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Abstract

Commonsense knowledge is crucial in today’s artificial intelligence research
area. It contains truths and information of our daily situations, for example
“Sugar is sweet” or “Breathing makes a person alive”, that most of the hu-
mans are expected to own by the time they grow up. It is an unsolved artifi-
cial intelligence problem till this era. Many working commonsense knowledge
programs are needed to assist decision making in AI expert systems. Thus,
commonsense knowledge becomes an essential joint for such AI expert sys-
tems. The importance of commonsense reasoning was recognized since many
of these systems were able to reason, but they were also vulnerable because
they frequently offered nonsensical responses when faced with unexpected
problematic data.

This becomes our core motivation to dive into this area of research.
Speaking of diving into this field, there are many approaches to make ma-
chines gain commonsense knowledge by means of natural language process-
ing, computer vision, etc. However, from all the efforts made over years, it is
obvious that teaching machines to have commonsense knowledge is a time-
consuming and expensive process. Two main reasons why natural language
processing is chosen to proceed for this thesis are:

1. Natural language processing can be treated as a base brick for further
applications such as audio recognition or computer vision applications
that need commonsense knowledge,

2. It is less costly compared to other approaches.

In recent years, knowledge graph embedding algorithms become popular
for knowledge base completion tasks. Those prior studies enlightened in a
way that if we can use knowledge graph models for knowledge base comple-
tion tasks, it can also be helpful in commonsense knowledge mining task along
with certain enhancements. Each embedding model has its unique perfor-
mance when they are dealt with different parts of a dataset. Among various
well-known embedding methods, state-of-the-art models [32] were chosen to
use in our experiments.

From the aforementioned points, we conducted our thesis with following
main contributions:

1. We presented the proposal of using the CKBC dataset to testify the
ability of Knowledge Graph Embedding Models,



2. We reproduced the results for 24 knowledge graph embedding models
which are built-in models from PyKeen,

3. We found out the different results on each model, select the best ones
and implemented ensemble from the results from step 2,

4. Our ensemble method shows that combining the results can produce
better performace.

Keywords: Natural Language Processing, Knowledge Graph Embedding
Models.
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Chapter 1

Introduction

1.1 Motivation

Commonsense knowledge is the fundamental level of practical information
and judgment that we all require to live in a reasonable and safe manner
in our human environment. As people grow older, we become to have more
commonsense knowledge by learning around our atmosphere specifically. For
example, assume you and your friend are playing basketball and you ask
him to give you the ball. Then, there will nearly be a zero chance that
he is going to give a soccer ball or a hydrogen balloon to you. That is
commonsense. You will have low chances of having errors or mistakes while
making an instant ramen, using your vacuum cleaner or riding a bicycle
because you already know what to do, what not to do and how to do these
actions. Such knowledge is not taught to you explicitly. It is self evident for
you. However, in order for robots to complete the same activity, the request
”make an instant ramen” will not provide sufficient information to identify
task components such as heating water, flavoring the noodle, and so on. The
same previous information that you would utilize in the same circumstance
must be required by a robot.

The target of artificial intelligence is to construct machines that can mimic
people behavior and decision-making. As a result, researchers are working for
the creation of computers that can handle problems and achieve objectives
on a human level. That is the core reason why machines are needed to be
provided commonsense knowledge that we naturally own. To make this goal
achieve, AI researchers have put in a lot of work to retrieve commonsense
knowledge that they have stored in humans’ heads and build it into knowledge
base (KBs). However, commonsense knowledge is implicit and it depends
on the culture or context, the researchers have faced many challenges and
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Figure 1.1: Snapshot of Freebase subgraph

Figure 1.2: Snapshot of ConceptNet semantic network [22]
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difficulties.
Cyc [22], SUMO ontology [29], HowNet [15], and Open Mind Common

Sense (OMCS) [34] are the early stage milestones for commonsense knowl-
edge development and reasoning. AI researchers had to focus on manual
annotation by system experts in that era with the help of manual knowledge
gathering by using pubilc platforms[40]. Although the quality of the man-
ual work might be good or acceptable, such manual efforts showed a lot of
drawbacks whatsoever such as limited size or diverse nature of the knowledge
being collected. To overcome the drawbacks of manual assertions, large scale
commonsense knowledge mining were introduced.

Previously, approaches depended on logical models that matched math-
ematical models to previously acquired knowledge[17]. However, the math-
ematical complexity of logical reasoning may not fit to present knowledge
base (KBs) [9]. Then, knowledge graph completion (KBC) task becomes
popular in recent years.With the help of knowledge graph representation,
knowledge graph completion is the act of inferring new edges, called facts, in
a knowledge graph based on the already existing relational data. There are
various knowledge graph embedding (KGE) models that convert the entities
and relations of that knowledge graph into vector representations. These ap-
proaches excel at adding missing facts to encyclopaedic knowledge bases like
DBpedia [21] and Freebase [3]. However, when KGE models are deployed to
the commonsense knowledge base completion task (CKBC), a curated repos-
itory of commonsense knowledge, similar performance is not found when the
problem is formulated as one of knowledge base completion (KBC).

In this thesis, we investigate and study diverse KGE models with CKBC
dataset and developed ensemble methods on knowledge graph embedding
models aiming to obtain the results on CKBC dataset. Our ultimate goal is
to explore CKBC through KGE models. As a result, the improved knowledge
graph embedding models are specifically designed to promote commonsense
reasoning.

1.2 Contributions

1. Reproducing results for KGE models on CKBC

We propose reproducing the results of the knowledge graph embedding mod-
els (KGEs) for CKBC. Then, we propose to make enhancements with the
help of hyper parameters. This draws on the idea that each model performs
differently on the CKBC dataset.

2. Ensemble KGE Models for CKBC
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Here, we propose an ensemble model to combine the best results from our
selection knowledge graph embedding models (KGEs) to prove that combi-
nation of the models can perform better.

1.3 Issues

Commonsense knowledge mining is a challenging process with distinct ob-
stacles arising from the knowledge’s features. As a result, we’ll take a look
at a few of challenging issues.

1. Implicitness: Humans perceive commonsense knowledge in a way of
suppositions about daily situations which should be understood by all. As
a consequence, they commonly cease bothering and ignore it in communi-
cations. As a result, it is hard to consider and convey which they accept
for granted, and commonsense knowledge mining methods that depend on
obtaining superficial linguistic resources would struggle to come up with this
implicitness. More complicated algorithms capable of reasoning and making
inferences are required to do this.

2. Diversity: Commonsense knowledge comprises a large variety of hu-
man understanding and touches all element of our everyday lives. It may be
characterized as type and domain agnostic. It is difficult to identify all of
the concepts, words, or relationships that are involved.

3. Automation: Codifying the generality and universal reach of common-
sense knowledge is a massive effort that humans are incapable of doing. As
a consequence, manual to automatic and semi-automated operations had to
be transitioned. The reasoning approach, in particular, aims to infer new
knowledge automatically using similarities and parallels based upon what is
understood.

4.Efficiency: One might imagine that as computational performance rises,
so will the rate of commonsense knowledge quarrying, however this is not the
case. As the size of existing knowledge for reasoning operations expanded, the
efficiency of constructing projected lacking commonsense assertions would
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rise.

1.4 Scope of Research

The goal of this study is to see how useful KGE models are for CKBC when it
comes to anticipating missing links between existent entities. To do this, we
re-implemented over 20 KGE models using the CKBC dataset. We suggest
that the commonsense knowledge mining issue be treated as a commonsense
knowledge base completion task. We introduce
(1) reproducing KGE models for CKBC , and
(2) incorporating KGE models together to get better results. Our study used
mainly CKBC dataset and a lot of KGE models. For the conduction of our
experiments, we mainly use PyKeen [1] and LibKGE [5] for the framework
of KGE models that we are going to use in our research.

1.5 Thesis Outline

The following is a breakdown of the report’s structure: Chapter 2 locates this
research in the context of previous studies. It begins with defining common-
sense knowledge and then goes over several KGE models. Following that, it
goes through several commonsense knowledge mining strategies. The sug-
gested models are presented in Chapter 3, while experimental settings are
described in Chapter 4. We analyze our technique and discuss the findings
in Chapter 5. In Chapter 6, we wrap things up by reviewing what we’ve
learned and provide recommendations for future research.
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Chapter 2

Related Work

2.1 Commonsense Knowledge

Because there is no formal statement of commonsense knowledge, it might be
roughly characterized as a huge stack of agreed-upon facts learned as a per-
son grows up via ordinary occurrences. It encompasses a number of specific
knowledge, such as object activities, characteristics, event place and time,
human motivations and moods, and so on. It refers to implicit information
that is commonly disseminated and well recognized to the point that, regard-
less of the fact that it is essential to carry out everyday responsibilities, it is
commonly left out of discourse. According to [47], commonsense knowledge
has the following characteristics: it is shared by practically everyone, it is
fundamental and widely understood, it is implicit, it is massive in terms of
both volume and quality, open-domain, and contains basic assertions that
are accessible to deviations in appropriate settings.

In contrary to true knowledge, commonsense is an ontological knowledge
that is focused with the connections and qualities of vague concepts and
categories rather than real entities or instances of these classes. Common-
sense knowledge includes ideas and link hierarchy, which are facilitators for
commonsense reasoning and inference. ConceptNet is a public commonsense
knowledge base and natural language processing tool set designed to help
computers understand the definitions of words humans use. Linguistic net-
works, which are a sort of knowledge representation, are used to do this.These
use graph ways to demonstrate linkages between ideas and events to demon-
strate common sense tasks. This inferential data knowledge-base contains
about 1.6 million asserts of common sense information, such as the spatial,
physiological, cultural, and mental aspects of daily life. It originated as a
system named Open Mind Common Sense [34]. It’s been utilized in Chatbots
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and some natural language assistance with great success.

Figure 2.1: Example of Semantic network (Source: Wikipedia)

2.2 Commonsense Knowledge Bases

A knowledge base is a bundle of statements expressed as triples of the type
(head , relation, tail ), signifying the presence of a marked link between two
terms. In commonsense knowledge bases [14], rather than actual examples
of these notions, phrases relate to vague concepts (formalisms). In the past
33 years, a lot of commonsense Knowledge sources have been built.Among
the most well-known are Cyc [22], [25] and ConceptNet [35] and WebChild
[38].

2.2.1 Cyc

Cyc, which started in the nineties and spanned two decades, is for building
entire commonsense knowledge bases. It was first manually developed by a
team of dedicated system professionals (CycL) in a formal logic mathemat-
ics syntax language. Cyc’s commonsense knowledge is made up of observa-
tions, rules of wisdom, and strategies for reasoning about everyday items and
events. By necessity, CycL assertions are true only in certain contexts. As
a consequence, Cyc’s assertions have been broken down into 20,000 micro-
theories sharing of common assumptions. 7,000,000 claims, 500,000 words,
17,000 relations, and 17,000 connections make up Cyc. In supplement to
the knowledge base, Cyc has a number of reasoning engines for reason on its
knowledge [18].
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2.2.2 HowNet

[15]HowNet is a multilingual commonsense knowledge base that identifies
linkages among concepts or attributes of concepts. Around 1.9 million records
on HowNet are expressed using Knowledge Database Markup Language (KDML).
It expresses its concepts using Chinese and English phrases and idioms.
These concepts are based on the foundation of sememes, the tiniest units
of meaning.

2.2.3 ThoughtTreasure

ThoughtTreasure (Mueller, 1998) [27] is a commonsense knowledge-based
natural language comprehension framework. The ideas in ThoughtTreasure
are grouped into a top ontology and a number of domain-specific bottom
ontologies. Furthermore, each concept is associated with one or more lexical
components (words and phrases). ThoughtTreasure comprises 27,000 ideas
with 51,000 assertions connecting them.

2.2.4 WordNet

[6]WordNet is a created lexicon of English vocabulary that includes nouns,
adjectives, verbs, and adverbs and is intended for lexical classification and
language modeling identification. WordNet differentiates among several mean-
ings of a word, each one is a different interpretation that a word might have,
and organizes words with the same notion into’synsets,’ which are clusters of
cognitive synonyms. A score is also assigned to each synset, indicating how
commonly it occurs in textual. WordNet also keeps a record of the occurrence
of interactions between synsets or individual words, as well as providing short
description and word samples. WordNet 3.1 has 155,327 words arranged into
175,979 synsets for a total of 207,016 word-sense pairs. WordNet’s semantic
relations are either linguistic or commonsense, and they are between synsets
rather than words. [29].

2.2.5 Open Mind Common Sense

The Common Sense Computing Initiative launched the Open Mind Common
Sense (OMCS) [34]initiative with the purpose of directly collecting common-
sense information on a wide level. It depended on contributors from the
general populace to gather commonsense information in the form of natural
language assertions, which were then analyzed to create claims. OMCS has
amassed over a million bits of common sense knowledge in English from over
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Reference Year Source Concepts Relations Assertions
Cyc 1984 Curated 500,000 17,000 7,000,000
ThoughtTreasure 1994 Curated 27,000 N.A 51,000
WordNet 1995 Curated 155,327 ≈ 10 207,016

ConceptNet5.5 2016
Semi Auto-
mated

1,803,873 38 28,000,000

Table 2.1: Commonsense Knowledge Base Stats

15,000 contributors since its inception , with modifications to numerous other
language families.

2.2.6 ConceptNet

ConceptNet (Lenat, 1995) is a vast semi-automated and heterogeneous com-
monsense knowledge resource obtained primarily from OMCS as well as other
alternative data and modeled after the WordNet semantic network. Its ver-
tices are natural language terms, and its associations are based on the lin-
guistic relations paradigm of WordNet. It has been improved and published
in different variants, beginning with ConceptNet 2 and finishing with Con-
ceptNet 5.5. The most current version of ConceptNet,[35], was built from 7
formal and informal knowledge - based resources . It comprises about 8 mil-
lion nodes and 21 million edges from a multilingual lexicon, ultimately con-
nected by 38 connections. In English, there are 1,803,873 ideas and around
28 million statements.

2.3 Knowledge Graph

The term ”knowledge graph” is becoming widely used in current history to
describe to graph-based expert systems, and the phrases ”knowledge base”
and ”knowledge graph” are frequently interchanged. It became famous after
Google’s Knowledge Graph copied it. It has been characterized in a fuzzy
sense ever since due to a complete lack of consensus on an exact meaning.
Before presenting their own definition, Ehrlinger and Woß [16] endeavored
to assemble a list of existing definitions used in the literature. Paulheim [31]
proposes a fascinating term to separate knowledge graphs from just graph-
formatted data collection:

A knowledge graph
(i) characterizes regular items and associated interrelationships
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in a graph,
(ii) specifies alternative categories and relationships of things in
a framework,
(iii) provides for possibly interlinking unconstrained entities with
one another, and
(iv) encompasses a broad range of thematic topics.
A knowledge graph is a multi-relational graph that has nodes
for entities and typed-edges for entities. Every edge represents a
formal truth (head entity, predicate, tail entity).

A knowledge graph (KG) is a directed heterogeneous multigraph with
domain-specific node and relation types. KGs permit users to encapsulate
information in a human-readable format that can be analyzed and inferred
automatically. KGs are a common way of representing many sorts of collected
in the form of various types of objects linked by various kinds of relationships.
[20] When engaging with knowledge graphs, we employ a different vocabulary
than the standard vertices and edges used in graphs. Entities and triplets
are the vertices and directed edges of the knowledge graph, respectively,
and are represented as a (h, r,t) tuple, where h is the head entity, t is the
tail entity, and r is the relation between the head and tail entities. The
term ”relationship” refers to the sort of relationship in question (e.g., isA,
ComprisesOf, and LocatedIn). A knowledge graph is self-descriptive in that
it gives a single location to locate facts and comprehend its meaning. The
term semantics is connected with the knowledge graph since the meaning
of the data is encoded alongside the data in the network itself. Knowledge
graphs provide value by allowing us to:

• Context: Knowledge graphs provide algorithms context by integrating
multiple forms of data into an ontology and allowing for the addition of
additional derived knowledge on the fly. Most classic knowledge graphs
may employ many forms of raw data at the same time.

• Efficiency: Knowledge graphs enable computational efficiency for query-
ing stored data, resulting in effective data utilization for generating
insights, once necessary entities and relations are accessible.

• Explainability: By integrating the meaning of entities available inside
the graph itself, large networks of entities and interactions give answers
to the challenge of understandability. As a result, knowledge graphs
are inherently explainable.

10



2.4 Knowledge Graph Embeddings

It is described as the challenge of discovering vector space representations
for knowledge base entities and relations. Assume we have head and tail
entities, as well as relationships between them. A scoring function that may
be specified by the connection linking the two entities, a function f can be
used to calculate the likelihood of a relation that can connect a certain head
and tail entity (h, r, t). To put it another way, the core concept behind these
models is that relationships between things may be depicted as interactions
between their vector representations, and that these interactions can take a
variety of forms.

These representations can help with a variety of useful applications. In
past few years, several relation modeling approaches have been presented,
with the majority of differences being in the construction of the score func-
tion, which is specified by how relation conversion operates. Moreover, many
of these approaches seek to achieve the optimal balance of model expressive
power and complexities in place to ensure predictability across large knowl-
edge networks.
The embedding models acquire entities and relations representations that
encapsulate local connection patterns by optimizing a global loss function,
facilitating in the understanding of actual revelations by making generali-
sations over existing ones. According to [12], the following will be a brief
summary of state of the art knowledge graph embeddings [26].

The translational and bilinear models are the two primary groups of
methodologies. Translational models (e.g., TransE) frequently use a multi-
plicative method and represent relationships as matrices in the vector space,
whereas bilinear models frequently use a multiplicative approach and express
relationships as matrices in the vector space. Bilinear models perform well
in link prediction tasks in general [41]. RESCAL, DistMult, and ComplEx
are the most popular models in this area.

2.4.1 TransE

TransE is a knowledge base embedding model that is based on energy. It
interprets relationships as translations on the entities’ low-dimensional em-
beddings in order to model them. Relationships are represented in the em-
bedding space as translations: if holds, the tail entity’s embedding should
be near to the head entity’s embedding plus some vector that relies on the
relationship. Bordes [4] proposed the TransE model for the first time in 2013.
Consider the relationship rin each triple instance (head, relation, tail) as a
translation from the head entity h to the tail entity t, and make (h + r) as

11



equal to t as possible by continuously adjusting h, r, and t to achieve the
learning goal based on the distributed vector representation of entities and
relationships.

Figure 2.2: Simple illustrations of TransE model

2.4.2 Rescal

RESCAL [28]is a program that computes a three-way factorization of the
knowledge graph’s adjacency tensor. It may also be understood as a compo-
sitional model, in which the tensor product of two things’ embeddings is used
to represent them. RESCAL is an effective model for capturing complicated
relationship patterns over several graph hops.This model models interactions
between latent characteristics by representing relations as matrices. It is a
bilinear model in which entities are represented as vectors and relationships
are represented as matrices. Therefore, the score will be:

f(h, r, t) = eThWret =
d∑

i=1

d∑
j=1

w
(r)
ij (eh)i (et)j
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Figure 2.3: Simple Illustration of Rescal Model
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2.4.3 ComplEx

The entities and relations in the CompleX model [19]are represented using
complex valued representations. The plausibility score is computed using
for the and entities and relations. Entities and relations are represented as
vectors and the score function is :

f(h, r, t) = Re (eh ⊙ rr ⊙ et)

2.4.4 DistMult

By constraining matrices describing relations to diagonal matrices, Dist-
Mult[43] simplifies RESCAL. The relation matrices are restricted to diagonal
matrices:

f(h, r, t) = eThWret =
d∑

i=1

(eh)i · diag (Wr)i · (et)i

DistMult is more computationally efficient than RESCAL due to its restric-
tion to diagonal matrices, but it is also less expressive. It cannot, for example,
model anti-symmetric relationships, since f(h, r, t) = f(t, r, h). This can al-
ternatively be formulated with relation vectors and the Hadamard operator
and the l1 norm.

f(h, r, t) = ∥eh ⊙ rr ⊙ et∥1

2.4.5 RotatE

RotatE [36] was introduced to provide a method to effectively represent sym-
metric properties in knowledge graph embeddings. The authors of this paper
propose to use rotation in a complex space to support symmetry and other
properties. RotatE models relations as rotations from head to tail entities in
complex space:

et = eh ⊙ rr

The interaction model is then defined as:

f(h, r, t) = −∥eh ⊙ rr − et∥

which allows to model symmetry, anti-symmetry, inversion, and composition.
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Figure 2.4: Simple Illustration of Rescal Model

Figure 2.5: ConvE Model Architecture
“
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2.5 Knowledge Base Completion

Knowledge base completion is a job that uses reasoning to infer missing facts
from the information currently in the knowledge base. A knowledge base
is a set of related information that are commonly expressed as “subject”,
“relation”, and “object”-triples.

2.6 Commonsense Knowledge Base Comple-

tion (CKBC)

The majority of KBC research focuses on knowledge bases, such as Freebase,
that connect things selected from a defined set. ConceptNet uses tuples to
create relationships between an infinite number of words. They create neu-
ral network models for scoring tuples on arbitrary phrases and assess their
ability to differentiate true from false held-out tuples. By framing the prob-
lem as one of knowledge base completeness, the coverage of commonsense
resources is enhanced. We concentrate on ConceptNet, a curated common-
sense resource . Tuples consisting of a left term, a relation, and a right term
are found in ConceptNet. The relationships are drawn from a predetermined
list. ConceptNet words can be any sentences, but terms in Freebase tuples
are entities.The baseline method was based on

Figure 2.6: Snapshot of CKBC Statistics
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2.6.1 Task Design of CKBC

The tuples are obtained from the Open Mind Common Sense (OMCS) entries
in the ConceptNet5 dataset. They are sorted by a confidence score. The
most confident 1200 tuples were reserved for creating the test set (TEST).
To generate a development set (DEV1), the next most confident 600 tuples
were utilized, and the next most confident 600 tuples were used for (DEV2).
For each set , for each tuple S, a negative example was created and added it
to S. So each set doubled in size.Each of DEV1 and DEV2 has 1200 tuples.

Figure 2.7: CKBC Knowledge Graph

2.7 Ensemble Technique

Ensemble techniques are a type of machine learning methodology that in-
tegrates numerous base models to create a single best-fit prediction model.
Because of their extensive use, there are three “standard” ensemble learning
procedures: bagging, stacking, and boosting. Each strategy has an algorithm
that specifies it, but the success of each approach has produced a plethora
of extensions and corresponding approaches.
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2.7.1 Bagging Learning in a group

The diversity of the ensemble is guaranteed by changes in the bootstrap sam-
ple versions on which every classification is trained, and the employment of a
particularly poor classifier whose classification algorithm move significantly
with respect to comparatively small modifications in the training data. If a
row is picked, it is returned to the training dataset for possible re-selection
within the same training dataset.A better overall estimate of the desired
quantity can be accomplished by producing numerous separate bootstrap
samples, estimating a statistical quantity, and finding the mean of the esti-
mates rather than estimating directly from the dataset. More modifications
to the training dataset, for example, could be made, the algorithm that fits
the training data could be altered, and the mechanism that combines pre-
dictions might be changed in ways of voting and so forth.

2.7.2 Stacking Ensemble Learning

Stacking has its own terminology, with level-0 models referring to ensemble
members and level-1 models referring to the model that is used to integrate
the forecasts.

Instead of a single level-1 model, we may have three or five level-1 mod-
els and a single level-2 model that integrates level-1 model predictions to
generate a forecast.

2.7.3 Boosting Ensemble Learning

Boosting is an ensemble strategy that attempts to alter the training data
in order to focus attention on cases that prior fit models on the training
dataset have incorrectly identified. The models are fitted and added to the
ensemble in order, with the second model attempting to correct the first
model’s predictions, the third model correcting the second model, and so on.

2.8 Limitations

Prior approaches on commonsense knowledge base completion task with
CKBC dataset includes using deep neural network models, using pre-trained
language models and similar alternatives . Although these models performed
well, there is still a question that whether they can handle the missing link
prediction when it is necessary or not. Moreover, according to our find-
ings and surveys as much as we could, there is still not any implementation
on commonsense knowledge base completion task on CKBC dataset with
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knowledge graph embedding models. Hence, our approach mainly focuses on
predicting the connections among entities in a commonsense knowledge base
completion dataset.

2.9 Application Area

The followings are the applications that can be more useful with common-
sense knowledge.

• Expert systems are for mimicking the judgment and behavior of people
in a certain industry, such as banking system, communications, nursing,
service and support, logistics, so on and so forth. An expert system is
often made up of a specified knowledge base based on cumulative social
encounters and a collection of pre-defined criteria issues and scenarios.
When confronted with novel scenarios, these systems fail. To transcend
over their initial focus and adequately simulate human judgment in new
contexts, ESs must have commonsense information as well as the ability
to learn from it. [24] [42]

• NLP:Commonsense knowledge is critical for natural language process-
ing tasks like disambiguation and machine translation. Commonsense
knowledge is especially important in situations where mere default rules
are insufficient and a true comprehension of real-world information is
required. Machine translation, for example, is one of the most difficult
and unsolved tasks in NLP. Other examples include [13]; [11]; [8], [48],
sentiment analysis [7], [33],[30],[45], and [44].

• Computer vision: Commonsense, like NLP, plays a critical role in pro-
gressing various critical computer vision tasks, like as [46], [37], and
[10].

• Robotics: For autonomous robots functioning in an uncontrolled envi-
ronment, commonsense thinking is a must. Bots ought to be able to
fit in with their surroundings and interrupt scenarios. For example, a
droid that is required to comprehend a scenario of a human rock climb-
ing should be aware with the scene’s semantics. Based on its existing
beliefs and directives, a domestic robot is anticipated to estimate a
user’s wants. [39].

• To enhance search terms with structured information, browsers or ques-
tion answering tools such as personal assistants or visual question an-
swering can translate a query into some type of request against an
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existing knowledge. Furthermore, voice recognition-powered personal
secretary software such as Siri has reduced mistake percentages. [2].
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Chapter 3

Proposed Method

3.1 Problem Formulation

Reasoning-based approaches for commonsense knowledge mining make ed-
ucated estimates about what constitutes a legitimate commonsense state-
ment based on analogies and trends derived from established commonsense
knowledge regularities. Knowledge graph embedding models learn encod-
ing of graph connections in low-dimensional continuous vector spaces that
maintain graph characteristics and functional consistencies by portraying a
base of knowledge as a graph with nodes (entities) connected by edges (rela-
tions) . After that, these embeddings may be employed for tasks like entity
categorization, relation retrieval, and link prediction. The completeness of
commonsense knowledge bases is one job that we’re interested in and might
benefit from these embeddings.To reach our aim, we need to be able to fore-
cast new asserts that may not be already in a knowledge base by bringing in
lacking entries of missing triples. We need to guess the absent link for the
incoming unidentified triples using knowledge expressed in triples, i.e. (h,
r, t), and a scoring function f(h, r, t) that scores right triples greater than
wrong triples.

In order to conduct our research, we created a simple ensemble wherein
we combined the link projections of knowledge graph embedding methods
reported in previous papers. Extending the previous projects, the ultimate
probability of a triple is calculated from the ensemble of such assumptions.

P (xh,r,t = 1 | Θ) =
1

n

n∑
θm∈Θ

P
(
xh,r,t | θmh,r,t

)
where

P
(
xh,r,t = 1 | θmh,r,t

)
=

1

1 + e−(ω
m
1 θmh,r,t+wm

0 )
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The pool of model parameters is termed Theta, where xh, r, t is the goal fac-
tor that indicates when a triple (h, r, t), comprising of the two end objects
h and t and the relation r, is correct. We are assessing all potential model
combos, so Theta might be a subgroup of the KGE models we addressed
in this paper. The predicted confidence scores for triples differ dramati-
cally throughout all models in the ensembles; RESCAL can yield any value,
whereas TransE gives negative distances. To adjust the tree methodologies’
outputs, we thought to use a straightforward meta-learner however and we
expected that this approach will indeed bumble the significance of every sin-
gle classifier in link prediction tasks. To acquire suitably scaled probability,
we employed a PlattScaler one per model based on a small subset of the
training data. A Platt-Scaler is a logistic regression model that maps into
the interval [0, 1] with precisely one input (the output thetah, r, tm of the
model m). omega1m and omega0m reflect the learnt weights and biases
of the Platt-Scaler for the model m, respectively.We implement the scalers
to the confidence score thetah, r, tm of every model m to produce the likeli-
hood Pleft(xh, r, tmidthetah, r, tmright), which is the likelihood of the triple
(h, r, t) provided the models m. Afterwards when, we start adding every one
of these probabilities together by finding the arithmetic average.

3.2 Preliminary Experiments

As our goal is to explore the performance of KGE models, we implemented
each available model in KGE using PyKeen. PyKeen provides many exist-
ing knowledge graph embedding models which makes our experiments more
complete. We will discuss about our preliminary experiments in the section
5.2.
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Chapter 4

Experimental Setup

4.1 Dataset

Our experimental procedure is based on the [23],CKBC dataset, which uses
its test set with an adequate proportion of correct and incorrect triples to
evaluate our model.

4.2 PyKeen

The purpose of the PykEnn is to implement knowledge graph embedding
models using a variety of modelling techniques, training methodologies, and
loss functions. It is also easily to get impact of each constituent on the
model’s effectiveness independently in PyKeen. Furthermore, an automated
memory reduction has been implemented in PyKeen for maximizing the use
of the available resources. For our tests, we use GoogleColab. There have
already been 27 installed datasets in PyKeen. However, because CKBC is
not a built-in dataset, we must import it manually.

4.3 LibKGE

LibKGE (https://github.com/uma-pi1/kge) is a fully accessible PyTorch-
based platform for training, hyperparameter adjustment, and evaluation of
knowledge base embedding models for link prediction. The major aims of
LibKGE are to improve the reproducibility of research, serve as a baseline
for large-scale experimentation, and make it simpler to assess the effects of
different elements of training techniques, model designs, and assessment pro-
cesses. Each trial may be successfully duplicated only with a configuration
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file because to LibKGE’s flexibility. To the maximum degree possible, con-
stituents are separated, permitting them to be combined and compared. By
a systematic review, LibKGE provides close to state-of-the-art efficiency for
several models with a little amount of automatic hyperparameter adjustment.
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Chapter 5

Evaluation

5.1 Evaluation Metrics

Mean Reciprocal Rank (MRR)

The mean reciprocal rank is a metric that may be used to evaluate any
activities that generate a collection of probable replies to a set of inquiries,
sorted by likelihood of accuracy. The multiplicative inverse of the score of
the first correct solution is the reciprocal rank of a requests.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
.

where ranki refers to the rank position of the first relevant document for the
i-th query.

Mean Rank

To compute the average rank of outputs from the document, we need mean
rank.

score =
1

|I|
∑
r∈I

r

It has the benefit over hits @ k in that it is attentive to any variations in pre-
diction accuracy, including those that happen below certain threshold, and
hence captures average rating. The mean rank in PyKEEN’s conventional
1-based indexing is on the range [1, infty), with lesser being preferable.
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Hits at k (Hits@k)

This metric is calculated by the percentage of correct triples resulted in
the top elements in which the number is k. The overall k-truncated list
may consists of many correct assertions, this value may surpass 1.00. The
proportion of genuine entities that occur in the first entities of the sorted
rank list is described by hits @ k. It is written as follows: For instance,
if a search engine returns 10 results on the first page, the hits @ 10 is the
proportion of relevant results.

5.2 Results

First, the built-in models from PyKeen were tested and evaluated on CKBC
dataset to see the results of each model so that we can see how each model
performs individually for the dataset. We did not use any tuned hyperpa-
rameters because we wanted to know the original performace on each model.
That is why we used the default pipeline model training from PyKeen.

Next, based from the results of table 2, we chose top 5 models. From these
results, we can see that DistMult significantly worse than other models and
ComplEx and ConvE show best results overall. In filtered hits@K results,
most model performs slightly better and ConvE improves the most. After
applying ensemble method to our
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Models Mean rank Mean reciprocal rank
TransE 4112.73 0.0279
TransD 9877.45 0.0125
TransF 23081.42 4.03E-03
TransH 33950.49 2.00E-03
TransR 30769.40 2.19E-02
RotatE 13502.05 1.30E-02
TorusE 5086.65 0.0064

StructuredEmbedding 38003.16 9.95E+00
SimplE 16781.44 1.80E-03
RGCN 8256.60 4.44E-05

RESCAL 4081.01 0.078
QuatE 5751.13 1.00E-04
ProjE 8419.89 0.00122

PairRE 5278.03 1.00E-03
MuRE 38645.65 6.06E-05
HolE 20254.22 1.00E-04

ERMLPE 28110.41 3.70E-03
ERMLP 41002.39 2.00E-04
DistMult 3873.39 0.051
DistMA 9037.09 3.00E-04
CrossE 8963.77 6.74E-05
ConvE 3711.98 0.0938

ComplEx 3915.91 0.0748

Table 5.1: Preliminary Results obtained from default training

Models Mean rank Mean rank (F) Mean reciprocal rank Mean reciprocal rank (F)
TransE 4112.7341 4105.6158 0.0279 0.0292
Rescal 4081.0158 4069.3066 0.0787 0.1422

ComplEx 3915.9141 3904.2066 0.0748 0.1496
DistMult 3873.3972 3861.6883 0.0518 0.0867
ConvE 3711.9875 3700.6108 0.0938 0.1676

Table 5.2: Selection models for mean rank and mean reciprocal rank metrics
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Models Hits@1 Hits@10 Hits@100 Hits@1000
TransE 0.088 0.202 0.303 0.400
Rescal 0.076 0.138 0.198 0.281

ComplEx 0.109 0.177 0.240 0.313
DistMult 0.003 0.006 0.015 0.038
ConvE 0.080 0.195 0.205 0.381

Table 5.3: Preliminary Results for unfiltered hits@k results

Models Hits@1 Hits@10 Hits@100 Hits@1000
TransE 0.091 0.207 0.317 0.400
Rescal 0.094 0.148 0.213 0.281

ComplEx 0.128 0.233 0.308 0.382
DistMult 0.003 0.006 0.015 0.038
ConvE 0.185 0.366 0.326 0.425

Table 5.4: Preliminary Results for filtered hits@k results

Models Hits@1 Hits@10 Hits@100 Hits@1000
TransE 0.088 0.202 0.303 0.400
Rescal 0.076 0.138 0.198 0.281

ComplEx 0.109 0.177 0.240 0.313
DistMult 0.003 0.006 0.015 0.038
ConvE 0.080 0.195 0.205 0.381

Rescal + TransE 0.092 0.142 0.247 0.314
ComplEx + TransE 0.138 0.251 0.332 0.428

ConvE + TransE 0.190 0.281 0.310 0.501
ComplEx+ ConvE + TransE 0.162 0.228 0.285 0.415

Table 5.5: Ensemble results
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Chapter 6

Conclusion and Future Work

Using knowledge graph embedding models, we suggested a strategy for com-
pleting a commonsense knowledge base with regard to link prediction. We
demonstrated how we can improve performance above the baseline by en-
sembling the current KGE models. In the future, we’ll look at how we can
utilize our model to better downstream NLP jobs, as well as how we can
adapt our approaches to different commonsense knowledge bases.
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