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Abstract

Cluster analysis has been an object of research since the 1980s for finding the
natural groups of objects in the data so that similar objects stay within the
same clusters while different objects stay in different clusters. It is undoubted
that cluster analysis is important for a wide range of scientific and industrial
processes such as data mining, computer vision, signal processing, and census
research. k-means-like algorithms are the most used unsupervised machine
learning techniques for handling such problems of cluster analysis. In the
context of a k-means-like algorithm, a proper structure for representing the
clusters and an appropriate distance measure for measuring the distance
between objects and clusters must be accordingly defined. In general, a
k-means-like algorithm seeks for the optimal clusters that can minimize
the total distance from all objects to their nearest clusters, which makes
the cluster representation and distance measure become very important to
achieve such clustering target. With different types of data, the formulas
of cluster representations must differ accordingly. For instance, centroid is
specified for numerical data while mode and representative are specified for
categorical data. For the data with both numerical and categorical attributes,
the prototype structure can be effectively applied by hybridizing the centroid
and representative.

On one hand, a basis k-means algorithm is a local optimization technique
that can easily return a locally optimal solution. To achieve a better or
the global solution, the clustering algorithm must seek the solutions several
times with different initial states. For this reason, a “good” initial state
is very important to achieve the global optimum. In this research, we
first aim to propose a new scheme to use a dimension reduction technique
so-called Locality-Sensitivity Hashing (LSH) to predict the “good” initial
state of the cluster so that the global optimal can be potentially obtained.
The empirical experiment using real and synthetic datasets showed that our
proposed method LSH-k-representatives and LSH-k-prototypes not only can
outperform other related works in terms of clustering accuracy but also have
the best consistency for clustering categorical and mixed data, respectively.
However, the proposed LSH-based cluster prediction requires extra processes
in order to create the LSH hash table, which makes the proposed method
not ready for handling big data yet.

On the other hand, the complexity of a k-means-like algorithm varies
linearly with the volume of data while the volume of data is exploded
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day by day. Thus, it is essential to reduce the complexity of k-means-like
algorithms so that they become capable of processing big and real data.
Dimension reduction and data sample are the most used techniques that can
approximate the clustering procedures. However, these approaches change
the nature of the data instead of changing the algorithm to make it more
appropriate. This dissertation also fills such shortcoming by proposing a new
heuristic approach for approximately reducing the complexity of a typical k-
means-like algorithm. In detail, the proposed method can avoid the potential
unnecessary distance computations from objects to cluster representations in
each iteration. Consequently, after applying our proposed method into LSH-
k-representatives, the incorporated algorithm can process up to 2 to 32 times
faster than its own original version with comparable clustering accuracy.

Moreover, we also extend a kernel-based representation of so-called LSH-
k-prototypes to make it capable of fuzzy clustering of categorical data. The
LSH-based cluster prediction technique is then extended to estimate the
fuzzy clusters of categorical data. Eventually, the proposed fuzzy clustering
algorithm so-called LSHFk-centers can outrun other state-of-the-art fuzzy
clustering approaches.

Keywords: Cluster analysis, fuzzy cluster analysis, categorical data,
mixed data, LSH, cluster initialization, big data.
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Chapter 1

Introduction

1.1 Research background

Unsupervised learning plays an important role in knowledge discovery and
data mining, especially in the era of big data because labeling data is
both costly and time-consuming. Besides that, unsupervised learning has
recently received great attention from the research community of machine
learning [1]. The popular unsupervised learning problems are data clustering
[2], k-Nearest Neighbor (k-nn) search [3], anomaly detection [4], Principal
Component Analysis (PCA) [5], Independent Component Analysis (ICA)
[6], Singular Value Decomposition (SVD) [7]. Among these problems, data
clustering or cluster analysis appears in most of the fields such as computer
science, computer vision, medical science, economics, and census studies [8].
Not only being used in those fields, but cluster analysis also have the positive
effects on other machine learning techniques such as k-nn classification [9],
product quantization [10], outlier detection [11], and collaborative filtering
[12]. Technically, the cluster analysis problem is the problem to find the
auto-created groups in the data such that the similar objects belong to the
same or near clusters while the dissimilar objects belong to different clusters
[1, 8, 13]. In the context of cluster analysis, the data clustering problem can
be separated into two sub-problems which have two different approaches:

• Flat clustering: Flat clustering aims to divide the data into disjoint
groups/clusters. Technically, crisp clustering algorithms optimize an
objective function that minimizes the differences of objects within-
cluster and maximizes the differences of objects among different clusters
[2, 8].

• Hierarchical clustering: Hierarchical clustering creates a partitioning
structure to describe the clusters in the data. In this nested structure,
a cluster can be a subset of another cluster, which helps in better
bonding expression between objects and clusters [8].

Although hierarchical clustering gives better clustering results than flat
clustering, it requires a massive computation for calculating the distance
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between objects and clusters [8], which makes the hierarchical clustering
techniques unable to handle datasets with massive volume. Thus, flat
clustering becomes much more feasible for big data.

In the context of flat clustering, there are a number of clustering al-
gorithm classes can be effectively utilized such as k-means-like algorithms
[2, 14, 15, 16, 17, 18], Expectation–Maximization (EM) algorithms [19, 20],
Self-Organizing Map (SOM) approaches [21, 22], Genetic algorithms (GAs)
[23, 24, 25]. Among these algorithm classes, k-means-like algorithms stand
out above all others because of its simplicity and ease of use. Figure 1.1
presents the hierarchical relations of the cluster analysis problem with other
machine learning problems.

In general, a k-means-like algorithm seeks to divide the data into k finite
separated clusters and each cluster is represented by a representation, the
principle of k-means-like algorithms can be simply described in three steps:

1. Initialization step: Select the k clusters randomly or predictably, then
assign the objects into k initial clusters.

2. Iteration step:

• Representation updating: The representations are calculated to
show the compactness of all clusters.

• Membership updating: The labels of objects are re-assigned to
their nearest cluster representations.

3. Evaluation step: Repeat the Iteration step until the presentations are
converged or maximum number of the maximum number of iterations
is reached.

It is obvious that k-means-like algorithms are local optimization algo-
rithms, which do not guarantee to find the global optimum in a single epoch.
Observantly, most k-means-like algorithms have multiple epochs and return
the most optimal outcome. On the other hand, k-means-like algorithms
are the low-complexity algorithms. However, big data clustering remains a
significant challenge due to the heterogeneity and massive size of data that
principally limit the application of clustering in real-world scenarios.

Another problem of cluster analysis on big data is that the data can have
a high number of attributes of mixed numerical and categorical types. For
instance, to describe information of a person, the basis attributes such as
Age, Weight, and Occupation can be used. Among these attributes, Age
and Weight can be represented by numerical values and it is very easy to
state the differences between two persons in terms of Age and Weight. In
contrast, there is no standard measure to state the differences in the context
of Occupation. For example, we cannot tell the similarity between Student,
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Figure 1.1: Segment of cluster analysis problem

Worker, and Technician without any certain contexts. This kind of data is
called categorical data. To deal with categorical data, a special dissimilarity
measure must be defined to state the degree of difference between two
categorical values. In addition, the distance measure is decisive with the
outcome of k-means-like algorithms. Thus, to conduct the data clustering
of categorical data using k-means-like algorithm, a suitable dissimilarity
measure and cluster representation must be defined.

1.2 Motivations

Several attempts have been made to handle the clustering problem of mixed
data type and all these approaches define the hybrid representations for
clusters. These approaches heavily emphasize clustering accuracy with high
complexity, which makes them are not capable to handle big mixed datasets
[26, 27, 28, 29, 30]. Besides that, some approximate techniques namely
dimension reduction approaches [31, 32] or data sampling approaches [33, 34]
can increase the clustering speed for big data. However, these approaches
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are used for numerical or categorical data only. These facts prove the
shortcoming of clustering algorithms for big mixed data. Therefore, in this
research, we motivate to propose a new framework for handling the big mixed
data which can be applied to various clustering algorithms. In detail, our
motivation can be separated into two different aspects:

• To propose a novel technique to predict the potential cluster centers
for k-means-like algorithms. A better prediction can lead to a higher
chance to catch the global optimal solution. Thus, the number of
required epochs can be reduced significantly for getting the global
optimum.

• To propose a new approximate method to reduce the computation of
clustering iteration. Clustering iterations are the heaviest task in k-
means-like algorithms. This task includes the distance computation
from objects to cluster representations. Reducing these distance
computations can sharply decrease the complexity of the clustering
algorithm.

1.3 Research objectives

Based on our motivations, the targets for the research are set as follows:

• Conducting comprehensive surveys as well as analyze the advantages
and disadvantages of existing clustering methods for mixed data, some
specific topics include:

– Similarity measurements: Overlap, Eskin, IOF, OF, Lin, Goodall,
DILCA.

– Crisp clustering algorithms: k-means, k-modes, k-representatives,
k-centers.

– Fuzzy clustering algorithms: Fuzzy-k-means, Fuzzy-k-modes,
Fuzzy SBC, SGA, MOGA, NSGA-FMC.

• Developing new scalable and effective clustering methods for big data
based on the integration of the Locality-sensitive Hashing (LSH) tech-
nique and k-means-like clustering paradigm. In detail, three sub-
objectives can be listed to complete this framework, specifically:

– Analyzing the effectiveness of similarity measurements for cate-
gorical data for LSH classification. The most effective measure
can then be selected for hashing the categorical data.

– Proposing an applicable hashing function for categorical data in
order to group the similar items into semi-groups. For hashing
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the numerical data, the regular locality-sensitive hash function
for metric space can be adopted.

– Introducing a novel approach to approximate the clustering iter-
ations.

– Concatenating the clustering models for numerical data and for
categorical data into one.

• Performing a comprehensive series of experimental studies to validate
the proposed clustering methods and illustrate their practical applica-
bility.

1.4 Contributions

The contributions of this dissertation are summarized as follows:

• This dissertation first conducts the comprehensive literature review
on categorical and mixed data cluster analysis. Different approaches
for k-means-like algorithms are grouped by corresponding categories of
improving representation, improving cluster initialization, and improv-
ing clustering iteration. The dissertation then states the outstanding
problems of categorical and mixed data, especially for big categorical
and mixed data. Therefore, the representation for categorical or mixed
data are well-defined but the cluster initialization and cluster iteration
of the k-means algorithms have not yet been explored much in the
problem of big data processing.

• To the best of our knowledge, this dissertation is the first attempt
to incorporate the LSH technique into k-means-like algorithms for
achieving better cluster initialization states. Our LSH-based cluster
prediction method can predict not only the crisp clusters but also the
fuzzy clusters of categorical and mixed data.

• Our kernel-based representation for fuzzy cluster analysis of categorical
data is the first attempt to combine the uniform distributions and
observed distributions of unique categorical values, which can lead to
a better representation for clusters with having a large difference in
frequencies of unique categorical values.

• Last but not least, we proposed a simple heuristic approach to reduce
the complexity of typical k-means-like algorithms. Our approximate
method has a relatively high accuracy while not requires many compu-
tations like dimension reduction or sampling methods.
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1.5 Research map

𝑘-modes
(Huang et al. 

1998)

𝑘-means
(Macqueen et al. 

1967)

𝑘-medoids
(Raymond et al. 

1994)

𝑘-representatives
(San et al. 2004)

𝑘-centers
(Chen et al. 2013)

LSH-𝑘-
representatives

(Chapter 4)

F𝑘-fcenters
(Chapter 5)

𝑘-imprototpyes
(Jinchao et al. 

2013)

LSH-𝑘-prototpyes
(Chapter 4)

LSHF𝑘-centers
(Chapter 5)

Figure 1.2: Research map of this dissertation

Figure 1.2 shows the relationships between the proposed methods in this
dissertation with each other and with the previous approaches.

1.6 Organization of the thesis

The dissertation contains 6 chapters and the contents of chapters can be
briefly described as follows:

Chapter 1 first introduces the research background, then states the moti-
vations, research objectives, and contributions of the dissertation.
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Chapter 2 describes the details of the cluster analysis problem of big data
with categorical and mixed data. The basis k-means-like algorithms
and conventional methods are also presented in Chapter 2.

Chapter 3 lists the background techniques that are utilized in our proposed
methods. Several related works are also introduced in this chapter.

Chapter 4 describes the principles of LSH-k-representatives and LSH-k-
prototypes, which are the main proposals of this dissertation for
handling the clustering problem of big categorical and mixed data. The
experiments, self-analyzing results, comparison results, and conclusion
of those approaches are also shown in Chapter 4.

Chapter 5 first extends the kernel-based representation for fuzzy cluster
analysis of categorical data (Fk-centers). The LSH-based cluster
prediction approach is then applied to this extension (LSHFk-centers).
The experiments, self-analyzing results, comparison results, and con-
clusion of those approaches are also shown in Chapter 5.

Chapter 6 yields the conclusion, limitations, and future works for the whole
dissertation.
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Chapter 2

Problem statements and litera-
ture review

This chapter presents the mathematics definition of the clustering problem.
The achievements and challenges of crisp clustering are also listed.

2.1 Data clustering problem statements

This section aims to state the fundamental definition of general crisp clus-
tering problem which has been used in many prior studies [13, 15, 16, 17, 18,
20, 27, 31, 33, 35, 36, 37, 38, 39, 40, 41].

Let X = {x1, . . . ,xN} be the set of N objects to be clustered into k
disjoint clusters, so that N is the number of objects in the dataset and k is
the number of target clusters. Each item xi (1 ≤ i ≤ N) is a vector in D-
dimensional space called attribute, xi = [xi1, . . . , xiD]. Each dimension at the
d-th position can be numerical value (xid ∈ R) or categorical value (xid ∈ Ad),
where Ad (|Ad| > 1) is the set of all unique categorical values in the d-th
attribute. In other words, let Ad be the d-th attribute, if Ad is a categorical
attribute then Ad is the unique domain of attribute Ad. In contrast, if Ad is a
numerical attribute then R is the domain of attribute Ad. Thus, the dataset
X can be represented by an N ×D matrix with the columns corresponding
to features and the rows corresponding to objects. It is convenient to mark
all the categorical attributes for further computation. Then, we denote A as
the set of all categorical attributes. Table 2.1 shows a small portion of UCI
Adult dataset, where A1, A2, and A4 are the numerical attributes and the
rest attributes are the categorical attributes. Thus, A3, A5, A6, A7 ∈ A and
A1, A2, A4 /∈ A.

It is also quite important to distinguish each attribute is categorical or
numerical because it can make us misunderstand the nature of data. Usually,
the values of a categorical domain are stored as text strings such as colors,
shapes, and job titles. In this case, we can easily detect the categorical
attributes automatically. However, it becomes more complex when the
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categorical attributes are stored as numeric values (numerous systems store
categorical values as numeric values because it can save memory space), in
this case, we need to detect the categorical attribute manually.

Table 2.1: A sample of mixed dataset (UCI Adult dataset)

A1 A2 A3 A4 A5 A6 A7

x1 39 77516 Bachelors 13 Never-married Adm-clerical Not-in-family
x2 50 83311 Bachelors 13 Married-civ-spouse Exec-managerial Husband
x3 38 215646 HS-grad 9 Divorced Handlers-cleaners Not-in-family
x4 53 234721 11th 7 Married-civ-spouse Handlers-cleaners Husband
x5 28 338409 Bachelors 13 Married-civ-spouse Prof-specialty Wife
x6 37 284582 Masters 14 Married-civ-spouse Exec-managerial Wife
x7 49 160187 9th 5 Married-spouse-absent Other-service Not-in-family
x8 52 209642 HS-grad 9 Married-civ-spouse Exec-managerial Husband
x9 31 45781 Masters 14 Never-married Prof-specialty Not-in-family
x10 42 159449 Bachelors 13 Married-civ-spouse Exec-managerial Husband

2.1.1 Formulation of clusters

Let G = {G1, . . . , Gk} be the set of k clusters in dataset X, which must
satisfy following conditions:

Gj 6= ∅, 1 ≤ j ≤ k⋃k
j=1Gj = X

Gj ∩Gj′ = ∅, for j, j′ = 1, . . . , k and j 6= j′
(2.1)

To make it easy for the calculation, we can use a matrix of membership
to store the membership labels of objects to clusters. Let U = [uij|1 ≤ i ≤
N, 1 ≤ j ≤ k] be such membership matrix, uij (1 ≤ i ≤ N, 1 ≤ j ≤ k) shows
the degree of membership of object xi to the j-th cluster. In the context of
crisp clustering, membership degree presents whether an object belongs to a
cluster or not:

uij =

{
1, if xi ∈ Gj

0, otherwise
, 1 ≤ i ≤ N, 1 ≤ j ≤ k (2.2)

Besides that, an object can be a member of a cluster only, we can infer
that:

k∑
j=1

uij = 1, 1 ≤ i ≤ N (2.3)
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Furthermore, to make sure there is no empty cluster as the first condition
in (2.1):

N∑
i=1

uij ≥ 1, 1 ≤ j ≤ k (2.4)

To generalize, we denote U = [uij]N×k as the membership matrix that
can present membership statuses of all objects.

2.1.2 Formulation of dissimilarity measures

Similarity/dissimilarity measures play an extremely important role in form-
ing clustering, which defines whether two objects be included in a cluster or
not. Therefore, a “good” similarity/dissimilarity measure must be able to
reflect the nature of the data. However, several standard measures can work
well in most cases. Because similarity measure and dissimilarity measure are
symmetrical, we choose to use dissimilarity measure term for this study. A
typical dissimilarity measures can be remark as: Given two data objects xi
and xi′ , Dis(xi,xi′) gives the distance/dissimilarity between them. Because
the characteristics of numerical and categorical objects are partially different,
we categorize the dissimilarity of numeric, categorical, and mixed data as
follows.

2.1.2.1 Dissimilarity measures for numerical objects

There are many basic metrics that can calculate the distances of two numer-
ical multivariate objects such as Euclidean distance, Manhattan distance,
Minkowski distance, Cosine distance. In this study, the Euclidean distance
is utilized:

Dis(xi,xi′) =

√√√√ D∑
d=1

(xid − xi′d)2 (2.5)

2.1.2.2 Dissimilarity measures for categorical objects

Several approaches have been proposed to measure the distance between
two categorical objects [42, 43, 44, 45], the most popular one is the overlap
function:

Dis(xi,xi′) =
D∑
d=1

δ(xid, xi′d) (2.6)
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where

δ(xid, xi′d) =

{
0 if xid = xi′d,
1 if xid 6= xi′d.

2.1.2.3 Dissimilarity measures for mixed objects

For the objects containing attributes of both numerical and categorical
values, the hybrid weighted measure can be applied:

Dis(xi,xi′) = ω
D∑
d=1
Ad∈A

δ(xid, xi′d) + (1− ω)

√√√√√ D∑
d=1
Ad /∈A

(xid − xi′d)2 (2.7)

where ω(0 ≤ ω ≤ 1) is the parameter that weight the importance of
categorical attributes. This weighting procedure is necessary because the
distance of categorical values are usually smaller than distance of numerical
values.

Because the distributions of data are different for different datasets, to
achieve the optimal value of ω, it is required to analyze comprehensively the
distributions of the data for categorical and numerical attributes on the same
datasets. A fast and effective method is to use the value ranges and/or the
number of attributes for each type to estimate the value of ω. However, in this
research, we do not focus on such optimization; therefore, 0.5 is selected as the
default value of ω for all datasets and compared methods in the experiments.
We also conduct a experiment to show the contribution of parameter ω to
our proposed method (See Figure 4.15).

2.1.3 Objectives of data clustering

As we mentioned, the target of data analysis is to maximize similarities of
objects on the same cluster and dissimilarities of objects on different clusters,
which means minimizing the Within-Group Sum of Square (WGSS) defined
by (2.8) and maximizing the Between-Group Sum of Square (BGSS) defined
by (2.9) as follows:

WGSS(G1, . . . , Gk) =
k∑
j=1

∑
xi∈Gj

∑
xj′∈Gj

Dis(xi,xj′) (2.8)

BGSS(G1, . . . , Gk) =
k∑
i=1

k∑
j=1
j 6=i

∑
xi′∈Gi
xj′∈Gj

Dis(xi′ ,xj′) (2.9)
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In the next section, we will introduce the principle of the k-means-like
algorithm, which is the most popular class of algorithms that can optimize
the above WGSS and BGSS equations.

2.2 Classes of clustering algorithms

There are numerous methods that can handle the clustering problem, these
methods can be categorized into the following headings:

2.2.1 k-means-like algorithms

All k-means-like algorithms are based on the principle of k-means algorithm
[46], which are designed to find the optimal centers of all clusters to minimize
an objective function, it also partly represents equations (2.8) and (2.9)
simultaneity.

Advantages: Relatively simple to implement, can predict the starting
positions of centroids and guarantees convergence.

Disadvantages: Being dependent on initial initialization stage, clustering
data of varying sizes and density.

Because k-means-like algorithms are the basis of our proposed method.
We will introduce the principle of k-means-like algorithms in section 2.3, this
section only introduces the advantages and disadvantages of them.

2.2.2 Expectation–Maximization (EM) algorithms

EM algorithms use a statistical model to formulate the clustering problem
and find maximum likelihood estimates of parameters to fix the given data.
The principle of EM includes two main stages: Expectation step creates a
function for the expectation from the EM parameters and maximization step
estimates the parameters for maximizing the expected log-likelihood found
in the expectation step [47, 48]. The EM algorithm has the similar steps
with k-means clustering algorithm:

1. Initialize the statistical parameter θ = {p1, µ1, σ1, . . . , pk, µk, σk}, where
pj, µj, σj (1 ≤ j ≤ k) are the probability, mean, and standard deviation
of the j-th cluster, respectively.

2. Expectation: Compute the responsibilities for each object to each
cluster:

γij =
pjPDF(xi;µj, σj)∑k

j′=1 pj′PDF(xi;µj′ , σj′)
, 1 ≤ i ≤ N, 1 ≤ j ≤ k (2.10)
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where PDF(;,) is the probability distribution function.
3. Maximization: Update the estimating parameters θ:

pj =
1

N

N∑
i=1

γij µj =

∑N
i=1 γijxi∑N
i=1 γij

σj =
1−∑N

i=1 γij(xi − µj)2∑N
i=1 γij

, 1 ≤ j ≤ k

(2.11)
4. Repeat steps 2 and 3 until the estimating parameters converge to a

local optimum.

The crisp cluster for each object is then calculated by getting the distribution
with higher probability for this object.

Several of extensions of EM algorithm can be found in [49, 50, 51], some
extensions for clustering categorical data can be found in [52, 53].

Advantages: Good for fitting mixture distributions.
Disadvantages: Bad for high dimensional data because the standard devi-

ations are treated equally for different dimensions.

2.2.3 Genetic Algorithms (GAs)

The clustering problem also can be solved by a genetic algorithm. In details,
the clusters are defined by the centers C = {c1, . . . , ck}, where cj (1 ≤ j ≤ k)
is the center or representation of the j-th cluster. GA algorithms for data
clustering problem can have single or multiple objective functions, but cluster
minimizing inner-cluster distance (equation (2.12)) and maximizing cluster
separation (equation (2.13)) are used quite often:

O(C,X) =
k∑
j=1

N∑
i=1

uijDis(cj,xi) (2.12)

Sep(C,X) =
k∑
j=1

k∑
j′=1
j′ 6=j

Dis(cj, cj′) (2.13)

At this time, the distance functions from object to cluster representation
and from cluster representation to cluster representation must be defined.
However, we discuss these functions later because the formulas distance
functions are depended on the principles of cluster representation. The basic
GA for clustering problem use the presentations as the chromosome, the
stages of GA can be listed as:

• Initialization: Creating multiple chromosomes randomly. A chromo-
some is a sample of cluster representation set C.
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• Population evaluation: Evaluate the chromosomes via equation (2.12).
• Evaluation: If the number of evolution is reached or the optimum

chromosome is obtained then stop the algorithm
• Selection: Select the best chromosomes.
• Crossover : Create more chromosomes by merging the selected ones.
• Mutation: Create more mutated chromosomes by randomly. Then go

to Population evaluation step.

The advantages and disadvantages of GAs can be seen as:

Advantages: GA supports multi-objective optimization, GA works well on
mixed discrete/continuous problem.

Disadvantages: High complexity for high number of clusters k. Difficult to
define the suitable crossover and mutation functions.

2.2.4 Self-Organizing Map (SOM) algorithms

SOM is a type of Artificial Neural Network (ANN) that is trained for
optimizing clustering problem. SOM is useful for visualization by creating
the low-dimensional views for showing the densities of high-dimensional
data. Technically, the specific ANN model is designed to map the objects
from original space into a low-dimensional space (typically two-dimensional).
SOM algorithm can be described as follows:

• Randomly creating a map, a map is usually a two-dimensional mesh.
• For each object xi:

– Calculating the distance from xi to all nodes in the map and
finding the closest node for the object xi.

– Updating the nodes and the neighbor nodes in the map by pulling
them closer to xi.

Advantages: Easy to visualize, support to quantize the data.
Disadvantages: Difficult to distinguish the clusters.

2.3 k-means-like algorithms

2.3.1 k-means algorithm

k-means algorithm [46] is one of the most popular clustering algorithms
for numerical data. Let X be the dataset of N numerical data X =
{x1, . . . ,xN}, such that xi = {xi1, . . . , xiD} ∈ RD(1 ≤ i ≤ N). Remark the
target of k-means algorithm is also to divide the dataset X into k separated
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groups G = {G1, . . . , Gk} which satisfy equation (2.1) and minimize the total
distances of object to the representation of the cluster that it belongs to:

Minimize: O(U,C) =
k∑
j=1

N∑
i=1

uijDis(xi, cj) (2.14)

In the context of the original k-means algorithm, the representation cj is
the center of gravity of the j-th cluster, so-called centroid of the j-th cluster.
Thus, cj is also a vector of the same space with the dataset, therefore, cj =
[cj1, . . . , cjD] ∈ RD. Therefore, the distance function in equation (2.5) can be
utilized to measure the distance from data object to cluster representation.
Note that, with more complex representation, the distance function between
data object and cluster representation must be redefined accordingly.

To update/calculate the representations of clusters, we use the means of
all objects in the clusters:

cj =
( N∑
i=1

uijxi

)/( N∑
i=1

uij

)
, 1 ≤ j ≤ k (2.15)

To assign the degree of membership to an object, the closest cluster that
is the nearest to this object is selected:

uij =

{
1, j = arg minj′ Dis(xi, cj′)

0, Others
(2.16)

The detail of k-means algorithm is shown in Algorithm 2.1, maximum
iteration number tmax and convergence threshold ε are the parameters con-
trolling the convergence of the algorithm.

2.3.2 k-means extensions for categorical data clustering

k-means has numerous extensions to handle different challenges [2, 8], many
of them are focusing on handling the categorical data. Namely, k-modes is
the first k-means-like algorithm for categorical data and k-representatives
is the extension that has the categorical cluster representation with highest
efficiency [15, 40].

2.3.2.1 k-modes algorithm

Because of the characteristics of categorical data, we cannot compute the
mean of all objects in a cluster as in equation (2.15). Huang et al. (1998)
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Algorithm 2.1 k-means algorithm

Input: DatasetX, target number of cluster k, maximum iteration number
tmax, convergence threshold ε.

Output: Local optimal membership matrix U , cluster representations C.

1: Initialization step: Randomly assign the values for the membership
matrix U , such that the requirements in equations (2.2), (2.3), and (2.4)
are satisfied.

2: tmp0 ←∞
3: Iteration steps:
4: for t← 1; t ≤ tmax; t← t+ 1 do
5: Calculate/re-calculate the representations C via equation (2.15).
6: Re-calculate membership matrix U via equation (2.16).
7: Compute convergence value tmpt ← O(U,C) via equation (2.14).
8: if |tmpt − tmpt−1| < ε then
9: Break the loop.

10: end if
11: end for
12: return U,C

proposed to use a mode for a cluster instead of mean as the representation
for that cluster [40, 54].

M = [m1, . . . ,mk] denotes the set of k modes to represent k corre-
sponding categorical clusters. A mode mj = [mj1, . . . ,mjD] is a vector of
categorical values that has the highest frequencies in all attributes:

mjd = arg max
vd∈Ad

FrequencyGj(vd), 1 ≤ j ≤ k, 1 ≤ d ≤ D (2.17)

with FrequencyGj(vd) returns the frequency of categorical value vd appearing
in the j-th cluster.

Observably, modes are the categorical objects, thus, we can use the
overlap function to measure the distance between mode and object. The
objective function can then be adjusted accordingly:

Minimize: O(U,M) =
k∑
j=1

N∑
i=1

uijDis(xi,mj) (2.18)

The steps of k-modes are identical to those of k-means algorithm.

16



2.3.2.2 k-representatives algorithm

Using mode is a very simple approach, but it cannot fully describe the
compactness of clusters because only the highest categorical value with the
highest frequency is stored and the rest are ignored. San et al. (2004) and
Kim et al. (2004) introduced to store the frequencies of all categorical values
to describe the representations of clusters [15, 55]. This type of representation
is called representative and it does not miss any useful compactness informa-
tion. In particular, R = [r1, . . . , rk] denotes the set of k representatives for
k clusters, and a representative can be described as:

rj = [rj1, . . . , rjD] (2.19)

where
rjd = [(vd,PrGj(vd))|vd ∈ Ad], 1 ≤ d ≤ D (2.20)

with PrGj(vd) being the relative ratio of value vd taken by all objects in
cluster Gj, namely

PrGj(vd) =
FrequencyGj(vd)

|Gj|
, ∀vd ∈ Ad, and 1 ≤ d ≤ D (2.21)

It is interesting to note here that a representative is a vector of proba-
bilities of all categorical values in all attributes, so

∑
vd∈Ad PrGj(vd) = 1 for

1 ≤ j ≤ k and 1 ≤ d ≤ D. For instance, if a categorical value has high
frequency of appearance in a cluster, then the corresponding probability of
that categorical value is also high.

In fact, the overlap function cannot be applied for measuring the distance
between object and representative because representatives are not categorical
objects. However, if we consider that an object is also a representative with
only singular active categorical value in each attribute, the similarity distance
can then be defined as:

Dis(xi, rj) =
D∑
d=1

∑
vd∈Ad

PrGj(vd)δ(xid, vd) (2.22)

After being combined with the overlap function (see equation(2.6)), we
can shorten the equation (2.22) as:

Dis(xi, rj) =
D∑
d=1

∑
v∈Ad
v 6=xid

PrGj(v) = D −
D∑
d=1

PrGj(xid) (2.23)
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The objective function can then be adjusted accordingly:

Minimize: O(U,R) =
k∑
j=1

N∑
i=1

uijDis(xi, rj) (2.24)

The steps of k-representatives are identical to those of k-means and k-
modes algorithms.

2.3.3 k-means extensions for mixed numerical and cat-
egorical data

Corresponding to k-modes and k-representatives for clustering categorical
data, there are two popular techniques that can handle mixed numerical and
categorical data, namely k-prototypes [56] and improved k-prototypes [28].

2.3.3.1 k-prototypes algorithm

Huang et al. (1997) introduced k-prototypes as the extension of k-modes
algorithm to handle mixed data clustering [56]. A prototype is a mixed
structure of categorical values and numerical values following the properties
of corresponding attributes. Let P̂ = [p̂1, . . . , p̂k] be the set of k prototypes
for k clusters, where a prototype can be formulated as:

p̂j = [p̂1, . . . , p̂D], 1 ≤ j ≤ k (2.25)

and

p̂jd ∈
{
R, if Ad /∈ A
Ad, otherwise

, 1 ≤ d ≤ D, 1 ≤ j ≤ k (2.26)

Note that A is the set of all categorical attributes. It is clear that a prototype
is a mixed vector of numerical and categorical values so that the distance
function for two mixed vectors (equation (2.7)) can be utilized to calculate
the distance from object to prototype.

Similarly, the algorithm of k-prototypes is equivalent to other k-means-
like algorithms with the objective function:

Minimize: O(U, P̂ ) =
k∑
j=1

N∑
i=1

uijDis(xi, p̂j) (2.27)
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2.3.3.2 Improved k-prototypes algorithm

If k-representative is the extension of k-modes in the context of categorical
data clustering, then the improved k-prototypes is the extension of k-
prototype in terms of mixed data clustering [28]. Let P = [p1, . . . ,pk] be
the set of k improved prototypes for k clusters, an improved prototype can be
formulated as:

pj = [p1, . . . , pD], 1 ≤ j ≤ k (2.28)

where

pjd ∈
{
R, if Ad /∈ A
{[(vd,PrGj(vd))|vd ∈ Ad]}, otherwise

, 1 ≤ d ≤ D, 1 ≤ j ≤ k

(2.29)
With such complicated representation, the distance function from object

to improved prototype (equation (2.30)) must be adjusted accordingly:

Dis(xi,pj) = ω
D∑
d=1
Ad∈A

(
|A| −

D∑
d=1

PrGj(xid)

)
+ (1− ω)

√√√√√ D∑
d=1
Ad /∈A

(xid − pjd)2

(2.30)
Similarly, the algorithm of improved k-prototypes is equivalent to other

k-means-like algorithms with the objective function:

Minimize: O(U, P ) =
k∑
j=1

N∑
i=1

uijDis(xi,pj) (2.31)

2.4 Optimization techniques for k-means-like

algorithm

In the previous sections, we listed several classes of algorithms that can
increase the clustering effectiveness for numeric, categorical, and mixed data.
Although the complex algorithms can increase the accuracy, they also require
a lot of computations. In this section, we will list several approaches to
optimize the clustering speed for clustering algorithms.

2.4.1 Clustering initialization optimization approaches

Several attempts have been made to increase the goodness of initialization for
k-means-like algorithm for numerical data [57]. Arthur et al. first stated the
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important of good initialization to a k-means-like algorithm and proposed
an initialization optimization method so-call k-means++ [37]. In particular,
k-means++ selects the first centroid (c1) randomly from the objects in the
dataset. The next centroids (c2, . . . , ck) are sequentially selected from the
remaining objects with a probability being inverse with the distance from
that object to the selected centroids. Therefore, the initial clusters are likely
to be spread across all regions of the data and the place with high data
density are likely to exist only one initial cluster. However, k-means++ is
slowed down when working with dataset of high number of objects with large
number of cluster k. This can be explained in a simple way that to examine
the capacity of becoming a cluster centroid of an object, it is needed to
compute the distance of that object to all the known initial cluster centroids.
Furthermore, the randomly selected data objects for centroid prediction in
multiple times also take a lot of computations.

Bahmani et al. (2012) introduced an initialization optimization method
called k-means|| and claimed that their algorithm can fulfill the drawback
of kmeans++, especially in case of clustering large datasets [36]. In fact,
k-means|| can run faster than k-means++ by selecting multiple objects in
an iteration, and thereby the number of iterations is dramatically reduced.
Technically, k-means|| runs O(log N) iterators and in each iterator select
k objects to predict the centroids. From numerical results, k-means||
outperforms k-means++ in terms of clustering speed. However, both k-
means++ and k-means|| are proposed for numerical data, so they may not
work well for the categorical data clustering.

In terms of initialization optimization techniques for categorical data clus-
tering, Huang et al. introduced k-modes along with two naive initialization
methods [40]. The first approach selects k object randomly to set them
modes. The second approach sorts the categorical values in descending order
and sequentially set them to the values of modes. However, this approach
only considers the separation of categorical values and the correlations among
them in different attributes are eliminated. In addition, the second approach
of Huang et al. also has the drawback when the number of categorical values
is less than k, which makes empty cluster(s). This problem can be treated
as selecting other random object(s) to the empty cluster(s).

Cao et al. (2009) proposed to use density of categorical data based on
the same number of categorical values appearing on other objects to predict
the potential modes. The rest objects are then merged to the selected high
density modes using MaxMin algorithm [58]. Bai et al. (2012) continued the
work that can avoid selecting the boundary object as modes [59]. Similar to
k-means++ algorithm, the distances between high density objects are also
used to maximize the distances between potential modes.
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In 2013, Khan et al. proposed to conduct the multiple clustering on
the selected attributes and select the semi-clusters in each attribute. The
modes are then resembled from these semi-clusters, and they call them
deterministic modes [60]. In 2016, Jiang et al. continued to propose a
technique to eliminate the outliers among all permutation deterministic
modes [61]. Particularly, the mode candidates are justified by measuring the
distances and the entropy among them so that the weak mode candidates
are removed.

Recently, Dinh et al. proposed to find the object sets with maximal
frequencies to estimate the cluster initial clusters [29]. After removing the
overlapped object sets, the cluster representations are then formed by using
a kernel based technique which inherits from representative.

Cluster centroid 1Cluster centroid 1

Cluster centroid 2Cluster centroid 2

Cluster centroid 1Cluster centroid 1

Cluster centroid 2Cluster centroid 2

a. Bad initialization – Bad clustering b. Good initialization – Ideal clustering 

Figure 2.1: Example of bad and good clustering

Figure 2.1 shows the example of how differently the good initialization
states and the bad ones affect the clustering results. Figure 2.1.b shows the
ideal clustering for the illustrated dataset. To achieve this result, we should
predict the location of cluster representations relatively accurately with the
ground-truth cluster representations at the beginning of the k-means-like
algorithm.

2.4.2 Clustering iteration optimization

2.4.2.1 Sampling methods

The target of sampling is to select the subset of the original data that behaves
like the original one so that the outcome of conducting data clustering in
the subset can be used for the original dataset [62, 63]. Whereas random
sampling is the most naive approach which selects the objects randomly and
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it expects to capture the same data distributions from the original dataset
[62].

Random sampling approach has the critical drawback when working with
imbalance data because the small clusters may be abandoned. The density-
biased sampling approaches was mainly proposed to handle this problem
[64, 65]. Palmer et al. introduced to divide the dataset space into grid with
non-overlapping cell, the densities of cells can then be calculated by counting
the frequencies of objects on the cells [66]. This approach can overcome the
noise data and avoid eliminating small clusters. Nanopoulos et al. used trees
instead of mesh to structure the dataset [67].

2.4.2.2 Dimension reduction methods

The target of dimension reduction methods is to reduce the computation cost
of distance calculations which are the most often used in clustering [68]. The
popular dimension reduction methods for clustering can be listed as:

Principal Component Analysis (PCA): PCA is the most used linear
dimension reduction method which is based on the covariance ma-
trix of the dataset. Particularly, PCA uses a few orthogonal linear
combinations with the largest variance to reduce the dimensions of
the data [69, 70]. The variances in the new coordinate system are in
descending order so that the target number of new dimensions can be
easily selected. In addition, it is very convenient that the data on two
coordinate axes can be easily exchanged based on a transformation
matrix.

Factor analysis (FA): FA is also a linear method, which seeks to maximize
the second-order data summaries [68]. In details, FA defines a trans-
formation matrix called common intelligence factor. The scores of all
objects are then calculated using this transformation matrix. Similar
to PCA method, the variance of each transformation is justified for
selection.

Projection Pursuit (PP): PP is also a linear method but uses higher-
order transformation instead of second-order transformation [71]. Shan-
non entropy or variance scoring can be utilized for examining the effec-
tiveness of the projections. To reduce the complexity of evaluating the
second-order transformations, we can apply several heuristic techniques
that can guarantee the profitable factor of transformations.

Independent Component Analysis (ICA): ICA is a higher-order trans-
formation method that seeks for the non-orthogonal linear projections
[68]. The projections decompose the multivariate vector into inde-
pendent non-Gaussian distributions. Therefore, ICA can show the
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advantage when working with data consisting of mixture distributions.
Random Projections (RP): RP is the low-complexity approach to project

the data from high-dimensional space to a low-dimensional space using
random projection matrix [72]. It is interesting to note here is that
the selected projection matrices does not require any evaluation and
there are a lot of heuristic techniques to select the beneficial projection
function.

2.5 Summary

In this chapter, we formulated the crisp clustering problem for mixed data
of numerical and categorical data. The inputs, outputs, objectives has been
clearly defined.

Different approaches that can optimize the clustering algorithms were also
introduced, namely clustering representation optimization, cluster initializa-
tion optimization, and cluster iteration optimization. Their advantages and
disadvantages are summarized in Table 2.2.

Table 2.2: Advantages and disadvantages of clustering algorithm optimiza-
tion approaches

Technique Advantages Disadvantages
Cluster
representation
optimization

• Can improve the inner-
cluster compactness and
outer-cluster separation.

• Can adapt with different
types of data.

• Require more computa-
tion for complex repre-
sentations.

Cluster
initialization
optimization

• Can help to find the
global optimum.

• Require extra computa-
tions.

• Do not affect the cluster-
ing complexity.

Cluster
iteration
optimization

• Reduce the complexity
of the clustering algo-
rithms.

• Accuracy is reduced be-
cause of data approxi-
mating.
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It is clear that clustering representation optimization and cluster initial-
ization optimization slow down the algorithm because of complex structure
and extra computation. Only clustering iteration optimization can affect the
complexity of the clustering algorithm.
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Chapter 3

Research background and related
works

3.1 Introduction

In the previous section, we introduced the problem state and different ways
that can optimize the crisp clustering algorithm. This section continues with
the specific techniques that are applied in our system followed by the related
works of this research.

3.2 Locality-sensitive hashing (LSH)

LSH is a dimension reduction method that hashes similar input objects into
the same buckets with high probability. Because the number of buckets is
much smaller than the universal values of original objects, the dimensions of
new space are reduced dramatically when using the buckets to represent the
similar objects [73].

Dataset X denotes the set of N objects xi (1 ≤ i ≤ N) which are
represented as points in a D-dimensional space RD. LSH uses a family of
hash functions to reduce the dimensions of the dataset; each hash value of
the new dimensional space forms a bucket that contains every data point
that has that hash value. By having the same hash value, the data points in
the same bucket have more connections than the data points from separate
buckets. The distance of buckets can also be compared using the distance
calculation of hash values on metric space. Therefore, LSH is suitable for the
Approximate Nearest Neighbor Search (ANNS) problem when the system
searches the results in particular selected buckets [73, 74].

We denote l with l ≤ D as the number of subsets or the number of binary
hash functions in the family of hash functions. Using l hash functions, LSH
generates l subsets I1, I2, ..Il for every input point xi (1 ≤ i ≤ N). There are
l random projection functions that transform input vector xi ∈ RD to a new
vector x′i ∈ Bl, where B is the binary space, B = {0, 1}. The value of x′i will
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indicate the hash value or the bucket ID for point xi. Let hj(x) (1 ≤ j ≤ l)
be the jth projection function, then x′ij = hj(xi) ∈ B and hj : RD → B.
Let H = [h1, . . . , hl] be the ordered collection of l hash functions so that
H : RD → Bl. The new vector [x′i1, . . . , x

′
il] will be the hash value of input

vector xi.
To have quick access to the original objects on new hashed-space, we can

create the hash table H that holds all the hash values and the corresponding
data points in the dataset [73, 74]. With hash table H, we can index all
the data points to the hash values. For the ANNS problem, we must first
calculate the hash value h for query q by using the same set of random
projection functions g when building hash table H. The hash value h will
index the set of data points Bh in X; these data points will have the same
hash value h.

Call p the threshold for evaluating the distance between an ANN candi-
date and the query point. The ANNS candidates can be evaluated by using
the following formula:

CheckKNN(xi) =

{
true, if Distance(q,xi) ≤ p

false, otherwise
|xi ∈ Bv (3.1)

where v is the hash value of the query q. The function CheckKNN(xi) is
used for evaluating the ANNS outputs of the query q for all the data/vectors
xi in the bucket Bh. Depending on the limited number of ANN k, we can
stop the comparing steps when the number of returned neighbors reaches k.

For searching multiple buckets, LSH needs to search within several
buckets that have similar IDs to v. Call P2 the threshold for evaluating the
similarity between two buckets with P2 < p. The distance between chosen
buckets Bh and B′h must be less than P2. In this case, we have more chances
to obtain the ANN for query q from other buckets [73, 74].

Figure 3.1 shows an example of using LSH when applying using three
hyperplanes in two-dimensional space as the three hash function. Each hash
function divides the space into two sub-spaces. For example, if H = [h0]
is the family of hash functions then H(x1) = H(x2) = H(x6) = H(x7) =
H(x8) = H(x9) = 0 and H(x3) = H(x4) = H(x5) = 1. In other hand,
if H = [h0, h1, h2] then H(x1) = H(x2) = [000], H(x3) = [100], H(x4) =
H(x5) = [110], H(x6) = H(x7) = H(x8) = [010], and H(x9) = [011].

The return value x′i is called the hash value of binary variables xi. This
value is converted into a decimal number for indexing the bucket in the hash
table H. In the LSH system, that hash value is used for generating the hash
table to look up the existing hash table. Continuing the example in Figure
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Figure 3.1: Example of applying LSH hash function using random projection
hyperplane

3.1, the structure of the hash table is:

H =[{[000] : {x1,x2}}, {[001] : ∅}, {[010] : {x6,x7,x8}},
{[011] : {x9}}, {[100] : {x3}}, {[101] : ∅},
{[110] : {x4,x5}}, {[111] : ∅}]

(3.2)

Note that the sensitive-locality hash value [101] does not exist in this example
because h0 and h1 lose the value domain of h2, which makes the order of hash
function become important.

In practice, the objects having the same hash values are put in the same
set called a bucket. Each bucket uses the key as the hash value of all objects
as the bucket key.

Figure 3.2 presents how the LSH technique supports the ANN search
problem. The binary “Hash Functions H” is the key component in the stages
of hash table building and searching. First of all, the binary hash values of
all the points in “Dataset X” need to be calculated. The “Hash Table H”
includes multiple buffers that are indexed by different binary/decimal values.
The items in “Dataset X” are sorted by their binary hash values in the “Hash
Table H”. When the query q approaches the system, the hash value for q
needs to be calculated using the same “Hash Functions H”. In this example,
if the hash value of q is [00..00], then the identical bucket of q is the blue
buffer. After comparing the distances of q with all the items on that bucket,
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Figure 3.2: An illustration of locality-sensitive hashing

we can return the item x2 as the ANN of q. In another case, if the hash
value of q is [00..01], x3 will be the ANN of q [73, 74, 75].

The LSH technique can also groups similar objects into the same bucket
(or cluster), just like a typical clustering technique does; However, the
outcome of the LSH technique cannot fully satisfy the general objectives
of the cluster analysis problem because the locality-sensitive factor cannot
fully reflect the dissimilarity factor. Besides that, the number of the clusters
cannot be determined as the user desire. This makes the optimization
techniques like k-means-like algorithms become much more suitable for
cluster analysis problems. In this study, LSH is used indirectly for grouping
objects at the stage of predicting the initial clusters.

3.3 Dissimilarity measures for categorical data

As we mentioned, the dissimilarity measures for categorical data are very
important because they determine how similar and different unique categor-
ical values are. The dissimilarity measures can be divided into two types:
context-free measures and context-sensitive measures [45].

3.3.1 Context-free measures

Context-free measures are the ones that consider the attributes to work
completely independently. Therefore, the dissimilarity values are decided
within a single attribute’s domain for a pair of categorical values.
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The overlap function is the most basic context-free measure, which uses
the number of mismatch values in all attributes as the dissimilarity value (see
equation (2.6)). More advanced measures that can be taken into account the
frequency of categorical values in the domain, namely Goodall, Smirnov,
Anderberg, Lin, Burnaby, Gambryan, OF, IOF, and Eskin [45].

3.3.2 Context-sensitive measures

For the purpose of applying LSH to handle categorical data, context-free
measures are not enough because the sensitive factor is not considered in
these measures. In contrast, context-sensitive measures can be applied the
sensitive factor for different categorical values in different attribute domains.

Some context-sensitive measures that can be listed are Association based
similarity measure [44], Distance Learning Dissimilarity for Categorical Data
(DILCA) [43], and CBDL [76]. Among them, DILCA is the simplest context-
sensitive measure and widely applied [45].

In this research, we select DILCA to generate the dissimilarity matrices
for data attributes.

3.4 Maximum cut

In the context of graph theory, the maximum cut or Max-Cut problem is the
problem that finds the cut of edges in the graph, such that the total sum
of weights on the cut is the highest overall possible cuts that can divide the
nodes of the graph into two complementary sets [77]. Stoer-Wagner is the
simplest algorithm that can solve the maximum cut problem [77].

The maximum is widely used to find two disjoint complementary sets in
the graph [77]. In this study, we use the maximum cuts to estimate the
suitable thresholds for the LSH hash functions.

3.5 Related works

3.5.1 Locality-Sensitive Hashing Technique for Cate-
gorical Data

Because of the disadvantages of the categorical data, few pieces of research
have applying the sensitive hashing technique to the categorical data. Indeed,
the locality-sensitive hash value is the consequence of the similarity measure,
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but the similarity of categorical values is not as clear as the similarity of
numerical values [78, 79].

Lee et al. (2016) proposed the use of hierarchical clustering to partition
the categorical domains to build the locality-sensitive hash functions. The
data-driven measures such as IOF, OF, or Goodall were used to group the
clusters in the hierarchical clustering [79]. The proposed method of Lee et
al. can be described as:

• Computing the statistical measures of each value on each attribute
based on their frequencies.

• Calculating the semantic distance matrices for all pairwise combina-
tions of categorical values on all attributes.

• For each attribute, conducting the hierarchical clustering using their
semantic distance matrix.

• Defining the LSH hash functions for all attributes and combine them
to form a family of hash functions.

• Generating the hash table with the obtained family of hash functions.

This method was applied to the kNN classification problem with the
United States (US) census (1990) dataset, which comprises 68 categorical
attributes for 2,458,285 records. As a result, the method can archive a recall
of 86.1% with around a third of the number of computations compared with
the conventional methods. However, Lee et al.’s method does not consider
the information gain of the hash functions. Although each hash function
can give different outcomes based on its entropy, the hash functions were
randomly selected among all feasible hash functions [80].

In addition, while the data-driven dissimilarity measures gave the differ-
ences between categorical values, the cross frequencies of values were ignored.
That makes the prediction of clusters inaccurate in the initial process.

3.5.2 MinHash k-Modes (MH-k-Modes)

McConville et al. (2016) proposed the so-called MH-k-Modes as an extension
of k-Modes algorithm to accelerate the clustering process for big categorical
data [32]. Specifically, MH-k-Modes uses the advantages of the MinHash
technique in hashing the document data to build the relevant family of hash
functions [32, 81].

A family of MinHash hash functions of l functions in the dataset X is
defined as SIGX = {s1, . . . , sl}. For example, if the document with t rows
{r1, . . . , rt} is given, the MinHash value for the document by the ith hash
function hi can be obtained as si = min(hi(rj)|j = 1, . . . , t). The Cyclic
Redundancy Check (CRC) is a common locality-sensitive hash function for
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word/text data. In detail, the rows of document are segmented into shingles
of 3 words, the authors then applied CRC for the shingles to obtain the 32
or 64 bit crisp numbers as the hash values [82].

Similar to other LSH methods, MH-k-Modes builds a hash table for the
dataset to store the hash values and the neighbors of all document objects. In
practice, MH-k-Modes uses the neighborhood of an object to find a shortlist
of candidate clusters for that object. The overview of the MH-k-Modes
algorithm can be described as:

• Selecting k initial modes from the dataset.
• Assigning membership degrees for all objects based on their similarities

with the modes.
• Applying the MinHash hash function to each object, building the hash

table for the dataset, storing the indexes of objects with the same hash
values into the same bucket, and creating the cluster reference for each
object based on its bucket.

• From the computed shortlist of each object, finding the nearest mode
in the shortlist instead of all lists of all modes and updating the
memberships.

• Recomputing the values of all modes according to the original k-Modes
algorithm.

• Repeating the last two steps until no object changes their memberships
or the limited number of iterations is reached.

An obvious drawback of Mcconville et al.’s method is the unstable size of the
item’s shortlist. Because the bucket size cannot be determined [73], several
buckets can have long shortlists while others can have very few candidates
on their shortlists. For instance, if there exists a bucket that contains only
one item, the shortlist of that item has only one cluster. Besides, because
the hash value of that item does not change during the clustering process,
the item belongs to a cluster only.

In our research, we were inspired by the idea of creating shortlists of
items. However, to solve the problem of Mcconville et al.’s method, we
use the dynamic shortlists of clusters instead of static shortlists of items.
Furthermore, we use the information from LSH hash values to generate the
initial clusters.

3.6 Summary

In this chapter, we remark on the research backgrounds that are used in
our research. In detail, the principles of LSH is applied to predict the semi-
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clusters while context-sensitive measures and maximum-cut solution help to
achieve the good LSH hash functions. Moreover, the principle, advantages,
and disadvantages of the related research with this research are also briefly
shown in this chapter.

In the next chapter, we describe in detail the mechanism of applying these
research backgrounds into our framework.
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Chapter 4

LSH-k-prototypes: a framework
for fast clustering of big mixed
data

4.1 Introduction

In this chapter, we describe the principle of our proposed method in detail.
Particularly, we take advantage of the well-defined cluster representation of k-
representatives and improve the k-representatives algorithm in two different
directions: cluster initialization optimization and iteration optimization. The
proposed algorithms are called LSH-k-prototypes and LSH-k-representatives
in this thesis, the main stages of them are shown in Figure 4.1 [83].

4.2 LSH-k-prototypes initialization

4.2.1 Creating dissimilarity matrices for categorical data

This section only introduces the dissimilarity calculation of categorical data
because dissimilarity calculating of numerical data is simple and there are
no issues to argue with. Dissimilarity calculating is extremely important for
categorical data because it supports to describe the correlations of categorical
values. Observatory, the overlap dissimilarity function (see equation (2.6))
is too simple to take advantage of. In addition, the values of dissimilarity
matrix of overlap measure are symmetric, which does not support to find
the groups of similar categorical values in a categorical domain. Thus, we
choose to apply DILCA measurement to explore the dissimilarity between
categorical values. In the context of DILCA, the dissimilarity between two
categorical values in the d-th dimension can be calculated as:
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Figure 4.1: Overview of the proposed clustering framework

δ(adi, adj) =

√∑
Ad′∈context(Ad)

∑
ad′∈Ad′

(Pr(adi|ad′)− Pr(adj|ad′))2∑
Ad′∈context(Ad)

|Ad′|
(4.1)
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where context(Ad) is the context set of attributes Ad′ that contains highly
correlated attributes to Ad, and Pr(|) is the formula for the conditional
probability.

Table 4.1: Semantic dissimilarity matrix for attribute Ad with Nd = |Ad|
categorical values

ad1 ad2 ad3 . . . adNd
ad1 0 δ(ad1, ad2) δ(ad1, ad3) . . . δ(ad1, adNd)
ad2 δ(ad2, ad1) 0 δ(ad2, ad3) . . . δ(ad2, adNd)
ad3 δ(ad3, ad1) δ(ad3, ad2) 0 . . . δ(ad3, adNd)
. . . . . . . . . . . . . . . . . .
adNd δ(adNd , ad1) δ(adNd , ad2) δ(adNd , ad3) . . . 0

It is true that the tasks of measuring the dissimilarity between categorical
objects can be repeated for the same pairs of categorical values during the
clustering process. In addition, the complexity of DILCA measurement is
also high. Therefore, it is better to pre-calculate the dissimilarity values for
each pair of categorical values in each domain and store them to reduce the
processing time. Table 4.1 shows an example of a dissimilarity matrix for
categorical attribute Ad, each cell of the matrix is filled by using equation
(4.1).

4.2.2 LSH hash table generation

In this step, we ought to create the LSH hash table for the dataset.
However, the dissimilarity measurements of numerical and categorical data
are different, we will introduce the LSH hash functions for numerical and
categorical data separately.

4.2.2.1 LSH functions for numerical data

Depending on the characteristic of the numerical data, different kinds of LSH
functions can show the different effectiveness. The popular LSH functions
can be used: E2LSH, random projection function, and random hyperplane
based LSH for L1 distance [73, 84, 85].

In this study, the numerical attributes are concatenated and then the
random threshold projection functions is then applied to hash the data [85]:

ĥd(xid) =

{
0, if xid > Td

1, otherwise
, 1 ≤ d ≤ D and Ad /∈ A (4.2)
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where Td is the random scalar number in the range of all values in attribute
Ad.

4.2.2.2 LSH functions for categorical data

We propose to use the binary partitioning space on each categorical domain
to formulate the hash function, such that similar categorical values give the
same hash value for that domain. There are several techniques that can sub-
divide the domain into two locality-sensitive subsets. We use Stoer-Wagner
algorithm [77] for this task because of its simplicity and low complexity.

First, for creating the dissimilarity graphs for categorical attributes, we
use the dissimilarity matrices from the previous step. The nodes of the
graphs are created by the unique categorical values and the weights of the
edges are created from the dissimilarity values between corresponding unique
categorical values. A complete undirected graph is then formed based on a
categorical attribute. Note that D2 is the number of categorical attributes,
so we can create D2 complete undirected graphs in total.

Second, for creating the hash function for each categorical attribute, the
Stoer-Wagner algorithm is directly applied to find the maximum cut on each
graph. The maximum cut separates the domain into two subsets, such that
the nodes (categorical values) on the same subset are tending similar to each
other. An example of applying the Stoer-Wagner algorithm to categorical
attribute is shown in Figure 4.2.

ad1 ad2

ad4
ad3

0.89

0.12

0.56

0.05
0.52

0.73

Maximum cut

Figure 4.2: Maximum cut on graph of dissimilarity matrix
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Ad1 and Ad2 (the subset order does not affect the accuracy of the
algorithm) denote the two subsets in the d-th attribute, the hash function
for categorical attribute can be formulated as:

ĥd(xid) =

{
0, if xid ∈ Ad1

1, otherwise
, 1 ≤ d ≤ D and Ad ∈ A (4.3)

4.2.2.3 Hash table generation for mixed data

So far, we have D LSH hash functions for two different types of data, then
select l hash functions to index the dataset and build the hash table H:

H = [h1, . . . , hl], with hi ∈ {ĥ0, . . . , ĥD}, 1 ≤ i ≤ l (4.4)

Depending on the attribute type, the hash function should be selected
accordingly (equation (4.2) or (4.3)).

The objects having the same hash values are stored in the same bucket
Bj (0 ≤ j ≤ 2l − 1) with the key value of j:

Key(Bj) = j = H(x)|∀x ∈ Bj, 0 ≤ j ≤ 2l − 1 (4.5)

The overall process of constructing the hash table of the dataset is
summarized in Algorithm 4.1.

Algorithm 4.1 Proposed hash table generation for categorical dataset

Input: X,Ai(1 ≤ i ≤ D), l
Output: Hash table H

1: Use DILCA to create the distance matrix between values for each
categorical attribute.

2: Generate the hash function for each attribute.
3: Select l attributes randomly. Create the family of hash functions H =

[h1, . . . , hl].
4: H ← [B0, B1, . . . , B2l−1] ← [∅, ∅, . . . , ∅]
5: for Object x in X do
6: hashValue ← H(x)
7: BhashValue ← BhashValue ∪ {x}
8: end for
9: return H

Moreover, different categorical attributes may affect differently to the
clustering results (see Figure A.1 for more detail), it is better to select the
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“good” attributes for the hashing system [99]. We propose to select l hash
functions with the highest total of weights in the maximum cuts to build the
hash table. MCd denotes the set of edges in the maximum cut of the d-th
attribute. The average weight can be calculated as:

γ̂d =
∑

{adj ,adj′}∈MCd

Weight({adj, adj′})
|MCd|

(4.6)

where Weight({adj, adj′}) = δ(adj, adj′) is the weight of edge {adj, adj′} in the
graph of the d-th dissimilarity matrix. The l hash functions with the highest
average maximum cut weights are then selected for building the hash table:

H = [h1, . . . , hl] where hj ∈ {ĥd|1 ≤ d ≤ D}, (1 ≤ j ≤ l) (4.7)

subject to:
∀1 ≤ i, j ≤ l if j > i then γi ≥ γj (4.8)

where γi is the corresponding average maximum weight of hash function hi.
Because our contribution is mainly for creating categorical hash func-

tions, in the current version of our proposed method, the hash functions of
categorical attributes have higher priorities than those of number numerical
attributes. In this case, if l ≤ |A| we select the hash functions by equation
(4.7). In contrast, if l > |A|, we select l hash functions of categorical
attributes and select |A|− l hash functions of numerical attributes randomly.

4.2.3 Cluster prediction

LSH hash tables are commonly used for ANN search problems, but in this
research, we use LSH hash tables to predict the potential clusters for the
clustering problem. Similar to the principle of the data cluster, objects in the
same bucket are more likely to be similar to each other. Thus, we propose to
take advantage of these buckets to predict the cluster centers. The detailed
procedure of cluster prediction is shown in Algorithm 4.2, which includes
three main steps:

First, to make sure the number of buckets is larger than the number of
clusters (k < 2l � N), we must select the suitable number of hash functions
l. Note that, if the number of buckets is too high, the required computation
is also high. We recommend using a slightly higher number of the bucket
just than the number of clusters k.

Second, the big buckets have a high potential to become clusters. Hence,
the k biggest buckets are selected as the semi-cluster in our prediction
method.
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Then, each smaller bucket is merged into a semi-cluster (core bucket)
based on the Hamming distance between their keys. Thus, a predicted cluster
is formed from a semi-cluster and neighborhood buckets.

Algorithm 4.2 LSH-based cluster initialization

Input: Dataset X, k, hash table H containing 2l buckets
Output: k initial clusters Ĝ

1: Select k buckets having the highest number of objects:
Ĥ = [B̂1, . . . , B̂k], with B̂i ∈ H; ∀i, ∀j 6= i, B̂i 6= B̂j

subject to |B̂i| ≥ |B̂i+1|, i = 1, . . . , k − 1
and |B̂k| ≥ |Bi|, ∀Bi ∈ (H \ Ĥ)

2: Get the remaining buckets : H̃ = H \ Ĥ
3: for each bucket B̃i in H̃ do
4: b ← arg minB̂j∈Ĥ DisHamming (Key(B̃i),Key(B̂j))

// Note that: Key(B̃i) and Key(B̂j) return the keys of the based
buckets on H.

5: b← b ∪ B̃i

6: end for
7: return Ĥ

Figure 4.3 shows a visual example when using similarity of buckets for
cluster prediction.

4.2.4 Optimizing number of hash functions l

To work effectively, it is necessary to have a hash table with the number
of non-empty buckets greater than the number cluster k for our method.
However, because the sizes of buckets are unpredictable, selecting a suitable
number of hash functions l is tricky. Ideally, our method can work effectively
when the number of non-empty buckets is the same as the number of cluster
k, but in practice, we suggest selecting the number of hash functions l so that
the number of maximum buckets is twice the number of clusters k, thereby
l ≈ log2(k) + 1. In case the number of non-empty buckets is smaller than
k, we can increase the number of hash functions l to 1 or just proceed with
empty core bucket(s).

4.3 LSH-k-prototypes iteration

In every iteration of the k-means-like algorithm, it is required to compute the
distances from all objects to all cluster representations, which dramatically
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Figure 4.3: Illustration of cluster initialization based on LSH

increases the clustering time of the k-means algorithm for a large dataset or
dataset with a high number of clusters k. As the result, in the literature
chapter, some studies try to reduce the number of objects or reduce the
complexity of distance calculations. However, we focus on a new approach
that can also reduce the computation of algorithms by avoiding unnecessary
distance computations.

In fact, in each iteration, it needs to find the nearest cluster representation
for each data, and an object is more likely to be remained in this own
cluster or moved to a nearby cluster. Therefore, we recommend looking
for the nearest cluster representation of each object in a portion of all
cluster representations, this portion is called a shortlist for each cluster.
k′ denotes the size of cluster neighborhood, such that 0 < k′ ≤ k, and
Shortlist(Gj) denotes the set of neighborhood clusters for cluster Gj, such
that |Shortlist(Gj)| = k′ for 1 ≤ j ≤ k.

Figure 4.4 presents an example of using shortlists to find the nearest
clusters in the case of k = 64 and k′ = 8. For instance, if an object is
currently belonging to cluster 1, in the next iteration, the object has the
possibility to move to either of clusters 0, 9, 26, 29, 32, 37, 43, 50, or 1. As
such, the number of distance computations for reassignment is reduced by a
factor of k/k′ = 8 at each iteration.

The initialization shortlists of all clusters can be easily obtained by
using the Hamming distance between semi-clusters in the previous step. In
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Figure 4.4: Graph visualization of 8-nearest clusters for searching in the case
of 64 clusters

each iteration, the shortlists are also updated when the values of cluster
representations are changed.

After the clusters are predicted, the membership matrix U can then be
established.

4.3.1 Updating prototypes

Our method utilizes the improved prototype to handle the mixed data. To
simply, from now on, the improved prototype in section 2.3.3.2 is called
prototype. Remark that, the prototype is the set that is notated as P =
[p1, . . . ,pk] and each prototype is a mixed structure of numerical values and
categorical probabilities. Because our prototypes are the mixed structure of
numerical values and representatives values, the update formula of prototype
also includes two parts (equations (2.15) and (2.20)):

pjd =

{(∑N
i=1 uijxid

)/(∑N
i=1 uij

)
, if Ad /∈ A

[(vd,PrGj(vd))|vd ∈ Ad], otherwise
, 1 ≤ d ≤ D, 1 ≤ j ≤ k

(4.9)
where PrGj(vd) is the probability of categorical value vd that appears in
cluster Gj.
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4.3.2 Updating cluster neighborhoods

After the values of prototypes are changed, the neighborhoods of them need
to be updated accordingly. Note that, after the first iteration, the semi-
cluster may not be the center of cluster anymore. Thus, we need to directly
use the prototypes to compute the neighborhoods or shortlist. Based on the
distance function (see equation (2.30)) from an object to a prototype, we can
develop the distance function from between prototypes as:

Dis(pi,pj) = ω
D∑
d=1
Ad∈A

√∑
vd∈Ad

(
PrGi(vd)− PrGj(vd)

)2
+(1− ω)

√√√√√ D∑
d=1
Ad /∈A

(pid − pjd)2
(4.10)

In a word, the equation above includes the weighted sum of two Euclidean
measurements of representatives or prototypes.

The neighborhood of each cluster is then recalculated by finding the k′

nearest prototypes for the prototype of every cluster.

4.3.3 A variant of shortlist updating method using
shortlist rotation

Because the required number of distance calculations of the original shortlist
updating method is k(k − 1)/2; when the number of clusters is too large,
the effectiveness of this method is reduced. For dealing with datasets having
massive numbers of clusters k (say, k ≥ 512), we propose to use the same
shortlists created at the initialization stage with a rotation operation defined
as follows instead of computing the shortlist of a cluster after each iteration.

Ŝhortlist(Gj) denotes the initial shortlist of the j-th cluster (1 ≤ j ≤ k)
that is achieved from the cluster prediction stage. At the “iter”-th iteration,
the shortlist of cluster Gj is determined by:

Shortlistiter(Gj)← Ŝhortlist(Gj′), 1 ≤ j ≤ k

where j′ = ((j − 1 + iter) mod k) + 1
(4.11)

This modification with shortlists rotated for our LSH-k-representatives
algorithm is called LSH-k-representatives(RS) in this dissertation. However,
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this approach may cause biases for the clusters that have high frequencies
among all shortlists. To avoid such potential biases, we limit the numbers
of presences of all clusters to k′ among all shortlists. In addition, each
cluster itself must be included in its own current shortlist. Note that, these
constraints are also applied when updating the shortlist using equation (4.10).

This rotation approach dramatically drops the required distance com-
putations between cluster representatives. However, the accuracy of LSH-
k-representatives(RS) is expected to be slightly reduced compared to its
original version of the technique of shortlist updating.

Consequently, for LSH-k-representatives algorithm, we have two differ-
ent LSH-k-representatives(H) and LSH-k-representatives(RS) with different
techniques to update the shortlists during the clustering iterations.

4.3.4 Updating degree of membership

To update the degree of membership for every object, we examine the dis-
tance (see equation (2.30)) from objects to cluster prototypes that belonging
to the shortlist of the current cluster. The objects are join the clusters that
are closest to them:

uij =

1, if j = arg min
j′|Gj′∈Shortlist(Gj[i])

Dis(xi, rj′)

0, otherwise
, 1 ≤ i ≤ N, 1 ≤ j ≤ k

(4.12)

4.4 LSH-k-prototypes algorithm

With the previously developed phases of cluster initialization (sections 4.2)
and iteration (section 4.3), we are now ready to formulate the proposed
clustering method based on LSH and nearest-neighbor search as summarized
in Algorithm 4.3 below.
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Algorithm 4.3 Proposed LSH-k-representatives algorithm

Input: Categorical dataset X, k, l, max iter
Output: prototypes P , membership matrix U for k clusters that optimize
the objective function in equation (2.24).

1: Extract the attribute domains from the dataset.
2: Generate the hash table H with l hash functions by Algorithm 4.1.
3: Create k initial clusters by Algorithm 4.2 using the previously gener-

ated hash table H.
4: for i←0 ; i < max iter; i← i+ 1 do
5: Fix U , calculate the corresponding P̂ via equations (2.19)–(2.20).
6: P ← P̂
7: Re-construct Shortlist(Gj) for j = 1, . . . , k.
8: for each object x in X do
9: Call Gj the current cluster that holds x.

10: Retrieve the corresponding Shortlist(Gj).
11: Calculate the distances from x to the prototypes in Shortlist(Gj) by

equation (2.22).
12: Update U : Assign x to the closest cluster via equation (4.12).
13: end for
14: if U is unchanged then
15: Break the loop.
16: end if
17: end for
18: return P,U

4.5 LSH-k-representatives: a modification of

LSH-k-prototypes for clustering categori-

cal data

To clarify, LSH-k-prototypes is proposed to handle general mixed data, in the
iterations of LSH-k-prototypes, the processes are also divided into two parts:
processing numerical data and processing categorical value. Besides that, our
proposed LSH-based cluster prediction method is mainly established from
categorical attributes, we thus make a modification of LSH-k-prototypes so-
called LSH-k-representatives that focus on handling categorical attributes
only. Therefore, all the attributes in the categorical datasets are assumed to
be the categorical attributes:
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∀1 ≤ d ≤ D,Ad ∈ A (4.13)

In this chapter, the experiments are also divided for showing the clustering
results of LSH-k-prototypes and LSH-k-representatives.

4.6 An illustrated example on soybean-small

dataset

To further clarify how the proposed method works, this section shows an
example of applying our LSH-based cluster prediction technique into the
soybean-small dataset which is the smallest UCI categorical dataset.

First of all, Figure 4.5 shows the DILCA dissimilarity matrices of 21
categorical attributes in the soybean-small dataset, the black color represent
the high dissimilarity between two corresponding pair of categorical values.
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Figure 4.5: Dissimilarity matrices of 21 attributes in the soybean-small
dataset

Next, suppose that we want to create the hash table with l = 5 hash
functions, we then select A18,A19,A17,A11, and A15 to create the 5 hash
functions because these attributes have the highest average maximum cut
values as 0.398, 0.398, 0.376, 0.356, and 0.348, respectively.

After that, we can create the five corresponding hash functions as:
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h1(xi) =

{
0 , if xi18 = 1

1 , otherwise
h2(xi) =

{
0 , if xi19 = 1

1 , otherwise

h3(xi) =

{
0 , if xi17 = 1

1 , otherwise
h4(xi) =

{
0 , if xi11 = 1

1 , otherwise

h5(xi) =

{
0 , if xi15 = 1

1 , otherwise

(4.14)

From these hash functions, we can calculate the hash values for all objects
in the dataset by using the family of hash functions H = [h1, h2, h3, h4, h5].
All hash values of all categorical objects are shown in Table 4.2, the objects
are also colored with different colors depending on their hash values.

Table 4.2: Hash values of 47 objects in the soybean-small dataset

Object x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

H(x) 28 28 28 28 28 28 28 28 28 28 5 5

Object x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24

H(x) 5 5 5 5 5 5 5 5 27 31 27 31

Object x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36

H(x) 31 25 27 31 27 31 29 29 29 29 29 29

Object x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47

H(x) 29 29 29 29 29 29 29 29 29 29 29

It is interesting that, with l = 5, we can have up to 25 = 32 different hash
values or bucket IDs but there are only 6 non-empty buckets. The buckets
are arranged in descending order of size as follows: B29 = {x31, . . . ,x47},
B28 = {x1, . . . ,x10}, B5 = {x11, . . . ,x20}, B31 = {x22,x24,x25,x28,x30},
B27 = {x21,x23,x27,x29}, and B25 = {x26}.

Remind that because we want to have 4 clusters for the soybean-small
dataset (k=4), we can select 4 biggest buckets as the core buckets as
B29, B28, B5, and B31. Therefore, objects in buckets B27 and B25 must be
moved to the nearest core bucket.

The Hamming distances between B27 and B25 to the core buckets can be
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known as:

Hamming(27, 29) = 2 Hamming(25, 29) = 3

Hamming(27, 28) = 3 Hamming(25, 28) = 2

Hamming(27, 05) = 4 Hamming(25, 05) = 5

Hamming(27, 31) = 1 Hamming(25, 31) = 2

(4.15)

Next, because B31 is the nearest core bucket for B27 and B28 is the nearest
core bucket for B25, we need to move objects from B27 to B31 and objects
from B25 to B28. Thereby, we can illustrate the four predicted clusters with
different colors in Table 4.3.

Table 4.3: Prediction labels for soybean-small dataset

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24

x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36

x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47

Table 4.4: Ground-truth labels for soybean-small dataset

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24

x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36

x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47

Compare to the ground-truth labels of soybean-small dataset in Table
4.4, our method assigns the wrong labels for only one object x26. Eventually,
our LSH-based cluster prediction technique can predict labels correctly for
up to 46/47 objects in the soybean-small dataset, which is equivalent to the
Purity score of 0.98 (98%) for using the initial step only.

4.7 Experiments and Results
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4.7.1 Datasets and testing environments

16 UCI categorical datasets, large synthetic categorical datasets, and a big
real-world categorical dataset US Census are used in our experiments. The
descriptions of these datasets are as follows:

4.7.1.1 16 UCI categorical datasets

The 16 UCI categorical datasets were obtained from UCI repository [86].
These datasets are broadly utilized by numerous studies in classification and
clustering with categorical data or mixed data. The characteristics of these
datasets are depicted in Table 4.5, the range outline of the likeness of pairwise
objects (Visual Assessment of Tendency (VAT) [87]) in these datasets appears
in Figure 4.6.
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Figure 4.6: Visual Assessment of Tendency (VAT) charts of 16 UCI datasets

49



Table 4.5: Common categorical datasets

Name #Items #Attributes #Classes Type
Soybean small 47 21 4 Categorical
Audiology 226 21 4 Categorical
Zoo 101 17 7 Categorical, Integer
Tae 151 5 3 Categorical, Integer
Hayes-roth 132 5 3 Categorical
Dermatology 366 34 6 Categorical, Integer
Soybean 683 35 19 Categorical
Connect 10,000 42 3 Categorical
Chess 3,196 36 2 Categorical
Breast 699 9 2 Categorical
Car 1,728 6 4 Categorical
Mushroom 8,124 22 2 Categorical
Splice 3,190 60 3 Categorical
Vote 435 16 2 Categorical
Lymph 148 18 4 Categorical
Lung 32 56 3 Categorical

4.7.1.2 Large synthetic categorical datasets

In order to justify the scalability of our proposed algorithm, the Datagen
Dataset Generator is utilized to generate numerous synthetic categorical
datasets with different variants of distributions for different clusters [88].
Furthermore, the hidden rules for decision-making problems were also applied
for all clusters for increasing the context-sensitive factor of generated objects.
In particular, the dataset size is in the range of 210 to 228 (1,024 to
268,435,456), the number of clusters is altered from the range of 23 to 29

(8 to 512), and the number of attributes is ranged from 23 to 24 (8 to 16).

4.7.1.3 Large real categorical dataset (US Census)

The US Census dataset which includes 1,048,575 categorical objects with 68
attributes was used to justify the capacity of our proposed method in terms of
handling real large categorical data [86]. Because the raw US Census dataset
has no labels, we conduct the clustering multiple time with different values of
the number of clusters k to preset the benchmark labels. In this case, we can
use the basic metrics to compare the effectiveness of the compared methods.

50



4.7.1.4 Testing environments

We select the competitors whose source codes are available to compare the
performances including: k-means++ [37], k-means|| [36], k-modes [40], Cao
[42], k-representatives [15] (k-reps for short), MH-k-modes [32], and mk-
centers [89] (mk-cens for short). All source codes, including both competitors
and our methods, are written by Python programming language. All
experiments were conducted by a high-end computer cluster with Intel Xeon
G-6240M 2.6GHz (18 Cores × 4) CPU.

4.7.2 Evaluation metrics

The evaluation metrics are categorized into two headings: complexity metrics
and effectiveness metrics. For complexity analysis, the following concepts are
used:

• Convergence: The average number of iterations until converged can
show the convergence factor of k-means algorithms.

• Time complexity: Total running time of compared methods together
with their preprocessing time is measured as the practical complexity
of clustering algorithms. Moreover, the average running time for each
iteration can show the relative complexity of k-means-like algorithms.

• Space complexity: The average and the peak memory of each clustering
method are utilized to compare the space complexity of compared
clustering methods.

For justifying the clustering effectiveness, the accuracy of outcome clus-
ters was evaluated by comparing with the ground-truth labels of datasets.
Let G∗ = {G∗1, . . . , G∗k} be the ground-truth clusters of all objects and
G = {G1, . . . , Gk} be the outcome clusters of the algorithms, the groups
G can be inferred from the membership matrix U . Technically, the following
metrics are utilized:

• Recall, Precision, and Accuracy scores: These metrics are the simplest
effectiveness metrics that are commonly used in the supervised learning
research field [90]. In particular, these metrics consider the number of
matches and discrepancies of the outcome labels and the ground-truth
labels of all pairwise objects; and normalize these scores into the scale
of zero-match (0) and perfect-match (1).

• Purity score: This metric seeks the highest ratio of correct assignments
between G∗ and G:
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Purity(G,G∗) =
1

N

k∑
i

max
j|1≤j≤k

|Gi ∩G∗j | (4.16)

It is clear that with a high number of clusters k, the high value of
Purity can be obtained. Therefore, we need other metrics to evaluate
the clustering results with a high number of clusters k.

• Normalized Mutual Information (NMI) score: The range of NMI is
valid from 0 (no mutual information) to 1 (perfect match): the NMI
score between two sets of clusters can be computed as:

NMI(G,G∗) =
MI(G,G∗)

mean(H(G),H(G∗)) (4.17)

where H(G) is the entropy value of set of clusters G:

H(G) = −
k∑
i=1

|Gi|
N

log
( |Gi|
N

)
(4.18)

and MI(G,G∗) is the cross entropy of G and G∗:

MI(G,G∗) =
k∑
i=1

k∑
j=1

|Gi ∩G∗j |
N

log
(N |Gi ∩G∗j |
|Gi||G∗j |

)
(4.19)

• Adjusted Rand Index (ARI): This metric can be used to determine
whether two sets of clusters G and G∗ are similar to each other or not:

ARI(G,G∗) =
RI(G,G∗)− E[RI(G,G∗)]

max(RI(G,G∗))− E[RI(G,G∗)] (4.20)

where RI(G,G∗) or Rand Index (RI) is the number of pairs of objects
that together belong G and G∗ at the same time; E[RI(G,G∗)] is the
expectation of RI(G,G∗) and max(RI(G,G∗)) is the largest value of RI
over all permutations.

• Adjusted Mutual Information (AMI) score: This metric can normalize
the entropy of each clustering (NMI score) with the average and
expectation of pairs of all clusters (ARI score):

AMI(G,G∗) =
MI(G,G∗)− E[MI(G,G∗)]

mean(H(G),H(G∗))− E[MI(G,G∗)] (4.21)

• Homogeneity score: This metric plays an important role for checking
whether each cluster in the outcome clusters contains data objects
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belonging to a single class in the ground-truth clusters:

Homogeneity(G,G∗) = 1− H(G|G∗)
H(G)

(4.22)

with H(G|G∗) being the conditional entropy of G when giving G∗:

H(G|G∗) =
k∑
i=1

k∑
j=1

|Gi ∩G∗j |
N

log
( |Gi ∩G∗j |
|G∗j |

)
(4.23)

• Silhouette score: This metric is widely used for evaluating the un-
supervised learning techniques as this does not use the ground-truth
labels. In detail, Silhouette metric blends the average of the inter-
cluster distance and the average of outer-cluster distance:

Silhouette(G) =
WGSS∗(G)− BGSS∗(G)

max(WGSS∗(G),BGSS*(G))
(4.24)

where WGSS∗(G) and BGSS∗(G) are the average of inter-cluster dis-
tance and the average of outer-cluster distance, which can be delivered
from WGSS and BGSS functions (see equations (2.8) and (2.9)).

4.7.3 Results on categorical data

For handling categorical datasets, our method can perform the processing for
categorical data parts only. In that case, the prototypes become the repre-
sentatives. Thus, in this section, our method is called LSH-k-representatives
or LSH-k-reps for short. Besides that, for a fair comparison, LSH-k-reps also
have two versions LSH-k-reps(Init) and LSH-k-reps(Full); LSH-k-reps(Init)
is the proposed method that applies the LSH cluster prediction optimization
only; while LSH-k-reps(Full) is the complete LSH-k-reps method including
cluster initialization optimization and cluster iteration optimization.
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4.7.3.1 Time complexity analysis
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Figure 4.7: Time complexity analysis of LSH-k-prototypes

Figure 4.7 shows the complexity of out LSH-k-prototypes in the context
of four main parameters: number of objects N , number of attributes D,
maximum iteration number iter max, and number of clusters k. It is clear
that our method has linear complexity for the variables N , D, iter max, and
k. In terms of the maximum number of iterations iter max, because our
method is converged at iteration 13, the algorithm stops at this iteration.
Which makes the clustering times are the same when we set the iter max
higher than 13. In terms of the number of clusters k, the pattern is quite
similar to the nonlinear complexity pattern. This can be explained by that
when clustering data with a higher number of clusters k the method needs
more iterations to be converged. Overall, the time complexity of our method
is O(NDkt), where t is the number of required iterations.
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4.7.3.2 LSH-based cluster prediction technique analysis
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Figure 4.8: Purity scores for different numbers of hash functions l on the
Soybean dataset

In Figure 4.8, we experiment with the accuracy of clustering with the different
number of hash functions l for the soybean dataset. As a piece of evidence,
because the task of hash values with a high number of hash functions
requires more computation than it with a lower number of hash functions,
the computation time is increasing followed by the increasing of the number
of hash functions. On the other hand, when the number of hash functions is
too small, the number of core buckets is insufficient, which leads to the poor
result of clustering accuracy. Likewise, if the number of hash functions is too
high, the number of small buckets is too high and the size of core buckets is
inconsiderable, which also leads to the reduction of clustering performance.
For soybean-small, the optimal value of the number of the hash functions is
20 and the acceptable value of the number of hash functions is in the range
from 9 to 20.

4.7.3.3 Results on 16 UCI categorical datasets

The comprehensive comparisons on the clustering effectiveness between the
proposed method and with other competitors are shown in Tables 4.6, 4.7,
4.8, 4.9, 4.10, 4.11, 4.12, and 4.13. Each table shows the average outcome
value of an evaluation metric. In this experiment, we take the averages
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records for 128 times with different random seed for each method in each
dataset.

At a glance, LSH-k-reps(Init) outperforms other clustering techniques in
most of the evaluation metrics, namely Purity, AMI, ARI, Accuracy, and
Precision. Besides that, LSH-k-reps(Init) also gives comparable results for
NMI, Homogeneity, and Recall.

Table 4.6: Purity result
Dataset kkk-means++ kkk-means|| kkk-modes Cao kkk-reps mkmkmk-cens

MH-kkk-
modes

LSH-kkk-
reps(Init)

LSH-kkk-
reps(Full)

Soybean small 0.6596 0.6596 1.0000 0.7660 1.0000 1.0000 1.0000 1.0000 1.0000
Audiology 0.2200 0.2450 0.2000 0.2200 0.1700 0.2200 0.2400 0.2900 0.0650
Zoo 0.6733 0.6733 0.6634 0.6139 0.6634 0.6634 0.7030 0.9307 0.9307
Tae 0.4106 0.4172 0.3907 0.3907 0.4106 0.3907 0.3841 0.3907 0.3907
Hayes-roth 0.3333 0.3939 0.3485 0.3333 0.3409 0.3333 0.3333 0.3788 0.3788
Dermatology 0.7486 0.6120 0.6230 0.7158 0.6311 0.5355 0.6311 0.6066 0.7240
Soybean 0.4978 0.4963 0.2972 0.3236 0.5476 0.6223 0.4656 0.4363 0.4026
Connect 0.2857 0.2813 0.2942 0.3239 0.2956 0.3196 0.1575 0.3168 0.3168
Chess 0.4884 0.4884 0.3733 0.4371 0.5116 0.3936 0.3914 0.5169 0.5169
Breast 0.9585 0.9585 0.9099 0.9113 0.8970 0.9599 0.9413 0.8941 0.8941
Car 0.2847 0.2772 0.3027 0.3304 0.3571 0.3947 0.2222 0.3524 0.3524
Mushroom 0.7090 0.7090 0.8838 0.8838 0.8876 0.7676 0.8776 0.8876 0.8876
Splice 0.2821 0.2853 0.3724 0.4204 0.6125 0.4646 0.7028 0.6191 0.6191
Vote 0.8690 0.8667 0.8644 0.8644 0.8782 0.8759 0.8736 0.8736 0.8736
Lymph 0.4122 0.4054 0.5135 0.4527 0.5405 0.5811 0.4797 0.4662 0.4730
Lung 0.4375 0.4375 0.4063 0.5625 0.6563 0.4063 0.3438 0.5938 0.5938
Average 0.5169 0.5129 0.5277 0.5344 0.5875 0.5580 0.5467 0.5971 0.5887

Table 4.7: NMI Result
Dataset kkk-means++ kkk-means|| kkk-modes Cao kkk-reps mkmkmk-cens

MH-kkk-
modes

LSH-kkk-
reps(Init)

LSH-kkk-
reps(Full)

Soybean small 0.7225 0.6834 1.0000 0.6634 1.0000 1.0000 1.0000 1.0000 1.0000
Audiology 0.4834 0.4672 0.5153 0.5226 0.4227 0.4834 0.4773 0.5140 0.3316
Zoo 0.8427 0.6839 0.7747 0.8086 0.8598 0.8525 0.8658 0.8796 0.8796
Tae 0.0834 0.0251 0.0994 0.0994 0.0834 0.0994 0.0740 0.0994 0.0994
Hayes-roth 0.0005 0.0492 0.0172 0.0031 0.0014 0.0000 0.0000 0.0083 0.0083
Dermatology 0.8782 0.7945 0.4911 0.6346 0.8423 0.7549 0.7674 0.8598 0.8286
Soybean 0.6800 0.6396 0.5901 0.6059 0.7358 0.7411 0.7511 0.7289 0.7262
Connect 0.0130 0.0117 0.0261 0.0278 0.0161 0.0203 0.0012 0.0161 0.0161
Chess 0.0003 0.0003 0.0551 0.0108 0.0008 0.0321 0.0454 0.0015 0.0015
Breast 0.7361 0.7361 0.5749 0.5750 0.5325 0.7617 0.6951 0.5244 0.5244
Car 0.0067 0.0046 0.0155 0.0285 0.1054 0.1204 0.0000 0.0693 0.0693
Mushroom 0.1963 0.1963 0.5350 0.5350 0.5383 0.2289 0.4930 0.5383 0.5383
Splice 0.0481 0.0466 0.0462 0.0343 0.2765 0.2670 0.3825 0.2984 0.2984
Vote 0.4692 0.4693 0.4393 0.4393 0.5049 0.4998 0.5010 0.4892 0.4892
Lymph 0.1673 0.1611 0.1587 0.1169 0.2537 0.1953 0.1203 0.2343 0.2334
Lung 0.1312 0.1735 0.2281 0.2665 0.3488 0.3226 0.1961 0.2471 0.2471
Average 0.3412 0.3214 0.3479 0.3357 0.4077 0.3987 0.3981 0.4068 0.3932
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Table 4.8: AMI Result
Dataset kkk-means++ kkk-means|| kkk-modes Cao kkk-reps mkmkmk-cens

MH-kkk-
modes

LSH-kkk-
reps(Init)

LSH-kkk-
reps(Full)

Soybean small 0.6980 0.6554 1.0000 0.6322 1.0000 1.0000 1.0000 1.0000 1.0000
Audiology 0.2800 0.2614 0.3343 0.3385 0.2677 0.2800 0.2805 0.3923 0.2349
Zoo 0.8221 0.6427 0.7450 0.7837 0.8413 0.8331 0.8479 0.8636 0.8636
Tae 0.0699 0.0130 0.0860 0.0860 0.0699 0.0860 0.0573 0.0860 0.0860
Hayes-roth -0.0139 0.0350 0.0027 -0.0118 -0.0131 -0.0145 -0.0145 -0.0061 -0.0061
Dermatology 0.8756 0.7900 0.4802 0.6268 0.8388 0.7491 0.7624 0.8567 0.8247
Soybean 0.6461 0.6021 0.5470 0.5646 0.7084 0.7141 0.7256 0.7004 0.6975
Connect 0.0128 0.0115 0.0259 0.0276 0.0159 0.0201 0.0010 0.0159 0.0159
Chess 0.0001 0.0001 0.0549 0.0105 0.0006 0.0319 0.0451 0.0013 0.0013
Breast 0.7358 0.7358 0.5744 0.5745 0.5320 0.7614 0.6947 0.5238 0.5238
Car 0.0043 0.0022 0.0131 0.0261 0.1033 0.1183 0.0000 0.0671 0.0671
Mushroom 0.1962 0.1962 0.5349 0.5349 0.5382 0.2288 0.4930 0.5382 0.5382
Splice 0.0475 0.0460 0.0456 0.0337 0.2761 0.2666 0.3822 0.2980 0.2980
Vote 0.4683 0.4684 0.4384 0.4384 0.5040 0.4990 0.5001 0.4884 0.4884
Lymph 0.1405 0.1341 0.1317 0.0884 0.2297 0.1698 0.0917 0.2097 0.2087
Lung 0.0698 0.1041 0.1712 0.2164 0.2994 0.2513 0.1176 0.1912 0.1912
Average 0.3158 0.2936 0.3241 0.3107 0.3883 0.3747 0.3740 0.3891 0.3771

Table 4.9: ARI Result
Dataset kkk-means++ kkk-means|| kkk-modes Cao kkk-reps mkmkmk-cens

MH-kkk-
modes

LSH-kkk-
reps(Init)

LSH-kkk-
reps(Full)

Soybean small 0.5634 0.5436 1.0000 0.6457 1.0000 1.0000 1.0000 1.0000 1.0000
Audiology 0.1103 0.1163 0.1493 0.1476 0.1048 0.1103 0.1130 0.2727 0.1654
Zoo 0.8345 0.6539 0.6994 0.6209 0.6973 0.6894 0.8258 0.9008 0.9008
Tae 0.0477 0.0134 0.0497 0.0497 0.0477 0.0497 0.0117 0.0497 0.0497
Hayes-roth -0.0146 0.0224 -0.0048 -0.0132 -0.0135 -0.0149 -0.0149 -0.0043 -0.0043
Dermatology 0.7205 0.5995 0.5253 0.6489 0.7074 0.4933 0.6192 0.7456 0.7055
Soybean 0.4403 0.4211 0.3467 0.3148 0.4372 0.4725 0.4669 0.4299 0.4036
Connect 0.0191 0.0178 -0.0275 0.0003 0.0172 0.0334 -0.0035 0.0207 0.0207
Chess 0.0002 0.0002 0.0636 0.0152 0.0001 0.0449 0.0463 0.0007 0.0007
Breast 0.8391 0.8391 0.6647 0.6698 0.6216 0.8450 0.7779 0.6121 0.6121
Car 0.0043 -0.0029 0.0153 0.0423 0.0279 0.0538 0.0000 0.0500 0.0500
Mushroom 0.1744 0.1744 0.5891 0.5891 0.6009 0.2863 0.5704 0.6009 0.6009
Splice 0.0284 0.0271 0.0137 0.0275 0.1979 0.1840 0.3668 0.2081 0.2081
Vote 0.5435 0.5367 0.5298 0.5298 0.5710 0.5641 0.5572 0.5572 0.5572
Lymph 0.1157 0.1143 0.1310 0.0676 0.2331 0.1672 0.0745 0.1987 0.2022
Lung 0.0166 0.1127 0.1481 0.1860 0.1933 0.1479 0.0760 0.1578 0.1578
Average 0.2777 0.2619 0.3058 0.2839 0.3402 0.3204 0.3430 0.3625 0.3519

Table 4.10: Accuracy Result
Dataset kkk-means++ kkk-means|| kkk-modes Cao kkk-reps mkmkmk-cens

MH-kkk-
modes

LSH-kkk-
reps(Init)

LSH-kkk-
reps(Full)

Soybean small 0.8372 0.8298 1.0000 0.8622 1.0000 1.0000 1.0000 1.0000 1.0000
Audiology 0.8445 0.8373 0.8428 0.8515 0.7620 0.8445 0.8392 0.7896 0.6186
Zoo 0.9422 0.8822 0.9010 0.8792 0.9044 0.9018 0.9410 0.9650 0.9650
Tae 0.5078 0.5639 0.5073 0.5073 0.5078 0.5073 0.4285 0.5073 0.5073
Hayes-roth 0.5466 0.5518 0.5440 0.5371 0.5471 0.5465 0.5465 0.5507 0.5507
Dermatology 0.9108 0.8674 0.8527 0.8902 0.9048 0.8153 0.8802 0.9158 0.9027
Soybean 0.9237 0.9154 0.9080 0.9062 0.9101 0.9095 0.9036 0.9077 0.9006
Connect 0.4884 0.4885 0.4716 0.4796 0.4871 0.4965 0.4998 0.4894 0.4894
Chess 0.5001 0.5001 0.5320 0.5078 0.5001 0.5225 0.5234 0.5004 0.5004
Breast 0.9204 0.9204 0.8358 0.8381 0.8149 0.9230 0.8894 0.8104 0.8104
Car 0.4810 0.4779 0.4893 0.5042 0.4940 0.5071 0.5425 0.5064 0.5064
Mushroom 0.5873 0.5873 0.7946 0.7946 0.8005 0.6432 0.7852 0.8005 0.8005
Splice 0.5362 0.5355 0.5407 0.5511 0.6267 0.6176 0.7049 0.6310 0.6310
Vote 0.7717 0.7684 0.7650 0.7650 0.7855 0.7820 0.7786 0.7786 0.7786
Lymph 0.5682 0.5709 0.5782 0.5470 0.6293 0.5926 0.5472 0.6126 0.6143
Lung 0.5645 0.5685 0.6129 0.6472 0.6270 0.5222 0.4798 0.6210 0.6210
Average 0.6832 0.6791 0.6985 0.6918 0.7063 0.6957 0.7056 0.7116 0.6998
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Table 4.11: Homogeneity Result
Dataset kkk-means++ kkk-means|| kkk-modes Cao kkk-reps mkmkmk-cens

MH-kkk-
modes

LSH-kkk-
reps(Init)

LSH-kkk-
reps(Full)

Soybean small 0.7200 0.6810 1.0000 0.6773 1.0000 1.0000 1.0000 1.0000 1.0000
Audiology 0.4343 0.4256 0.4739 0.4709 0.4538 0.4343 0.4362 0.5620 0.4996
Zoo 0.8385 0.6715 0.7458 0.7683 0.8105 0.8043 0.8422 0.8768 0.8768
Tae 0.0994 0.0251 0.1200 0.1200 0.0994 0.1200 0.1138 0.1200 0.1200
Hayes-roth 0.0005 0.0500 0.0172 0.0031 0.0013 0.0000 0.0000 0.0082 0.0082
Dermatology 0.8789 0.8062 0.4853 0.6296 0.8515 0.8023 0.7623 0.8791 0.8450
Soybean 0.6557 0.6283 0.5738 0.5860 0.7368 0.7554 0.7745 0.7299 0.7333
Connect 0.0110 0.0099 0.0226 0.0235 0.0135 0.0171 0.0012 0.0135 0.0135
Chess 0.0003 0.0003 0.0603 0.0115 0.0009 0.0327 0.0527 0.0016 0.0016
Breast 0.7399 0.7399 0.6055 0.6033 0.5661 0.7521 0.6819 0.5590 0.5590
Car 0.0054 0.0037 0.0126 0.0234 0.0849 0.0967 1.0000 0.0562 0.0562
Mushroom 0.2219 0.2219 0.5453 0.5453 0.5472 0.2300 0.4996 0.5472 0.5472
Splice 0.0487 0.0471 0.0452 0.0332 0.2706 0.2636 0.3747 0.2926 0.2926
Vote 0.4609 0.4607 0.4324 0.4324 0.4958 0.4907 0.4917 0.4804 0.4804
Lymph 0.1419 0.1317 0.1307 0.0965 0.2052 0.1705 0.1022 0.1898 0.1891
Lung 0.1330 0.1948 0.2361 0.2655 0.3669 0.4523 0.2858 0.2554 0.2554
Average 0.3369 0.3186 0.3442 0.3306 0.4065 0.4014 0.4637 0.4107 0.4049

Table 4.12: Precision Result
Dataset kkk-means++ kkk-means|| kkk-modes Cao kkk-reps mkmkmk-cens

MH-kkk-
modes

LSH-kkk-
reps(Init)

LSH-kkk-
reps(Full)

Soybean small 0.6792 0.6642 1.0000 0.7033 1.0000 1.0000 1.0000 1.0000 1.0000
Audiology 0.3170 0.2979 0.3416 0.3809 0.2140 0.3170 0.3007 0.3233 0.2217
Zoo 0.9019 0.7864 0.8716 0.8504 0.9426 0.9327 0.9399 0.9394 0.9394
Tae 0.3516 0.3381 0.3524 0.3524 0.3516 0.3524 0.3337 0.3524 0.3524
Hayes-roth 0.3353 0.3593 0.3421 0.3369 0.3360 0.3351 0.3351 0.3423 0.3423
Dermatology 0.7755 0.6515 0.6398 0.7360 0.7477 0.5260 0.7067 0.7621 0.7335
Soybean 0.5853 0.5129 0.4581 0.4400 0.4808 0.4806 0.4566 0.4681 0.4335
Connect 0.5815 0.5803 0.5489 0.5671 0.5802 0.5921 0.5651 0.5827 0.5827
Chess 0.5009 0.5009 0.5270 0.5073 0.5009 0.5222 0.5184 0.5012 0.5012
Breast 0.9223 0.9223 0.8161 0.8202 0.7944 0.9427 0.9180 0.7894 0.7894
Car 0.5469 0.5395 0.5567 0.5800 0.5705 0.5978 0.5425 0.5906 0.5906
Mushroom 0.5690 0.5690 0.7805 0.7805 0.7880 0.6417 0.7756 0.7880 0.7880
Splice 0.4016 0.4008 0.3939 0.4038 0.5163 0.5032 0.6269 0.5224 0.5224
Vote 0.7963 0.7933 0.7879 0.7879 0.8103 0.8070 0.8038 0.8034 0.8034
Lymph 0.5540 0.5704 0.5804 0.5238 0.6927 0.5877 0.5205 0.6577 0.6607
Lung 0.3314 0.3799 0.4108 0.4487 0.4337 0.3825 0.3522 0.4190 0.4190
Average 0.5719 0.5542 0.5880 0.5762 0.6100 0.5950 0.6060 0.6151 0.6050

Table 4.13: Recall Result
Dataset kkk-means++ kkk-means|| kkk-modes Cao kkk-reps mkmkmk-cens

MH-kkk-
modes

LSH-kkk-
reps(Init)

LSH-kkk-
reps(Full)

Soybean small 0.6642 0.6494 1.0000 0.7786 1.0000 1.0000 1.0000 1.0000 1.0000
Audiology 0.1242 0.1449 0.1685 0.1471 0.2809 0.1242 0.1375 0.5007 0.7188
Zoo 0.8437 0.6788 0.6746 0.5845 0.6279 0.9327 0.7978 0.9082 0.9082
Tae 0.5868 0.3394 0.5932 0.5932 0.5868 0.3524 0.7392 0.5932 0.5932
Hayes-roth 0.3189 0.3806 0.3477 0.3518 0.3196 0.3351 0.3186 0.3273 0.3273
Dermatology 0.7768 0.7179 0.5946 0.6989 0.7877 0.5260 0.6809 0.8389 0.8031
Soybean 0.4068 0.4281 0.3479 0.3102 0.4923 0.4806 0.6019 0.4936 0.4858
Connect 0.3477 0.3529 0.3811 0.3461 0.3442 0.5921 0.5103 0.3498 0.3498
Chess 0.5003 0.5003 0.6383 0.5933 0.5245 0.5222 0.6823 0.5280 0.5280
Breast 0.9331 0.9331 0.9036 0.9021 0.8932 0.9427 0.8763 0.8916 0.8916
Car 0.2521 0.2560 0.2875 0.3115 0.2722 0.5978 1.0000 0.2937 0.2937
Mushroom 0.7240 0.7240 0.8204 0.8204 0.8227 0.6417 0.8034 0.8227 0.8227
Splice 0.4195 0.4191 0.3595 0.3500 0.4697 0.5032 0.5751 0.4783 0.4783
Vote 0.7594 0.7555 0.7556 0.7556 0.7720 0.8070 0.7648 0.7654 0.7654
Lymph 0.3841 0.3264 0.3476 0.3230 0.3699 0.5877 0.3784 0.3545 0.3567
Lung 0.3522 0.5472 0.4780 0.4403 0.5346 0.3825 0.7421 0.4717 0.4717
Average 0.5246 0.5096 0.5436 0.5192 0.5686 0.5830 0.6630 0.6011 0.6122
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4.7.3.4 Cluster initialization comparisons
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Figure 4.9: Average cluster initialization time of different approaches on
Soybean dataset

Figure 4.9 shows the average standard deviation for initialization times of our
proposed method together with competitors. Cao’s method and MH-k-modes
take significant time to initialize because their processes have numerous
looking-up procedures. On the other hand, our proposed method is slower
than other related initialization methods because the finding of maximum
cuts on categorical graphs takes majorities of time. However, the total time
of the initialization stage is extremely small compared to the whole clustering
time. For instance, the total clustering of LSH-k-representatives(Init) may
take around 0.55 seconds for the whole clustering process on the Soybean
dataset, while the initialization stage only takes 0.019 seconds (3.45%).

59



4.7.3.5 Convergence results
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Figure 4.10: Purity versus convergence times on common UCI datasets
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Figure 4.10 shows the results on the degree of convergence of LSH-k-
prototypes compared to other common clustering algorithms of categorical
data. It is worth nothing that our method tends to have higher accuracy than
other methods. In addition, k-modes can converge in few iterations but their
results are the worst. Besides that, k-representatives can have comparable
accuracy with our method but they start at much less favorable points, which
makes our method can converge faster than k-representatives.

4.7.3.6 Results on synthetic datasets

The experiments on synthetic datasets is mainly designed to examine the
scalability of our method versus other related works.
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Figure 4.11: Performances of LSH-k-representatives related works on syn-
thetic datasets with different numbers of objects

Figure 4.11 shows the results on the clustering effectiveness of the com-
pared methods when clustering extremely large datasets. k-means can run
fastest among all compare methods because it treats the categorical values
by floating-point numbers; however, its accuracy is the worst because the
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encoding processing losses the information of categorical objects. In contrast,
Cao et al.’s method is the slowest one while its accuracy is relatively low.
k-representatives is the most accurate method, which is slightly higher than
our LSH-k-representatives. However, LSH-k-representatives is almost three
times faster than k-representatives for the dataset of 268 million categorical
objects.

4.7.3.7 Time complexity analysis for datasets of a high number of
clusters
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Figure 4.12: NMI score and clustering time for synthetic dataset of 1 million
objects, D=16, |Ā| ≈ 16.

First, Figure 4.12 shows the results of algorithm complexity when
clustering datasets of high number of clusters k. Note that, LSH-k-
representatives(H16) is the LSH-k-representatives method with k′ = k/16,
which can run the fastest when comparing with other related works in most of
the test cases. Moreover, the three modifications of LSH-k-representatives so-
called LSH-k-representatives(RS8), LSH-k-representatives(RS16), and LSH-
k-representatives(RS32) which use the rotation of shortlists with k′ =
k/8, k/16, and k/32, respectively can outperform LSH-k-representatives with
the test case of extremely large number of clusters k (512) with slightly lower
NMI scores.

62



Table 4.14: Performance result for USCensus dataset with k=512

Method #Iter NMI AMI Hom.. Time(s) Time/Iter %NMI %AMI %Hom.. Speed-up
kkk-Modes 100 0.65 0.64 0.66 81,717 817.17 0.77 0.76 0.78 7.51
Cao 100 0.66 0.65 0.67 147,291 1472.91 0.78 0.77 0.79 4.17
MK-kkk-modes 100 0.65 0.64 0.66 143,711 1,437.11 0.77 0.76 0.78 4.27
kkk-Repsresentatives 100 0.84 0.84 0.85 613,558 6,135.58 1.00 1.00 1.00 1.00
LSH-kkk-representatives(H16) 100 0.79 0.79 0.89 85,217 852.17 0.94 0.93 1.00 7.20
LSH-kkk-representatives(RS32) 100 0.79 0.78 0.84 19,061 190.61 0.93 0.93 0.99 32.19
LSH-kkk-repss(RS32-CUDA) 100 0.79 0.78 0.84 636 6.36 0.93 0.93 0.99 964.71

Second, Table 4.14 shows the time complexity compassion results when
clustering the real-world census dataset. Because this dataset has no labels,
we select the best outcome of k-representatives (the most accurate related
method) from 50 different clustering times and call it a benchmark. As a
result, LSH-k-representatives(H16) can have comparable accuracy with the
benchmark but 7 times faster. Surprisingly, LSH-k-representatives(RS32)
can run 32 times faster than the benchmark with a little less accuracy. Ad-
ditionally, we also implement LSH-k-representatives(RS32) using CUDA pro-
gramming language and conduct the clustering process using an NVidia P100
GPGPU. As the result, the CUDA version of LSH-k-representatives(RS32)
can run 964 times faster than the benchmark.
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4.7.3.8 Stability analysis and comparison
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Figure 4.13: The average silhouette scores and standard deviations of
compared methods

Figure 4.13 shows the averages and standard deviations of silhouette scores
of the compared methods in 16 UCI testing datasets, each method is run 64
times for each dataset. As the results, LSH-k-reps(Init) and LSH-k-reps(Full)
are the best and the second-best methods with the average silhouette scores of
0.2910 and 0.2870, respectively. Moreover, k-means++, Cao, MH-k-modes,
LSH-k-reps(Init), and LSH-k-reps(Full) are the methods with the highest
stability score.

Because of the principle of our cluster prediction technique (See Algo-
rithm 4.2); First, the DILCA measure gives a fixed dissimilarity matrix
for each domain. Which leads to the consistent dissimilarity graph for
that domain. Second, The Stoer-Wagner algorithm also gives the consistent
maximum cut for an undirected graph. Third, for each value of the number
of hash functions l, the core buckets and the way we merge the small buckets
are also fixed. Which makes our method become one of the most stable
methods. The reason is our method includes several processes which can
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produce plenty of solutions but we only select the best outcome for each
process. To make it generate different solutions for the same parameters,
there are several ways that we can tune the original version as:

• Turning the context set size for DILCA measure, which can give
different dissimilarity matrices.

• Instead of selecting the maximum cut, we can select other cuts that
also well “divide” the domain.

• Selecting different number of hash function l (The effectiveness turning
l is shown in Figure 4.8).

• Randomly merging a small bucket to a core bucket when the Hamming
distances of the small bucket to two or more core buckets are the same.

4.7.3.9 Space complexity analysis
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Figure 4.14: Memory usage of clustering methods over time for the USCensus
dataset

Last but not least, Figure 4.14 shows the runtime memory usages of
clustering methods on the USCensus dataset. Generally, all the methods
require a significant amount of memory usages during the initialization
process for predicting the initial clusters. It is interesting to note here that
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our LSH-k-representatives is the fastest method with using a small amount
of memory even on the initialization process.

4.7.4 Results on mixed data

In our LSH-k-prototypes method, the hash functions on categorical attributes
have higher priorities than the hash functions on numerical categorical
attributes. If the number of hash functions on categorical attributes is
sufficient, only these hash functions are used. In this section, we analyze
the effectiveness of our hash functions for mixed data.

4.7.4.1 Weighting analysis
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Figure 4.15: Impact of ω on the accuracy of LSH-k-prototypes

Figure 4.15 shows the impact of the smoothing parameter ω in three
mixed datasets. It is clear that different datasets have different optimal
values for the parameter ω. For instance, we should use ω in the range of
0.35 to 0.51 for clustering Zoo dataset, the optimal value of ω for Tae dataset
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is 0.96, and the categorical attributes are dominating numerical attributes in
the Dermatology dataset.

4.7.4.2 Comparison

Table 4.15: Purity scores on mixed datasets

Dataset k-prototypes k-imPrototypes LSHk-prototypes

Zoo 0.644±0.00 0.663±0.11 0.703±0.00
Tae 0.358±0.00 0.367±0.03 0.338±0.00
Dermatology 0.243±0.00 0.266±0.03 0.281±0.00

Average 0.415±0.00 0.432±0.06 0.441±0.00

Table 4.15 shows the comparisons of our proposed with the mixed data
clustering algorithms, each method clusters each dataset 64 times with
different random seed numbers. As an evidence, improved prototype is
superior than prototype just same as the results between representative and
mode. Besides that, our proposed method LSH-k-prototypes can enhance the
effectiveness of k-imPrototypes by applying the LSH-based cluster prediction
technique. Moreover, our method has extremely high stability compared to
the original method.

4.8 Summary

In this chapter, we first propose LSH-k-prototypes for clustering mixed
datasets with the utilization of LSH to predict the potential natural clusters.
The shortlists of neighbor clusters are also used to reduce the required
computations in each iteration. Furthermore, LSH-k-representatives is the
modification of LSH-k-prototypes, which works for categorical values only.
The advantages, disadvantages, and future works of these two methods can
be listed as:

4.8.1 Advantages

• LSH-k-prototypes and LSH-k-representatives use the state-of-the-art
cluster representations so-called representative and prototype, respec-
tively, for representing the clusters.
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• LSH-k-prototypes and LSH-k-representatives can predict the initial
clusters based on the locality-sensitive factors of objects. In detail,
the larger LSH buckets are predicted as the core initial clusters. As a
result, LSH-k-prototypes and LSH-k-representatives have the highest
clustering effectiveness scores among other related works.

• By applying the dynamic shortlists for clusters, LSH-k-representatives
can increase the clustering speed up to from 2 to 32 times compared to
its original method.

4.8.2 Limitations

• Because our proposed methods come with the process of building
the LSH hash table for all attributes, the total time for predicting
initial clusters of our methods is higher than others. Especially, when
creating the hash function for the attribute with a massive number of
unique categorical values, our methods take more time to calculate the
dissimilarity matrix and find the maximum cut.

• In the context of our LSH-based cluster prediction technique, the small
buckets are merged into the core bucket that is closest to the small
buckets. However, in the current version, when two or more core
buckets have the same distance to a small bucket, this small bucket
is merged to the first core bucket (one with the lowest index). This
approach may reduce the flexibility of our proposed methods.

4.8.3 Future works

• Because creating the hash function for a categorical attribute with a
massive number of unique categorical values is time-consuming, we first
suggest using different optimal dissimilarity measures instead of DILCA
to reduce the matrix creating time. In addition, the task of finding the
maximum cut is also costly, we recommend using other partitioning
techniques to subdivide these categorical domains into multiple two-
subsets; for example, a k-means-like algorithm can be utilized for this
task.

• In this current version of the LSH-based cluster prediction method, the
single domain of an attribute is used to create an LSH hash function.
Future research may try a different kind of LSH function; for instance,
a hyperplane hash function for categorical values that consider the
distribution of multiple attributes at the same time can be analyzed.

• In this chapter, we introduce two different approaches to update the
cluster shortlist in real-time. Among them, the shortlist rotation
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approach may work with the datasets with a huge number of clusters k
but other heuristic techniques may update the shortlist more effectively.
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Chapter 5

Extension for fuzzy clustering of
categorical data

Continuing the work of LSH-k-prototypes, in this chapter, we apply the
proposed method to fuzzy clustering of categorical data.

5.1 Introduction

The fundamental of fuzzy clustering is not much different from that of crisp
clustering; however, the membership degrees of objects laying near the cluster
boundaries are fuzzed to present their multi-cluster factors [91]. Accordingly,
the formulation of membership on fuzzy clustering is also slightly changed
compared with the definitions of crisp clustering (section 2.1). The problem
of fuzzy clustering can be remarked as follows.

X = {x1, . . . ,xN} denotes the dataset of N categorical objects to be
fuzzy clustered into k fuzzy clusters. Each object xi (1 ≤ i ≤ N) is a vector
of D categorical values of D categorical attributes: xi = [xi1, . . . , xiD]. Each
j-th value of an object xi is a categorical value (xij ∈ Aj), where Aj (|Aj| > 1)
is the set of all possible categorical values in the j-th attribute. Therefore,
Aj is the unique domain of the attribute Aj.

In the context of fuzzy clustering, all objects in the dataset X belong to
all clusters simultaneously but with different membership degrees. Let uij is
the membership degree of the i-th object to the j-th cluster such that the
higher value of uij means the higher interrelationship of the i-th object to
the j-th cluster. The value of uij can be normalized as:

0 ≤ uij ≤ 1 and
k∑
j=1

uij = 1, 1 ≤ i ≤ N (5.1)

To generalize, we denote U = [uij]N×k as the membership matrix that can
present membership statuses of N objects in dataset X to k target clusters.

70



Figure 5.1: Example of fuzzy clustering for USArrests dataset1

Figure 5.1 shows an example of fuzzy clustering with 2-dimensional data
for the USArrests dataset, which shows the violent crime rates by US states.
In this example, the states are divided into two fuzzy clusters in which some
states have the same degree of similarity with two fuzzy clusters, namely
Virginia, Delaware, Arkansas, Oregon, and New Jersey.

5.2 k-means-like algorithm for fuzzy clustering

Fuzzy k-means (Fk-means for short) is the first fuzzy cluster analysis
approach for data of numerical values [92]. We ought to introduce Fk-
means because it is the basis for all other k-means-like algorithms for fuzzy
clustering.

Same as k-means, the center of gravity (centroid) is used to represent

1Image source: https://www.datanovia.com/en/lessons/fuzzy-clustering-essentials/
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cluster. C = {c1, . . . , ck} denotes the set of k centroids, each centroid cj is a
vector in the same space with the data objects. The membership degrees of
an object for all clusters are calculated by the reciprocal value of the distances
of this object to all clusters:

uij =

(
k∑

j′=1

(
Dis(xi, cj)

Dis(xi, cj′)

) 1
α−1

)−1
, 1 ≤ i ≤ N, 1 ≤ j ≤ k (5.2)

with α being the parameter that controls the degree of fuzziness of the
clustering model, such that α ∈ (1,+∞). The higher the value of α, the
higher the fuzziness of the clustering model.

To update the centroids after the membership matrix is obtained, the
fuzzy-weighted average of all objects is used:

cj =

∑N
i=1 u

α
ijxi∑N

i=1 u
α
ij

, 1 ≤ j ≤ k (5.3)

Note that, the fuzziness parameter α is also used as the weighting factor
for every membership value.

Last but not least, the total fuzzy-weighted distance from all objects to
all cluster centroids is used as the objective of the algorithm:

Minimize: O(U,C) =
k∑
j=1

N∑
i=1

uαijDis(xi, cj) (5.4)

The above three equations are the foundation principles of Fk-means, the
algorithm of Fk-means can be briefly described in the following four steps:

• Step 1: Randomly selecting k categorical objects and set them the
centroids for k clusters.

• Step 2: Calculating/recalculating the membership matrix U by equa-
tion (5.2).

• Step 3: Recalculating the centroids C by the equation (5.3).
• Step 4: Repeating Step 2 and Step 3 until value O(U,C) (see equation

(5.4)) is converged or the number of the maximum iterations is reached.

5.3 Fuzzy clustering algorithms for categorical

data

Some fuzzy clustering algorithms of the class of k-means-like algorithms for
categorical data can be seen in [33, 54, 92, 93]. In the following sections, we
remark some typical algorithms for fuzzy clustering of categorical data:
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5.3.1 Fuzzy k-modes (Fk-modes)

Fk-modes is the first extension of k-modes for fuzzy clustering. To rep-
resent a cluster center, Fk-modes also use the categorical vector (mode)
of categorical values with the highest frequencies on all attributes. Let
mj = [mj1, . . . ,mjD] be the mode of the j-th cluster, mjd can be computed
as:

mjd = arg max
v∈Ad

N∑
i=1
xid=v

uij , 1 ≤ j ≤ k, 1 ≤ d ≤ D (5.5)

Because modes are categorical vectors and dissimilarity measure between
categorical vectors is already defined (see equation (2.6)), we can use equation
(5.2) to update the membership matrix.

5.3.2 Fuzzy k-representatives

In terms of extension of k-representatives for fuzzy clustering of categorical
data, Kim et al. proposed to use the fuzzy centroids which are expansions of
representatives [55]. It is clear that the representative takes the frequencies of
all categorical values for all clusters, but in the context of fuzzy membership,
an object belongs to all clusters, which makes the probability function (see
equation (2.21)) unable to be used in the context of fuzzy membership. The
adaptation which takes into account the membership degree can be utilized
instead:

FPrj,d(v) =

∑
xi∈X,xid=v u

α
ij∑N

i=1 u
α
ij

(5.6)

5.3.3 k-centers

Continuing the work of k-representatives, Chen et al. introduced to use a
kernel combination of uniform distribution and observed distribution to have
better representation of cluster [89]. In particular, a concept of Prj,d(v) in
equation (2.21) is replaced by a new concept of kernel probability KPrj,d(v),
which is defined as follows.

KPrj,d(v) = λj
1

|Ad|
+ (1− λj)Prj,d(v),∀v ∈ Ad (5.7)

where λj is the smoothing parameter for adjusting the contribution of
uniform distribution to the j-th center. The optimal value of λj can be
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learned statistically based on the distribution of categorical values on that
attribute (Least Squares Cross-Validation (LSCV)) [94]:

λj =
1

|Gj| − 1

∑D
d=1(1−

∑
v∈Ad Frequencyj,d(v)2)∑D

d=1(
∑

v∈Ad Frequencyj,d(v)2 − 1
|Ad|

)
(5.8)

where Frequencyj,d(v) is the frequency of appearance of categorical value v
in the j-th attribute with v ∈ Ad.

5.4 The proposed method: Fuzzyk-centers (Fk-

centers)

We extend the center into fcenter for fuzzy clustering of categorical data.
Similar to probability function, the way to calculate the frequency of cat-
egorical attribute also needs to be changed to correspond to the concept
of fuzzy clustering: FFrequencyj(v) returns the frequency of the categorical
value v in the j-th fuzzy cluster:

FFrequencyj,d(v) =
∑

xi∈X,xid=v

uαij, 1 ≤ d ≤ D, 1 ≤ j ≤ k (5.9)

Accordingly, the smoothing parameter in equation (5.8) is modified to
match the fuzzy concept:

λj =
1

(
∑N

i=1 uij)− 1
×

∑D
d=1(1−

∑
v∈Ad FFrequencyj,d(v)2)∑D

d=1(
∑

v∈Ad FFrequencyj,d(v)2 − 1
|Ad|

)
(5.10)

It is clear that the components of fcenters are the same as centers, so
the dissimilarity measures in equations (2.7) and (2.22) can be reused.

As a result, cj (1 ≤ j ≤ k) denotes the fcenter of the j-th cluster where
cj = [cj1, . . . , cjD], where

cjd = [{v,KProjd(v)}|∀v ∈ Ad], 1 ≤ d ≤ D, 1 ≤ j ≤ k (5.11)

5.5 The proposed method: LSHFk-centers (LSHFk-

centers)

In this section, we extend our proposed initial cluster prediction method to
estimate the initial fuzzy clusters. In general, the main steps for cluster
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prediction of LSHFuzzyk-centers are equivalent to the steps of LSH-k-
prototypes. However, some concepts have to be changed to be compatible
with fuzzy clustering. In detail, the following steps are identical with the
steps of LSH-k-prototypes: Creating dissimilarity matrices for categorical
data (see section 4.2.1) and LSH hash table generation (see section 4.2.2).
Because the step of cluster prediction is different, we present the cluster
prediction of LSHFuzzyk-centers as follows:

5.5.1 LSHFk-centers’s cluster prediction

Note that, until this step, the hash table that stores the hash values of all
categorical objects in X is known. Remark that, H = [B0, . . . , B2l−1] is the
hash table of 2l buckets, in which {B∗1 , . . . , B∗k} ⊂ {B0, . . . , B2l−1} is the set
of k largest buckets.

The largest buckets are potentially located in or near the natural clusters
in the dataset because they have dense objects with the same locality-
sensitive scores. We recommend to set fully the degree of membership of
objects in the k largest buckets to the k corresponding clusters:

∀xi ∈ {B∗1 , . . . , B∗k}, uij =

{
1, if xi ∈ B∗j
0, Otherwise

, 1 ≤ j ≤ k (5.12)

The objects in the remaining buckets share their degrees of membership
to k initial clusters based on the distances of them to the k largest buckets,
they can be approximated by the Hamming distances between corresponding
bucket keys:

Dis(xi, cj) ≈ D̂is(xi, B
∗
j ) = Hamming(Key(Bi′),Key(B∗j )) (5.13)

where Key(Bi′) is the bucket that holds categorical object xi.
When the distances between remaining objects to all cluster centers are

approximated, we can simply apply equation (5.2) to calculate the degrees
of membership for those objects.
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Algorithm 5.1 LSH-based initial cluster prediction algorithm

Input: X, k, D, Ad (1 ≤ d ≤ D), l
Output: k initial clusters

1: Create dissimilarity matrix for each categorical attribute Ad(1 ≤ d ≤ D)
using DILCA dissimilarity measure.

2: Convert dissimilarity matrices into dissimilarity graphs.
3: Find the maximum cut for each dissimilarity graph using Stoer-Wagner

algorithm.
4: Generate the hash function via equation (4.2). The hash values of all

objects in X then can be obtained. Correspondingly, the hash table
H = [B1, . . . , B2l ] also can be established.

5: Select k largest buckets {B∗1 , . . . , B∗k}.
6: for xi ∈ X do
7: if xi ∈ {B∗1 , . . . , B∗k} then
8: Assign degrees of membership uij(1 ≤ j ≤ k) by equation (5.12).
9: else
10: Estimate distance from object xi to the all core buckets by equation

(5.13).
11: Assign degrees of membership uij(1 ≤ j ≤ k) by equation (5.2).
12: end if
13: end for
14: return U = [uij]N×k

Algorithm 5.1 summaries the processes of predicting the fuzzy clusters
for LSHFk-centers method. Note that, the algorithm returns the values for
the membership matrix U .
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5.5.2 LSHFuzzyk-centers algorithm

Algorithm 5.2 LSHFk-centers algorithm

Input: X, k, D, Ad(1 ≤ d ≤ D), l , iter max, ε
Output: k centers of k clusters R and membership matrix U that can
locality minimize the value O(U,C) (equation (5.4)).

1: Find the initial membership matrix U by Algorithm 5.1.
2: Set λj ← 0 for 1 ≤ j ≤ k.
3: for iter ← 1 ; iter ≤ iter max; iter++ do
4: Update the centers C follow equation (5.11) with the fuzzy probability

in equation (5.7).
5: Update the membership matrix U follows equation (5.2).
6: Update the smoothing parameter λj for 1 ≤ j ≤ k follows equation

(5.10).
7: if ∆O(U,C) ≤ ε then
8: Break the loop.
9: end if

10: end for
11: return C,U

Algorithm 5.2 summaries the mechanisms of our LSHFk-centers algo-
rithm.

5.6 Experiments and results

5.6.1 Datasets and testing environments

16 UCI categorical datasets were obtained from UCI repository [86]. These
datasets are widely used by many studies in classification and clustering
with categorical data or mixed data. The characteristics of these datasets
are described in Table 5.1.
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Table 5.1: Common categorical datasets.

Name #Items #Attributes #Classes
Soybean-small 47 21 4
Audiology 226 21 4
Balance-scale 625 4 3
Zoo 101 17 7
Hayes-roth 132 5 3
Dermatology 366 34 6
Soybean 683 35 19
Connect 10,000 42 3
Chess 3,196 36 2
Breast 699 9 2
Car 1,728 6 4
Mushroom 8,124 22 2
Tictactoe 958 9 2
Vote 435 16 2
Flare 1,066 12 3
Lung 32 56 3

The experiment conditions and environments of this chapter are similar
to them in Chapter 4.

5.6.2 Evaluation metrics

The performance metrics are divided into two groups: complexity and effec-
tiveness. For complexity analysis, the following space and time measurements
were used:

• Time complexity: Including the total running time of compared meth-
ods together with their preprocessing time.

• Space complexity: Referring to the computing space required for clus-
tering. Especially, the memory usage over time of compared methods
was analyzed.

For effectiveness analysis, we mainly use the Fuzzy-Silhouette (FSilhou-
ette) score to evaluate the fuzzy clustering results:

• Fuzzy-Silhouette (FSilhouette) score [95]: This score is the extension of
silhouette score for evaluating the accuracy of fuzzy clustering outcome
[95]. The FSilhouette metric uses the pairwise degree of memberships
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along with their distances:

FSilhouette(U,X) =

∑N
i=1(µp,i − µq,i)αsi∑N
i=1(µp,i − µq,i)α

(5.14)

where µp,i and µq,i are the first and the second largest values on i-th
column on the membership matrix U , and si is the silhouette score of
xi [95].

5.6.3 Competitors

5.6.3.1 Fk-modes algorithm

It is oblivious that Fk-modes is the first method that can conduct the the
fuzzy clustering of categorical data. Fk-modes use modes to present the fuzzy
clusters as same as k-modes. The values of mode are set by the categorical
values with highest fuzzy frequencies on every categorical domains:

cjd = arg max
v∈Ad

∑
i,xid=v

uαij, 1 ≤ d ≤ D, 1 ≤ j ≤ k (5.15)

Because of the principle of modes, Fk-modes has the same problem with
k-modes [91].

5.6.3.2 Fuzzy centroids clustering algorithm (FCentroids)

FCentroids is the extension of k-representative to handle fuzzy clustering
of categorical data [55], the representatives are also called fuzzy centers, in
which the tuples of categorical values and their fuzzed probabilities are stored
to form cluster center as same as the original k-representatives algorithm:

cjd = [{v,FPrj,d(v)}|∀v ∈ Aj], 1 ≤ d ≤ D, 1 ≤ j ≤ k (5.16)

5.6.3.3 Categorical encoding-based fuzzy clustering methods

Instead of using different structures to form the cluster representations, other
methods can transform the original categorical data into numerical data so
that the original k-means algorithm can be applied:

• Fk-means uses a unique numerical value to present a unique categorical
value [96], in this context, all the categorical values are treated equally
and completely independently.
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• FEk-means divides the categorical domains into groups of numerical
domains, each unique categorical value forms a numerical attribute for
itself [96]. This method increases the number of dimensions of the data
dramatically.

• Fuzzy Space-Based Clustering (FSBC) directly uses the similarity
matrix of pairwise objects to conduct the clustering [97]. This method
requires the computation of the dissimilarity matrix of all objects and
increase the dimensions same as the number of objects.

5.6.3.4 Genetic algorithms for fuzzy clustering

Recently, genetic algorithms are also widely used to handle fuzzy clustering
of categorical data because they have advantages to handle categorical data
[24, 98]. The following research on generic algorithms are selected as our
competitors:

• SGA-Sep defines a single objective to maximize the sum of distances
between clusters.

• SGA-Dist defines a single objective to minimize the sum of distances
of all objects to their nearest cluster.

• SGA-SepDist defines a single objective of a fraction of cluster-separation
and cluster-competitiveness [25].

• MOGA algorithm defines outer-cluster separation and inner-cluster
compactness as the two distinguish objectives [24].

• NSGA-FMC algorithm uses the same these two objectives but it uses
the membership matrix as the chromosomes [23].

• MaOFCentroids technique also uses the fuzzy membership for the
chromosomes and they include several clustering evaluation metrics to
define many objectives of clustering. The many-objectives problem is
solved by NSGA-III selection technique [98].
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5.6.4 Cluster prediction analysis
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Figure 5.2: Accuracy of LSH-based fuzzy cluster prediction versus ground-
truth labels on soybean-small dataset
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First of all, the prediction accuracy of proposed method is visualized when
applying to UCI soybean-small dataset, this dataset is the most used cate-
gorical data for demonstration because of it simplicity. In detail, Figure 5.2.a
shows the ground-truth labels2 as Ĝ1 = {x21, . . . ,x30}, Ĝ2 = {x31, . . . ,x47},
Ĝ3 = {x1, . . . ,x10}, and Ĝ4 = {x11, . . . ,x20}. In this experiment, our LSH-
based prediction model uses l = 4 hash functions, with that number of hash
functions, we can achieve maximum 2l = 16 different hash values. However,
after conducting hash table construction, only 5 buckets have objects namely
B12 = {x1, . . . ,x10}, B11 = {x11, . . . ,x20}, B6 = {x21,x23,x26,x27,x29},
B14 = {x22,x24,x25,x28,x30,x31,x34, ,x41,x42,x44,x46},
and B15 = {x32,x33,x35, . . . ,x40,x43,x45,x47}. Therefore, B14, B15, B12,
and B11 are selected as core buckets while objects in B6 must share their
degrees of membership to the core buckets. As the results, in Figure 5.2.b,
because the Hamming distances between bucket B6 to B14 are 1 and get
the smallest value of 1, the degrees of membership of objects in B6 to the
core bucket (cluster) B14 are the highest. In an intuitive way, our prediction
model gives relatively accurate results compared to the ground-truth labels;
Especially, it can absolutely accurately predict the true labels for cluster 3
and cluster 4, with an accuracy of 41/47 (87.2%) objects in total.

2The ground-truth labels has been swapped to match the predictor’s labels.
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5.6.5 Crisp clustering performance
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Figure 5.3: Average of purity and standard deviation scores on 16 UCI
datasets

Figure 5.3 shows the accuracy and stability of the compared methods. It is
obvious that LSHFk-centers and FSBC have the same highest average Purity
score of 0.582. However, because of the constancy of the hash table, LSHFk-
centers have higher stability with a standard deviation of Purity score of
0.
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5.6.6 Fuzzy clustering performance analysis

Table 5.2: Fsilhouette scores of all methods on 16 UCI testing datasets
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Table 5.2 shows the comprehensive comparisons of the Fk-centers and
LSHFk-centers with other related works. Clearly, Fk-centers has higher
Fsilhouette scores than all other related works; for this reason, fcenter can
outperform other representation structures. Moreover, with the support of
our LSH-based cluster prediction technique, LSHFk-centers can even achieve
higher accuracy scores than its original method, namely Fk-centers. For more
detail, Fk-centers has the highest Fsilhouette scores for 8/16 testing datasets
while LSHFk-centers can win at 11/16 testing datasets. Moreover, the LSH-
based cluster prediction approach also helps to reduce the standard deviation
of Fk-centers from ±0.04 to ±0.00.

5.6.7 Complexity analysis
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Figure 5.4: Average clustering time on 16 UCI datasets

To analyze the complexity of our methods compared to other related works,
we let a clustering algorithm process to each of 16 testing datasets for 128
times. Then, the average and standard deviation values of the clustering time
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are then calculated for each method on each dataset. Figure 5.4 shows the
averages of the average clustering times and their standard deviation values
for all methods. From this figure, we can see that the genetic algorithms
take significant time to cluster with 100 generations of 4k individuals. FSBC
is the slowest k-means-like the method because it significantly increases the
dimensionality of the data. It is clear that the accuracy-complexity trade-
off is always present in all k-means-like algorithms, as an illustration, our
methods Fk-centers and LSHFk-centers require more clustering times than
most of other k-means-like clustering techniques by the trade-off of achieving
higher clustering accuracy. Another key point is that LSHFk-centers requires
a slightly higher computation time than its original method Fk-centers.

5.7 Summary

In this chapter, we propose two methods so-called Fk-centers and LSHFk-
centers. Fk-centers is the first method to apply the fuzzy kernel-based rep-
resentation (fcenter) into the fuzzy clustering algorithm of categorical data.
Moreover, LSHFk-centers is the method that incorporates our LSH-based
cluster prediction techniques into Fk-centers algorithm. The advantages and
disadvantages of these two methods can be listed as:

5.7.1 Advantages

• For both Fk-centers and LSHFk-centers, we define the frequency of
categorical value in a cluster under the context of fuzzy cluster using
the corresponding degree of membership.

• Fk-centers has better representation than other related works, which
can exploit the observed information of categorical values following the
complementarity balance of the importance of each unique categorical
value in each fuzzy cluster. As the result, Fk-centers has a higher
average fuzzy silhouette score than other related works.

• When applying the modified version of our LSH-based cluster predic-
tion technique into Fk-centers, LSHFk-centers can even have higher
average fuzzy silhouette scores with extremely high stability.

5.7.2 Limitations

• The process of Fk-centers calculation requires to compute the optimal
values for smoothing parameters, which needs to take into account the
fuzzy frequencies of all unique categorical values in all clusters. For this
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reason, Fk-centers has a higher clustering time than other k-means-like
algorithms.

• Our LSH-based fuzzy cluster prediction approach is highly stable but
still not random, which makes the outcome of the predicted cluster the
same even though many initializations.

5.7.3 Future works

• In terms of Fk-centers, other research may try different techniques to
compute the optimal values for the smoothing parameters λ other than
using LSCV. Thereby, it can either reduce the computation time or
increase the accuracy of smoothing parameters.

• In terms of LSHFk-centers, further research should analyze the way we
assign the degrees of membership of objects on the core buckets, such
that the objects in the core buckets can share the degrees of membership
to other clusters as well.

• We suggest future research to extend the kernel-based representation
(Fk-centers) for handling multi-objective problem with focus on inner-
cluster compactness and outer-cluster separation at the same time
because separation between fuzzy clusters factor is also very important
for fuzzy clustering.
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Chapter 6

Conclusion and future work

6.1 Summary

This dissertation states several problems of cluster analysis for categorical
and mixed data and proposes four corresponding clustering algorithms of
the class of k-means-like algorithms to handle these problems. The clus-
tering effectiveness and clustering performance of these proposed methods
have been experimented in the real and synthetic datasets with standard
measurements on the same testing conditions. In detail, the abstracts of our
proposed methods can be described as follows:

First, to handle the problem of crisp clustering of categorical data, we
proposed LSH-k-representatives, which can incorporate the LSH technique
to predict the potential representatives and use cluster shortlist to reduce the
complexity of the algorithm. To emphasize, the LSH-k-representatives(Init)
alone outperforms other state-of-the-art clustering algorithms in terms of
clustering accuracy. Besides that, LSH-k-representatives(Full) can run faster
than LSH-k-representatives(Init) from 2 to 32 times with comparable accu-
racy.

Second, we introduce the LSH-k-prototypes algorithm to cluster the data
of mixed values, which is the general version of LSH-k-representatives. In
the context of the LSH-k-prototypes algorithm, the kinds of attributes are
separated into two terms: numerical and categorical attributes so that the
appropriate techniques are used to handle these attribute types, namely,
the Euclidean and overlap metrics are used for calculating the dissimilarity
between two mixed objects with the appropriate weights. Moreover, a hybrid
cluster representation so-called prototype is utilized to represent the clusters
of mixed values, which is the combination of centroid and representative.
As can be seen, LSH-k-prototypes has higher clustering accuracy than k-
prototypes and k-Imprototypes.

Third, we applied kernel-based representation to fuzzy clustering of
categorical data. Our proposed method Fk-centers can increase the influence
of unique categorical values that have low occurrence frequencies in a cluster,
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which helps to reduce the bias of dominant unique categorical values in all
domains. Certainly, fcenter is more complicated than other representations
such as medoid, mode, and representative. Because of that, the Fk-centers
algorithm has much better convergence than previous methods.

Fourth, with the new fuzzy clustering algorithm for categorical data,
we can incorporate our LSH-based cluster prediction technique into Fk-
centers. The incorporated algorithm so-called LSHFk-centers can achieve
higher cluster effectiveness than its original method and has extremely high
consistency.

6.2 Limitations

There are several inherent limitations of the dissertation as shown below:

• First, the types of hash functions in our LSH-based cluster prediction
technique are not diversified yet. A hash function is currently extracted
from a single attribute; therefore the inter-attribute properties have not
been untapped.

• Second, different dissimilarity measures may give different results for
the locality-sensitive factor of the hashing model. In this research, we
limited the use of DILCA for exploiting the dissimilarity matrices.

• Third, the number of hash functions is a very important parameter for
the prediction model. In this research, we only used a simple calculation
to estimate the suitable number of hash functions for each dataset based
on the number the target clusters and the number of attributes of this
dataset.

• Fourth, this dissertation introduces two different ways to update the
cluster shortlists during the clustering process. The first way focuses
on accuracy and the second way focuses on speed. There is the
shortcoming of techniques for updating the cluster shortlists, which
can balance the accuracy and speed.

• Fifth, in terms of limitation our fuzzy clustering algorithms Fk-centers
and LSHFk-centers, the process of updating the smoothing parameters
is costly, which doubles the clustering time.

6.3 Future works

Based on the mentioned limitations, we list the corresponding recommenda-
tions for future research as follows:
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• First, the effectiveness of multi-attribute hash functions should be
comprehensively analyzed. Expectedly, a multi-attribute hash function
should capture better the similarity of objects represented by multiple
attributes. Further research should therefore be focused on proposing
a “hyperplane” concept for categorical objects in the similar fashion as
numerical data.

• Second, there are numerous different dissimilarity metrics for categori-
cal data that have not been analyzed in this study. Future research can
propose a new dissimilarity metric that only focuses on the purpose of
creating the hash functions for categorical data is also very promising.

• Third, as can be seen in Figure 4.8, our estimated number of hash
functions is different from the optimal value. Future research may
explore the correlation between distributions of categorical values in
categorical domains with the number of hash functions. A new metric
to estimate the optimal number of hash functions can then be proposed
based on the properties of maximum cuts in categorical domains.

• Fourth, to have the better way to update the cluster shortlist, we can
follow a completely different approach by using the states of labels of
objects after the label updating process instead of using the distances
between cluster representations. In detail, when a high number of
objects in a current cluster are moved to a particular cluster, the
chances of them being in other shortlists is high. In contrast, in the
case just a few or no objects are transferred between a particular pair
of clusters, then the distance between them is relatively far away so
that they should not include the other cluster into their shortlist.

• Fifth, because the processes of updating the smoothing parameters and
the fcenter require the process of calculating, the fuzzy frequencies of
unique categorical values in each domain, we can reuse these results
and avoid the duplicated calculations. Moreover, different techniques
other than LSCV can be applied to achieve better performance and
complexity.

6.4 Code and reproducibility

For the sake of open source and reproducibility of this study, we extracted
the core components of the source code and packed them in packages, which
are published into the python repository site (pipy). The descriptions and
instructions of these packages are included in the following repositories:

• https://pypi.org/project/lshkrepresentatives/: The python source codes
of LSH-k-representatives and LSH-k-prototypes are included.
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• https://pypi.org/project/fkcenters/: The python source codes of Fk-
centers and LSHFk-centers are included.

The default evaluation metrics are also included in those repositories.
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Appendix A
Attribute weighting
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Figure A.1: Contributes of categorical attributes to the clustering outcome

Figure A.1 shows the contribution of each attribute to each cluster on 8
UCI datasets at the final clustering iteration, the vertical axes present the
clusters while horizontal axes present the attributes. The values on the charts
represent the data dispersion on each dimension on each attribute [99].
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