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Abstract

Lattices have the potential to provide reliable and power-efficient data transmission in the next-
generation wireless communications. Information theory has provided remarkable insights into
lattices and their applications for practical communication systems. The benefits of lattices for
communications are: 1) high code rate 2) higher transmit power efficiency than conventional
quadrature amplitude modulation constellations and 3) they form an essential component of
compute-and-forward relaying, which provides high throughput and high spectral efficiency.

This dissertation addresses the designs and methods of nested lattice codes with good coding
properties, a high shaping gain, and low-complexity encoding and decoding. Construction D’
lattices based on quasi-cyclic low-density parity-check (QC-LDPC) codes are for coding and thus
contribute to reliable data transmission. Construction A lattices based on convolutional codes
are used to satisfy the channel power-constraint and provide shaping gain. These constructions
have group property and provide high code rates.

Two encoding methods and a decoding algorithm for Construction D’ coding lattices that
can be used with shaping lattices for power-constrained channels are given. The multistage
decoding algorithm uses successive cancellation by employing binary decoders of the component
binary codes that form a Construction D’ lattice. An indexing method for nested lattice codes is
modified to avoid an integer overflow problem at high dimension. Convolutional code generator
polynomials for Construction A lattices with the greatest shaping gain are given, as a result
of an extensive search. It is shown that rate 1/3 convolutional codes provide a more favorable
performance-complexity trade-off than rate 1/2 convolutional codes. For a given dimension,
tail-biting convolutional codes have higher shaping gain than that of zero-tailed convolutional
codes and truncated convolutional codes. A design for QC-LDPC codes to form Construction
D’ lattices is presented, where their parity-check matrices can be easily triangularized, thus
enabling efficient encoding and indexing when formed a nested lattice code. The resulting QC-
LDPC Construction D’ lattices are evaluated using four shaping lattices: the Eg lattice, the
BWig lattice, the Leech lattice and the best-found convolutional code lattice, showing a shaping
gain of approximately 0.65 dB, 0.86 dB, 1.03 dB and 1.25 dB at dimension 2304.

Keywords: Construction D’ lattices, Construction A lattices, nested lattice codes, QC-
LDPC codes, shaping gain
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Chapter 1

Introduction

1.1 A Brief Overview

Lattices have been studied by mathematicians for their properties such as sphere
packing, covering and quantization, and serve as powerful tools with applications
in information theory, communications and cryptography. The main application
is to the channel coding problem, that designs signals for data transmission and
storage. For source coding (analog-to-digital conversion or data compression),
lattices tell us how the quantization problem is related to the shaping gain of
their Voronoi regions. The lattice quantizers can also be employed in the channel
coding.

In communications we are interested in how to reliably transmit information
through an unreliable channel. The information could be a text message, a piece
of audio or some data stored in a computer. An unreliable channel is noisy
medium physically passing the information from a point to another point, or
saving the information now and retrieving it later, such as Wi-Fi, an optical
fiber, a magnetic disk drive, and so on. In 1948, Claude E. Shannon published a
seminal paper entitled “A Mathematical Theory of Communication” [1], in which
he established the fundamental theorem for point-to-point communications, and
addressed that information can be efficiently and reliably transmitted by coding.
Let the unit information bits per channel bit denoted by R, called the code rate.
Shannon defined the maximum amount of information a channel can carry as the
channel capacity C', and showed that if R < C such codes exist to achieve reliable
communications. Conversely, if the code rate R is greater than the channel capacity
C, it is not possible to have reliable transmissions.

Error-correcting codes can provide reliable communications over unreliable
channels, and are so named because they correct the errors that occur during
transmission. Error-correcting linear codes are mainly defined in finite fields!,

YA finite field F,, also known as a Galois field, is a set of integers {0,1,...,q — 1} defined



while a lattice is defined as a discrete additive subgroup of the n-dimensional Eu-
clidean space R". In channel coding, a code is mainly measured by two properties:
error-correction capability and code rate. The error-correction capability provides
reliable transmission, and high code rate allows larger amount of data transmission
per unit. Lattice codes can provide high code rates because they are constructed
by an alphabet of size larger than that of the finite field codes.

1.1.1 Modulation, Power Constraint, and Shaping

The signals containing data are sent to a channel by the transmitter. The norm of a
signal is called the signal power, which determines how much power is required for
transmission. In practice the transmitter never has an infinite power, and thus the
average transmit power shall be constrained. The n elements of a signal lie within
a sphere of radius v/nP around the origin, where P defines a power constraint. In a
noisy channel, the power of the noise is determined by the variance and mean of the
distribution. The most important noisy channel to consider is the additive white
Gaussian noise (AWGN) channel, where the noise satisfies a Gaussian distribution.
The ratio between the signal power and the noise power is called the signal-to-noise
ratio (SNR). For high code rate, transmission needs high SNR.

Assume an arbitrary sequence of data. To transmit the sequence, its elements
need to be converted into a signal with the form appropriate for transmission
in the channel such that transmitted signals satisfy the power constraint and
have zero mean. This can be performed by a modulation technique. In modern
communication systems, digital modulations are used, where the constellation
consists of discrete points.

One of the widely used digital modulations is the quadrature amplitude modu-
lation (QAM), but QAM modulation scheme without probabilistic shaping [2] on
signals cannot achieve the AWGN channel capacity at high SNR. This is because
they do not produce Gaussian-like (or hypersphere-like) constellations, and such
a constellation is essential for approaching the capacity of the channel when SNR
is high. Lattices can provide better constellations than QAM by applying lattice
geometric shaping. In addition, at low dimensions the QAM modulation scheme
applied to finite field codes can also be regarded as a lattice constellation. The
effectiveness of constellation shaping techniques is measured by the normalized
second moment (equivalently, shaping gain)—it provides power reduction.

under modulo-¢g addition and modulo-g multiplication, where ¢ is a prime number. The binary
field Fy is the simplest field that is most commonly used as the alphabet of code symbols for
error-correction codes.



1.1.2 Finite Field Codes

Error-correcting codes are mainly defined in finite fields, in both theory and
practice. An error-correcting code defined over F, maps an information sequence
with k& symbols to a codeword using n symbols. A codebook, the set of all
codewords, is generated using an alphabet {0,1,...,¢ — 1}. Almost all error-
correcting codes used in practice are linear, and a linear code is defined as a
k-dimensional subspace of a vector space Fy. Then the code is said to have block
length n, dimension k, and code rate R = k/n, and the number of codewords is
M = ¢*. Under some conditions, e.g., R < C, the information can be recovered
even from a noisy channel.

Researchers and engineers had found many codes such as low-density parity-
check (LDPC) codes, turbo codes, polar codes, and Bose-Chaudhuri-Hocquenghem
(BCH) codes, that provide excellent error-correction performance.

1.1.3 A General View of Lattices and Lattice Codes

Lattices are discrete points in R”. The set of points in R™ that have the closest
distance to a lattice point than to any other lattice points is called the Voronoi
region, thus a lattice point is at the center of the Voronoi region. Due to the
discreteness and symmetry of lattices, if a Voronoi region is shifted by every lattice
point, the union of the shifted Voronoi regions cover the whole space of R"™. More
importantly, a lattice is an infinite structure. For practical use, the signal power
must be constrained, thus a finite set of points of the lattice must be selected, e.g.,
the intersection of the lattice and some region. And this can be accomplished by
lattice geometric shaping using the zero-centered Voronoi region? of some lattice,
combining coding with modulation. The lattice performing shaping is called a
shaping lattice, which needs to be a subset of the coding lattice, i.e., the lattice
used for coding. The resulting intersection as a set of lattice points of the coding
lattice that lie in the zero-centered Voronoi region of the shaping lattice is a nested
lattice code [3], also known as a Voronoi code/constellation [4,5]. Under this coding
scheme, the coding lattice corrects errors while the shaping lattice satisfies the
power constraint and provides the shaping gain—the nested lattice code provides
a high code rate.

The simplest lattice is the one-dimensional integer lattice consisting of every
integer as a lattice point. In the literature, several low-dimensional lattices [6] are

2Every lattice has an all-zero lattice point which is the origin, thus its Voronoi region is called
the zero-centered Voronoi region.



well-known especially for their good shaping gain of Voronoi regions, e.g., the Fg
lattice, the BWig lattice and the Leech lattice, where the decoding algorithms for
the BWig lattice and the Leech lattice are not as efficient as decoding/quantizing
the Fg lattice. LDLC lattices [7], as an analog to LDPC codes, have good coding
properties but require a high decoding complexity. Lattices can also be built from
linear codes, using well-known methods such as Construction A, D, and D’ [6].
Applying these methods is to lift the codebook of linear codes from finite fields
to the real space R"”, and the resulting lattices are called Construction A lattices,
Construction D lattices, and Construction D’ lattices, respectively. Construction
D and D’ are applied to a family of nested binary linear codes. Construction
A is the one-level special case of Construction D suitable for an arbitrary linear
code, which can produce lattices good for quantization but is generally tricky for
achieving good coding properties unless applied to a nonbinary code. Construction
A and D use a generator matrix while D’ uses its inverse matrix called a check
matrix. There are some applications such as convolutional code lattices based on
convolutional codes and Construction A [8,9], BCH code lattices based on BCH
codes and Construction D [10], LDPC code lattices based on LDPC codes and
Construction D’ [11,12].

A question is how to develop a pair of lattices: a coding lattice and a shaping
lattice, such that the error-correction capability, a high code rate and the shaping
gain are obtained using low-complexity encoding and decoding algorithms? Can
the two lattices be same or different? If such lattices are found, how can they
be efficiently implemented in a practical coding scheme? These questions will be
addressed in the remaining part of this dissertation.

1.1.4 A Little Story
Once upon a time in information-theory wonderland, Alice had a conversation
with Bob.

Alice: It is well-known that LDPC codes have been widely used in communi-
cations applications. You use them when making a phone call, viewing the world
using Google Earth or saving your favorite song in solid state drives.

Bob: Then I cannot live without LDPC codes. Why are they used everywhere?

Alice: Because LDPC codes have outstanding error-correction capability and
are friendly for hardware implementation. Does your smartphone support 5G?
LDPC codes are used for channel coding in 5G.

Bob: Yes, I am using 5G now. It’s great. A live show can be smoothly played



without lag. But I think it would be nice if the downloading speed can be improved.
The faster the better. The bad thing is that the smartphone needs recharge several
times a day!

Alice: Haha! Many people are addicted to internet. The problem you have
depends on the devices, but they can also be improved from channel coding. You
need a code with high rate. This requires high SNR. More importantly, shaping
saves the energy, for both your devices and base stations.

Bob: Shaping is amazing! Can we use LDPC codes at high SNR and have
shaping?

Alice: The answer is yes, in the context of lattices.

Bob: I love lattices! But codes are defined in finite fields and lattices are
defined in real space. How does a lattice be developed from a code?

Alice: There do exist several methods that lift a linear code to a real space,
such as Construction A and Construction D. Construction A uses a linear code.
Construction D is applied to a family of nested linear codes.

Bob: ...Oh, which one do you choose for LDPC codes?

Alice: LDPC codes are described by parity-check matrices, but both of the
above methods use generator matrices. Um...wait. There is one method, called
Construction D’ which is a friend of Construction D that can be used for LDPC
codes. And you will need another lattice for shaping. Maybe a Construction A
lattice is a good option.

1.2 Motivation

The capacity of the AWGN channel cannot be achieved when equiprobable
QAM signal constellations are used® at high SNR [13], because they incur a
me/6 (1.53 dB) loss as the dimension n — co. This loss can be overcome using
spherical constellations that produce Gaussian-like distributions, but decoding an
n-sphere is impractical. Constellation-shaping techniques that produce Gaussian-
like distributions with reasonable complexity are desirable.

Lattices are a natural fit for wireless communications because they provide
reliable transmission using real-valued algebra and higher transmit power efficiency

3Probabilistic QAM constellations can provide shaping gain [2], but probabilistic shaping is
not directly compatible with compute-and-forward. This dissertation instead considers geometric
shaping.



than the conventional QAM constellation at high SNR. They also provide high
code rate and that is essential for the next-generation wireless communications.
Lattices also form an important component of compute-and-forward relaying [14],
which provides high throughput and high spectral efficiency. Nested lattice codes,
constructed using a coding lattice A. and a shaping lattice Ay, can be used for
power-constrained communications.

Erez and Zamir [3] showed that nested lattice codes can achieve the capacity of
the AWGN channel, if the coding lattice A, is channel-good and the Voronoi region
of the shaping lattice Ay is hyperspherical, using dithering and minimum mean-
square error (MMSE) scaling techniques. In such a coding scheme, a coding lattice
A, does the work for coding, that is, error-correction. Thus, a high coding gain is
appealing since it measures the error-correction capability. Also, a low-complexity
decoding algorithm is desirable for coding. There are some candidates suitable
as coding lattices such as the BCH code lattices, LDLC lattices, and LDPC code
lattices. The shaping lattice Ag contributes the shaping gain, which tells how good
the “shape” its Voronoi region is. The higher the shaping gain is, the more power
reduction it provides. The theoretical limit of the shaping gain is 1.53 dB when
the “shape” is a hypersphere and the lattice dimension approaches infinity. As a
lattice quantizer, the shaping lattice Ag requires a quantization algorithm costing
low complexity. If such an algorithm exists, the shaping gain is said to be efficiently
achievable.

In the context of lattice shaping (or quantization), the input source of a lattice
quantizer is a lattice point of the coding lattice A.. The quantization error is
dependent of the input source distribution, especially at low SNR. This can be
improved by adding a sequence uniformly distributed in the Voronoi of Ag to
the input source, called a dither, such that the quantization error can be seen
independent of the source. And the technique is called dithering. A linear scalar
estimator with respect to MMSE needs to be included for the coding scheme
applied in the power-constrained AWGN channel. For high code rates, dithering
is not required [15] and the role of MMSE scaling becomes negligible [3].

Two lattices A. and Ag are called self-similar if Ag is an integer-scaled version
of A.. The design of A. and A; has competing requirements, as A. demands
good coding properties and an efficient decoding algorithm while Ay needs good
shaping gains and low-complexity quantization. The design of A, and Ay can
be separated, under the principle of the separation of coding gain and shaping
gain [13]. Rectangular encoding and indexing for non-self-similar nested lattice
codes were proposed in [16], and conditions on lattice constructions were given.

LDPC codes have been implemented in a wide variety of communications appli-



cations because of their capacity-achievability, efficient encoding, low-complexity
decoding, and suitability for hardware implementation. For these reasons, LDPC
codes are also suitable for constructing lattices. Lattices based on binary LDPC
codes using Construction D’ were first introduced in [11]. Recently Branco da Silva
and Silva [12] proposed efficient encoding and decoding for Construction D’
lattices, particularly for LDPC codes. A codeword and cosets of component linear
codes are used to form systematic codewords for Construction D’ lattices. This
encoding method naturally produces lattice points in a hypercube. However, a
hypercube does not provide shaping gain. A shaping lattice Ag is needed to do so.

Erez, Litsyn and Zamir showed that there exist Construction A lattices that
are asymptotically good regarding both coding and shaping [17]. However, under
practical considerations of finite length and computationally feasible quantization,
the lattices best for coding may not be the best for shaping. Convolutional code
lattices that are built from convolutional codes using Construction A are attractive
for shaping, because of their good shaping gain, flexibility for dimension, and
efficient quantization using the Viterbi algorithm [18].

The shaping gain of convolutional code lattices can be increased by increasing
the memory order of the convolutional code. This comes at the expense of
computational complexity. While it is known that there are lattices which are
simultaneously good when used for coding and shaping [17], within the family
of convolutional codes, and with finite length, the lattices best for coding may
not be the best for shaping. Past work also ignored the role of complexity in
performing the shaping operation, beyond the simple observation that complexity
increases with the memory order. Also, past work [17] considered BPSK and
4-PAM constellations, which does not reveal the precise shaping gain. Thus, in
the search for convolutional code lattices with good shaping gain, it is reasonable
that a wider variety of convolutional codes should be considered, including the
zero-tailed* convolutional codes, tail-biting convolutional codes and truncated
convolutional codes.

1.3 Related Work

The two principal classes of codes at high SNR are trellis codes and lattices.
Forney proposed generalized cross constellations [19] and trellis shaping [20] that
can easily achieve a shaping gain of 1 dB, and claimed an asymptotic shaping gain
of 1.36 dB for trellis shaping, citing [21], using trellis coded modulation [22].

4This is the conventional termination.



Lattices from linear codes have potentials since the decoder for linear codes can
be employed to find the nearest lattice point given a point. Well-known methods
to build lattices from linear codes are Construction A and D/D’ [6, Ch. 5, 8.
Construction D/D’ generate lattices from multi-level nested binary linear codes.
Binary Construction A lattices are the special case of one-level Construction D
lattices. Unlike Construction A and D using generator matrices, Construction D’
describes lattices by check matrices and thus is suitable for LDPC codes.

Erez and ten Brink employed trellis shaping, constructing lattices based on
zero-tailed convolutional codes and Construction A that were used for vector
quantization in a dirty paper coding scheme [8]; four rate 1/2 convolutional codes
and their shaping gains were given. Kudryashov and Yurkov found generator
polynomials of rate 1/2 convolutional codes that provide the best asymptotic
shaping gain with respect to zero-tailed termination, and near-optimum shaping
gain at low dimensions with respect to tail-biting termination in [23] and [24],
respectively. This dissertation’s results extend their work addressing the optimality
of shaping gain to a wider range of dimensions and code rates, and additionally
consider the shaping gain-complexity tradeoff. Convolutional codes terminated by
direct truncation are also included.

Construction D produces lattices with good coding properties and low-
complexity decoding by employing the decoder for underlying linear codes. Con-
struction D was used to build turbo code lattices [25], polar code lattices [26] and
BCH code lattices [10]. Polar code lattices can achieve the capacity of the AWGN
channel using lattice Gaussian shaping [27].

Conway and Sloane proposed shaping on Voronoi constellations [4]. The
normalized second moment of a variety of low-dimensional (n < 24) well-known
lattices were listed in [28, Table V]. See also [5] [6, p. 61]. These lattices provide
excellent shaping gain for their dimension.

Using self-similar nested lattice codes, a shaping gain of 0.4 dB was shown for
LDLC?® lattices [30], and a shaping gain of 0.776 dB was claimed at n = 60 for
Construction A lattices based on QC-LDPC codes [31]. A shaping gain of 0.65 dB
and 0.86 dB was observed using the FEg lattice and the BWj4 lattice for shaping
LDLC lattices, respectively [32]. Leech lattice has 1.03 dB shaping gain, and was
used to shape LDA lattices [33]. Convolutional code lattices to shape low-density
lattice codes (LDLC) lattices [9] a shaping gain of 0.87 dB was preserved at n = 36.
A shaping gain of 0.63 dB was found using the Eg lattice for shaping BCH-code
based Construction D lattices [34].

®The work in [29] also constructed nested lattice codes using self-similar LDLC lattices.



1.4 Contributions

This dissertation addresses the following problems:

1. Develop encoding and decoding algorithms for Construction D’ such that
Construction D’ lattices can be used as coding lattices in power-constrained
channels.

2. Design QC-LDPC codes for Construction D’ such that the resulting QC-
LDPC Construction D’ lattices are suitable for coding in a practical coding
scheme.

3. Search for good lattices that can help Construction D’ lattices satisfy the
power constraint, and provide additional shaping gain. Convolutional code
lattices formed by Construction A and binary convolutional codes are used,
with aspects of design, performance and complexity considered.

The outcome of this work is a comprehensive solution of practically imple-
mentable lattice coding applications in communications, under the framework
of nested lattice codes. Two distinct constructions of lattices lifted from binary
linear codes are studied and designed. QC-LDPC Construction D’ lattices inherit
good coding properties from the widely practically used QC-LDPC codes, while
convolutional code lattices provide the prospect of satisfying power constraint for
QC-LDPC Construction D’ lattices. This dissertation provides a fundamental
strategy for Construction D’ lattices to be used under power constraint. Moreover,
the resulting nested lattice code constructions can provide a good coding gain, a
high shaping gain, efficient encoding and low-complexity decoding, which also
make them of interest for compute-and-forward.

The main contributions of this dissertation are classified into several categories:

1. Construction D’ encoding and decoding algorithms that can be applied to
a variety of nested linear codes for power-constrained channels under the
lattice framework.

2. Construction D’ lattice constructions and the design of the underlying nested
QC-LDPC codes, whose structure provides efficiency for lattice encoding and
indexing.

3. Extensive Construction A lattice constructions and evaluations with respect
to the best tradeoff between the shaping gain and the quantization complexity
provided by various binary convolutional codes with three trellis termination
methods, including zero-tailed termination, tail-biting termination, and



direct truncation.

4. Modification of nested lattice code indexing method to overcome the integer
overflow problem in high dimensions when implemented, and the resulting
method is applicable to all nested lattice codes if their generator matrix or
check matrix can be easily triangularized.

5. Nested lattice code constructions when distinct lattices are considered for
shaping Construction D’ lattices, which are the Eg lattice, the BW4 lattice,
the Leech lattice, and the best-found convolutional code lattice.

1.4.1 Construction D’ Encoding/Decoding

This dissertation tackles the encoding and decoding problem of Construction
D’ lattices to be used in power-constrained communications. Accordingly, two
encoding methods: Encoding method A and Encoding method B, and a decoding
algorithm of Construction D’ lattices suitable for satisfying target channels are
proposed. Encoding method A encodes integers with an approximate lower trian-
gular (ALT) check matrix. Encoding method B shows how binary information bits
are mapped to a lattice point using the check matrix of the underlying nested linear
codes for a Construction D’ lattice. Multistage successive cancellation decoding
algorithm employing binary decoders is used; the decoder uses re-encoding based
on encoding method B; this method is distinct from [12].

A definition of Construction D’ using check-matrix perspective is also given,
which is equivalent to the conventional congruences definition [6].

1.4.2 QC-LDPC Code Design for Construction D’

This dissertation constructs QC-LDPC codes to form Construction D’ lattices
(termed QC-LDPC Construction D’ lattices), because QC-LDPC codes are widely
used in recent wireless communication standards. In this dissertation, parity-
check matrices for nested QC-LDPC codes are designed such that they can be
easily triangularized and thus efficient encoding and indexing are allowed. An
existing Construction D’ lattice based on a QC-LDPC code and a single parity-
check (SPC) product-like code [35] is not suitable for indexing/shaping because
the SPC product-like code parity-check matrix cannot be efficiently triangularized.

Let Hy and H; be the parity-check matrix of binary code Cy and C; respectively.
A subcode condition Cy < C; must be satisfied to form a 2-level Construction D’
lattice, and this is not straightforward. In [12], LDPC code parity-check matrix Hy
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was obtained from H; by performing check splitting or progressive edge-growth
(PEG)-based check splitting. This dissertation presents a QC-LDPC design for
code Cy, and the position of non-zero circulants (or blocks) in Hy is found by
binary linear programming. In contrast to [12], H; will be constructed from Hy.

This work also shows how to triangularize the parity-check matrices for QC-
LDPC codes with designed structure, and how to build a check matrix for a
Construction D’ lattice.

1.4.3 Extensive Search for Convolutional Code Lattices

A method to obtain triangular generator matrices for Construction A lattices
is given, as a modification of the classical method [6, p. 183] (also [36, pp. 32—
33]). The method in this dissertation allows forming the generator matrix without
swapping code bit positions for convolutional code lattices with underlying rate
1/2,1/3,... binary convolutional codes. This is also valid for construction of
convolutional code lattices from both zero-tailed convolutional codes and tail-
biting convolutional codes with any code rate. The best-found shaping gain of
convolutional code lattices at various dimensions is obtained by an exhaustive
search over zero-tailed convolutional codes, tail-biting convolutional codes, and
truncated convolutional codes of rate 1/2 and 1/3 with a variety of numbers of
states. The asymptotic shaping gains and the tradeoff between the shaping gain
and the complexity of quantization are also studied.

1.4.4 Modified Lattice Indexing Method

Encoding and indexing, and construction of nested lattice codes are reviewed.
When applied to high-dimensional nested lattice codes, the conventional indexing
algorithm [16, Sec. IV-B] may encounter large-valued integers, which causes an
integer overflow problem when implemented—it may fail to recover information
even in the absence of noise. To solve this problem, this dissertation provides a
modified algorithm to bound the values of integers that are used internally, without
changing the solution.

1.4.5 Nested Lattice Code Constructions

Several nested lattice code constructions are given. The coding lattices are the de-
signed QC-LDPC Construction D’ lattices, while the shaping lattices are distinct,
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including the FEg lattice, the BWiq lattice, the Leech lattice, and the convlutional
code lattices. These lattices as lattice quantizer can provide high shaping gains,
and the full shaping gains are 0.65 dB, 0.86 dB, 1.03 dB, and possibly greater than
1.25 dB respectively.

When a convolutional code lattice performs lattice quantization, the shaping
gain as high as 1.25 dB is preserved in a practical nested lattice coding scheme.
This is the best-found numerical result in the literature of lattice shaping.

Hypercube shaping is performed for comparison with a nested lattice code
using shaping lattices, with respect to the shaping gain, because a hypercubical
constellation provides no shaping gain. When generating a hypercubical constella-
tion for Construction D’ lattices, a method simpler than the conventional method
is described.
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1.5 Dissertation Scope and Notation

The rest of this dissertation is organized as follows:

1.

Chapter 2 introduces definitions and properties of lattices, as well as several
important transformations of lattices which are used in this work. Lattice
construction methods from linear codes are given, including Construction A
and D’. The well-known lattices in short dimensions are listed, including the
Eg, BWi6 and Leech lattices that will be employed for shaping.

Chapter 3 describes the encoding and indexing of nested lattice codes, and
addresses a modified indexing method for high dimensions. The nested
lattice coding scheme additionally including the indexing is introduced.
Hypercube shaping is also given.

. Chapter 4 proposes encoding and decoding methods for Construction D’; as

a foundation for Construction D’ lattices to be used in power-constrained
channels.

Chapter 5 addresses QC-LDPC code design for Construction D’; and shows
how to generate a triangular check matrix for a QC-LDPC Construction D’
lattice.

Chapter 6 presents extensive Construction A lattice constructions and evalu-
ations using zero-tailed convolutional codes, tail-biting convolutional codes,
and truncated convolutional codes. The tradeoff between the lattice shaping
gain and quantization complexity is studied.

Chapter 7 shows numerical results for QC-LDPC Construction D’ lattices
(to be designed in Chapter 5) in a power-constrained channel under the
framework that will be described in Chapter 3, where the shaping lattices
include: the Fjg lattice, the BWj4 lattice, and the Leech lattice (that will be
introduced in Chapter 2), and the best-found convolutional code lattices (as
will be provided in Chapter 6), using the decoding algorithm to be proposed
in Chapter 4.

Chapter 8 addresses conclusions of this work, and discusses about related
future topics.
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Notation

Generator vectors are written in columns, which is convenient when considering
the lattice check matrix that has basis (check) vectors in rows. This is distinct
from the convention used for finite field codes. A lattice point x is given as a
column vector, while sometimes written in the form (z1, s, ...,x,) with respect
to its elements.

A tilde indicates a vector or matrix which has only 0s and 1s — X and H are
binary while x and H are not necessarily so. Operations over the real numbers R
are denoted +,- (the operator - is sometimes omitted) while operations over the
binary field Fy are denoted @,®. The binary field Fy is also written as GF(2).
The direct sum operation of two lattices is also denoted @. The matrix transpose
is denoted (-)". Element-wise rounding to the nearest integer is denoted |-].

14



Chapter 2

Lattices and Lattices From Codes

This chapter addresses how a lattice is generated from a basis, described using a
generator matrix or a check matrix and decomposed using a sublattice and cosets of
the sublattice. This chapter also introduces how to evaluate a lattice with respect
to its coding and shaping properties, and how this is connected to its Voronoi
region. A Voronoi region of a lattice plays a key role in both lattice decoding
and lattice quantization. If two lattices satisfy a sublattice condition, then the
intersection of the “super” lattice and the Voronoi region of the sublattice defines
a nested lattice code (also known as a Voronoi code). The super lattice is for
coding and the sublattice is for shaping.

Several important lattice transformations used in this dissertation are intro-
duced: identical lattices, lattice scaling and the direct sum of lattices. Two
lattices are identical if one basis can be obtained by multiplying another basis by a
unimodular matrix. Thus the resulting two distinct generator matrix can be used
interchangeably to describe the same lattice. Sometimes a triangular generator
matrix is desirable since it is convenient for lattice encoding and indexing, as will
be seen in Chapter 3. An equivalent lattice is produced if it is scaled by a real
nonzero number. The direct sum of two or more identical lattices can provide a
high-dimensional lattice without changing the shaping property. This construction
is employed when low-dimensional lattices are to be used in higher dimensions.

Two lattice constructions that build lattices from linear codes, Construction A
and Construction D’, are briefly described, which are used in lattice constructions
in this dissertation. Construction A is applied to generate convolutional lattice
codes as shaping lattices and the method will be given in Chapter 6. The
encoding/decoding of Construction D’ will be addressed in Chapter 4.

Several well-known low-dimensional lattices including the Ejy lattice, the BWig
lattice and the Leech lattice that will be employed in the shaping lattice construc-
tions, are then introduced. By showing the definitions and several examples it will
be seen how these lattices are related to linear codes, as well as the methods for
construction.
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2.1 Preliminaries

2.1.1 Definition of Lattices

Definition 2.1 A lattice A is a discrete additive subgroup of the n-dimensional
Fuclidean space R™.

A lattice is a vector subspace, because R" is a vector space and A is a
subgroup—A is a set of points (called lattice points) closed under real addition. A
lattice possesses a linearity property: if lattice points x1,x5 € A, then the sum of
two lattice points x; + x5 € A. Let x € A, then there is x + x + -+ + x € A, thus
A has infinite size. Assume an integer «, then o - x € A. Observe x — x € A, thus
the origin (or the zero point) is always a lattice point.

Example 2.1 The set of all integers Z is a one-dimensional lattice. Consider two
lattice points 3 € Z and 1 € Z, then the sum 3+ 1 = 4, 3+ 3 = 6 are lattice points.
Since the reflected —3 € Z, the origin 0 is a lattice point. Scaling the lattice point
3 by an integer —5 gives —15 € Z.

2.1.2 Lattice Basis, (Generator Matrix and Check Matrix

If A is an n-dimensional lattice, this n-dimensional space can be spanned by a
basis which is a set of n linearly independent basis vectors (also called generator
vectors) g1, 82, - .., 8n- A column vector

g1
g— |7 (2.1)
gn
represents a point in R for i € {1,2,...,n}.

Let integers b; € Z be elements of a column vector b:

b
by
b= .1, (2.2)
bn
for j € {1,2,...,n}. Then the linear combination of the bases defines a lattice
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Figure 2.1: Example of a two-dimensional lattice A2

point x as
X = g1b1 + gabo + -+ + uby, (2.3)

which is a vector of n real numbers:

T
T2
X = (2.4)
T
Recognize that the points gy, ..., g, are also lattice points.

Example 2.2 Let two linearly independent vectors g; = [1,2]", g2 = [2, —1]* form
a basis. Then a two-dimensional lattice A? is obtained and shown in Figure 2.1.

The basis for a lattice is not unique. The same lattice A% in Example 2.2 can
be generated using bases such as

{[-2,11", [3,1]"}, {[-1,—2]" 1}, {[1,2]%,[0,5]'}, ... (2.5)

Can any 2 linearly independent vectors in A% form a basis for A%? To answer
this, let us try the two vectors [3,1]%,[0,5]' € A%2. Draw points that are integral
linear combinations of these two vectors in Figure 2.2. Observe that [5,0]" cannot
be produced by any integral linear combinations of [3,1]* - oy + [0,5]" - ay for
ap,az € Z, but [5,0]" can be expressed as [1,2]" - 1 + [2,—1]" - 2 using the basis
given in Example 2.2 and thus is a lattice point of A?. And of course there are
other lattice points of A? that cannot be generated by [3,1]%,[0,5]°. Thus the
answer to the question is no. How to select a basis is omitted.
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Figure 2.2: Bad basis example that cannot generate A2

Integer bases span lattices in Z", which is straightforward. But a basis need
not have all integer values in order to generate a lattice, e.g., a basis with vectors
{[~1,0]%,[~1/2, —V/3/2]*} spans a lattice in Figure 2.8.

Remark 2.1 For a valid basis consisting of n linearly independent basis vectors
g1,82,...,8, in R™ the subgroup of all linear combinations with integral coeffi-
cients of the basis vectors forms a lattice.

Write n generator vectors in a square matrix of order n, called a generator
matrix:

G=lg g " &]- (2.6)

Thus (2.3) can also be written by the matrix form as:

x=G"b. (2.7)

Example 2.3 The integer lattice Z™ is the simplest lattice. The one-dimensional
integer lattice is the set of all integers:

-3 -2 -1 0 1 2
The two-dimensional integer lattice can be drawn and is given in Figure 2.3. A
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Figure 2.3: Two-dimensional integer lattice Z2.

natural generator matrix of Z" is the identity matrix I,, for dimension n:

10 0
01 0 28
" : 0 '
0 0 1

A lattice A can also be described using the check matric H = G~ which is
expressed by

— h; —
h, —
H = ' , (2.9)
h, —
where each check basis vector h; is a row vector of n real-valued elements, for
i=1,2,...,n. Then computing (2.7) is equivalent to solve
H -x=b. (2.10)

For a lattice with check matrix H, x is a lattice point if and only if H-x is a vector
of integers.
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2.1.3 Lattice Cosets

A lattice coset is a discrete set of points which is a shift of a lattice by some vector.

Definition 2.2 A lattice coset of A with respect to a vector s is the set:

s+A={s+x|xeA} (2.11)

A coset of a lattice is of infinite size, since a lattice is a set of infinite size. The
difference vector between every pair of two points of a lattice coset s + A is in A.

In general, a lattice coset is not a lattice as it does not contain the origin, unless
seA.

If a lattice A’ contains all lattice points of another lattice A, written as A < A,
then the A is a sublattice of A’. Since A is a subgroup of the group A’, the two
lattices form a quotient group denoted A’/A. A vector s € A’ can be used to
determine a coset of A relative to A’ where the relative coset is: s + A. Since
A c N'| each relative coset belongs to A’. The set of relative cosets is A’/A:

{s+A|seA}. (2.12)

The union of A’/A covers A’ and then the size of A’/A is finite. Each coset can be
represented by an element, called a coset leader. The coset leaders can be selected
such that they form a codebook for a code—nested lattice code. More description
will be given in the next chapter. The following example shows another choice of
coset leaders.

Example 2.4 In Figure 2.4, a lattice 5Z? is scaled by 5 from the integer lattice Z>
given in Figure 2.3, thus its lattice points are also integers. A coset of 5Z? takes
a shift of all points in 5Z2 by a vector, e.g., (2,2) + 5Z?*, shown as red diamonds
in Figure 2.5. Since (2,2) + (2,2) = (4,4) is not an element of (2,2) + 5Z2,
(2,2) + 5Z? is not a lattice. Consider the lattice A? given in Example 2.2. A% can
be constructed using the union of the lattice 5Z% and its cosets with respect to
vectors s; € {(0,0),(1,2),(2,4),(3,1),(4,3)}, described as:

A= O(si + 5Z2). (2.13)

Each coset is represented by a distinct marker in Figure 2.6. Observe that the
lattice 5Z2 is a sublattice of A%: 5Z2? = A%. See Figure 2.7.
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Figure 2.4: Scaled integer lattice 5Z2.
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Figure 2.5: Coset of lattice 5Z* with respect to a vector (2,2) where 5Z?* is marked
as black circles and its coset is marked as red diamonds.

21



10 A4 v A4
a a a a
A A A A
* * * *
5 b o o o) 4
a a a a
A A A A
* * * *
O¢ o o o 4
=] a o o
A A A A
* * * *
_5 b o o o 4
a a a a
A A A A
* * * *
_10 & a4 &
-10 -5 0 5 10

Figure 2.6: Lattice decomposed by 5Z? (black circles) and 4 cosets of 5Z* (red
triangles, green squares, blue asterisks and purple pluses).
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Figure 2.7: Nested lattices example where a lattice is marked as black solid circles
and its sublattice is marked as red circles.
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2.1.4 Lattice Quantization and Modulo

For a lattice A, the nearest-neighbor quantizer (or decoder) finds the closest lattice
point x = (x1,22,...,x,) € A given an arbitrary point y = (y1,42,...,¥yn) € R"
which is expressed as:

Q(y) = argmin [y — A, (2.14)
eA

where ) is some lattice point in A and || - |* denote the squared Euclidean distance
(or norm) that computes

n

ly = AP = D (= M) (2.15)

i=1

Lattice quantization (2.14) is also written by

x = Qaly), (2.16)

that is read as the quantization of y to find its nearest x € A.

The quantization error vector

t=y—Qay) (2.17)

is usually written as:
t = ymod A, (2.18)

and the operation is referred to as the lattice modulo operation. It will be shown
that t and y belong to the same coset of A where t is constrained in a shape called
the zero-centered Voronoi region, when a Voronoi codebook is applied. This is
applied when encoding nested lattice codes that will be introduced in Chapter 3.
The quantization effectiveness is measured by the shaping gain, which will be
described in Subsection 2.1.7.

Lattice Coset Decoding

A lattice A’ may be decoded using lattice coset decoding if A’ can be represented
by a union of cosets. Let A < A’ and decompose A’ by its sublattice A and cosets
of A as: A’ = J'_}(s; + A) where [ — 1 denotes the number of cosets for which s;

i=0
is a coset leader and sy = (0,...,0). Assume that how to find a nearest lattice
point for A is known. Given an arbitrary point y, then A’ can be decoded in the
following way. For ¢ =0,1,...,l—1, s; is subtracted from y as y —s;, then decode

Vi =s;+Qa(y—s;). Let d; denote the squared Euclidean distance between ¥y and
y. The closest lattice point in A’ is y = y’; corresponding to the smallest value d;
for some j € {0,1,...,0l—1}. This includes the quantization of a lattice coset, and
more on quantization will be introduced in the nest subsection.
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2.1.5 Voronoi Region and Its Volume

Definition 2.3 For a lattice A, a fundamental region (or fundamental cell)
denoted F < R"™ is a shape that, if shifted by each lattice point in A, will exactly
cover the whole Euclidean space R™.

The Euclidean space R™ can be divided into disjoint congruent partitions where
each partition is a shift of the fundamental region, by a lattice point in A. A
fundamental region is a maximal set satisfying that the difference vector between
any pair of two points in F is not a lattice point. Any point in R" is in exactly one
fundamental region. A coset s + A can be represented by the unique intersection
point (called a coset representative) of the coset and F: (s + A) n F. Thus F is a
complete set of coset representatives, and the set of all cosets is called the quotient

group R"/A = {s + A | s € F}.

The division is not unique thus there are different fundamental regions for a
lattice, and the most important one is the Voronoi region.

Definition 2.4 A Voronoi region V(x) is defined as a set of all points nearest to
x € A than to any other lattice point.

Using the nearest-neighbor quantizer (2.16), a Voronoi region V(x) can be
described as:

V(x) = {y/ e R"” ‘ Q') = X}, (2.19)

which is a convex polytope since Euclidean distance is used. A line that connects
x to one of its neighbors! is crossing orthogonally a hyperplane, which determines?
a face of V(x).

The Voronoi region does not depend on the generator matrix but relies on
lattice points. The zero-centered Voronoi region V(0) corresponding to the origin
0 is simply denoted V. All shifts of V by lattice points x € A cover the entire
space R™, thus any point in R™ can be represented as the sum of a lattice point
and a point in V where this point in V is the shortest vector in its coset, regarded
as a coset leader. The set of all coset leaders in V can be used to define a nested
lattice code if each is a lattice point of the “superlattice”, as will be introduced
in Chapter 3. Note that the lattice modulo operation (2.18) is to find the coset
leader for an arbitrary point in R".

IThe neighbors of a lattice point x are defined as a set of all lattice points in A that have the
shortest distance to x than the distance between any other lattice point with x.

2There exist some points in R™ that have the same distance to two or more lattice points. In
order to keep the fundamental regions congruent, each point can belong to only one fundamental
region. This can be solved by a systematic tie-breaking rule for the quantizer Q(y).
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Figure 2.8: Two-dimensional hexagonal lattice A, with lattice points ¢ and Voronoi
regions O.

Another commonly used fundamental region is the parallelotope region that
consists of all points which are linear combinations of the basis vectors g1, ...,8,
with coefficients between zero and one. It is convenient to use the parallelotope
region to enumerate the Voronoi codebook for a nested lattice code.

For a lattice A described by a generator matrix G, its various fundamental
regions have the same volume V(A), given by:

V(A) = det (A) = |det (G)], (2.20)

where det (-) computes the determinant.

Example 2.5 The 2-dimensional hexagonal lattice can be described by a generator
matrix:

L
2
s ol (2.21)
2
V3

which has volume . The lattice points and the Voronoi regions are shown
in Figure 2.8. The shape of the Voronoi region is a hexagon, thus the lattice is
called the hexagonal lattice, and it is equivalent to A, lattice, as will be introduced

in Subsection 2.3.1.
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2.1.6 Identical Lattices, Lattice Scaling and Direct Sum

2.1.6.1 Identical Lattices

Two lattices A; and A, are identical if all the lattice points are the same, called
identical lattices. A basis of A; can be transformed into another basis representing
an identical lattice A;. That is to say, the generator matrix of a lattice is not
unique, and can be transformed to a distinct generator matrix which describes the
same lattice. This is performed by using a unimodular® matriz.

Proposition 2.1. Let an n-by-n matrix G be a generator matrix for a lattice A.
If W is a unimodular matrix then G-W is also a generator matrix for A. Similarly,
let H= G~!, then W’ - H is also a check matrix for A if W’ is unimodular.

2.1.6.2 Lattice Scaling

An n-dimensional lattice A is equivalent to a scaled version of A, and the coding
gain (2.34) does not change. Let K be a real nonzero number, then A’ = KA is a
lattice scaled from A. For an arbitrary lattice point x € A, there is Kx € KA. Let
G be a generator matrix of A, then the lattice KA has a generator matrix KG.
The volume of KA is

V(EKA) = det (KA) = |det (KG)| = |K"det (G)]. (2.22)

Given an arbitrary point y € R", the quantization using A’ = KA can be performed
by

X' = Qn(y) = Qraly) = K- Quly/K), (2.23)
where a quantizer (2.16) for A is used and thus is straightforward.

Example 2.6 Let a lattice be scaled by 4/2 from the integer lattice Z?. Then
V277 has a generator matrix

V2 0 0
0 v2 0|, (2.24)
0 0 2

and volume 24/2.

3A unimodular matrix is an n-by-n matrix with integer entries and determinant +1. The
inverse of a unimodular matrix is also unimodular.
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2.1.6.3 Direct Sum

A simple method to build a high-dimensional lattice from low-dimensional lattices

is using the direct sum?.

Let A; and A, be two lattices with dimensions n; and ns, generator matrices
G and Go, respectively. Let the lattice points be denoted x € A; and y € A;. An
n-dimensional lattice A can be produced using direct sum of A; and As, represented
by:

A=ANDA = { (X»Y)

XEAl,yEAQ}, (225)

where n = n; + ny. The generator matrix G of A is a block-diagonal matrix given
by

G = l%l 32] . (2.26)

The volume of A = A; @ A, has:

V(A) = det (A) (2.27)
= det (A1 @A) (2.28)
— |det (G)| (2.29)
= |det (G1)[ - |det (G2)| (2.30)
= det (A;) - det (Ag). (2.31)

Example 2.7 Consider two lattices 3Z°% and 2A4,, where Z?3 has a generator matrix
(2.8) and Aj has a generator matrix (2.21). Then a generator matrix of 3Z>®2A,
is obtained:

0
0
0 (2.32)
1

o O O O W
o O O w O
o O w o O
S N O O O

V3

whose volume is (3% - 1) - (2% - £3) = 544/3.

4The direct sum of two lattices A; @ A, is the same as their Cartesian product A; x As. Here
the notation @ is the same as that of the addition operation used in binary field GF(2), but
there should be no ambiguity between the two distinct operations.
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It is convenient to build a high-dimensional lattice A by the direct sum of a
sequence of identical low-dimensional lattices A’ as A = V@A ®--- @ A’. The
lattice A has the same shaping gain (2.42) as the component lattice A’. This
is often applied to well-known lattices such as the 8-dimensional Ejy lattice, the
16-dimensional BWg lattice and the 24-dimensional Leech lattice, which will be
introduced in Section 2.3 and will be employed when building high-dimensional
lattices for shaping in Chapter 7. Let an n-dimensional lattice A be the direct sum
of n/n’ copies® of an n’-dimensional lattice A’, then the quantization of A can be
performed by quantizing each component lattice A’ for its corresponding elements,
that is, an estimated lattice point for A is produced by employing the quantizer of
A’ for n/n’ times.

2.1.7 Properties for Coding and Shaping

2.1.7.1 Coding Gain and Volume-to-Noise Ratio

Coding Gain

The minimum distance d,,;, indicates the error-correction capability of a code
C. If C is a block code defined in finite fields, d,,;, is defined as the minimum of
the Hamming distances between all distinct pairs of codewords x € C and y € C.
The Euclidean distance is used when considering Euclidean-space codes. It is
convenient to use the squared minimum distance d?

min*
Due to the linearity of a lattice A, the squared minimum distance is given by:
d2

min

= mi 2, 2.
Jnin x| (2.33)

Scaling A by K produces a lattice with squared minimum distance of K?d2, ,

but the average transmitted power is also increased. Thus the coding gain ~.

is defined as the normalized squared minimum distance which is independent of
lattice scaling, and is expressed as:

d?;

= —2= 2.34

Volume-to-Noise Ratio

The common notion signal-to-noise ratio (SNR) used for codes is not meaning-
ful for lattices because they are a set of infinite size. The transmitted sequences

5 o . .
°Here n/n’ must be a positive integer.
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thus are included in an infinite constellation. This was modeled by Poltyrev [37],
such that a lattice-goodness can be evaluated in a power-unconstrained AWGN
channel, where the capacity is called Poltyrev limit (or Poltyrev capacity).

The volume-to-noise ratio (VNR) of a lattice A is defined as the ratio between
the normalized volume of A and the normalized volume of the noise sphere, given

by:

V(A)"

VNR =
2meo? ’

(2.35)
which is the distance to the Poltyrev limit. Let the probability of error for decoding
an n-dimensional lattice be P,(c?) using a minimum-distance decoder. Unless
V(A)?" > 21ec?, P.(0?) cannot be small. Moreover, if V(A)¥" ~ 2res? then
P,(0?) cannot be small unless n is large [38]. Thus the VNR is useful when
measuring error-correction performance of lattices, and is commonly given in

decibels as 10log;; VNR. When VNR = 1 (VNR = 0 dB) the capacity is achieved
V(A)Q/n

given a noise variance o? = 5
e

2.1.7.2 Normalized Second Moment and Shaping Gain

Consider the lattice quantization (2.16) for a lattice A. The quantization error
vector (2.18) can be measured by the normalized second moment (NSM).

The NSM of a region R < R" is defined:

1
Gu(R) = WV R)TF L | x[*dx, (2.36)

which depends only on the “shape” of the region and does not change if is scaled.
The following three kinds of regions are of interest: hypercubes, n-spheres and
Voronoi regions.

NSM of Hypercubes

The NSM of an n-dimensional hypercube (also called an n-cube) is the same
as the NSM of the integer lattice Z", given by
1
Gn(Z") = —. 2.37
@) = - (237)
It is clear that the NSM of an n-hypercube does not change when n is changed,
and thus is useful as a baseline when compared to a general lattice quantizer. This
will be addressed when introducing the shaping gain in the remaining part of this
subsection, and in Section 3.5.
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NSM of n-Spheres

The NSM of an n-sphere S,, (or an n-ball®) is important because it has the
lowest possible value among all regions, and is found:

L%+ 1)

Gn(Sn) = w(n + 2)

: (2.38)

where T'(+) is the Gamma function”.

At all dimensions, the NSM of all regions cannot be lower than that of the
sphere and thus is constrained by the sphere bound (2.38). The asymptotic value
can be obtained using the Stirling approximation:

n n n
T(z+1) = ()~ (z-)"? 2.
and is given by:
1
li = —. 2.4
i G50) = 5 240

NSM of Voronoi Regions for Lattices

Monte Carlo integration [39,40] can be applied to practically find the NSM
of a lattice A with unknown Voronoi region, and was used by Conway and
Sloane to estimate lattice quantizers [6]. Assume that N uniformly distributed
samples y1,¥o,...,yn are generated in R™. Then the quantization error vectors
t1,to, ..., ty given by (2.18) are uniformly distributed in the zero-centered Voronoi
region V for A. The estimated NSM is given by:

_ 1 N
Gp(\) = ——+ t,]%. 2.41
) = o &l (2.41)
The precision of this value increases as N increases.
Shaping Gain

The shaping gain of a region R measures the improvement in NSM relative to
the hypercubes (2.37). It is defined (in decibels) as:
1/12

6In lattice literature, the two terms: sphere and ball, are often used synonymously. The
volume of an m-ball concentrates on the surface which is an n-sphere as n — oo, thus in this
dissertation the term n-sphere (or hypersphere) is used for simplicity.

"The Gamma function extends the factorial function to non-integer arguments, e.g., F(%) =
V7. If ais a positive integer, then I'(a+1) = al'(a) = al and I'(a+3) = (a—3)-(a—3)--- -1 -/7.
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The hypercube has 0 dB of shaping gain.

As n — oo, an n-sphere yields the theoretical limit of the shaping gain, given
by:

10 logy, % — 1.53 dB, (2.43)

known as the asymptotic shaping gain.

The shaping gain depends on the “shape” of a region R. If R is scaled, the
shaping gain does not change. It measures the reduction in average transmitted
power with respect to a hypercubical constellation.

2.2 Lattices From Linear Codes

There exist several methods to build lattices from linear codes, including Con-
struction A, B, C, D/D’ and E, that lift code or codes to the Euclidean space R™.
The simplest method is Construction A, which can use a binary code or a non-
binary code. The following methods: B, C, D/D’, E, are related to Construction
A. Construction B requires a binary code and is a special case of Construction
D. While Construction A and B can be applied to lattice constructions from
a linear code, Construction C, generalized from Construction A and B, can be
applied to a nested family of linear codes Cy < C; < --- < C,. As Construction
C can also be applied to codes that are not nested and to nonlinear codes, it
may not always produce lattice packings, but its variant Construction D does.
Construction D’ converts a set of parity-checks which define nested binary linear
codes into congruences for a lattice in the same way that Construction D converts
a set of generator vectors for nested binary linear codes into a basis for a lattice.
Construction E is a powerful generalization of most of the previous constructions
that can be applied recursively.

Among these constructions, Construction A and D’ are of greatest interest in
this dissertation, as it will be shown that Construction A provides low-complexity
quantization as well as a high shaping gain when applied to convolutional codes,
and Construction D’ can be applied to lattice constructions from a nested family
of powerful low-density parity-check (LDPC) codes, providing good coding prop-
erties.
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2.2.1 Construction A

A lattice can be built from a g-ary® linear code with Construction A, called a
Construction A lattice, or a modulo-q lattice.

Definition 2.5 Let C be a g-ary linear code of dimension k£ and block length n.
An n-dimensional Construction A lattice A is generated by:

Ay = C +qZ", (2.44)

A, is the set of all integer vectors whose modulo-g reduction are codewords of
C, where each is a lattice point x. Then (2.44) can also be expressed as:

AAz{er”|xmodqu}. (2.45)

Properties

A Construction A lattice Ay provides the following properties:

1. A contains and is contained in integer lattices: ¢Z" c Ay < Z", as will be
explained in Example 2.8.

2. The volume of Ay is
V(Ay) =q"". (2.46)
This is because a quotient group Ap/qZ™ is formed, which has size

Anjaz] = G = s el (247

where |C| = ¢* is the number? of codewords of C if generated by a full-rank
n-by-k matrix Ge.

3. A, is spanned by a basis of C and a basis of ¢Z", thus the generator matrix
is of size n-by-(n + k), written as:

" = [Ge | qlu] (2.48)

where G consists of k£ linearly independent basis vectors in column for C,
and ¢l, is a possible generator matrix for ¢Z" naturally scaled by ¢ from
(2.8).
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Figure 2.9: Two-dimensional Construction A lattice example.

Example 2.8 The n = 2-dimensional lattice given in Example 2.2 is a Construc-
tion A lattice A%, whose basis can also be g; = [1,2]*, g = [0,5]". To see this,
let g1 = [1,2]" be a basis for a ¢ = 5 quinary linear code C over GF(5), whose
dimension (i.e., information vector length) is & = 1 and block length is n = 2.
The information can be a digit in {0,1,...,4}, thus all ¢* = 5 codewords'® of C
are (0,0),(1,2),(2,4),(3,1),(4,3), which can be represented by the red markers
in Figure 2.9.

Applying Construction A to C lifts all codewords in C to R™ as A% = C + 5Z2.
The resulting lattice A3 has dimension n = 2. Since (0,0) € C, 5Z? is also included
in A3, shown as circles. A shift of 5Z2 by (1,2) is a coset of 5Z2, and is drawn as
triangles. The resulting cosets of 5Z* with respect to (2,4), (3,1), (4, 3) are shown
as squares, asterisks and pluses, respectively. The union of these cosets and 5Z2
itself is the Construction A lattice A3. The codewords of C can be regarded as
coset leaders. See also Example 2.4. Note that the codewords of C are integer
vectors and 5Z? is a scaled integer lattice; their sum are integer vectors in Z2.
Thus 5Z* = A} < Z2.

8Here ¢ is a prime number.
9The codebook size of C is at most ¢*, with equality for information vector of length k > 0
in {0,1,...,¢— 1}* and prime q.

10For example, information represented by 4 produces a codeword [;] -4modb = [g]
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Triangular Generator Matrix

It is clear that the n-by-(n + k) matrix G/, (2.48) is not full rank, which can
be reduced to a square matrix Gy, of order n by eliminating k linearly dependent
columns, and G, is not unique.

Let G, = [I; |; P]* be a systematic form of G in (2.48) which always exists
as long as Ge is full rank. Zamir [36, pp. 32-33] gave a systematic approach for
finding the generator matrix of a Construction A lattice A, that is an n-by-n
lower-triangular matrix expressed as:

I
Ga, = | G ‘ 0 |y (2.49)
qInfk P ’ qInfk

For ¢ = 2, the generator matrix (2.49) is a transpose of [6, p. 183, eq. (5)] given
by Conway and Sloane, whose basis vectors are written in row, provided that /2
was omitted as mentioned in the remark.

A systematic matrix G/ is not necessary. Another work [41, pp. 42-44] also
addressed a method to obtain a triangular generator matrix for Construction A
lattices, using the Hermite normal form!!. The Hermite normal form in column
satisfies two conditions: (1) lower-triangular form and (2) the diagonal entry has
the maximum value for each row. The Hermite normal form can be computed
using the algorithm in [42, pp. 67-68].

Assume two positive integers n < n’. Any n-by-n’ integer matrix A can be

reduced to an n-by-n matrix B in column Hermite normal form, expressed as:
A = [B | 0] -U, (2.50)

where U is an n’-by-n’ unimodular matrix and the size of the zero matrix 0 is n-
by-(n’ —n). If A has full row rank n, then B is also full rank. When a systematic
form G¢ can be found, the connection from Hermite normal form to Zamir’s work
was shown in [41]. Even when some cases the resulting B is not in the Hermite
normal form, a triangular matrix can be found for A,.

This dissertation derives a systematic method to generate a lower-triangular
matrix for a Construction A lattice that is based on a binary code as will be
discussed in Chapter 6, which is straightforward to be applied to convolutional
codes. The resulting lower-triangular matrix also satisfies the column Hermite
normal form. The simplest Construction A lattice is using a ¢ = 2 binary linear

1 The Hermite normal form is an analog to reduced echelon form in Z".
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code. In this work, Construction A is applied to binary convolutional codes to
build lattices suitable for quantization.

Quantization

Assume an n-dimensional Construction A lattice A is obtained from a binary
linear code C. The quantization of A, is straightforward due to the fact that any
lattice point x € A is congruent modulo 2 to a codeword in C (2.45). Thus given
an arbitrary point y € R™, a lattice point y € Ay which is closest to y than any
other lattice point can be found by employing a decoder for C. This is valid based
on the following lemma.

Lemma 2.1 Suppose y lies in the hypercube 0 < y; < 1fore=1,2,...,n. Then
no points of Ay is closer to y than the closest codeword y of C.

Proof Suppose the contrary, and let y be a closest lattice point to y. By
hypothesis some y; are neither 0 nor 1. By subtracting a suitable vector 2z,
these coordinates can be changed to 0 or 1, depending on their parity, to produce
a point of A, that is in C, and is at least as close to y as y is, a contradiction. o

The steps of quantizating or decoding Construction A were given in [6, p. 450],
and are written in 0, 1 notation as:

1. Given an input y, reduce all y; to the range 0 < y; < 2 by subtracting a
vector 2z: y' =y — 2z, for z € 7.

2. Let S denote the set of ¢ for which 1 <y} < 2. For i € S, replace y. by 2 — |
resulting in a vector y”.

3. Since y” is now in the cube 0 < y! < 1, then apply the binary decoder Dec
to y” (Lemma 2.1), obtaining an output ¢ = Dec(y”).

4. For i € S, change ¢; to 2 —¢;: ¢/(S) = 2 —¢(S). Theny = ¢’ + 2z is the
closest point of Aj to y. Thus ¥y is the output.

The above procedure!? is described in Algorithm 2.1. A binary decoder can
be employed when quantizing a Construction A lattice due to Lemma 2.1.
The quantization method will be described in a simpler way in Algorithm 6.1
in Section 6.3. In this dissertation, binary convolutional codes are considered
when building Construction A lattices, where convolutional codes can be decoded
using the well-known Viterbi algorithm proposed by Andrew Viterbi in 1967 [18]—
it provides optimality, feasibility and efficiency. More discussions will be given

12Here ¢’ need not be binary.
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in Chapter 6.

Algorithm 2.1 Quantization of Construction A Lattices [6, p. 450]

Input: real-valued input y

Output: estimated lattice point y
Subtract a vector 2z: y' = ymod 2, where z « (y —y’)/2
S « find(y’ > 1)

y// — y/
forie S do

yi =2 -y
end for

Call the binary decoder: ¢ = Dec(y”)
cd=c
for i e S do
o =2-—c¢
end for
y=c +2z

return the estimated lattice point y

2.2.2 Construction D/D’

Construction D generates a lattice from nested binary linear codes Cy < C; <
- < C, = F} where integer a > 1. When a = 1, Construction D is reduced to
Construction A for a binary linear code.

Construction D describes a lattice using a generator matrix, while Construction
D’ describes a lattice using a check matrix. It is convenient and natural to build
lattices using Construction D’ from LDPC codes, because they are described by
parity-check matrices. The main focus of this dissertation is Construction D’, as
will be addressed in Chapters 4, 5, and 7.
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Table 2.1: Normalized second moment (NSM) and corresponding shaping gain of
low-dimensional well-known lattices.

Dimension Lattice Name NSM  Shaping Gain (dB) Sphere Bound (dB) Related Code
1 VA integer 0.0833 0 0
2 Ay hexagonal ~ 0.0802 0.17 0.20
3 Dy checkerboard  0.0787 0.25 0.34 single parity-check code
4 Dy checkerboard 0.0766 0.37 0.45 single parity-check code
5 Ds 0.0758 0.41 0.54
6 Es 0.0743 0.50 0.61
7 Er 0.0732 0.57 0.67 (7,4) Hamming code
8 Eg Gosset 0.0717 0.65 0.72 (8,4) extended Hamming code
16 BWi6  Barnes-Wall  0.0683 0.86 0.97 Reed-Muller code
24 Aoy Leech 0.0658 1.03 1.10 extended binary Golay code
0 0.0585 1.53 1.53

2.3 Well-Known Low-Dimensional Lattices

This section introduces the lattices with low dimensions 1 < n < 24 where each at
its dimension either is or nearly is the best appeared in the literature. The integer
lattice Z", the D,, lattice and the A, lattice are introduced in Subsection 2.3.1.
Then the FEg lattice, the BWi¢ lattice and the Leech lattice that will be employed
to build shaping lattices in this dissertation, are given in Subsection 2.3.2.

Table 2.1 lists a best-known lattice [6] in each dimension, and its related code if
it can be constructed from the code. Since searching for potential shaping lattices
is of interest, the normalized second moment (2.36) and the shaping gain (2.42)
are included, as well as the theoretical highest shaping gain'® of each dimension
provided by an n-sphere (2.38).

2.3.1 7", D,, A, Lattices

Integer Lattice Z"

The integer lattice (or cubic lattice) Z" is in R™ whose lattice points are n-
tuples of integers. A generator matrix for Z" is the n-by-n identity matrix I,
(2.8). At dimension n = 1 the integer lattice, denoted Z,, is important. The case
when n = 2 as given in Figure 2.3 is also called the square lattice. There are

13The 1.53 dB asymptotic shaping gain cannot be achieved by any code at finite dimension.
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several applications due to its good properties.

As addressed in the last section, Z™ can be used to build Construction A, D/D’
lattices, where all codewords of a linear code or a family of binary linear codes are
lifted to the real space.

Another application of the integer lattice is to produce a hypercubical con-
stellation'* because the Voronoi region of Z" is a hypercube. Thus, instead
of transmitting a lattice point with arbitrary large power, the signal power is
constrained with respect to the size of a hypercube. However, a hypercubical
constellation provides no shaping gain, as explained in Subsection 2.1.7.2.

D,, Lattice

The D, lattice consists of all integer vectors in R"™ where the sum of n

coordinates of x = (1, xs,...,2,) is even:
D, = {xezn di=0 (m0d2)}. (2.51)
i=1

The lattice Dy , as shown in Figure 2.10, looks like a 2-checkerboard and thus is
also known as the checkerboard!® lattice. At dimension n = 3,4,5 the D,, lattice
provides the best normalized second moment. A possible generator matrix for D,
is an n-by-n matrix given by:

[ 1 1 0 - 0]
1 -1 1 -~ 0
0 0 -1 --- 0
. (2.52)
0 0 0 1
0 0 0 1

The D,, lattice is a Construction A lattice generated by a binary single parity-check
(SPC) code. And an alternative generator matrix for D, is given by:

1 0 0 0
~1 1 0 0
(2.53)
0 -1 1 0
0 0 -1 2

14Tt is indeed a nested lattice code, but this dissertation only refers to it as hypercube shaping.
In this work, a nested lattice code emphasizes that a shaping lattice with shaping gain is used.
15The D,, lattice is not similar to the n-checkerboard for n > 4.
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Figure 2.10: Checkerboard lattice D,.

A,, Lattice

An n-dimensional A,, lattice is a sublattice of Z"*! that lies in the hyperplane
where the sum of the n+ 1 coordinates is zero (A, < D,,1 < Z"™), and is defined
in R**1:

n+1
A, = {x eZM | Y ai = 0}, (2.54)
i=1
where x = (z1,Z2,...,Zpy1). An (n + 1)-by-n generator matrix for A, is:
[ 1 00 - 0]
1 10 --- 0
o -1 1 --- 0
(2.55)
1
0 o0 - -1

The A, lattice provides the best shaping gain at this dimension, and is equivalent
to the hexagonal lattice given in Example 2.5. Thus (2.21) is also a generator
matrix for A,.
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2.3.2 Eg Lattice

The Eg lattice is also known as the Gosset lattice, that is defined as:

Es = {x e 78 im (mod 2) i ( ) 0 (mod 2)} (2.56)
i—1 i—1
where x = (z1,...,xg). A generator matrix is given by:
[ 1 0 0 o0 0 0 0 0 |
12 0 0 0 0 0 O
1 -2 2 0 0 0 0 O
1 1 0 -2 2 0 0 0 0
P01 0 02 2 0 0 o 257
1 0 0 0 -2 2 0 0
10 0 0 0 -2 2 0
1 0o o0 o0 0 0 -2 4

The Fg lattice is the most important lattice at n = 8. There are also the
6-dimensional Fg lattice and 7-dimensional E7 lattice that are well-known at their
dimensions. Recall that a lattice point of Eg is denoted x = (z1,...,x5) € Fg,
then Eg and F; are defined in R?® as:

E¢ ={x€ Eg| x1 =z = x3}, and (2.58)
E7 = {X € Eg | T = ZL‘Q}, (259)

respectively.

The FEjy lattice can be lifted from an extended Hamming code using Construc-
tion A. Let G® be a generator matrix of an extended binary Hamming code with
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block length n = 8 and dimension k£ = 4:

G8

(2.60)

_ = = O O O O =
_ = O RO O = O
_ O = = O = O O
O R Rk B R O O O

Then a lattice can be obtained by applying Construction A, using (2.49) the
following matrix

(2.61)

= = = O O O O
== O = O O = O
_ O = = O = O O
(e o i e B e i )
S O O N O O O O
S O N O O O O O
S N O O O O O O
N O O O O O O O

is an alternative generator matrix for the Ejg lattice.

The Eg lattice has a shaping gain of 0.65 dB, and can be efficiently quantized
using the algorithm in [43]. In this dissertation, the direct sum of multiple scaled
copies of the Fg lattice will be used to construct a high-dimensional lattice for
shaping a Construction D’ lattice, as will be given in Example 4.5 and in Chapter 7.

2.3.3 BWjs Lattice

The Barnes-Wall lattice BW,,, introduced by [44], is defined in dimensions n =
22 2% ... and can be generated from the Reed-Muller codes using Construction B,
C, or D [6, pp. 129-131]. For n = 16, if using Construction B, a generator matrix
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of the BW ¢ lattice is given by:

[ 1 000000 000O0O0O0O0GO0O0 |
11000000O0U0O0O0GO0TO0O00O0
1 0100000O0U0O0O0GO0GO0O00O0
1 0010000O0U0O0O0GO0O0O00O0
11001 0000O0O0O0OGO0TO0TO00O0
111002000000O0O0O00
1 01100200000O0GO0TO00

(i).1101100200000000, (2.62)

V2 1 010100020000O0TUO0TO00
1 1010000020000 O00
1 1101000002000 °00
1 1110000000200 00
111110000000 Z2U000
1011 10000U0O0O0O0TZ2TO00
1 001 10000UO0O0O0GO0TO0?20

[ 1 00 0122222222 2 2 4 |

where the first five columns form a basis of a first-order Reed-Muller code.

When n = 16, the Barnes-Wall lattice BW,, can be decoded using [45]. A
maximum-likelihood decoding algorithm can be efficiently performed for small
n [46], but is impractical as n increases. For decoding BW, with large n,
bounded-distance decoder [47] and the recently proposed recursive bounded-
distance decoder [48,49] are suitable.

The BWj¢ lattice provides a shaping gain of 0.86 dB. Similar to the Eg lattice,
the BWg lattice will also be employed to build a high-dimensional shaping lattice
in this dissertation.

2.3.4 Leech Lattice

At dimension n = 24, the most famous lattice is the Leech lattice Ay, introduced
by J. Leech in 1964 [50]. See also [51]. There have been developed a variety
of constructions for Agy, and one of the constructions is related to the extended
binary Golay code C, defined by:

A24 = {X € ZQ4

24
x; = a (mod 2), wec, inzéla (modS)}. (2.63)
i—1
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A generator matrix of the Leech lattice is given by:

(2.64)

1 000O0OO0OOOCOOOOOOOOOOOOOO®O0O0
1 2000O0O0O0O0OO0O0OO0O0O0OO0OO0OO0OO0OO0COO0OO0OO0O0OO0O0
1 0200O0O0O0OO0O0OO0O0O0O0O0OO0OO0OO0OO0OO0O®O0®O0OO0O0

1
1

222 000O0O0OO0OO0DO0O0OO0ODO0ODO0O0O0OO0ODO0O0OO0OGO0OO

06000200O0OO0OO0OO0O0O0OO0O0OO0OO0O0OO0OO0OO0OCO0OO0OOOO
12000200O0O0OO0OO0OO0O0O0OO0OO0DO0OO0OO0OO0OO0OG®O0OTO0
102000200O0O0OO0OO0O0O0OO0OO0O0O0OO0OO0OO0OG®O0TO0
1222222 400000O0O0O0O0O0O0O0O0O0O0O0O0
1P 0000O0O0O0O2O0O0O0O0O0O0O0OO0OO0OO0OO0OO0O0O0O0
12000O0O0OO0OO02O0O0O0O0O0O0O0OO0ODO0OO0OO0OO0OGO0OGO0OTO0

1
1
1

02000O0O0OO0O02O0O0O0O0O0OO0O0O0O0O0O0O0O0O0
2220000222 400O00O0O0O0O0O0O0O0O0
0600020002000 2¢0O0O0O0O0O0O0O0O0OO0O0
1200020002002 40O0O000O0O0OO0O0GO0°TO0
1020002000 2¢02¢040000O0O0O0O0GO0°TUO0
122222 2022202¢004000O00O0O00
1P 0000O02020O0O0O0O0O0O02U00O00O0O0O0O0
1 00020O0O0O020O0O0O0O0O024000O0°O0O0°O0

000020O0O0O0O0O2O0WO0O0O0O0204000°O0°0
002 222¢0222000O002¢004¢00°00
002020020002 ¢0O0O02%0UO0O0400°0
1002002002¢0O02200O02¢00O0O04°©0°0
100220000O0202¢00O02¢00O0O0O0O0M4°T0
3000 2 2 2 4 2 2 2 42 4 4 4 2 4 4 4 4 4 48

1
1
1

Sphere decoding algorithms

There exist several algorithms for quantizing the Leech lattice [5,45,52-54].

More efficient algorithms were proposed in [55, 56].
Due to its good shaping gain as high as 1.03 dB, the Leech lattice is also

suitable for shaping, and will be used for shaping high-dimensional coding lattices

given in [57,58] can also be used for quantization.
in Chapter 7.
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2.4 Concluding Remarks

This chapter addressed preliminaries, such as the definition and description of
lattices, the Voronoi region of lattices, and other important properties of lattices.
They all together form a basis for understanding the following chapters.

Lattice basis, lattice cosets, nested lattices, identical lattices, lattice scaling and
direct sum of lattices are corresponding to the design and construction of lattices
and lattice codes, as will be described in Chapters 3-7.

Lattices based on Construction A and Construction D’ are the main focus of
this dissertation. The encoding and decoding of Construction D’ will be addressed
in Chapter 4. Lattice constructions of using Construction A and Construction D’
will be given in Chapters 4-6.

Lattice quantization associated with the normalized second moment as well as
the shaping gain will be used for finding convolutional code lattices with best trade
off between the shaping gain and the quantization complexity. This part will be
presented in Chapter 6.

The FEg lattice, the BW16 lattice and the Leech lattice will contribute the
shaping gain by forming nested lattice codes with Construction D’ lattices, as will
be shown in Chapter 7.
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Chapter 3

Nested Lattice Codes

A coding lattice A, and a shaping lattice A, are needed to form a nested lattice
code!. A nested lattice code is the intersection of A. and the zero-centered Voronoi
region of Ag, and is also called a Voronoi code/constellation [4,5]. The shaping
lattice Ag is used as a lattice quantizer [17] for the coding lattice A. whose average
transmit power is thus reduced, and the power reduction is measured by the
normalized second moment (NSM) of the Voronoi region of As. The shaping gain
tells how good the NSM of a region is, comparing with the NSM of a hypercube—
the Voronoi region of an integer lattice Z". Thus hypercubical constellations (or
Z™) have 0 dB of shaping gain.

A nested lattice code € can be constructed if and only if Ay is a sublattice
of A.. This is introduced in Section 3.1. If the shaping lattice Ag is an integer-
scaled version of the coding lattice A., then Ay and A, form a self-similar nested
lattice code. As pointed out in Chapter 2, lattice scaling does not change the
error-correction capability if the noise is suitably normalized, and it also scales the
Voronoi region but does not change the shaping gain. A self-similar € in general
does not necessarily provide both good coding and shaping properties because A,
and Ag have competitive design requirements [30,31]. A pair of distinct lattices
A, and Ag forming a nested lattice code € is desirable, where A, has good coding
properties and Ag has good shaping properties. When Aq is a sublattice of A, but is
not an integer-scaled version of A., they form a non self-similar nested lattice code.
This was used in past work: shaping low-density lattice codes (LDLC) using the
Es lattice and the BWg lattice [32], convolutional code lattices [9], and shaping
LDA lattices using the Leech lattice [33]. These results show that A. and Ag can be
designed to provide both good coding properties and efficiently achievable shaping
gains. Thus in this dissertation, non self-similar nested lattice codes are used.

Encoding maps information to lattice codewords, and indexing is the inverse
operation. Conway and Sloane [4] studied encoding and indexing which can only

1Some authors refer to a coding lattice as a fine lattice, and call a shaping lattice a coarse
lattice.
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be applied to self-similar codes. The methods suitable for more general nested
lattice codes were proposed in [16,59] and used in [32]. If the check matrix of
A. and the generator matrix of Ay are triangularizable, the indexing of nested
lattice codes can be straightforwardly performed. In this chapter, the matrices
are assumed lower triangular for encoding and indexing. The encoding method
is briefly described, followed by the main contribution of this chapter, that is, an
indexing algorithm modified from [16, Sec. IV-B]. This modified method overcomes
the integer overflow problem for high-dimensional lattices since bounding values
for integers are found.

After that, the coding scheme used in this dissertation is addressed, which
additionally considers the indexing for nested lattice codes compared with [3],
approaching to practical applications. The shaping gain provided by a nested
lattice code with respect to the Ay can be observed when compared with hypercube
shaping, that instead uses a hypercubical constellation. Section 3.5 presents a
method to generate hypercubical constellations for Construction D’ lattices that
is simpler than the conventional method [30].

3.1 Nested Lattice Codes

A nested lattice code € is constructed using two lattices: a coding lattice A. and
a shaping lattice Ag, that satisfy:

As € A, (3.1)

which is referred to as the sublattice condition [36, p. 179]. Let V be the zero-
centered Voronoi region of the shaping lattice Ag, then a nested lattice code is
defined by:

C=A.nV. (3.2)

A shift of Ag by a lattice point A € A, defines a relative coset (2.12) that
contains all lattice points of A, relative to Ay with respect to a vector \ € A,
expressed as: A + As. The relative cosets form a quotient group A./Ag, and each
distinct relative coset can be represented by a unique coset leader in V. Thus € is

the set of coset leaders of A./Ag. The union of A./A; is:

Ae =V + 1), (3.3)

Ne€
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which can also be decomposed into the union of shifts of lattice codebook € by A
expressed as:

A= |V +0). (3.4)
NeAg

A good property of nested lattice codes is that by shaping A. with the Voronoi
region V of Ay the resulting codewords meet power constraint, and satisfy a
distribution with zero mean.

Let G, and G be a generator matrix of a coding lattice A, and a shaping
lattice Ag respectively. The check matrix of A, is

H. =G (3.5)
Lemma 3.1 [16, Lemma 1] Ay < A, if and only if H.Gy is a matrix of integers.
Proof Let Ggb € A;. The point Ggb is a point in A, if and only if H.Gsb is a

vector of integers. For an arbitrary b € Z", this is true if and only if H .Gy is a
matrix of integers. O

The codebook size of € is given by

€] = |Ac/A| (3.6)
[1/V(A.)]
S b/ el 7 3.7
1/V(A) (37)
[V (A)]
= 3.8
V(A (38)
det (Gq
_ Jdet (G| (39)
|det (G)|
Thus the rate of a nested lattice code € is defined:
1
=—1 1
R ~log, [ (3.10)
1 |det (Gy)]
= —1 —_— 3.11
n % det (Gy)| (3.11)

3.2 Encoding

The mapping from integers to a lattice codeword in € is called encoding [16].
Assume that H. and Gy are lower triangular. Let h;; and g;; be diagonal elements
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of H. and Gg for ¢ = 1,2,...,n. It follows that
M; = hi;gi; is a positive integer. (3.12)
Let information be represented by a vector of integers b where
be{0,1,..., M, —1} (3.13)

and position ¢ encodes log, M; bits. Encoding is bijectively mapping a vector of
integers b to a lattice codeword x’ € €, where the number of codewords (3.9) can
also be written as

e = [ [ M. (3.14)
i=1
The lattice codeword is given by:
x' = xmod Aj, (3.15)

where x € A, can be found by solving? H.x = b. Here H. need not be lower
triangular but needs to be triangularizable using a unimodular transformation.

The lattice shaping operation is performed using (3.15). If a codebook (or a
constellation) is nonhypercubical, the shaping gain (2.42) can be obtained.

Note that dithering is omitted when encoding and indexing are discussed for
simplicity, and will be described in Section 3.4.

3.3 Indexing

The inverse of encoding is called indexing that maps a lattice codeword x’ € € to
the vector of integers b used by the encoder. Note that x’ and x = G.b are in
the same coset, so when x # x’, in general, using H.x' cannot recover b and thus
an indexing method is necessary. This can be done by a systematic procedure as
suggested in [16, Sec. IV-B]. The modulo-A expression (3.15) can also be written
as

X' = Gcb — Q4 (Geb), (3.16)

2As addressed in Subsection 2.1.2, solving H.x = b is equivalent to compute x = G.b for
H. = G_!, which is useful for Construction D’ lattices as will be introduced in the next chapter.
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where @)y, is a lattice quantizer (2.16) that finds the nearest lattice point in Ag
given a point. Let

b = H.x. (3.17)
Multiply H, on the left of both sides of (3.16) so that
b’ =b - H.Qx (G:b). (3.18)
The indexing can be performed by finding t € Z" that satisfies
Qr.(Gcb) = Gt (3.19)
such that
b’ =b - H.G.t, (3.20)

where Gt is the nearest lattice point in Ay of the lattice point x = G.b € A..

The triangular structure of H. Gy is used which is expressed as

9171 0 ce 0
HCGS = 2.71 2.72 . . s (321)
en,l 0n,2 e en,n

where 0;; = M; as given in (3.12). The indexing algorithm was described in [16,
Sec. IV-B] and is quoted® here.

3The notation was changed accommodate to the expression used in this chapter. Also, the
notation t and ¢ used in this section is distinct from that of (2.18) and Section 3.5.
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The first line of (3.20) is
by = by — Mity, (3.22)
which has solution b; and t; given by
by = by mod My, and (3.23)
by — 1)
t = . 3.24
= 3:24)
For following lines © = 2,...,n:
i—1
b= b — (D 0it;) — Mit; (3.25)
j=1
has solution
i—1
bl' = (b; + Z ei,jt]’) mod MZ’, and (326)
j=1
by — b — Zz:ll 0;,45t;
t; = T 3.27
o (3.21)

Consider high-dimensional nested lattice codes. As the integers b;,t; are found
sequentially (3.25), the values for ¢; (3.27) can become extremely large? which
leads to an integer overflow problem in practical implementations, depending on
the elements of H. Gy and especially when G has large scaling. An integer overflow
problem will cause a failure when recovering the information even in the absence
of noise, and thus needs to be avoided.

3.3.1 Indexing of High-Dimensional Nested Lattice Codes

Now a modified method suitable for indexing high-dimensional nested lattice codes
is proposed. This is to obtain the same solution of b € Z™ given a lattice codeword
x’ € € without computing the sum of large-valued integers used internally. The

4For example, when performing the indexing for the code construction of using convolutional
code lattice scaled by 20 which is based on polynomials (73,57,41) as will be shown in
Subsection 7.2.2, it might involve the value of ¢; as large as 1030 at dimension n = 1152 and 103%°
at dimension n = 10008. Even though t is only used internally, in MATLAB implementation,
the latter case will cause an integer overflow problem.
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principle is to use the linearity. Since a lattice is linear, a lattice point can be
represented by the sum of two lattice points. A lattice is generated by the integer
combinations of its generator basis vectors and thus its corresponding integer
vector can also be written as the sum of two vectors of integers.

Instead of using (3.20) an integer vector s € Z" is introduced such that
b'=b+ H.Gss — H.Gge, (3.28)
where
e=t+s (3.29)

will be shown to be a vector of bounded-valued integers. The solution b can be
found without explicitly computing t and s, thus the integer overflow problem can
be avoided. How to obtain a value of s without changing the solution of b will be
given in Appendix A and the value might not be unique. However it needs not be
explicitly calculated as will be shown in the remaining of this subsection.

To find b and e, these equations are solved sequentially first for ¢ = 1, then
i =2,...,n. The first line of (3.28) is

bll = b1 + M181 - Mlel. (330)
Then for i =2,...,n:
i—1 i—1
b; = bz + Z 92'73‘8]' + Misi — Z 91'73‘6]' — Mlez (331)
=1 j=1

Firstly, the solution of b; is found as follows. To obtain e;, write

i—1
0:.
¢ = S+ Z s (3.32)
= M

but s; need not be computed. Then ¢; should be chosen such that e; is bounded
and after e; is obtained as indexing proceeds, the value is used for ¢ + 1,...,n.
The solution b of (3.28) is the same as that of (3.20) by choosing ¢; such that

4
lem (Mi+17 ) Mn)

is an integer. (3.33)

The algorithm is given as follows. The solution of (3.30) is by and e; given by
by = b} mod Mj, and (3.34)

b -

= i

€1 mod lem (Ms, M3, ..., M,). (3.35)
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Then for i = 2,...,n, (3.31) has solution b; and e; given by

i—1
bi = b+ Y 6ie;mod M;,  and (3.36)
j=1
b — b — >0, e
e; = 3]_1 7 mod lem (M;yq,..., My,) (3.37)
where the integer 0 < e; < lem (M1, ..., M,) is thus bounded—this is practical.

Triangular H. and Gy allow efficient encoding and indexing, where H, and G
can be obtained from triangularizable full-rank check matrix and generator matrix
of A. and Ag respectively. The author has not yet found a straightforward method
to index nested lattice codes using non-triangular matrices.

3.4 Coding Scheme

Erez and Zamir [3] proposed a coding scheme using nested lattice codes with dither-
ing and minimum mean-square error (MMSE) scaling techniques that can achieve
the capacity of the power-constrained AWGN channel, which is transformed into
a modulo-lattice additive noise channel. This dissertation uses a similar coding
scheme, but additionally include the indexing. Since this work considers primarily
high rate codes in the high-SNR domain, the MMSE scaling is close to 1. As
proven by di Pietro, Zémor, and Boutros [15], dithering is not mandatory because
lattice points of A. at high code rate fill well in the Voronoi region of As.

Let the dither U be uniformly distributed in Voronoi region of Ag, which is
independent of the lattice point x of A.. Instead of using (3.15), a vector

x” =x — U mod A, (3.38)
is sent to the AWGN channel. The average transmitted power per symbol
1 1
E. = ~E[|x"|*] = ~E[|U|? 3.39
B[] = B [JUJ], (339)
can also be represented by
E, = NSM - VZ/"(Ay), (3.40)

where NSM is the normalized second moment® and V' (A;) is the volume of A;. The
MMSE scaling coefficient « is defined

Es

®See equations (2.36) and (2.41).
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where 0 < a < 1.

The signal-to-noise ratio (SNR) is defined as

E

SNR = 0—;. (3.42)
Thus a can also be expressed
SNR
*= T SNR (3.43)
Given a received sequence
y' =x"+w, (3.44)
where w is noise, the input to the decoder is computed
y=ay”" +U. (3.45)
See [3,33].
The average transmitted power per bit can be computed
Eq
Ey = = (3.46)

This dissertation measures the decoding error rate of nested lattice codes as a
function of SNR per bit, expressed as

Ey, Ey
=2 =2 4
NO 202 (3 7)
SNR
-2 4
2R’ (3.48)

where Ny is the noise power spectral density, and F} /Ny is given in decibels as:
101og,(Ey/No) dB. To observe the shaping gains, it is convenient to define the
Shannon limit in terms of FE},/Ny as

E 228 1

= (3.49)

NO Shannon limit

given in decibels.
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3.5 Hypercube Shaping

As addressed in Section 3.2, a nonhypercubical constellation provides the shaping
gain. For comparison, hypercube shaping is introduced. This was used for LDLC
lattices [30], the Ejg lattice [60], and for Construction A lattices based on LDPC
codes [31]. Lattice points of A, are transformed into lattice points in a hypercube®

B={01,...,L—1}", (3.50)

for an even integer L. This allows lattices to be evaluated in a power-constrained
channel, but no shaping gain is obtained. How to generate a hypercubical
constellation is briefly described and then simplified especially for Construction
D’ lattices.

Given a vector of integers b', in general a lattice point x = G.b' is not in B.
Note that G, is not necessary because x = G.b' is equivalent to solve H.x! = b'.
Fori =1,2,...,n, hypercube shaping [30, Subsec. ITI-A] finds integers b; = bZ—Liti
such that a lattice point

x = G.be B, (3.51)
for an integer

L; = Lhy,, (3.52)

where an integer bg € {0,1,...,L; — 1} and t; € Z". This can be performed as
follows.

For i = 1,...,n, the integer ¢; is found sequentially:

1 i—1
j=1
where h; ; is an entry of H, at row ¢, column j. The solution to (3.53) is
b = bl — Lit;,  and (3.54)

i—1
€Tr; = bz — Z h@jl‘j. (355)
j=1

5The intersection of A, and B can form a nested lattice code with a hypercubical constellation.
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In practice, a vector x — % that is uniformly distributed in a hypercube

L-1 L-3 11 L-3L-1)"
{— — —55——} (3.56)

2 2

is transmitted to the channel instead. This is to reduce the average transmitted
power, which is thus given by:

15, L-1 2
E =~ <——+j> . (3.57)
L 2
The code rate is defined
1 "
Jr 3.58
n 082 [det (GY)] (3:58)

3.5.1 Simplified Method Performing Hypercube Shaping
for Construction D’ Lattices

Consider an a-level Construction D’ lattice A.. Let an integer L be a multiple of
2%, The procedure given above can be simplified. Let A. be described by a lower-
triangular check matrix H, with diagonal elements h;; fori = 1,...,n, and let LI,
be a generator matrix of the “shaping lattice” LZ"™ where I,, is an identity matrix
of size n. Choose L such that the product of H. and LI, is a matrix of integers.
The information vector consists of integers in {0,1,...,Lh;; — 1}. Performing
modulo-L on a lattice point x' of A. is the “shaping” operation reducing x' into
a hypercube {0,1,..., L — 1}, written as

x = x' mod L, (3.59)

which does not require sequential computation. Recover the integers from an
estimated lattice point X is straightforward. Let b = |H, - X|, then

~

bl = b;mod Lh; ; (3.60)
is computed, for i = 1,2,... n.

The work in [12] can also produce a hypercubical constellation for Construction
D’, but this dissertation performs hypercube shaping with respect to the decoding
algorithm that will be described in Chapter 4.

For an a-level Construction D’ lattice with hypercube shaping, it is natural to
use 2°-PAM signalling. For the shaped lattice codes in this dissertation, the lattice
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points x are integers due the use of Construction D’ as will be introduced in the
next chapter; however greater than 2¢ modulation levels are required. Construction
D’ lattices with hypercube shaping can also use greater than 2* modulation levels,
but no shaping gain is provided.

3.6 Concluding Remarks

Nested lattice codes can provide both good coding properties and high shaping
gain, if the component lattices are chosen with desirable properties and using
a coding scheme described in [3]. And this nested lattice coding scheme was
extended in this dissertation such that indexing operation was included. If the
underlying lattices have high dimensions, an integer overflow problem might occur
when the existing indexing algorithm is implemented—this can be avoided using
the modified algorithm proposed in this chapter. Hypercube shaping was also
introduced for comparisons, as will be shown in Chapter 7.
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Chapter 4
Construction D’ Lattices

Construction D’ lattices are built from nested binary linear codes. The definition
of nested binary linear codes is reviewed. Then a definition of Construction D’
using a check-matrix perspective which is equivalent to the congruences definition
is presented. After that, how to form lattices from nested binary codes using
Construction D’ is shown. Lastly two equivalent encoding methods and a decoding
algorithm for Construction D’ lattices to be used in power-constrained channels
are proposed. In this chapter the check matrix instead of the generator matrix
is used, because it provides the benefit for lattices designed using LDPC codes,
which are conveniently described by parity-check matrices.

4.1 Lattices Based on Construction D’

Lattices can be constructed using Construction D’ and nested binary linear codes.

4.1.1 Nested Linear Codes

Definition 4.1 Let row vectors hy, hy, ... h, be a basis for 5. For level a > 1,
CocC < < C, = Fy are nested linear codes if hy,11,...,h, are r, = n — k;
parity-checks for C;, where k; denotes the dimension of code C; whose rate is R; =
k;/n. That is, a codeword X € C; if and only if:

h; O = 0, (4.1)

forj=k;+1,k+2,...,nandi=0,1,...,a— 1.
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The n-by-n matrix of row vectors is denoted

o
|
S
X

The matrix Hy is the parity-check matrix for Co, and consists of ro rows, from
hy,+1 to h,. The matrix H; is the parity-check matrix for C;, and consists of 7,
rows, from hyg, 11 to h,,, and so on. This illustrates that the parity-check matrix for
Co contains the check matrices for the supercodes Cy,...,C,_1. The basis vectors
h; to hy, do not contribute to the error-correction capability of the code, but are
selected so that H is a unimodular ! matrix.

4.1.2 Definition of Construction D’

Construction D’ converts a set of parity-checks defining nested linear codes
into congruences for a lattice [6, p. 235]. A vector x satisfies a congruence
h = [hq,..., h,] with respect to a modulo value ¢ if:

h-x=0 (modg). (4.3)

A congruence can be expressed in an equivalent way. Let h’ = h/q. Then x
satisfies this congruence if and only if:

h'-x  is an integer. (4.4)
Any x satisfying (4.3) will also satisfy (4.4).

Two equivalent definitions of Construction D’ are given. The conventional
definition of Construction D’ uses congruences of parity-checks of nested binary
codes.

Definition 4.2 [Construction D’ (congruences)| [6, p. 235] Let Co € C; < -+ <
C. = % be nested binary linear codes. Let the dimension of C; be k;. Let
hy,hy, ... h, be a basis for F} such that C; is defined by n — k; parity-check

vectors hg,;1,...,h,. Then the Construction D’ lattice is the set of all vectors
x € Z" satisfying the congruences:
hj-x=0 (mod2*"), (4.5)

' A unimodular matrix is a square integer matrix with determinant +1 or —1.
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forallie {0,...,a— 1} and k; + 1 < j <n.

Instead of congruences, the following definition uses the check matrix which is
defined as H = G~! where G is a generator matrix. This is the definition used in
low-density lattice codes [7], and is distinct from the definition of [11]. Note also
that the check matrix of a Construction D’ lattice is related to, but distinct from,
the parity-check matrices of the corresponding binary codes.

Definition 4.3 [Construction D’ (check matrix)] Let a unimodular matrix H be
the parity-check matrix of nested linear codes Cy < C; < --- < C, = F}. The
dimension of C; is k; for « = 0,1,...,a, and it has k; < k;;1. Let D be a diagonal
matrix with entries:

djj =27, (4.6)

for k;_1 < 7 < k; where k_; = 0 and k, = n. Then the Construction D’ lattice is
the set of all vectors x satisfying:

H-x  are integers, (4.7)
where
H=-D-H (4.8)

is the lattice check matrix.
The following proposition shows that the two definitions are equivalent.

Proposition 4.1. Let hy,...,h, in Definition 4.2 be the rows of H in Def-
inition 4.3. Then the lattice given by Definition 4.2 is identical to the lattice
of Definition 4.3.

Proof It should be clear that because the congruences in (4.5) can be expressed
as (4.4), then relevant rows of check matrix H are an alternative form of the
respective congruences. However, the definition of check matrix H in this chapter
does not include Definition 4.2’s restriction to x € Z". To achieve this, it is required
that H is unimodular, so that the Construction D’ lattice in Definition 4.3 satisfies
A < Z™. To see this, G = H! = H! - D!, Since H is unimodular, H™! is an
integer matrix. D! also is a matrix of integers. Thus G is an integer matrix and
Aczm. O

As a matter of design, after H, to H,_; are fixed, the upper rows of H should
be chosen such that H is unimodular; it is also convenient to choose these upper
rows so that H is approximate lower triangular (ALT) form.
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Volume of Construction D’ Lattices

The volume of an n-dimensional Construction D’ lattice A is given

V(A) = 20 S0 ki, or (4.9)
= 2%isomi, (4.10)
Since the code rate of C; is R; = k;/n, the volume can also be expressed as
V(A) = 20" Eiso R, (4.11)
It will sometimes be convenient to write
V(A" = 49-Zi%0 Ri, (4.12)
Thus the VNR is simply computed using (2.35).

Example 4.1 Let nested binary codes Cyp = C; be described by parity-check
matrices Hy, Hy, given by:

R 1001

Hy=|0 11 1|, and (4.13)
1010

H =[1 01 0], (4.14)

where the parity check of C; is also a parity check for Cy. The subcode Cy has
dimension ky = 1 and rate Ry = 1/4. The supercode C; has dimension k; = 3 and
rate Ry = 3/4.

Add a top row [1,0,0,0] to H, such that the resulting matrix

1 000
~ 1 0 01
H = 011 1 (4.15)
1010
is unimodular. Let a diagonal matrix D be
1 0 0 0
1012 0 0
D = 0 0 12 0 (4.16)
0o 0 0 1/4
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Then the check matrix of an a = 2-level Construction D’ lattice A}, is obtained

using Definition 4.3:

H=D H
1 0 0 0 1000
o2 0 o0 100 1
1o 0 1/2 0 011 1
0 0 0 1/4 1010

1 0 0 0
/2 0 0 1/2
0 1/2 1/2 1/2|
[1/4 0 1/4 0

(4.17)

(4.18)

(4.19)

which is a real-valued square matrix. The volume of the n = 4-dimensional lattice

A}, is obtained using (4.11): V(A},) = 16.

Whether a vector is a lattice point of A}, can be verified using (4.7). Given

two vectors

and Xy =

SN = =

Observe that x; € A}, but x5 ¢ A%,. This is because

1
2 . .
H x, = 1 is a vector of integers,
9
but
1
7/2 . . .
H x; = 9/2 contains non-integer entries.
3/4

If taking the inverse of H the generator matrix of A%, is written as:

1 0 0 0
a1 |2 -2 2 -4
G=H =\ 4 0 0 4|

-1 2 0 0

62

(4.20)

(4.21)

(4.22)

(4.23)



and any integer vector b € Z* produces G - b # xs.

Also, the congruences perspective in Definition 4.2 can be used for verification.
Write the parity-check basis vectors of H as h; = [1,0,0,0], hy = [1,0,0,1],
hy =[0,1,1,1], and hy = [1,0,1,0]. When i = 0, for x; there are hy-x; mod 2 = 0,
h; - x; mod2 = 0, and h, - x; mod2 = 0, but for x, there are hy - xo mod2 =
1, hy - x, mod2 = 1, and hy - xo mod2 = 1. Similarly when ¢ = 1, there is
h, - x; mod4 = 0 but hy - x, mod4 = 3. Observe that x; satisfies (4.5) but x
does not, thus x; is a lattice point in A%, but xo isn’t.

4.2 Encoding

Two equivalent encoding methods are given. Encoding method A finds a lattice
point x given b € Z" using its check matrix H in the ALT form. FEncoding
method B describes explicitly how information bits u; of the component binary
linear code C; are mapped to a vector of integers b and a lattice point. The
two encoding methods can be applied to produce nonhypercubical constellations,
which is distinct from the encoding in [12].

4.2.1 Encoding Method A

Near linear-time encoding of LDPC codes can be accomplished using parity-check
matrix in the ALT form [61]. This subsection draws inspiration from this idea, to
implement encoding of Construction D’ lattice A with a similar procedure. The
steps are distinct from [61] because check matrix H of A is a real-valued square
matrix.

A vector of integers b is provided and its corresponding lattice point x is found
by solving:

H x=b. (4.24)
If H is not too big, then x can be found by matrix inversion:
x=H"! b (4.25)

If H is large but is sparse and in the ALT form, as may be expected for
Construction D’ lattices based on LDPC codes, then the following procedure can
be used.
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Suppose that H is in the ALT form, that is, it is partially lower triangular.
Specifically, H can be written as:

H - L‘é ‘é] (4.26)

where A is an s-by-s lower-triangular matrix with non-zero elements on the
diagonal; X is a g-by-g square matrix. The “gap” is g—the smaller the gap,
the easier the encoding. Let

A=(X-CA'B)"" (4.27)

The blockwise inverse [62] of H is:

_ —1
H = [Al + ﬁ?gACAl —AAlBA] | (4.28)
Using the block structure, H - x = b can be written as:
e ] - b
Bz ‘é] INAE bjil . (4.20)
|z, | | b.n ]
To perform encoding, first 1, ..., z, are found using (4.28):
€
= [—ACA‘1 A] - b. (4.30)
Ly
Then, coordinates 441, ..., x, are found sequentially by back-substitution, using

the lower triangular structure of H which has entry h;,, in row j, column w. For
w=g+1,...,n:

1 w—1
Ty = 7 (bj - Z hj,lxl> (431)
Pjw =1

where j = w — g.

This method is efficient when ¢ is small and H is sparse. It uses pre-
computation and storage of the g-by-n matrix in (4.30). The sum in (4.31) is
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performed over the few non-zero terms in sparse H. If the check matrix H is
purely triangular, then encoding is simply performed by back-substitution.

Example 4.2 Consider a 10-dimensional Construction D’ lattice A}9 generated

by nested binary codes Cy < C; with parity-check matrix ﬁo and P~I1, respectively.
Let AL, be described by a check matrix H in the ALT form, expressed as:

1 0 1 0 0 0 0 0 0 0]

o 0.1 1 0 0 0 0 0 0

1 0:'0 1 1 0 0 0 0 0

0O 0 :1/2 1/2 0 12 0 0 0 0

/2 00 1/2 0 1/2 12 0 0 0

H=112 0 1212 0 0 0 12 0 o0 , (4:32)

0 0 0 1212 0 0 1/2 12 0 |LlH,

0 0 0 1/4 1/4 0 1/4 1/4 0 1/4

1/4 1/431/4 O 0 14 0 0 0 1/4 LH,

1/4 0 1/4 1/4 0 1/4 1/4 0 1/4 0

where the block partition follows (4.26). Assume an integer vector b =
[1,2,0,2,4,0,2,0,2,1]*. Using (4.30) the first two positions of the lattice point
x are computed: z; = —11,2z9 = 52. Then applying (4.31) a lattice point
x = [—11,52,12, —10,21,2,27,9, —16, —47]* is obtained.

4.2.2 Encoding Method B

Encoding can also be performed by mapping the message sequence consisting of
information vectors u; € ]FIZ“ of the component binary codes C; fori =0,1,...,a—1
and an integer vector z € Z" to a lattice point x. In addition, how u;, z of method B
correspond to integers b of method A with respect to a lattice point x is explicitly
shown, to establish the equivalence of method A and method B.

For clarity, consider a = 3. The integer vector b is related to ug, u;, us and z

as:
bj = g, + 2uy, + 4uy; + 8z, for 1<j <k (4.33)
bj = Uy, + 2UQ]. + 4Zj, for k() < j < kl (434)
bj = Ug; + QZj, for k’l < j < k?g (435)
b; 25, for ks <j<n (4.36)

65



Let u} be the zero-padded version of u; fori = 0,1,...,a—1, to have n components:
= [ug, Wiy, -, 0, .., 0] (4.37)
z ¥V_J
n—=k;

Given a diagonal matrix D with entries d; ; = 27" for k;—1 < j < k; where k_; = 0,
and 27 for the remaining diagonal entries. Then, the integer vector b is written
as:

b =D (uj + 2u] + 4u), + 8z), (4.38)

where D is given Definition 4.3.

For Construction D’; the lattice point x may be decomposed as:
a
X = Z 2'x;, (4.39)
i=0

with components x; depending on u; expressed below; x; are not necessarily binary.

Now how information bits are related to a lattice point is described, to show
that recovering integers from a lattice point is possible. Using (4.8) and (4.38)—
(4.39) there are

H-x=b (4.40)
H-x=D'-b (4.41)
H-(x0+ 2% 4 - 4 2°%,) = u) + 2u} + - - - + 2°z (4.42)

and the lattice components x; € Z" satisfy:

~

H. x;, =

(

fori=0,...,a—1, and (4.43)
H-x, =z (4.44)

Note that encoding performed using (4.43)—(4.44) is equivalent to encoding method
A.

4.3 Decoding

Re-encoding using the generator matrix is typically needed for multistage decoding
of Construction D lattices [63] (see also [10]). To produce hypercubical constel-
lations with Construction D’ multistage decoding may compute cosets instead of
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re-encoding [12]. For Construction D’, this section extends [63] and performs re-
encoding using the check matrix, and describes a multistage successive cancellation
decoding algorithm for Construction D’ such that nonhypercubical constellations
are allowed. In particular, this decoding algorithm is suitable for Construction
D’ coding lattices to be used with shaping lattices, likewise employing a binary
decoder Dec; of C;, but re-encoding is distinct because it corresponds to encoding
method B. The encoding and decoding scheme is shown in Fig. 4.2, where encoding
method B is to demonstrate the validity of the decoding algorithm.

4.3.1 Lattice Component and Re-encoding

Before proposing the decoding algorithm, there is a need to illustrate why multi-
stage decoding is applicable to Construction D’. Assume a lattice point expressed
in decomposition x = x¢ + 2x; + 2%x5 + - - - + 2%x, was transmitted without noise.
A sequence of operations can be performed recursively for i = 0,...,a — 1 to
produce a binary codeword X; € C; which will be used in Proposition 4.2. First X,
is obtained by applying a modulo-2 operation to x, such that the contribution of
2x; + 22%y - - - + 29X, is removed. Assume that x can be found using X, and call
this operation re-encoding denoted Re-ency. Then x; is subtracted from x and
divided by two, producing x; + 2x5 + - - - + 2% 1x, to which a modulo-2 operation
is applied such that X; is obtained. This iterative procedure can be described as:

X=X + 2%;41 4+ - +2°7"x, mod 2, (4.45)
X; = Re—enci(ii), (446)
; i + 2%, e 2977K,) — X
Xis1 + 2o 4 - 4 2070 Dy — (i + 2341 + 5 * Xa) ~ X , (4.47)
for i =0,1,...,a—1, and proceeds until x, = (x —x¢ —2x; — - —2"1x, 1)/2% is

obtained. The above description provides a foundation such that in each level,
if a lattice component x; can be found using re-encoding from the sequence
reproduced by a separate binary decoder, then a lattice point can be recovered.
The re-encoding is required when decoding Construction D’ lattices. This will be
performed with respect to encoding method B given in Subsection 4.2.2, because
it shows how a lattice component is mapped from binary information bits, which
can be obtained from a binary codeword produced by each level’s decoder. More
details will be given in Subsection 4.3.3.
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Figure 4.1: Mapping from a real number y € R (horizontal axis) to a real number
y' € [0,1] (vertical axis) using the “triangle-function” 3 = mod* (y).

4.3.2 Mod-2 AWGN Channel in Multistage Decoding

In practice the channel noise shall not be ignored. For multistage successive
cancellation decoding, if the previous level i — 1 produces the correct estimates, the
decoder at level 7 outputs an estimate relying on an independent error probability,
thus each level i € {0,1,...,a — 1} can be seen as coding over an independent
channel. For Construction D’ lattices in zero-mean AWGN channel with noise
variance o2, each level can be regarded as a mod-2 AWGN channel with input x;
and output y; given by:

y: = (x; + w;) mod 2, (4.48)

where the noise w; satisfies a Gaussian distribution with zero mean and noise
variance 02/4%. This also leads the probability of error design rule to select a family
of nested linear codes such that their corresponding contributions (the probability
of error for decoding the code over the mod-2 channel) to the lattice probability
of error are approximately equal. This design rule was used in [12].

It is evident from the findings in [10, 12, 63] that multistage decoding has
benefits from binary decoders. Likewise, this dissertation proposes a decoding
algorithm for Construction D’ employing binary decoders. This is valid based
upon Proposition 4.2 as will be addressed in the next subsection. There is a need
to convert a received sequence to an appropriate input for the binary decoder. Let
the received sequence of level i be denoted y; € R”. Assume a binary decoder Dec;
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of C; is used to find the binary codeword closest to y;, where Dec; assumes a binary
0,1 codeword? was transmitted over an AWGN channel. Then a mapping from
yi: € R" to y! € [0,1]" is required. Note that performing a modulo-2 operation
is essential to remove the contributions from the following levels ¢ + 1,... a, but
modulo operation should correctly preserve distances to code symbols 0 and 1 as
well. This can be accomplished by:

mod” (y;) = |mods (y; + 1) — 1|, (4.49)

called the “triangle-function”, where mods indicates a modulo-2 operation. This
function is also suitable for Construction A* and Construction D [10].

The mapping using (4.49) is shown in Figure 4.1. An example is given
accordingly to show that performing (4.49) can correctly preserve distances.

Example 4.3 Assume a channel message —0.05. The modulo-2 operation
produces —0.05mod2 = 1.95 and the binary decoder recognizes that 1.95 is
closer to 1 instead of 0. If the “triangle-function” in (4.49) is performed, then
|(=0.05 + 1mod 2) — 1| = 0.05 is the input to the decoder, and thus correctly
produces 0.

4.3.3 Decoding Algorithm

Proposition 4.2. For Construction D’; the lattice component x; is congruent
modulo 2 to a codeword X; € C;, for i =0,...,a — 1.

Proof The lattice component x; satisfies H- x; = u, and the codeword satisfies
ItIi O X; = 0. Recall the last n — k; positions of u} are 0s. Row [ of IEIZ is equal
to row [ + k; of ﬁ, call this row h;. By definition, h; - x; = 0 and h; ©X; = 0 for
[=1,2,...,n—k;. Thus, x,mod2 = X; and the proposition holds. O

Consider a lattice point x transmitted over a channel and the received sequence

18

Yo =X+ W, (4.50)

2This is distinct from the more conventional BPSK signaling for binary codes, where the
decoders assume {41, —1} were transmitted.

3The quantization of Construction A lattices as will be given in Section 6.3 is a variant of
Algorithm 2.1, but is valid due to Lemma 2.1. When Construction A is applied, re-encoding is
not needed, because a lattice point is decomposed by a binary codeword and a vector of integers.
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Algorithm 4.1 Decoding Construction D’ Lattices

Input: noisy input y

Output: estimated lattice point X

Yo=Y

yo = |mods (yo + 1) — 1

§0 = Decy(yy)

ﬁ6 = ﬁ © §Co

solve H - %y = 11}

for i=1,2,...,;a—1do
yi= (Yi-1 —Xi-1)/2

i = [mods (y; + 1) — 1

i = Dec;(y7)

i =HO X,

y
X

solve H - %; = 1]
end for
Ya = (Ya-1— ﬁafl)/Q
Xa = |¥al

X=X+ 2% +---+ 2971, +29%,

where w is noise. Decoding proceeds recursively for i« = 0,1,...,a — 1. The
decoding result at level ¢ — 1 is used before beginning decoding at level 7. Each
level receives y; € R™ as input, which is mapped to a vector y, using (4.49) with
each element y; € [0,1] for j = 1,2,...,n. For binary decoders using log-likelihood
ratio (LLR) as input, the bit LLR value

Pr(Z; = 0[y;)

LLR = log ———~ 4.51
Pr(3,; = 1ly) oy
may be estimated as:
1— 2y
LLR = L 4.52
52 (4.52)
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The decoder Dec; produces a binary codeword >ch closest to y!, which is an estimate
of X;, expressed by:

X; = Dec;(v)). (4.53)
It is necessary to find X;. If X; does not contain an embedded W}, first find

i =HOX. (4.54)

Then re-encoding is performed to find X;, that is, (4.43). This estimated compo-
nent X; is subtracted from the input, and this is divided over reals by 2:

yir1 = (Vi — Xi)/2, (4.55)

to form y;,q, which is passed as input to the next level. This process continues
recursively, until y, is obtained. The integers are estimated as

%, = lyal. (4.56)
The estimated lattice point is written as

X =X+ 2% + - + 2%,. (4.57)
This successive cancellation decoding is described in Algorithm Algorithm 4.1.

Re-encoding (4.43) is necessary because it guarantees that an estimated lattice
component is congruent modulo-2 to a codeword of the binary code at each level.

4.4 Alternative Encoding and Decoding

Furthermore, a Construction D’ lattice point can also be generated without the
need to use the zero-padded u; (4.37), but is written as

a—1
x = 2% + Z 2'x;, (4.58)
i=0

and the lattice components x; should be in a systematic form:

X; = [uil,uiQ, Ce ’uiki’xiki+1’ Ce ,fljin]t, (459)

where z;, ,,,...,x;, are found to satisfy ﬁlxZ = 0. Note that x; are not necessarily
binary.
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It can be shown that (4.58) is a lattice point. Write
H-x=D (H xg+ - +2'H-x,_; + 2°2). (4.60)

Recognize that the Vector~ﬁ -X; is an integer in rows 1 to k; and is 0 in rows k; + 1
to n. The product 2°D - H - x; is also an integer vector. Thus, H - x is an integer
vector. So the decomposition of x is a lattice point.

Therefore decoding Construction D’ lattices can also be performed using (4.59)
for re-encoding; this is distinct from Algorithm 4.1. The block diagram is given
in Figure 4.3.

4.5 Shaping Construction D’ Lattices

In this section, two examples will be given to show how shaping is performed
as described in Section 3.2 for Construction D’ lattice points using four distinct
shaping lattices: the Eg, BWg, Leech, and convolutional code lattices. The coding
lattice A, is described by a check matrix H, while the shaping lattice Ay is described
by a generator matrix G.

When constructing a nested lattice code using an n-dimensional Construction
D’ lattice for coding and the Ejy lattice, the BWig4 lattice, or the 24-dimensional
Leech lattice for shaping, the dimension n must be a multiple of 8, 16 or 24,
respectively, such that the direct sum of these low-dimensional lattices produces
an n-dimensional shaping lattice. See Subsection 2.1.6.3. A convolutional code
lattice can be more flexible on dimension as a shaping lattice. More discussions
on their constructions will be addressed in Chapter 6. Also, the shaping lattice is
often scaled to satisfy Lemma 3.1.

Example 4.4 Let the shaping lattice A, = 4AY° be described by a generator
matrix Gg, which is the scaled-by-4 version of the matrix G AL that will be given
in Example 6.6 in Section 6.2. Let H. be the triangularized version of the check
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matrix H in equation (4.32) with W - H = H, for a unimodular matrix W:

(-1 -1 1 0 -2 2 -2 0 0 4 ]
4 4 -3 —4 10 -6 8 —4 4 -—-16
2 1 -1 0 2 =2 2 0 0 -4
-3 -2 2 2 -6 4 -5 2 =2 10
-1 -1 1 2 -3 1 -2 2 =2 4
W= o o o0 1 0 0 0 0 O 0 (4.61)
o o o0 o 1 0 0 0 0 0
o o o0 o o o0 o 1 -1 0
o 0o o0 o o0 0 0 0 0 1
0o 0 0 0 0 0 0 0 1 0 |
The lower-triangular matrix
[ 1 0 0 0 0 0 0 0 0 0]
0 1 0 0 0 0 0O o0 0 0
0 0 1 0 0 0 0O 0 0 0
o -1/2 0 1/2 0 0 0O 0 0 0
-1/2 =12 0 1/2 1/2 0 0O 0 0 0
He = 0 0 /2 12 0 12 0 0 0 0 (4.62)
1/2 0 o 12 0 1/2 12 0 0 0
-1/4 —-1/4 —-1/4 1/4 1/4 —-1/4 1/4 1/4 0 0
1/4 0 /4 14 0 1/4 1/4 0 1/4 0
| 14 1/4 14 0 O 1/4 0 0 0 1/4]

is used when encoding and indexing. The diagonal elements M; of H.Gg for
1=1,2,...,10 are:

M; € {4,8,4,4,2,4,4,2,2,2}, (4.63)

which gives the range of information integers. See Section 3.2. Then the code
rate (3.11) is R = 15 log, [1.2, M; = 1.7 bits per dimension. Assume the
information vector? is: b = [2,4,1,2,0,0,2,1,0,0]*. By solving H.x = b using
back-substitution a lattice point x = [2,4,1,8,—2,—9,3, =7, —5,2]" is generated.
The shaping operation (3.15) using 4AY gives a lattice codeword:

X' =[-2,0,-3,0,-2,—1,—1,1,-1,-2]".

4The corresponding information bits are up = [0,0,1]* and u; = [1,0,0,0,0,0,0]* for the
underlying binary codes Cy and C; of A., respectively. The remaining information bit positions
in b may be selected using integers z similar to (4.33)—(4.36). Under correct decoding, these
ug, u; and z are produced by each level of the decoder. Note that the matrices used for encoding
and the decoder’s re-encoding should agree.
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In this example, 4A} has a shaping gain of 0.58 dB which is obtainable because any
lattice codeword x’ lies in the zero-centered Voronoi region of 4A’—this produces
a nonhypercubical constellation.

Example 4.5 Let A. be an n = 48-dimensional Construction D’ lattice generated
by a = 3-level nested binary codes. Let the check matrix H, of A. be given in
Table 4.1, which is lower-triangular and thus is convenient when encoding and
indexing.

Since the dimension of the Eg lattice, the BWg lattice and the Leech lattice is
n' = 8,16, 24, it is needed to have n/n’ = 6,3, 2 copies of generator matrix (2.57),
(2.62) and (2.64), respectively. For each distinct lattice, to satisfy Lemma 3.1, the
resulting lattice obtained by the direct sum as given in Subsection 2.1.6.3 must be
scaled by at least 16, 84/2, and 16+/2, respectively. Using these least scale factors,
the constructed shaping lattice has generator matrix GFs, GBWis  and GLeeeh,
shown in Tables 4.2—4.4, respectively.

Consider a convolutional code lattice (CCL) for shaping A., where the under-
lying binary zero-tailed convolutional code has rate 1/3 and block length 48. The
generator matrix GSCr scaled by 8 is given in Table 4.5, which satisfies Lemma 3.1.
The 48 diagonal elements of H.GECL are:

{8,16,16,4,8,8,4,8,8,4,8,8,4,8,8,4,8,84,8,8,4,8,8,4,884,84,2,4,4,4,4,44,4,4,44,2222222},

which are used when performing the encoding and indexing operations.
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4.6 Concluding Remarks

This chapter gave a definition of Construction D’ using parity-check matrix which
is equivalent to the classical definition of Construction D’; and showed how to build
a Construction D’ lattice using nested binary linear codes. Two encoding methods
for Construction D’ lattices were proposed, where encoding method A is related
to the well-known encoding algorithm commonly implemented for LDPC codes
[61], and encoding method B showed explicitly the relation between information
bits and integers which correspond to a lattice point. Decoding Construction D’
includes a re-encoding step with respect to encoding method B that transforms a
binary codeword into a lattice component. An alternative encoding method and its
corresponding decoding algorithm were also provided. How to perform a shaping
operation for a Construction D’ lattice was given by an example. Moreover, the
encoding and decoding methods addressed in this chapter are suitable to obtain
shaping gains for power-constrained channels.
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Chapter 5

Design of LDPC Codes

This chapter considers two-level Construction D’ lattices, that are based on binary
quasi-cyclic low-density parity-check (QC-LDPC) codes. Nested QC-LDPC codes
are designed for forming high-dimensional Construction D’ lattices.

One approach of lattice construction is to employ QC-LDPC codes and single
parity-check product codes [35]. The first level code parity-check matrix consists
of a top matrix that is modified from a QC-LDPC code used in a wireless
standard [64, Table I] and bottom rows which contribute to parity checks for
the product code. The second level code parity-check matrix is constructed using
row operations on a submatrix for the previous level’s matrix. For this design, it is
not clear how to obtain a triangular matrix for a Construction D’ lattice, however,
it showed some benefit of using QC-LDPC codes. Thus this chapter addresses a
design of Construction D’ lattices using only QC-LDPC codes, where the second
level code parity-check matrix H; can be generated using row operations on a
submatrix of the first level code parity-check matrix Hy.

A subcode condition Cy — C; must be satisfied to form a 2-level Construction
D’ lattice where Cy is the first level code and C; denotes the second level code,
and this is not straightforward. Branco da Silva and Silva also addressed the
design of multilevel Construction D’ lattices based on LDPC codes [12]. In their
work, Hy was obtained from H; by performing check splitting or progressive edge-
growth (PEG)-based check splitting. In contrast to [12], this chapter designs the
first level code parity-check matrix Hy such that the second level code parity-
check matrix H; may be constructed using row operations, where Hy and H;
can be easily triangularized and thus efficient encoding and indexing is possible.
With this design, a straightforward method to find a triangular check matrix for
Construction D’ lattices is also given. QC-LDPC codes are designed using binary
linear programming to guarantee that the necessary supercode can be constructed,
as well as to satisfy the column and the row weight distribution.
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5.1 Prototype Matrix of QC-LDPC Codes

A QC-LDPC code can be described using a prototype matrix, which is an M-by-N
matrix with integer entries:

Pip P12 PN
P21 P22 't PonN (5.1)
| Pmvy Pm2 0 Pun |
where Z is an integer greater than 1, and —1 < p,; < Z for i =1,2,..., M and
j=1,2,...,N. See [65].
The parity-check matrix Hy of a QC-LDPC code Cy can be expressed by
i PP1a PPi2 ... PPinN 1
PPz PP22 ... PP2n
H, = ) (5.2)
PPyvi1 PPum2 ... PPunN

where PPii is a Z-by-Z right-shift cyclic-permutation matrix! and the power Dij

is an element of (5.1), fori = 1,2,...,M and j = 1,2,...,N. When p,; = —1,
instead use a zero matrix and P is the identity matrix I;. Thus Z is called
circulant size and Cy has block length n = ZN.

Example 5.1 Let the circulant size be Z = 6 and write a 2-by-4 prototype matrix
as:

5 2 0 -1
202 1

(5.3)

Then a parity-check matrix of size 12-by-24 can be lifted from the prototype matrix

!Each matrix PPiJ is a submatrix of the parity-check matrix, which is referred to as a block
or a circulant. A single circulant has row weight 1 and column weight 1. A double circulant has
row weight 2 and column weight 2. A block row means Z rows in the parity-check matrix that
are corresponding to a row in the prototype matrix.
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in (5.3), given by:

oo0o0o0o0140010O0O0}j1 0O0O0O0TO0O[0O0O0O0OTO0TO0
1 000O00O0OO0OO0O06GCT1TOO0O|O0OIT O0O0OO0OO0O0OO0OO0OO0OO0OO0
o10o00O00O0O0O0OO0O1O0}(]0O01TO0O0TO0[{0O0O0TO0TO0T®O0
oo6010O0O0O0O0O0O0O0O0OO0CT1T]0O0O0CTI1TO0OTO0O[{0O0O0O0O0O0
oo60o01o0o0f1000O0O0}j0O0O0CO0CTTO0O[{0O0O0O0O00O0
oo0o0o010f010O0O0O0]0O0O0OCO0OO0OT1I|[{0O0O0O0TO0O0
0o o01o0oo0o0/10000O0O(0O01TO0O0O0OCO0T1ITO0O0TGO00QO0
o oo601o0o0/010O0O0CO00O0O0O011O0O0O0O0T1O0TO00O0
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1 000O0O0OOO0O0O0OO0OT1ITO0O}]1 00O0O0OO0O]0O0O0O0O01
6o10o000/00O0O0O0O01(01O0O0O0O01 O0O0OO0TO00QO0

5.2 Construction D’ Lattices Formed by QC-
LDPC Codes

This dissertation proposes 2-level Construction D’ lattices based on nested binary
QC-LDPC codes Cy = C;. The first level component code Cy has an M-by-N
prototype matrix while the second level component code C; has a 2-by-N prototype
matrix. The code Cy has a design rate 1 — M/N. And C; is a high-rate code—a
column weight 2, row weight N parity-check matrix is sufficient; column weight
2 was also used in [35]. The code Cy is a subcode of C; thus the parity-check
matrix of C; is a matrix obtained from linear combinations of a Cy parity-check
submatrix. Binary linear codes Cy and C;, and their parity-check matrices Hy and
H, are nested.

The parity-check matrix H; does not provide good row and column distribu-
tions if the rows were taken from Hjy, thus it is needed to find H; using linear
combinations of rows in Hy. Let the set A, consist of row numbers k € {1,..., M}
where each element k corresponds to the k-th block row of Hy, such that their
block-wise sum? is a single block row of weight NV and column weight 1, for ¢ = 1, 2.
In addition, the two sets A; and A, are disjoint.

2For example, the block-wise sum of the two parity-check matrices corresponding to prototype
matrices [0,0, —1] and [2, 0, 0] of circulant size 3 is [0/2*, —1, 0] where * denotes a double circulant

. . . . 01
which corresponds to a parity-check submatrix written as [é 1 (1)]
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The parity-check matrix H; can be expressed as

H, - [H] , (5.4)

where H| and H), are the sum of block rows 4; and As, respectively:

H; — @ [Ppk,l PPr2 ... Ppk,N:I’ (55)
keAq

for ¢ = 1,2. Accordingly, H; is a QC-LDPC parity-check matrix with column
weight 2.

5.3 Binary Linear Programming for Prototype
Matrix Construction

To form a 2-level Construction D’ lattice using QC-LDPC codes, the two compo-
nent binary codes are needed to satisfy the properties given in the previous section.
A part of the design is to find the position of non-zero circulants.

To achieve this, this section® designs a matrix, given several constraints: the
subcode condition, row and column weight degree constraints, and the matrix
should be in the ALT form to enable efficient encoding. Binary linear programming
can be used to satisfy these constraints to provide a binary matrix describing non-
zero circulants’ position when designing a prototype matrix [67].

Set up the programming problem by writing the M-by-N matrix as

A=| A (5.6)
Apn Qpre "0 Ay N

where @, ; is a binary variable for ¢ € {1,2,..., M} and j € {1,2,..., N}, and
a; ; = 1 indicates a non-zero circulant for (5.1).

The row weights of A are

r={ry,ry Tyl (5.7)

3Part of the work in Section 5.3 is the output of a collaborative research with co-authors
in [66].
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and the column weights are

c={c,c, - ,cn} (5.8)
There are M row constraints: row ¢ has weight r;, expressed as

Qg+ ta N =T (5.9)
and NN column constraints: column j has weight c;, written as

ayj+ - tay; =cj (5.10)

For one of the subcode constraints, the rows from 4, sum to a block row (5.5) of
weight N, thus a constraint for ¢ = 1,2 is added for (5.6):

> i a,; = N. (5.11)

keAq j=1

A constraint for the ALT form to force all-ones along the offset-by-one diagonal
is expressed as:

M-1
Z G N—m14i = M — 1. (5.12)
i=1

And another constraint to force all-zeros above the offset diagonal can be added
in addition. The detail is omitted here.

The goal is to find a,; that satisfies the above conditions, which can be
expressed using the following binary linear program:

minZZam, (5.13)
i g

subject to

: (5.14)

where K is a constraint matrix that includes all the constraints described in (5.9)—
(5.12) and a is the vectorized version of A (5.6). Because this is a binary linear
programming problem, for the set A,, only one position will contain a 1 and the
remaining |A,| — 1 positions will contain 0, in any column. The implementation of
this optimization problem is easily solved using standard optimization packages.
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5.4 Easily Triangularizable QC-LDPC Code De-
sign for Construction D’

5.4.1 Design Requirements

Now a specific design of binary QC-LDPC codes Cy and C; for 2-level Construction
D’ lattices is given. Let Hy and H; be a parity-check matrix of the first level
component code Cy and the second level component code Cp, respectively. The
parity-check matrices Hy and H; are designed to satisfy the following properties:

1. CO C Cl;
2. Hy and H; are of full rank;
3. Hy and H; can be easily triangularized;

4. Hy and H; have girth* as high as possible.

Property 1 allows Cy and C; to form a Construction D’ lattice A. It is convenient
to generate a triangular check matrix for a Construction D’ lattice if Hy and
H;, have properties 2 and 3. Property 4 is designed subject to the decoding
performance.

LDPC codes can be decoded using the belief propagation algorithm [68], which
performs iterative message-passing on a Tanner graph [69]. The cycles in a Tanner
graph strongly affect the decoding performance, thus eliminating short cycles is
important. When the code has long block length the computational complexity
to detect short cycles in a binary parity-check matrix is large. However, detecting
cycles using a prototype matrix instead significantly reduces the running time.
This dissertation follows the conditions given in [70,71] when designing prototype
matrices without short cycles.

The binary linear programming constraints (5.14) given in the previous section
were described for a more general design, where the resulting QC-LDPC codes
use offset-by-one diagonal and all-zeros above the diagonal. To satisfy the design
requirements listed above, the last two constraints of K in (5.14) needs to be

4The girth is equal to the length of the shortest cycle that exist in the Tanner graph of the
code.
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changed for property 3. Firstly, (5.12) needs to be modified as

M
Z a; N-mvi = M, (5.15)

i=1
such that no-offset diagonal is used. Then, a non-zero entry is placed above the
diagonal. Thus using the new constraint matrix denoted K’, the goal can be
expressed using (5.13) subject to

K/ .a (516)

»—iZZO

5.4.2 Resulting Design

To meet the design requirements, first use the binary linear programming to find
a binary matrix A (5.6) with M = 12 rows and N = 24 columns, using degree
distribution polynomials® of variable nodes and check nodes:

1 ) 1 1

)\(.Z‘) = §$2 + E.Tg + §$4 + §$6, and (517)
2 1

plx) = §x6 + 5:107, (5.18)

respectively, where \gz? and pgz? means \g and py are the fraction of nodes with
degree® d. This structure is a modified version of [64, Table I]. The prototype
matrix of Hy is designed using two sets:

Ay ={5,7,9,11}, and (5.19)
Ay = {6,8,10, 12}, (5.20)
as explained in Section 5.2, which has degree distribution polynomials
N(z) = 22, and (5.21)
p(x) = 2*. (5.22)

®Degree distribution can describe the row and column weight.
6Tn this subsection, = used in a degree distribution polynomial is distinct from the notation
in other chapters.
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Using a circulant size Z = 96, the prototype matrix of Hy can be generated by
assigning:

{ Py=—h o Pray =0 (5.23)

—1<p,; <7, for a, ;

such that the lifted parity-check matrices Hy (5.2) and H; (5.4) are free of four-
cycles and six-cycles. The designed prototype matrices are shown in Tables 5.1-5.2.

Note that offset diagonal was not used and a double circulant p, 53 was assigned
such that Hy and H; can be easily triangularized. This provides efficient encoding
and indexing [16]. The power for adding double circulant was chosen without
introducing short cycles. The designed QC-LDPC codes Cy and C; are of block
length n = 2304, with code rate 1/2 and 11/12, respectively. The design rates are
chosen similar to [35]. Thus the resulting design of prototype matrix for Hy and
H, satisfies the following degree distributions’:

7 11 1 1

AMz) = ﬂxQ + ﬁx‘g + §x4 + ng, (5.24)
7 5

p(x) = Ex6 + ﬁx7, and (5.25)
23 1

/ 2 3

- =2 - 2

N(zx) 52° T 9% (5.26)
1 1

p(x) = 5:1024 + §$25, (5.27)

respectively. The code rates and degree distributions were relevant to previous
work showing a good coding property, but can be further optimized by a density
evolution algorithm [72].

The check matrix H of a Construction D’ lattice can be constructed from Hj
and H;. The QC-LDPC code prototype matrices for n = 5016, 10008 will be given
in Appendix C. The corresponding parity-check matrices are of girth 8.

5.4.3 Triangular Matrix of Construction D’ Lattices

A lower-triangular check matrix H for a 2-level Construction D’ lattice is used
for encoding. This can be constructed if the parity-check matrices Hy and H; for
nested binary codes Cy c C; are triangularizable. Transform Hy and H; into lower-
triangular form by performing block row operations in the binary field, resulting in
H, and H; respectively. The triangular matrix Hy must contain the basis vectors

"This is changed from (5.17), (5.18), (5.21), and (5.22) due to the added double circulant.
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of ﬁl such that they both satisfy Definition 4.1. Then a lower-triangular check
matrix® H is built using Definition 4.3 in Chapter 4.

The design of parity-check matrices Hy and H; for QC-LDPC codes given in
the previous subsection allows a straightforward method to generate the lower-
triangular check matrix H. Let p§2)23 = a and p12)23 b be selected? such that

Q=1I,+P"+P° (5.28)

is a triple circulant and full rank. The lower-triangular H, can be obtained as
follows. Let V be the block-wise sum of the two block rows of H; over GF(2).
The twenty-third block column of V is a square matrix Q (5.28). Using only row
operations over GF(2), Q can be transformed to triangular form T. Find a binary
matrix W such that W © Q = T. Replace the first block row of H; by WOV
then the resulting matrix is lower-triangular and denoted H,. After that, HO is
built by replacing the last two block rows of Hy by H,.

5.5 Concluding Remarks

This chapter gave a design method for binary QC-LDPC codes to form two-level
Construction D’ lattices. The position of non-zero circulants of the QC-LDPC
code prototype matrix was found by binary linear programming. The powers of
the prototype circulants were selected such that the resulting parity-check matrices
are free of short cycles. As a matter of design, the parity-check matrix of the second
level code was constructed by linear combinations of a first-level code submatrix.
Moreover, using two nested binary QC-LDPC codes with the structure proposed
in this chapter, a triangular check matrix of a QC-LDPC Construction D’ lattice
can be obtained, and the generating method is also addressed. The triangular
structure contributes to nested lattice code indexing as shown in Chapter 3. QC-
LDPC Construction D’ lattices of various dimensions as well as their component
binary QC-LDPC codes will be evaluated and the numerical results will be given
in Chapter 7.

8 Although H obtained in this way introduces double circulants that might result in short
cycles, this H is only used for encoding and indexing as described in Chapter 3. When decoding
a Construction D’ lattice as addressed in Section 4.3, nontriangular matrices Hy and H; are
used by the binary decoders for Cy and Cy, respectively.

9For example, the element 66/71* in Table 5.1 means a double circulant of size Z = 96, which
has a = 66 and b = 71. Thus Q is a triple circulant and has full rank.
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Chapter 6

Convolutional Code Lattices

This chapter focuses on the design of convolutional code lattices which are Con-
struction A lattices using binary convolutional codes. The zero-centered Voronoi
region of a convolutional code lattice can be used when constructing a nested
lattice code, which is indeed a quantizer. The effectiveness of an n-dimensional
lattice quantizer is measured by the shaping gain with respect to the normalized
second moment of the integer lattice Z". The shaping gain measures the power
reduction, and the theoretic limit is 1.53 dB given by an n-sphere as n — oo [13].

The shaping gains of convolutional code lattices were studied in [8,9,23,24,73].
Convolutional code lattices have high shaping gain, flexibility of lattice dimension,
and low-complexity quantization using the well-known Viterbi algorithm. For
these reasons, convolutional code lattices are suitable as shaping lattices. Both
shaping gain and the complexity of quantization are of interest.

First, binary convolutional codes are reviewed. Then Section 6.2 gives a method
to obtain triangular generator matrices for Construction A lattices that is modified
from [6,9,36,73]. This is applied to build convolutional code lattices from zero-
tailed (i.e., conventional termination) convolutional codes, tail-biting convolutional
codes, and truncated convolutional codes. Extensive numerical results of an
exhaustive search finding the generator polynomials of the convolutional code
which provides the best-found shaping gain are given. The tradeoff between
shaping gain and quantization complexity of convolutional code lattices is also
studied.

6.1 Convolutional Codes

Convolutional codes are a class of error-correcting codes introduced by Peter
Elias in 1955 [74], and have been widely used for radio, digital video, mobile
communications and satellite communications. They often form concatenations
for constructing turbo codes [75]. Convolutional codes can be maximum-likelihood
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decoded by the Viterbi algorithm [18], thus the decoder is optimal.

6.1.1 Description of Binary Convolutional Codes

A convolutional code encoder continuously produces code bit stream given an
incoming information bit stream, thus the code rate R is the reciprocal of the
number of code bits assigned to each data bit. This dissertation considers only
rate R = 1/2,1/3,... binary convolutional codes. Let f = 1/R. The encoder uses
a shift register that contains m binary memory cells delaying the input bit, and
m is called memory order; hence the encoder has 2™ states! and f filters with an
impulse response g corresponding to a modulo-2 adder fori = 0,1, ..., f—1. The
feedforward encoder outputs f sequences ¢ where each is the convolution under
GF(2) of the binary input u and the impulse response g in the time domain,
expressed as:

c? =gl @u (6.1)
The codeword of a convolutional code is obtained by multiplexing the bits of
c® c® . ¢~V Let D denote the delay operator. Let the information vector
Uo
Uz
u= .1 (6.2)

and output sequence

o
(i)
i 5
=10, (6.3)
2
be the coefficients of polynomials
u(D) = ugDF ' 4 uy DF 2 oD+ ug g, and (6.4)
c(i)(D) = c(()i)D"_1 + cgi)D”_2 + 4 cff)_QD + cg)_l, (6.5)

IThe state of an encoder is the content in memory cells. The total number of states is 2.
For example, when m = 2 the possible states are {00, 01,10,11}.
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respectively, where k is the length of information bits and n is the length of
codeword, regarding a finite stream consideration. Then (6.1) can also be written
in the transform domain as:

(D) = g"(D) ©u(D), (6.6)
where the polynomial in descending order?

m—1 m

g(D) = g’ D™ + g" D" -+ gl D+ gl (6.7)
is called the generator polynomial and its coefficients form the binary vector

%
g - | (6.8)

o

in (6.1). For convenience, g can be represented by a number in the octal form

and the upmost bit g{” is the most significant bit. For example, D* + D2 + D
corresponding to a binary sequence {1,0,1,1,0} can be expressed by an octal
number 26.

The encoding operation can also be expressed as:

o)1 [ gD
) (1)

O I fer) (69)
)] {gu)

(D) = G(D) ©u(D), (6.10)

where the code polynomial generator matrix G(D) is equivalent to:

G(D) = GoD™ + GyD™ 4 - 4 Gy D + Gy, (6.11)
where
(0)
9;
e
G, = J ’ (6.12)
g](f—l)

2This convention is distinct from the representation in [76, Ch. 12], but follows the imple-
mentation in MATLAB Communications Toolbox [77, pp. 2-640-2-644].
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for j = 0,1,...,m. Thus a convolutional code generator matriz® can also be
written as:

G, Gy
G, G4 Gy

G=1G,, G,.1 G, . (6.13)

Gm Gm—l
G

And a codeword can be simply obtained:

c=GOu. (6.14)
Example 6.1 Let arate 1/2 convolutional code with memory order 3 be described
with a polynomial generator matrix:
(0) 3 2
g (D) _|DP+D°+D+1
G(D) = lg(l)(D)] - l D*+D+1 ’

where g® = [1 11 1] and g = [1 0 1 1] can be written in the octal form as
(17,13). A generator matrix is:

(6.15)

(6.16)

— = = = O = =
— o = O =
= e
P s Y S G W

The code can be realized using the nonsystematic feedforward encoder given in
Figure 6.1. All possible states are listed in Table 6.1.

3For convenience, the generator bases are given in column convention. The empty entries are
Zeros.
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\é:> R c(l)

Figure 6.1: Rate 1/2 convolutional code nonsystematic feedforward encoder for
code generator polynomials (17,13).

Table 6.1: All possible states of the encoder given in Figure 6.1.

So |0 0 0
Silo o0 1
Sy |0 1 0
Selo 1 1
Syl1 0 0
Ss|1 0 1
Sel1 1 0
S 11 1 1

6.1.2 Termination of Convolutional Codes

A convolutional code encoder produces output streams of infinite length when the
information streams have infinite length. If the information stream is separated
into sequences of finite length, a convolutional code can be regarded as a block
code. Due to the existence of the memory delay the encoder needs to be terminated
for each information sequence.

There are three termination methods: zero-tailed termination, tail-biting
termination, and direct truncation. The corresponding convolutional codes are
referred to as zero-tailed convolutional codes, tail-biting convolutional codes, and
truncated convolutional codes, respectively.
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6.1.2.1 Zero-Tailed Convolutional Codes

The conventional termination method is to input m zeros to the memory cells
such that the encoder starts and ends in all-zero state, thus is called zero-tailed
termination (or zero termination). This termination method reduces the code rate
because the added m zeros representing no information. The decoding using the
Viterbi algorithm is optimal and low-complexity, thus is widely implemented in
communication systems.

Example 6.2 Let an information sequence of length £ = 3 be u = [1 0 1]".
The generator matrix (6.16) in Example 6.1 can be terminated as a matrix of
n = 2(k+m) = 12 rows and k = 3 columns, written as:

1
1
1 1
01
1 1 1
1 0 1
G = 111 (6.17)
1 1 0
1 1
1 1
1
L 1_
Then the codeword is obtained (6.14):
c=GOu=[111000011111] (6.18)

where the last 2m = 6 bits are due to the zero tail. Notice that the actual
code rate now reduces to k/n = 1/4. Observe that when k is much larger than
the memory order m, the rate loss is negligible. Also, due to a consideration of
decoding complexity, using a small value for m is desirable for practical use. More
discussions will be given in Section 6.5.

Using the binary polynomial representation (6.10), the encoding operation for
information u(D) = D? + 1 can also be expressed as:

D*+D?+D+1
C(D):[ D%+ D1 ]@[D2+1] (6.19)

_[D5+D4+D+1]

D>+D?>*+D+1 (6.20)

corresponding to the multiplexed binary sequence (6.18).
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6.1.2.2 Tail-Biting Convolutional Codes

If the memory cells were set as the m last bits of the information sequence before
encoding, then the encoder starts and ends in the same state, thus is called tail-
biting termination. This termination method does not cause rate loss, but the
decoding algorithm requires higher complexity than that of the Viterbi algorithm,
as will be addressed in Section 6.5.

Example 6.3 Let a sequence of information with length &k = 5beu =[101 1 0]".
Before encoding, set the memory cells with the last m = 3 bits of u: {1,1,0}—the
encoder starts with the state S5. Thus the generator matrix (6.16) in Example 6.1
can be terminated as a matrix of n = 2k = 10 rows and k& = 5 columns, written
as:

1111
1 110

11 11

01 11

1111
G=|, 01 (6.21)
1111

1101

1111

110 1

Then the codeword is obtained (6.14):
c=GOu=[1101001001]" (6.22)
The codeword length is 10 and thus the code design rate 1/2 does not change.

6.1.2.3 Truncated Convolutional Codes

Truncated termination means direct truncatiion. The decoding complexity is
about the same as zero-tailed termination. This method does not reduce the
code rate.

Example 6.4 Consider the convolutional code in Example 6.1 terminated by
direct truncation. Let a sequence of information with length £ = 3 be u = [1 0 1]*.
Assume the encoder was in all-zero state Sy, that is, each memory cell contains a
0. Then the encoder produces a codeword: [1 1100 0]*, which is the same as first
6 bits of (6.22). When the encoder starts with a different state, the corresponding
codeword is also changed. For instance, if the initial state of the encoder is Sy,
the encoder produces a codeword: [010 11 1]".
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6.2 Triangular Matrix of Construction A Lattices

Construction A applied to a binary code is Construction D reduced to one level.
Triangular matrices provide efficient encoding and indexing, thus there is a need
to obtain a triangular generator matrix G,, for a Construction A lattice Ajx.
As addressed in Subsection 2.2.1, the well-known methods in [6, p. 183] and [36,
pp. 32-33] require a systematic generator matrix for the code. The method given
below does not require a systematic code generator matrix; while convolutional
codes do have a systematic form it requires swapping bit positions (or coordinate
permutation). Also, this section’s method produces matrices already in the
Hermite normal form as defined in [41, pp. 42-44] for forming Construction A
generator matrices.

Let G = [g],8g),...,8,] be an n-by-k full-rank generator matrix with basis
vectors in columns for a binary code C. Perform column operations on G’ to find
G =[g1,82,...,8k] where G has the property that for each column i = 1,... k,
there are only zeros to the right of the first one in column . The canonical form
for rate 1/2,1/3, ... zero-tailed convolutional codes already satisfy this condition.
Let I,, be an n-by-n identity matrix. The lower-triangular generator matrix Gy,
of a Construction A lattice Ay can be obtained by replacing k& columns in 2I,, using
the columns in G. If g; has its first one in position j, then replace column j of
2I,, with g;, for all i. As a Construction A lattice, the determinant is det (Ay) =
det (G, )| = 2"

Example 6.5 Consider a full-rank generator matrix G’ of an arbitrary binary
linear code. Replace the second column of G’ by the sum of the first two columns
to obtain G:

G =

1
1
0
| : (6.23)
0
1

_ o O O o o
O = = = O O
_ o O O oo

— = O = =

— = O = =

where G has the form described above. Apply Construction A to form a lattice
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A§ by adding 3 columns to G, then the generator matrix G Ag Is given by:

100000
120000
101000

G =100120 0 (6.24)
101020
100001

The code in the example is not a convolutional code, but was chosen to illustrate
the construction of a lower-triangular generator matrix for Construction A.

Example 6.6 Consider a generator matrix G’ of a nonsystematic feedforward
zero-tailed convolutional code with generator polynomials represented as octal
numbers (7,5), where the information sequence has length 3. Then apply
Construction A to form a lattice A by replacing the 3 columns in 21,y using
the columns in G/, resulting in a lower-triangular generator matrix G . This is
expressed as:

100 1000000000
100 1200000000
110 1010000000
010 0012000000
ol 1 1010100000
G=l101] = =1 000120000 (6.25)
01 1 0010102000
010 0010000200
00 1 0000100020
0 0 1] (000010000 2]

6.3 Quantization of Construction A Lattices

Given an arbitrary vector y, the quantization (2.16) is to find its nearest lattice
point. The quantization of Construction A lattices given in Algorithm 2.1 can be
simply described in Algorithm 6.1 where the mapping from the received sequence
to the input of binary encoder is performed by equation (4.49). This is the case
when Construction D [10] is reduced to one level. The block diagram of encoding
and decoding Construction A lattices is shown in Figure 6.2. The effectiveness
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Algorithm 6.1 Quantization of Construction A Lattices (Reduced From Quan-
tization of Construction D Lattices [10])

Input: noisy input y

Output: estimated lattice point X

y' = [mody (y +1) — 1]

¢ = Dec(y’)
2= 5]
X=C+2z

of quantization described by normalized second moment (NSM) can be estimated
using Monte Carlo simulations, computed by (2.41). For convenience, shaping gain
(2.42) with respect to NSM is used for observation.

Example 6.7 Assume a vector
y = [—16.82,2.06,0.15, —41.27, —18.57, —48.61, —58.04, —1.87, —24.99, 26.37]"

is quantized using the convolutional code lattice in Example 6.6. An estimated lat-
tice point X € AY nearest to y can be found as follows. First perform the mapping?
(4.49) from y to y’ = [0.82,0.06,0.15,0.73,0.57,0.61,0.04,0.13,0.99,0.37]*. Using
y’, the convolutional decoder produces the output ¢ = [1,1,0,1,0,1,0,0,1,1]".
Then a lattice point® can be obtained:

X =[-17,3,0,—41, —18, —49, —58, —2, —25, 27]". (6.26)

6.4 Best-Found Convolutional Code Lattices

In this section, rate 1/2 and 1/3 binary convolutional codes of block length n,
dimension k, and memory order m with non-systematic feed-forward encoders are
used to build n-dimensional Construction A lattices Ax.

4Convolutional code decoder assumes a binary 0,1 codeword of length 10 was transmitted.

®The corresponding integer vector is z = [—9, 1,0, —21, -9, —25, —29, —1, —13,13]* which is
possibly distinct from the integer vector z internally used in Algorithm 2.1 because the mapping
methods used in the two quantization algorithms are different. But the estimated lattice point
as well as the binary codeword produced by Algorithm 6.1 agree with those of Algorithm 2.1.
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The generator matrix of zero-tailed convolutional codes has the desired form
described in Section 6.2, and thus is straightforward to find a lower-triangular
generator matrix for convolutional code lattices. Let Rzrcc be the code rate® of a
zero-tailed convolutional code. The information length is k = nRyzrcc — m.

Tail-biting convolutional codes have excellent coding performance at short-to-
medium block length, thus are suitable to form Construction A shaping lattices
for low-to-moderate dimension. The information length is & = nRrpcc, where the
code rate is Rrpcc.

Truncated convolutional codes are also considered. Let Rprcc be the code
rate. The information length is & = nRprcc.

A convolutional code lattice may be scaled by K = 22,23 2% ... to be used
with a Construction D/D’ coding lattice to form a nested lattice code, so as to
satisfy Lemma 3.1.

Generator polynomials which give good coding properties for convolutional
codes are well-known [76, Ch. 12]. See also [78, Ch. 4], [79, Table I-1I]. However,
it is not clear if these generator polynomials are the best choice for building shaping
lattices. Thus, an exhaustive search of generator polynomials was performed for
rate 1/2 and 1/3 nonsystematic feedforward binary convolutional codes. For each
one, the shaping gain (2.42) of the resulting lattice was found by Monte Carlo
integration [39,40] using at least 107 samples.

6As explained in Subsection 6.1.2, the actual code rate of zero-tailed convolutional codes is
lower than the design rate Rzrcc, depending on the value of m. In this dissertation, the design
rate Rzrcc is used when referring to a zero-tailed code without losing the generality.
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6.4.1 Exhaustive Search Procedure

The exhaustive search was performed using the combinations of polynomial (6.7).
For rate 1/2 codes, the polynomial generator matrix is

G(D) = lg(l)(D)] : (6.27)

where the polynomials are:

gOD) =g D"+ gD 4 4 gV D 4 g© (6.28)
gV(D) = gD+ gD - gl D4 g, (6.29)

For rate 1/3 codes, the polynomial generator matrix is

9°(D)
G(D) = [¢M(D) |, (6.30)
g?(D)
which additionally includes:
g?(D) = gD + ¢P D 4k g D4 @) (6.31)

Each coefficient is either 0 or 1 since only binary codes are considered.

The size of search space on convolutional code polynomial generator matrix can
be reduced. Only non-systematic codes are considered, that is, g/ (D) # 1. The
pairs with all zeros for the first or the last coefficient of polynomial are excluded.
The pair [¢° (D) ¢ (D)]* is regarded as equivalent as the pair [¢™ (D) ¢ (D)]t,
and thus only pairs with descending maximum degrees are included.

Given a convolutional code, by applying Construction A as shown in Sub-
section 2.2.1 and Section 6.2, a convolutional code lattice is generated and then
evaluated using the quantization method given in Algorithm 2.1. For each lattice,
the Monte Carlo integration simulated the shaping gain (2.42) using at least
107 samples. The simulated lattice dimension n (i.e., codeword length of the
underlying convolutional code) are 18, 24, 30, 36, 72, 144, 288, 576, 1152, and
2304—these values are chosen such that both rate 1/2 and 1/3 codes with the
same memory order m can produce convolutional code lattices with the same
dimension, for a fair comparison. Convolutional codes using the three termination
methods were evaluated in the exhaustive search. Rate 1/2 codes used memory
order m = 2,3,4,5,6,7 and rate 1/3 codes used m = 2,3,4,5. And these values
were chosen for two reasons. The complexity of decoding a convolutional code
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Figure 6.3: Best-found shaping gain of convolutional code lattices formed by zero-
tailed convolutional codes (ZTCCs) and tail-biting convolutional codes (TBCCs)
for rate 1/2 and 1/3 with various memory orders m. The 0.65 dB, 0.86 dB and
1.03 dB shaping gains of the Ejy lattice, the BWy¢ lattice and the Leech lattice are
also shown for comparison.

exponentially increases as m increases. And the size of exhaustive search space for
rate 1/3 codes is much larger than rate 1/2 codes when m is not small.

For the same code parameters except for generator polynomials, the corre-
sponding convolutional code lattice with the highest shaping gain is recognized as
the best-found lattice. The generator polynomials are given in the octal form.
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Table 6.2: Recommended convolutional code generator polynomials (represented
in octal numbers corresponding to the encoder implementation in a descending
order) for a range of dimension n based on best-found convolutional code lattices
for shaping, and asymptotic shaping gain s

Convolutional code m 18 <n <24 24<n<72 T72<n<144 n>144 asymptotic % (dB) note

2 7.5 7,5 7,5 7,5 0.9734 -
3 17,13 17,11 17,13 17,13 1.0622 -
Rate 1/2, 4 35,23 33,25 31,23 31,23 1.1233 €,
zero-tailed 5 67,51 77,55 75, 57 75, 57 1.1814 &,
6 175,133 175,133 165,127 165,127 1.2251 -
7 365,327 331,257 357,251 357,251 1.2574 s
2 7,7,5 7,7,5 7,6,5 7,6,5 0.9055 ©
Rate 1/3, 3 17,1513 17,15,13 17,15,13  17,15,13 1.0673 -
zero-tailed 4 37,33,25 37,33,25 37,33,25  37,33,25 1.1321 s
5 71,6557 71,65, 57 73,57,41  73,57,41 1.1808 &
2 7,6 7.5 7,5 7.5 0.9734 -
3 16,3 15,6 17,13 17,13 1.0622 -
Rate 1/2, 4 30,7 30,13 36,15 31,23 1.1233 -
tail-biting 5 70,3 60,13 74,13 75,57 1.1814 -
6 140, 7 140,13 130,17 165,127 1.2251 -
7 340, 3 320,3 320,17 357,251 1.2574 -
2 7,6,4 7,6,5 7,6,5 7,6,5 0.9055 -
Rate 1/3, 3 16,10, 3 13,10,7 17,15,13  17,15,13 1.0673 -
tail-biting 4 30, 10,7 26, 10,7 36,26,23  37,33,25 1.1321 -
5 40,34,3 70,13, 10 74,64,31  73,57,41 1.1808 -
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6.4.2 Exhaustive Search Result

For rate 1/2 convolutional codes, it is worthwhile to mention that the generator
polynomials for zero-tailed codes this dissertation found” for asymptotic shaping
gain match those provided in [23], except for m = 5, where this dissertation
found (75, 57) provides 0.01 dB higher asymptotic shaping gain than (61, 57). The
shaping gain of tail-biting codes with short block length were also studied in [24],
which is higher than that of the Leech lattice.

The greatest shaping gain the exhaustive search found for various m and n is
shown in Tables B.1-B.6 in Appendix B. Part of the results is drawn in Figure 6.3.
In general, convolutional code lattices based on tail-biting convolutional codes have
higher shaping gains than zero-tailed convolutional codes, for a given dimension.
Truncated convolutional codes provide shaping gains lower than that of tail-biting
codes, but are higher than that of zero-tailed codes. The generator polynomials of
best-found convolutional codes vary depending on the dimension. At each searched
dimension, there might be several codes providing comparable shaping gains and
the precision depends on the number of Monte Carlo samples. For a range of
dimensions, generator polynomials for a code with a shaping gain which is either
the best-found shaping gain or within 0.01 dB to the best-found shaping gain
is provided in Table 6.2, with exceptions as follows. An improvement for around
0.03-0.08 dB shaping gain can be obtained using generator polynomials (77,76, 73)
at n = 18 and (331,257) at n = 24 for zero-tailed convolutional codes, and
using generator polynomials (31,27), (73,25), (144,57), (250,67), (37, 33,25) and
(75,45,26) at n = 144 for tail-biting convolutional codes instead. The asymptotic
shaping gain obtained at n = 220 and n = 22°+2 for rate 1/2 and 1/3 convolutional
codes respectively is also provided. It is observed that at n < 1152 the shaping
gain of convolutional code lattices using tail-biting convolutional codes can achieve
the asymptotic shaping gain.

The maximal free distance dge. determines the goodness for coding of the
convolutional code used with Viterbi decoding. But this may not necessarily be
the case with shaping. Consider nonsystematic zero-tailed convolutional codes.
The maximal dge. for optimal coding codes are 5,6, 7, 8,10, 10 with memory order
m = 2,3,4,5,6,7 for rate 1/2 codes, and are 8,10,12,13 with m = 2,3,4,5 for
rate 1/3 codes [78, Ch. 4]. Regarding the best-found codes for shaping given
in Table 6.2, their dg. may not be maximal. For instance, when m = 2 the
code generated by (7,6,5) has dpee = 7 < 8; when m = 4 the code generated

"This dissertation found these rate 1/2 code polynomials independently. The shaping gains
shown in [23,24] are slightly higher, but by no more than 0.0066 dB; this work has no particular
explanation for this discrepancy.
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Figure 6.4: Performance-complexity tradeoff of convolutional code lattices formed
by ZTCCs and TBCCs with various memory orders m where the decoding
employs the Viterbi algorithm (VA) for ZTCCs, the wrap-around Viterbi algorithm
(WAVA) (I = 4 iterations) and the ad-hoc method (J = 4 repeated times) for
TBCCs.

by (31,23) has dgee = 6 < 7; when m = 5 the code generated by (73,57,41)
has dpee = 12 < 13; and when m = 6 the code generated by (165,127) has
divee = 8 < 10.

6.5 Complexity of Quantization

This section studies the tradeoff between shaping gain and quantization complexity
for convolutional code lattices, when the Viterbi algorithm (VA) is used. Con-
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struction A lattice quantization given in Algorithm 2.1 requires 5 operations per
dimension [6, p. 450] to lift the binary codeword to a lattice point and the inverse.
The Viterbi decoder uses 2™ comparisons at each trellis stage where the total
number of trellis stages is nRzrcc for zero-tailed codes. It is assumed that n is
much larger than m so that the contribution of termination and initialization to
complexity can be ignored. Thus the normalized time complexity is 5 + 2™ Rzrcc.
The decoding complexity of truncated codes is similar to that of zero-tailed codes,
thus the detail is omitted.

The complexity of quantizing convolutional code lattices based on tail-biting
convolutional codes was also analyzed, using the warp around Viterbi algorithm
(WAVA) [80] with a maximum of I iterations and an ad-hoc suboptimal scheme [81]
that decodes repeated-J-times sequence using the Viterbi algorithm with zero
termination, requiring 542" Rrpccl and (542" Rrpcc)J operations per dimension
respectively. The results given in the previous section were obtained using J > 16
and nJ > 1152 for the ad-hoc decoding.

The normalized quantization complexity (or number of operations per dimen-
sion) is shown in Figure 6.4 as a function of asymptotic shaping gain. Rate 1/3
convolutional codes outperform rate 1/2 convolutional codes for m = 3 and m = 4
in terms of shaping gain and quantization complexity, and convolutional code
lattices based on rate 1/2 convolutional codes have the best shaping gain for
a fixed memory order m = 2 and m = 5. Decoding tail-biting convolutional
codes requires higher complexity than that of zero-tailed convolutional codes and
truncated convolutional codes. In summary, using rate 1/3 convolutional codes
produces a more favorable performance-complexity trade-off.

6.6 Concluding Remarks

Convolutional code lattices provide many desirable properties for shaping such as
high shaping gain and low-complexity quantization/decoding algorithm. Unlike
using the direct sum of the FEg lattice, the BWi¢ lattice and the Leech lattice for
shaping, convolutional code lattices have more flexibility in lattice dimension for
matching the coding lattice dimension. They were also considered for self-similar
nested lattice codes in [82], but are only used as shaping lattices in this dissertation.

High shaping gains are appealing. However, there exists a tradeoff between the
shaping gain and the quantization complexity. In general, tail-biting convolutional
codes can provide higher shaping gains than that of zero-tailed convolutional
codes and truncated convolutional codes, but require higher complexity when
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decoding. Convolutional code lattices based on the three termination methods
have comparable shaping gains increasing the lattice dimension n. The numerical
results indicate how to select a shaping lattice. At dimension < 24, use the
well-known lattices given in Section 2.3. At low-to-moderate dimension, use
convolutional code lattices that are based on truncated codes. At high dimension,
use convolutional code lattices that are based on zero-tailed convolutional codes.

Convolutional code lattices based on zero-tailed convolutional codes will be
chosen for building nested lattice codes as will be shown in the next chapter, since
the coding lattice will have high dimensions. For a fixed termination method, rate
1/3 convolutional codes provide a better performance-complexity tradeoff than rate
1/2 convolutional codes. When memory order m is small, tail-biting convolutional
codes approach the asymptotic shaping gain even at medium dimension. As m is
increased, the dimension to achieve the shaping gain is also increased, but is as
small as 1152 for m = 7.
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Chapter 7

Evaluation of QC-LDPC
Construction D’ Lattices for the
Power-Constrained Channel

Three quasi-cyclic low-density parity-check (QC-LDPC) Construction D’ lat-
tices with dimensions 2304, 5016, 10008 designed in Chapter 5 were simulated in
both power-unconstrained and power-constrained additive white Gaussian noise
(AWGN) channels using the Construction D’ decoding algorithm proposed in Sec-
tion 4.3. It is necessary to evaluate the error-rate performance using Monte Carlo
simulations. The multistage successive cancellation decoding was performed by
employing the belief propagation decoding algorithm for decoding LDPC codes,
and reencoding follows encoding method B proposed in Subsection 4.2.2. Each
two-level QC-LDPC Construction D’ lattice was formed by two binary QC-LDPC
codes Cy and C;. The prototype matrices of the component QC-LDPC codes with
block length 2304, 5016, 10008 used for simulations are shown in Tables 5.1-5.2,
Tables C.1-C.2, and Tables C.3-C.4, respectively.

In the power-unconstrained AWGN channel, the volume-to-noise ratio (VNR)
performance is of interest. The component QC-LDPC codes were also simulated in
mod-2 AWGN channel, since each component binary linear code of a Construction
D/D’ lattice can be regarded as independent evaluation in a mod-2 AWGN channel,
if the previous level was decoded correctly.

The main goal is to evaluate the Construction D’ lattices in power-constrained
AWGN channels. This was done by constructing a variety of nested lattice codes
using QC-LDPC Construction D’ lattices for coding, and using distinct lattices for
shaping—they are the Fg lattice, the BWig lattice and the Leech lattice, as well
as the best-found convolutional code lattices presented in Chapter 6. The nested
lattice coding scheme and the encoding/indexing follows Chapter 3. Various codes
were compared with hypercube shaping, using several code rates.
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Figure 7.1: Simulation results over mod-2 AWGN channel: word error rate of QC-
LDPC Construction D’ lattices versus VNR and word error rate of the underlying
component codes versus 1/0?

A word error occurs when any element of a lattice codeword and its estimate
disagree x # X. Same definition applies to the binary codeword and its estimate
in mod-2 AWGN channel. The word error rate (WER) is estimated as the number
of word errors divided by the total number of simulated words (lattice codewords
or binary codewords). The simulation results give the WER as a function of the
volume-to-noise ratio (VNR), or E}, /N, for power-unconstrained AWGN channel
and power-constrained AWGN channel, respectively.

7.1 Power-Unconstrained AWGN Channel

Simulations for QC-LDPC Construction D’ lattices in a power-unconstrained
AWGN channel were performed in the coding scheme given in Figure 4.2. Simu-
lations for the proposed Construction D’ lattices and underlying QC-LDPC codes
Cp and C) were performed in the mod-2 AWGN channel. The decoding using
Algorithm 4.1 applies belief propagation decoding for LDPC codes with maximum
100 iterations. The WER is shown in Figure 7.1 as a function of VNR or signal-
to-noise ratio SNR = E,/0? = 1/0? given in decibels. The codes Cy and C} were
designed with code rates similar to that of the codes in [35].

Observe that in Figure 7.2 as the dimension n increases, the proposed QC-
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Figure 7.2: VNR performance of proposed QC-LDPC Construction D’ lattices in
various dimensions.

LDPC Construction D’ lattice’ has a better VNR performance at some WER.
But the 5016-dimensional lattice has an error floor at WER around 10~* while the
2304-dimensional lattice does not.

7.2 Power-Constrained AWGN Channel

Construction D’ lattices A. of dimension n = 2304,5016, 10008 formed by QC-
LDPC codes were evaluated in the power-constrained AWGN channel. At the
decoder, the re-encoding implicitly assumes that method B of Subsection 4.2.2 is
being used, which is equivalent to method A of Subsection 4.2.1, even for triangular
Construction D’ matrices of Chapter 5. The belief propagation (BP) decoder
of LDPC codes ran maximum 50 iterations. The well-known low-dimensional
Eg, BWis and Leech lattices were used for shaping a 2304-dimensional coding
lattice, respectively. The channel model follows Figure 3.1 where the encoding and
indexing are performed as shown in Sections 3.2-3.3. For comparison hypercube
shaping as described in Section 3.5 was performed where lattice points were
transformed into a hypercube B = {0,1,..., L — 1} for an even? integer L, where
code rate R’ is computed by equation (3.58). .

!Note that the underlying QC-LDPC codes were not optimized.
2When the simplified hypercube shaping method in Subsection 3.5.1 is performed for an
a-level Construction D’ lattice, it is needed to let L be a multiple of 2.
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Figure 7.3: Word error rate of shaping a 2304-dimensional Construction D’ lattice
(formed by QC-LDPC codes) using Ey lattice shaping and hypercube shaping at
a variety of code rates.

Convolutional code lattices were also used as shaping lattices. A variety of con-
volutional codes were chosen based on the best-found generator polynomials and
quantization complexity analysis in Chapter 6, for shaping n = 2304, 5016, 10008-
dimensional Construction D’ lattices separately. The numerical results are given
as follows.

7.2.1 Es, BWWis and Leech Lattice Shaping

Well-known low-dimensional lattices were used for shaping high-dimensional lat-
tices because they can provide good shaping gains and their decoding is well-

114



100 AANNNNN
—&— R = 8.2947, CCL shaping
—Q0— R = 8.3090, Leech lattice shaping
—&— R = 8.2959, BWj; lattice shaping
10_1 —)— R = 8.2993, E3 lattice shaping
—&— R’/ = 8.2993, hypercube shaping

Q ]
;cg E ]
- 1077 E
o - 7
5 - ]
~ - ]
ETE
= i i
10-4 ‘S}éannon limit |
-0 N

10—5 Cosi b b < 1\ L1l lvx |

37.5 38 385 39 39.5 40 40.5 41 41.5

Ey, /Ny, dB

Figure 7.4: Word error rate as a function of Ey,/Ny using a variety of lattices for
shaping a 2304-dimensional Construction D’ lattice, where the CCL is formed by
a zero-tailed convolutional code g with 128 states.

studied. The FEg lattice, the BWig lattice and the Leech lattice have optimal
quantization algorithms [43,45,56]. The authors in [32] used the Eg and BWig
lattices for shaping LDLC lattices. At n = 24 the Leech lattice has a shaping
gain of 1.03 dB, which was used for shaping LDA lattices [33]. Following [32,33],
this dissertation built shaping lattices using direct sum of scaled copies of the Ej,
BW3g, and Leech lattices by a scale factor K. Let H. be the check matrix of an
n-dimensional Construction D’ coding lattice, and G be the generator matrix of
an n/-dimensional lattice where n/n’ is an integer. The factor K is chosen such
that H.Gg € Z™ where Gy is a block diagonal matrix of size n/n’ with each block
K G. Rectangular encoding and its inverse indexing can be efficiently implemented
due to the lower-triangular structure in matrix H. and Gg. By choosing various
K nested lattice codes can be generated with a variety of code rates R.
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Figure 7.5: Word error rate as a function of £y, /Ny using various convolutional code
lattices (CCLs) based on 6-%5 with generator polynomials in Table 6.2 for shaping
n-dimensional Construction D’ lattices where the code rate is listed in Table 7.1.

For shaping the 2304-dimensional Construction D’ lattice, the same code rate
for both the Ejy lattice shaping and hypercube shaping can be easily achieved.
The word error rate using Kg, = L = 8,16, 32 is shown in Fig. 7.3 as a function
of Ey/Ny given in decibels, suggesting a shaping gain of 0.65 dB. Let Kpy,, =
28012 and Kieeen = 168v/8, then BW;4 and Leech lattice shaping produce code
rate approximately 8.2959 and 8.3090, respectively, close to R = R’ = 8.2993 of
choosing Kp, = L = 472. The word error rate is given in Figure 7.4 as a function
of E,/Ny. If the code rate differences are taken into account, a 0.65 dB, 0.86 dB
and 1.03 dB shaping gain is preserved respectively, as the full shaping gain of the
Es, BWis and Leech lattices.
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7.2.2 Convolutional Code Lattices for Shaping Construc-
tion D’ Lattices

This dissertation considers high-dimensional Construction D’ lattices, thus zero-
tailed convolutional codes are suitable for constructing convolutional code lattices
for shaping. At n > 2304, using zero-tailed convolutional codes provides compara-
ble shaping gain and requires lower quantization complexity than that of tail-biting
convolutional codes. A variety of convolutional code lattices based on rate 1/2,1/3
zero-tailed convolutional codes selected from Table 6.2 were also used for shaping
the proposed QC-LDPC Construction D’ Lattices, where the smallest possible
scale factor K = 4 to satisfy Lemma 3.1 can produce a code rate approximately
2.084 and 1.917 respectively.

Considering that lattices are ideal at high code rate, it is needed to chose
K > 4 for evaluation. The nested lattice code parameters in simulations are listed
in Table 7.1, including the code rates, close to that of hypercube shaping for a
fair comparison. The numerical results in terms of word error rate as a function of
E}, /Ny are shown in Figure 7.5. Convolutional code lattice shaping using a rate 1/3
convolutional code with m = 5 was performed for n = 2304, 5016, 10008, showing
an improvement on the error-correction performance and the shaping gain as n
increases. At n = 10008, the distance to the capacity of the AWGN channel, that
is, the gap between the orange solid curve to the black solid line, is approximately
1.9 dB, considering the tiny code rate difference. For a fixed dimension n = 2304,
it is shown that a higher shaping gain is achieved by increasing the memory order
m. The numerical results of using rate 1/2 zero-tailed convolutional codes are
also provided, where the code rate was chosen as close as possible to hypercube
shaping. The resulting shaping gains are approximate to the estimated shaping
gains listed in Table 7.1 if the code rate differences are taken into account.

The improvement of the shaping gain provided by a convolutional code lattice
compared with that of the Eg, BWjs and Leech lattices was also investigated.
The simulation results of using these distinct lattices for shaping an n = 2304-
dimensional QC-LDPC Construction D’ lattice are plotted in Figure 7.4. The
shaping gain of 1.25 dB was preserved—this is the best-found shaping gain
achieved by lattice shaping in the power-constrained channel, to the best of the
author’s knowledge. For the four shaping lattices: convolutional code lattice,
the FEg lattice, the BWy¢ lattice and the Leech lattice, using a smallest possible
scale factor 4,4, 4+/2, 44/8 respectively for shaping the proposed 2304-dimensional
Construction D’ lattice, the integers solutions e; € [0, 5) (3.37) are bounded by
B = 8,16,16,32. The values of integers are bounded by [ = 944,944, 1120, 1344
for the results in Figure 7.4. Regarding the distance to the Shannon limit, while
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Table 7.1: Code rate R of nested lattice codes using various convolutional code ¢
with memory order m, where the convolutional code lattice is scaled by a factor
K. The estimated shaping gain ~s is given in decibels. Hypercube side length L
is chosen to achieve R’ ~ R

Dimension Convolutional code lattice shaping Hypercube shaping

n m € v (dB) K R L R
2304 5 % 1.1731 20  4.4074 32 4.4167
5016 5 % 1.1772 20 4.4063 32 4.4167
10008 5 % 1.1790 20 4.4058 32 4.4167
2304 2 %y 0.9022 20 4.4061 32 4.4167
2304 4 %3 1.1259 20 4.4070 32 4.4167
2304 4 ¢, 1.1186 24 4.5034 32 4.4167
2304 5 % 1.1756 24 4.5038 32 4.4167
2304 7T % 1.2500 332 8.2947 472 8.2993
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the LDA lattice construction [33] has better performance, it requires nonbinary
LDPC codes, whereas the construction in this dissertation uses lower-complexity
binary LDPC codes. The LDLC construction [32] has similar performance, but
higher decoding complexity than binary LDPC codes.

7.3 Concluding Remarks

The encoding/decoding methods proposed in Chapter 4 were carefully evaluated
by simulating the QC-LDPC Construction D’ lattices designed in Chapter 5. In the
power-constrained AWGN channel, the shaping gains of the Fjg lattice, the BWi,
lattice and the Leech lattice were preserved when shaping a 2304-dimensional
QC-LDPC Construction D’ lattice, which are 0.65 dB, 0.86 dB, and 1.03 dB,
respectively.

Also, a variety of convolutional code lattices were selected for shaping the QC-
LDPC Construction D’ lattices with dimension n = 2304, 5016, 10008 and their
shaping gains were preserved. When the Construction A lattice was constructed
from a rate 1/2 binary convolutional code with memory order 7, a shaping gain
as high as 1.25 dB out of 1.53 dB was preserved at n = 2304. This is the highest
shaping gain appeared in the literature of nested lattice coding scheme. And the
low-complexity quantization was provided when a rate 1/3 binary convolutional
code with memory order 5 was employed, on little penalty of shaping gain, but its
1.17 dB shaping gain is still higher than the 1.03 dB of the Leech lattice.
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Chapter 8

Conclusion

This dissertation provided a comprehensive practical lattice coding scheme for
power-constrained communications, including a Construction D’ lattice construc-
tion with good coding properties by employing QC-LDPC codes, a Construction A
lattice construction with efficiently achievable shaping gain, two encoding methods
and a decoding algorithm for Construction D’, as well as a modified indexing
method for nested lattice codes. There are still several interesting problems to
think about.

Construction of Construction D’ Lattices

This work had a methodology for selecting LDPC code design rate, but the
rates and degree distributions can be optimized by a density evolution algorithm.
Construction D/D’ lattices can be designed based upon the probability of error
rule, the capacity rule and the minimum distance rule. In [12] the LDPC codes
were selected using the probability of error rule. The minimum distance rule was
applied to the code selection in [35].

Single parity-check product codes were shown to be a good choice as a second
level code, because of their simplicity and good performance. However, the
current construction method requires adding a stair case, which cannot be easily
triangularizable.

Lattices With Short Dimensions

This dissertation provided a solution for lattices with high dimensions—QC-
LDPC Construction D’ lattices for coding and the Fg lattice, the BWig4 lattice,
the Leech lattice or convolutional code lattices for shaping. There exist codes
better than LDPC codes at short block length, and can be used to construct BCH
code lattices and polar code lattices. One approach is to apply convolutional code
lattices for shaping low-to-moderate-dimensional BCH and polar code lattices.
Once a matrix construction is found, it is simple to apply the methods provided
in this dissertation to these lattices. It was found that convolutional code lattices
based on tail-biting convolutional codes can provide a high shaping gain in short
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dimensions. Truncated convolutional codes may be chosen under the consideration
of quantization complexity.

Encoding/Indexing Using Non-Triangular Matrices

It is convenient to have lattice matrices written in triangular form when
performing the indexing operation for a nested lattice code. In general, it is not
straightforward to design a triangular matrix for an arbitrary lattice. Lattice
generator/check matrix can be transformed into a triangular matrix using a uni-
modular matrix. However, it is not clear how to find such a unimodular matrix in
a systematic way, or if it exists for an arbitrary lattice. One interesting direction is
to develop a systematic encoding/indexing method using non-triangular matrices.

Lattices for Compute-and-Forward

Nested lattice code constructions addressed in this dissertation provide a good
group structure that might be suitable for compute-and-forward. And more
considerations need to be encountered for practical wireless communications. A
future research objective is to find nested lattice codes additionally possessing a
ring isomorphism which is necessary for compute-and-forward.
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Appendix A
Solutions of Congruences

To recover b without the effect of adding s (3.28), s; is chosen as a solution of the
system of linear congruences:

0yi5i =0 (modNM,), (A.1)

where v =7+ 1,...,n. The solution of (A.1) can be found as follows. If M, =1,
an arbitrary integer s; is a solution. Now consider M, > 1. Let ¢, be the greatest
common divisor of 0, ; and M,:

¢y = ged (0,4, My). (A.2)

For fixed v, since zero is divisible by ¢,, i.e., ¢,|0, a linear congruence (A.1) has
solutions and are given by the solutions of the equivalent linear congruence:

Qv,i

Co

=0 <mod M“), (A3)

Cy

which implies that integers QCL and Af—v“ are coprime. Thus the solutions of (A.3)
are given by

M,
$;, =0 (mod ) (A4)
Coy
Solving (A.1) for v = i + 1,...,n is equivalent to solve the system of linear

congruences (A.4). This has solutions according to the Chinese remainder theorem,
since for every pair of congruences within the system gcd(]‘f—l’, %NO holds, where

LLwe{i+1,...,n} and | # w. The least positive solution is given
My M; M,
sgzlcm( L +2,---,—), (A.5)
Cit1  Cit2 Cn

and thus s; = (s is also a solution for any integer [.
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Appendix B

Best-Found Shaping (Gains of Con-
volutional Code Lattices

Table B.1: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1/2 zero-tailed convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220
- Generator polynomials (7,5) (7,5) (7,5) (7.5) (7,5) (7,5) (7.5) (7,5) (7,5) (7,5) (7.5)
Shaping gain (dB) 0.7305 0.7771 0.8083 0.8309 0.8956 0.9328 0.9526 0.9629 0.9681 0.9707 0.9734
I Generator polynomials (17, 13) (17,11) (17,11) (17,11) (17,13) (17,13) (17,13) (17,13) (17,13) (17,13) (17,13)
Shaping gain (dB) 0.7395 0.8083 0.8524 0.8804 0.9505 1.0026 1.0314 1.0466 1.0543 1.0583 1.0622
i Generator polynomials  (35,23) (33,25) (33,25) (33,25) (31,23) (31,23) (31,23) (31,23) (31,23) (31,23) (31,23)
Shaping gain (dB) 0.7314 0.8256 0.8813 0.9162 0.9970 1.0542 1.0871 1.1048 1.1139 1.1186 1.1233
s Generator polynomials (67, 51) (67,51) (77,55) (77.55) (75,57) (75,57) (75,57) (75.57) (75,57) (75,57) (75,57)
Shaping gain (dB) 0.7061 0.8292 0.8948 0.9377 1.0330 1.0983 1.1374 1.1588 1.1670 1.1756 1.1814
. Generator polynomials (145,137) (175,133) (175,133) (145,137) (165,127) (165,127) (165,127) (165,127) (165,127) (165,127) (165,127)
Shaping gain (dB) 0.6297 0.8044 0.8901 0.9402 1.0641 1.1332 1.1757 1.1996 1.2121 1.2186 1.2251
T Generator polynomials (365,327) (331,257) (331,257) (331,257) (357,251) (357,251) (357,251) (357,251) (357,251) (357,251) (357,251)

Shaping gain (dB) 0.5467 0.7767 0.8884 0.9484 1.0834 1.1563 1.2024 1.2287 1.2428 1.2500 1.2574
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Table B.2: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1/2 tail-biting convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220
- Generator polynomials  (7,6) (7.6) (7,6) (7.5) (7.5) (7.5) (7,5) (7.5) (7,5) (7,5) (7,5)
Shaping gain (dB) 0.6893  0.7636 0.7857 0.8631 0.9674 0.9733 0.9734 0.9734 0.9734 0.9734 0.9734
g Generator polynomials (16,3)  (16,3) (15,6)  (15,6) (17,13) (I17,13) (I17,13)  (17,13)  (17,13) (17,13)  (17,13)
Shaping gain (dB) 0.6818  0.7633  0.8340 0.8706 1.0171 1.0608 1.0622 1.0622 1.0622 1.0622 1.0622
S Generator polynomials  (25,20) (30,7)  (30,13)  (30,13)  (36,15) (31,27) (31,23) (31,23) (31,23) (31,23) (31,23)
Shaping gain (dB) 0.6856  0.7632  0.8341 0.8709 1.0168 1.1055 1.1223 1.1233 1.1233 1.1233 1.1233
s Generator polynomials  (40,25) (70,3)  (60,13)  (60,13)  (74,13) (73,25)  (75,57) (75,57) (75,57) (75,57) (75,57)
Shaping gain (dB) 0.6825 0.7611 0.8333 0.8707 1.0169 1.1273 1.1763 1.1814 1.1814 1.1814 1.1814
g Generator polynomials (100,7) (140,7) (140,13) (140,13) (130,17) (144,57) (161,133) (165,127) (165,127) (165,127) (165,127)
Shaping gain (dB) 0.6800  0.7611 0.8325 0.8703 1.0169 1.1264 1.2042 1.2244 1.2251 1.2251 1.2251
7 Generator polynomials  (340,3) (300,7) (320,3)  (320,3) (320,17) (250,67) (362,233) (357,251) (357,251) (357,251) (357,251)

Shaping gain (dB) 0.6884  0.7602  0.8296 0.8687 1.0168 1.1274 1.2147 1.2540 1.2573 1.2574 1.2574

Table B.3: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1/2 truncated convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220
I Generator polynomials (7,5) (7,5) (7,5) (7,5) (7,5) (7,5) (7,5) (7,5) (7,5) (7,5) (7,5)
Shaping gain (dB) 0.6938 0.7603 0.8021 0.8301 0.9011 0.9372 0.9552 0.9643 0.9688 0.9711 0.9734
I Generator polynomials  (17,11) (17,13) (17,13) (17,13) (17,13) (17,13) (17,13) (17,13) (17,13) (17,13) (17,13)
Shaping gain (dB) 0.6937 0.7736 0.8277 0.8657 0.9626 1.0121 1.0371 1.0496 1.0560 1.0591 1.0622
., Generator polynomials  (33,25)  (37,26)  (37.26)  (3T.20) (3120 (3123 (L) GLW)  ELBW)  GLB) (@12
Shaping gain (dB) 0.6941 0.7753 0.8319 0.8727 0.9906 1.0555 1.0894 1.1063 1.1148 1.1190 1.1233
s Generator polynomials  (76,47) (61,56) (75,46) (73.52) (75,46) (67,43) (75,57) (75.57) (75,57) (75,57) (75.57)
Shaping gain (dB) 0.6949 0.7770 0.8385 0.8856 1.0225 1.1002 1.1398 1.1606 1.1710 1.1762 1.1814
1 Generator polynomials (163,122) (175,130) (175,130) (164,127) (173,135) (165,127) (165,127) (165,127) (165,127) (165,127) (165,127)

Shaping gain (dB) 0.6971 0.7790 0.8400 0.8873 1.0381 1.1293 1.1770 1.2010 1.2130 1.2191 1.2251
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Table B.4: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1/3 zero-tailed convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 220 49
o Generator polynomials — (7,7,5) (7,7,5) (7,7,5) (7,7,5) (7,6,5) (7,6,5) (7,6,5) (7,6,5) (7,6,5) (7,6,5) (7,6,5)
Shaping gain (dB) 0.6598 0.6986 0.7180 0.7305 0.8067 0.8541 0.8793 0.8923 0.8989 0.9022 0.9055
g Generator polynomials (17,15,13) (17,15,13) (17,15,13) (17.15,13) (7,15,13) (17,15,13) (7,15,13) (17.15,13) (17,15,13) (715,13) (17,15,13)
Shaping gain (dB) 0.6297 0.7374 0.7958 0.8334 0.9364 0.9976 1.0314 1.0491 1.0581 1.0627 1.0673
., Genemator polynomials (37.33,25) (37,33,25) (37,33,25) (37,33,25) (37,33,25) (37.33,25) (37.33,25) (37.33,25) (37,33,20) (37,33,25) (37,33,20)
Shaping gain (dB) 0.5469 0.6928 0.7776 0.8315 0.9623 1.0399 1.0841 1.1076 1.1198 1.1259 1.1321
. Generator polynowmials (77,76,73) (T1,65,57) (T1,65,57) (T1,65,57) (65,53,47) (73,57,41) (73,57,41) (73,57,41) (73,57,41) (73,57,41) (73,57,41)

Shaping gain (dB) 0.3920 0.6197 0.7466 0.8162 0.9769 1.0677 11213 1.1503 1.1654 11731 1.1808

Table B.5: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1/3 tail-biting convolutional codes.

Dimension n 18 24 30 36 2 144 288

576 1152 2304 2% 42
e Generator polynomials ~ (7,6,4) (7,6,2) (7,5,4) (7,6,5) (7,6,5) (7,6,5) (7,6,5) (7,5,3) (7,5,3) (7,6,5) (7,6,5)
Shaping gain (dB) 0.6654 0.7361 0.7636 0.8252 0.9022 0.9055 0.9055 0.9055 0.9055 0.9055 0.9055
1,y Generator polynomials (16,10,3) (16,10,3) (13,10.7)  (13,10,7) (11,1513) (71513) (17,1513 (1,1513) (71513) (17,1513 (17,15,13)
Shaping gain (dB) 0.6621 0.7356 0.7907 0.8462 0.9771 1.0614 1.0673 1.0673 1.0673 1.0673 1.0673
., Generator polynomials (34,20,3) (30,10.7) (34,13,10) (26,10.7) (36,26,28) (37,33,25) (3733,25) (37,33,25) (37,33,25) (37.33,25) (37,3325
Shaping gain (dB) 0.6605 0.7352 0.7899 0.8460 0.9841 1.0988 1.1308 1.1321 1.1321 1.1321 1.1321
. Generator polynomials (40,34,3) (10,34,3) (70,13,10) (70,13,10) (74,64,31) (75,45,20) (75,67,41) (73,57,41) (75,67,41) (73,57,41) (73,57, 41)

Shaping gain (dB) 0.6646 0.7337 0.7883 0.8456 0.9839 1.1023 1.1702 1.1806 1.1808 1.1808 1.1808

Table B.6: Best-found shaping gain and corresponding generator polynomials of
convolutional code lattices based on rate 1/3 truncated convolutional codes.

Dimension n 18 24 30 36 72 144 288 576 1152 2304 2% 42
S Generator polynomials  (7,6,5) (7,6,5) (7,6,5) (7,6,5) (7,6.5) (7,6,5) (7,6,5) (7.6.5) (7,6,5) (7,6,5) (7.6,5)
Shaping gain (dB) 0.6678 0.7246 0.7597 0.7837 0.8442 0.8747 0.8901 0.8978 0.9017 0.9036 0.9055

_, Generator polynomials (17,15,13) (17,15,13) (17.15,18) (17.15,13) (17,15,13) (17,15,18) (17.15,13) (715,13 (17,15.13) (17,15.18) (17,15,13)

Shaping gain (dB) 0.6781 0.7558 0.8107 0.8508 0.9571 1.0117 1.0395 1.0534 1.0603 1.0638 1.0673

,Generator polynomials (37,32,21)  (35,27,21)  (33,25,23) (33,25,23) (37,33.25) (37,33,25) (35,27.21) (33,25,23) (33,25,23)
m=4 -

(37,33,25) (37,33,25)

Shaping gain (dB) 0.6801 0.7558 0.8122 0.8572 0.9874 1.0592 1.0955 1.1138 1.1230 1.1275 1.1321
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Appendix C

QC-LDPC Prototype Matrices

The prototype matrices for QC-LDPC codes with block length n = 5016, 10008, 50016
are provided, which are also available at https://github.com/fanzhou-code/qcldpc.

Table C.1: Prototype matrix of Hy with Z = 209 and n = 5016 where * denotes
a double circulant

-1 -1 1% -1 9 113 -1 -1 % 188 -1 171 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 4 -1 -1 160 -1 199 15 -1 63 -1 0 O -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

33 -1 72 -1 -1 5 138 -1 148 -1 -1 -1 -1 0 O -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 7 120 121 -1 123 -1 -1 147 -1 -1 -1 -1 -1 O o -1 -1 -1 -1 -1 -1 -1 -1

& 106 -1 -1 -1 -1 -1 -1 -1 12 -1 -1 717 -1 -1 -1 -1 -1 -1 -1 -1 -1 152/15* 0

Table C.2: Prototype matrix of H; with Z = 209 and n = 5016 where * denotes
a double circulant

77T 98 56 183 19 180 54 34 3 67 8 180 0 50 0 115 0 176 0 188 0 156 0 0
86 106 102 14 118 97 73 63 79 125 27 205 71 0 67 0 157 0 36 0 23 0 152/15* 0
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