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Abstract 

 

With the development of ocean exploration, in recent years, people have relied on 

underwater robots for resource exploration, environmental surveying and other 

activities. However, due to the underwater medium and a large number of suspended 

particles, the light is absorbed and scattered in the water. Therefore, the original 

underwater image has suffered serious degradation, such as color distortion, low 

contrast, and blurred images. In order to obtain a clear underwater scene, it is of great 

significance and value to adopt underwater image enhancement technology. 

Underwater image enhancement technology mainly includes traditional methods and 

deep learning methods. Traditional methods perform overall modeling of underwater 

scenes and invert the degradation process based on physical models; deep learning 

methods are based on each pixel value of the whole image, learning the mapping 

relationship between underwater images and original images. But for most 

backgrounds, such as water, its color is often not our focus. Compared with the whole 

part, we focus on the more important parts.  

In this paper, we propose a novel improvement on Generative Adversarial Networks 

that can be simply embedded in existing neural networks and can distinguish the 

foreground and background parts of an image without additional processing.  

Through this optimization, which pay more attention to foreground and enhance the 

details. we make our generative adversarial network achieve better visual performance 

when the SSIM, PSNR and other indicators are the close or even inferior to other 

networks and achieves better performance in color correction and detail preservation. 

We also demonstrate the effectiveness of our proposed attention module and multi-scale 

module through ablation experiments. 
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Chapter 1   

Introduction 

1.1  Research Background 

 

In recent years, with the gradual decrease of land resources, the ocean has become the 

target of human exploration. As an important information carrier, underwater images 

intuitively reflect underwater environmental information, and play an important role in 

the research of marine exploration, marine environmental monitoring, biological rescue, 

underwater robots, marine military applications, etc. 

However, due to the influence of wavelength-dependent light absorption and 

scattering, underwater images are often accompanied by serious color shifts, blurring 

and loss of details. When light propagates underwater, due to the different attenuation 

degrees of light of different colors in the water body. In general, red light absorbs the 

most quickly in water, whereas blue light absorbs the least, resulting in underwater 

images captured mainly appearing blue green. In addition, light will have a scattering 

effect in water. Forward scattering and reverse scattering are two types of scattering. 

The deviation of light reflected by objects in the water is referred to as forward 

scattering due to the influence of scattering particles, resulting in low image clarity; 

back scattering refers when the light directly into the water, it is affected by the 

scattered particles, and some of the light will be absorbed by the camera, resulting in 

low image contrast [1]. Low-quality underwater images obtained in these situations are 

not conducive to target recognition, detection, and tracking are examples of image 

processing vision applications. Consequently, underwater image enhancement is 

extremely essential for underwater research. 
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Figure 1.1: The underwater robot[67] 

 

Figure 1.2: Comparison before and after underwater image processing [68] 

 

1.2  Previous Work Background 

 

At present, techniques based on non-physical models, methods based on physical 

models, and approaches based on deep learning are the three categories of underwater 

image improvement methods.  

1) The method based on the non-physical model realizes the enhancement of the 

image by adjusting the pixel value of the image. For example, to increase the 

saturation and contrast of underwater photographs, Iqbal et al. [2] expanded the 

pixel range in RGB and HSV color spaces.  

Problem: The calculation cost of this method is high, and it will cause the problem of 

over-enhancement or under-enhancement in the local area of the image. 
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2) The physical model-based method regards underwater image enhancement as the 

inverse problem of the underwater degradation process, and constructs a 

degradation model of the underwater degradation process, and restores high-

quality underwater images by solving the degradation model. 

Problems: However, the large number of physical parameters that this type of method 

needs to calculate is very complicated, and it also heavily relies on camera 

parameters and prior conditions, resulting in a particularly limited number and types 

of underwater images that can be enhanced. 

3) Deep learning methods are based on understanding the mapping relationship 

between underwater images and original images by analyzing each pixel value of 

the entire image. In particular, the generation adversarial network (GAN)[3], in 

terms of unsupervised deep learning, can be used to capture the high-level 

correlation of data without target class label information. Underwater Generative 

Adversarial Networks were suggested by Fabbri et al. [4]. (UGAN), which used 

a coding and decoding framework similar to U-Net [5] to better improve the 

quality of underwater images. Multi-Scale Cycle Generative Adversarial 

Networks were suggested by Lu et al. [6]. (MCycleGAN), which introduced 

multi-scale to restore the color of the image. Gao et al. [7] proposed Self-

Attention Underwater Image Enhancement by Data Augmentation (SAUIE), 

which introduced an attention mechanism to better improve the contrast. 

Problems: All the features learned in UGAN and MCycleGAN are equally important 

and do not suppress useless information, such as water; while SAUIE focuses on 

important feature information, but due to the lack of water quality diversity in the 

data set, the generalization ability performance needs to be improved. 

  

 

1.3  Purpose of Study 

 

In order to solve the weak points of above methods, we propose a network based on 

U-net, which introduces two modules: attention mechanism and multi-scale 

convolution. Committed to learning not only to restore the overall color, but also to 

focus on the important part and detailed information in the image. Among them, the 

attention mechanism module enhances the contrast between the foreground and the 

background, and can focus on foreground information, such as underwater creatures; 

The multi-scale convolution module restores the detailed information on the basis of 
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paying attention to the key target, and makes the target visually clearer. In addition, in 

order to increase the diversity of underwater images, an underwater image data set 

generated based on the attenuation coefficients of 10 water qualities proposed by Jerlov 

[8] is used as the experimental data for this time. 

 

1.4  Chapter Organization 

⚫ Chapter 1 introduces the significance of this research and the research background, 

then discussed previous research and their shortcomings, the research purpose of 

this thesis, and the organizational structure of the paper. 

 

⚫ Chapter 2 introduces the theory of underwater imaging, including the environment 

of underwater imaging and the factors that affect image quality, shows the 

degeneration model formula established for underwater scenes, and then mainly 

introduces the processing of underwater image enhancement from three kinds of 

methods, includes methods based on non-physical models, based on physical 

models and based on deep learning. 

 

⚫ Chapter 3 introduces some kinds of data sets to generate the paired data by using 

deep learning methods and proposed RGBD data set with rich water quality in this 

study for the lack of diversity of data sets in deep learning methods. Then explain 

the structure of the proposed network, it includes attention mechanism, multi-scale 

convolution and the skip connection, and the used loss functions are also discussed. 

 

⚫ Chapter 4 introduces the experience about this thesis, includes the settings of the 

network structure, the training loss and other indexes and the results of experience. 

 

⚫ Chapter 5 introduces the evaluation methods for estimating experimental results are 

introduced, including subjective evaluation methods and objective evaluation 

methods. Then, compare the results of the method in this paper with sea-thru, which 

as the representation of the degradation model method, and other deep learning 

methods. Finally, the results of the comparison are discussed. 

 

⚫ Chapter 6 introduces the results of this experiment and summarizes the problems 

existing in underwater images and the effectiveness of our method for their 

problems 
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Chapter 2 

Related Works 

2.1 Introduction 

This part first discusses the principle of underwater imaging and the effects of light 

absorption and scattering in water. Then the influence of the attenuation coefficient of 

different water quality on the wavelength is introduced. 

2.2 Principles of Underwater Imaging 

Because of the unique water medium and the enormous amount of suspended particles, 

the light is absorbed and scattered in the water. Therefore, color distortion, poor contrast, 

and fuzzy images are all present in the underwater image as shown in Figure 2.1.  

     

Figure 2.1: General underwater imaging model [9] 

 

The scattering effect of light consists of three main components: forward scattering 

from the object, direct component from the object and backward scattering from the 

particle. 
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2.2.1 Underwater Imaging Environment 

In underwater scenes, the water medium has a great influence on the transmission of 

light. The optical components in water can be mainly divided into water body dissolved 

matter, gravel, phytoplankton and other particulate matter. The above-mentioned various 

optical components make the underwater images taken seriously damaged. It includes 

about three aspects: one is color distortion, mainly because the light of different 

wavelengths is attenuated to different degrees in the water body. As shown in Figure 2.2, 

the red light disappears about 5 meters underwater, and the green light and blue light 

disappear after 30 meters and 60 meters underwater respectively. Therefore, underwater 

images tend to be blue green. The second is the decrease in contrast, mainly because the 

back scattered light hits suspended particles in the water and is reflected back to the 

camera lens. The third is that the image is blurred, producing a "fog"-like effect similar 

to outdoor weather, mainly because the presence of suspended particles in the underwater 

scene will cause the deviation of forward scattered light. Figure 2.3 lists common water 

degradation images, with varying degrees of color cast, low contrast, and blurred. 

 

    

 

    Figure 2.2: The absorption of light of different wavelengths [10] 

 

Depth         Attenuation percentage             Different color 

light 
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 Figure 2.3: The common raw underwater images picked from UIEB [11] 

 

2.2.2 Attenuation of different wavelengths of light in 

water 

The ocean is easy to pass blue and green light with a wavelength of 0.4～0.5μm, but 

has a strong absorption effect on purple light with a wavelength of 0.2～0.4μm and red 

light with a wavelength of 0.5～0.8μm, that is, red and violet light attenuate the most. 

Therefore, the ocean is often blue-green, and the attenuation coefficients with different 

wavelengths of light shown as below: 

    

 

Figure 2.4: Different attenuation coefficients of different wavelengths in underwater [12] 
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The figure below shows the different wavelengths of visible light in Figure 2.5: 

 

 

Figure 2.5 Different wavelengths of Visible light [13] 
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2.3 Previous Work  

In this part, Firstly, the traditional degradation model formula and its optimization 

formula proposed by previous studies based on the above environment are discussed. 

Secondly, introduce researches related with hardware methods and software methods of 

underwater image enhancement. Then, hardware methods to upgrade hardware platforms 

are discussed. Finally, software methods to improve software algorithms with three parts 

are reported later. 

 

Table 2.1: Variables used in the part 

 

Variable Description 

𝜆 wavelength 

𝐸(𝑧, 𝜆) irradiance 

𝑎(𝜆) coefficient of absorption of a beam 

𝑏(𝜆) coefficient of scattering of a beam 

𝛽(𝜆) beam attenuation coefficient:𝑎(𝜆) + 𝑏(𝜆) 

𝑆𝑐(𝜆) sensor spectral response 

𝜌(𝜆) reflectance spectrum of the object 

𝑐 color channels R, G, B 

𝛽𝑐  attenuation coefficient 

𝐵∞(𝜆)
 

veiling light 

𝐵𝑐
∞ veiling light with a wide band 

𝐈𝑐 Signal attenuation in RGB image 

𝐉𝑐 Signal no-attenuation in RGB image 

𝑑 depth  

𝑧  geometric distance along line of sight 

𝜉 direction among the scene to camera 

𝐵 backscattered light 

𝐷 direct transmitted light 
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2.3.1 Underwater Imaging Model 

At present, In the subject of underwater image enhancement, the most extensively used 

model is the Akkaynak model [14], the underwater image formation usually is controlled 

by: 

 

𝐿 = 𝐷 + 𝐵           (2.1) 

 

Where 𝐿 is the total quantity of radiation that reaches the camera from the scene, 𝐵 is 

the backscattered light, and 𝐷 is the direct transmitted light, 𝐈𝑐 is the RGB image with 

attenuated signal in the 𝐿 situation, specifically expressed as below:  
   

    𝐈𝑐 = 𝐉𝑐𝑡𝑐 + 𝐵𝑐
∞(1 − 𝑡𝑐)     (2.2) 

 

where 𝐈𝑐 refers to the underwater image taken by the camera lens, 𝐉𝑐 represents the 

desired enhanced high-quality image, 𝑡𝑐 is the transmittance, which means the residual 

energy ratio of the scene radiation after the image is degraded, and 𝐵𝑐
∞ is the estimation 

of the background light. 𝑐 is the RGB color space channels. 𝐉𝑐𝑡𝑐 is the light from the 

surface of the observed object entering the camera lens, 𝐵𝑐
∞(1 − 𝑡𝑐) is the underwater 

ambient light reaching the camera lens. 𝑡𝑐  can be further expressed as the following 

exponential decay term: 

𝑡𝑐 = 𝑒−𝛽𝑐𝑑          (2.3) 

 

In contrast to the image degradation model, 𝑑 is the depth, 𝛽𝑐 is wavelength dependent 

and is influenced by seasonal, geographic, and climatic fluctuations, causing scenes to 

seem blue, green, or yellow. 

The Akkaynak model [14] is similar to the image defogging model, so the underwater 

image can be enhanced by image defogging. However, compared with the image 

defogging assuming that the RGB channels have the same degree of attenuation and 

uniform atmospheric illumination, the underwater RGB channels have different degrees 

of attenuation, and the underwater environment is mostly non-uniform illumination. 

Therefore, directly applying the image defogging algorithm to underwater does not 

produce satisfactory enhancement results. 

We can see that 𝐵𝑐
∞ and 𝑡𝑐  are important prior information for underwater image 

restoration. A large number of researchers have improved and designed models to better 

estimate the above two model parameters to obtain enhanced results with better subjective 
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and objective effects. 

 

2.3.2 Improved Underwater Imaging Model 

Recent research has discovered that the widely used Akkaynak underwater imaging 

model misses certain essential aspects of the real-world underwater imaging process. The 

backscatter attenuation coefficient is influenced by the veiling light. Furthermore, unlike 

absorption in the outdoor defogging model, water absorption should not be overlooked. 

The most essential distinction is that the direct and dispersed signals have different 

attenuation coefficients. As a result, Akkaynak et al. [14] employed oceanographic 

measuring methods to determine the physical effective space of backscattered signals, as 

well as proving that backscattering coefficients differ from those of direct transmission. 

Finally, in version 2.3, an improved underwater imaging model was suggested. 

𝐈𝑐 = 𝐉𝑐𝑒−𝛽𝑐
𝐷(𝑣𝐷)⋅𝑧 + 𝐵𝑐

∞(1 − 𝑒−𝛽𝑐
𝐵(𝑣𝐵)⋅𝑧)       (2.4) 

Where the camera and the objects are separated by 𝑧  range (distance) 𝐵𝑐
∞  is the 

wideband veiling light, when obtaining the value of backscatter at infinity, also known as 

veiling light, is possible if the value of z is chosen to be sufficiently great. Thus as 𝑧 →

∞ .  The wideband attenuation coefficient 𝛽𝑐 , the direct transmitted light 𝐷 , and the 

backscattered light 𝐵  are all used in this equation. The 𝐯𝐷  and 𝐯𝐵  vectors reflect 

coefficient dependency are defined as: 

 

𝐯𝐷 = {𝑧, 𝜌, 𝐸, 𝑆𝑐, 𝛽}      (2.5) 

𝐯𝐵 = {𝐸, 𝑆𝑐, 𝑏, 𝛽}        (2.6) 

 

Where 𝜌  represents the reflectance, 𝐸  represents the illuminance, 𝑆𝑐  represents the 

spectral response of the sensor, 𝑏 represents the beam scattering coefficient. 𝐉𝑐 is the 

clear restored image, 𝐈𝑐  is the observed degraded image [14]. Furthermore, 

backscattering characteristics change depending on the kind of sensor, ambient light, and 

water quality. In general, the backscatter coefficient is not the same as the direct signal 

coefficient. 

 

    𝐈𝑐 =
1

𝑘
∫ 𝑆𝑐(𝜆)

𝜆2

𝜆1
𝜌(𝜆)𝐸(𝑑, 𝜆)𝑒−𝛽(𝜆)𝑧𝑑𝜆 +

1

𝑘
∫ 𝑆𝑐(𝜆)

𝜆2

𝜆1
𝐵∞(𝜆)(1 − 𝑒−𝛽(𝜆)𝑧)𝑑𝜆 (2.7) 

 

Where 𝜌(𝜆)  represents the of the object’s reflectance spectrum, 𝑘  is a scalar that 
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determines image exposure and camera pixel geometry [15], and 𝜆1  and 𝜆2  are the 

electromagnetic spectrum's integration bounds. 

At depth 𝑑, the unattenuated image 𝐉𝑐 is: 

 

          𝐉𝑐 =
1

𝑘
∫ 𝑆𝑐(𝜆)𝜌(𝜆)𝐸(𝑑, 𝜆)𝑑𝜆

𝜆2

𝜆1
                (2.8) 

 

The veiling light 𝐵𝑐
∞ , as acquired by the same sensor, is as follows: 

 

           𝐵𝑐
∞ =

1

𝑘
∫ 𝑆𝑐(𝜆)

𝑏𝑐𝐸𝑐

𝛽𝑐

𝜆2

𝜆1
𝑑𝜆                     (2.9) 

 

And 𝛽𝑐
𝐷has been derived from the direct transmission ( D ) term, 𝛽𝑐

𝐵has been derived 

from the direct transmission ( B ) term, The following are the equations connecting RGB 

coefficients 𝛽𝑐
𝐷 and 𝛽𝑐

𝐵 to wavelength-dependent physical quantities [14]: 

 

   𝛽𝑐
𝐷 = 𝑙𝑛 [

∫𝜆1

𝜆2𝑆𝑐(𝜆)𝜌(𝜆)𝐸(𝑑,𝜆)𝑒−𝛽(𝜆)𝑧𝑑𝜆

∫𝜆1

𝜆2𝑆𝑐(𝜆)𝜌(𝜆)𝐸(𝑑,𝜆)𝑒−𝛽(𝜆)(𝑧)𝑑𝜆
] 𝑧⁄

 

     (2.10) 

   𝛽𝑐
𝐵 = − 𝑙𝑛 [1-

∫𝜆1

𝜆2𝑆𝑐(𝜆)𝐵∞(𝜆)(1-e−𝛽(𝜆)𝑧)𝑑𝜆

∫𝜆1

𝜆2𝐵∞(𝜆)𝑆𝑐(𝜆)𝑑𝜆
] 𝑧⁄

   

     (2.11) 

 

Where 𝜆1 and 𝜆2 are the visible light range’s limits (400 and 700nm), respectively, 

while the spectrum of ambient light at depth 𝑑 is denoted by 𝐸. 

If 𝐸(0, 𝜆) is light at the sea surface, then 𝐸(𝑑, 𝜆) at depth d is [16]: 

𝐸(𝑑, 𝜆) = 𝐸(0, 𝜆)𝑒−𝐾𝑑(𝜆)𝑑     (2.12) 

 

         
Figure 2.6: Ambient light attenuation under different distance parameters [14] 
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Where during the time it takes for ambient light to reach an object, its intensity diminishes 

exponentially with depth 𝑑, and its intensity diminishes exponentially between the object 

and the sensor in the direction 𝜉, over a distance of 𝑧. 

However, the Akkaynak model cannot be applied to certain underwater situations, such 

as shallow waters with low backscatter. Therefore, Akkaynak et al. [14] proposed a 

physically accurate degradation model to further improve the underwater image imaging 

model. However, due to the complexity of its models and parameters, this improved 

model has hardly attracted much attention. 

In order to solve above weak points of [14], sea-thru [17] is proposed to estimate the 

complex parameters and dependencies by some measures:  

1) Previously, it was considered that the coefficients 𝛽𝑐
𝐷 = 𝛽𝑐

𝐵 were equal and that 

they had a single value for a particular scene [18] but has been showed in [14] by sea-

thru that they are different, and that they rely on diverse parameters.  

2) To retrieve 𝐉𝑐, the optical water type indicated by 𝑏 and 𝑐; light 𝐸; the distance 

between the camera and the scene 𝑧; the shooting depth 𝑑; the reflectivity of each item 

in the scene; and the camera's spectral response 𝑆𝑐 must all be known or estimated. 

However, these factors are seldom understood before to shooting. It is well established 

that z in [14] has the greatest effect on 𝛽𝑐
𝐷, whereas optical water type and illumination 

𝐸 have the most effect on 𝛽𝑐
𝐵. Therefore, the range map of the scene is generated for the 

purpose of calculating 𝛽𝑐
𝐷 utilizing the structure self-motion SFM. Where 𝑧 requires an 

absolute value, but SFM gives merely a range of scaling, so objects of known size are put 

in the image.  

3) It is considered that the coefficients cannot generally be communicated between 

images [14], and only the relevant parameters of a specific image are calculated from this 

image.  

4) Divide the range map into ten evenly spaced clusters encompassing the lowest and 

largest values of 𝑧, before attempting to estimate backscatter. In cI , we look for the RGB 

triplet with the lowest one-hundredth percentile value, which we indicate with 𝑎 . 

Therefore,�̂�𝑐(𝛺) ≈ 𝐈𝑐(𝛺) is an estimation of backscatter, which the new model as: 

 

�̂�𝑐 = 𝐵𝑐
∞(1 − 𝑒−𝛽𝑐

𝐵𝑧) + 𝐉𝑐
′ 𝑒−𝛽𝑐

𝐷′
𝑧   (2.13)  

where 𝐉𝑐
′ 𝑒−𝛽𝑐

𝐷′
𝑧 represents a residual term like the direct signal. And estimated the 

ranges of parameters 𝐵𝑐
∞, 𝛽𝑐

𝐵, 𝐉𝑐
′  and 𝛽𝑐

𝐷′
, but the boundaries for 𝛽𝑐

𝐷 and 𝛽𝑐
𝐵 won’t 
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adjusted further using the loci mentioned in [14] if information about the camera sensor, 

water type, and so on is not available. Besides, if some complex physical parameters are 

expected to be estimated, certain prior knowledge is required, and under certain 

conditions, assumptions need to be added. Therefore, the requirements for achieving 

image enhancement tasks through such complex degradation formulas will be very 

demanding. 

 

 

 

 

2.3.3 Hardware Methods and Software Methods 

Current underwater image enhancement methods include hardware methods to upgrade 

hardware platforms and software methods to improve software algorithms.The hardware 

method is mainly to improve the visibility of underwater images by upgrading optical 

imaging equipment and designing specific hardware platforms and cameras. Under 

dynamic, natural lighting, and murky circumstances, Roser et al. [19] suggested a 

platform for simultaneous underwater image quality evaluation, visibility augmentation, 

and parallax computation to improve stereo range resolution. Schechner et al. [20] 

proposed an adaptive filtering method based on polarization imaging is used to filter 

through the polarization filter in front of the camera, which not only significantly 

improves the visibility of the original image, but also filters noise. However, the cost of 

building a hardware platform is high, and different deployment environments have a great 

impact on the effect, so the application scenarios are limited. Therefore, people often 

improve software algorithms. Physical methods, degradation methods, and deep learning 

methods are the most common types of software methods. 

2.3.4 Physical Methods 

The underwater image enhancement approach based on the non-physical model 

eliminates complicated physical factors and directly modifies the image pixel value to 

correct the color shift of the image to increase the image contrast. 

Researchers attempted to directly apply typical image enhancing algorithms to 

underwater photos in the early stages of underwater image research. Such methods 

include histogram equalization method [21-23] and its derived white balance method [22]. 

The histogram equalization approach distributes image pixel intensity uniformly, which 

can increase image quality to a degree, but it ignores the image's global structural 
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information, resulting in artifacts in the upgraded image. Equalization of histograms with 

adaptive histograms divides the image into several local blocks, calculates the histogram 

of each local block, and then redistributes the brightness of each area. This local 

processing method removes artifacts. However, the algorithm also has drawbacks, it 

makes the local noise of the image enhanced. In response to this problem, a contrast-

limited adaptive histogram equalization [23] technique that limits the contrast of each 

local block while also speeding up the computation through interpolation might 

successfully restrict this type of adverse enhancement. Liu [22] et al. proposed an 

automatic white balance algorithm that uses fuzzy logic rules to determine color 

parameters, thereby minimizing the color temperature difference of various light sources. 

With the development of underwater image enhancement technology, researchers also 

improved image enhancement methods based on the characteristics of underwater images. 

Ancuti et al. [24] used image fusion to enhance underwater image quality. They defined 

two inputs for image fusion, one is a color-corrected image, and the other is a contrast-

enhanced image. In addition, four weight maps are defined for Laplacian fusion to 

determine which pixel is more suitable to appear in the restored output. In the research of 

Zhuang et al. [25], an algorithm combining Retinex and edge preservation filtering was 

developed. First, they still use the Retinex method to generate the reflected light image 

and the incident light image, then they use guided filtering to refine the edge features of 

the two images so as to obtain a higher-quality incident light image. These methods based 

on non-physical models have improved the contrast and clarity of underwater scenes to a 

certain extent, but the output images in some scenes may be over-enhanced or under-

enhanced. 

 

2.3.5 Degradation Methods 

The physical model's underwater image improvement technique treats underwater 

image enhancement as an inverse issue, in which the image creation model's potential 

parameters are inferred from a damaged image. The procedure for most of these 

approaches is the same: To recover a clean underwater scene, first create a deteriorated 

physical model, then estimate the physical model parameters, and then solve the inverse 

issue. 

The Akkaynak et al. [14] underwater imaging model describes the process of 

underwater image distortion. The image is restored by calculating model parameters, 

including underwater light, transmittance and other parameters, then inverting the 

degradation process. Complex underwater images are similar to foggy images (such as 
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backscattering) to a certain extent, so some researchers apply image defogging methods 

to underwater image enhancement. The dark channel priori method in image defogging 

assumes that in most partially fog-free outdoor images, at least one-color channel has 

some pixels with very low brightness. By using this a priori assumption to estimate the 

transmittance map and restore the foggy image [26]. Underwater Dark Channel Prior 

(UDCP) [27] based on the observation of the absorption rate of the red channel in a large 

number of underwater images and proposed a priori knowledge suitable for underwater 

to correct the color shift. However, the underwater dark channel priori algorithm is very 

sensitive to changes in the underwater scene, so its application is limited. Similarly, the 

red channel method [28] is another variant of the dark channel underwater, which corrects 

for short-wavelength-related colors. Due to the lack of abundant model training data, 

these methods based on dark channel priors perform poorly in ocean scenes. 

In 2017, Wang et al. [29] used a method of maximum attenuation recognition to defog 

and correct the color of underwater images. It is assumed that the attenuation effect 

composed of absorption and scattering is closely related to the depth of the image, so the 

depth map is first obtained according to the attenuation, and then the attenuation model 

is expressed as a simplified form of the underwater light transmission model to restore 

the underwater image. Then the transmittance will be estimated: the initial relative 

transmittance of the red channel is estimated and optimized, and then the attenuation 

factor is calculated, and the transmittance of the three-color channels is adjusted through 

saturation constraints. Finally, the image can be restored by underwater light and 

transmittance. 

Most of the above prior-based methods can only be used in specific scenes. Once the 

prior knowledge is not satisfied, the restoration effect of underwater images will be 

unsatisfactory. 

In 2019, Derya, Tali[17] proposed a method base on degradation model which can 

move the water from underwater images. Through certain prior knowledge and 

assumptions, it is proved that 𝛽𝑐
𝐷 and 𝛽𝑐

𝐵 are different, and the 𝑧 dependence of 𝛽𝑐
𝐷 

is crucial, and the visual effect of "remove water" is achieved. However, the result is 

affected by the distance between the scene and the camera. In addition to the prior 

knowledge and the complex parameters of the degradation formula that must be known, 

the two kinds of camera parameters used are also as important factors as raw image 

information, and p-dependent has not been resolved yet. Therefore, it is difficult to obtain 

original information in such a complex environment. 

We experimented with Sea-thru method and obtained good recovery results from their 

original data as follows: 

https://www.deryaakkaynak.com/
http://marsci.haifa.ac.il/profiles/tTreibitz/
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Table 2.2: Experiment with Sea-thru 

 

Input image Original Depth map The result 

   

Input image

 

Monodepth map

 

The result

 

 

 

But when without original depth map or using other datasets to verify the Sea-thru 

method, the effect is not very satisfactory, and the correct depth map information is 

lacking, so the result can only be obtained by generating the depth map through the mono-

depth method provided by the Sea-thru paper. It shows that the original depth map is 

necessary and important for degradation methods.   
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Table 2.3: Experiment with Sea-thru on SUID data set 

 

Input image Depth map The result Original image 

(Ground truth) 

    

    

 

In summary, due to the degradation model method requires a lot of original physical 

parameters and camera parameters and needs to ensure that an original depth map is 

obtained. So, the performance is not very good for other datasets without depth maps. 

The deep learning method aims to restore the image by learning the mapping relationship 

between the degraded image and the original image, and has a certain generalization 

ability, which can adapt to more data sets, which is more ideal than the traditional method. 

 

2.3.6 Deep Learning Methods 

Researchers have begun to use deep learning to underwater image restoration problems 

in recent years, after its success in advanced computer vision tasks, natural language 

processing, and other domains [30]. Ding [31] et al. enhanced the quality of the original 

image using an improved white balance technique, then utilized a convolutional neural 

network to estimate the BL and transmission map, and lastly completed image restoration 

using the underwater image's optical imaging model. The method lowers the impact of 

the complicated underwater environment on image quality and enhances it through 

certain preprocessing techniques, although it is prone to over saturation. Water-Net [32] 
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corrects the original image with white balance, histogram equalization, and gamma 

correction, which improves the image's contrast while also addressing color shift and 

uneven illumination issues. After that, a deep learning network is built to predict the 

preprocessed image and the confidence map of the original image, and the enhanced 

image is obtained. This approach produced a image that satisfied human visual perception. 

However, the procedure is time-consuming, and various datasets have a stronger 

influence on the model's training. 

Deep learning's tremendous data processing skills have also been used to various image 

processing jobs in sophisticated computer vision applications. The popularity of GAN 

[33] has resulted in widespread support for image processing. Goodfellow et al. [3] 

established a unique approach for estimating the generative model using the adversarial 

process (Generative Adversarial Network, GAN). GAN has two pieces to its network 

structure: a generator network G that learns the data distribution and a probability 

discriminator network D that estimates the sample from the training data. G and D are, in 

general, playing a mutual game. G tries to deceive D by mixing the spurious with the 

genuine data created by the generator, while D tries to tell the difference between the 

phony data made by the generator and the actual data. To achieve the aim of being able 

to detect data that has been tampered with. GAN's architecture is as follows: 

 

Figure 2.7: Architecture of GANs 
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The final result obtained by the discriminator D through a 2-classification function is 

used as the judgment basis. The generator G expects that the result will be close to 1, and 

the discriminator D hopes that the result will be close to 0. Through continuous training, 

the Nash balance is finally reached, that is, the generation ability of G is comparable to 

the discrimination ability of D, making the result probability approximately 0.5. The 

following is the loss function of the GAN network: 

min
G

max
D

𝑉(𝐷, 𝐺) = 𝛦𝑥~𝑝(𝑥)
[𝑙𝑜𝑔 𝐷 (𝑥)] + 𝛦𝑧~𝑝(𝑧)

[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑧)))]   (2.14) 

Where 𝑝(𝑧) represents the noise variable of the input G, 𝑝(𝑥) is the original data that 

needs to be fitted, 𝐺(𝑧)  is the output of the generator, 𝐷(𝑥)  is the probability of 

discriminating that x is the original data, 𝐷(𝐺(𝑧)) is the probability of D to discriminate  

𝐺(𝑧)  as original data. The original GAN has two loss functions: Minimax and Non-

saturating. Goodfellow et al. [3] proved through theoretical analysis and experiments that 

the minimum-maximum form has better performance than the unsaturated form. 

Arjovsky et al. [34] proposed in 2017 to utilize the Wasserstein distance to assess the 

difference between the produced distribution and the true distribution in order to tackle 

the collapse mode problem of the original GAN, such as the lack of variety in the 

generated samples (Wasserstein GAN, WGAN) WGAN It potentially overcomes the 

flaws in the original GAN while also introducing a new difficulty, the Lipschitz restriction. 

Weight clipping is used directly by WGAN to solve the Lipschitz constraint, however it 

can create low-quality samples and cause the loss function to fail to converge. Gulrajani 

et al. [35] presented a different weight clipping method (WGAN with Gradient Penalty, 

WGAN-GP). WGAN-GP outperforms WGAN and can virtually completely tune the 

training of a variety of GAN architectures [36][37]. Miyato et al. [38] presented a 

lightweight weight normalization approach called Spectral Normalization to stabilize the 

discriminator's training, as opposed to the gradient penalty, which requires more computer 

resources and time. There are many additional GAN variations that are not Lipschitz 

restrictions. For example, instead of judging "is an image more actual than another," the 

relative discriminator (The Relativistic Discriminator) [39] learns to assess "is an image 

more real than another." 

Due to the complexity of the actual underwater situation, the traditional enhancement 

and restoration methods cannot show good generalization. Deep learning [40] relies on a 

large amount of data to learn the relationship between samples and has achieved good 

generalization and robustness. 

Deep learning has shown promise in low-level tasks like image super-resolution 
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[41][42], image rain removal [43][44], and high-level computer vision tasks like target 

identification [39] and target segmentation [45] during the last 10 years. Therefore, more 

researchers apply CNN and GAN to underwater image enhancement. 

 

 

Figure 2.8: Underwater GAN underwater image enhancement model [69] 

 

In WaterGAN [46], different underwater image datasets are synthesized using the 

attenuation model of atmospheric image and underwater image. Build a network model 

based on the synthetic datasets to perform color correction on the distorted image. 

Although this approach can produce relative results, it requires the training of many 

models for various undersea kinds and is unable to cope with the variable aquatic 

environment. Moreover, the data set obtained by the synthetic method cannot replace the 

original underwater image and only images with similar features have a better recovery 

effect. A poorly supervised learning model was suggested by Zhu et al. [47]. (CycleGAN), 

which eliminates the limitation of paired data sets during network model training. The 

network uses two image domains of clear images and low-quality images for style 

conversions. The Underwater Generative Adversarial Network was suggested by Fabbri 

et al. [4]. (UGAN), which uses an encoding and decoding framework similar to U-Net [5] 

to better improve the quality of underwater images. However, this type of method pays 

attention to the overall image characteristics, and does not suppress useless information, 
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for example, image information occupies a lot of water. The Multi-scale Cyclic 

Generative Adversarial Network was proposed by Lu et al. [6]. (MCycleGAN), which 

introduced multi-scale to restore the color of the image and better highlight the image 

details. However, this method does not pay more attention to the important part and 

allocates computing resources with more useless information. Gao et al. [7] proposed 

Self-Attention Underwater Image Enhancement by Data Augmentation (SAUIE), which 

introduced an attention mechanism to better improve contrast. But the generated image 

is not clear enough, and the detailed information is fuzzy. Moreover, the data set lacks 

water quality diversity, and the performance of non-generalization needs to be further 

improved. 

In summary,  

For traditional methods, the established degradation model can achieve the purpose of 

underwater image enhancement, but it usually requires calculation of a lot of complex 

parameters and requires the original camera parameters and certain prior knowledge, can 

only perform well in a part of the data. 

For deep learning methods, the goal of underwater image improvement is to discover 

the mapping relationship between degraded and clean images. but it often lacks original 

images corresponding to underwater scenes, and the network structure also requires 

careful design. 

This paper proposes a U-net-based network that introduces two modules: attention 

mechanism and multi-scale convolution. Committed to not only restoring the overall 

color, but also paying attention to the important parts and details of the image. Among 

them, the attention mechanism module enhances the contrast between the foreground and 

the background, and can focus on foreground information, such as underwater creatures; 

the multi-scale convolution module restores detailed information on the basis of focusing 

on key targets, making the target visually clearer. In addition, in order to ensure that the 

ground truth is original image, the indoor open-source data set is used as the ground truth, 

and the corresponding underwater image is generated by a degradation model. At the 

same time, in order to increase the diversity of underwater images, this experimental data 

uses the underwater image data set generated by 10 water quality attenuation coefficients 

proposed by Jerlov [12]. 
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Chapter 3 

Data set and Model  

3.1  Introduction 

This part first introduces the common methods of obtaining paired data sets in deep 

learning methods and analyzes why experiment data set of this thesis is used. Then 

introduces the proposed attention mechanism module and multi scale module. Finally, the 

proposed network structure based on above two modules is introduced. 

3.2  Acquisition of paired datasets 

First, the deep learning methods require paired datasets to learn the mapping 

relationship to better restore underwater images. And the paired data set includes two 

parts: one part is a degraded image taken in an underwater environment, and the other 

part is a clear and no-degraded image on the ground corresponding to the underwater 

scene. However, in reality, it is impossible to find a corresponding ground data set with 

underwater scenes. 

As a result, various approaches must be used to construct paired data sets. There are 

two kinds of approaches used to produce underwater image data sets or data sets on the 

land that match to underwater scene. 

3.2.1 Method of generating underwater image data 

This method first ensures that the data set on the ground, that means ground truth is the 

original data. The data set on the ground uses an open-source outdoor data set or an indoor 

data set, and the corresponding underwater image is generated by image processing of 

the ground data or through a degradation model formula to restore underwater 

degradation factors, including blue and green light attenuation, low contrast and blurring 

and etc. The generated underwater image data and open-source ground data are used as 

the paired data set for the training set of the next image enhancement task. Paired open-

source  data sets generated based on this method such as SUID [48], etc.  

The SUID data set adopts ground truth is a original image on the land, and the original 

image is simulated by an algorithm. Shown as follows: 
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(a)Building                         (b)Mountain 

 

(c)Soccer                            (d)Statue 

 

Figure 3.1: Some original images (ground truth) of SUID [48] 

 

 

(a)Building-Bluish                     (b)Mountain-Bluish 
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(c)Soccer-Bluish                     (d)Statue-Bluish 

 

  Figure 3.2: Synthesis underwater images with bluish of SUID [48] 

 

 

(a)Building-Greenish                  (b)Mountain-Greenish 

  

(c)Soccer-Greenish                  (d)Statue-Greenish 

 

Figure 3.3: Synthesis underwater images with greenish of SUID [48] 
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(a)Building-Hazy                  (b)Mountain-Hazy 

 

(c)Soccer-Hazy                     (d)Statue-Hazy 

 

Figure 3.4: Synthesis underwater images with hazy of SUID [48] 

 

   

(a)Building-Low light                  (b)Mountain-Low light 
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(c)Soccer-Low light                  (d)Statue-Low light 

 

Figure 3.5: Synthesis underwater images with low light of SUID [48] 

 

3.2.2 Method of generating ground data 

This method firstly guarantees that the underwater image is actually captured. So far, 

some papers have provided original data taken in the water by professional high-

definition cameras and other advanced equipment, which truly restores the underwater 

image. The corresponding ground scene data is the restored image obtained by some 

better performance degradation model methods as ground truth, or the fake image 

generated by the deep learning method as ground truth. That is, the results obtained by 

other methods are used as the corresponding underwater ground data, and then combined 

with the acquired original underwater images to form a paired data set, based on this 

method to generate a paired open-source data set such as: UIEB, etc. 

The UIEB [49] data set adopts: the raw image is the original underwater image, and 

the ground truth is selected by a variety of traditional methods. Shown as follows: 

 

(a)Turtle                         (b) Fish & Rock 
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(c)Container                         (d)Person 

Figure 3.6: Captured original underwater images of UIEB [49] 

 

 

(a)Turtle-Ground truth               (b) Fish & Rock-Ground truth 

 

(c)Container-Ground truth               (d)Person-Ground truth 

Figure 3.7: Corresponding ground truth by tradition methods of UIEB [49] 

 

The EUVP [50] data set adopts: Underwater raw image uses seven different camera 

equipment to capture underwater images, ground truth is generated by the trained Cycle-

GAN. Shown as follows: 
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(a)Starfish                          (b)White Fish 

 

(c) Coral                      (d)Orange-Black Fish 

 

Figure 3.8: Captured original underwater images of EUVP [50] 
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(a)Starfish-Ground truth              (b)White Fish-Ground truth 

 

(c) Coral-Ground truth            (d)Orange-Black Fish-Ground truth 

 

Figure 3.9: Corresponding ground truth by Cycle-GAN of EUVP [50] 

 

3.2.3 Selection of two kinds of methods 

By enumerating the operation process of the two methods, the first method is more 

suitable for the deep learning method. Since deep learning methods are used, one very 

important factor is ground truth. It will be very convincing to ensure that ground truth is 

original data, and the effect will be better for training. On the contrary, if ground truth 

uses the results of other people's methods as reference data to train the network, it is very 

dangerous and unconvincing. And to a certain extent, the generated results often cannot 
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exceed ground truth, that is, if the second such method is used, the generated results 

cannot be better than other methods, and the research task loses its meaning. 

 

 

3.2.4 RGB-D data set 

Depth image = ordinary RGB three-channel color image + Depth Map 

Depth Map is an image or image channel in 3D computer graphics that carries 

information about the distance to the surface of the scene object of the perspective. Depth 

Map is one of them, and it looks like a grayscale image with the exception that each pixel 

value represents the actual distance between the sensor and the object. Typically, the RGB 

image and the Depth image are registered, resulting in one-to-one pixel correlation.  

  

(a)Indoor original image            (b)Corresponding depth map 

Figure 3.10: Original image and corresponding depth map [51] 

 

This Figure3.10 intuitively shows that the depth map reflects the distance between the 

scene and the object in the original image from the camera. The depth map shows 

brightness proportional to the distance from the camera. The closer the color is darker, 

the farther the color is lighter. 

Therefore, RGBD is equipped with depth information, which refers to the distance 

between the target scene and the camera. Not only can more detailed information about 

the original scene be obtained through the use of this important parameter, but the low 

contrast of the underwater image can also be improved by knowing the depth information, 

which means that the contrast between the object in the target scene and the background 

can be improved. Additionally, we will get more detailed edge information. 
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3.3  Paired data with depth map data set 

 

The RGBD data set based on the first method of generating the paired data set 

mentioned above is the most ideal data set for this research. 

So, the acquisition process of this data set is as follows: 

 

3.3.1 Select a suitable RGBD ground data set 

This experiment selected the open source indoor RGBD data set NYU Depth V2[51], 

The NYU-Depth V2 data collection contains video sequences from a range of interior 

situations captured by the Microsoft Kinect's RGB and Depth cameras. It contains 1449 

tightly labeled pairs of matched RGB and depth images, as well as 464 additional scenes 

from three cities and 407,024 new unidentified frames. A class and an instance number 

are assigned to each object (cup1, cup2, cup3, etc.) 

There are multiple parts to the dataset: 1) Labeled: A portion of the video data with 

dense multi-class labels is labeled. This data has also been preprocessed to include depth 

labels where they are absent. 2) Raw: The RGB, depth, and accelerometer data supplied 

by the Kinect in its raw form. 3) Toolbox: A collection of useful utilities for working with 

data and labels. Pick some examples of NYU Depth v2 shown as follows: 

 

(a)Indoor original image-1             (b)Corresponding depth map-1 
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(c)Indoor original image-2             (d)Corresponding depth map-2 

 

 

(e)Indoor original image-3             (f)Corresponding depth map-3 

 

Figure 3.11: Left are original images and right are corresponding depth map by NYU Depth v2[51]  

 

3.3.2 Increase the diversity of water types 

In order to obtain data sets of different water quality, we adopted 5 different ocean 

coefficients and 5 different coastal coefficients proposed by Jerlov and Colleagues [8], 

which represent the characteristics of different sea areas in subtropical, tropical and 

temperate regions. The degree of pollution in the ocean coefficients steadily rises from 

Type I to Type III, with Type I being the clearest and Type III being the most contaminated. 

The pollution degree of Type-1 to Type-9 steadily rises in the coastal coefficient, with 

Type 1 being the cleanest and Type 9 being the most turbid. 

As discussed before, the absorption of violet (400~435nm) and red (605~700nm) 

wavelengths in water is strong, and the absorption of blue (450~480nm) and 
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green(500~560nm) are weak, so it tends to appear blue green in the ocean. However, in 

coastal, the light absorption degree of each wavelength is similar, so there will be more 

situations, such as yellow. The following shows the absorption coefficients for different 

wavelengths based on the five ocean water qualities and five coastal discussed above. 

      

Figure 3.12: Wavelength-dependent light attenuation coefficients by 10 water types [4] 

 

 

3.3.3 Generate the synthesis underwater images 

Combining the open source indoor RGBD data set NYU Depth v2 and the attenuation 

coefficients of 10 different water types, through the proposed degradation model, 10 

underwater images with different attenuation conditions will be synthesized. The 

flowchart is as follows: 

 

Figure 3.13: Flow chart of generating the synthesis underwater images 
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We select 1449 images in NYU Depth v2 and combine the degradation model of 

Formula 1 and Formula 2 with the attenuation coefficients of the 10 water types 

mentioned above to synthesize a rich variety of underwater images, including 10 

categories, and there are 1449 images in each category, totally are 14490 underwater 

images. 

Because coastal waters suffer from significant attenuation in deep water, such as type 

3 above 10m and type 9 above 5m, things become nearly invisible in coastal seas. But the 

attenuation of certain water in shallow water is quite tiny. For instance, I, IA, and IB type 

water has an attenuation of around 1m to 5m and has essentially little influence on objects. 

In order to differentiate between water types, we defined distinct depth ranges: Water 5, 

7, and 9 had their depth ranges adjusted to [0.5, 4.5], water 1 and 3 had their depth ranges 

set to [0.5, 14.5], and water I, IIA, and III had their depth ranges set to [5, 20]. Meanwhile, 

we choose a global backdrop light [0, 1] at random from a pool of options. 

We cropped the original size 480x640 of NYU-v2 to 460x620 to enhance the quality 

of the datasets. The following is the final generation effect: 

 

Raw image                        depth map 

 

Type-1         Type-3        Type-5        Type-7         Type-9 

 

Type-I        Type-IA        Type-IB        Type-II        Type-III 

Figure 3.14: Ten types of underwater images 
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3.4  Unsupervised Implementation Model 

 

3.4.1 Multiple Scale Convolution 

Multi-scale operation can be simply understood as, in order to obtain more expressive 

feature information, some methods are implemented between the layers of the neural 

network and the interior of a single layer to achieve better detailed expression effects. It 

includes two aspects: the serial multi-branch structure between layers and the parallel 

multi-branch structure inside a single layer. 

3.4.1.(1) Serial Multi-Branch Structure: (U-net) 

Theoretically, the performance of a network increases as the number of network layers 

increases, but it will face the problem of gradient dispersion. The more layers pass, the 

previous information will gradually weaken and dissipate. Skip connection solves the 

problem of gradient disappearance, improves the utilization efficiency of features, and 

helps restore the loss of features caused by image down-sampling. 

Taking U-net as an example. Its network structure looks like a U-shape as a whole. If 

each up-sampling and down-sampling is regarded as a layer operation, a total of 4 layers 

of down-sampling and 4 layers of up-sampling constitute the U-net network structure. . 

The serial multi-branch structure is embodied in the skip connection. From the Figure 

3.15, it can be seen that the down-sampling of each layer and the up-sampling of each 

layer are connected through the skip connection operation. Note that each pair of 

connection operations here are performed on two feature maps of the same size, that is to 

say, the connection operation is the addition of the corresponding points.  
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Figure 3.15: The network structure of U-net [5] 

 

 

Each blue box corresponds to a multi-channel feature map. The white box represents 

the copied feature map. The gray arrow represents that the feature map of the down-

sampling layer has undergone a skip connection operation with the corresponding up-

sampling after being cropped. 

Through such a serial multi-branch structure, such as skip connection, the shallow 

feature information is combined with the deep feature information, which solves the 

problem that the shallow feature information decreases or even disappears as the number 

of network layers is superimposed. U-Net performed a total of 4 times of up-sampling, 

and used skip connection in the same stage, instead of directly supervising and loss back 

propagation on high-level semantic features, so as to ensure that the finally restored 

feature map integrates more low-level features. Then, it makes information such as the 

edge recovery of the segmentation map in the image segmentation task more refined. 
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3.4.1.(2) Parallel Multi-Branch Structure: (Inception) 

Taking the Inception network structure as an example, as a manifestation of a parallel 

multi-branch structure, it refers to the use of convolution kernels of different scales. For 

one layer of the network, for the incoming feature map from the upper layer, four different 

scale convolution kernels are used to convolute the same feature map, and four types of 

feature information with different degrees are obtained.  

They represent different semantic interpretations of the same image. Compared with 

traditional convolution kernels of the same size, they get richer feature information. Then, 

the four types of feature maps carrying different feature information are fused, so that the 

final feature map obtained has more diversified semantic information, and then it is 

passed to the next layer.  

 
Figure 3.16: The network structure of Inception [52] 

The function of the 1*1 convolution kernel is usually to control the number of channels, 

because the use of different scale convolution kernels (such as 5*5, or even 7*7) will 

increase a large number of parameter calculations. When the feature map is fused, a 1*1 

convolution kernel is usually needed to control the number of parameters so that it can be 

calculated easily in the subsequent network. In view of the huge amount of parameter 

calculations, in the subsequent InceptionV2 structure, 5*5, 7*7 convolution kernels are 

also replaced with n*1 and 1*n, which not only increases the number of layers of the 

network, but also reduces the parameters calculation.  

 

 



39 

 

 

3.4.2 Attention Mechanism 

The attention module can capture long-distance contextual information to obtain 

better feature representation. Through the self-attention module, the response of a 

location is calculated as the weighted sum of all the features from different spatial 

locations. Therefore, it connects the long-term dependence of any two locations in the 

feature map. 

The attention mechanism in deep learning draws on human attention thinking. 

Therefore, we first briefly introduce the selective attention of human vision. 

 

3.4.2.(1) Attention Mechanism of Human Vision 

The visual attention mechanism is a type of brain signal processing that is only seen 

in humans. By swiftly scanning the global image, or the so-called focus of attention, 

human eyesight receives the target region that has to be focused on. Then devotes 

additional attention resources to this region in order to gain more comprehensive 

information about the target on which attention should be focused while suppressing 

irrelevant data. This is a method for people to swiftly screen out high-value information 

from a huge volume of data using their limited attention resources. It is a long-term 

survival technique developed by humans. The efficiency and precision of visual 

information processing are considerably improved by the human visual attention 

system. 
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Figure 3.17: Different levels of attention when people receive information [53] 

When people examine a image, Figure 3.18 graphically depicts how they efficiently 

deploy limited attention resources. The red region denotes the focus of the visual 

system, whilst the green area denotes the non-focused portion. People will naturally pay 

greater attention to the human face, the text title, and the first phrase of the article in the 

situation depicted in Figure 3.18. 

Deep learning's attention method is quite similar to humans' selective visual attention 

mechanism. The main purpose is to choose from a big volume of data the information 

that is most important to the present job goal. 

3.4.2.(2) Attention Mechanism of Deep Learning 

The author of this research [54] investigated the role of attention in network 

architecture. Attention not only tells us where to focus, but it also helps us enhance our 

attention expression. The idea is to use attention processes to boost expressiveness by 

focusing on key elements and suppressing those that aren't. The author uses channel and 

spatial attention modules to learn what to pay attention to and where to pay attention in 

the channel and space dimensions, respectively, in order to stress the relevant aspects in 

the two dimensions of space and channel. 

Channel attention is designed to teach the network “what to look”, which shows the 

correlation between different channels, and automatically obtain the importance of each 

feature channel through network learning, and finally assign different weight coefficients 
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to each channel to strengthen important features suppress non-important features. 

Spatial attention aims to teach the network “where to look”, which improves the feature 

expression of key areas. In essence, the spatial information in the original image is 

transformed into another space through the spatial conversion module and the key 

information is retained, and a weight mask is generated for each position. The output is 

weighted to enhance the specific target area of interest while weakening the irrelevant 

background area. 

 

Figure 3.18: The network structure of CBAM [54] 

The main network architecture is composed of a channel attention module and a spatial 

attention module in series, and more refined features are obtained through this integration 

method.  

 
Figure 3.19: The network structure of channel attention module [54] 

To construct our channel attention map 𝑴𝒄 , we first conduct average pooling and 

maximum pooling operations on the input feature 𝑭, and then feed the two outcomes to 

the shared network. A multi-layer perceptron (MLP) with a hidden layer makes up the 

shared network. 
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Figure 3.20: The network structure of spatial attention module [54]  

To create spatial attention maps, we leverage the spatial connections of features. The 

"where" space attention is focused on is a supplement to channel attention, and it differs 

from channel attention in that it is an information portion. To acquire the spatial attention 

map 𝑴𝒔, first execute maximum pooling and average pooling operations on the input 𝑭′ 

created by the channel attention module, stitch the results together for convolution, and 

then use the sigmoid function to obtain the spatial attention map 𝑴𝒔. 
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3.5  Proposed Modules and Overall GAN model 

This part will introduce the network model UMA-GAN proposed in this study. Based 

on the GAN network discussed above, UMA stands for U-net network, multi-scale 

convolution and attention mechanism. 

 

3.5.1 Proposed Multiple Scale Module 

 

 

Figure 3.21: The Multiple Scale Module of our network structure  

 

Which based on the network structure of InceptionV2, a 1*1 convolution is attached to 

the convolution kernel of each size, which reduces the number of parameters before 

concatenation. After concatenation, it first passes through a max pooling network layer. 

The linear relationship between different parameters is increased, and more parameter 

dependence relationships are obtained, and then after a 1*1 convolution, the number of 

channels is controlled again as the fusion result and passed to the next layer. And each 

convolutional layer is accompanied by an activation function layer Relu.  

Finally, in our research, we use the combination of serial multi-branch structure and 

parallel multi-branch structure as the generator network structure. Not only can we obtain 

rich feature information in a single network layer, but also can integrate the shallow layer 

information and deep layer information between network layers. And then the experiment 
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proves that our model can get the ability to have more detailed feature information with 

good visible effect and high evaluation index. 

3.5.2 Proposed Attention Mechanism Module 

 

Figure 3.22: The attention mechanism module of this thesis 

 

 

𝑜𝑢𝑡𝑐ℎ = 𝜎((𝑚𝑝( 𝑖𝑛1×1×𝐶) + 𝑎𝑝( 𝑖𝑛1×1×𝐶))               [3.1] 

𝑜𝑢𝑡𝑠𝑝 = [𝜎((𝑚𝑝( 𝑖𝑛𝐻×𝑊×1) + 𝑎𝑝( 𝑖𝑛𝐻×𝑊×1))]  ⋅ 𝑖𝑛𝐻×𝑊×𝐶  [3.2] 

𝑜𝑢𝑡 = 𝑜𝑢𝑡𝑠𝑝 ∙ 𝑜𝑢𝑡𝑐ℎ                           [3.3] 

 

Where 𝑚𝑝  is the max pooling, 𝑎𝑝  is the average pooling, CWHin    is the input 

feature, Cin 11 is the input with size C11 , 1WHin  is the input with size 1WH , 

𝑜𝑢𝑡𝑐ℎ is the result of channel attention part, 𝑜𝑢𝑡𝑠𝑝 is the result of spatial attention part, and out is 

the result of the dot product operation between 𝑜𝑢𝑡𝑐ℎ and 𝑜𝑢𝑡𝑠𝑝.  

Two-part processing is performed on the feature map of size CWH   passed in 

from the previous layer: the channel attention part and the spatial attention part. Each part 

is divided into two types of processing methods by the average pooling operation and the 

maximum pooling operation. In the channel attention part, the results of the two types of 

pooling are subjected to matrix addition and sigmoid function to obtain the result of 
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channel attention; In the spatial attention part, the results of the two types of pooling are 

subjected to sigmoid function to obtain the result of spatial attention. Finally, through the 

dot product operation of results of channel attention, spatial attention, then dot operation 

with input CWHin    , the output result out   of the attention mechanism module is 

obtained. 

 

3.5.3 Proposed new U-net model as Generator 

Based on the attention mechanism module and multi-scale convolution module, we 

proposed an optimized U-net network model as the generator of this thesis, as follows: 

 

Figure 3.23: The network structure of proposed generator 

 

The 256*256*3 input image is integrated into the multi-scale convolution module in 

the down-sampling feature extraction process. The output result is divided into two parts: 

one part is passed to the next layer after the maximum pooling operation, and the other 

part is passed to the corresponding up-sampling layers. After convolution and other 

operations of down-sampling to obtain a wealth of feature information, the attention 

mechanism module is added to make the network fully "pay attention" to the key 

information, and then the attention mechanism modules are added to the up-sampling 

network layers to attention the restored process of the image. And the input image and 

output image are the experimental results of this thesis. 
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3.5.4 Proposed new Convolution network as 

Discriminator 

The discriminator uses PatchGAN [55], which is a special discriminator. PatchGAN is 

different from ordinary GAN discriminator. The ordinary GAN discriminator converts 

the input to a real number, indicating the probability that the input sample is actual data. 

PatchGAN converts the input into a N*N patch matrix. The probability that each patch is 

actual data is represented by the value of X. The discriminator's final output is the average 

value of X. The feature map from the convolution layers' output is referred to as X. We 

can examine the effect of this point on the final output result by tracing this feature map 

back to a specific position in the original image. 

 
Figure 3.24: The network structure of PatchGAN 

The advantages of using PatchGAN: ordinary GAN only outputs a probability value to 

indicate the similarity between the generated image and the original image, while 

PatchGAN outputs a matrix, and finally the results of each probability value of the matrix 

are summed and averaged. In other words, considering the influence of different parts of 

the image is like considering the suggestions of multiple people and then making a 

decision. 

In fact, some studies have shown that ordinary GAN discriminators are not suitable for 

image fields that require high-resolution and high-definition details. As a result, 

PatchGAN is shown. Its receptive field corresponds to a tiny region in the input image, 

and its X relates to the discriminative output of a small section of the input image by the 

discriminator, allowing the model to pay greater attention to the image's features as a 

result of the training. 
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3.5.5 Overall GAN model Structure 

Then, combine the multi-scale module and attention module of generator and the 

PathchGAN of discriminator, the totally network structure of our GAN as below: 

 

 

Figure 3.25: The network structure of our GAN 
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3.6  Loss Function 

 

Table 3.1: Variables used in the part 

 

Variable Description 

𝐷 Discriminator 

𝐺 Generator 

𝑝𝑥 Data of datasets 

𝑝𝑧 Random vectors 

𝐺(𝑧) Generated data of G 

𝐷(𝑥) Result of D 

𝐈𝑐 The original image 

𝐈𝑑 Generated image by G 

𝐿ad𝑣 Generating adversarial loss 

𝐿per Perceptual loss 

𝐿SSIM Structure similarity loss 

 

For generating adversarial loss, the overall function is expressed as follows: 

min
G

max
D

𝑉(𝐷, 𝐆) = 𝛦𝐱~𝑝𝑥(𝐱)[log 𝐷 (𝐱)] + 𝛦𝑧~𝑝𝑧(𝑧)[log( 1 − 𝐷(𝐆(𝑧)))] (3.1) 

Where the entire formula is made up of only two words. The true image is represented 

by 𝐱, the noise input to the G network is represented by 𝑧, and the produced image by 

the G network is represented by 𝐆(𝑧). 𝐷(𝐱) denotes the likelihood that the D network 

will determine if the true image is original (because x is original, so for D, the closer this 

value is to 1, the better). And 𝐷(𝐆(𝑧)) is the chance that the D network will decide 

whether the image formed by G is original or not. 

G's goal: As previously stated, 𝐷(𝐆(𝑧))  is the likelihood that the D network will 

determine if the image formed by G is original, and G should hope that the image it makes 

is "as close to the actual as possible." To put it another way, G wants 𝐷(𝐆(𝑧)) to be as 

big as possible, hence ),( GDV  will shrink at this point. As a result, we can observe that 

the formula's front mark is 
G

min . 

D's goal: The more D's ability, the larger 𝐷(𝐱) and the smaller 𝐷(𝐆(𝑧)). ),( GDV  
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will grow in size at this point. As a result, D's formula is to maximize 
D

max .  

The input of the generator in this thesis is the underwater original image 𝐈𝑐, and the 

image generated by the generator based on the generating adversarial loss is 𝐈𝑑, so the 

new function vLad  is proposed as below: 

min
G

max
D

𝑉(𝐺, 𝐷) = 𝛦𝑥~𝐈𝑐
[log 𝐷 (𝐱)] + 𝛦𝑦~𝐈𝑑

[log( 1 − 𝐷(𝐆(𝑦)))] (3.2) 

 

In addition to generating adversarial loss vLad , in order to ensure that the content of the 

generated image is consistent with the original image, this chapter also introduces the 𝐿1 

loss: 

𝐿1 =
1

CHW
[‖𝐈𝑐 − 𝐺(𝐈𝑑)‖1]      (3.4) 

Where CHW means the size of feature map is W×H with C channels, 𝐈𝑐 is a original 

image (ground truth), and 𝐈𝑑 is an underwater distorted image. 

However, using the 𝐿1 function as the only optimization benchmark will result in 

blur artifacts on the image due to the average of the pixels in the pixel space. Therefore, 

this chapter additionally introduces Perceptual Loss, which is based on the difference 

between the feature map of the generated image extracted by the convolutional layer 

and the feature map of the target image. The use of perceptual loss can reduce the loss 

of high-frequency features caused by pixel averaging in 𝐿1 loss, which is defined as 

follows: 

𝐿per =
1

CHW
‖𝐹(𝐈𝑐) − 𝐹(𝐈𝑑 )‖2

2  (3.5) 

Where CHW means the size of feature map is W×H with C channels, and F  is the 

high-level feature extracted by the last convolutional layer of the pretrained VGG19 

network. 

Generally, when calculating the difference between two images, the 𝐿2 distance 

(Mean Square Error, MSE) is easily interfered by light and cannot measure the 

structural similarity of the images. In order to solve this defect, this article proposes the 

structure similarity method of SSIM to make the structure similarity between the image 

generated by the generator and the original image. SSIM is equivalent to normalizing 
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the data, calculating the illumination of the image block (the mean value of the image 

block), the contrast (the variance of the image block) and the normalized pixel vector, 

and finally multiplying the three. The experiment proves that it has better performance 

and improves the training effect. For two images 𝐈𝑐, 𝐈𝑑 , the definition of SSIM is as 

follows: 

𝐿SSIM = SSIM(𝐈𝑐, 𝐈𝑑  ) = 𝑙(𝐈𝑐, 𝐈𝑑  ) ⋅ 𝑐(𝐈𝑐, 𝐈𝑑  ) ⋅ 𝑠(𝐈𝑐, 𝐈𝑑  )  (3.6) 

Where 𝑙(𝐈𝑐, 𝐈𝑑) is the image illumination comparison part, 𝑐(𝐈𝑐, 𝐈𝑑) is the image 

contrast comparison part, 𝑠(𝐈𝑐, 𝐈𝑑) is the image structure comparison part. The specific 

formulas for these three parts as follow: 

𝑙(𝐈𝑐, 𝐈𝑑  ) =
2𝜇𝐈𝑐𝜇𝐈𝑑 +𝐶1

𝜇𝐈𝑐
2 𝜇𝐈𝑑 

2 +𝐶2
 ,  

2

11 )( LKC =             (3.7) 

𝑐(𝐈𝑐, 𝐈𝑑  ) =
2𝜎𝐈𝑐𝜎𝐈𝑑 +𝐶2

𝜎𝐈𝑐
2 +𝜎𝐈𝑑 

2 +𝐶2
 , 

2

22 )( LKC =             (3.8) 

𝑠(𝐈𝑐, 𝐈𝑑  ) =
𝜎𝐈𝑐𝐈𝑑 +𝐶3

𝜎𝐈𝑐𝜎𝐈𝑑 +𝐶3
 ,  2/23 CC =              (3.9) 

Where 
cI , 

dI  are the average value of all pixels of the image block, and 
cI , 

dI  

are the variance of the image pixel value; 1K , L  is the gray dynamic range. SSIM 

has the following three properties: 1) Symmetry: SSIM(𝐈𝑐, 𝐈𝑑  ) = SSIM(𝐈𝑑 , 𝐈𝑐). 2)                  

Boundedness: SSIM(𝐈𝑐, 𝐈𝑑  ) ≤ 1. 3) Unique extreme value:SSIM(𝐈𝑐, 𝐈𝑑  ) = 1 if and 

only if 𝐈𝑐 = 𝐈𝑑. 

Combine (3.2), (3.4), (3.5) and (3.6) we get our final objective function: 

𝐿 = 𝐿adv + 𝛼𝐿1 + (1 − 𝛼)𝐿SSIM + 𝛽𝐿per             (3.10) 

73)1( =−                             (3.11) 

where   and   are weighting parameters that determine the trade-off between 

adversarial, MSE, and feature-based losses. The combination of 𝐿1 and 𝐿SSIM are 

proved the effectiveness in [56]. 
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Chapter 4 

Experimentation 

4.1 Purpose of Experiment 

By using the data set NYU mentioned in Chapter 3, which includes 10 underwater 

images of water quality and the corresponding original images, it is used to train our 

network model mentioned in Chapter 4 to learn the mapping relationship between 

underwater images and original images. 

4.2 Method and Process  

Our network structure is based on the GAN method, and the generator incorporates an 

attention module and a multi-scale module. The attention module aims to find the 

important parts of the image, while the multi-scale module aims to restore the details of 

the important parts. The generator and the discriminator are interactively trained. First, 

the generator is fixed to improve the discriminator's discriminative ability, and then the 

discriminator is fixed, and the generator is trained to improve the generation ability. 

Eventually the Nash equilibrium is reached, and the training loss tends to stabilize. 

For the comparison experiments, we use six evaluation indicators of objective 

evaluation based on subjective evaluation. These include three evaluation indicators MSE, 

SSIM and PSNR that need to refer to ground truth, and three evaluation indicators UCIQE, 

UIQM, CIE that do not need to refer to ground truth. where the meanings of these 

indicators are as follows: 

MSE: Mean squared error between estimated values and true values. 

PSNR: Calculate the error of the corresponding pixels of the two images. 

SSIM: Measure ground-truth and noisy images from brightness, contrast, and structure. 

UCIQE: Evaluates the information richness of contrast, saturation, and texture. 

UIQM: The evaluation is based on the linear combination of the three indicators of 

color, sharpness and contrast. 

CIE2000: Calculates the perceptual color difference between two colors on sensation, 

that is, the distance between two-pixel points in the color space. 

And we will present the specific formulas and instructions in Chapter 5. 
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4.3 The Training Condition 

4.3.1 Experiment Environment 

 

In this research experiment, the local Pycharm project was uploaded to the hard disk 

provided by VMware, and the Linux command was used to connect with JAIST 

Supercomputing to SSH to control the remote end to read the python file in the hard 

disk and run the project program.  

The GPU: NVIDIA Tesla P100 of JAIST Supercomputer,  

Memory: 128GB 

Deep learning framework: version 3.6.0 of Pytorch 

Language: version 3.6 of python 

Optimizer: the Adam algorithm with a learning rate of 0.0001 to optimize network 

training.  

Batch size: 16 

The epoch: 200. 

 And every time the generator is updated, the discriminator is updated five times. 

 

4.3.2 Data Preprocessing 

For the data set NYU described in Chapter 3, the size of the image data is 640*460, 

which needs to be preprocessed for later training use. It includes three parts: Resize, 

Shuffle, Data Augmentation. 

1. Resize: First, perform a unified resize process on the data set and change the 

size to 256*256. 

2. Shuffle: To avoid the order of data input affecting network training, the data of 

the training model must be intermingled to increase randomness, improve the 

network's generalization performance, avoid the appearance of regular data, 

which causes the gradient of the weight update to be too extreme, and avoid 

over-fitting or under-fitting of the final model. 

3. Data Augmentation: The data set was enlarged by data flipping and adding 

noise in order to improve the number of samples in the model and its 

generalization capabilities. 
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4.3.3 The Flow Chart of Training Process 

 

Figure 4.1: Description of the Training Process  

The training process of a general network is roughly as follows: Firstly, obtain the 

degraded image and the target image through the preprocessed data set; Secondly, the 

degraded image is loaded into the model (have not trained completed) to obtain the output, 

and the loss function is used to calculate the loss value between the degraded image and 

the target image. Then the parameters of the model are updated through back propagation 

by calculating the gradient, so that the optimizer optimizes the loss value. 
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4.3.4 The training loss 

Show the change of loss during training, where Loss_d is the total loss of the 

discriminator, and Loss_g is the total loss of the generator. The figure below shows the 

result after 10,000 steps (200 epochs), where the abscissa is step, and the ordinate is the 

value of the evaluation index, as shown below: 

 

            

Figure 4.2: Discriminator loss calculation result graph 

 

 

Figure 4.3: Generator loss calculation result graph 
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4.3.5 Training process 

We performed a total of 200 epochs, in which the parameters of every 50 epochs were 

saved, and finally used the images in the test set to load different parameters to show the 

generated results of different epochs. 

 

Table 4.1: The results of different epochs on the testing data set 

 

Epoch Test image 1 Test image 2 Test image 3 Test image 4 

50 

    

100 

    

150 

    

200 

    

 

From the above results we can see that the results are more or less the same for different 

epochs, but if we look closely, we can see that the blue block in the whiteboard in Test 
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image 3 is gradually disappearing; especially in Test image 4, the green part gets a better 

color correction and the red block above the clock eventually disappears, and the wall 

returns to white. 

 

 

 

4.4 The Results of the Training 

After passing the complete training, the parameters of 200 epoch were retained and 

tested using ten water quality images of the same picture. the comparison results with 

UWGAN have some reference to prove the effectiveness of our method.  

 

Table 4.2: The results by our method on the testing data set 

 

Type Underwater image Our Result UWGAN Original image 

(Ground truth) 

1 

    

3 

    

5 
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7 

    

9 

    

I 

    

IA 

    

IB 

    

II 
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III 

    

 

From the results of the test set, for five kinds of marine water quality (1, 3, 5, 7, 9), our 

method can recover the color and object details of 1, 3, 5 water quality better, but for 

particularly severe cases 7 and 9 is not good recovery of image information; for five kinds 

of coastal water quality (I, IA, IB, II, III), our method can recover its correct color better, 

and for underwater images with exposure also recovered the exposure area as much as 

possible, but the result of recovery as IA is a little weak. 

 

Table 4.3: The results by our method on the ImageNet data set 

 

Underwater image Our Result CycleGAN 
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Chapter 5 

Evaluation 

5.1 Image Quality Evaluation indicators 

Subjective and objective assessment methods are the two primary types of underwater 

picture quality evaluation methods used today. Subjective evaluation entails the tester 

observing the target picture and judging the underwater image's quality using subjective 

vision. The Mean Opinion Score (MOS) and the Differential Mean Opinion Score 

(DMOS) are indicators of subjective evaluation [57], but because subjective evaluation 

methods are affected by many factors and subjective evaluation is difficult to describe 

with a mathematical model, it is difficult to achieve high-quality evaluation. 

The objective assessment approach involves using a set of algorithms and 

mathematical formulae to determine the image's visual quality. There are three types of 

image quality assessment: full-reference image quality assessment (FR-IQA), reduced-

reference image quality assessment (RR-IQA), and no-reference image quality 

assessment (NR-IQA) [60]. RR-IQA and NR-IQA are mostly employed in the 

experimental section of this study. The following is a comprehensive overview of FR-

IQA and NR-IQA. 

5.2 Full-reference Image Quality Assessment (FR-IQA) 

5.2.1 Peak Signal-to-Noise Ratio 

Peak Signal-to-Noise Ratio (PSNR) [61] is to evaluate the quality of the image by 

calculating the error of the corresponding pixels of the two images. The greater the peak 

signal-to-noise ratio, the better the image quality. The calculation formula can be 

described in equation 3.2. 

MSE =
1

mn
∑ ∑ ‖𝐱(𝑖, 𝑗) − 𝐲(𝑖, 𝑗)‖𝑛−1

𝑗=0
𝑚−1
𝑖=0

2
    (3.1) 

PSNR = 10 ⋅ log10(
𝑀𝐴𝑋𝐱

2

MSE
)          (3.2) 

Where m and n represent the image size, MSE represents the mean square error of the 

true value image 𝐱 and the noise image 𝐲, 𝑀𝐴𝑋𝐱
2 represents the maximum pixel value 

that can be obtained in the image 𝐱. 
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5.2.2 Structural Similarity 

To assess the original image 𝐱 and the noisy image 𝐲, structural similarity (SSIM) 

[62] is used to quantify the similarity of two images, primarily from the three features of 

brightness, contrast, and structure. The better the image quality, the greater the structural 

resemblance. SSIM= 1 when the two photos are precisely the same. Equation 3.3 is a 

description of the calculating formula. 

      SSIM =
(2𝜇𝐱𝜇𝐲+𝐶1)(2𝜎𝐱𝐲+𝐶2)

(𝜇𝐱
2+𝜇𝐲

2+𝐶1)(𝜎𝐱
2+𝜎𝐲

2+𝐶2)
  (3.3) 

Where 𝜇𝐱 , 𝜎𝐱
2  are the average and variance of the image 𝐱  pixels, 𝜇𝐲 , 𝜎𝐲

2  are the 

average and variance of the image 𝐲 pixels, 𝜎𝐱𝐲 is the covariance of the image 𝐱 and 

𝐲 .  
2

11 )( LkC =  , 
2

22 )( LkC =   are constants, where L is the range of pixel value, 
1k  = 

0.01, 
2k  = 0.03. 

5.3 No-reference Image Quality Assessment (NR-IQA) 

5.3.1 UIQM 

Karen et al. [63] suggested an Underwater Image Quality Measures (UIQM) system 

based on underwater image deterioration characteristics and a vision system. The 

Underwater Image Colorfulness Measure (UICM)[63], the Underwater Image Sharpness 

Measure (UISM)[63], and the Underwater Image Contrast Measure (UIConM)[63] are 

evaluated using a linear combination of the three components. UIQM's calculation 

formula is shown in Figure 3.5.  

  

UIQM = 𝑐1 × UICM + 𝑐2 × UISM + 𝑐3 × UIConM (3.5) 

 

Where the weighting factors of the measurement components in the linear combination 

are 
1c , 

2c , and 3c . The weighting variables in this study are 
1c  =0.0282, 

2c  = 0.2953, 

and 3c  = 3.5753. 
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5.3.2 UCIQE 

Yang Miao et al. introduced the Underwater Color Image Quality Evaluation (UCIQE) 

[64] as an image quality evaluation index. This indicator evaluates the richness of 

information such as contrast, saturation, and texture which need to be paid attention to 

for underwater image restoration. Its calculation formula can be described in 3.6. 

  UCIQE = 𝑐1 × 𝜎𝑐 + 𝑐2 × 𝑐𝑜𝑛𝑙 + 𝑐3 × 𝜇𝑠       (3.6)  

Where c  is the chromaticity standard deviation, lcon  is the brightness contrast, s

is the average saturation, and 
1c = 0.4680, 

2c = 0.2745, 3c = 0.2576 are the values. The 

higher the UCIQE score, better the underwater image quality. 

 

5.3.3 CIE76 

 𝐋𝐚𝐛 is a color system of CIE, table color system, based on 𝐋𝐚𝐛 means based on top 

of this color system, basically used to determine the numerical information of a certain 

color. 𝐋𝐚𝐛 color space is based on the human eye's perception of color, can represent all 

the colors that the human eye can perceive. l means brightness, 𝐚∗  means red-green 

difference, 𝐛∗ means blue-yellow difference, the formular shows as below: 

∆𝐄𝐚𝐛
∗ = √(∆𝐋∗)𝟐 + (∆𝐚∗)𝟐 + (∆𝐛∗)𝟐  (3.7) 

∆𝐋∗ = 𝐋𝟏
∗ − 𝐋𝟐

∗                      (3.8) 

∆𝐚∗ = 𝐚𝟏
∗ − 𝐚𝟐

∗                      (3.9) 

 ∆𝐛∗ = 𝐛𝟏
∗ − 𝐛𝟐

∗                      (3.10) 

 

Where ∆𝐄𝐚𝐛
∗  is the total color difference, indicates the Euclidean distance of two colors 

in space, ∆𝐋∗  is the difference between the brightness of two colors, 𝐋𝟏
∗   is the 

brightness of the original image, and 𝐋𝟐
∗  is the brightness of the test image; ∆𝐚∗ is the 

difference between the red-green color of two colors, 𝐚𝟏
∗   is the red-green color of 

original image, and 𝐚𝟐
∗    is the red-green color of test image; ∆𝐛∗  is the difference 

between the blue-yellow color of two colors, 𝐛𝟏
∗  is the blue-yellow color of the original 

image, and 𝐛𝟐
∗  is the blue-yellow color of the test image. 
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5.4 Comparison of Results of Different Methods 

This part mainly evaluates the results from two aspects, one is subjective evaluation, 

and the other is objective evaluation. Firstly, the visual effects of the recovery results of 

different methods are observed intuitively through subjective evaluation, and then the 

differences of different methods are shown concretely through the value of objective 

evaluation 

 

 

5.4.1 Subjective Evaluation Comparison 

In this evaluation experiment, ensure the ground truth is original image, the SUID [48] 

data set was selected as the test data set. The original image of the ground is one half of 

SUID, while the other portion is a synthetic underwater image that contains greenish, blue, 

foggy, and low light. The specific information about SUID as below: 

 

Table 5.1: SUID data set 

 

 Ground 

Truth 

Greenish Bluish Hazy Low Light 

Number

s 

30 240 240 210 210 

 

 

So, this experiment put the SUID underwater image and ground truth image on the top, 

and the rest of the methods on the bottom. 

Four images were selected from the original underwater image to represent the four 

underwater scenes, including the bluish distortion scene, the greenish distortion scene, 

the hazy distortion scene and the low light distortion scene, and the results of this research 

are compared with the results of other methods: 
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(a) Underwater image  (b) Original image(Ground Truth) 

 

(c) UDCP[27]       (d)RED[28]      (e) Sea-thru[17]     (f)UWCNN[65] 

 

(g)UWGAN[66]    (h)CycleGAN[47]    (i)FUnIEGAN[50]      (j)Ours 

Figure 5.1：Comparison of bluish distortion scenes 
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(a) Underwater image  (b) Original image(Ground Truth) 

 

(c) UDCP[27]       (d)RED[28]      (e) Sea-thru[17]     (f)UWCNN[65] 

 

(g)UWGAN[66]    (h)CycleGAN[47]    (i)FUnIEGAN[50]      (j)Ours 

 

Figure 5.2：Comparison of greenish distortion scenes 
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(a) Underwater image  (b) Original image(Ground Truth) 

 

(c) UDCP[27]       (d)RED[28]      (e) Sea-thru[17]     (f)UWCNN[65] 

 

(g)UWGAN[66]    (h)CycleGAN[47]    (i)FUnIEGAN[50]      (j)Ours 

Figure 5.3：Comparison of hazy distortion scenes 
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(a) Underwater image  (b) Original image(Ground Truth) 

 

(c) UDCP[27]       (d)RED[28]      (e) Sea-thru[17]     (f)UWCNN[65] 

 

(g)UWGAN[66]    (h)CycleGAN[47]    (i)FUnIEGAN[50]      (j)Ours 

Figure 5.4：Comparison of low light distortion scenes 

 

From the above results, For traditional methods, the UDCP method will lead to 

darkening and no correct color correction, but it performs well in the restoration of details; 

while the Sea-thru method has the highest contrast among all methods, but because the 

test data has no depth information, based on Sea-thru paper, the pixel value of the depth 

map generated by the provided monodepth method is too high, which is considered to be 

a very shallow area, resulting in no color processing. This is also a weakness that the 

degradation model requires camera parameters and a correct depth map. In contrast, the 

generalization ability of the GAN method is required to adapt to more data. 

For GAN methods, most of the results generated by GAN methods are blurry, and 

some generated results have a certain color cast, which performs well on the training set 

but not on the validation data set. However, the result of our method is sharper and 

correctly restores certain colors. 
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In summary, it is proved that our method can adapt to more kinds of underwater 

images. In most of the data, the color of the underwater image and the details of the 

foreground objects are better restored, and obtained good results are better than most 

methods. 

 

5.4.2 Objective Evaluation Comparison 

 

Since there is no ground truth in the real underwater scene, we choose the SUID data 

set as our validation data set, which has ground truth to evaluate our method and other 

methods more convincing. And the quality of the restored underwater images generated 

by different methods is evaluated through the above five indexes of objective evaluation. 

It can be seen from Table 5.1 that the total number of synthesized underwater data is 

900 pieces.  

By using the 900 images above, 900 results of different methods were obtained 

respectively, and the best 30 result images were selected in each method separately.  

The MSE, SSIM and PSNR were calculated together with the 30 ground truth images, 

while UCIQE and UIQM were calculated with only 30 result images. The resulting table 

is as follows, with the largest value in bold red and the second largest in bold blue: 

 

Table 5.2: Full-reference Image Quality Assessment 

 

Methods MSE SSIM PSNR CIE76 

UDCP 17.8199 0.4301 9.6980 26.6554 

RED 15.5624 0.4941 9.6232 26.8368 

Sea-thru 8.6061 0.6662 14.0326 25.1599 

UWCNN 2.3693 0.8174 18.5349 11.9011 

UWGAN 5.1556 0.7302 17.7250 12.0037 

CycleGAN 1.6956 0.7976 17.4086 12.8628 

FUnIEGAN 3.1764 0.7281 16.5874 13.9663 

Ours 0.4216 0.8018 18.6679 10.1934 
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Table 5.3: No-reference Image Quality Assessment 

 

Methods UCIQE UIQM 

UDCP 0.3872 7.9249 

RED 0.3838 5.4204 

Sea-thru 0.4413 4.7925 

UWCNN 0.3447 16.2557 

UWGAN 0.3765 20.9971 

CycleGAN 0.3223 16.6933 

FUnIEGAN 0.4122  18.0230 

Ours 0.4171 22.5069 

 

From the value of the objective evaluation indicators in the table, our method is better 

than most other methods on the same data set. It proves the effectiveness of the method 

of combining the multi-scale module and the attention module proposed in this research. 

 

5.5 Ablation Experiment 

Ablation experiments are utilized to demonstrate the efficiency of the attention module 

and multi-scale module offered by our technique. 

The ablation experiment is a test to see if certain of the network structure's structures 

are effective. Ablation experiments are used to figure out what each component's purpose 

is. The results of deleting the attention module and the attention module are shown in the 

first column of the figure below, while the results of removing the multi-scale module 

and the multi-scale module are shown in the second column. The results of the 

experiments show that our proposed attention and multi-scale modules are successful. 
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Table 5.4: Ablation experiment results 

 

Input image No attention 

module 

No multi scale 

module 

Our result Ground truth 

     

1 2 3 4 5 

 

From the results of the above ablation experiments,  

1) the results generated by the removal of attention module (No.2) compensate the 

light for the wall, that is, the focus of the image is not found. However, the 

important part - the sofa is not well enhanced. 

2)  the result generated by removing the multi-scale module (No.3) is blurred as a 

whole, and no more detailed restoration of the important part is done.  

3) And the result of our method (No.4) not only restores the color of the sofa better, 

but also improves the clarity and restores more details, which proves the 

effectiveness of the combination of attention module and multi-scale module in 

the thesis. 
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Chapter 6 

Conclusion 

In the field of underwater vision research, image enhancement plays an important role. 

A Generative Adversarial Network underwater picture improvement technique based on 

the integration of multi-scale and attention mechanisms is suggested to address the 

problems of blur, poor contrast, and color deviation in underwater photographs. A data 

set with ten different types of water quality is utilized to boost the data's generalization 

capacity.  

An attention module and a multi-scale module are introduced to the generative network 

to highlight the important parts of the image and restore their features, hence improving 

the enhancement impact of underwater photographs. The generative network is utilized 

to create clear underwater photos, while the discriminative network is primarily used to 

aid the generative network in producing images with comparable visual perception to the 

reference image. 

The results of this experiment can be roughly divided into three categories: subjective 

evaluation methods, objective evaluation methods, and ablation experiments. 

1) For the results of subjective evaluation methods, our results are better than those of 

most methods in terms of correct color restoration in four scenes and recovery of 

more detailed information of objects. 

2) For the results of objective evaluation methods, the values of our method on MSE, 

SSIM, PSNR, UIQM, UCIQE and CIE76 indexes are 0.4216, 0.8018, 18.6679, 

0.4171, 22.5069 and 10.1934, respectively, which are higher than most methods. It 

proves that our method can improve the image sharpness, contrast, and chromatic 

aberration at the same time. 

3) For the results of the ablation experiments, we removed the multiscale module and 

the attention module, but the generated results showed overall blurring and 

recovered objects in error, respectively, which proved the effectiveness of our 

method combining the multiscale module and the attention module. 

In future work, we try to update the new network structure based on the current 

network as well as further optimize the loss function to generate better results. 
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