.37)

Given a diagonal matrix D with entries dj,j “ 2´i for ki´1 ă j ď ki where k´1 “ 0,
and 2´a for the remaining diagonal entries. Then, the integer vector b is written
as:

b “ D ¨ pu10 ` 2u11 ` 4u12 ` 8zq, (4.38)

where D is given Definition 4.3.

For Construction D’, the lattice point x may be decomposed as:

x “
aÿ

i“0

2ixi, (4.39)

with components xi depending on ui expressed below; xi are not necessarily binary.

Now how information bits are related to a lattice point is described, to show
that recovering integers from a lattice point is possible. Using (4.8) and (4.38)–
(4.39) there are

H ¨ x “ b (4.40)

rH ¨ x “ D´1
¨ b (4.41)

rH ¨ px0 ` 2x1 ` ¨ ¨ ¨ ` 2axaq “ u10 ` 2u11 ` ¨ ¨ ¨ ` 2az (4.42)

and the lattice components xi P Zn satisfy:

rH ¨ xi “ u1i, for i “ 0, . . . , a´ 1, and (4.43)

rH ¨ xa “ z. (4.44)

Note that encoding performed using (4.43)–(4.44) is equivalent to encoding method
A.

4.3 Decoding

Re-encoding using the generator matrix is typically needed for multistage decoding
of Construction D lattices [63] (see also [10]). To produce hypercubical constel-
lations with Construction D’, multistage decoding may compute cosets instead of

66

re-encoding [12]. For Construction D’, this section extends [63] and performs re-
encoding using the check matrix, and describes a multistage successive cancellation
decoding algorithm for Construction D’ such that nonhypercubical constellations
are allowed. In particular, this decoding algorithm is suitable for Construction
D’ coding lattices to be used with shaping lattices, likewise employing a binary
decoder Deci of Ci, but re-encoding is distinct because it corresponds to encoding
method B. The encoding and decoding scheme is shown in Fig. 4.2, where encoding
method B is to demonstrate the validity of the decoding algorithm.

4.3.1 Lattice Component and Re-encoding

Before proposing the decoding algorithm, there is a need to illustrate why multi-
stage decoding is applicable to Construction D’. Assume a lattice point expressed
in decomposition x “ x0` 2x1` 22x2` ¨ ¨ ¨ ` 2axa was transmitted without noise.
A sequence of operations can be performed recursively for i “ 0, . . . , a ´ 1 to
produce a binary codeword rxi P Ci which will be used in Proposition 4.2. First rx0

is obtained by applying a modulo-2 operation to x, such that the contribution of
2x1 ` 22x2 ¨ ¨ ¨ ` 2axa is removed. Assume that x0 can be found using rx0, and call
this operation re-encoding denoted Re-enc0. Then x0 is subtracted from x and
divided by two, producing x1 ` 2x2 ` ¨ ¨ ¨ ` 2a´1xa to which a modulo-2 operation
is applied such that rx1 is obtained. This iterative procedure can be described as:

rxi “ xi ` 2xi`1 ` ¨ ¨ ¨ ` 2a´ixa mod 2, (4.45)

xi “ Re-enciprxiq, (4.46)

xi`1 ` 2xi`2 ` ¨ ¨ ¨ ` 2a´pi`1qxa “
pxi ` 2xi`1 ` ¨ ¨ ¨ ` 2a´ixaq ´ xi

2
, (4.47)

for i “ 0, 1, . . . , a´1, and proceeds until xa “ px´x0´2x1´¨ ¨ ¨´2a´1xa´1q{2
a is

obtained. The above description provides a foundation such that in each level,
if a lattice component xi can be found using re-encoding from the sequence
reproduced by a separate binary decoder, then a lattice point can be recovered.
The re-encoding is required when decoding Construction D’ lattices. This will be
performed with respect to encoding method B given in Subsection 4.2.2, because
it shows how a lattice component is mapped from binary information bits, which
can be obtained from a binary codeword produced by each level’s decoder. More
details will be given in Subsection 4.3.3.

67

-2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Figure 4.1: Mapping from a real number y P R (horizontal axis) to a real number
y1 P r0, 1s (vertical axis) using the “triangle-function” y1 “ mod˚ pyq.

4.3.2 Mod-2 AWGN Channel in Multistage Decoding

In practice the channel noise shall not be ignored. For multistage successive
cancellation decoding, if the previous level i´1 produces the correct estimates, the
decoder at level i outputs an estimate relying on an independent error probability,
thus each level i P t0, 1, . . . , a ´ 1u can be seen as coding over an independent
channel. For Construction D’ lattices in zero-mean AWGN channel with noise
variance σ2, each level can be regarded as a mod-2 AWGN channel with input xi
and output y1i given by:

y1i “ pxi `wiqmod 2, (4.48)

where the noise wi satisfies a Gaussian distribution with zero mean and noise
variance σ2{4i. This also leads the probability of error design rule to select a family
of nested linear codes such that their corresponding contributions (the probability
of error for decoding the code over the mod-2 channel) to the lattice probability
of error are approximately equal. This design rule was used in [12].

It is evident from the findings in [10, 12, 63] that multistage decoding has
benefits from binary decoders. Likewise, this dissertation proposes a decoding
algorithm for Construction D’ employing binary decoders. This is valid based
upon Proposition 4.2 as will be addressed in the next subsection. There is a need
to convert a received sequence to an appropriate input for the binary decoder. Let
the received sequence of level i be denoted yi P Rn. Assume a binary decoder Deci

68

of Ci is used to find the binary codeword closest to yi, where Deci assumes a binary
0, 1 codeword2 was transmitted over an AWGN channel. Then a mapping from
yi P Rn to y1i P r0, 1sn is required. Note that performing a modulo-2 operation
is essential to remove the contributions from the following levels i ` 1, . . . , a, but
modulo operation should correctly preserve distances to code symbols 0 and 1 as
well. This can be accomplished by:

mod˚ pyiq “
ˇ̌
ˇ̌mod2 pyi ` 1q ´ 1

ˇ̌
ˇ̌, (4.49)

called the “triangle-function”, where mod2 indicates a modulo-2 operation. This
function is also suitable for Construction A3 and Construction D [10].

The mapping using (4.49) is shown in Figure 4.1. An example is given
accordingly to show that performing (4.49) can correctly preserve distances.

Example 4.3 Assume a channel message ´0.05. The modulo-2 operation
produces ´0.05 mod 2 “ 1.95 and the binary decoder recognizes that 1.95 is
closer to 1 instead of 0. If the “triangle-function” in (4.49) is performed, then
|p´0.05 ` 1 mod 2q ´ 1| “ 0.05 is the input to the decoder, and thus correctly
produces 0.

4.3.3 Decoding Algorithm

Proposition 4.2. For Construction D’, the lattice component xi is congruent
modulo 2 to a codeword rxi P Ci, for i “ 0, . . . , a´ 1.

Proof The lattice component xi satisfies rH ¨ xi “ u1i and the codeword satisfies
rHi d rxi “ 0. Recall the last n ´ ki positions of u1i are 0s. Row l of rHi is equal

to row l ` ki of rH, call this row hl. By definition, hl ¨ xi “ 0 and hl d rxi “ 0 for
l “ 1, 2, . . . , n´ ki. Thus, xi mod 2 “ rxi and the proposition holds. ˝

Consider a lattice point x transmitted over a channel and the received sequence
is

y0 “ x`w, (4.50)

2This is distinct from the more conventional BPSK signaling for binary codes, where the
decoders assume t`1,´1u were transmitted.

3The quantization of Construction A lattices as will be given in Section 6.3 is a variant of
Algorithm 2.1, but is valid due to Lemma 2.1. When Construction A is applied, re-encoding is
not needed, because a lattice point is decomposed by a binary codeword and a vector of integers.

69

C
H
A
N
N
E
L

r H
¨x

0
“

u
1 0

`
u
0

x
0

1

r H
¨x

1
“

u
1 1

u
1

x
1

2

r H
¨x

a
´1
“

u
1 a
´1

u
a
´1

x
a
´1

2a
´1

r H
¨x

a
“

z
z

x
a

2a

`w

x
m
o
d
˚

D
ec

0
p u1 0
“

r H
d
p r x 0

r H
¨p x

0
“

p u1 0

y
y
0

y
1 0

p r x 0
p x 0

`
´

D
ec

1
m
o
d
˚

p u1 1
“

r H
d
p r x 1

r H
¨p x

1
“

p u1 1

0.
5

y
1

y
1 1

p r x 1
p x 1

`
´

D
ec

a
´1

m
o
d
˚

p u1 a
´1
“

r H
d
p r x a
´1

r H
¨p x

a
´1
“

p u1 a
´1

0.
5

y
a
´1

y
1 a
´1

p r x a
´1

p x a
´1

`
´

t
¨s

0.
5

y
a

p x a

F
ig

u
re

4.
2:

B
lo

ck
d
ia

gr
am

of
p
ro

p
os

ed
en

co
d
in

g
an

d
d
ec

o
d
in

g
C

on
st

ru
ct

io
n

D
’
la

tt
ic

es
.

m
o
d
˚

d
en

ot
es

th
e

“t
ri

an
gl

e-
fu

n
ct

io
n
”

m
o
d
˚ p

y
iq
“
|m

o
d

2
py

i
`

1q
´

1|
w

h
er

e
m

o
d

2
in

d
ic

at
es

a
m

o
d
u
lo

-2
op

er
at

io
n
.

70

Algorithm 4.1 Decoding Construction D’ Lattices

Input: noisy input y

Output: estimated lattice point px
y0 = y

y10 “ |mod2 py0 ` 1q ´ 1|

prx0 “ Dec0py
1
0q

pu10 “ rHd prx0

solve rH ¨ px0 “ pu10
for i “ 1, 2, . . . , a´ 1 do

yi “ pyi´1 ´ pxi´1q{2

y1i “ |mod2 pyi ` 1q ´ 1|

prxi “ Decipy
1
iq

pu1i “ rHd prxi
solve rH ¨ pxi “ pu1i

end for

ya “ pya´1 ´ pxa´1q{2

pxa “ tyas

px “ px0 ` 2px1 ` ¨ ¨ ¨ ` 2a´1pxa´1 ` 2apxa

where w is noise. Decoding proceeds recursively for i “ 0, 1, . . . , a ´ 1. The
decoding result at level i ´ 1 is used before beginning decoding at level i. Each
level receives yi P Rn as input, which is mapped to a vector y1i using (4.49) with
each element y1j P r0, 1s for j “ 1, 2, . . . , n. For binary decoders using log-likelihood
ratio (LLR) as input, the bit LLR value

LLR “ log
Prprxj “ 0|y1jq
Prprxj “ 1|y1jq

(4.51)

may be estimated as:

LLR “
1´ 2y1j

2σ2
. (4.52)

71

The decoder Deci produces a binary codeword prxi closest to y1i, which is an estimate
of rxi, expressed by:

prxi “ Decipy
1
iq. (4.53)

It is necessary to find pxi. If rxi does not contain an embedded pu1i, first find

pu1i “ rHd prxi. (4.54)

Then re-encoding is performed to find pxi, that is, (4.43). This estimated compo-
nent pxi is subtracted from the input, and this is divided over reals by 2:

yi`1 “ pyi ´ pxiq{2, (4.55)

to form yi`1, which is passed as input to the next level. This process continues
recursively, until ya is obtained. The integers are estimated as

pxa “ tyas. (4.56)

The estimated lattice point is written as

px “ px0 ` 2px1 ` ¨ ¨ ¨ ` 2apxa. (4.57)

This successive cancellation decoding is described in Algorithm Algorithm 4.1.

Re-encoding (4.43) is necessary because it guarantees that an estimated lattice
component is congruent modulo-2 to a codeword of the binary code at each level.

4.4 Alternative Encoding and Decoding

Furthermore, a Construction D’ lattice point can also be generated without the
need to use the zero-padded ui (4.37), but is written as

x “ 2az`
a´1ÿ

i“0

2ixi, (4.58)

and the lattice components xi should be in a systematic form:

xi “ rui1 , ui2 , . . . , uiki , xiki`1
, . . . , xins

t, (4.59)

where xiki`1
, . . . , xin are found to satisfy rHi¨xi “ 0. Note that xi are not necessarily

binary.

72

It can be shown that (4.58) is a lattice point. Write

H ¨ x “ D ¨ prH ¨ x0 ` ¨ ¨ ¨ ` 2a´1 rH ¨ xa´1 ` 2azq. (4.60)

Recognize that the vector rH ¨xi is an integer in rows 1 to ki and is 0 in rows ki`1
to n. The product 2iD ¨ rH ¨ xi is also an integer vector. Thus, H ¨ x is an integer
vector. So the decomposition of x is a lattice point.

Therefore decoding Construction D’ lattices can also be performed using (4.59)
for re-encoding; this is distinct from Algorithm 4.1. The block diagram is given
in Figure 4.3.

4.5 Shaping Construction D’ Lattices

In this section, two examples will be given to show how shaping is performed
as described in Section 3.2 for Construction D’ lattice points using four distinct
shaping lattices: the E8, BW16, Leech, and convolutional code lattices. The coding
lattice Λc is described by a check matrix Hc while the shaping lattice Λs is described
by a generator matrix Gs.

When constructing a nested lattice code using an n-dimensional Construction
D’ lattice for coding and the E8 lattice, the BW16 lattice, or the 24-dimensional
Leech lattice for shaping, the dimension n must be a multiple of 8, 16 or 24,
respectively, such that the direct sum of these low-dimensional lattices produces
an n-dimensional shaping lattice. See Subsection 2.1.6.3. A convolutional code
lattice can be more flexible on dimension as a shaping lattice. More discussions
on their constructions will be addressed in Chapter 6. Also, the shaping lattice is
often scaled to satisfy Lemma 3.1.

Example 4.4 Let the shaping lattice Λs “ 4Λ10
A be described by a generator

matrix Gs, which is the scaled-by-4 version of the matrix GΛ10
A

that will be given
in Example 6.6 in Section 6.2. Let Hc be the triangularized version of the check

73

C
H
A
N
N
E
L

r H
0

¨x
0

“
0

`
u
0

x
0

1

r H
1

¨x
1

“
0

u
1

x
1

2

r H
a
´1

¨x
a
´1

“
0

u
a
´1

x
a
´1

2
a
´1

z
2
a

`w

x
m
o
d
˚

D
ec

0
r H

0
¨p x

0
“

0
y

y
0

y
1 0

p u 0
p x 0

`
´

D
ec

1
m
o
d
˚

r H
1

¨p x
1

“
0

0.
5

y
1

y
1 1

p u 1
p x 1

`
´

D
ec

a
´1

m
o
d
˚

r H
a
´1

¨p x
a
´1

“
0

0.
5

y
a
´1

y
1 a
´1

p u a
´1

p x a
´1

`
´

t
¨s

0.
5

y
a

p z

F
ig

u
re

4.
3:

B
lo

ck
d
ia

gr
am

of
d
ec

o
d
in

g
C

on
st

ru
ct

io
n

D
’

la
tt

ic
es

w
h
er

e
re

-e
n
co

d
in

g
co

rr
es

p
on

d
s

to
th

e
al

te
rn

at
iv

e
en

co
d
in

g
m

et
h
o
d
.

74

matrix H in equation (4.32) with W ¨H “ Hc for a unimodular matrix W:

W “

»
——————————————–

´1 ´1 1 0 ´2 2 ´2 0 0 4
4 4 ´3 ´4 10 ´6 8 ´4 4 ´16
2 1 ´1 0 2 ´2 2 0 0 ´4
´3 ´2 2 2 ´6 4 ´5 2 ´2 10
´1 ´1 1 2 ´3 1 ´2 2 ´2 4
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 ´1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (4.61)

The lower-triangular matrix

Hc “

»
——————————————–

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 ´1{2 0 1{2 0 0 0 0 0 0

´1{2 ´1{2 0 1{2 1{2 0 0 0 0 0
0 0 1{2 1{2 0 1{2 0 0 0 0

1{2 0 0 1{2 0 1{2 1{2 0 0 0
´1{4 ´1{4 ´1{4 1{4 1{4 ´1{4 1{4 1{4 0 0
1{4 0 1{4 1{4 0 1{4 1{4 0 1{4 0
1{4 1{4 1{4 0 0 1{4 0 0 0 1{4

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(4.62)

is used when encoding and indexing. The diagonal elements Mi of HcGs for
i “ 1, 2, . . . , 10 are:

Mi P t4, 8, 4, 4, 2, 4, 4, 2, 2, 2u, (4.63)

which gives the range of information integers. See Section 3.2. Then the code
rate (3.11) is R “ 1

10
log2

ś10
i“1Mi “ 1.7 bits per dimension. Assume the

information vector4 is: b “ r2, 4, 1, 2, 0, 0, 2, 1, 0, 0st. By solving Hcx “ b using
back-substitution a lattice point x “ r2, 4, 1, 8,´2,´9, 3,´7,´5, 2st is generated.
The shaping operation (3.15) using 4Λ10

A gives a lattice codeword:

x1 “ r´2, 0,´3, 0,´2,´1,´1, 1,´1,´2st.

4The corresponding information bits are u0 “ r0, 0, 1st and u1 “ r1, 0, 0, 0, 0, 0, 0st for the
underlying binary codes C0 and C1 of Λc, respectively. The remaining information bit positions
in b may be selected using integers z similar to (4.33)–(4.36). Under correct decoding, these
u0,u1 and z are produced by each level of the decoder. Note that the matrices used for encoding
and the decoder’s re-encoding should agree.

75

In this example, 4Λ10
A has a shaping gain of 0.58 dB which is obtainable because any

lattice codeword x1 lies in the zero-centered Voronoi region of 4Λ10
A —this produces

a nonhypercubical constellation.

Example 4.5 Let Λc be an n “ 48-dimensional Construction D’ lattice generated
by a “ 3-level nested binary codes. Let the check matrix Hc of Λc be given in
Table 4.1, which is lower-triangular and thus is convenient when encoding and
indexing.

Since the dimension of the E8 lattice, the BW16 lattice and the Leech lattice is
n1 “ 8, 16, 24, it is needed to have n{n1 “ 6, 3, 2 copies of generator matrix (2.57),
(2.62) and (2.64), respectively. For each distinct lattice, to satisfy Lemma 3.1, the
resulting lattice obtained by the direct sum as given in Subsection 2.1.6.3 must be
scaled by at least 16, 8

?
2, and 16

?
2, respectively. Using these least scale factors,

the constructed shaping lattice has generator matrix GE8
s , GBW16

s , and GLeech
s ,

shown in Tables 4.2–4.4, respectively.

Consider a convolutional code lattice (CCL) for shaping Λc, where the under-
lying binary zero-tailed convolutional code has rate 1{3 and block length 48. The
generator matrix GCCL

s scaled by 8 is given in Table 4.5, which satisfies Lemma 3.1.
The 48 diagonal elements of HcG

CCL
s are:

{8,16,16,4,8,8,4,8,8,4,8,8,4,8,8,4,8,8,4,8,8,4,8,8,4,8,8,4,8,4,2,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2},

which are used when performing the encoding and indexing operations.

76

T
ab

le
4.

1:
C

h
ec

k
m

at
ri

x
of

a
48

-d
im

en
si

on
al

C
on

st
ru

ct
io

n
D

’
la

tt
ic

e.

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

1/
2

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
1/

2
1/

2
0

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

0
1/

2
0

1/
2

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

1/
2

0
0

0
1/

2
1/

2
1/

2
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
1/

2
0

1/
2

1/
2

0
1/

2
1/

2
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/

2
0

1/
2

0
0

1/
2

1/
2

0
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

1/
2

1/
2

0
0

0
0

1/
2

0
1/

2
1/

2
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/

2
0

0
0

1/
2

1/
2

1/
2

0
0

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/

2
1/

2
0

1/
2

1/
2

1/
2

0
1/

2
1/

2
0

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
1/

2
0

1/
2

1/
2

0
0

0
1/

2
0

0
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

1/
2

0
1/

2
1/

2
1/

2
0

1/
2

1/
2

0
0

1/
2

0
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/

2
0

1/
2

0
0

1/
2

1/
2

0
1/

2
0

0
1/

2
1/

2
0

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/

2
1/

2
1/

2
0

0
0

1/
2

1/
2

0
0

1/
2

0
1/

2
1/

2
0

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
1/

2
1/

2
1/

2
0

0
0

0
0

1/
2

1/
2

1/
2

1/
2

1/
2

0
0

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

0
0

0
0

1/
2

1/
2

1/
2

1/
2

1/
2

0
1/

2
0

0
0

0
0

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
1/

2
0

0
1/

2
0

0
1/

2
1/

2
1/

2
1/

2
0

0
0

1/
2

1/
2

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/

2
0

1/
2

0
1/

2
1/

2
1/

2
0

0
0

1/
2

0
1/

2
0

0
1/

2
1/

2
0

0
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

0
1/

2
1/

2
0

1/
2

0
1/

2
0

1/
2

0
1/

2
1/

2
0

0
1/

2
1/

2
0

1/
2

0
0

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

0
0

0
0

0
1/

2
1/

2
1/

2
0

0
0

1/
2

0
0

1/
2

0
0

1/
2

1/
2

0
1/

2
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

1/
2

1/
2

0
1/

2
0

1/
2

0
0

0
1/

2
0

0
0

1/
2

0
1/

2
1/

2
0

0
0

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

1/
2

1/
2

1/
2

1/
2

0
1/

2
1/

2
0

1/
2

1/
2

1/
2

1/
2

1/
2

1/
2

1/
2

1/
2

0
0

1/
2

0
1/

2
0

0
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

1/
2

0
0

1/
2

1/
2

1/
2

0
1/

2
1/

2
0

1/
2

1/
2

1/
2

0
1/

2
1/

2
0

1/
2

1/
2

0
1/

2
0

1/
2

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

1/
2

0
1/

2
0

0
0

0
1/

2
1/

2
1/

2
0

0
0

0
1/

2
1/

2
0

1/
2

0
0

1/
2

1/
2

1/
2

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

1/
2

1/
2

0
0

0
1/

2
0

0
1/

2
1/

2
0

1/
2

0
0

0
0

1/
2

0
0

1/
2

0
0

0
1/

2
1/

2
1/

2
0

1/
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
2

1/
2

1/
2

1/
2

0
1/

2
0

1/
2

1/
2

1/
2

0
0

1/
2

1/
2

1/
2

1/
2

1/
2

1/
2

1/
2

1/
2

1/
2

0
0

0
0

1/
2

0
1/

2
1/

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
4

1/
4

1/
4

0
1/

4
0

1/
4

0
1/

4
0

1/
4

1/
4

0
1/

4
0

0
1/

4
0

0
1/

4
0

1/
4

1/
4

0
1/

4
0

1/
4

1/
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/

4
1/

4
1/

4
0

1/
4

0
0

1/
4

0
0

1/
4

0
1/

4
0

0
0

1/
4

1/
4

0
1/

4
1/

4
1/

4
1/

4
1/

4
1/

4
1/

4
0

1/
4

1/
4

1/
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

1/
4

1/
4

1/
4

1/
4

1/
4

1/
4

0
1/

4
0

0
1/

4
0

0
0

0
1/

4
1/

4
1/

4
1/

4
0

1/
4

1/
4

0
1/

4
0

0
0

0
0

1/
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
4

1/
4

1/
4

1/
4

1/
4

0
1/

4
0

0
1/

4
0

0
0

0
0

0
0

0
0

0
0

1/
4

0
1/

4
1/

4
1/

4
1/

4
1/

4
1/

4
0

1/
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

1/
4

1/
4

0
1/

4
1/

4
0

0
0

0
1/

4
0

1/
4

0
1/

4
0

0
1/

4
1/

4
1/

4
1/

4
0

1/
4

1/
4

0
0

0
0

1/
4

0
0

0
1/

4
1/

4
1/

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
1/

4
1/

4
0

1/
4

1/
4

0
1/

4
0

1/
4

1/
4

1/
4

1/
4

0
1/

4
0

0
1/

4
1/

4
1/

4
0

0
1/

4
0

0
0

0
0

1/
4

0
1/

4
1/

4
0

1/
4

1/
4

0
0

0
0

0
0

0
0

0
0

0
0

0

1/
4

1/
4

0
0

0
0

0
0

0
0

0
1/

4
0

1/
4

0
0

1/
4

1/
4

1/
4

0
0

0
1/

4
0

0
1/

4
0

1/
4

0
0

1/
4

1/
4

1/
4

1/
4

0
1/

4
0

0
0

0
0

0
0

0
0

0
0

0

0
0

1/
4

0
0

1/
4

1/
4

1/
4

0
0

1/
4

1/
4

1/
4

0
0

1/
4

1/
4

0
0

0
0

0
1/

4
1/

4
1/

4
0

0
1/

4
0

0
0

0
1/

4
0

1/
4

1/
4

1/
4

0
0

0
0

0
0

0
0

0
0

0

1/
4

1/
4

0
0

1/
4

0
1/

4
1/

4
1/

4
1/

4
1/

4
0

0
1/

4
0

1/
4

0
1/

4
0

0
1/

4
0

1/
4

0
1/

4
1/

4
0

1/
4

1/
4

0
1/

4
0

1/
4

1/
4

0
0

1/
4

1/
4

0
0

0
0

0
0

0
0

0
0

0
1/

4
0

0
0

1/
4

0
1/

4
1/

4
0

0
0

0
0

0
0

0
0

1/
4

0
1/

4
0

0
1/

4
1/

4
0

0
1/

4
0

0
1/

4
1/

4
0

1/
4

1/
4

1/
4

0
0

1/
4

0
0

0
0

0
0

0
0

0

1/
4

0
0

0
1/

4
1/

4
1/

4
1/

4
0

1/
4

1/
4

1/
4

0
0

0
1/

4
1/

4
0

1/
4

1/
4

1/
4

1/
4

1/
4

0
0

1/
4

0
0

1/
4

0
1/

4
0

1/
4

0
0

0
0

1/
4

0
1/

4
0

0
0

0
0

0
0

0

1/
4

0
0

0
1/

4
1/

4
1/

4
1/

4
0

1/
4

0
1/

4
1/

4
0

1/
4

0
0

0
0

0
1/

4
1/

4
1/

4
0

0
0

0
1/

4
0

0
1/

4
0

0
0

1/
4

1/
4

1/
4

0
1/

4
0

1/
4

0
0

0
0

0
0

0

0
1/

8
0

0
0

0
1/

8
1/

8
1/

8
0

1/
8

0
1/

8
1/

8
0

0
0

0
1/

8
1/

8
1/

8
0

0
0

0
0

1/
8

1/
8

1/
8

1/
8

1/
8

0
1/

8
0

1/
8

0
0

1/
8

1/
8

0
0

1/
8

0
0

0
0

0
0

1/
8

1/
8

1/
8

1/
8

0
0

0
1/

8
0

0
0

1/
8

0
0

1/
8

0
0

0
0

0
0

0
0

0
1/

8
1/

8
1/

8
0

1/
8

0
1/

8
0

0
0

0
0

0
0

1/
8

1/
8

0
0

1/
8

0
0

0
0

0

1/
8

0
0

0
0

1/
8

1/
8

1/
8

0
1/

8
0

1/
8

0
1/

8
1/

8
0

1/
8

0
0

0
1/

8
0

0
0

1/
8

1/
8

1/
8

0
1/

8
0

1/
8

1/
8

1/
8

0
0

0
1/

8
0

0
1/

8
1/

8
1/

8
0

1/
8

0
0

0
0

1/
8

0
0

1/
8

0
1/

8
0

1/
8

1/
8

1/
8

1/
8

0
1/

8
1/

8
1/

8
1/

8
1/

8
0

0
0

0
1/

8
0

0
1/

8
1/

8
1/

8
1/

8
1/

8
1/

8
0

1/
8

1/
8

1/
8

1/
8

0
0

0
1/

8
1/

8
1/

8
0

1/
8

1/
8

1/
8

0
0

0

0
1/

8
1/

8
0

1/
8

1/
8

1/
8

1/
8

0
0

1/
8

1/
8

1/
8

1/
8

1/
8

0
0

1/
8

1/
8

1/
8

0
0

0
1/

8
0

1/
8

1/
8

1/
8

0
1/

8
1/

8
1/

8
0

0
1/

8
1/

8
0

1/
8

1/
8

1/
8

1/
8

0
1/

8
0

1/
8

1/
8

0
0

0
0

0
1/

8
0

1/
8

0
0

0
0

0
1/

8
0

1/
8

1/
8

0
1/

8
0

0
0

0
1/

8
0

0
0

1/
8

0
1/

8
0

1/
8

0
0

0
0

0
0

1/
8

0
0

1/
8

1/
8

0
1/

8
1/

8
1/

8
1/

8
1/

8
0

0
0

0
0

1/
8

0
0

0
1/

8
1/

8
1/

8
0

0
0

1/
8

1/
8

0
0

1/
8

1/
8

0
1/

8
1/

8
0

1/
8

0
1/

8
0

1/
8

0
1/

8
1/

8
1/

8
0

0
1/

8
1/

8
0

1/
8

1/
8

1/
8

0
1/

8
1/

8
1/

8
0

1/
8

1/
8

77

T
ab

le
4.

2:
G

en
er

at
or

m
at

ri
x

G
E

8
s

of
a

48
-d

im
en

si
on

al
la

tt
ic

e
b
u
il
t

fr
om

16
E

8
.

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
0

-1
6

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
0

0
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
0

0
0

-1
6

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
0

0
0

0
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
0

0
0

0
0

-1
6

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

8
0

-1
6

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

8
0

0
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

8
0

0
0

-1
6

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

8
0

0
0

0
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

-1
6

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

-1
6

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

-1
6

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

-1
6

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

-1
6

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

-1
6

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

-1
6

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
-1

6
16

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

-1
6

16
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
-1

6
16

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

-1
6

16
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
-1

6
16

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

-1
6

32
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
-1

6
16

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

-1
6

16
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
-1

6
16

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

-1
6

16
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
-1

6
16

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

-1
6

32

78

T
ab

le
4.

3:
G

en
er

at
or

m
at

ri
x

G
B
W

1
6

s
of

a
48

-d
im

en
si

on
al

la
tt

ic
e

b
u
il
t

fr
om

8?
2B

W
1
6
.

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
8

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
8

8
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
0

8
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
8

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
0

8
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

8
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
8

8
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

8
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

8
16

16
16

16
16

16
16

16
16

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
8

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
8

8
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
0

8
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
8

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
0

8
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

8
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
8

8
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

8
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

8
16

16
16

16
16

16
16

16
16

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
8

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
8

8
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
0

8
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

0
8

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
0

8
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

8
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

8
8

8
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

8
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

8
16

16
16

16
16

16
16

16
16

16
32

79

T
ab

le
4.

4:
G

en
er

at
or

m
at

ri
x

G
L

ee
ch

s
of

a
48

-d
im

en
si

on
al

la
tt

ic
e

b
u
il
t

fr
om

16
?

2Λ
2
4
.

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

16
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

16
16

16
16

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

16
16

0
0

0
0

16
16

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

16
0

0
0

16
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
16

0
0

0
16

0
0

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

16
0

0
0

16
0

16
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

16
16

16
16

16
0

16
16

16
0

16
0

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

16
0

16
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

16
0

0
0

0
16

0
0

0
0

0
0

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
16

0
0

0
0

16
0

0
0

0
0

16
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
16

16
16

16
0

16
16

16
0

0
0

0
0

16
0

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
16

0
16

0
0

16
0

0
0

16
0

0
0

16
0

0
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
16

0
0

16
0

0
16

0
0

16
0

0
0

16
0

0
0

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
16

16
0

0
0

0
0

16
0

16
0

0
0

16
0

0
0

0
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-2
4

0
0

0
16

16
16

32
16

16
16

32
16

32
32

32
16

32
32

32
32

32
32

64
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

16
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

16
16

16
16

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

16
16

0
0

0
0

16
16

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

16
0

0
0

16
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
16

0
0

0
16

0
0

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

16
0

0
0

16
0

16
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

16
16

16
16

16
0

16
16

16
0

16
0

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

16
0

16
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

16
0

0
0

0
16

0
0

0
0

0
0

16
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
16

0
0

0
0

16
0

0
0

0
0

16
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
16

16
16

16
0

16
16

16
0

0
0

0
0

16
0

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
16

0
16

0
0

16
0

0
0

16
0

0
0

16
0

0
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
16

0
0

16
0

0
16

0
0

16
0

0
0

16
0

0
0

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
16

16
0

0
0

0
0

16
0

16
0

0
0

16
0

0
0

0
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-2
4

0
0

0
16

16
16

32
16

16
16

32
16

32
32

32
16

32
32

32
32

32
32

64

80

T
ab

le
4.

5:
G

en
er

at
or

m
at

ri
x

G
C

C
L

s
of

a
48

-d
im

en
si

on
al

co
n
vo

lu
ti

on
al

co
d
e

la
tt

ic
e.

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
8

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

8
0

0
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

8
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
8

0
0

8
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

8
0

0
8

0
0

0
0

0
8

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
0

0
0

8
0

0
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
8

0
0

8
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
8

0
0

8
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

8
0

0
8

0
0

0
0

0
8

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
0

0
0

8
0

0
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
8

0
0

8
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
8

0
0

8
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

8
0

0
8

0
0

0
0

0
8

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
0

0
0

8
0

0
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
8

0
0

8
0

0
0

0
0

8
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
8

0
0

8
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

8
0

0
8

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
0

0
0

8
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
8

0
0

8
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

0
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
8

0
0

8
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
16

81

4.6 Concluding Remarks

This chapter gave a definition of Construction D’ using parity-check matrix which
is equivalent to the classical definition of Construction D’, and showed how to build
a Construction D’ lattice using nested binary linear codes. Two encoding methods
for Construction D’ lattices were proposed, where encoding method A is related
to the well-known encoding algorithm commonly implemented for LDPC codes
[61], and encoding method B showed explicitly the relation between information
bits and integers which correspond to a lattice point. Decoding Construction D’
includes a re-encoding step with respect to encoding method B that transforms a
binary codeword into a lattice component. An alternative encoding method and its
corresponding decoding algorithm were also provided. How to perform a shaping
operation for a Construction D’ lattice was given by an example. Moreover, the
encoding and decoding methods addressed in this chapter are suitable to obtain
shaping gains for power-constrained channels.

82

Chapter 5

Design of LDPC Codes

This chapter considers two-level Construction D’ lattices, that are based on binary
quasi-cyclic low-density parity-check (QC-LDPC) codes. Nested QC-LDPC codes
are designed for forming high-dimensional Construction D’ lattices.

One approach of lattice construction is to employ QC-LDPC codes and single
parity-check product codes [35]. The first level code parity-check matrix consists
of a top matrix that is modified from a QC-LDPC code used in a wireless
standard [64, Table I] and bottom rows which contribute to parity checks for
the product code. The second level code parity-check matrix is constructed using
row operations on a submatrix for the previous level’s matrix. For this design, it is
not clear how to obtain a triangular matrix for a Construction D’ lattice, however,
it showed some benefit of using QC-LDPC codes. Thus this chapter addresses a
design of Construction D’ lattices using only QC-LDPC codes, where the second
level code parity-check matrix H1 can be generated using row operations on a
submatrix of the first level code parity-check matrix H0.

A subcode condition C0 Ă C1 must be satisfied to form a 2-level Construction
D’ lattice where C0 is the first level code and C1 denotes the second level code,
and this is not straightforward. Branco da Silva and Silva also addressed the
design of multilevel Construction D’ lattices based on LDPC codes [12]. In their
work, H0 was obtained from H1 by performing check splitting or progressive edge-
growth (PEG)-based check splitting. In contrast to [12], this chapter designs the
first level code parity-check matrix H0 such that the second level code parity-
check matrix H1 may be constructed using row operations, where H0 and H1

can be easily triangularized and thus efficient encoding and indexing is possible.
With this design, a straightforward method to find a triangular check matrix for
Construction D’ lattices is also given. QC-LDPC codes are designed using binary
linear programming to guarantee that the necessary supercode can be constructed,
as well as to satisfy the column and the row weight distribution.

83

5.1 Prototype Matrix of QC-LDPC Codes

A QC-LDPC code can be described using a prototype matrix, which is an M -by-N
matrix with integer entries:

»
——————–

p1,1 p1,2 ¨ ¨ ¨ p1,N

p2,1 p2,2 ¨ ¨ ¨ p2,N

...
...

. . .
...

pM,1 pM,2 ¨ ¨ ¨ pM,N

fi
ffiffiffiffiffiffifl
, (5.1)

where Z is an integer greater than 1, and ´1 ď pi,j ă Z for i “ 1, 2, . . . ,M and
j “ 1, 2, . . . , N . See [65].

The parity-check matrix H0 of a QC-LDPC code C0 can be expressed by

H0 “

»
——————–

Pp1,1 Pp1,2 ¨ ¨ ¨ Pp1,N

Pp2,1 Pp2,2 ¨ ¨ ¨ Pp2,N

...
...

. . .
...

PpM,1 PpM,2 ¨ ¨ ¨ PpM,N

fi
ffiffiffiffiffiffifl
, (5.2)

where Ppi,j is a Z-by-Z right-shift cyclic-permutation matrix1 and the power pi,j
is an element of (5.1), for i “ 1, 2, . . . ,M and j “ 1, 2, . . . , N . When pi,j “ ´1,
instead use a zero matrix and P0 is the identity matrix IZ . Thus Z is called
circulant size and C0 has block length n “ ZN .

Example 5.1 Let the circulant size be Z “ 6 and write a 2-by-4 prototype matrix
as:

»
–5 2 0 ´1

2 0 2 1

fi
fl . (5.3)

Then a parity-check matrix of size 12-by-24 can be lifted from the prototype matrix

1Each matrix Ppi,j is a submatrix of the parity-check matrix, which is referred to as a block
or a circulant. A single circulant has row weight 1 and column weight 1. A double circulant has
row weight 2 and column weight 2. A block row means Z rows in the parity-check matrix that
are corresponding to a row in the prototype matrix.

84

in (5.3), given by:

0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0

5.2 Construction D’ Lattices Formed by QC-

LDPC Codes

This dissertation proposes 2-level Construction D’ lattices based on nested binary
QC-LDPC codes C0 Ă C1. The first level component code C0 has an M -by-N
prototype matrix while the second level component code C1 has a 2-by-N prototype
matrix. The code C0 has a design rate 1 ´M{N . And C1 is a high-rate code—a
column weight 2, row weight N parity-check matrix is sufficient; column weight
2 was also used in [35]. The code C0 is a subcode of C1 thus the parity-check
matrix of C1 is a matrix obtained from linear combinations of a C0 parity-check
submatrix. Binary linear codes C0 and C1, and their parity-check matrices H0 and
H1 are nested.

The parity-check matrix H1 does not provide good row and column distribu-
tions if the rows were taken from H0, thus it is needed to find H1 using linear
combinations of rows in H0. Let the set Aq consist of row numbers k P t1, . . . ,Mu
where each element k corresponds to the k-th block row of H0, such that their
block-wise sum2 is a single block row of weight N and column weight 1, for q “ 1, 2.
In addition, the two sets A1 and A2 are disjoint.

2For example, the block-wise sum of the two parity-check matrices corresponding to prototype
matrices r0, 0,´1s and r2, 0, 0s of circulant size 3 is r0{2˚,´1, 0s where ˚ denotes a double circulant

which corresponds to a parity-check submatrix written as
”
1 0 1
1 1 0
0 1 1

ı
.

85

The parity-check matrix H1 can be expressed as

H1 “

«
H1

1

H1
2

ff
, (5.4)

where H1
1 and H1

2 are the sum of block rows A1 and A2, respectively:

H1
q “

à
kPAq

“
Ppk,1 Ppk,2 ¨ ¨ ¨ Ppk,N

‰
, (5.5)

for q “ 1, 2. Accordingly, H1 is a QC-LDPC parity-check matrix with column
weight 2.

5.3 Binary Linear Programming for Prototype

Matrix Construction

To form a 2-level Construction D’ lattice using QC-LDPC codes, the two compo-
nent binary codes are needed to satisfy the properties given in the previous section.
A part of the design is to find the position of non-zero circulants.

To achieve this, this section3 designs a matrix, given several constraints: the
subcode condition, row and column weight degree constraints, and the matrix
should be in the ALT form to enable efficient encoding. Binary linear programming
can be used to satisfy these constraints to provide a binary matrix describing non-
zero circulants’ position when designing a prototype matrix [67].

Set up the programming problem by writing the M -by-N matrix as

A “

»
—–
a1,1 a1,2 ¨ ¨ ¨ a1,N

...
...

. . .
...

aM,1 aM,2 ¨ ¨ ¨ aM,N

fi
ffifl , (5.6)

where ai,j is a binary variable for i P t1, 2, . . . ,Mu and j P t1, 2, . . . , Nu, and
ai,j “ 1 indicates a non-zero circulant for (5.1).

The row weights of A are

r “ tr1, r2, ¨ ¨ ¨ , rMu, (5.7)

3Part of the work in Section 5.3 is the output of a collaborative research with co-authors
in [66].

86

and the column weights are

c “ tc1, c2, ¨ ¨ ¨ , cNu. (5.8)

There are M row constraints: row i has weight ri, expressed as

ai,1 ` ¨ ¨ ¨ ` ai,N “ ri, (5.9)

and N column constraints: column j has weight cj, written as

a1,j ` ¨ ¨ ¨ ` aM,j “ cj. (5.10)

For one of the subcode constraints, the rows from Aq sum to a block row (5.5) of
weight N , thus a constraint for q “ 1, 2 is added for (5.6):

ÿ

kPAq

Nÿ

j“1

ak,j “ N. (5.11)

A constraint for the ALT form to force all-ones along the offset-by-one diagonal
is expressed as:

M´1ÿ

i“1

ai,N´M`1`i “M ´ 1. (5.12)

And another constraint to force all-zeros above the offset diagonal can be added
in addition. The detail is omitted here.

The goal is to find ai,j that satisfies the above conditions, which can be
expressed using the following binary linear program:

min
ÿ

i

ÿ

j

ai,j, (5.13)

subject to

K ¨ a “

»
——————————–

r

c

N

N

M ´ 1

0

fi
ffiffiffiffiffiffiffiffiffiffifl

, (5.14)

where K is a constraint matrix that includes all the constraints described in (5.9)–
(5.12) and a is the vectorized version of A (5.6). Because this is a binary linear
programming problem, for the set Aq, only one position will contain a 1 and the
remaining |Aq|´1 positions will contain 0, in any column. The implementation of
this optimization problem is easily solved using standard optimization packages.

87

5.4 Easily Triangularizable QC-LDPC Code De-

sign for Construction D’

5.4.1 Design Requirements

Now a specific design of binary QC-LDPC codes C0 and C1 for 2-level Construction
D’ lattices is given. Let H0 and H1 be a parity-check matrix of the first level
component code C0 and the second level component code C1, respectively. The
parity-check matrices H0 and H1 are designed to satisfy the following properties:

1. C0 Ă C1;

2. H0 and H1 are of full rank;

3. H0 and H1 can be easily triangularized;

4. H0 and H1 have girth4 as high as possible.

Property 1 allows C0 and C1 to form a Construction D’ lattice Λ. It is convenient
to generate a triangular check matrix for a Construction D’ lattice if H0 and
H1 have properties 2 and 3. Property 4 is designed subject to the decoding
performance.

LDPC codes can be decoded using the belief propagation algorithm [68], which
performs iterative message-passing on a Tanner graph [69]. The cycles in a Tanner
graph strongly affect the decoding performance, thus eliminating short cycles is
important. When the code has long block length the computational complexity
to detect short cycles in a binary parity-check matrix is large. However, detecting
cycles using a prototype matrix instead significantly reduces the running time.
This dissertation follows the conditions given in [70,71] when designing prototype
matrices without short cycles.

The binary linear programming constraints (5.14) given in the previous section
were described for a more general design, where the resulting QC-LDPC codes
use offset-by-one diagonal and all-zeros above the diagonal. To satisfy the design
requirements listed above, the last two constraints of K in (5.14) needs to be

4The girth is equal to the length of the shortest cycle that exist in the Tanner graph of the
code.

88

changed for property 3. Firstly, (5.12) needs to be modified as

Mÿ

i“1

ai,N´M`i “M, (5.15)

such that no-offset diagonal is used. Then, a non-zero entry is placed above the
diagonal. Thus using the new constraint matrix denoted K1, the goal can be
expressed using (5.13) subject to

K1
¨ a “

»
——————————–

r

c

N

N

M

1

fi
ffiffiffiffiffiffiffiffiffiffifl

. (5.16)

5.4.2 Resulting Design

To meet the design requirements, first use the binary linear programming to find
a binary matrix A (5.6) with M “ 12 rows and N “ 24 columns, using degree
distribution polynomials5 of variable nodes and check nodes:

λpxq “
1

3
x2
`

5

12
x3
`

1

8
x4
`

1

8
x6, and (5.17)

ρpxq “
2

3
x6
`

1

3
x7, (5.18)

respectively, where λdx
d and ρdx

d means λd and ρd are the fraction of nodes with
degree6 d. This structure is a modified version of [64, Table I]. The prototype
matrix of H1 is designed using two sets:

A1 “ t5, 7, 9, 11u, and (5.19)

A2 “ t6, 8, 10, 12u, (5.20)

as explained in Section 5.2, which has degree distribution polynomials

λ1pxq “ x2, and (5.21)

ρ1pxq “ x24. (5.22)

5Degree distribution can describe the row and column weight.
6In this subsection, x used in a degree distribution polynomial is distinct from the notation

in other chapters.

89

T
ab

le
5.

1:
P

ro
to

ty
p

e
m

at
ri

x
of

H
0

w
it

h
Z
“

96
an

d
n
“

23
04

w
h
er

e
˚

d
en

ot
es

a
d
ou

b
le

ci
rc

u
la

n
t

-1
-1

53
-1

15
56

-1
-1

55
35

-1
8

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

26
-1

-1
51

-1
59

14
-1

16
-1

0
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

18
-1

3
-1

-1
82

42
-1

33
-1

-1
-1

-1
0

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
30

73
53

-1
49

-1
-1

8
-1

-1
-1

-1
-1

0
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
67

-1
15

84
-1

-1
-1

-1
-1

-1
-1

-1
3

-1
82

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
71

83
34

-1
-1

-1
-1

-1
0

-1
-1

25
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

8
27

87
-1

-1
-1

0
-1

-1
-1

-1
59

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

91
-1

62
52

-1
-1

-1
0

-1
-1

6
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
11

5
17

-1
-1

0
-1

-1
-1

-1
12

0
-1

-1
-1

-1
-1

2
43

53
-1

-1
-1

-1
-1

-1
-1

-1
-1

73
-1

-1
-1

-1
-1

34
0

-1
-1

54
-1

26
-1

-1
12

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
9

0
0

52
91

-1
-1

-1
-1

-1
-1

-1
38

-1
-1

13
-1

-1
-1

-1
-1

-1
-1

-1
-1

66
{
71
˚

0

T
ab

le
5.

2:
P

ro
to

ty
p

e
m

at
ri

x
of

H
1

w
it

h
Z
“

96
an

d
n
“

23
04

w
h
er

e
˚

d
en

ot
es

a
d
ou

b
le

ci
rc

u
la

n
t

54
67

26
15

84
12

8
27

87
11

5
17

0
3

0
82

0
59

0
12

0
9

0
0

52
91

2
43

53
71

83
34

91
38

62
52

13
0

73
0

25
0

6
0

34
0

66
{
71
˚

0

90

Using a circulant size Z “ 96, the prototype matrix of H0 can be generated by
assigning:

"
pi,j “ ´1, for ai,j “ 0

´1 ă pi,j ă Z, for ai,j “ 1
(5.23)

such that the lifted parity-check matrices H0 (5.2) and H1 (5.4) are free of four-
cycles and six-cycles. The designed prototype matrices are shown in Tables 5.1–5.2.

Note that offset diagonal was not used and a double circulant p1̊2,23 was assigned
such that H0 and H1 can be easily triangularized. This provides efficient encoding
and indexing [16]. The power for adding double circulant was chosen without
introducing short cycles. The designed QC-LDPC codes C0 and C1 are of block
length n “ 2304, with code rate 1{2 and 11{12, respectively. The design rates are
chosen similar to [35]. Thus the resulting design of prototype matrix for H0 and
H1 satisfies the following degree distributions7:

λpxq “
7

24
x2
`

11

24
x3
`

1

8
x4
`

1

8
x6, (5.24)

ρpxq “
7

12
x6
`

5

12
x7, and (5.25)

λ1pxq “
23

24
x2
`

1

24
x3, (5.26)

ρ1pxq “
1

2
x24

`
1

2
x25, (5.27)

respectively. The code rates and degree distributions were relevant to previous
work showing a good coding property, but can be further optimized by a density
evolution algorithm [72].

The check matrix H of a Construction D’ lattice can be constructed from H0

and H1. The QC-LDPC code prototype matrices for n “ 5016, 10008 will be given
in Appendix C. The corresponding parity-check matrices are of girth 8.

5.4.3 Triangular Matrix of Construction D’ Lattices

A lower-triangular check matrix H for a 2-level Construction D’ lattice is used
for encoding. This can be constructed if the parity-check matrices H0 and H1 for
nested binary codes C0 Ă C1 are triangularizable. Transform H0 and H1 into lower-
triangular form by performing block row operations in the binary field, resulting in
rH0 and rH1 respectively. The triangular matrix rH0 must contain the basis vectors

7This is changed from (5.17), (5.18), (5.21), and (5.22) due to the added double circulant.

91

of rH1 such that they both satisfy Definition 4.1. Then a lower-triangular check
matrix8 H is built using Definition 4.3 in Chapter 4.

The design of parity-check matrices H0 and H1 for QC-LDPC codes given in
the previous subsection allows a straightforward method to generate the lower-
triangular check matrix rH0. Let p

p1q
12,23 “ a and p

p2q
12,23 “ b be selected9 such that

Q “ IZ `Pa
`Pb (5.28)

is a triple circulant and full rank. The lower-triangular rH1 can be obtained as
follows. Let V be the block-wise sum of the two block rows of H1 over GF(2).
The twenty-third block column of V is a square matrix Q (5.28). Using only row
operations over GF(2), Q can be transformed to triangular form T. Find a binary
matrix W such that W dQ “ T. Replace the first block row of H1 by W dV
then the resulting matrix is lower-triangular and denoted rH1. After that, rH0 is
built by replacing the last two block rows of H0 by rH1.

5.5 Concluding Remarks

This chapter gave a design method for binary QC-LDPC codes to form two-level
Construction D’ lattices. The position of non-zero circulants of the QC-LDPC
code prototype matrix was found by binary linear programming. The powers of
the prototype circulants were selected such that the resulting parity-check matrices
are free of short cycles. As a matter of design, the parity-check matrix of the second
level code was constructed by linear combinations of a first-level code submatrix.
Moreover, using two nested binary QC-LDPC codes with the structure proposed
in this chapter, a triangular check matrix of a QC-LDPC Construction D’ lattice
can be obtained, and the generating method is also addressed. The triangular
structure contributes to nested lattice code indexing as shown in Chapter 3. QC-
LDPC Construction D’ lattices of various dimensions as well as their component
binary QC-LDPC codes will be evaluated and the numerical results will be given
in Chapter 7.

8Although H obtained in this way introduces double circulants that might result in short
cycles, this H is only used for encoding and indexing as described in Chapter 3. When decoding
a Construction D’ lattice as addressed in Section 4.3, nontriangular matrices H0 and H1 are
used by the binary decoders for C0 and C1, respectively.

9For example, the element 66{71˚ in Table 5.1 means a double circulant of size Z “ 96, which
has a “ 66 and b “ 71. Thus Q is a triple circulant and has full rank.

92

Chapter 6

Convolutional Code Lattices

This chapter focuses on the design of convolutional code lattices which are Con-
struction A lattices using binary convolutional codes. The zero-centered Voronoi
region of a convolutional code lattice can be used when constructing a nested
lattice code, which is indeed a quantizer. The effectiveness of an n-dimensional
lattice quantizer is measured by the shaping gain with respect to the normalized
second moment of the integer lattice Zn. The shaping gain measures the power
reduction, and the theoretic limit is 1.53 dB given by an n-sphere as nÑ 8 [13].

The shaping gains of convolutional code lattices were studied in [8,9,23,24,73].
Convolutional code lattices have high shaping gain, flexibility of lattice dimension,
and low-complexity quantization using the well-known Viterbi algorithm. For
these reasons, convolutional code lattices are suitable as shaping lattices. Both
shaping gain and the complexity of quantization are of interest.

First, binary convolutional codes are reviewed. Then Section 6.2 gives a method
to obtain triangular generator matrices for Construction A lattices that is modified
from [6, 9, 36, 73]. This is applied to build convolutional code lattices from zero-
tailed (i.e., conventional termination) convolutional codes, tail-biting convolutional
codes, and truncated convolutional codes. Extensive numerical results of an
exhaustive search finding the generator polynomials of the convolutional code
which provides the best-found shaping gain are given. The tradeoff between
shaping gain and quantization complexity of convolutional code lattices is also
studied.

6.1 Convolutional Codes

Convolutional codes are a class of error-correcting codes introduced by Peter
Elias in 1955 [74], and have been widely used for radio, digital video, mobile
communications and satellite communications. They often form concatenations
for constructing turbo codes [75]. Convolutional codes can be maximum-likelihood

93

decoded by the Viterbi algorithm [18], thus the decoder is optimal.

6.1.1 Description of Binary Convolutional Codes

A convolutional code encoder continuously produces code bit stream given an
incoming information bit stream, thus the code rate R is the reciprocal of the
number of code bits assigned to each data bit. This dissertation considers only
rate R “ 1{2, 1{3, . . . binary convolutional codes. Let f “ 1{R. The encoder uses
a shift register that contains m binary memory cells delaying the input bit, and
m is called memory order ; hence the encoder has 2m states1 and f filters with an
impulse response gpiq corresponding to a modulo-2 adder for i “ 0, 1, . . . , f´1. The
feedforward encoder outputs f sequences cpiq where each is the convolution under
GF p2q of the binary input u and the impulse response gpiq in the time domain,
expressed as:

cpiq “ gpiq f u. (6.1)

The codeword of a convolutional code is obtained by multiplexing the bits of
cp0q, cp1q, . . . , cpf´1q. Let D denote the delay operator. Let the information vector

u “

»
———–

u0

u1

u2
...

fi
ffiffiffifl , (6.2)

and output sequence

cpiq “

»
———–

c
piq
0

c
piq
1

c
piq
2
...

fi
ffiffiffifl , (6.3)

be the coefficients of polynomials

upDq “ u0D
k´1

` u1D
k´2

` ¨ ¨ ¨ ` uk´2D ` uk´1, and (6.4)

cpiqpDq “ c
piq
0 D

n´1
` c

piq
1 D

n´2
` ¨ ¨ ¨ ` c

piq
n´2D ` c

piq
n´1, (6.5)

1The state of an encoder is the content in memory cells. The total number of states is 2m.
For example, when m “ 2 the possible states are t00, 01, 10, 11u.

94

respectively, where k is the length of information bits and n is the length of
codeword, regarding a finite stream consideration. Then (6.1) can also be written
in the transform domain as:

cpiqpDq “ gpiqpDq d upDq, (6.6)

where the polynomial in descending order2

gpiqpDq “ g
piq
0 Dm

` g
piq
1 Dm´1

` ¨ ¨ ¨ ` g
piq
m´1D ` g

piq
m (6.7)

is called the generator polynomial and its coefficients form the binary vector

gpiq “

»
———–

g
piq
0

g
piq
1
...

g
piq
m

fi
ffiffiffifl (6.8)

in (6.1). For convenience, gpiq can be represented by a number in the octal form

and the upmost bit g
piq
0 is the most significant bit. For example, D4 ` D2 ` D

corresponding to a binary sequence t1, 0, 1, 1, 0u can be expressed by an octal
number 26.

The encoding operation can also be expressed as:
»
———–

cp0qpDq
cp1qpDq

...
cpf´1qpDqs

fi
ffiffiffifl “

»
———–

gp0qpDq
gp1qpDq

...
gpf´1qpDq

fi
ffiffiffifld upDq, (6.9)

cpDq “ GpDq d upDq, (6.10)

where the code polynomial generator matrix GpDq is equivalent to:

GpDq “ G0D
m
`G1D

m´1
` ¨ ¨ ¨ `Gm´1D `Gm, (6.11)

where

Gj “

»
————–

g
p0q
j

g
p1q
j
...

g
pf´1q
j

fi
ffiffiffiffifl
, (6.12)

2This convention is distinct from the representation in [76, Ch. 12], but follows the imple-
mentation in MATLAB Communications Toolbox [77, pp. 2-640–2-644].

95

for j “ 0, 1, . . . ,m. Thus a convolutional code generator matrix 3 can also be
written as:

G “

»
—————————————–

G0

G1 G0

G2 G1 G0
...

...
...

. . .

Gm Gm´1 Gm´2

Gm Gm´1
. . .

Gm
. . .
. . .

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (6.13)

And a codeword can be simply obtained:

c “ Gd u. (6.14)

Example 6.1 Let a rate 1/2 convolutional code with memory order 3 be described
with a polynomial generator matrix:

GpDq “

„
gp0qpDq
gp1qpDq


“

„
D3 `D2 `D ` 1
D3 `D ` 1


, (6.15)

where gp0q “ r1 1 1 1s and gp1q “ r1 0 1 1s can be written in the octal form as
p17, 13q. A generator matrix is:

G “

»
——————————————————–

1
1
1 1
0 1
1 1 1
1 0 1
1 1 1 1
1 1 0 1

1 1 1
. . .

1 1 0
. . .

...
...

. . .

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (6.16)

The code can be realized using the nonsystematic feedforward encoder given in
Figure 6.1. All possible states are listed in Table 6.1.

3For convenience, the generator bases are given in column convention. The empty entries are
zeros.

96

+

+
Figure 6.1: Rate 1{2 convolutional code nonsystematic feedforward encoder for
code generator polynomials p17, 13q.

Table 6.1: All possible states of the encoder given in Figure 6.1.

S0 0 0 0
S1 0 0 1
S2 0 1 0
S3 0 1 1
S4 1 0 0
S5 1 0 1
S6 1 1 0
S7 1 1 1

6.1.2 Termination of Convolutional Codes

A convolutional code encoder produces output streams of infinite length when the
information streams have infinite length. If the information stream is separated
into sequences of finite length, a convolutional code can be regarded as a block
code. Due to the existence of the memory delay the encoder needs to be terminated
for each information sequence.

There are three termination methods: zero-tailed termination, tail-biting
termination, and direct truncation. The corresponding convolutional codes are
referred to as zero-tailed convolutional codes, tail-biting convolutional codes, and
truncated convolutional codes, respectively.

97

6.1.2.1 Zero-Tailed Convolutional Codes

The conventional termination method is to input m zeros to the memory cells
such that the encoder starts and ends in all-zero state, thus is called zero-tailed
termination (or zero termination). This termination method reduces the code rate
because the added m zeros representing no information. The decoding using the
Viterbi algorithm is optimal and low-complexity, thus is widely implemented in
communication systems.

Example 6.2 Let an information sequence of length k “ 3 be u “ r1 0 1st.
The generator matrix (6.16) in Example 6.1 can be terminated as a matrix of
n “ 2pk `mq “ 12 rows and k “ 3 columns, written as:

G “

»
——————————————————–

1
1
1 1
0 1
1 1 1
1 0 1
1 1 1
1 1 0

1 1
1 1

1
1

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (6.17)

Then the codeword is obtained (6.14):

c “ Gd u “ r1 1 1 0 0 0 0 1 1 1 1 1st, (6.18)

where the last 2m “ 6 bits are due to the zero tail. Notice that the actual
code rate now reduces to k{n “ 1{4. Observe that when k is much larger than
the memory order m, the rate loss is negligible. Also, due to a consideration of
decoding complexity, using a small value for m is desirable for practical use. More
discussions will be given in Section 6.5.

Using the binary polynomial representation (6.10), the encoding operation for
information upDq “ D2 ` 1 can also be expressed as:

cpDq “

„
D3 `D2 `D ` 1
D3 `D ` 1


d rD2

` 1s (6.19)

“

„
D5 `D4 `D ` 1
D5 `D2 `D ` 1


, (6.20)

corresponding to the multiplexed binary sequence (6.18).

98

6.1.2.2 Tail-Biting Convolutional Codes

If the memory cells were set as the m last bits of the information sequence before
encoding, then the encoder starts and ends in the same state, thus is called tail-
biting termination. This termination method does not cause rate loss, but the
decoding algorithm requires higher complexity than that of the Viterbi algorithm,
as will be addressed in Section 6.5.

Example 6.3 Let a sequence of information with length k “ 5 be u “ r1 0 1 1 0st.
Before encoding, set the memory cells with the last m “ 3 bits of u: t1, 1, 0u—the
encoder starts with the state S3. Thus the generator matrix (6.16) in Example 6.1
can be terminated as a matrix of n “ 2k “ 10 rows and k “ 5 columns, written
as:

G “

»
——————————————–

1 1 1 1
1 1 1 0
1 1 1 1
0 1 1 1
1 1 1 1
1 0 1 1
1 1 1 1
1 1 0 1

1 1 1 1
1 1 0 1

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (6.21)

Then the codeword is obtained (6.14):

c “ Gd u “ r1 1 0 1 0 0 1 0 0 1st. (6.22)

The codeword length is 10 and thus the code design rate 1{2 does not change.

6.1.2.3 Truncated Convolutional Codes

Truncated termination means direct truncatiion. The decoding complexity is
about the same as zero-tailed termination. This method does not reduce the
code rate.

Example 6.4 Consider the convolutional code in Example 6.1 terminated by
direct truncation. Let a sequence of information with length k “ 3 be u “ r1 0 1st.
Assume the encoder was in all-zero state S0, that is, each memory cell contains a
0. Then the encoder produces a codeword: r1 1 1 0 0 0st, which is the same as first
6 bits of (6.22). When the encoder starts with a different state, the corresponding
codeword is also changed. For instance, if the initial state of the encoder is S4,
the encoder produces a codeword: r0 1 0 1 1 1st.

99

6.2 Triangular Matrix of Construction A Lattices

Construction A applied to a binary code is Construction D reduced to one level.
Triangular matrices provide efficient encoding and indexing, thus there is a need
to obtain a triangular generator matrix GΛA

for a Construction A lattice ΛA.
As addressed in Subsection 2.2.1, the well-known methods in [6, p. 183] and [36,
pp. 32–33] require a systematic generator matrix for the code. The method given
below does not require a systematic code generator matrix; while convolutional
codes do have a systematic form it requires swapping bit positions (or coordinate
permutation). Also, this section’s method produces matrices already in the
Hermite normal form as defined in [41, pp. 42–44] for forming Construction A
generator matrices.

Let G1 “ rg11,g12, . . . ,g1ks be an n-by-k full-rank generator matrix with basis
vectors in columns for a binary code C. Perform column operations on G1 to find
G “ rg1,g2, . . . ,gks where G has the property that for each column i “ 1, . . . , k,
there are only zeros to the right of the first one in column i. The canonical form
for rate 1{2, 1{3, . . . zero-tailed convolutional codes already satisfy this condition.
Let In be an n-by-n identity matrix. The lower-triangular generator matrix GΛA

of a Construction A lattice ΛA can be obtained by replacing k columns in 2In using
the columns in G. If gi has its first one in position j, then replace column j of
2In with gi, for all i. As a Construction A lattice, the determinant is det pΛAq “

|det pGΛA
q| “ 2n´k.

Example 6.5 Consider a full-rank generator matrix G1 of an arbitrary binary
linear code. Replace the second column of G1 by the sum of the first two columns
to obtain G:

G1
“

»
——————–

1 1 0
1 1 0
1 0 0
0 1 0
1 0 0
1 1 1

fi
ffiffiffiffiffiffifl

ùñ G “

»
——————–

1 0 0
1 0 0
1 1 0
0 1 0
1 1 0
1 0 1

fi
ffiffiffiffiffiffifl
, (6.23)

where G has the form described above. Apply Construction A to form a lattice

100

Λ6
A by adding 3 columns to G, then the generator matrix GΛ6

A
is given by:

GΛ6
A
“

»
——————–

1 0 0 0 0 0
1 2 0 0 0 0
1 0 1 0 0 0
0 0 1 2 0 0
1 0 1 0 2 0
1 0 0 0 0 1

fi
ffiffiffiffiffiffifl
. (6.24)

The code in the example is not a convolutional code, but was chosen to illustrate
the construction of a lower-triangular generator matrix for Construction A.

Example 6.6 Consider a generator matrix G1 of a nonsystematic feedforward
zero-tailed convolutional code with generator polynomials represented as octal
numbers p7, 5q, where the information sequence has length 3. Then apply
Construction A to form a lattice Λ10

A by replacing the 3 columns in 2I10 using
the columns in G1, resulting in a lower-triangular generator matrix GΛ10

A
. This is

expressed as:

G1
“

»
——————————————–

1 0 0
1 0 0
1 1 0
0 1 0
1 1 1
1 0 1
0 1 1
0 1 0
0 0 1
0 0 1

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

ùñ GΛ10
A
“

»
——————————————–

1 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 0 1 2 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 0 0 0 1 2 0 0 0 0
0 0 1 0 1 0 2 0 0 0
0 0 1 0 0 0 0 2 0 0
0 0 0 0 1 0 0 0 2 0
0 0 0 0 1 0 0 0 0 2

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (6.25)

6.3 Quantization of Construction A Lattices

Given an arbitrary vector y, the quantization (2.16) is to find its nearest lattice
point. The quantization of Construction A lattices given in Algorithm 2.1 can be
simply described in Algorithm 6.1 where the mapping from the received sequence
to the input of binary encoder is performed by equation (4.49). This is the case
when Construction D [10] is reduced to one level. The block diagram of encoding
and decoding Construction A lattices is shown in Figure 6.2. The effectiveness

101

Algorithm 6.1 Quantization of Construction A Lattices (Reduced From Quan-
tization of Construction D Lattices [10])

Input: noisy input y

Output: estimated lattice point px
y1 “ |mod2 py ` 1q ´ 1|

pc “ Decpy1q

pz “ t
y´pc

2
s

px “ pc` 2pz

of quantization described by normalized second moment (NSM) can be estimated
using Monte Carlo simulations, computed by (2.41). For convenience, shaping gain
(2.42) with respect to NSM is used for observation.

Example 6.7 Assume a vector

y “ r´16.82, 2.06, 0.15,´41.27,´18.57,´48.61,´58.04,´1.87,´24.99, 26.37st

is quantized using the convolutional code lattice in Example 6.6. An estimated lat-
tice point px P Λ10

A nearest to y can be found as follows. First perform the mapping4

(4.49) from y to y1 “ r0.82, 0.06, 0.15, 0.73, 0.57, 0.61, 0.04, 0.13, 0.99, 0.37st. Using
y1, the convolutional decoder produces the output pc “ r1, 1, 0, 1, 0, 1, 0, 0, 1, 1st.
Then a lattice point5 can be obtained:

px “ r´17, 3, 0,´41,´18,´49,´58,´2,´25, 27st. (6.26)

6.4 Best-Found Convolutional Code Lattices

In this section, rate 1{2 and 1{3 binary convolutional codes of block length n,
dimension k, and memory order m with non-systematic feed-forward encoders are
used to build n-dimensional Construction A lattices ΛA.

4Convolutional code decoder assumes a binary 0, 1 codeword of length 10 was transmitted.
5The corresponding integer vector is pz “ r´9, 1, 0,´21,´9,´25,´29,´1,´13, 13st which is

possibly distinct from the integer vector z internally used in Algorithm 2.1 because the mapping
methods used in the two quantization algorithms are different. But the estimated lattice point
as well as the binary codeword produced by Algorithm 6.1 agree with those of Algorithm 2.1.

102

CHANNEL

Enc `u c 1

2z

`

w

x
mod˚ Dec

y y1 pc
` ´

0.5

t ¨ s pz

Figure 6.2: Block diagram of Construction A lattices corresponding to Algo-
rithm 6.1.

The generator matrix of zero-tailed convolutional codes has the desired form
described in Section 6.2, and thus is straightforward to find a lower-triangular
generator matrix for convolutional code lattices. Let RZTCC be the code rate6 of a
zero-tailed convolutional code. The information length is k “ nRZTCC ´m.

Tail-biting convolutional codes have excellent coding performance at short-to-
medium block length, thus are suitable to form Construction A shaping lattices
for low-to-moderate dimension. The information length is k “ nRTBCC, where the
code rate is RTBCC.

Truncated convolutional codes are also considered. Let RDTCC be the code
rate. The information length is k “ nRDTCC.

A convolutional code lattice may be scaled by K “ 22, 23, 24, . . . to be used
with a Construction D/D’ coding lattice to form a nested lattice code, so as to
satisfy Lemma 3.1.

Generator polynomials which give good coding properties for convolutional
codes are well-known [76, Ch. 12]. See also [78, Ch. 4], [79, Table I–II]. However,
it is not clear if these generator polynomials are the best choice for building shaping
lattices. Thus, an exhaustive search of generator polynomials was performed for
rate 1{2 and 1{3 nonsystematic feedforward binary convolutional codes. For each
one, the shaping gain (2.42) of the resulting lattice was found by Monte Carlo
integration [39,40] using at least 107 samples.

6As explained in Subsection 6.1.2, the actual code rate of zero-tailed convolutional codes is
lower than the design rate RZTCC, depending on the value of m. In this dissertation, the design
rate RZTCC is used when referring to a zero-tailed code without losing the generality.

103

6.4.1 Exhaustive Search Procedure

The exhaustive search was performed using the combinations of polynomial (6.7).
For rate 1{2 codes, the polynomial generator matrix is

GpDq “

„
gp0qpDq
gp1qpDq


, (6.27)

where the polynomials are:

gp0qpDq “ g
p0q
0 Dm

` g
p0q
1 Dm´1

` ¨ ¨ ¨ ` g
p0q
m´1D ` g

p0q
m (6.28)

gp1qpDq “ g
p1q
0 Dm

` g
p1q
1 Dm´1

` ¨ ¨ ¨ ` g
p1q
m´1D ` g

p1q
m . (6.29)

For rate 1{3 codes, the polynomial generator matrix is

GpDq “

»
–
gp0qpDq
gp1qpDq
gp2qpDq

fi
fl , (6.30)

which additionally includes:

gp2qpDq “ g
p2q
0 Dm

` g
p2q
1 Dm´1

` ¨ ¨ ¨ ` g
p2q
m´1D ` g

p2q
m . (6.31)

Each coefficient is either 0 or 1 since only binary codes are considered.

The size of search space on convolutional code polynomial generator matrix can
be reduced. Only non-systematic codes are considered, that is, gpiqpDq ‰ 1. The
pairs with all zeros for the first or the last coefficient of polynomial are excluded.
The pair rgp0qpDq gp1qpDqst is regarded as equivalent as the pair rgp1qpDq gp0qpDqst,
and thus only pairs with descending maximum degrees are included.

Given a convolutional code, by applying Construction A as shown in Sub-
section 2.2.1 and Section 6.2, a convolutional code lattice is generated and then
evaluated using the quantization method given in Algorithm 2.1. For each lattice,
the Monte Carlo integration simulated the shaping gain (2.42) using at least
107 samples. The simulated lattice dimension n (i.e., codeword length of the
underlying convolutional code) are 18, 24, 30, 36, 72, 144, 288, 576, 1152, and
2304—these values are chosen such that both rate 1{2 and 1{3 codes with the
same memory order m can produce convolutional code lattices with the same
dimension, for a fair comparison. Convolutional codes using the three termination
methods were evaluated in the exhaustive search. Rate 1{2 codes used memory
order m “ 2, 3, 4, 5, 6, 7 and rate 1{3 codes used m “ 2, 3, 4, 5. And these values
were chosen for two reasons. The complexity of decoding a convolutional code

104

24 36 72 144 288 576 1152 2304

0.80

1.00

1.20

1.40

1.50

E8

BW16

Leech

Sphere bound

Asymptotic 1.53 dB

Dimension n

S
h
ap

in
g
ga
in
,
d
B

m “ 2 m “ 3 m “ 4 m “ 5 m “ 6 m “ 7
RZTCC “ 1{2
RZTCC “ 1{3
RTBCC “ 1{2
RTBCC “ 1{3

Figure 6.3: Best-found shaping gain of convolutional code lattices formed by zero-
tailed convolutional codes (ZTCCs) and tail-biting convolutional codes (TBCCs)
for rate 1/2 and 1/3 with various memory orders m. The 0.65 dB, 0.86 dB and
1.03 dB shaping gains of the E8 lattice, the BW16 lattice and the Leech lattice are
also shown for comparison.

exponentially increases as m increases. And the size of exhaustive search space for
rate 1{3 codes is much larger than rate 1{2 codes when m is not small.

For the same code parameters except for generator polynomials, the corre-
sponding convolutional code lattice with the highest shaping gain is recognized as
the best-found lattice. The generator polynomials are given in the octal form.

105

Table 6.2: Recommended convolutional code generator polynomials (represented
in octal numbers corresponding to the encoder implementation in a descending
order) for a range of dimension n based on best-found convolutional code lattices
for shaping, and asymptotic shaping gain γs

Convolutional code m 18 ď n ď 24 24 ă n ă 72 72 ď n ď 144 n ą 144 asymptotic γs (dB) note

Rate 1{2,
zero-tailed

2 7, 5 7, 5 7, 5 7, 5 0.9734 -

3 17, 13 17, 11 17, 13 17, 13 1.0622 -

4 35, 23 33, 25 31, 23 31, 23 1.1233 C4

5 67, 51 77, 55 75, 57 75, 57 1.1814 C5

6 175, 133 175, 133 165, 127 165, 127 1.2251 -

7 365, 327 331, 257 357, 251 357, 251 1.2574 C6

Rate 1{3,
zero-tailed

2 7, 7, 5 7, 7, 5 7, 6, 5 7, 6, 5 0.9055 C2

3 17, 15, 13 17, 15, 13 17, 15, 13 17, 15, 13 1.0673 -

4 37, 33, 25 37, 33, 25 37, 33, 25 37, 33, 25 1.1321 C3

5 71, 65, 57 71, 65, 57 73, 57, 41 73, 57, 41 1.1808 C1

Rate 1{2,
tail-biting

2 7, 6 7, 5 7, 5 7, 5 0.9734 -

3 16, 3 15, 6 17, 13 17, 13 1.0622 -

4 30, 7 30, 13 36, 15 31, 23 1.1233 -

5 70, 3 60, 13 74, 13 75, 57 1.1814 -

6 140, 7 140, 13 130, 17 165, 127 1.2251 -

7 340, 3 320, 3 320, 17 357, 251 1.2574 -

Rate 1{3,
tail-biting

2 7, 6, 4 7, 6, 5 7, 6, 5 7, 6, 5 0.9055 -

3 16, 10, 3 13, 10, 7 17, 15, 13 17, 15, 13 1.0673 -

4 30, 10, 7 26, 10, 7 36, 26, 23 37, 33, 25 1.1321 -

5 40, 34, 3 70, 13, 10 74, 64, 31 73, 57, 41 1.1808 -

106

6.4.2 Exhaustive Search Result

For rate 1{2 convolutional codes, it is worthwhile to mention that the generator
polynomials for zero-tailed codes this dissertation found7 for asymptotic shaping
gain match those provided in [23], except for m “ 5, where this dissertation
found p75, 57q provides 0.01 dB higher asymptotic shaping gain than p61, 57q. The
shaping gain of tail-biting codes with short block length were also studied in [24],
which is higher than that of the Leech lattice.

The greatest shaping gain the exhaustive search found for various m and n is
shown in Tables B.1–B.6 in Appendix B. Part of the results is drawn in Figure 6.3.
In general, convolutional code lattices based on tail-biting convolutional codes have
higher shaping gains than zero-tailed convolutional codes, for a given dimension.
Truncated convolutional codes provide shaping gains lower than that of tail-biting
codes, but are higher than that of zero-tailed codes. The generator polynomials of
best-found convolutional codes vary depending on the dimension. At each searched
dimension, there might be several codes providing comparable shaping gains and
the precision depends on the number of Monte Carlo samples. For a range of
dimensions, generator polynomials for a code with a shaping gain which is either
the best-found shaping gain or within 0.01 dB to the best-found shaping gain
is provided in Table 6.2, with exceptions as follows. An improvement for around
0.03–0.08 dB shaping gain can be obtained using generator polynomials p77, 76, 73q
at n “ 18 and p331, 257q at n “ 24 for zero-tailed convolutional codes, and
using generator polynomials p31, 27q, p73, 25q, p144, 57q, p250, 67q, p37, 33, 25q and
p75, 45, 26q at n “ 144 for tail-biting convolutional codes instead. The asymptotic
shaping gain obtained at n “ 220 and n “ 220`2 for rate 1{2 and 1{3 convolutional
codes respectively is also provided. It is observed that at n ď 1152 the shaping
gain of convolutional code lattices using tail-biting convolutional codes can achieve
the asymptotic shaping gain.

The maximal free distance dfree determines the goodness for coding of the
convolutional code used with Viterbi decoding. But this may not necessarily be
the case with shaping. Consider nonsystematic zero-tailed convolutional codes.
The maximal dfree for optimal coding codes are 5, 6, 7, 8, 10, 10 with memory order
m “ 2, 3, 4, 5, 6, 7 for rate 1/2 codes, and are 8, 10, 12, 13 with m “ 2, 3, 4, 5 for
rate 1/3 codes [78, Ch. 4]. Regarding the best-found codes for shaping given
in Table 6.2, their dfree may not be maximal. For instance, when m “ 2 the
code generated by p7, 6, 5q has dfree “ 7 ă 8; when m “ 4 the code generated

7This dissertation found these rate 1/2 code polynomials independently. The shaping gains
shown in [23,24] are slightly higher, but by no more than 0.0066 dB; this work has no particular
explanation for this discrepancy.

107

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

101

102

Asymptotic shaping gain, dB

N
u
m
b
er

of
op

er
a
ti
on

s
p
er

d
im

en
si
o
n RZTCC “ 1{2,VA

RZTCC “ 1{3,VA
RTBCC “ 1{2,WAVA pI “ 4q
RTBCC “ 1{3,WAVA pI “ 4q
RTBCC “ 1{2, ad-hoc pJ “ 4q
RTBCC “ 1{3, ad-hoc pJ “ 4q

m “ 7
m “ 6
m “ 5
m “ 4

m “ 3
m “ 2

Figure 6.4: Performance-complexity tradeoff of convolutional code lattices formed
by ZTCCs and TBCCs with various memory orders m where the decoding
employs the Viterbi algorithm (VA) for ZTCCs, the wrap-around Viterbi algorithm
(WAVA) (I “ 4 iterations) and the ad-hoc method (J “ 4 repeated times) for
TBCCs.

by p31, 23q has dfree “ 6 ă 7; when m “ 5 the code generated by p73, 57, 41q
has dfree “ 12 ă 13; and when m “ 6 the code generated by p165, 127q has
dfree “ 8 ă 10.

6.5 Complexity of Quantization

This section studies the tradeoff between shaping gain and quantization complexity
for convolutional code lattices, when the Viterbi algorithm (VA) is used. Con-

108

struction A lattice quantization given in Algorithm 2.1 requires 5 operations per
dimension [6, p. 450] to lift the binary codeword to a lattice point and the inverse.
The Viterbi decoder uses 2m comparisons at each trellis stage where the total
number of trellis stages is nRZTCC for zero-tailed codes. It is assumed that n is
much larger than m so that the contribution of termination and initialization to
complexity can be ignored. Thus the normalized time complexity is 5` 2mRZTCC.
The decoding complexity of truncated codes is similar to that of zero-tailed codes,
thus the detail is omitted.

The complexity of quantizing convolutional code lattices based on tail-biting
convolutional codes was also analyzed, using the warp around Viterbi algorithm
(WAVA) [80] with a maximum of I iterations and an ad-hoc suboptimal scheme [81]
that decodes repeated-J-times sequence using the Viterbi algorithm with zero
termination, requiring 5`2mRTBCCI and p5`2mRTBCCqJ operations per dimension
respectively. The results given in the previous section were obtained using J ě 16
and nJ ě 1152 for the ad-hoc decoding.

The normalized quantization complexity (or number of operations per dimen-
sion) is shown in Figure 6.4 as a function of asymptotic shaping gain. Rate 1{3
convolutional codes outperform rate 1/2 convolutional codes for m “ 3 and m “ 4
in terms of shaping gain and quantization complexity, and convolutional code
lattices based on rate 1/2 convolutional codes have the best shaping gain for
a fixed memory order m “ 2 and m “ 5. Decoding tail-biting convolutional
codes requires higher complexity than that of zero-tailed convolutional codes and
truncated convolutional codes. In summary, using rate 1/3 convolutional codes
produces a more favorable performance-complexity trade-off.

6.6 Concluding Remarks

Convolutional code lattices provide many desirable properties for shaping such as
high shaping gain and low-complexity quantization/decoding algorithm. Unlike
using the direct sum of the E8 lattice, the BW16 lattice and the Leech lattice for
shaping, convolutional code lattices have more flexibility in lattice dimension for
matching the coding lattice dimension. They were also considered for self-similar
nested lattice codes in [82], but are only used as shaping lattices in this dissertation.

High shaping gains are appealing. However, there exists a tradeoff between the
shaping gain and the quantization complexity. In general, tail-biting convolutional
codes can provide higher shaping gains than that of zero-tailed convolutional
codes and truncated convolutional codes, but require higher complexity when

109

decoding. Convolutional code lattices based on the three termination methods
have comparable shaping gains increasing the lattice dimension n. The numerical
results indicate how to select a shaping lattice. At dimension ď 24, use the
well-known lattices given in Section 2.3. At low-to-moderate dimension, use
convolutional code lattices that are based on truncated codes. At high dimension,
use convolutional code lattices that are based on zero-tailed convolutional codes.

Convolutional code lattices based on zero-tailed convolutional codes will be
chosen for building nested lattice codes as will be shown in the next chapter, since
the coding lattice will have high dimensions. For a fixed termination method, rate
1{3 convolutional codes provide a better performance-complexity tradeoff than rate
1{2 convolutional codes. When memory order m is small, tail-biting convolutional
codes approach the asymptotic shaping gain even at medium dimension. As m is
increased, the dimension to achieve the shaping gain is also increased, but is as
small as 1152 for m “ 7.

110

Chapter 7

Evaluation of QC-LDPC
Construction D’ Lattices for the
Power-Constrained Channel

Three quasi-cyclic low-density parity-check (QC-LDPC) Construction D’ lat-
tices with dimensions 2304, 5016, 10008 designed in Chapter 5 were simulated in
both power-unconstrained and power-constrained additive white Gaussian noise
(AWGN) channels using the Construction D’ decoding algorithm proposed in Sec-
tion 4.3. It is necessary to evaluate the error-rate performance using Monte Carlo
simulations. The multistage successive cancellation decoding was performed by
employing the belief propagation decoding algorithm for decoding LDPC codes,
and reencoding follows encoding method B proposed in Subsection 4.2.2. Each
two-level QC-LDPC Construction D’ lattice was formed by two binary QC-LDPC
codes C0 and C1. The prototype matrices of the component QC-LDPC codes with
block length 2304, 5016, 10008 used for simulations are shown in Tables 5.1–5.2,
Tables C.1–C.2, and Tables C.3–C.4, respectively.

In the power-unconstrained AWGN channel, the volume-to-noise ratio (VNR)
performance is of interest. The component QC-LDPC codes were also simulated in
mod-2 AWGN channel, since each component binary linear code of a Construction
D/D’ lattice can be regarded as independent evaluation in a mod-2 AWGN channel,
if the previous level was decoded correctly.

The main goal is to evaluate the Construction D’ lattices in power-constrained
AWGN channels. This was done by constructing a variety of nested lattice codes
using QC-LDPC Construction D’ lattices for coding, and using distinct lattices for
shaping—they are the E8 lattice, the BW16 lattice and the Leech lattice, as well
as the best-found convolutional code lattices presented in Chapter 6. The nested
lattice coding scheme and the encoding/indexing follows Chapter 3. Various codes
were compared with hypercube shaping, using several code rates.

111

0 2 4 6 8 10 12 14 16
10´5

10´4

10´3

10´2

10´1

100

VNR or 1{σ2, dB

W
o
rd

E
rr
o
r
R
a
te

C0 C1 Λc

n “ 2304

n “ 5016

n “ 10008

Figure 7.1: Simulation results over mod-2 AWGN channel: word error rate of QC-
LDPC Construction D’ lattices versus VNR and word error rate of the underlying
component codes versus 1{σ2

A word error occurs when any element of a lattice codeword and its estimate
disagree x ‰ px. Same definition applies to the binary codeword and its estimate
in mod-2 AWGN channel. The word error rate (WER) is estimated as the number
of word errors divided by the total number of simulated words (lattice codewords
or binary codewords). The simulation results give the WER as a function of the
volume-to-noise ratio (VNR), or Eb{N0 for power-unconstrained AWGN channel
and power-constrained AWGN channel, respectively.

7.1 Power-Unconstrained AWGN Channel

Simulations for QC-LDPC Construction D’ lattices in a power-unconstrained
AWGN channel were performed in the coding scheme given in Figure 4.2. Simu-
lations for the proposed Construction D’ lattices and underlying QC-LDPC codes
C0 and C1 were performed in the mod-2 AWGN channel. The decoding using
Algorithm 4.1 applies belief propagation decoding for LDPC codes with maximum
100 iterations. The WER is shown in Figure 7.1 as a function of VNR or signal-
to-noise ratio SNR “ Es{σ

2 “ 1{σ2 given in decibels. The codes C0 and C1 were
designed with code rates similar to that of the codes in [35].

Observe that in Figure 7.2 as the dimension n increases, the proposed QC-

112

1 1.2 1.4 1.6 1.8 2
10´5

10´4

10´3

10´2

10´1

100

VNR, dB

W
o
rd

E
rr
o
r
R
a
te

n “ 2304

n “ 5016

n “ 10008

Figure 7.2: VNR performance of proposed QC-LDPC Construction D’ lattices in
various dimensions.

LDPC Construction D’ lattice1 has a better VNR performance at some WER.
But the 5016-dimensional lattice has an error floor at WER around 10´4 while the
2304-dimensional lattice does not.

7.2 Power-Constrained AWGN Channel

Construction D’ lattices Λc of dimension n “ 2304, 5016, 10008 formed by QC-
LDPC codes were evaluated in the power-constrained AWGN channel. At the
decoder, the re-encoding implicitly assumes that method B of Subsection 4.2.2 is
being used, which is equivalent to method A of Subsection 4.2.1, even for triangular
Construction D’ matrices of Chapter 5. The belief propagation (BP) decoder
of LDPC codes ran maximum 50 iterations. The well-known low-dimensional
E8, BW16 and Leech lattices were used for shaping a 2304-dimensional coding
lattice, respectively. The channel model follows Figure 3.1 where the encoding and
indexing are performed as shown in Sections 3.2–3.3. For comparison hypercube
shaping as described in Section 3.5 was performed where lattice points were
transformed into a hypercube B “ t0, 1, . . . , L´ 1un for an even2 integer L, where
code rate R1 is computed by equation (3.58). .

1Note that the underlying QC-LDPC codes were not optimized.
2When the simplified hypercube shaping method in Subsection 3.5.1 is performed for an

a-level Construction D’ lattice, it is needed to let L be a multiple of 2a.

113

10 12 14 16 18 20
10´5

10´4

10´3

10´2

10´1

100

Eb{N0, dB

W
or
d
E
rr
or

R
a
te

R “ 2.4167, E8 lattice shaping

R “ 3.4167, E8 lattice shaping

R “ 4.4167, E8 lattice shaping

R “ 2.4167, hypercube shaping

R “ 3.4167, hypercube shaping

R “ 4.4167, hypercube shaping

Figure 7.3: Word error rate of shaping a 2304-dimensional Construction D’ lattice
(formed by QC-LDPC codes) using E8 lattice shaping and hypercube shaping at
a variety of code rates.

Convolutional code lattices were also used as shaping lattices. A variety of con-
volutional codes were chosen based on the best-found generator polynomials and
quantization complexity analysis in Chapter 6, for shaping n “ 2304, 5016, 10008-
dimensional Construction D’ lattices separately. The numerical results are given
as follows.

7.2.1 E8, BW16 and Leech Lattice Shaping

Well-known low-dimensional lattices were used for shaping high-dimensional lat-
tices because they can provide good shaping gains and their decoding is well-

114

37.5 38 38.5 39 39.5 40 40.5 41 41.5
10´5

10´4

10´3

10´2

10´1

100

Shannon limit

Eb{N0, dB

W
o
rd

E
rr
or

R
at
e

R “ 8.2947,CCL shaping

R “ 8.3090,Leech lattice shaping

R “ 8.2959, BW16 lattice shaping

R “ 8.2993, E8 lattice shaping

R1 “ 8.2993, hypercube shaping

Figure 7.4: Word error rate as a function of Eb{N0 using a variety of lattices for
shaping a 2304-dimensional Construction D’ lattice, where the CCL is formed by
a zero-tailed convolutional code C6 with 128 states.

studied. The E8 lattice, the BW16 lattice and the Leech lattice have optimal
quantization algorithms [43, 45, 56]. The authors in [32] used the E8 and BW16

lattices for shaping LDLC lattices. At n “ 24 the Leech lattice has a shaping
gain of 1.03 dB, which was used for shaping LDA lattices [33]. Following [32, 33],
this dissertation built shaping lattices using direct sum of scaled copies of the E8,
BW16, and Leech lattices by a scale factor K. Let Hc be the check matrix of an
n-dimensional Construction D’ coding lattice, and G be the generator matrix of
an n1-dimensional lattice where n{n1 is an integer. The factor K is chosen such
that HcGs P Zn where Gs is a block diagonal matrix of size n{n1 with each block
KG. Rectangular encoding and its inverse indexing can be efficiently implemented
due to the lower-triangular structure in matrix Hc and Gs. By choosing various
K nested lattice codes can be generated with a variety of code rates R.

115

17 17.5 18 18.5 19 19.5 20 20.5
10´5

10´4

10´3

10´2

10´1

100

Shannon limit

Eb{N0, dB

W
o
rd

E
rr
or

R
at
e

n “ 2304,CCL pC1q
n “ 2304,CCL pC2q
n “ 2304,CCL pC3q
n “ 2304,CCL pC4q
n “ 2304,CCL pC5q
n “ 5016,CCL pC1q
n “ 10008,CCL pC1q
n “ 2304, hypercube

n “ 5016, hypercube

n “ 10008,hypercube

Figure 7.5: Word error rate as a function of Eb{N0 using various convolutional code
lattices (CCLs) based on C1-C5 with generator polynomials in Table 6.2 for shaping
n-dimensional Construction D’ lattices where the code rate is listed in Table 7.1.

For shaping the 2304-dimensional Construction D’ lattice, the same code rate
for both the E8 lattice shaping and hypercube shaping can be easily achieved.
The word error rate using KE8 “ L “ 8, 16, 32 is shown in Fig. 7.3 as a function
of Eb{N0 given in decibels, suggesting a shaping gain of 0.65 dB. Let KBW16 “

280
?

2 and KLeech “ 168
?

8, then BW16 and Leech lattice shaping produce code
rate approximately 8.2959 and 8.3090, respectively, close to R “ R1 “ 8.2993 of
choosing KE8 “ L “ 472. The word error rate is given in Figure 7.4 as a function
of Eb{N0. If the code rate differences are taken into account, a 0.65 dB, 0.86 dB
and 1.03 dB shaping gain is preserved respectively, as the full shaping gain of the
E8, BW16 and Leech lattices.

116

7.2.2 Convolutional Code Lattices for Shaping Construc-
tion D’ Lattices

This dissertation considers high-dimensional Construction D’ lattices, thus zero-
tailed convolutional codes are suitable for constructing convolutional code lattices
for shaping. At n ě 2304, using zero-tailed convolutional codes provides compara-
ble shaping gain and requires lower quantization complexity than that of tail-biting
convolutional codes. A variety of convolutional code lattices based on rate 1{2, 1{3
zero-tailed convolutional codes selected from Table 6.2 were also used for shaping
the proposed QC-LDPC Construction D’ Lattices, where the smallest possible
scale factor K “ 4 to satisfy Lemma 3.1 can produce a code rate approximately
2.084 and 1.917 respectively.

Considering that lattices are ideal at high code rate, it is needed to chose
K ą 4 for evaluation. The nested lattice code parameters in simulations are listed
in Table 7.1, including the code rates, close to that of hypercube shaping for a
fair comparison. The numerical results in terms of word error rate as a function of
Eb{N0 are shown in Figure 7.5. Convolutional code lattice shaping using a rate 1/3
convolutional code with m “ 5 was performed for n “ 2304, 5016, 10008, showing
an improvement on the error-correction performance and the shaping gain as n
increases. At n “ 10008, the distance to the capacity of the AWGN channel, that
is, the gap between the orange solid curve to the black solid line, is approximately
1.9 dB, considering the tiny code rate difference. For a fixed dimension n “ 2304,
it is shown that a higher shaping gain is achieved by increasing the memory order
m. The numerical results of using rate 1/2 zero-tailed convolutional codes are
also provided, where the code rate was chosen as close as possible to hypercube
shaping. The resulting shaping gains are approximate to the estimated shaping
gains listed in Table 7.1 if the code rate differences are taken into account.

The improvement of the shaping gain provided by a convolutional code lattice
compared with that of the E8, BW16 and Leech lattices was also investigated.
The simulation results of using these distinct lattices for shaping an n “ 2304-
dimensional QC-LDPC Construction D’ lattice are plotted in Figure 7.4. The
shaping gain of 1.25 dB was preserved—this is the best-found shaping gain
achieved by lattice shaping in the power-constrained channel, to the best of the
author’s knowledge. For the four shaping lattices: convolutional code lattice,
the E8 lattice, the BW16 lattice and the Leech lattice, using a smallest possible
scale factor 4, 4, 4

?
2, 4
?

8 respectively for shaping the proposed 2304-dimensional
Construction D’ lattice, the integers solutions ei P r0, βq (3.37) are bounded by
β “ 8, 16, 16, 32. The values of integers are bounded by β “ 944, 944, 1120, 1344
for the results in Figure 7.4. Regarding the distance to the Shannon limit, while

117

Table 7.1: Code rate R of nested lattice codes using various convolutional code C
with memory order m, where the convolutional code lattice is scaled by a factor
K. The estimated shaping gain γs is given in decibels. Hypercube side length L
is chosen to achieve R1 « R

Dimension Convolutional code lattice shaping Hypercube shaping

n m C γs (dB) K R L R1

2304 5 C1 1.1731 20 4.4074 32 4.4167

5016 5 C1 1.1772 20 4.4063 32 4.4167

10008 5 C1 1.1790 20 4.4058 32 4.4167

2304 2 C2 0.9022 20 4.4061 32 4.4167

2304 4 C3 1.1259 20 4.4070 32 4.4167

2304 4 C4 1.1186 24 4.5034 32 4.4167

2304 5 C5 1.1756 24 4.5038 32 4.4167

2304 7 C6 1.2500 332 8.2947 472 8.2993

118

the LDA lattice construction [33] has better performance, it requires nonbinary
LDPC codes, whereas the construction in this dissertation uses lower-complexity
binary LDPC codes. The LDLC construction [32] has similar performance, but
higher decoding complexity than binary LDPC codes.

7.3 Concluding Remarks

The encoding/decoding methods proposed in Chapter 4 were carefully evaluated
by simulating the QC-LDPC Construction D’ lattices designed in Chapter 5. In the
power-constrained AWGN channel, the shaping gains of the E8 lattice, the BW16

lattice and the Leech lattice were preserved when shaping a 2304-dimensional
QC-LDPC Construction D’ lattice, which are 0.65 dB, 0.86 dB, and 1.03 dB,
respectively.

Also, a variety of convolutional code lattices were selected for shaping the QC-
LDPC Construction D’ lattices with dimension n “ 2304, 5016, 10008 and their
shaping gains were preserved. When the Construction A lattice was constructed
from a rate 1{2 binary convolutional code with memory order 7, a shaping gain
as high as 1.25 dB out of 1.53 dB was preserved at n “ 2304. This is the highest
shaping gain appeared in the literature of nested lattice coding scheme. And the
low-complexity quantization was provided when a rate 1{3 binary convolutional
code with memory order 5 was employed, on little penalty of shaping gain, but its
1.17 dB shaping gain is still higher than the 1.03 dB of the Leech lattice.

119

Chapter 8

Conclusion

This dissertation provided a comprehensive practical lattice coding scheme for
power-constrained communications, including a Construction D’ lattice construc-
tion with good coding properties by employing QC-LDPC codes, a Construction A
lattice construction with efficiently achievable shaping gain, two encoding methods
and a decoding algorithm for Construction D’, as well as a modified indexing
method for nested lattice codes. There are still several interesting problems to
think about.

Construction of Construction D’ Lattices

This work had a methodology for selecting LDPC code design rate, but the
rates and degree distributions can be optimized by a density evolution algorithm.
Construction D/D’ lattices can be designed based upon the probability of error
rule, the capacity rule and the minimum distance rule. In [12] the LDPC codes
were selected using the probability of error rule. The minimum distance rule was
applied to the code selection in [35].

Single parity-check product codes were shown to be a good choice as a second
level code, because of their simplicity and good performance. However, the
current construction method requires adding a stair case, which cannot be easily
triangularizable.

Lattices With Short Dimensions

This dissertation provided a solution for lattices with high dimensions—QC-
LDPC Construction D’ lattices for coding and the E8 lattice, the BW16 lattice,
the Leech lattice or convolutional code lattices for shaping. There exist codes
better than LDPC codes at short block length, and can be used to construct BCH
code lattices and polar code lattices. One approach is to apply convolutional code
lattices for shaping low-to-moderate-dimensional BCH and polar code lattices.
Once a matrix construction is found, it is simple to apply the methods provided
in this dissertation to these lattices. It was found that convolutional code lattices
based on tail-biting convolutional codes can provide a high shaping gain in short

120

dimensions. Truncated convolutional codes may be chosen under the consideration
of quantization complexity.

Encoding/Indexing Using Non-Triangular Matrices

It is convenient to have lattice matrices written in triangular form when
performing the indexing operation for a nested lattice code. In general, it is not
straightforward to design a triangular matrix for an arbitrary lattice. Lattice
generator/check matrix can be transformed into a triangular matrix using a uni-
modular matrix. However, it is not clear how to find such a unimodular matrix in
a systematic way, or if it exists for an arbitrary lattice. One interesting direction is
to develop a systematic encoding/indexing method using non-triangular matrices.

Lattices for Compute-and-Forward

Nested lattice code constructions addressed in this dissertation provide a good
group structure that might be suitable for compute-and-forward. And more
considerations need to be encountered for practical wireless communications. A
future research objective is to find nested lattice codes additionally possessing a
ring isomorphism which is necessary for compute-and-forward.

121

Appendix A

Solutions of Congruences

To recover b without the effect of adding s (3.28), si is chosen as a solution of the
system of linear congruences:

θv,isi ” 0 pmodMvq, (A.1)

where v “ i` 1, . . . , n. The solution of (A.1) can be found as follows. If Mv “ 1,
an arbitrary integer si is a solution. Now consider Mv ą 1. Let cv be the greatest
common divisor of θv,i and Mv:

cv “ gcdpθv,i,Mvq. (A.2)

For fixed v, since zero is divisible by cv, i.e., cv|0, a linear congruence (A.1) has
solutions and are given by the solutions of the equivalent linear congruence:

θv,i
cv
si ” 0

ˆ
mod

Mv

cv

˙
, (A.3)

which implies that integers
θv,i
cv

and Mv

cv
are coprime. Thus the solutions of (A.3)

are given by

si ” 0

ˆ
mod

Mv

cv

˙
(A.4)

Solving (A.1) for v “ i ` 1, . . . , n is equivalent to solve the system of linear
congruences (A.4). This has solutions according to the Chinese remainder theorem,
since for every pair of congruences within the system gcdpMl

cl
, Mw

gw
q|0 holds, where

l, w P ti` 1, . . . , nu and l ‰ w. The least positive solution is given

s1i “ lcm

ˆ
Mi`1

ci`1

,
Mi`2

ci`2

, ¨ ¨ ¨ ,
Mn

cn

˙
, (A.5)

and thus si “ βs1i is also a solution for any integer β.

122

Appendix B

Best-Found Shaping Gains of Con-
volutional Code Lattices

Table B.1: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1{2 zero-tailed convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220

m “ 2
Generator polynomials p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q

Shaping gain (dB) 0.7305 0.7771 0.8083 0.8309 0.8956 0.9328 0.9526 0.9629 0.9681 0.9707 0.9734

m “ 3
Generator polynomials p17, 13q p17, 11q p17, 11q p17, 11q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q

Shaping gain (dB) 0.7395 0.8083 0.8524 0.8804 0.9505 1.0026 1.0314 1.0466 1.0543 1.0583 1.0622

m “ 4
Generator polynomials p35, 23q p33, 25q p33, 25q p33, 25q p31, 23q p31, 23q p31, 23q p31, 23q p31, 23q p31, 23q p31, 23q

Shaping gain (dB) 0.7314 0.8256 0.8813 0.9162 0.9970 1.0542 1.0871 1.1048 1.1139 1.1186 1.1233

m “ 5
Generator polynomials p67, 51q p67, 51q p77, 55q p77, 55q p75, 57q p75, 57q p75, 57q p75, 57q p75, 57q p75, 57q p75, 57q

Shaping gain (dB) 0.7061 0.8292 0.8948 0.9377 1.0330 1.0983 1.1374 1.1588 1.1670 1.1756 1.1814

m “ 6
Generator polynomials p145, 137q p175, 133q p175, 133q p145, 137q p165, 127q p165, 127q p165, 127q p165, 127q p165, 127q p165, 127q p165, 127q

Shaping gain (dB) 0.6297 0.8044 0.8901 0.9402 1.0641 1.1332 1.1757 1.1996 1.2121 1.2186 1.2251

m “ 7
Generator polynomials p365, 327q p331, 257q p331, 257q p331, 257q p357, 251q p357, 251q p357, 251q p357, 251q p357, 251q p357, 251q p357, 251q

Shaping gain (dB) 0.5467 0.7767 0.8884 0.9484 1.0834 1.1563 1.2024 1.2287 1.2428 1.2500 1.2574

123

Table B.2: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1{2 tail-biting convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220

m “ 2
Generator polynomials p7, 6q p7, 6q p7, 6q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q

Shaping gain (dB) 0.6893 0.7636 0.7857 0.8631 0.9674 0.9733 0.9734 0.9734 0.9734 0.9734 0.9734

m “ 3
Generator polynomials p16, 3q p16, 3q p15, 6q p15, 6q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q

Shaping gain (dB) 0.6818 0.7633 0.8340 0.8706 1.0171 1.0608 1.0622 1.0622 1.0622 1.0622 1.0622

m “ 4
Generator polynomials p25, 20q p30, 7q p30, 13q p30, 13q p36, 15q p31, 27q p31, 23q p31, 23q p31, 23q p31, 23q p31, 23q

Shaping gain (dB) 0.6856 0.7632 0.8341 0.8709 1.0168 1.1055 1.1223 1.1233 1.1233 1.1233 1.1233

m “ 5
Generator polynomials p40, 25q p70, 3q p60, 13q p60, 13q p74, 13q p73, 25q p75, 57q p75, 57q p75, 57q p75, 57q p75, 57q

Shaping gain (dB) 0.6825 0.7611 0.8333 0.8707 1.0169 1.1273 1.1763 1.1814 1.1814 1.1814 1.1814

m “ 6
Generator polynomials p100, 7q p140, 7q p140, 13q p140, 13q p130, 17q p144, 57q p161, 133q p165, 127q p165, 127q p165, 127q p165, 127q

Shaping gain (dB) 0.6800 0.7611 0.8325 0.8703 1.0169 1.1264 1.2042 1.2244 1.2251 1.2251 1.2251

m “ 7
Generator polynomials p340, 3q p300, 7q p320, 3q p320, 3q p320, 17q p250, 67q p362, 233q p357, 251q p357, 251q p357, 251q p357, 251q

Shaping gain (dB) 0.6884 0.7602 0.8296 0.8687 1.0168 1.1274 1.2147 1.2540 1.2573 1.2574 1.2574

Table B.3: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1{2 truncated convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220

m “ 2
Generator polynomials p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q p7, 5q

Shaping gain (dB) 0.6938 0.7603 0.8021 0.8301 0.9011 0.9372 0.9552 0.9643 0.9688 0.9711 0.9734

m “ 3
Generator polynomials p17, 11q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q p17, 13q

Shaping gain (dB) 0.6937 0.7736 0.8277 0.8657 0.9626 1.0121 1.0371 1.0496 1.0560 1.0591 1.0622

m “ 4
Generator polynomials p33, 25q p37, 26q p37, 26q p37, 26q p31, 27q p31, 23q p31, 23q p31, 23q p31, 23q p31, 23q p31, 23q

Shaping gain (dB) 0.6941 0.7753 0.8319 0.8727 0.9906 1.0555 1.0894 1.1063 1.1148 1.1190 1.1233

m “ 5
Generator polynomials p76, 47q p61, 56q p75, 46q p73, 52q p75, 46q p67, 43q p75, 57q p75, 57q p75, 57q p75, 57q p75, 57q

Shaping gain (dB) 0.6949 0.7770 0.8385 0.8856 1.0225 1.1002 1.1398 1.1606 1.1710 1.1762 1.1814

m “ 6
Generator polynomials p163, 122q p175, 130q p175, 130q p164, 127q p173, 135q p165, 127q p165, 127q p165, 127q p165, 127q p165, 127q p165, 127q

Shaping gain (dB) 0.6971 0.7790 0.8400 0.8873 1.0381 1.1293 1.1770 1.2010 1.2130 1.2191 1.2251

124

Table B.4: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1{3 zero-tailed convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220 ` 2

m “ 2
Generator polynomials p7, 7, 5q p7, 7, 5q p7, 7, 5q p7, 7, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q

Shaping gain (dB) 0.6598 0.6986 0.7180 0.7305 0.8067 0.8541 0.8793 0.8923 0.8989 0.9022 0.9055

m “ 3
Generator polynomials p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q

Shaping gain (dB) 0.6297 0.7374 0.7958 0.8334 0.9364 0.9976 1.0314 1.0491 1.0581 1.0627 1.0673

m “ 4
Generator polynomials p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q

Shaping gain (dB) 0.5469 0.6928 0.7776 0.8315 0.9623 1.0399 1.0841 1.1076 1.1198 1.1259 1.1321

m “ 5
Generator polynomials p77, 76, 73q p71, 65, 57q p71, 65, 57q p71, 65, 57q p65, 53, 47q p73, 57, 41q p73, 57, 41q p73, 57, 41q p73, 57, 41q p73, 57, 41q p73, 57, 41q

Shaping gain (dB) 0.3920 0.6197 0.7466 0.8162 0.9769 1.0677 1.1213 1.1503 1.1654 1.1731 1.1808

Table B.5: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1{3 tail-biting convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220 ` 2

m “ 2
Generator polynomials p7, 6, 4q p7, 6, 2q p7, 5, 4q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 5, 3q p7, 5, 3q p7, 6, 5q p7, 6, 5q

Shaping gain (dB) 0.6654 0.7361 0.7636 0.8252 0.9022 0.9055 0.9055 0.9055 0.9055 0.9055 0.9055

m “ 3
Generator polynomials p16, 10, 3q p16, 10, 3q p13, 10, 7q p13, 10, 7q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q

Shaping gain (dB) 0.6621 0.7356 0.7907 0.8462 0.9771 1.0614 1.0673 1.0673 1.0673 1.0673 1.0673

m “ 4
Generator polynomials p34, 20, 3q p30, 10, 7q p34, 13, 10q p26, 10, 7q p36, 26, 23q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q p37, 33, 25q

Shaping gain (dB) 0.6605 0.7352 0.7899 0.8460 0.9841 1.0988 1.1308 1.1321 1.1321 1.1321 1.1321

m “ 5
Generator polynomials p40, 34, 3q p40, 34, 3q p70, 13, 10q p70, 13, 10q p74, 64, 31q p75, 45, 26q p75, 67, 41q p73, 57, 41q p75, 67, 41q p73, 57, 41q p73, 57, 41q

Shaping gain (dB) 0.6646 0.7337 0.7883 0.8456 0.9839 1.1023 1.1702 1.1806 1.1808 1.1808 1.1808

Table B.6: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1{3 truncated convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220 ` 2

m “ 2
Generator polynomials p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q p7, 6, 5q

Shaping gain (dB) 0.6678 0.7246 0.7597 0.7837 0.8442 0.8747 0.8901 0.8978 0.9017 0.9036 0.9055

m “ 3
Generator polynomials p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q p17, 15, 13q

Shaping gain (dB) 0.6781 0.7558 0.8107 0.8508 0.9571 1.0117 1.0395 1.0534 1.0603 1.0638 1.0673

m “ 4
Generator polynomials p37, 32, 21q p35, 27, 21q p33, 25, 23q p33, 25, 23q p37, 33, 25q p37, 33, 25q p35, 27, 21q p33, 25, 23q p33, 25, 23q p37, 33, 25q p37, 33, 25q

Shaping gain (dB) 0.6801 0.7558 0.8122 0.8572 0.9874 1.0592 1.0955 1.1138 1.1230 1.1275 1.1321

125

Appendix C

QC-LDPC Prototype Matrices

The prototype matrices for QC-LDPC codes with block length n “ 5016, 10008, 50016
are provided, which are also available at https://github.com/fanzhou-code/qcldpc.

Table C.1: Prototype matrix of H0 with Z “ 209 and n “ 5016 where ˚ denotes
a double circulant

-1 -1 190 -1 93 113 -1 -1 76 188 -1 171 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 44 -1 -1 160 -1 199 155 -1 63 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

133 -1 72 -1 -1 50 138 -1 148 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 78 120 121 -1 123 -1 -1 147 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 98 -1 183 19 -1 -1 -1 -1 -1 -1 -1 -1 50 -1 115 0 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 97 73 63 -1 -1 -1 -1 -1 0 -1 -1 157 0 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 54 34 3 -1 -1 -1 0 -1 -1 -1 -1 176 0 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 79 -1 27 205 -1 -1 -1 0 -1 -1 36 0 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 67 82 180 -1 -1 0 -1 -1 -1 -1 188 0 -1 -1 -1

-1 -1 102 14 118 -1 -1 -1 -1 -1 -1 -1 -1 -1 67 -1 -1 -1 -1 -1 23 0 -1 -1

77 -1 56 -1 -1 180 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 156 0 0

86 106 -1 -1 -1 -1 -1 -1 -1 125 -1 -1 71 -1 -1 -1 -1 -1 -1 -1 -1 -1 152{15˚ 0

Table C.2: Prototype matrix of H1 with Z “ 209 and n “ 5016 where ˚ denotes
a double circulant

77 98 56 183 19 180 54 34 3 67 82 180 0 50 0 115 0 176 0 188 0 156 0 0

86 106 102 14 118 97 73 63 79 125 27 205 71 0 67 0 157 0 36 0 23 0 152{15˚ 0

126

T
ab

le
C

.3
:

P
ro

to
ty

p
e

m
at

ri
x

of
H

0
w

it
h
Z
“

41
7

an
d
n
“

10
00

8
w

h
er

e
˚

d
en

ot
es

a
d
ou

b
le

ci
rc

u
la

n
t

-1
-1

95
-1

56
41

3
-1

-1
17

2
14

7
-1

97
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1

-1
-1

13
9

-1
-1

12
1

-1
36

9
51

-1
28

-1
0

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1

43
-1

19
0

-1
-1

29
5

22
-1

23
9

-1
-1

-1
-1

0
0

-1
-1

-1
-1

-1
-1

-1
-1

-1

-1
21

1
30

8
37

7
-1

22
4

-1
-1

39
5

-1
-1

-1
-1

-1
0

0
-1

-1
-1

-1
-1

-1
-1

-1

-1
32

0
-1

40
2

25
8

-1
-1

-1
-1

-1
-1

-1
-1

15
6

-1
31

4
0

-1
-1

-1
-1

-1
-1

-1

-1
-1

-1
-1

-1
82

78
35

0
-1

-1
-1

-1
-1

0
-1

-1
26

0
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

20
51

10
8

-1
-1

-1
0

-1
-1

-1
-1

16
5

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

41
2

-1
15

7
23

-1
-1

-1
0

-1
-1

15
1

0
-1

-1
-1

-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
88

70
37

6
-1

-1
0

-1
-1

-1
-1

38
0

-1
-1

-1

-1
-1

21
3

26
2

16
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
34

7
-1

-1
-1

-1
-1

14
3

0
-1

-1

12
3

-1
16

0
-1

-1
28

8
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

22
9

0
0

23
11

9
-1

-1
-1

-1
-1

-1
-1

26
0

-1
-1

33
1

-1
-1

-1
-1

-1
-1

-1
-1

-1
19

3{
33

9˚
0

T
ab

le
C

.4
:

P
ro

to
ty

p
e

m
at

ri
x

of
H

1
w

it
h
Z
“

41
7

an
d
n
“

10
00

8
w

h
er

e
˚

d
en

ot
es

a
d
ou

b
le

ci
rc

u
la

n
t

12
3

32
0

16
0

40
2

25
8

28
8

20
51

10
8

88
70

37
6

0
15

6
0

31
4

0
16

5
0

38
0

22
9

0
0

23
11

9
21

3
26

2
16

0
82

78
35

0
41

2
26

0
15

7
23

33
1

0
34

7
0

26
0

0
15

1
0

14
3

0
19

3{
33

9˚
0

127

T
ab

le
C

.5
:

P
ro

to
ty

p
e

m
at

ri
x

of
H

0
w

it
h
Z
“

20
84

an
d
n
“

50
01

6
w

h
er

e
˚

d
en

ot
es

a
d
ou

b
le

ci
rc

u
la

n
t

-1
-1

9
-1

20
22

49
6

-1
-1

61
9

16
90

-1
19

97
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1

-1
-1

16
99

-1
-1

17
04

-1
10

33
11

64
-1

20
80

-1
0

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1

7
-1

13
31

-1
-1

84
6

15
95

-1
14

2
-1

-1
-1

-1
0

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
10

65
93

5
17

17
-1

97
2

-1
-1

14
5

-1
-1

-1
-1

-1
0

0
-1

-1
-1

-1
-1

-1
-1

-1

-1
80

4
-1

17
76

17
53

-1
-1

-1
-1

-1
-1

-1
-1

18
65

-1
6

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
19

83
11

98
34

7
-1

-1
-1

-1
-1

0
-1

-1
13

34
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

19
08

68
0

34
9

-1
-1

-1
0

-1
-1

-1
-1

16
74

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

19
74

-1
20

57
11

06
-1

-1
-1

0
-1

-1
51

2
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
14

81
31

4
15

6
-1

-1
0

-1
-1

-1
-1

13
5

0
-1

-1
-1

-1
-1

51
0

97
4

16
5

-1
-1

-1
-1

-1
-1

-1
-1

-1
17

39
-1

-1
-1

-1
-1

54
9

0
-1

-1

32
0

-1
16

74
-1

-1
20

11
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

21
5

0
0

11
14

64
8

-1
-1

-1
-1

-1
-1

-1
20

22
-1

-1
65

1
-1

-1
-1

-1
-1

-1
-1

-1
-1

10
09
{
79

5˚
0

T
ab

le
C

.6
:

P
ro

to
ty

p
e

m
at

ri
x

of
H

1
w

it
h
Z
“

20
84

an
d
n
“

50
01

6
w

h
er

e
˚

d
en

ot
es

a
d
ou

b
le

ci
rc

u
la

n
t

32
0

80
4

16
74

17
76

17
53

20
11

19
08

68
0

34
9

14
81

31
4

15
6

0
18

65
0

6
0

16
74

0
13

5
0

21
5

0
0

11
14

64
8

51
0

97
4

16
5

19
83

11
98

34
7

19
74

20
22

20
57

11
06

65
1

0
17

39
0

13
34

0
51

2
0

54
9

0
10

09
{
79

5˚
0

128

References

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, pp. 379–423, 623–656, July / October 1948.

[2] G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-
matched low-density parity-check coded modulation,” IEEE Transactions on
Communications, vol. 63, no. 12, pp. 4651–4665, December 2015.

[3] U. Erez and R. Zamir, “Achieving 1
2

logp1`SNRq on the AWGN channel with
lattice encoding and decoding,” IEEE Transactions on Information Theory,
vol. 50, no. 10, pp. 2293–2314, October 2004.

[4] J. H. Conway and N. J. A. Sloane, “A fast encoding method for lattice codes
and quantizers,” IEEE Transactions on Information Theory, vol. 29, no. 6,
pp. 820–824, November 1983.

[5] G. D. Forney, Jr., “Multidimensional constellations—Part II: Voronoi constel-
lations,” IEEE Journal on Selected Areas in Communications, vol. 7, no. 6,
pp. 941–958, August 1989.

[6] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups,
3rd ed. New York, NY, USA: Springer-Verlag, 1999.

[7] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” IEEE
Transactions on Information Theory, vol. 54, no. 4, pp. 1561–1585, April
2008.

[8] U. Erez and S. ten Brink, “A close-to-capacity dirty paper coding scheme,”
IEEE Transactions on Information Theory, vol. 51, no. 10, pp. 3417–3432,
October 2005.

[9] F. Zhou and B. M. Kurkoski, “Shaping LDLC lattices using convolutional
code lattices,” IEEE Communications Letters, vol. 21, no. 4, pp. 730–733,
April 2017.

[10] T. Matsumine, B. M. Kurkoski, and H. Ochiai, “Construction D lattice
decoding and its application to BCH code lattices,” in Proceedings IEEE
Global Telecommunications Conference, Abu Dhabi, United Arab Emirates,
December 2018, pp. 1–6.

129

[11] M.-R. Sadeghi, A. H. Banihashemi, and D. Panario, “Low-density parity-
check lattices: Construction and decoding analysis,” IEEE Transactions on
Information Theory, vol. 52, no. 10, pp. 4481–4495, October 2006.

[12] P. R. Branco da Silva and D. Silva, “Multilevel LDPC lattices with efficient
encoding and decoding and a generalization of Construction D’,” IEEE
Transactions on Information Theory, vol. 65, no. 5, pp. 3246–3260, May
2019.

[13] G. D. Forney, Jr. and G. Ungerboeck, “Modulation and coding for linear
Gaussian channels,” IEEE Transactions on Information Theory, vol. 44, no. 6,
pp. 2384–2415, 1998.

[14] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interfer-
ence through structured codes,” IEEE Transactions on Information Theory,
vol. 57, no. 10, pp. 6463–6486, October 2011.

[15] N. di Pietro, G. Zémor, and J. J. Boutros, “LDA lattices without
dithering achieve capacity on the Gaussian channel,” IEEE Transactions on
Information Theory, vol. 64, no. 3, pp. 1561–1594, March 2018.

[16] B. M. Kurkoski, “Encoding and indexing of lattice codes,” IEEE Transactions
on Information Theory, vol. 64, no. 9, pp. 6320–6332, September 2018.

[17] U. Erez, S. Litsyn, and R. Zamir, “Lattices which are good for (almost)
everything,” IEEE Transactions on Information Theory, vol. 51, no. 10, pp.
3401–3416, October 2005.

[18] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Transactions on Information Theory,
vol. 13, no. 2, pp. 260–269, April 1967.

[19] G. D. Forney, Jr. and L.-F. Wei, “Multidimensional constellations—Part I:
Introduction, figures of merrit, and generalized cross constellations,” IEEE
Journal on Selected Areas in Communications, vol. 7, no. 6, pp. 877–891,
August 1989.

[20] G. D. Forney, Jr., “Trellis shaping,” IEEE Transactions on Information
Theory, vol. 38, no. 2, pp. 281–300, 1992.

[21] M. W. Marcellin and T. R. Fischer, “Trellis coded quantization of memoryless
and Gauss-Markov sources,” IEEE Transactions on Communications, vol. 38,
no. 1, pp. 82–93, January 1990.

130

[22] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans-
actions on Information Theory, vol. 28, no. 1, pp. 55–67, January 1982.

[23] B. Kudryashov and K. Yurkov, “Linear code-based vector quantization for
independent random variables,” 2008, arXiv:0805.2379 [cs.IT].

[24] B. D. Kudryashov and K. V. Yurkov, “Near-optimum low-complexity lattice
quantization,” in Proceedings of IEEE International Symposium on Informa-
tion Theory, Austin, TX, USA, June 2010, pp. 1032–1036.

[25] A. Sakzad, M. Sadeghi, and D. Panario, “Construction of turbo lattices,” in
Proceedings 48th Annual Allerton Conference on Communication, Control,
and Computing, Monticello, IL, USA, September 2010, pp. 14–21.

[26] Y. Yan and C. Ling, “A construction of lattices from polar codes,” in Pro-
ceedings of the IEEE Information Theory Workshop, Lausanne, Switzerland,
2012, pp. 124–128.

[27] L. Liu, Y. Yan, C. Ling, and X. Wu, “Construction of capacity-achieving
lattice codes: Polar lattices,” IEEE Transactions on Communications,
vol. 67, no. 2, pp. 915–928, February 2019.

[28] J. H. Conway and N. Sloane, “Voronoi regions of lattices, second moments
of polytopes, and quantization,” IEEE Transactions on Information Theory,
vol. 28, no. 2, pp. 211–226, Mar 1982.

[29] B. Kurkoski, J. Dauwels, and H.-A. Loeliger, “Power-constrained
communications using LDLC lattices,” in Proceedings of IEEE International
Symposium on Information Theory, Seoul, South Korea, June–July 2009, pp.
739–743.

[30] N. Sommer, M. Feder, and O. Shalvi, “Shaping methods for low-denisty
lattice codes,” in Proc. Information Theory Workshop, 2009, Taormina, Italy,
October 2009, pp. 238–242.

[31] H. Khodaiemehr, M.-R. Sadeghi, and A. Sakzad, “Practical encoder and
decoder for power constrained QC LDPC-lattice codes,” IEEE Transactions
on Communications, vol. 65, no. 2, pp. 486–500, February 2017.

[32] N. S. Ferdinand, B. M. Kurkoski, M. Nokleby, and B. Aazhang, “Low-
dimensional shaping for high-dimensional lattice codes,” IEEE Transactions
on Wireless Communications, vol. 15, no. 11, pp. 7405–7418, November 2016.

131

[33] N. di Pietro and J. J. Boutros, “Leech constellations of Construction-A
lattices,” IEEE Transactions on Communications, vol. 65, no. 11, pp.
4622–4631, November 2017.

[34] H. Buglia and R. R. Lopes, “Voronoi shaping for lattices with efficient
encoding,” IEEE Communications Letters, vol. 25, no. 5, pp. 1439–1442, May
2021.

[35] S. Chen, B. M. Kurkoski, and E. Rosnes, “Construction D1 lattices from
quasi-cyclic low-density parity-check codes,” in Proceedings International
Symposium on Turbo Codes & Iterative Information Processing, Hong Kong,
China, December 2018, pp. 1–5.

[36] R. Zamir, Lattice Coding for Signals and Networks. Cambridge, UK:
Cambridge, 2014.

[37] G. Poltyrev, “On coding without restrictions for the AWGN channel,” IEEE
Transactions on Information Theory, vol. 40, no. 2, pp. 409–417, March 1994.

[38] G. D. Forney, Jr., M. D. Trott, and S.-Y. Chung, “Sphere-bound-achieving
coset codes and multilevel coset codes,” IEEE Transactions on Information
Theory, vol. 46, no. 3, pp. 820–850, May 2000.

[39] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods. New York:
John Wiley, 1964, ISBN 978-94-009-5819-7.

[40] J. H. Halton, “A retrospective and prospective survey of the Monte Carlo
method,” SIAM Review, vol. 12, no. 1, pp. 1–63, 1970.

[41] S. I. R. Costa, F. Oggier, A. Campello, J.-C. Belfiore, and E. Viterbo,
Lattices Applied to Coding for Reliable and Secure Communications, ser.
SpringerBriefs in Mathematics. Cham, Switzerland: Springer International
Publishing, 2017.

[42] H. Cohen, A course in computational algebraic number theory, 3rd ed., ser.
Graduate texts in mathematics. Berlin ; New York: Springer, 1996, no. 138.

[43] J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for
lattice quantizers and codes,” IEEE Transactions on Information Theory,
vol. 28, no. 2, pp. 227–232, March 1982.

[44] E. S. Barnes and G. E. Wall, “Some extreme forms defined in terms of
Abelian groups,” Journal of the Australian Mathematical Society, vol. 1,
no. 1, pp. 47–63, August 1959.

132

[45] J. Conway and N. Sloane, “On the Voronoi regions of certain lattices,” SIAM
Journal on Discrete Mathematics, vol. 5, no. 3, pp. 294–305, 1984.

[46] G. D. Forney, Jr., “Coset codes—Part II: Binary lattices and related codes,”
IEEE Transactions on Information Theory, vol. 34, no. 5, pp. 1152–1187,
1988.

[47] D. Micciancio and A. Nicolosi, “Efficient bounded distance decoders for
Barnes-Wall lattices,” in 2008 IEEE International Symposium on Information
Theory. Toronto, ON, Canada: IEEE, July 2008, pp. 2484–2488.

[48] V. Corlay, J. J. Boutros, P. Ciblat, and L. Brunel, “On the decoding of
Barnes-Wall lattices,” in 2020 IEEE International Symposium on Information
Theory (ISIT). Los Angeles, CA, USA: IEEE, June 2020, pp. 519–524.

[49] V. Corlay, “Decoding algorithms for lattices,” Ph.D. dissertation, Institut
Polytechnique de Paris, 2020.

[50] J. Leech, “Some sphere packings in higher space,” Canadian Journal of
Mathematics, vol. 16, pp. 657–682, 1964.

[51] ——, “Notes on sphere packings,” Canadian Journal of Mathematics, vol. 19,
pp. 251–267, 1967.

[52] J. Conway and N. Sloane, “Soft decoding techniques for codes and lattices,
including the Golay code and the Leech lattice,” IEEE Transactions on
Information Theory, vol. 32, no. 1, pp. 41–50, Jan 1986.

[53] G. Lang and F. Longstaff, “A Leech lattice modem,” IEEE Journal on
Selected Areas in Communications, vol. 7, no. 6, pp. 968–973, August 1989.

[54] Y. Be’ery, B. Shahar, and J. Snyders, “Fast decoding of the Leech lattice,”
IEEE Journal on Selected Areas in Communications, vol. 7, no. 6, pp. 959–
967, Aug 1989.

[55] A. Vardy and Y. Be’ery, “Maximum likelihood decoding of the Leech lattice,”
IEEE Transactions on Information Theory, vol. 39, no. 4, pp. 1435–1444,
July 1993.

[56] E. Viterbo and J. Bouros, “A universal lattice code decoder for fading
channels,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp.
1639–1642, July 1999.

133

[57] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected
complexity,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp.
2806–2818, August 2005.

[58] H. Vikalo and B. Hassibi, “On the sphere-decoding algorithm
II. Generalizations, second-order statistics, and applications to
communications,” IEEE Transactions on Signal Processing, vol. 53,
no. 8, pp. 2819–2834, August 2005.

[59] B. M. Kurkoski, “On the encoding and indexing of lattice codes,” in Pro-
ceedings of the 39th Symposium on Information Theory and Its Applications.
Takayama, Gifu, Japan: IEICE, December 2016, pp. 378–383.

[60] ——, “Rewriting codes for flash memories based upon lattices, and an example
using the E8 lattice,” in Proceedings IEEE Global Telecommunications
Conference. Miami, USA: IEEE, December 2010, pp. 1923–1927.

[61] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-
check codes,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp.
638–656, February 2001.

[62] D. V. Ouellette, “Schur complements and statistics,” Linear Algebra and its
Applications, vol. 36, pp. 187–295, 1981.

[63] A. Vem, Y.-C. Huang, K. R. Narayanan, and H. D. Pfister, “Multilevel
lattices based on spatially-coupled LDPC codes with applications,” in
Proceedings of IEEE International Symposium on Information Theory,
Honolulu, HI, USA, June 2014, pp. 2336–2340.

[64] E. Rosnes, Ø. Ytrehus, M. A. Ambroze, and M. Tomlinson, “Addendum to
“An efficient algorithm to find all small-size stopping sets of low-density
parity-check matrices”,” IEEE Transactions on Information Theory, vol. 58,
no. 1, pp. 164–171, January 2012.

[65] M. Fossorier, “Quasi-Cyclic low-density parity-check code from circulant
permutation matrices,” IEEE Transactions on Information Theory, vol. 50,
no. 8, pp. 1788–1793, August 2004.

[66] F. Zhou, A. Fitri, K. Anwar, and B. M. Kurkoski, “Encoding and decoding
Construction D’ lattices for power-constrained communications,” in Proceed-
ings of IEEE International Symposium on Information Theory. Melbourne,
Australia: IEEE, July 2021, pp. 1005–1010.

134

[67] W. Su lek, “Protograph based low-density parity-check codes design with
mixed integer linear programming,” IEEE Access, vol. 7, pp. 1424–1438, 2019.

[68] J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, CA,
USA: Morgan Kaufmann, 1988.

[69] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on Information Theory, no. 5, pp. 533–547, September 1981.

[70] K. Lally, “Explicit construction of type-II QC LDPC codes with girth at
least 6,” in Proceedings of IEEE International Symposium on Information
Theory, Nice, June 2007, pp. 2371–2375.

[71] G. Zhang, Y. Hu, Y. Fang, and J. Wang, “Constructions of type-II
QC-LDPC codes with girth eight from Sidon sequence,” IEEE Transactions
on Communications, vol. 67, no. 6, pp. 3865–3878, June 2019.

[72] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transactions on
Information Theory, vol. 47, no. 1, pp. 619–637, February 2001.

[73] F. Zhou and B. M. Kurkoski, “Shaping gain of lattices based on convolutional
codes and Construction A,” in International Symposium on Information
Theory and its Applications, Singapore, October 2018, pp. 183–187.

[74] P. Elias, “Coding for noisy channels,” in IRE Conv. Rec., ser. Pt. 4, 1955, pp.
37–46.

[75] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo-codes. 1,” in Proceedings IEEE In-
ternational Conference on Communications, vol. 2. Geneva, Switzerland:
IEEE, May 1993, pp. 1064–1070.

[76] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 2004.

[77] Communications Toolbox Reference. Natick, MA, USA: The MathWorks
Inc., September 2021, MATLAB version 9.11.0 (R2021b).

[78] J. P. Odenwalder, “Optimal decoding of convolutional codes,” Ph.D. disser-
tation, School of Engineering and Applied Science, University of California,
Los Angeles, 1970.

135

[79] K. Larsen, “Short convolutional codes with maximal free distance for rates
1/2, 1/3, and 1/4 (Corresp.),” IEEE Transactions on Information Theory,
vol. 19, no. 3, pp. 371–372, May 1973.

[80] R. Shao, Shu Lin, and M. Fossorier, “Two decoding algorithms for tailbiting
codes,” IEEE Transactions on Communications, vol. 51, no. 10, pp.
1658–1665, October 2003.

[81] Y.-P. E. Wang and R. Ramesh, “To bite or not to bite-a study of tail bits
versus tail-biting,” in Personal, Indoor, and Mobile Radio Communications,
vol. 2, Taipei, October 1996, pp. 317–321.

[82] M. M. Molu, K. Cumanan, M. Bashar, and A. Burr, “On convolutional
lattice codes and lattice decoding using trellis structure,” IEEE Access,
vol. 4, pp. 9702–9715, 2016.

136

Publications

[1] F. Zhou and B. M. Kurkoski, “Construction D’ lattices for power-
constrained communications,” submitted to IEEE Transactions on Com-
munications, available at arXiv:2103.08263 [cs.IT]. Under review—minor
revision.

[2] F. Zhou, A. Fitri, K. Anwar, and B. M. Kurkoski, “Encoding and decoding
Construction D’ lattices for power-constrained communications,” in Proceed-
ings of the 2021 IEEE International Symposium on Information Theory,
Melbourne, Australia, July 2021, pp. 1005–1010.

[3] F. Zhou and B. M. Kurkoski, “Shaping gain of lattices based on convolu-
tional codes and Construction A,” in Proceedings of the 2018 International
Symposium on Information Theory and its Applications, Singapore, October
2018, pp. 183–187.

[4] F. Zhou and B. M. Kurkoski, “On low-dimensional convolutional code lat-
tices which are good for shaping,” Croucher Summer Course in Information
Theory, Hong Kong, China, July 2017.

[5] F. Zhou and B. M. Kurkoski, “Shaping LDLC lattices using convolutional
code lattices,” IEEE Communications Letters, vol. 21, no. 4, pp. 730–733,
April 2017.

137

	Abstract
	Acknowledgment
	Acronyms
	Symbols
	List of Figures
	List of Tables
	Contents
	Chapter 1 Introduction
	1.1 A Brief Overview
	1.1.1 Modulation, Power Constraint, and Shaping
	1.1.2 Finite Field Codes
	1.1.3 A General View of Lattices and Lattice Codes
	1.1.4 A Little Story

	1.2 Motivation
	1.3 Related Work
	1.4 Contributions
	1.4.1 Construction D' Encoding/Decoding
	1.4.2 QC-LDPC Code Design for Construction D'
	1.4.3 Extensive Search for Convolutional Code Lattices
	1.4.4 Modified Lattice Indexing Method
	1.4.5 Nested Lattice Code Constructions

	1.5 Dissertation Scope and Notation

	Chapter 2 Lattices and Lattices From Codes
	2.1 Preliminaries
	2.1.1 Definition of Lattices
	2.1.2 Lattice Basis, Generator Matrix and Check Matrix
	2.1.3 Lattice Cosets
	2.1.4 Lattice Quantization and Modulo
	2.1.5 Voronoi Region and Its Volume
	2.1.6 Identical Lattices, Lattice Scaling and Direct Sum
	2.1.7 Properties for Coding and Shaping

	2.2 Lattices From Linear Codes
	2.2.1 Construction A
	2.2.2 Construction D/D'

	2.3 Well-Known Low-Dimensional Lattices
	2.3.1 ZnDnAn Lattices
	2.3.2 E8 Lattice
	2.3.3 BW16 Lattice
	2.3.4 Leech Lattice

	2.4 Concluding Remarks

	Chapter 3 Nested Lattice Codes
	3.1 Nested Lattice Codes
	3.2 Encoding
	3.3 Indexing
	3.3.1 Indexing of High-Dimensional Nested Lattice Codes

	3.4 Coding Scheme
	3.5 Hypercube Shaping
	3.5.1 Simplified Method Performing Hypercube Shaping for Construction D' Lattices

	3.6 Concluding Remarks

	Chapter 4 Construction D' Lattices
	4.1 Lattices Based on Construction D'
	4.1.1 Nested Linear Codes
	4.1.2 Definition of Construction D'

	4.2 Encoding
	4.2.1 Encoding Method A
	4.2.2 Encoding Method B

	4.3 Decoding
	4.3.1 Lattice Component and Re-encoding
	4.3.2 Mod-2 AWGN Channel in Multistage Decoding
	4.3.3 Decoding Algorithm

	4.4 Alternative Encoding and Decoding
	4.5 Shaping Construction D' Lattices
	4.6 Concluding Remarks

	Chapter 5 Design of LDPC Codes
	5.1 Prototype Matrix of QC-LDPC Codes
	5.2 Construction D' Lattices Formed by QC-LDPC Codes
	5.3 Binary Linear Programming for Prototype Matrix Construction
	5.4 Easily Triangularizable QC-LDPC Code Design for Construction D'
	5.4.1 Design Requirements
	5.4.2 Resulting Design
	5.4.3 Triangular Matrix of Construction D' Lattices

	5.5 Concluding Remarks

	Chapter 6 Convolutional Code Lattices
	6.1 Convolutional Codes
	6.1.1 Description of Binary Convolutional Codes
	6.1.2 Termination of Convolutional Codes

	6.2 Triangular Matrix of Construction A Lattices
	6.3 Quantization of Construction A Lattices
	6.4 Best-Found Convolutional Code Lattices
	6.4.1 Exhaustive Search Procedure
	6.4.2 Exhaustive Search Result

	6.5 Complexity of Quantization
	6.6 Concluding Remarks

	Chapter 7 Evaluation of QC-LDPC Construction D' Lattices for the Power-Constrained Channel
	7.1 Power-Unconstrained AWGN Channel
	7.2 Power-Constrained AWGN Channel
	7.2.1 E8,BW16 and Leech Lattice Shaping
	7.2.2 Convolutional Code Lattices for Shaping Construction D' Lattices

	7.3 Concluding Remarks

	Chapter 8 Conclusion
	Appendices
	Appendix A Solutions of Congruences
	Appendix B Best-Found Shaping Gains of Convolutional Code Lattices
	Appendix C QC-LDPC Prototype Matrices
	References
	Publications

