
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title UMLステートチャートに対するモデル検査に関する研究

Author(s) 林, 信宏

Citation

Issue Date 2003-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1765

Rights

Description Supervisor:片山 卓也, 情報科学研究科, 修士



A Research of Model Checking UML Statechart
Diagrams

Lin Hsin-Hung(110205)

School of Information Science,
Japan Advanced Institute of Science and Technology

August 15, 2003

Keywords: model checking, SMV, UML, statechart.

1 Introduction

The United Modeling Language(UML) has become a standardized notation
for specifying complicated software systems. By the help of UML, the

software design becomes more and more complicated so that the integrity
of a software system design is very difficult to be discovered. Further more,

because UML itself is a very expressive and rich language, sometimes the
model gives behaviors not expected by the designers and those behaviors

could cause serious bugs for the system. For this reason, verifications about
UML models are needed.

Recently there are some researches using Model Checking technique for

verification of UML models. Model checking is an automatic technique
for verifying finite state concurrent systems. It has been applied success-

fully to hardware design such as verifying complex sequential circuit de-
signs and communication protocols. Recently there are many researches

focus on using model checking techniques on software verification. Because
UML statechart diagrams and automata, which can be easily converted to
Kripke structure, have many similarities, it is an interesting subject to

apply model-checking techniques on Statechart diagrams.

Copyright c© 2003 by Lin Hsin-Hung

1



2 Purpose and Approach

In this research, we attempt to describe an approach to convert UML model
into SMV module. We will focus on translating statechart diagrams, and

the purpose of this research is to explore the states in a UML statechart
diagram and verify properties interested.

Our approach will focus on constructing an algorithm to translate UML

statecharts into SMV. We will follow the STP-approach since it success-
fully translates STATEMATE statecharts into SMV. Unfortunately, STP-

approach could not handle the message passing between UML statecharts;
because STP considers STATEMATE statechart a closed system and all

events are unique in the system. For this reason, we need to adopt some
parts of the STP algorithm for message passing of UML statecharts.

The message passing consideration refers to the algorithm introduced

in HUGO. But differently, we do not use queues for messages but only
applied the similar concept in our translation into SMV. This is because the

algorithm of HUGO is for translation into PROMELA, a C-like language,
such that the implementation of a queue is much easier than in SMV.

To construct the relationship between UML statecharts, we need to take
a reference to class diagrams. In this way we might not have to handle

events as global boolean variables as in STP-approach. In this research we
cannot afford to construct a mechanism of making specification properties.

3 Translation Algorithm

The translation algorithm contains the following sections:

• State/statechart and sub-state/statechart
• State transitions

• Event variables
• Mutual exclusive message passing

The first two sections are based on STP-approach and we made a little

adaption to match the structure of UML statechart diagrams. The last
two sections are concerning about dynamic mechanism of UML statechart

diagrams. We made our own explanation about the message passing since
the UML semantics does not give clear definition.

2



The mechanism of mutual exclusive message passing restricts that a stat-
echart can only accept message passing from one statechart (including from

itself) at one time step. When a message passing clash occurs, only one
message passing is allowed and others are forced to delay till next time

step.

4 Examples and Conclusion

We conducted an example of Dining Philosophers Problem that has two

philosophers and two forks. While translated by our algorithm, we then
examinated some properties interested and concerning about dead lock of

thie problem. The results shows that our translation algorithm works well
in this example.

There is still work could be continued form this algorithm such as making

its coverage about UML statechart diagrams more complete, and imple-
ment an automatic translating tool. While testing our algorithm with

the example, we also found that making a proper specification property is
somehow difficult. This is also as important as translating correctly into

SMV code.

3


