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Abstract

Nowadays, it is convenient for users of social medias to express their thoughts
and opinions. Among many tools, Twitter is one of the most widely used
and has open APIs which allow developers to extract large amounts of data.
However, when users want to obtain some information to make decisions,
there is no way to distinguish the reliability of what other users post.

In Japanese, there is a special expression - private opinion (本音) and
public sound (建前). Private opinion means one’s real opinion, public sound
means one’s public stance. Private opinion is a method that does not make
the other person uncomfortable by returning it in bland words without saying
something that is unpleasant in the heart, and it is regarded as common sense
in Japanese society. It’s hard to judge public sound as the lie, but it’s still a
persistent treatment for Japanese people whose virtue is to read between the
lines. In order to really understand the real thoughts of Japanese, we can
focus on accounts that only post private opinions. These special accounts do
exist among Japanese netizens, which are called private opinion accounts (本
音垢). At the same time, there are also accounts posting vicious words which
are more straightforward than the private opinion accounts, which called the
venom accounts (毒舌垢). Obviously, we can judge that private opinion has
a higher degree of reliability than public sound, therefore we choose to crawl
and analyze the private opinion accounts and the venom accounts in the
research. Our research can be viewed as a development of XAI and reliable
AI, which is in very high demand in recent years.

Our objective is to identify private opinion structure in Twitter data for
modeling argumentation graphs with attack relations. Our research based on
the Argumentation Framework (AF), which is introduced by Dung, are pairs
consisting of a setAR of arguments and a binary relation between arguments,
representing attacks. Formally, an AF is any ⟨AR, attacks⟩ where attacks ⊆
AR×AR. Bench-Capon defines the valued-based argumentation framework
(VAF) by attaching to each argument the social values that it promotes.
Formally, a VAF is a 5-tuple ⟨AR, attacks,R, val, valpref ⟩, where R is a
non-empty set of values, val is a function which maps from elements of AR
to elements of R, and valpref is a preference relation on R×R.

In our research, we extend the notion of VAF to introduce a Weighted
Annotated Discussion Graph (WADisG). Let Γ be a non-empty set of tweets
and G = ⟨V,E,A,R,W ⟩ be a WADisG; for every tweet in Γ there is a
node in V and if tweet a attacks tweet b, there is a directed edge (a, b) in
E, A is an annotation function for edges A : E → S, where S represents



attack relations for any directed edge (a,b), and the value’s range of S is
{attacks,none}. We defined the valued-based argumentation frameworks for
as F = ⟨V, attacks,R,W, V alpref ⟩, where the weighting function for argu-
ments is W : V → R for tweets, and the preference relation V alpref ⊆ R×R
is the ordering relation over R. We give weight to arrows rather than nodes
because our data set is special compared with typical twitter conversation
analysis. In a typical twitter conversation, a tweet usually has many replies
from different users, which is suitable for the traditional VAF that gives
weight to different nodes (arguments). In our dataset, users rarely receive a
reply to a tweet, but they usually quote the arguments of others in a tweet
before giving a counter-argument. Therefore, we divide such tweets into sub
tweets and annotate the sub tweets with attack relation. The weight of the
same user on a topic is calculated by the weighting function therefore the
node weights at both ends of the attack are the same. We give weights to
different arrows to represent the overall reliability of the tweet. In the pro-
posed WADisG, the grounded extension S ⊆ T of F is the accepted set of
tweets based on the weighting scheme W and we refer to it as the solution
of G, i.e. the set of tweets with high reliability.

We crawled the data from Twitter API and have done some processing
work such as format conversion, solving the garbled code problem, cleaning
our data, and annotate for the tweets. After we finish processing the tweets,
we carry out some basic morphological analysis work, such as word segmen-
tation to get word frequency. Then, we combine TF-IDF and Japanese gram-
mar (refer to Japanese papers) to select the most useful features for training
our model. We carried out two binary classifications, argument classifica-
tion and attack classification. Later, we use some commonly used machine
learning algorithms on our dataset and evaluate the performance of these
algorithms based on the confusion matrix and F Score. We found that Multi-
nomial Naive Bayes performs the best and Passive Aggressive the worst in
our classification experiments. In the end, we use answer set programming to
calculate the set of reliable tweets and visualized with argumentation graph.

Finally, we analyze the structure of private opinion from morphological
analysis and syntactic analysis aspect. We look forward to some future work
such as making a more complete information retrieval system, including but
not limited to adding a more friendly interactive interface, adding indicators
from other users such as Net Promoter Score, using the threshold setting in
order to provide users in need with a reliable decision-making reference tool.

Keywords: Argumentation Framework, Value-based Argumentation,
Attack Labelling, Private Opinion (本音), Reliable Artificial Intelligence.
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Chapter 1

Introduction

1.1 Background and Research Questions

1.1.1 Twitter for Academic Research

Nowadays, in the information-oriented society, it is convenient for users
of popular social medias to express their thoughts and opinions. Although
many specialized and generalized social networks exist, today Twitter is one
of the most widely used for sharing and critiquing relevant news, and citizens’
reactions to news and events on Twitter are often seen as indicators of social
interest in the topic.

However, the critical question is that it is not easy to judge whether
they are reliable or not. When we users of social medias want to obtain some
information, such as authoritative news, evaluation of a certain product, we
may prefer to search for other users’ comments, opinions and other infor-
mation. We have chosen Twitter for our research mainly for the following
reasons.

1. Twitter has the characteristic of easily expressing the users’ thoughts
and opinions because every single tweet has a post limit of 140 charac-
ters.

2. Twitter must be expressed in concise sentences which is convenient for
later annotation research work.

3. Twitter is easy to crawl according to the topic or crawl according to
the user which is applied in this research. Twitter has open, extensive
developer APIs that allow developers to interact with Twitter servers
and easily extract large amounts of data.
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4. Twitter has a large number of users. In 2021, twitter had 192 million
active users every day [1].

Among the above reasons, we especially want to emphasize the third
point. Twitter provides many convenient APIs for academic research. At a
high level, APIs are a conversation method that allows computer programs
to request and deliver information to each other. This is possible by allowing
software applications known as endpoints: an address that corresponds to
a particular type of information provided on Twitter (endpoints are gener-
ally unique, like phone numbers). Twitter gives users access to crawl tweets
through APIs. When we want to use Twitter’s API, we are required to
register an application, in our research we use Twitter Developer [2]. By
default, the application can only use Twitter’s public information. Twitter’s
API includes a wide range of endpoints, which fall into five main categories:
accounts and users, tweets and replies, direct messages, advertisement, pub-
lisher tools and SDKs. Later, we will elaborate in more detail. In our re-
search, the main information we obtained includes accounts and users, tweets
and replies.

1.1.2 Private Opinion Accounts

In Japanese, there is a special expression - private opinion (本音) and
public sound (建前). Private opinion means what one really feels, one’s real
opinion. Public sound means one’s public stance, polite face. It is a method
that does not make the other person uncomfortable by returning it in bland
words without dare to say something that is unpleasant in the heart, and it
is regarded as common sense in Japanese society. It’s hard to judge public
sound as lies, but it’s still a persistent treatment for Japanese people whose
virtue is to read between the lines.

Even if the Japanese do not confirm through language, they will judge
according to the atmosphere and actions of the people around them. In their
dialogue with others, they will expect to “understand what I mean”, but have
not conveyed their ideas. It is rare in the world that the Japanese are familiar
with the “read between the lines”. However, in European and American
countries where many nationalities and religions are mixed together, it is
natural for people with different cultures and languages in regions, schools
and workplaces to live, and it is very difficult to live by the “read between
the lines” with only one culture, they are more used to expressing their ideas
directly.

Japanese society is called “village society”, and there are many unique
local rules of the communities to which they belong. This is actually an act
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of observing the atmosphere and conditions and aligning words and deeds
with local rules. Take an example of “read between the lines” in Japanese
communities, when you see something, even if you think its answer is A, you
won’t answer immediately, but observe what people around you think. As
a result, if you know that the people around you are B, don’t adhere to the
opinion of A, but turn your opinion into B.

In other words, in order to really understand the real thoughts of Japanese,
we can focus on accounts that only post private opinions. These special ac-
counts do exist among Japanese netizens, which called private opinion ac-
counts (本音垢). At the same time, there are also accounts posting vicious
words which are more straightforward than the private opinion accounts,
which called the venom accounts (毒舌垢). Obviously, we can judge that
private opinion has a higher degree of reliability than public sound, therefore
we choose to crawl and analyze the private opinion accounts and the venom
accounts in the research.

1.1.3 Need in Reliable AI and XAI

Today, we use applications loaded with artificial intelligence as natural
as breathing. Many of these applications use machine learning algorithms.
We can rely on their smart recommendation to listen to songs and watch
videos that match our preferences, sometimes the accuracy of their recom-
mendations even exceeds our imagination. However, most machine learning
algorithms are black boxes. We can know the input and output, but it is
difficult to figure out the specific internal operating mechanism. This leads
us to have questions about the recommendation of the system: how does the
AI system calculate the content recommended to me? Undoubtedly, this is
an era when users have a demand for Reliable AI and XAI.

When the existing AI (Figure 1.1) users interact with the system, they
can only get the output results given by the system, so the users will have
many questions such as “Why not something else?”, “Why should I trust
you?”, “How do I correct an error?”.

In Figure 1.2, XAI will be equipped with explainable models, and the
output results will also provide an interface for explanation. When its users
interact with it, users can better understand the reasons for making certain
decisions for they understand why not choose something else and know the
reasons why errors occur.

Explainable AI (XAI) is a set of tools and frameworks for understand-
ing how machine learning models make decisions. It does not break down
every step in the AI model. It is nearly impossible to track the millions of
parameters used in deep learning algorithms. Instead, XAI provides ana-

3



Figure 1.1: Today’s AI

Figure 1.2: Future’s XAI

lytical information about how the model works, which experts can use to
understand the logic leading up to the decision.

Proper application of XAI can provide three major benefits:

1. Increased confidence in the ML model
Confidence in AI-based systems will increase if decision makers and
other stakeholders can understand how the ML model led to the final
output. With the Explainable AI tool, we can find a clear and easy-
to-understand explanation of how the model derived its output. For
example, when analyzing a medical image such as X-rays using a deep
learning model, an extensible map (heat map) can be generated using
an Explainable AI to highlight the location in the image used for diag-
nosis. An ML model that classifies fractures could highlight points in
the image that were used to determine a patient’s fracture.

2. General troubleshooting improvements
Once the AI is accountable, we can debug our model and troubleshoot
whether it is working properly. For example, assume that we have a
model that can identify the animals in an image and find that this
model continues to classify dogs playing in the snow as foxes. We can
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easily identify why these errors are occurring continuously by using the
Explainable AI tool. If we look at the Explainable AI model we’re
using to see how the predictions are made, we’ll see that the ML model
distinguishes between dogs and foxes based on the background in the
image. This model interpreted the background of the room as a dog
and mistakenly learned that if there was snow in the image, there was
a fox there.

3. Remove bias and potential AI bugs
XAI can also be used to identify the cause of bias. For example, let’s say
you have a model that can identify a car that makes an illegal left turn.
You will notice that this model was biased from the training data when
asked to define where in the image the violation was identified. In this
model, instead of focusing on the car turning left illegally, the question
was whether there was a bug in it. Such an effect may be caused by
a realistic data set that contains a large amount of images taken on
undeveloped roads, or a realistic bias that can be easily truncated in
areas with poor funding in the city.

Some people are reluctant to do ML projects because they don’t un-
derstand what ML is doing. We wouldn’t be able to give full control to a
mysterious machine learning model, especially when it involves important
decisions. AI systems make forecasts that have a huge impact. In industries
such as medical and self-driving cars, this prediction can make a difference
between human life and death.

Especially without an explanation of how the decision was made, it
would be difficult to be confident that the model’s decision would be credible,
much less make the model better than humans. As users, we want to know
how the AI model make predictions and decisions and how can we be sure that
there is no bias in the algorithm. Meanwhile, we expect enough transparency
and interpretability to trust the model’s decisions.

Decision makers want to understand the rationale behind AI-based deci-
sions and be confident that the decisions are appropriate. In fact, according
to a PwC study [3], most (82%) CEOs need an explanation to trust their AI
decisions.

Answers to the question of explainability is related to the responsibility,
validity (e.g., robustness), privacy-preserving and more broadly trust of AI
systems (Figure 1.3) which are reliable will be intrinsically connected to the
adoption of AI in industry at scale [4]. Explanation in AI aims to create
a suite of techniques that produce more explainable models, while main-
taining a high level of searching, learning, planning, reasoning performance:
optimization, accuracy, precision; and enable human users to understand,
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Figure 1.3: Combination of Existing AI towards Trustable AI.

appropriately trust, and effectively manage the emerging generation of AI
systems.

1.2 Objectives and Contributions

We aim to clarify the structure of the private opinion in Japanese. The
thorough objectives are as follows.

1. To study machine learning techniques that are appropriate for argu-
ment mining tasks in Value-Based Argumentation Frameworks [10].

2. To identify private opinion structure in Twitter data for modeling ar-
gumentation graphs with attack relations.

Previously, Cocarascu and Toni [17] have shown that using Argumenta-
tion Frameworks [7] can improve the performance of machine learning tech-
niques in detecting deceptive reviews. Relatedly, in our research, to a certain
extent, tweets can also be regarded as reviews, and whether their reliability
are high or low matters because the social consequences of the butterfly effect
(such as defamation) can also be triggered for users who see these tweets.

In the previous research by Mihai Dusmanu et al. [5], when performing
classification tasks on argument detection namely to classify texts into non-
argumentative texts and arguments, the classification is often wrong when
tweets contain irony. As a result, the value of precision and recall are not
so good. We consider when an argument is private opinion, its reliability
is higher than when it is public sound. Considering the influence of private

6



opinion and public sound, the performance of argument mining is expected
to improve. There exist plenty of private opinion accounts in Twitter and
some hashtags with venoms are more likely to be private opinion for when
people behave maliciously, it’s basically their true thoughts. Analyzing this
kind of accounts and hashtags is possibly to identify private opinion and
public sound in Tweet data for modeling argumentation graphs.

For societal benefits, if this research is achieved, making decisions in
purchasing or marketing will be easier than before because argument mining
will provide users with suggestions with high reliability. On the other hand,
we can always see vicious incidents caused by defamation, including suicide.
The victims of these incidents include celebrities and ordinary people. If we
can figure out the structure of private opinions and then distinguish highly
reliable arguments and statements, these tragedies may also be avoided.

1.3 Thesis Structures

In this thesis, Chapter 2 lists the related works such as Argumentation
Frameworks [7], Valued-Based Argumentation Frameworks [10] and some
grammar knowledge in Japanese. Chapter 3 describes the process of model-
ing Twitter Data using Valued-Based Argumentation Frameworks including
data crawling, data processing, and the final application. In Chapter 4 the
classification experimentation is conducted. And in Chapter 5 the evaluation
is given. Finally we draw the conclusion in Chapter 6.
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Chapter 2

Preliminaries

2.1 Overview of Argumentation

Argumentation is a “verbal”, “social”, and “rational” activity aimed at
convincing a reasonable critic of the acceptability of a standpoint by putting
forward a constellation of propositions justifying or refuting the proposition
expressed in the standpoint [6].

Verbal means people can and do gesture and frown at each other, and
occasionally this might be away of resolving some disagreement. In our
conception here, argumentation is an inherently linguistic activity―either in
spoken or written mode. This is to be distinguished from, for instance, a
fistfight, which can be a different means of sorting out a conflict.

Social means argumentation is a matter of interaction among a number
of people, with a minimum of two. Granted, many of us munch on a difficult
decision for some time by mentally walking through the consequences of the
alternatives, but genuine arguing requires a person to argue with.

Rational means argumentation targets specifically the dimension of rea-
son. When one person reminds the other “Be reasonable!”, the point is to
call for a style of dialogue that is not driven by emotional outbreak, power
struggle, personal offense, etc., but by the sober exchange of―reasonable
arguments.

In fact, argumentation intersects with philosophy and logic (especially
in computational argumentation field). For philosophy, we will show an ex-
ample, and for logic, we will elaborate in 2.3 and later parts.

In philosophy, in the terminology of Aristotle, 3 central factors deter-
mining the success of an argumentative exchange are labeled as follows.

1. Logos: Speakers employ rules of sound reasoning.
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2. Ethos: Speakers signal their authority or credibility (or that of their
source) which is analogous with expert system.

3. Pathos: Speakers seek to communicate their standpoint in a manner
that seeks to evoke an emotional response.

Here we give a simple example about a building needs to be demolished
and show the arguments from the above three dimensions.

Logos: That building needs to be demolished, because it is full of as-
bestos, which is known to be hazardous, and there is no way to stop its
diffusion from the different parts of the building.

Ethos: That building needs to be demolished, because it is full of as-
bestos, as the report by the university engineers has shown.

Pathos: That building needs to be demolished, because it is an irrespon-
sible source of danger to the health and indeed the life of our children who
spend so many hours in those poisonous rooms every day!

We can notice that the three dimensions do not usually occur in isolation;
most arguments will mix them with each other, to different degrees. But the
logos dimension is arguably the most important one, and for argumentation
mining the most relevant.

2.2 Overview of Argument Mining

We will briefly introduce argument mining from three aspects.

1. Field: it is a research area within the natural language processing field.

2. Work: in this field we automatically extract human arguments and
their relations from a variety of textual corpora.

3. Goal: we aim to provide machine-processable structured data for com-
putational models of arguments and reasoning engines.

As we mentioned above, argument mining is automatic extraction and
identification of argumentative structures from natural language text with
the aid of computer programs. Argumentation structure is also called as
“constellation of propositions”. The shape of a justification might be quite
simple, for instance a single convincing sentence. But quite often it will
be more complex and involve a web of interrelated points that the speaker
carefully assembles in a non-arbitrary way. Here is an example of argument
mining (Figure 2.1).
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Figure 2.1: An Example of Argument Mining

[0] We really need to turn down that building.
[1] Granted, it will be expensive.
[2] But the degree of asbestos contamination is not tolerable anymore.
[3] Also, it is one of the ugliest buildings in town.

In this example, nodes represent for arguments and arrows represent
for attack or support relations. Both of them are conceptions from abstract
argumentation frameworks [7] and we will introduce later in more details.
Here, node 0 is the central claim of the text. Node 1 places an “attack”
of type “rebut”, which gives a reason why node 0 should not hold (possible
counter-considerations). Node 2 is a counterargument, an “undercut” type
of attack on the “rebut” relation, indicating that node 1 is not regarded as a
good or sufficient argument against node 0. Node 3 is a “support” relation,
provides an argument directly in favor of node 0.

In this example, we treat the arguments as nodes and the relations as
arrows. In fact, this is modeling. In Chapter 3, we will perform modeling
combined with Twitter data. Before that, we will focus on the modeling of
the argument.
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Figure 2.2: Argument Structures

2.2.1 Argument Structure

An argument structure is comprised of a constellation of propositions
related to a claim, which is the proposition that the argument seeks to es-
tablish. Other propositions are used as premises, which are brought to bear,
in support of the conclusion, and sometimes also to attack it. Any claim may
play the role of final conclusion of some argument, and any conclusion can
be made into a premise supporting further reasoning.

Proposed common structure of arguments [8], including the relation of
argument components to one another are shown in Figure 2.2.

The essential distinctions are as follows.

• Linked: two reasons together strengthen each other.

• Convergent: there are multiple distinct premises that each stand alone
to support a claim.

• Serial: a chain of reasoning is required where one premise supports an
interim conclusion, which is the premise of the next argument (e.g., if
p, then q, if q then r).

• Divergent: one premise that supports two or more conclusions.

2.2.2 Types of Argument Models

Argumentation models are classified into rhetorical models, dialogical
models, and monological models by Bentahar, Bélanger, and Moulin [9].These
types of models are complementary, and each model comes from a different
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Table 2.1: Types of Argument Models
Model Type Argument

Evaluation
Based On

What is
Linked

How They
Are Linked

Structure

Monological Tentative
proofs

Premises,
claims

Internal
inference
structure

Micro-
structure

Rhetorical Audience’s
perception

Whole
arguments

Persuasion
structure

Rhetorical
structure

Dialogical Defeasible
reasoning

Whole
arguments

Dialogical
structure

Macro-
structure

perspective. The monological model treats arguments as tentative proofs
and connects premises and claims to describe the microstructure: the inter-
nal reasoning structure of each argument. The rhetorical model looks at the
argument based on the audience’s perception and links the whole argument
to a rhetorical structure that emphasizes the persuasive structure of the ar-
gument. The dialogical model looks at the argument through the perspective
of defeasible reasoning and links the whole argument to a macro structure:
the dialogical structure. The distinctions are listed in Table 2.1.

Famous example of monological models is Toulmin model, which was
first proposed by British philosopher Stephen Toulmin in 1958. Toulmin
Model has six elements: claim (arguments), grounds (facts and evidence),
warrant (implicit assumption) and qualifier, rebuttal, backing (support for
warrant). An example is followed and visualized in Figure2.3.

The example of rhetorical models we want to introduce here is the New
Rhetoric. It takes persuasion and audience as central concerns arguments
seek to persuade a given audience, or to convince the universal audience Ar-
gumentation is thus a persuasive act involving two or more interlocutors, and
it is “relative to the audience to be influenced” “The goal of all argumenta-
tion...is to create or increase the adherence of minds to the theses presented
for their assent.”

And in our research, we apply Dung’s argumentation frameworks, which
is a representative example of dialogical models.

Existing approaches in natural language processing primarily focus on
micro-level (monological) rather than macro-level (dialogical) perspective.
The former focuses on internal structure of arguments while the latter focuses
on connections between arguments. It is also for this reason that we treat
each tweet as an independent argument and analyze whether there is an
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Figure 2.3: Toulmin Model

attack relation between the tweets.

2.3 Abstract Argumentation Frameworks

Argumentation Frameworks (AFs), also call Abstract Argumentation
Frameworks, is introduced by Dung [7], are pairs consisting of a set AR of
arguments and a binary relation between arguments, representing attacks.
Formally, an AF is any ⟨AR, attacks⟩ where attacks ⊆ AR×AR.

Before introducing the example of Argumentation Frameworks, we need
to give some relevant definitions.

For two arguments X and Y , the meaning of attacks(X ,Y) is that there
exists an attack of X onto Y .

Let CS be the complete set, any subset of it including the set S ⊆ CS.
A set S of arguments attacks an argument Y if there exists X∈ S such

that X attacks Y .

A set S defends an argument X if for any argument Y which attacks
X , S contains an argument that attacks Y .

A set S is conflict-free if for any X , Y ∈S, there is no (X , Y)∈ attacks.

An argument X is acceptable with respect to the set that defends it, i.e.
acceptability means finding a subset which is conflict-free and collectively
defends itself.
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Figure 2.4: An Example of Argumentation Frameworks

In the example shown in Figure 2.4, we want to find the acceptable
sets from the relations A attacks B and B attacks C. Combining the above
definitions, we can calculate the acceptable sets are: ∅ ,{A},{B},{C},{A,C}.

From this example, we can find that Argumentation Frameworks can
bring the following contributions.

1. encapsulates arguments as nodes in a digraph.

2. connects them through a relation of attack.

3. defines a calculus of opposition for determining what is acceptable.

4. allows a range of different semantics including what we will introduce.

Basic argumentation semantics are listed below:

• A set S is admissible if S is conflict-free and S defends all arguments
attacking S.

• A set S is preferred if S is the maximal (w.r.t. set inclusion) admis-
sible.

• A set S is complete if S is admissible and S contains all arguments it
defends.

• A set S is grounded if S is the minimal (w.r.t. set inclusion) complete.

• A set S is stable if S is conflict-free and S attacks each argument
X ∈ CS\S.
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2.4 Valued-Based Argumentation Frameworks

Bench-Capon [10] defines valued-based argumentation frameworks by
attaching to each argument the social values that it promotes, and mak-
ing the semantics dependent on a particular preference order over values,
representing a particular audience. Formally, a VAF is a 5-tuple:

V AF = ⟨AR, attacks, V, val, valpref ⟩

Where AR, and attacks are as for a standard argumentation framework, V is
a non-empty set of values, val is a function which maps from elements of AR
to elements of V , and valpref is a preference relation (transitive, irreflexive
and asymmetric) on V ×V . We say that an argument A relates to value v if
accepting A promotes or defends v: the value in question is given by val(A).
For every A ∈ AF , val(A) ∈ V .

The purpose of extending the AF to VAF was to distinguish between
one argument attacking another, and that attack succeeding, so that the
attacked argument is defeated. Therefore the notion of defeat is defined as
follows:

An argument A ∈ AFdefeats an argument B ∈ AF if and only if both
attacks(A,B) and not valpref(val(B), val(A)).

Basic argumentation semantics are also defined in VAF.
An argument A ∈ AR is acceptable with respect to set of arguments

S, acceptable(A,S) if:
(∀x)((x ∈ AR&defeats(x,A)) → (∃y)((y ∈ S)&defeats(y, x))).

An set S of arguments is conflict-free if
(∀x)(∀y)((x ∈ S&y ∈ S) → (¬attacks(x, y) ∨ valpref(val(y), val(x)))).

A conflict-free set of arguments S is admissible if
(∀x)((x ∈ S) → acceptable(x,S)).

A set of arguments S in an argumentation framework AF is a preferred
extension if it is a maximal (with respect to set inclusion) admissible set of
AR.

A conflict-free set of arguments S is a stable extension if and only if S
attacks each argument in AR which does not belong to S.
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2.5 Argument Detection

As we stated in Chapter 1, the goal of this research is to clarify the struc-
ture of the private opinion in Japanese, therefore we need to have some basic
knowledge about Japanese grammar. In Chapter 3, we will introduce the
data set and data analysis in detail. It is important to highlight here that our
research will distinguish between argumentative data and non-argumentative
data. And for argumentative data, we distinguish between the presence or
absence of an attack relation.

2.5.1 Overview of Argument Detection

Argument detection is a subtask of argument mining mentioned in 2.2.
Argument detection can be divided into three steps:

1. Understand the context: Has anyone tried to convince you of some-
thing?

2. Determine the conclusion: What are they trying to convince you?

3. Find out why: Why do they think you should believe them?

Understand the Context

When we want to judge whether a piece of text is argumentative or not,
we usually judge it based on the context. This also applies to tweets. Under
normal circumstances, we can understand the background or topic of the
argumentation through the context - debate, class, media, political discussion
between friends, etc. We can also judge whether this is an argument or not
by some words and phrases that mark the argument, such as “argument”,
“my point of view”, “my opinion”, “what should you think”. In the following
scenarios, argumentation often occurs.

Quarrels: unstructured events triggered by emotions can lead to verbal
abuse, shouting, and violence; although quarrels always involve contentious
activities, it is not uncommon for the lack of arguments to be understood as
reasons.

Advertisement: attempting to influence or shape opinions that benefit
the product. Advertisers want to sell you something. They want you to
conclude, “Well, I’ll buy that.” The reason is usually shown in the ad-
because buying it will make you stronger, sexier, smarter, more popular, and
so on. Many of the arguments here are implicit, that is, they are unstated in
the advertisement. But every advertisement is almost always an argument.
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Debate: it is a highly structured event, victory depends on presenting
the reason that most impresses the judge; it is rare to find a debate with-
out arguments, although it is not rare to find a debate have very few good
arguments.

Persuasive discussions: usually unstructured conversations in which par-
ticipants try to persuade each other to accept certain beliefs (for example,
discussions about politics, religion, morality, etc.); since these discussions are
personalized because of their persuasiveness, such discussions usually do not
lack some kind of arguments.

Opinioneering: putting forward opinions, such as in letters to editors,
columns, or Op/Ed articles or sermons. They are not an immediate dialogue
in nature; these may lack arguments. There are different ways over and over
again.

Negotiation: in the context of different interests, driven by the continu-
ous desire to reach an agreement, this is more a compromise than a persuasive
discussion; successful negotiations usually involve arguments supporting the
initial position, followed by a series of compromises.

Action planning: characterized by the need for action, whether individ-
ual or group; This process includes proposing and then evaluating various
feasible schemes, and then comparing and evaluating the feasible schemes;
this may not be argumentative in nature, for example, when the option is
“forced through”.

Learning environment: classrooms, offices and administrative lawns pro-
vide space for teacher-student interaction; in this environment, teachers often
raise arguments during lectures, and often raise arguments during discussions
and group work; however, these may be non-arguments Sexual, especially
when they involve the simple transmission of information from one brain to
another.

Determine the Conclusion

“You are worth buying this product because its quality is above average
and its price is below average.” This is an argument designed to get you to
buy this product. Usually, the main purpose of an argument is to emphasize a
point of view. In other words, argument is a tool designed to persuade or force
people to believe something. This “thing” is what we call a conclusion. The
validity of the argument depends on whether it provides a convincing reason
to believe the conclusion, but the first consideration is that if the conclusion
of the argument is not determined first, the validity of the argument cannot
be evaluated.

In some argumentation, the conclusion is placed in a prominent position
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at the beginning or end of the argument, for example, at the beginning or
end of the paragraph containing the argument. Other situations are that
to repeat the conclusion many times in the argumentation to remind people
that it is the most important point. There are some words and phrases whose
main purpose is to introduce the conclusion - called “conclusion marker”.
Conclusion markers include the following: “as a result”, “therefore”, “thus”,
“as a consequence”, “hence”, “so”, “in that case”, “then”, “accordingly”,
“the bottom line” and “for this reason”. But not all of these terms mark a
conclusion; for example, “then” usually represents the next event in a series
of events.

Find out Why

The reason is another important part of the argument that must be
determined. These are claims that support the conclusion - as their name
implies, they give you reason to believe it. Without them, there would be
no debate - just a claim. Therefore, it is wrong to respond to the argument
request with “he will back tomorrow“. This may be a conclusion, but without
reason, there is no argument.

The most effective way to find a reason is to find the “reason markers”.
These terms include the following: “since”, “because”, “reason”, “according
to”, “cause”, “considering”, “by”, “assume”, “if”, “for”, “in fact”, “in light
of” etc.

2.5.2 Related Japanese Grammar

Similar to English, in Japanese, judging whether the text is argumenta-
tive or not can also be based on some markers. And for argumentative data,
the detection of attack relation are related to counter-argument because it is
used when we want to deny others’ arguments.

In Ijuin’s work [11], she found that the typical form of ’ counter-argument’
is “確かに～。しかし，～。 ” and “確かに～が，～。 ”. Including the pat-
tern in which a sentence is inserted before “counter-argument”, it accounts
for 89% of the total.

On the other hand, the use of “確かに” at the end of the opinion and the
use of the colloquial expression (“でも” or “けど”) at the end of the opinion
are often seen in Japanese learners.

She found that native Japanese speakers and Japanese learners had dif-
ferent tendencies when it came to counter-arguments. In any case, we are
analyzing data from all users who tweeted their private opinion in Japanese
regardless of their nationality, and both cases should be taken into account.
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Figure 2.5: An Example of Answer Set Programming

In our follow-up experiments, we will combine Japanese grammar and
statistical information for further analysis. Specifically, in 3.2.4, we will refer
to other Japanese grammar documents that are referenced in data annota-
tion.

2.6 Answer Set Programming

In 3.3, we will build weighted argumentation frameworks. After that
we will use the WAF (weighted argumentation frameworks) as input using
answer set programming to get the solution for the set of tweets with high
reliability.

ASP (Answer Set Programming) is a declarative programming paradigm
based on logical programs and their answer sets, which provides a simple and
powerful modeling language to solve combinatorial problems, while Potsdam
Answer Set Solving Collection (Potassco) [21] includes a variety of ASP tools
such as gringo and clasp are combined to become an integrated ASP system
clingo.

A simple ASP program may contain three parts: facts, rules, and output.
The facts and rules section is used to describe the problem. The output
section is used to view the results.

Here in Figure 2.5 is an example of ASP. The program of this example
is as follows.

Listing 2.1: Answer Set Programming Example Sample Code

1 % facts
2 v(1..4).
3

4 e(1, (3;4)).
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5 e(2, 4).
6 e(3, (1;4)).
7 e(4, (1;2;3)).
8

9 % rules
10 c(X, Y) :- v(X), v(Y), not e(X, Y), X != Y.
11

12 % Display
13 #show c/2.

The goal of this example is to find points in the graph that are not
directly connected by edges.

The facts section describes the situation in Figure 2.5, where v repre-
sents a vertex and e represents an edge. Writing “v(1…4)” is equivalent to
“v(1).v(2).v(3).v(4).”, here “.” is the terminator of a code. “e(1, (3;4)).” is
equivalent to “e(1, 3). e(1, 4)”, indicating that 1 to 3, 4 have edges. “1...4”
and “;” are syntactic sugar. In all, the fact section states that there are 4
points, and some of them have edges and some don’t.

The “:-” in the rule section can be understood as if the condition behind
it is true, then the front is true. And “,” means “and”. “not”, as the name
suggests, means negation. So the condition for c(X, Y) to hold is: there are
two points X and Y, there is no edge between them, and X, Y are not the
same point.

In this example, c(X, Y) is actually the result. So, c is output on the
last line. Here “#show” means output, “c” in “c/2” means c(X, Y), and “2”
means c has two elements.

We use clingo to run this ASP program and the results are as follows.

Listing 2.2: Answer Set Programming Example Result

1 Answer: 1
2 c(2,1) c(1,2) c(3,2) c(2,3)
3 SATISFIABLE
4

5 Models : 1

c(2,1) c(1,2) c(3,2) c(2,3) is the solution of this example.
In our later implementation, basic argumentation semantics mentioned

in 2.4 are also included.
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Chapter 3

Modeling Twitter Data Using
AF and VAF

3.1 Tweets Crawling

In our research, we use data crawled from Twitter API to create a data
set, which also reflects the originality of our research. During the data crawl-
ing process, we use the Twitter Developer API [2] mentioned in 1.1.1. And
in 1.1.2, we stated the reason we chose private opinion accounts and venom
accounts from Twitter.

To apply for Twitter API (register as a developer), we should first apply
for a developer account and write some primary reasons for using Twitter
developer tools and briefly state our research plan.

After we finish registering, we can enter the Developer Portal and create
our research application.

3.1.1 Obtaining the Bearer Token

There are OAuth 1.0 and OAuth 2.0 [12] for authentication of Twitter
API.

OAuth 1.0: we can use the API to perform (Tweet) a specific function
on behalf of the user with the consent of the user. We could also get the
Tweet of private Twitter account.

OAuth 2.0: Bearer Token authenticates requests on behalf of Twitter
developer Application. As this method is specific to the developer Applica-
tion, it does not involve any users. This method is typically for developers
that need read-only access to public information.

Since our research only gets tweets, we will use the method using Bearer
Token of OAtuth 2.0. OAuth 2.0 authentication method requires for us to
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Figure 3.1: Using POST Method to Obtain the Bearer Token

pass a Bearer Token with our request, which we can generate within the Keys
and tokens section of our developer Apps.

Since we have created our research application, we then can generate
the API key and API key secret from it. By using the POST method from
cURL [13] command to the Consumer API keys(API key and API key secret)
just obtained, we can obtain the Bearer Token. Specifically, we need to use
the Base64 [14] encoder to encode the API key and API key secret, i.e., using
“:” to connect and the API key and API key secret then encode it.

In our case, the API key is “ebVpiKoaOibNNir1PyzEXQUqZ”, and the
API key secret is “q6EBtIgozeFR6A9MJ5nbjDtU3r16MCvrWmptcrYcYE9o
CUVjck”, using the Base64 encoder we get the Bearer Token which is “ZWJW
cGlLb2FPaWJOTmlyMVB5ekVYUVVxWjpxNkVCdElnb3plRlI2QTlNSjVu
YmpEdFUzcjE2TUN2cldtcHRjclljWUU5b0NVVmpjaw==”.

Refer to the official POST method document, we can write the following
curl command.

curl−XPOST −H”Content−Type : application/x−www− form−
urlencoded; charset = UTF −8”−H”Authorization : BasicZWJWcGlLb2
FPaWJOTmlyMV B5ekV Y UV V xWjpxNkV CdElnb3plRlI2QTlNSjV u
Y mpEdFUzcjE2TUN2cldtcHRjclljWUU5b0NV Vmpjaw == ”− d”
grant type = clientcredentials”https : //api.twitter.com/oauth2/token

The following Bearer Token in the form of JSON will be returned as the
Figure 3.1 shows.

{”token type” : ”bearer”, ”access token” : ”AAAAAAAAAAAAAAAAAAA
AAFtoNAEAAAAATy6AOuQ3pCV 1feS%2FxH4hQPAsTC0%3DubFy4
JL5rFvqt4JhNRXC2HAG6pSEalCxIb2PZwidnj9T5APtBT”}

3.1.2 Using the Bearer Token to Obtain Tweets

In order to obtain the tweets, we should use the GET method from cURL
command. In the command, we should specify the number of tweets and the
id of the user that needs to be obtained. In our example case, we specified
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Figure 3.2: Using GET Method to Obtain the Private Opinion Tweets

the number of tweets as 10 and the id of the user as “thankyou lucky”(the
name of this user is “本音垢”).

Refer to the official GET method document, we can write the following
curl command.

curl−H”Authorization : BearerAAAAAAAAAAAAAAAAAAAAAF
toNAEAAAAATy6AOuQ3pCV 1feS%2FxH4hQPAsTC0%3DubFy4JL5
rFvqt4JhNRXC2HAG6pSEalCxIb2PZwidnj9T5APtBT””https : //api.
twitter.com/1.1/statuses/user timeline.json?screen name = thankyou lu
cky&count = 10”

The obtained tweets in the form of JSON will be returned as the Figure
3.2 shows.

So far, we have introduced the process of crawling the data of the private
opinion accounts in Twitter. As for the method to determine that the crawled
data is private opinion, we default all tweets posted on the private opinion
accounts and venom accounts are the private opinion. However, due to the
weak visibility of JSON data, we can use some online visualization tools
to display it in the form of a tree. Alternatively, in our research, we will
perform other more complex data processing, which we will introduce in the
next section.
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3.2 Tweets Processing

In the process of data processing, we mainly carried out the following
work, and we will explain each work in detail.

1. Tweets format conversion

2. Solving the garbled code problem

3. Tweets Cleaning

4. Tweets Annotation

3.2.1 Tweets Format Conversion

There are many different ways to describe data. CSV and JSON are
different text-based data formats. More specifically, it’s like a rule for writing
data. These formats are used to communicate between computers and, in
particular, to transfer data over the Internet.

In the previous part, the data we got from Twitter is in JSON format.
JSON is an abbreviation for JavaScript Object Notation. This data uses a
description method called a dictionary, which has a one-to-one correspon-
dence. The characteristic of this format is that it has a high affinity with
JavaScript, as the name suggests. Since JSON is composed of JavaScript
objects, it can be handled by a program written in JavaScript as it is.

CSV stands for “Comma-Separated Values”. As the name implies, they
are separated by commas (“,”). This is not complicated, so it is easy to
intuitively grasp the contents of the data. Also, this file format has a good
affinity with Microsoft’s Excel and Google Spread Sheet.

In short, JSON is used to create the list in the list, and CSV is used for
the table data. In our research, the dataset needs to be manually annotated,
and CSV files can be used to directly read and annotate the readable text.
Moreover, Pandas, a data analysis library in Python language used in this
study, can easily process CSV files. Based on the above reasons, we have
carried out the work of file format conversion from JSON to CSV.

3.2.2 Solving the Garbled Code Problem

If we open the converted CSV file directly using Microsoft’s Excel in
Windows system, the crawled Japanese texts will become garbled characters
as the Figure 3.3 shows.

In order to solve the garbled problem, we need to mention Unicode.
Unicode is an industry standard in computer science, including character
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Figure 3.3: Garbled Data

sets, encoding schemes, etc. Unicode was created to solve the limitations of
traditional character encoding schemes. It sets a unified and unique binary
encoding for each character in each language to meet the requirements of
cross-language and cross-platform text conversion and processing. If vari-
ous character encodings are described as local dialects, then Unicode is a
language developed by countries around the world. In this language environ-
ment, there will be no more language coding conflicts, and content in any
language can be displayed on the same screen, which is the greatest benefit
of Unicode. It is to encode all the text in the world with 2 bytes uniformly.
With uniform encoding like this, 2 bytes is enough to hold most of the text in
all the languages in the world. The scientific name of Unicode is “Universal
Multiple-Octet Coded Character Set”, a universal multi-octet coded charac-
ter set, referred to as UCS. UCS2 is now used, that is, 2-byte encoding, and
UCS4 was developed to prevent 2 bytes from being insufficient in the future.

There is one called “Zero Width No-Break Space” in UCS encoding,
and its encoding is FEFF. And FEFF is a non-existent character in UCS,
so it should not appear in the actual transmission. The UCS specification
recommends that we transmit the characters “Zero Width No-Break Space”
before transmitting the byte stream. In this way, if the receiver receives
FEFF, it indicates that the byte stream is Big-Endian; if it receives FFFE,
it indicates that the byte stream is Little-Endian. Therefore, the character
“Zero Width No-Break Space” is also called BOM (byte-order mark).

UTF-8 (Universal Character Set/Unicode Transformation Format) is a
variable-length character encoding for Unicode. It can be used to represent
any character in the Unicode standard, and the first byte in its encoding is
still compatible with ASCII, so that the original software that handles ASCII
characters can continue to use it without or with only a few modifications.
As a result, it has gradually become the preferred encoding for emails, web
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Table 3.1: Common patterns for arguments and attack
arguments attacks

と思う/思わない だけど　
なぜなら とはいえ
それで ところで
つまり しかし
一方 けれども

あるいは でも
したがって なのに
そのため ところが

pages, and other applications that store or transmit text.
In our research, we saved the encoding of the CSV file as UTF-8 with

BOM which solved the garbled problem and displayed Japanese normally.
UTF-8 does not need BOM to indicate byte order, but can use BOM to
indicate encoding. The UTF-8 encoding for the characters “Zero Width No-
Break Space” is EF BB BF. So if the receiver receives a byte stream starting
with EF BB BF, it knows that this is UTF-8 encoding. The encoding format
of text documents in Windows systems is specified by BOM, and characters
should be written at the beginning of the file: EF BB BF (UTF-8 BOM
encoding), so that UTF-8 encoded files can be correctly recognized.

3.2.3 Tweets Cleaning

As the Figure 3.3 shows, there are many parts of the data that are not
used in analyzing the private opinion structure. At this stage, we mostly
removed unwanted fields and mainly keep the serial number and text. In the
follow-up research, we need to count the word frequency, and we will also
perform operations such as merging duplicate data.

3.2.4 Tweets Annotation

In our research, binary classification by machine learning is mainly per-
formed twice. The first binary classification is to distinguish whether a text
is argumentative or non-argumentative. The second binary classification is to
distinguish whether there is an attack relation between argumentative texts.

During the annotation of the first binary classification, argumentative
ones are labeled as 1, non-argumentative ones are labeled as 0. We divide
argumentative tweets into sub tweets and annotate the sub tweets with attack
relation. During the annotation of the second binary classification, if there is
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attack relation exists, pairs of sub tweets are labeled as 1, otherwise labeled as
0. We annotated based on the studies of Tashiro [15] and Ijuin [11, 16], which
focused on common patterns for arguments and attack shown in Table 3.1.

3.3 Modeling with VAF

In our study, we model weighted argumentation frameworks for the ac-
quired Twitter data based on valued-based argumentation frameworks men-
tioned in 2.4.

First we give some definitions.

Definition 3.3.1 (Discussion Graph). Let Γ be a non-empty set of tweets.
The Discussion Graph (DisG) for Γ is the directed graph (V,E) which

• for every tweet in Γ there is a node in V and

• if tweet a attacks tweet b there is a directed edge (a,b) in E.

Only the nodes and edges obtained by applying this process belong to V and
E, respectively.

Definition 3.3.2 (Annotated Discussion Graph). A annotated discussion
graph (ADisG) is a tuple (V,E,A) , where (V,E) is a discussion graph and A
is a annotation function for edges A : E → S , where S represents a set of
possible semantic relations for any directed edge (a,b).

In our research, the set of semantic relations S for a directed edge (a,b)
we have considered is {attacks,none}, attacks is the same as the standard
argumentation frameworks, meaning that tweet a does not agree with the
claim expressed in tweet b and otherwise none.

Definition 3.3.3 (Weighted Annotated Discussion Graph). A weighted an-
notated discussion graph (WADisG) is a tuple ⟨V,E,A,R,W ⟩, where (V,E,A)
is a ADisG, R is a nonempty set of ordered values and W is a weighting
function W : V → R that assigns a weight value in R to each tweet in V,
representing the reliability of the tweet.

When we design the weighting function, we consider factors such as the
Twitter user’s profile, icon, header, age etc. Later we will explain the weight
function in detail in 5.2.

Definition 3.3.4 (Valued-Based Argumentation Frameworks). A valued-
based argumentation framework (VAF) is a tuple ⟨AR, attacks,R, V al, V alp
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ref⟩ where AR is a set of arguments, attacks is an irreflexive binary relation
on AR, R is a nonempty set of values, V al is a valuation function V al :
AR → R that assigns to each argument in AR a weight value in R, and
V alpref ⊆ R × R is a preference relation on R (transitive, irreflexive and
asymmetric), reflecting the value preferences of arguments.

Definition 3.3.5 (Defeat). Given a VAF ⟨AR, attacks,R, V al, V alpref ⟩
and arguments a and b in AR, we say that a defeats b (written defeats
(a,b)) iff (a, b) ∈ attacks and (V al(b), V al(a)) /∈ V alpref . We also say that
a effectively attacks b.

Definition 3.3.6 (Conflict-free). Given a VAF ⟨AR, attacks,R, V al, V alpre
f⟩ and a set S ⊆ AR of arguments we say that S is conflict-free iff ∀a, b ∈
S, (a, b) /∈ attacks or (V al(b), V al(a)) ∈ V alpref ; i.e. ¬defeats(a, b).
There might be an attack between two arguments in a conflict-free set, if this
relation of attack is not effective; i.e. given a conflict-free set S and arguments
a, b ∈ S, it can be the case that a attacks b whenever b is preferred than
a according to the preference relation V alpref . For instance, if the set of
ordered values R are instantiated to the natural numbers N, the valuation
function Val to a mapping from arguments to N and the preference relation
V alpref to the total order relation on N , then it could be that a attacks b
whenever V al(b) > V al(a) .

Definition 3.3.7 (Acceptable Argument). Given a VAF ⟨AR, attacks,R, V a
l, V alpref⟩, a set S ⊆ AR of arguments and an argument a ∈ AR we say
that a is acceptable with respect to S iff ∀b ∈ AR, defeats (b,a) implies
that∃c ∈ S, defeats (c,b).

Definition 3.3.8 (Admissible Extension). Given a VAF ⟨AR, attacks,R, V a
l, V alpref⟩ and a set S ⊆ AR of conflict-free arguments we say that S is an
admissible extension if for any a ∈ S, a is acceptable with respect to S.

Definition 3.3.9 (Defend). A set S defends an argument a if for any argu-
ment b which attacks a, S contains an argument that attacks b.

Definition 3.3.10 (Complete Extension). Given a VAF ⟨AR, attacks,R, V a
l, V alpref⟩ and a set S ⊆ AR we say a set S is a complete extension if S is
admissible and contains all arguments it defends.

Definition 3.3.11 (Grounded Extension). Given a VAF ⟨AR, attacks,R, V a
l, V alpref⟩ and a set S ⊆ AR we say a set S is grounded if S is the minimal
(w.r.t. set inclusion) complete.
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Definition 3.3.12 (VAF for a Weighted Annotated Discussion Graph). Let
G = ⟨V,E,A,R,W ⟩ be a WADisG. We defined the valued-based argumen-
tation frameworks for G is F = ⟨V, attacks,R,W, V alpref ⟩, where

• the set of arguments is the set of nodes (or tweets) V,

• attacks is the same as the standard argumentation frameworks and are
defined as follows:

attacks = {(a, b)|(a, b) ∈ E and A(a, b) = attacks}

• R is the non-empty set of ordered values that models the reliability or
weight of tweets,

• the valuation function for arguments is the weighting function W :
V → R for tweets. and

• the preference relation V alpref ⊆ R × R is the ordering relation over
R.

In our framework, we give weight to arrows rather than nodes because
our data set is special compared with typical twitter conversation analysis. In
a typical twitter conversation, a tweet usually has many replies from different
users, which is suitable for the traditional VAF that gives weight to different
nodes (arguments). In our dataset, users rarely receive a reply to a tweet,
but they usually quote the arguments of others in a tweet before giving a
counter-argument. Therefore, we divide such tweets into sub tweets and
annotate the sub tweets with attack relation. The weight of the same user
on a topic is calculated by the weighting function therefore the node weights
at both ends of the attack are the same. We give weights to different arrows
to represent the overall reliability of the tweet. In the VAF, the grounded
extension S ⊆ T of F is the accepted set of tweets based on the weighting
scheme W and we refer to it as the solution of G, i.e. the set of tweets with
high reliability.

3.4 Implementing AF Using ASP

To compute in a stratified program the required predicate for being
defended, we have to use the order < over the domain elements (such an
order is provided by all ASP-solvers) and derive corresponding predicates for
infimum, supremum, and successor w.r.t. <. In our ground extension, the
π< ordering is defined as follows.
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Listing 3.1: AF Answer Set Programming Ordering Sample Code

1 lt(X,Y) :- arg(X), arg(Y), X<Y.
2 nsucc(X,Z) :- lt(X,Y), lt(Y,Z).
3 succ(X,Y) :- lt(X,Y), not nsucc(X,Y).
4 ninf(Y) :- lt(X,Y).
5 inf(X) :- arg(X), not ninf(X).
6 nsup(X) :- lt(X,Y).
7 sup(X) :- arg(X), not nsup(X).

Here π< is indeed stratified and constraint-free. Hence, π<(F̂ ) yields
exactly one answer set for each AF F . To illustrate the purpose of π<, recall
our example framework F , and assume the arguments are ordered as follows:
a < b < c < d < e. For this particular order, the single answer set S0 of
π<(F̂ ) contains

{inf(a), succ(a, b), succ(b, c), succ(c, d), succ(d, e), sup(e)}.

We define the required predicate defended(X) which itself is obtained via
a predicate defended upto(X, Y) with the intended meaning that argument X
is defended by the current assignment with respect to all arguments U ≤ Y .
In other words, we perform a loop starting with the infimum Y and then use
the successor predicate to derive defended upto(X, Y) for all further Y. If
we arrive at the supremum element in this way, i.e. defended upto(X, Y) is
derived for the supremum Y, we finally obtain defended(X). The πdefended is
defined as follows.

Listing 3.2: AF Answer Set Programming Defended Sample Code

1 defended_upto(X,Y) :- inf(Y), arg(X), not defeat(Y,X).
2 defended_upto(X,Y) :- inf(Y), in(Z), defeat(Z,Y), defeat(Y,X

).
3 defended_upto(X,Y) :- succ(Z,Y), defended_upto(X,Z), not

defeat(Y,X).
4 defended_upto(X,Y) :- succ(Z,Y), defended_upto(X,Z), in(V),

defeat(V,Y), defeat(Y,X).
5

6 defended(X) :- sup(Y), defended_upto(X,Y).

And πgrounded = π< ∪ πdefended ∪ in(X) : −defended(X).
Here πgrounded is also stratified. The relevant predicate in(a) is derived

for some argument a if defended upto(a, b) holds for each b. However, if
there is an unattacked argument c which attacks a, defended upto(a, c) is
not derived. It is thus not relevant in which order we derive the predicates
defended upto(a, b). Consequently, the particular definition of the order ¡,
from which we obtained the inf(·), succ(·, ·), and sup(·) predicates used in
π defended, plays no role. Any total order over the constants can be used.
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3.5 Implementing VAF Using ASP

In VAF implementation, the π< ordering and the πdefended is the same
as those implemented in AF. And the πvaf is defined as follows.

Listing 3.3: VAF Answer Set Programming Sample Code

1 %% valpref preference relation; transitivity
2 valpref(X,Y) :- valpref(X,Z), valpref(Z,Y).
3

4 %% pref computes preference of arguments depending on
5 %% the preference relation valpref
6 pref(X,Y) :- valpref(U,V), val(X,U), val(Y,V).
7

8 %% transitivity of pref
9 pref(X,Y) :- pref(X,Z), pref(Z,Y).

10

11 %% argument x defeats argument y, iff
12 %% x attacks y, and y is not preferred to x
13 defeat(X,Y) :- att(X,Y), not pref(Y,X).
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Chapter 4

Experimentation

In 3.2.4, we mentioned that in our research, we carried out two binary
classifications. In this chapter, we will describe our classification experi-
mentation. In addition, we have selected some popular machine learning
algorithms. We also hope to compare and find the best algorithm on our
data set through this experimentation.

4.1 Tweets segmentation

After we finish processing the tweet data, the next step is to carry out
some basic morphological analysis work, such as word segmentation because
in the subsequent analysis, we will need to use some information like word
frequency.

Morphological analysis refers to the work of dividing the text data of
natural language without syntax information annotation into morpheme (the
smallest unit with meaning in the language) according to the syntax of the
object language and the dictionary containing word part of speech and other
information, so as to distinguish the part of speech of each morpheme. In
our study, we used MeCab [18] for morphological analysis. Source code for
morphological analysis is shown in source code Listing 4.1.

Listing 4.1: Morphological Analysis Sample Code

1 import pandas as pd
2 import MeCab
3 import pandas as pd
4 import re
5

6 sample_csv = pd.read_csv(r'C:\Users\zjq\dataset\csv\annotated
\data.csv')

7
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8 #Filter out the data with argumentative value of 1.
9 df = sample_csv.loc[sample_csv['argumentative']==1]

10

11 #Create a MeCab instance.
12 mecab = MeCab.Tagger('')
13

14 #Create a data frame to output the final result.
15 df1 = pd.DataFrame( columns=['word0','word1'] )
16

17 #Read the CSV file stored in df line by line.
18 for row, item in df.iterrows():
19 #Variables that store the results of morphological

analysis. In order to process line by line, clear it
once before processing.

20 result = ''

21 #Morphological analysis is performed line by line and
divided into words.

22 result = mecab.parse(item.text)
23 #Set variables that are split into separate lines.
24 lines = result.split("\n")
25 #Read the variables of the morphological analysis result

separated by one line from above.
26 for words in lines:
27 #Because it is separated by tabs and commas, reset the

new variable.
28 word = re.split('\t|,',words)
29 #Store the results in the data frame.
30 df1 = df1.append({'word0':word[0], 'word1':word[1]},

ignore_index=True)
31

32

33 #Display all.
34 pd.set_option('display.max_rows', None)
35 #Display Data Frame.
36 df1

The result of morphological analysis displayed as the Figure 4.1 shows.
After we finish morphological analysis, we count the word frequency infor-
mation. And the source code is shown in Listing 4.2.

Listing 4.2: Store Word Frequency Information into Dictionary Sample Code

1 #Calculate word frequency through value_counts.
2 data_counts = df1['word0'].value_counts()
3

4 #Convert word frequency results into DataFrame format.
5 # The index of the converted DataFrame is the word that needs

to be counted, and the column is the number of times the
word appears

6 df_data_counts = pd.DataFrame(data_counts)
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Figure 4.1: Result of Morphological Analysis

7

8 #Turn words into lists.
9 names = df_data_counts.index.values.tolist()

10

11 #Convert word frequency into a list.
12 counts =df_data_counts['word0'].tolist()
13

14 results = []
15 #Convert to dictionary.
16 for name, count in zip(names, counts):
17 results.append({"name": name, "count": count})
18 dic1 = results
19 print(results)
20

21 #Write to a file.
22 import csv
23 labels = ['name', 'count']
24 with open('dic.csv', 'w') as f:
25 writer = csv.DictWriter(f, fieldnames=labels)
26 writer.writeheader()
27 for elem in results:
28 writer.writerow(elem)
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4.2 Feature Selection

Now that we have the word frequency information, we will select the
most useful features for training our model. The feature selection of text
quantifies the feature words extracted from the text to represent the text
information. Converting them from an unstructured raw text to a structured
information that can be recognized and processed by a computer, that is,
scientific abstraction of the text and establishment of its mathematical model
to describe and replace the text. It enables the computer to realize the
recognition of text through the calculation and operation of this model. Since
text is unstructured data, in order to mine useful information from a large
amount of text, it must first convert the text into a processable structured
form.

In our research, we use the feature items obtained by word frequency
statistics to represent each dimension in the text vector, and combine TF-IDF
to select more important dimensions.

TF is Term Frequency and IDF is Inverse Document Frequency. TF-
IDF is a statistical method used to evaluate the importance of a word to
a document set or a document in a corpus. The importance of a word in-
creases proportionally to the number of times it appears in the document,
but decreases inversely to the frequency it appears in the corpus.

In a given document, term frequency (TF) refers to the frequency with
which a given word appears in the document. This number is normalized to
the term count to prevent it from skewing towards long files. (The same word
may have a higher number of words in a long file than a short file, regardless
of whether the word is important or not.) For a word ti in a particular file,
its importance can be expressed as:

tfi,j =
ni,j

Σknk,j

ni,j is the number of occurrences of the word ti in file dj. The denomi-
nator is the sum of the occurrences of all words in the file dj.

Inverse document frequency (IDF) is a measure of the general impor-
tance of words. The IDF for a particular word can be calculated by dividing
the total number of documents by the number of documents containing the
word, and then taking the logarithm of the quotient to get:

idfi = log
|D|

{j : ti ∈ dj}

|D| represents the total number of documents in the corpus and {j : ti ∈
dj} represents the number of files containing the term ti.
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Figure 4.2: Dimension of Feature Words

Multiply the above two items to get the formula of TF-IDF.

tfidfi,j = tfi,j×idfi

A high word frequency within a particular document, and a low docu-
ment frequency of that word in the entire document set, can result in a highly
weighted TF-IDF. Therefore, TF-IDF tends to filter out common words and
keep important words.

At the beginning, as shown in the Figure 4.2, we got 2701 feature words.
If all words are used as feature items, the dimension of the feature vector will
be too huge, resulting in too much calculation.

Listing 4.3: Feature Selection USing TF-IDF Sample Code

1 from sklearn.feature_extraction.text import TfidfVectorizer
2 dic0 = open(r'C:\Users\zjq\dic\dic0.csv','r', encoding='UTF-8

').read()
3 dic1 = open(r'C:\Users\zjq\dic\dic1.csv','r', encoding='UTF-8

').read()
4 dic2 = open(r'C:\Users\zjq\dic\dic2.csv','r', encoding='UTF-8

').read()
5

6 docs = [
7 dic0, dic1, dic2
8 ]
9 vectorizer = TfidfVectorizer(use_idf = True, max_df=0.9)

10 # Ignore words appear in more than 90% of the entire document
11

12 tfidfs = vectorizer.fit_transform(docs)
13 print('feature_names:', vectorizer.get_feature_names())
14

15 words = vectorizer.get_feature_names()
16 for doc_id, vec in zip(range(len(docs)), tfidfs.toarray()):
17 print('doc_id:', doc_id)
18 for w_id, tfidf in sorted(enumerate(vec), key=lambda x:

x[1], reverse=True):
19 lemma = words[w_id]
20 print('\t{0:s}{1:f}'.format(lemma, tfidf))

First we try to use PCA for dimension reduction. Principal Component
Analysis is a common data analysis method, which is often used for dimension
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reduction of high-dimensional data and can be used to extract the main
feature components of the data.

The goal of PCA is to find r (r<n) new variables from the original n
variables, so that they reflect the main characteristics of things, compress
the scale of the original data matrix, reduce the dimension of the feature
vector, and select the least number of dimensions to generalize the most
important features. Each new variable is a linear combination of the original
variables, which reflects the comprehensive effect of the original variables and
has a certain practical meaning. These r new variables are called “principal
components”, they can largely reflect the influence of the original n variables,
and these new variables are uncorrelated and orthogonal. Through principal
component analysis, the data space is compressed, and the characteristics of
multivariate data are visually expressed in the low-dimensional space.

Listing 4.4: Dimension Reduction USing PCA Sample Code
1 from sklearn.decomposition import PCA
2

3 #n_components specifies how many principal components should
be calculated

4 #If we specify a real number between 0 and 1, the principal
component is calculated until the cumulative contribution
ratio(the sum of the contribution ratios of the principal
components, contribution ratio represents the importance
of each principal component) reaches that value.

5 pca = PCA(n_components = 0.9, whiten = True)
6

7 #Perform principal component analysis
8 pca.fit(tfidfs.toarray())
9

10 #Checking the number of principal components
11 pca.n_components_
12

13 #Display words with high factor loading(effect of each
variable on each principal component which can estimate
the meaning of each principal component) for each main
component

14

15 for i in range(pca.n_components_):
16 tc = list(zip(pca.components_[i],words))
17 tc.sort()
18 tc.reverse()
19 print("[PCA%d]" % (i+1))
20 for v,t in tc[:10]:
21 print("%f,%s" % (v,t))

Figure 4.3 shows part of the results of PCA dimension reduction. The
first principal component and the second principal component are the two
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Figure 4.3: Results of PCA Dimension Reduction

most important principal components, which best summarize the most im-
portant features of the original dataset. But we can also find that the results
are not satisfactory. If it is an ideal situation, the feature words of each
dimension will be able to be smoothly summed up to be similar. One of
the reasons for this result is that our dataset is not very large, which is also
related to the fact that our dataset is not very large. Since the tweets posted
by these accounts represent the real thoughts of users, a considerable number
of users set their accounts as private accounts for their own reasons.

Anyway, we also tried to use PCA for visualization analysis, as shown
in the Figure 4.4. We plot with the first principal component as the x-axis
and the second principal component as the y-axis. Different points represent
different users. The closer the users are, the greater the similarity of their
tweets under this dimensionality reduction.

4.3 Model Training

After completing the feature selection using TF-IDF and PCA, combined
with Japanese grammar (refer to Japanese papers), we determined the feature
words and performed binary classification.
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Figure 4.4: Visualization Analysis for PCA Dimension Reduction

4.3.1 Argument Classification

For argument classification, we selected the features as follows. “思”,“
違う”,“なら”,“意思”,“べき”,“だけ”,“こと”,“に対して”,“ので”,“それで”,“つ
まり”,“一方”,“あるいは”,“したがって”,“そのため”.

The “argumentative” column represents the true label of the text, 1
means the text is argumentative, and 0 means the text is non-argumentative.

We divided 80% of the data into training data and 20% of the data into
test data.

Listing 4.5: Argument Classification Sample Code

1 import pandas as pd
2 df = pd.read_csv('args.csv',header = 0)
3 from sklearn.model_selection import train_test_split
4

5 feature = df.loc[:, ['思','違う','なら','意思','べき','だけ
','こと','に対して','ので','それで','つまり','一方','ある
いは','したがって','そのため']]

6 target = df.loc[:, ['argumentative']]
7

8 train_feature ,test_feature, train_target, test_target =
train_test_split(feature, target, train_size=0.8,
random_state=1)
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4.3.2 Attack Classification

For argument classification, we selected the features as follows. “けど”,“
なら”,“でも”,“なく”,“ない”,“違う”,“別に”,“おかしい”,“のに”,“とはいえ”,“
とことで”,“しかし”,“ところが”,“だけど”,“なのに”.

The “attack” column represents the true label of the relation between
the subtexts of the text, 1 means that there is an attack relation between
the subtexts of the text, and 0 means that it does not exist.

Same as argument classification experiment, we divided 80% of the data
into training data and 20% of the data into test data.

Listing 4.6: Attack Classification Sample Code

1 import pandas as pd
2 df = pd.read_csv('atts.csv',header = 0)
3 from sklearn.model_selection import train_test_split
4

5 feature = df.loc[:, ['けど','なら','でも','なく','ない','違
う','別に','おかしい','のに','とはいえ','ところで','しかし
','ところが','だけど','なのに']]

6 target = df.loc[:, ['attack']]
7

8 train_feature ,test_feature, train_target, test_target =
train_test_split(feature, target, train_size=0.8,
random_state=1)

Here random state refers to the random number seed. The random
number seed is actually the number of the group of random numbers. When
repeated experiments are required, it is guaranteed to get the same set of
random numbers. In the next chapter, we will experiment with different ran-
dom number seeds in order to evaluate the performance of different machine
learning algorithms. Here we set it to 1.
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Chapter 5

Evaluation

5.1 Evaluation on F Score

We will use some commonly used machine learning algorithms on our
dataset and evaluate the performance of these algorithms by F Score.

5.1.1 Decision tree

First we use decision tree. Decision tree learning adopts a top-down
recursive method, and its basic idea is to construct a tree with the fastest
entropy drop based on information entropy. The entropy value to the leaf
node is zero, and the instances in each leaf node belong to the same class.

In information theory and probability statistics, entropy is a measure of
the uncertainty of a random variable. Let X be a discrete random variable
with a finite number of values, and its probability distribution is as follows.

P (X = xi) = pi, i = 1, 2, ..., n

Then the entropy of the random variable X is defined as:

H(X) = −
n∑

i=1

pilogpi

In the above formula, if pi=0, then define 0log0=0. Usually, the loga-
rithm in the formula is base 2 or base e (natural logarithm). At this time,
the unit of entropy is called bit or nat. It can be seen from the definition
that the entropy only depends on the distribution of X, and has nothing to
do with the value of X, so the entropy of X can also be recorded as H(p),
that is:

H(p) = −
n∑

i=1

pilogpi
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The greater the entropy, the greater the uncertainty of the random vari-
able. It can be verified from the definition:

0 ≤ H(p) ≤ logn

When the random variable is determined, the minimum value of the
entropy is 0, and when the entropy value is the largest, the uncertainty of
the random variable is the largest.

Given a random variable (X,Y), its joint probability distribution is

P (X = xi, Y = yj) = pij, i = 1, 2, ..., n, j = 1, 2, ...,m

Conditional entropy H(Y| X) represents the uncertainty of random vari-
able Y under the condition of known random variable X, and the conditional
entropy H(Y| X) of random variable Y under the given condition of random
variable X is defined as X Mathematical expectation on X of the entropy of
the conditional probability distribution of Y given the conditions:

H(Y |X) =
n∑

i=1

piH(Y |X = xi)

Here, pi = P (X = xi), i=1,2,...,n. When the probability in entropy
and conditional entropy is obtained by data estimation (maximum likelihood
estimation), the corresponding entropy and conditional entropy are called
empirical entropy and conditional empirical entropy, respectively. At this
time, if there is 0 probability, then let 0log0=0.

The information gain represents the degree to which the uncertainty of
the information of class Y is reduced by knowing the information of feature
X. The information gain g(D,A) of feature A to dataset D is defined as the
difference between the empirical entropy H(D) of set D and the empirical
conditional entropy H(D|A) of feature A, namely:

g(D,A) = H(D)−H(D|A)

Generally, the difference between the entropy H(Y) and the conditional
entropy H(Y|X) is called mutual information. The information gain in deci-
sion tree learning is equivalent to the mutual information between classes and
features in the training dataset. We set criterion as entropy, which means
information entropy. Then we load the decision tree classification model, cre-
ate decision tree using training data and predict test data using the created
decision tree.
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Listing 5.1: Decision Tree Sample Code

1 from sklearn import tree
2

3 clf = tree.DecisionTreeClassifier(criterion = 'entropy')
4 clf = clf.fit(train_feature,train_target)
5 predicted = clf.predict(test_feature)

We will evaluate all the algorithms with F score after introducing them.
In addition to this, we will also show the visualization of decision trees.

Listing 5.2: Decision Tree Visualization Sample Code

1 import pydotplus
2 from IPython.display import Image
3 from six import StringIO
4

5 dot_data = StringIO()
6 tree.export_graphviz(clf,out_file = dot_data)
7 graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
8 Image(graph.create_png())

The visualization result is shown in Figure 5.1. It is necessary to refer
to the same feature many times whether in argument classification or attack
classification. It is hard to say that it is the most appropriate method for
data with a large amount of features.

5.1.2 SVM

SVM (support vector machine) is a two class classification model. Its
basic model is defined as the linear classifier with the largest interval in the
feature space. Its learning strategy is to maximize the margin, which can
finally be transformed into the solution of a convex quadratic programming
problem.

We normalize with standard deviation for SVM. Here we use Standard-
Scaler [19] to standardize features by removing the mean and scaling to unit
variance. The standard score of a sample x is calculated as:

z =
(x− u)

s

where u is the mean of the training samples or zero if with mean=False, and
s is the standard deviation of the training samples or one if with std=False.

Centering and scaling happen independently on each feature by com-
puting the relevant statistics on the samples in the training set. Mean and
standard deviation are then stored to be used on later data using transform.
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(a) Argument Classification

(b) Attack Classification

Figure 5.1: Visualization for Decision Tree
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Empirically, normalization can make the features between different di-
mensions have a certain numerical comparison, which can greatly improve the
accuracy of the classifier. The default values of both with mean and with std
are True, i.e., u is not 0 and s is not 1. The fit function is to compute the
mean and std to be used for later scaling. And the transform function is to
perform standardization by centering and scaling.

Listing 5.3: Normalization Sample Code

1 from sklearn.preprocessing import StandardScaler
2

3 sc = StandardScaler()
4

5 sc.fit(train_feature)
6 train_feature_std = sc.transform(train_feature)
7 test_feature_std = sc.transform(test_feature)
8 print(train_feature_std)

Linear separability means that two types of samples can be separated
by a linear function, such as a straight line in two-dimensional space, a plane
in three-dimensional space and a linear function in high-dimensional space.

In most cases, the data are not linearly separable. At this time, the
hyperplane satisfying such conditions does not exist at all. For the nonlinear
case, the processing method of SVM is to select a kernel function κ to solve
the problem of linear indivisibility in the original space by mapping the data
to a high-dimensional space. Specifically, when the data are nonlinearly
separable, the support vector machine first completes the calculation in the
low-dimensional space, then maps the input space to the high-dimensional
feature space through the kernel function, and finally constructs the optimal
separation hyperplane in the high-dimensional feature space, so as to separate
the non-linear data that is not easy to be divided on the plane.

We set kernel as linear. Linear kernel function is

κ(x1, x2) = ⟨x1, x2⟩

i.e., inner product in primitive space. The meaning of kernel function is that
although it also converts the features from low dimension to high dimension,
the kernel function calculates in the low dimension in advance, and displays
the substantive classification effect in the high dimension, which avoids the
complex calculation directly in the high-dimensional space.

Listing 5.4: SVM Sample Code

1 from sklearn import svm
2

3 clf_s = svm.SVC(kernel = 'linear')
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4 clf_s.fit(train_feature_std,train_target)
5 predicted = clf_s.predict(test_feature_std)

5.1.3 MultinomialNB

NB is the abbreviation for Naive Bayes. There is a sample data set
D = d1, d2, ..., dn, the feature attribute set corresponding to the sample data
is X = x1, x2, ..., xd, and the class variable is Y = y1, y2, ...ym, that is, D can
be divided into ym categories.

Where x1, x2, ..., xd are independent and random, then the a prior prob-
ability of Y is Pprior = P (Y ), and the a posterior probability of Y is Ppost =
P (Y |X). It can be obtained by Naive Bayes algorithm, and the posterior
probability can be calculated by a prior probability Pprior = P (Y ), evidence
P (X) and class conditional probability P (X|Y ):

P (Y |X) =
P (Y )P (X|Y )

P (X)

Naive Bayes is based on the independence of each feature. In the case
of a given category of , the above formula can be further expressed as the
following formula:

P (X|Y = y) =
d∏

i=1

P (xi|Y = y)

From the above two equations, the posterior probability can be calcu-
lated as:

Ppost = P (Y |X) =
P (Y )

∏d
i=1 P (xi|Y )

P (X)

Since the size of P (X) is fixed, only the numerator part of the above
formula can be compared when comparing the posterior probability. So we
can get a Naive Bayes calculation where the sample data belongs to the
category:

P (yi|x1, x2, ...xd) =
P (yi)

∏d
i=1 P (xi|yi)∏d

i=1 P (xj)

For our classification experiment, it can also be written as:

P (class|feature) = P (class)P (feature|class)
P (feature)
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The features of our dataset are discrete and suitable for the use of multi-
nomial models. MultinomialNB assumes that the prior probability of the
feature is a multinomial distribution, that is, the following formula:

P (Xj = xjl|Y = Ck) =
xjl + λ

mk + nλ

Among them, P (Xj = xjl|Y = Ck) is the conditional probability of the
l-th value of the j-th dimension feature of the k-th category. mk is the number
of samples of the kth class output in the training set. λ is a constant greater
than 0 and takes a value of 1, that is, Laplace smoothing, and can also take
other values.

In text classification, the prior and conditional probabilities of polyno-
mials are as follows. Suppose a document d = (t1, t2, ..., tk), tk is the word
that has appeared in the document, and repetition is allowed, then the prior
probability P(class c) is calculated as:

P (class c) =
total number of words in class c

total number of words in training sample

Class conditional probability P (tk|c) is calculated as:

P (tk|c) =
total times tk in class c appears every document + 1

(total number of words in class c + |V |

V is the word list of the training sample (i.e., the word is extracted, and
the word appears many times, only one is counted), and | V | indicates how
many kinds of words the training sample contains. P (tk|c) can be seen as
how much evidence the word tk provides in proving that d belongs to class
c, while P (class c) can be thought of as how much (how likely) is the class
c as a whole.

Listing 5.5: MultinomialNB Sample Code

1 from sklearn.naive_bayes import MultinomialNB
2 clf = MultinomialNB()
3 clf = clf.fit(train_feature, train_target)
4 predicted = clf.predict(test_feature)

5.1.4 Passive Aggressive

Passive Aggressive is a linear classifier for online learning(learning se-
quentially each time data is given). We use Passive Aggressive processing
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binary classification problem. In the binary classification, the import is x,
the binary prediction is y ∈ {−1,+1}.

The linear classifier takes the model parameters W as features, inputs x
, and predicts sign(W Tx). Here sign(x) is a function that returns 1 if x is
non-negative and -1 if it is negative.

In online learning, every time data is given, the parameters are updated
using a pre-designed update formula. In Passive Aggressive, when the t-th
data (x(t), y(t)) is given, the parameter W (t) is updated to W (t+1) using the
following formula.

W (t+1) = W (t) +
lhinge(x

(t), y(t),W (t))

∥ x(t) ∥2
y(t)x(t)

lhinge(x, y,W ) = max(0, 1− yW Tx)

If the current model can be classified with sufficient margin (yW Tx >
1), then lhinge(x, y,W ) = 0, the update is not performed. Otherwise, the
update is performed by changing the update magnitude according to the
wrong proportion.

Listing 5.6: Passive Aggressive Sample Code
1 from sklearn.linear_model import PassiveAggressiveClassifier
2 clf = PassiveAggressiveClassifier()
3 clf.fit(train_feature,train_target)
4 predicted = clf.predict(test_feature)

First we use the confusion matrix to visualize the performance of dif-
ferent algorithms (random state is set to 1). For argument classification, we
found that Passive Aggressive is not performing as well as the other three
algorithms through the confusion matrix as the Figure 5.2 shows. As for
attack classification, as the Figure 5.3 shows, generally, Passive Aggressive
performs even worse than on the argument classification.

We use Table 5.1 and Table 5.2 to compare the F score of the above
algorithms and experimented with different random state in argument clas-
sification.

Table 5.3 and Table 5.4 are used to compare the F score of the above
algorithms and experimented with different random state in attack classifi-
cation.

In Table 5.1, Table 5.2, Table 5.3, the accuracy and precision of Multi-
nomialNB are equal, this is because True Negative and False Negative in the
classification are 0.

Combining F score from multiple tables, we find that Multinomial Naive
Bayes performs the best and Passive Aggressive the worst in our classification
experiments.
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(a) Decision tree (b) SVM

(c) MultinomialNB (d) Passive Aggressive

Figure 5.2: Confusion Matrix Visualization for Argument Classification

Table 5.1: Result of Argument Classification(random state=1)
decision-tree SVM MultinomialNB PassiveAggressive

accuracy 0.7902 0.7790 0.7903 0.7903
precision 0.7992 0.7901 0.7903 0.8172

recall 0.9810 0.9810 1 0.7204
f-score 0.8809 0.8758 0.8829 0.7658

Table 5.2: Result of Argument Classification(random state=500)
decision-tree SVM MultinomialNB PassiveAggressive

accuracy 0.7603 0.7460 0.7753 0.7341
precision 0.7761 0.7769 0.7753 0.7720

recall 0.9710 0.9758 1 0.9324
f-score 0.8627 0.8651 0.8734 0.8447
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(a) Decision tree (b) SVM

(c) MultinomialNB (d) Passive Aggressive

Figure 5.3: Confusion Matrix Visualization for Attack Classification

Table 5.3: Result of Attack Classification(random state=1)
decision-tree SVM MultinomialNB PassiveAggressive

accuracy 0.6719 0.6875 0.7344 0.4688
precision 0.7167 0.7288 0.7344 0.7407

recall 0.9149 0.9149 1 0.4255
f-score 0.8038 0.8113 0.8469 0.5405

Table 5.4: Result of Attack Classification(random state=500)
decision-tree SVM MultinomialNB PassiveAggressive

accuracy 0.6094 0.6250 0.6563 0.5313
precision 0.6429 0.6491 0.6508 0.6897

recall 0.8780 0.9024 1 0.4878
f-score 0.7423 0.7551 0.7885 0.5714
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5.2 Evaluation on Argumentation Graph

As we mentioned in 2.6, we use ASP queries for reasoning problems
within valued-based argumentation frameworks, and the implementation ap-
proach is proposed by by Uwe Egly, Sarah Gaggl, and Stefan Woltran [20].

In the weighted argumentation frameworks we proposed, we have de-
fined a weighting function W : V → R which maps the reliability of a tweet
t, denoted as rt, to a logarithmic scale which is W (t) : log(3rt+2). When we
calculate weights for different topics, the value of rt is calculated in cumula-
tive form, i.e., when the Twitter user’s profile, icon, and header are related
to the topic being calculated, rt is incremented by one. In addition, when
calculating topics do not require professional knowledge, we consider the age
factor because older people have more life experience. Also, according to our
dataset, order people tend to look at problems from a realistic perspective,
i.e. they use more evidence to support their arguments. When the age is
older, rt is increased by one, and young people have less experience therefore
the rt is 0.

We refer to the report classification of some news websites and divide
our tweets dataset into the following 6 topics: entertainment, life, politics,
love, economy, and ASD (Autistic Spectrum Disorder). Among them, life
and love topics do not require professional knowledge, and the age factor is
considered to calculate the weight.

We use clingo to run ASP program for love topic and the results are as
follows.

Listing 5.7: Answer Set Programming Evaluation Result

1 Answer: 1
2 in(b14) in(b36) in(b48) in(b49) in(b50) in(b53) in(b54) in(

b55) in(b56) in(b59) in(b60) in(b62) in(b63) in(b64) in(
b70) in(b71) in(b74) in(b180)

3 SATISFIABLE
4

5 Models : 1

The answer is the solution of for love topic, i.e., the set of acceptable
tweets. In addition, we also visualized the framework we modeled in 3.3,
shown in Figure 5.4. Tweets with heavier weights have thicker arrows, rep-
resenting higher reliability.
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Figure 5.4: Visualization Analysis for Argumentation Graph

52



Chapter 6

Conclusion

6.1 Concluding Remarks

1. The structure of private opinion.

• Morphological Analysis Aspect
In 4.2 we use TF-IDF to calculate the select the features which
represent arguments or attacks from private opinion. And we list
them in Table 6.1 and Table 6.2 respectively.

• Syntactic Analysis Aspect
We use GiNZA [22] for syntactic analysis. Syntactic analysis is the
process of analyzing a string of symbols, in our case is Japanese
language, conforming to the rules of a formal grammar. We use
displaCy from spaCy [23] to visualize one example of syntactic
analysis, shown in Figure 6.1.

Dependencies in both front and back directions are handled in

Table 6.1: Common Phrases in the Arguments of the Private Opinion
arguments TF-IDF

思っ 0.228171　
違う 0.228171
なら 0.192242
意思 0.186046
べき 0.181209
だけ 0.178155

に対して 0.172563
ので 0.159449
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Table 6.2: Common Phrases in the Attacks of the Private Opinion
attacks TF-IDF
けど 0.332797　
でも 0.302313
なく 0.299042
ない 0.280712
違う 0.263279
別に 0.24712

おかしい 0.245563
のに 0.18015

units of tokens corresponding to morphemes, and by assigning la-
bels to the dependencies, grammatical relationships such as the
subject and object are output. A dependency is a binary asym-
metric relationship between a head word and its subordinates.
The head word of a sentence is usually verb, and all other words
either depend on the head word or are associated with it through
dependency paths. The dependency structure is a labeled directed
graph. The arrow points from the central word to the subordi-
nates. Specifically, the arrow points from the head to the child.
As can be seen from Figure 6.1, each token has only one head. In
natural language processing, a word, a punctuation mark, a space,
etc. are called a token. In our case, token refers to a morpheme.

Relation tokens are used to represent subordinate grammatical
functions. Commonly used tokens are: root (center word, usually
verb), nsubj (nominal subject), prep (preposition), nmod (nomi-
nal modifier), advmod (advmod (adverbial modifier)), det (quali-
fier), amod (adjective modifier), case (case marking), obl (oblique
noun), fixed (fixed multiword expression), dep (dependent), aux
(auxiliary), acl (clausal modifier of noun), nummod (numeric mod-
ifier), advcl (adverbial clause modifier), ccomp (clausal comple-
ment).

In this example, We divided a tweet into 5 parts for better visu-
alization analysis for private opinion.

The Twitter user first stated his background, and affirmed that he,
who is also in an unoptimistic situation, is not a rational behavior
to make a certain action. Then from a negative point of view, it
gives a negative opinion and provides evidence. In this expression,
there are 3 phrases that we selected as features, “思う”, “こと”,
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(a)

(b)

(c)

(d)

(e)

Figure 6.1: Syntactic Analysis for Private Opinion Arguments
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“それで”. At the same time, other lexical expressions appearing
in the private opinion classified as argumentative may also serve
as references for further experiments, which we will discuss in 6.2.

2. Algorithm performs best in classification.
According to 5.1, we can conclude that the best performing algorithm
is Multinomial Naive Bayes.

3. The contribution of argumentation graph done in recognizing reliable
tweets. Specifically, we can further normalize the reliability so that it
is in the [0,1] interval, the user can set the threshold of the reliability,
and the search results will show the arguments higher than the set
threshold. When users want to make a decision, argumentation graph
can be referred to. Namely, argumentation graph can make a great
contribution to information retrieval.

6.2 Future Work

In the experiment of this study, the overall performance of attack clas-
sification is worse than that of argument classification. Part of the reason
is that the attack data set is smaller than the argument data set (because
the attack relation only exists between arguments). As we stated in 6.1, in
addition to the features we choose, there are also other symbols that may
be worthy of being used as judgment markers for the private opinion argu-
ments. Similarly, in addition to the features we choose, the private opinions
classified as attack also appear other markers that may be worth judging as
private opinion attacks. Through such repeated experiments, we can expect
the improvement of F score and other indicators. However, the above exper-
iments have not been carried out in this study. To trace back to the source,
our criteria for selecting features are according to the value of TF-IDF and
referring to some relevant Japanese grammar papers. If the above repeated
experiments are carried out, whether the True Positive in estimated results
of classification are really the True Positive in actual results remains to be
discussed. This problem needs the support of more authoritative Japanese
experts.

Secondly, feasible research in the future includes making a more com-
plete information retrieval system, including but not limited to adding a
more beautiful and easy-to-operate interactive interface, adding evaluation
indicators from other users such as Net Promoter Score, using the threshold
setting we mentioned in 6.1, in order to provide users in need with a reliable
decision-making reference.
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Finally, one of the objectives of this study is to visualize the structure
of private opinion, as we summarized above. When people communicate in
private opinion, because they speak the truth, they think each other’s words
are reliable compared with those public sound. We hope that future research
can be extended beyond private opinion and public sound. When introducing
professional knowledge in a certain field to people in other research fields or
without background knowledge, what kind of expression and conversation
structure can be used to better communicate effectively. If we can figure
it out, we can expect that it will make a great contribution to the field of
education.
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