
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Design of Polar Code Lattices of Moderate

Dimension

Author(s) Liu, Ning

Citation

Issue Date 2022-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17663

Rights

Description
Supervisor:KURKOSKI, Brian Michael, 先端科学技術

研究科, 修士（情報科学）

Design of Polar Code Lattices of Moderate Dimension

Ning Liu

Graduate School of Advanced Science and Technology

Japan Advanced Institute of Science and Technology

(Information Science)

March, 2022

Master’s Thesis

Design of Polar Code Lattices of Moderate Dimension

1910238 Ning Liu

Supervisor Brian M. Kurkoski

Main Examiner Brian M. Kurkoski

Examiners Kiyofumi Tanaka

Yuto Lim

Gregory Schwartzman

Graduate School of Advanced Science and Technology

Japan Advanced Institute of Science and Technology

(Information Science)

March, 2022

Abstract

In 2008, Arikan first proposed the concept of channel polarization, then channel

polarization was explained in more detail, and a new encoding method was given.

Polar codes are the only known channel coding method that can be strictly proven

to ”reach” channel capacity when the code length goes to infinity under succes-

sive cancellation (SC) decoding. Thus, polar codes have attracted the attention of

academia and industry in the past decade.

Lattice codes are linear codes defined over Euclidean space and also have attracted

attention in recent years. In wireless communications, lattice codes can be used to

perform shaping technique efficiently to obtain about 1.53 dB shaping gain on the

additive white Gaussian noise (AWGN) channel channel. In addition, lattices are

integral to certain Gaussian network coding approaches, including compute-forward

relaying and integer-forcing MIMO.

In this thesis, we propose a design of polar code lattices using Construction D of

moderate dimension. Construction D forms lattices from binary codes and allows

decoding lattices using binary code decoder. In the design, we use the dimension N

and the target decoding error probability Ptrgt as parameters. Furthermore, we use

the explicit finite-length properties of the polar code to select the code rates of the

Construction D component codes. Under SC decoding, over the (AWGN) channel,

instead of using the approximation of the Bhattacharyya parameter, we use density

evolution to select the information bit positions that allows obtaining the probability

distribution for each position. Then, choose code rates for the component codes that

satisfy the equal error probability rule. For polar codes with successive cancellation

decoding, we propose a function ρ defined as the greatest code rate with error

rate under Ptrgt; ρ may be found by density evolution efficiently. Under successive

cancellation list (SCL) decoding and ordered statistic decoding (OSD), since density

evolution is not practical, function ρ can be obtained by Monte Carlo simulation.

Dimension N = 128 polar code lattices are given as design example. From the

simulation results, under SC decoding with complexity O(N logN), polar code lat-

tice comes within 1 dB of the best-known BCH code lattice. Under SCL decoding

with L = 128 and CRC-6, polar code lattice comes within 0.2 dB of the BCH code

I

lattice. SCL decoding with list size L, complexity scales as O(LN logN). For polar

code lattice under OSD, there is 1 dB gap between BCH code lattice. OSD decoding

has significantly higher complexity. The complexity of order-l OSD is proportional

to
∑l

i=0

(
K
i

)
.

Keywords: Channel polarization, binary polar code, successive cancellation de-

coding, polar code lattice, Construction D, AWGN channel

II

Acknowledgments

My deepest gratitude goes foremost to my supervisor, Professor Brian M. Kurkoski

for his patient guidance, instructive suggestions and constant encouragements through-

out my research. When I joined as a young and stupid research student, I took his

lecture, which gave me an incredible journey to coding theory. I could never imagine

that those complicated contents could be explained so simply and clearly by him.

He is always responsible to any questions and gives as detailed explanations as pos-

sible. Brian is not only a knowledgeable professor from whom I really learned a lot

but also a wonderful mentor in my research and personal life. Not a single line in

this thesis would exist without him.

Last but not the least, my gratitude also extends to my beloved grandparents,

Mingyuan Liu and Shuhua Yang, and my parents who have been assisting, support-

ing and caring for me all of my life.

III

Contents

List of Figures VII

List of Tables VIII

Acronym X

Notations XI

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Contributions . 3

1.3 Thesis Organization . 3

2 Preliminaries 5

2.1 System Model . 5

2.2 Additive White Gaussian Noise Channel 6

2.3 Performance Measurements . 8

3 Binary Polar Codes 9

3.1 Introduction to Polar Codes . 9

3.1.1 Channel Polarization . 11

3.2 Encoding . 16

3.2.1 Information Bit Selection . 20

3.3 Decoding . 22

3.3.1 Successive Cancellation (SC) Decoding 22

3.3.2 Successive Cancellation List (SCL) Decoding 26

3.3.3 Ordered Statistic Decoding (OSD) 29

IV

4 Construction D Lattices 32

4.1 Lattices . 32

4.2 Construction D . 33

4.2.1 Nested Binary Code . 33

4.2.2 Construction D Lattice Encoding and Decoding 33

4.2.3 Design of Construction D Lattices 36

5 Polar Code Lattices 38

5.1 Design Methods . 38

5.1.1 Equal Error Probability Rule 38

5.1.2 ρ Function for binary polar codes 39

5.2 Design of Polar Code Lattices . 41

5.3 Design Example . 44

5.3.1 Polar Code Lattices Under SC Decoding 44

5.3.2 Polar Code Lattices Under SCL 44

5.3.3 Polar Code Lattices Under OSD 46

5.4 Evaluation by Simulation . 48

6 Conclusions and future work 50

6.1 Conclusions . 50

6.2 Future Work . 51

V

List of Figures

2.1 Model of a communication system with encoder, channel and decoder. 6

3.1 Effective channel. 10

3.2 Bhattacharyya parameter of W2. 10

3.3 Information bits selection of N=128 polar code over BEC ϵ = 0.5. . . 11

3.4 W2 channel model. 12

3.5 W4 channel model. 12

3.6 Wn channel model. 13

3.7 Probability of erasure for each bit position for N = 8, 64, 512, 16384. . 15

3.8 Good channels. 21

3.9 Bad channels. 21

3.10 SC decoding tree structure. 24

3.11 Tree Structure of SC decoding example. 26

3.12 Polar coding and CRC-aided decoding schemes. 28

3.13 On a AMGN channel with noise σ2, P(128, 7,F) 31

4.1 Multilevel construction of Construction D. 35

5.1 Equivalent layer of Construction D. 39

5.2 On a AMGN channel with noise σ2, the function ρ(σ2, Ptrgt) gives a

code rate to achieve SC decoder Ptrgt =
1
3
· 10−4 41

5.3 The function ρ(σ2, Ptrgt) gives a code rate to achieve Ptrgt = 10−4 and

Ptrgt =
1
3
10−4 over an AMGN channel with noise variance σ2. 43

5.4 On a AMGN channel with noise σ2, the function ρ(σ2, Ptrgt) gives a

code rate to achieve SCL(CRC-10, Listsize-8) decoder Ptrgt = 10−4. . 46

5.5 On a AMGN channel with noise σ2, P(128, K0,F) polar code using

OSD(4) with different K0 to achieve Ptrgt =
1
3
· 10−4. 47

VI

5.6 On a AMGN channel with noise σ2, P(128, K1,F) polar code using

OSD(3) with different K1 to achieve Ptrgt =
1
3
· 10−4. 47

5.7 WER comparison between N = 128 BCH code lattice with OSD

decoding and N = 128, 256 polar code lattices with SC decoding,

OSD and SCL decoding. 48

VII

List of Tables

4.1 Generator matrices for nested binary code. 34

5.1 Reliability for N = 128 polar code under different VNR. 45

5.2 Polar code lattice designs under SC decoding and Pe = 10−4. 45

5.3 Performance Comparison of Dimension N = 128 lattices. 49

VIII

Acronyms

AMGN Additive Mod-2 Gaussian Noise

AWGN Additive White Gaussian Noise

BEC Binary erasure channel

BER Bit Error Rate

BI-AWGN Binary-input Additive White Gaussian Noise

BI-DMC Binary-input Discrete Memoryless Channel

BPSK Binary Phase Shift Keying

BSC Binary symmetric channel

CRC Cyclic Redundancy Check

IoT Internet of Things

LLR Log Likelihood Ratio

ML Maximum-likelihood

OSD Ordered Statistic Decoding

SC Successive Cancellation

IX

SCF Successive Cancellation Flip

SCL Successive Cancellation List

SCS Successive Cancellation Stack

SNR Signal-to-Noise Ratio

WER Word Error Rate

X

Notations

Eb/N0 Energy per bit to noise power spectral density ratio

N Block-length

RN N-dimensional real field

GN Polar code generator matrix

GΛ Lattice generator matrix

u Input sequence

x Codeword

y Received sequence

z Channel noise

F Set of frozen bits

I Set of information bits

P(N,K,F) Binary polar code

uK
1 Abbreviation of a row vector u1, u1, u2, . . . , uK

XI

Chapter 1

Introduction

1.1 Background and Motivation

In recent years, the number of wireless devices has increased dramatically and re-

quires higher and higher data rates. Reliable low-latency communications are needed

to handle the demands of real-time control applications, which require low-latency

codes so that devices can respond rapidly. As a case in point, doctors need real-time

feedback from medical devices during operations. Unmanned vehicles need to react

quickly to road conditions, etc. For the Internet of Things (IoT), a new category of

reliable low-latency communications for small amounts of data is desired.

Shannon pointed out in the noisy channel coding theorem that there exist codes

that can reach the Shannon limit [1]. Polar code is a new type of channel coding

based on the channel polarization theorem proposed by E. Arikan in 2008 [2], and is

the first structured channel coding method that can be strictly proven to “reach” the

symmetric capacity of a binary-input discrete memoryless channel (BI-DMC) using

a low-complexity successive cancellation (SC) decoding when the code length goes

to infinity. In the past decade, polar codes have attracted the attention of academia

and industry, such that polar codes were chosen as a channel coding scheme of the

5th generation wireless systems (5G) standardization process of the 3rd generation

partnership project (3GPP). Polar codes have been widely studied and applied in

various fields with satisfying prospects for development.

Lattices are sphere bound-achieving codes. In communications applications, lat-

tices can be used to perform shaping efficiently to obtain about 1.53 dB of shaping

1

gain on the AWGN channel. In addition, lattices are integral to certain Gaussian net-

work coding approaches, including compute-forward relaying [3] and integer-forcing

MIMO [4]. In the classical point-to-point channel, compared with random Gaussian

codes, lattices provide a low-complexity solution. In modulation for real communi-

cation channel, compared with binary coding schemes, the noise and transmission

functions are based on the real field RN but not binary. This is the other reason

why we choose lattices.

In 2019, Liu et al. proposed a new class of lattices constructed from polar codes [5].

They constructed polar lattices to approach the capacity of the power-constrained

Gaussian channel, following the multilevel approach of Forney et al. The construc-

tion is based on a combination of channel polarization and source polarization by

constructing capacity-achieving polar codes on each level. The component polar

codes are shown to be naturally nested, thereby, fulfilling the requirement of the

multilevel lattice construction. They proved that the polar lattices are AWGN-good

and used block length N= 1024 as an example. It is feasible to consider using

channel capacity as a guide to design high dimension lattices, but this breaks down

when the dimension is small to medium. Questions about the best way to design

finite-dimensional polar code lattices are still an open problem.

Construction D produces lattices from two or more component linear binary codes

and can be decoded through a multilevel decoding procedure [6] [7]. An important

aspect is that Construction D decoding uses the decoder for the binary codes. Po-

lar codes decoders are well-understood and SC decoder can be used to reduce the

complexity. Construction D lattices allow designing using decoder error rates for

component codes under the equal error probability rule [8]. In small or medium-

dimension lattices, it is more reasonable to use decoder error rates in the design

than using channel capacity. In addition, polar codes also have flexibility in rate

selection. In this sense, we can easily get code rates of polar codes of different block

lengths, which is important for good lattice design. The code rates of the com-

ponent codes can be obtained by density evolution which is introduced in Section

3.2.1. Polar code lattices are attractive because lattices inherit the good properties

of component polar codes.

Very long block-length (N> 1000) and short block-length (N≤ 24) lattices are

2

well-studied. However, far too little attention has been paid to short block-length

(N= 64, 128, . . . , 512) lattices not only for polar code lattices but also for any lat-

tices. It is becoming increasingly difficult to ignore the performance of short bolck

length lattices.

The originality of this work is to design short block-length lattices, that is block-

length N = 64, 128, . . . , 512, based on binary polar codes using construction D.

Because binary codes are already well understood, binary polar codes have good

coding gain. Moreover, codes based on lattices have the potential to achieve reliable

communications with high bandwidth efficiency without sacrificing decoding com-

plexity. Compared with conventional QAM, lattices have higher shaping gain, and

therefore are more power efficient.

1.2 Contributions

In this work, we contribute a design technique for polar code lattices of moderate

dimensions and use block length N= 128 as an example. In the design, we use

Construction D to form lattices from nested binary polar codes. Furthermore, we

have solved the challenge of selecting rates of the component codes that give the

best lattice properties. We use the explicit finite-length code properties in the

design rather than using the capacity. For a given block length N , we define a

function ρ as the code rate such that its decoder achieves a given target error rate

of the channel noise σ2. It allows us to design polar code lattices systematically

and efficiently. Under SC decoding, the ρ function can be found efficiently by using

density evolution. The function ρ, based on finite-length code properties, has an

S-shape which is characteristic of a channel capacity curve. Then, polar lattices can

be designed by these properties of binary polar codes.

We published the paper “Design of polar code lattices of finite dimension” at the

2021 IEEE International Symposium on Information Theory. This thesis gives some

more detailed explanations in that paper.

1.3 Thesis Organization

The remaining part of this thesis proceeds as follows:

3

• In Chapter 2, we provide the system model and defined some symbols we used

in this thesis. Then we give a introduction of AWGN channel and the SNR

definition. Additionally, we give performance measurements that we use in

Sec. 5.4 to explain how we evaluate the performance of a code.

• In Chapter 3, we start from explaining the idea of channel polarization. Then

we going to introduce binary polar codes including the construction, encoding

method and a series of decoders. Density evolution is introduced in Sec. 3.2.1,

and the distribution curves for all positions for the N = 8 polar code is given as

an example of density evolution. To make the explanation of decoders clearly,

we give an example of SC decoding and SC decoding tree in Sec. 3.3.1. At the

end of the chapter, we provide an OSD example.

• In Chapter 4, we first introduce lattices and then propose the Construction

D lattice, which is the main contribution to this work. In Sec.4.2.2, the in-

troduction of encoding and decoding Construction D lattices is given. Then,

the multi-level construction is also given to explain how we construct lattices

from nested binary codes. At the end of this chapter, we introduce some

Construction D lattices design rules that are relevant to our design method.

• In Chapter 5, we introduce equal error probability rule and the ρ function that

we use in the design of polar code lattices. Under SC decoding, the ρ function

is found by density evolution efficiently. Under SCL decoding and OSD, the ρ

function can be obtained by Monte Carlo simulation. Then we give a design

example to introduce our design methods more detail. Finally, the simulation

results for polar code lattices are shown in Sec.5.4.

• In Chapter 6, we summarize our work and describe future works. In the future

work section, we give some ideas which may improve the performance of the

code.

4

Chapter 2

Preliminaries

2.1 System Model

Fig. 2.1 shows the model of a communication system. It shows the process of

transmitting data through a noisy channel. Clearly, it consists of five parts: an

information source, an encoder, a channel, a decoder, and an information sink.

In this work, we mainly talk about binary polar codes consisting of K information

bits and N − K frozen bits and will be introduced in Sec. 3.1. For a given block

length N and dimension K (K ≤ N), an information sequence u is defined as:

u = (u1, u2, u3, . . . , uK) = uK
1 .

The code rate R can be obtained by:

R =
K

N
.

Then the polar coder encoder produces a codeword x:

x = (x1, x2, x3, . . . , xN) = xN
1

as the input of a noisy channel. After x is transmitted through a channel, a sequence

y can be defined as the codeword x plus the channel noise z:

y = x+ z.

5

INFORMATION

SOURCE ENCODER CHANNEL DECODER INFORMATION

SINK

Figure 2.1: Model of a communication system with encoder, channel and decoder.

The decoder receives this sequence y, and then gives an estimation of the information

source as the output û, or an estimate of the transmitted codeword x̂ :

û = (û1, û2, û3, . . . , ûK) = ûK
1

x̂ = (x̂1, x̂2, x̂3, . . . , x̂K) = x̂N
1

2.2 Additive White Gaussian Noise Channel

Additive White Gaussian Noise (AWGN) channel is a basic noisy channel model that

is often used to mimic the effect of many random processes that occur in nature.

The model does not take into account fading, frequency selectivity, etc. Without

considering other phenomena, it produces simple and tractable mathematical models

that are useful for gaining insight into the fundamental behavior of the system.

The AWGN channel is represented by a sequence of outputs y. As we mentioned

in Section 2.1, y is the sum of the channel input x and noise z where z is independent

and identically distributed (i.i.d.) and drawn from a zero-mean normal distribution

with a variance of σ2 = N0

2
where N0 is the noise power. The distribution of z can

be represented as N (0, σ2).

For each x ∈ X , the probability of transmitting symbol x is pX(x). Es refers the

average transmit power that is given by:

Es =
∑

x∈X

pX(x)x
2 (2.1)

Eb/N0 is a normalized signal-to-noise ratio (SNR) measure, also known as the

“SNR per bit” in digital communication or data transmission. Eb is defined as

signal energy per bit and can be calculated as:

Eb =
Es

R

6

where R is the code rate. It is especially useful when comparing the bit error rate

(BER) performance of different digital modulation schemes without taking band-

width into account.

For the Gaussian channel, the average input power constraint P on N inputs xN
1

is given as:

1

N

N∑

i=1

x2
i ≤ P. (2.2)

The input xi is assumed to be zero mean, so y is also zero mean. As we mentioned

before, the variance of zi is σ
2. The SNR can be represented as:

SNR =
P

σ2
(2.3)

In this thesis, SNR is defined as

SNR = 1/σ2.

Then:

SNR dB = 10 log10 SNR = 10 log10
1

σ2
. (2.4)

Due to the Gaussian distribution of noise z, the probability of x and y is given by:

pY|X(y | x) = 1√
2πσ2

e−(y−x)2/2σ2

(2.5)

For a binary-input AWGN (BI-AWGN) channel or a binary phase-shift keying

(BPSK) channel. It has input x ∈ {+1,−1} with probability distribution pX(x) =
[
1
2
, 1
2

]
. The average transmit power Es obtained by Eqn.2.1 is 1. The conditional

channel output distribution is:

pY|X(y | −1) =
1√
2πσ2

e−(y+1)2/2σ2

pY|X(y | +1) =
1√
2πσ2

e−(y−1)2/2σ2

that can be used to calculate LLR in Section 3.3.

7

2.3 Performance Measurements

Word-error rate (WER) and bit-error rate (BER) are two measures that can help

assess a decoder’s performance.

For a transmitted codeword x, assume that the decoder can give an estimation as

x̂. WER is the probability of word error which means x̂ ̸= x. BER is the probability

of bit error which means x̂i ̸= xi.

In a one-time decoding process, two cases of the decoder are shown as follows:

• If x̂ = x, that means the decoder successfully decoded the input sequence.

Here, both the BER and WER are 0; non-error occurred.

• If x̂ ̸= x, , that means the decoder failed to decode. In this case, the WER is

1. The range of BER is 0 < BER ≤ 1 .

Example of BER and WER

Transmitted a 4-bit sequence x =
[
1 1 0 0

]
once.

• If the decoder gives an estimation as x̂ =
[
1 1 0 0

]
, then it means no error

occurs, BER= 0 and WER= 0;

• If the decoder gives an estimation as x̂ =
[
1 1 1 1

]
, then it is clear x̂3 ̸= x3

and x̂4 ̸= x4 thus, x̂ ̸= x. BER= 2/4 and WER= 1.

In this work, we obtain WER and BER by Monte Carlo simulations. We set a

term count which refers to the total number of codewords in the simulation. Then

WER and BER can be defined by:

BER =
Number of Bit Errors

Total Number of Bits
=

Number of Bit Errors

count×N

WER =
Number of Word Errors

Total Number of Words
=

Number of Word Errors

count

It is clear that under the same SNR, the code with lower WER (or BER) gives

better performance. In this work, we mainly use WER to evaluate the performance

of a code. The simulation result will be given in Sec. 5.4.

8

Chapter 3

Binary Polar Codes

In this chapter, we introduce polar codes including encoding and decoding schemes.

In the encoding part, we mainly explain the structure of polar code and methods

to select information bits and frozen bits. In the decoding part, we introduce sev-

eral decoding algorithms including successive cancellation (SC) decoding, successive

cancellation list (SCL) decoding and ordered statistic decoding (OSD).

3.1 Introduction to Polar Codes

In 2008, Arikan first proposed the concept of channel polarization [2]. Then, channel

polarization was explained in more detail, and a new encoding method was given.

Due to the channel polarization, a polar code of block length N is divided to two

types of bits, information bits and frozen bits. For n ≥ 1 and a P(N,K,F) binary

polar code, N = 2n is the code length in bits, K is the number of elements in the

information bit indices I and F is an index vector of frozen bits. Clearly, the length

of F is N −K, the code rate is R = K/N . Different from other linear block codes,

the input u has N elements that encompasses both information bits and frozen bits.

Frozen bits are set to a fixed value. For the information set I and frozen set F , it

has:

F ⊂ {1, 2, . . . , N}, I ⊂ {1, 2, . . . , N} and

I ∪ F = {1, 2, . . . , N}, I ∩ F = ∅.
(3.1)

Fig. 3.1 shows the effective channel of polar codes. Let W : X → Y be a BI-DMC

with transition probabilities: W (y | x) where the input alphabet is x ∈ X and the

9

output alphabet is y ∈ Y .

 

Figure 3.1: Effective channel.

For a given BI-DMC W , the symmetric capacity I(W) is the maximum rate for

reliable transmission with uniform input distribution through the channel W that

can be defined as:

I(W) ≜
∑

y∈Y

∑

x∈X

1

2
W (y | x) log W (y | x)

1
2
W (y | 0) + 1

2
W (y | 1)

Additionally, for channels with input-output symmetry, the capacity is given by

C(W) ≜ I(X;Y)

with the input X is uniformly distributed over {0, 1}. Using base-2 logarithms,

0 ≤ C(W) ≤ 1.

When W is used only once to transmit a bit x ∈ {0, 1}, the Bhattacharyya

parameter gives an upper bound on the probability of ML decision error:

Z(W) ≜
∑

y∈Y

√
W (y | 0)W (y | 1) (3.2)

From Eqn. 3.2, it is clear that Z(W) takes value in [0, 1] where 0 means totally

reliable and 1 means totally unreliable, so that Z(W) can be used as measures of

channel reliability.

𝑍(𝑊!) 																	Z(W)

𝑍(𝑊!!) 𝑍(𝑊)

Figure 3.2: Bhattacharyya parameter of W2.

In Arikan’s paper [2], as Fig. 3.2 shows, for two synthetic channels, the Bhat-

tacharyya parameter of the “upper channel” is denoted as Z (W ′) and for the “lower

10

20 40 60 80 100 120
Bit position

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bh
at

ta
ch

ar
yy

a
pa

ra
m

et
er

Frozen Bits

Information Bits

Figure 3.3: Information bits selection of N=128 polar code over BEC ϵ = 0.5.

channel” is Z (W ′′). For some set of binary-input channels, it has:

Z (W ′′) = Z(W)2

Z (W ′) ≤ 2Z(W)− Z(W)2.
(3.3)

equality holds if and only if W is a binary erasure channel (BEC).

For a BEC, given the code length N=128 and erasure probability ϵ = 0.5, the the

Bhattacharyya parameter for each position can be calculated. As we mentioned in

Eqn. 3.2, we can we can design a rate 1/2 polar code by freezing 64 positions with

greater Z(W) represented by yellow points as Fig. 3.3 shows.

3.1.1 Channel Polarization

Channel polarization is divided into two phases: channel combining and channel

splitting.

11

W

Wu1

u2

x1

x2

y1

y2

W2

Figure 3.4: W2 channel model.

W

W

W

W

u1

u2

u3

u4

v1

v2

v3

v4

x1

x2

x3

x4

R4

W4

W2

W2

y1

y2

y3

y4

Figure 3.5: W4 channel model.

Channel Combining

Fig. 3.4 shows the W2 channel model which have inputs u1, u2 and outputs y1, y2.

It is a combination of two copies of W channels. The input of the first channel is

u1 ⊕ u2 and the input of the second channel is u2. The transition probabilities of

channel W2 : X 2 → Y2 can be defined as:

W2 (y1, y2 | u1, u2) = W (y1 | u1 ⊕ u2)W (y2 | u2) .

As Fig. 3.5 shows, W4 channel can be obtained by two copies of W2 channel

with inputs u4
1 = (u1, u2, u3, u4) and outputs y41 = (y1, y2, y3, y4). R4 reverses input

combinations u1⊕u2, u2, u3⊕u4, u4 ofW4 channel to input vectors v
4
1 = (u1⊕u2, u3⊕

u4, u2, u4) of W2 channels. The transition probabilities of channel W4 : X 4 → Y4

12

u1

u2

uN/2-1

uN/2

uN/2+1

uN/2+2

uN-1

uN

.

.

.

.

.

.

RN

s1

s2

sN/2-1

sN/2

.

.

.

.

.

.

sN/2+1

sN/2+2

sN-1

sN

v1

v2

vN/2-1

vN/2

.

.

.

.

.

.

vN/2+1

vN/2+2

vN-1

vN

WN/2

WN/2

y1

y2

yN/2-1

yN/2

.

.

.

.

.

.

yN/2+1

yN/2+2

yN-1

yN

WN

Figure 3.6: Wn channel model.

are:

W4

(
y41 | u4

1

)
= W2

(
y21 | u1 ⊕ u2, u3 ⊕ u4

)
W2

(
y43 | u2, u4

)
.

Similarly, the WN channel can be obtained by two copies of W2/N channel, shown

in Fig. 3.6. WN

(
yN1 | xN

1

)
=

∏N
i=1W (yi | xi) denotes the channel corresponding to

N uses of the channel W where N = 2n, n ≥ 0 , thus, WN : XN → YN . The

construction of polar codes combines BI-DMCs recursively to form a vector channel

WN , which is called channel combining.

13

Channel Splitting

After we obtained the vector channel WN out of a series of BI-DMCs, the next step

of channel polarization is called channel splitting. Channel splitting is to split the

vector channel WN back into a set of N binary-input coordinate channels W
(i)
N :

X → YN ×X i−1, 1 ≤ i ≤ N . The transition probability of the W
(i)
N is defined as:

W
(i)
N

(
yN1 , ui−1

1 | ui

)
≜

∑

uN
i+1∈XN−i

1

2N−1
WN

(
yN1 | uN

1

)

where
(
yN1 , ui−1

1 | ui

)
denotes that yN1 , ui−1

1 are inputs of W
(i)
N and ui is the output

of W
(i)
N . Then, for any n ≥ 0, N = 2n, 1 ≤ i ≤ N , the transition probabilities of

odd-order and even-order splitting sub-channels can be obtained, respectively, by

two recursive equations shown as [2, Proposition 3]:

W
(2i−1)
2N

(
y2N1 , u2i−2

1 | u2i−1

)

=
∑

u2i

1

2
W

(i)
N

(
yN1 , u2i−2

1,o ⊕ u2i−2
1,e | u2i−1 ⊕ u2i

)
·W (i)

N

(
y2NN+1, u

2i−2
1,e | u2i

) (3.4)

and

W
(2i)
2N

(
y2N1 , u2i−1

1 | u2i

)

=
1

2
W

(i)
N

(
yN1 , u2i−2

1,o ⊕ u2i−2
1,e | u2i−1 ⊕ u2i

)
·W (i)

N

(
y2NN+1, u

2i−2
1,e | u2i

)
.

(3.5)

By combining and spliting to BI-DMCs, the capacity of each sub-channel tends to

be polarized. As the code length N increases, the sub-channel tends to be more

polarized, as shown in Fig. 3.7. The bit positions have been sorted according to

increasing probability of erasure.

The point of channel polarization can be explained more detail. In Fig. 3.4, let W

be BEC with the erasure probability ϵ; that is, for each W : the probability that X

is successfully transmitted is 1− ϵ, and when X failed to transmit, the probability

is ϵ. By Eqn. 3.4 and 3.5, we obtain the two W channels as W
(1)
2 and W

(2)
2 :

W
(1)
2 = W (y1, y2 | u1)

W
(2)
2 = W (y1, y2, u1 | u2)

(3.6)

14

1 2 3 4 5 6 7 8

Bit position (sorted)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
 o

f
E

ra
s
u
re

(a) N = 8, ϵ = 0.5

10 20 30 40 50 60

Bit position (sorted)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
 o

f
E

ra
s
u
re

(b) N = 64, ϵ = 0.5

20 40 60 80 100 120

Bit position (sorted)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
 o

f
E

ra
s
u
re

(c) N = 512, ϵ = 0.5

2000 4000 6000 8000 10000 12000 14000 16000

Bit position (sorted)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
 o

f
E

ra
s
u
re

(d) N = 16384, ϵ = 0.5

Figure 3.7: Probability of erasure for each bit position for N = 8, 64, 512, 16384.

From Eqn. 3.6, it is clear that y1, y2 should be used to decode u1. The decoding

table can be shown as:
y1 y2 û1

u1 ⊕ u2 u2 u1

? u2 ?

u1 ⊕ u2 ? ?

? ? ?

(3.7)

where y1 = u1 ⊕ u2, y2 = u2. From the table, only if both y1 and y2 are known, u1

can be decoded successfully. Those probabilities are summarized below:

W (y1, y2 | u1) =





(1− ϵ)2 with (u1 ⊕ u2, u2)

ϵ(1− ϵ) with (? , u2)

(1− ϵ)ϵ with (u1 ⊕ u2, ?)

ϵ2 with (? , ?)

(3.8)

15

The probability that u1 is correctly decoded is: (1− ϵ)(1− ϵ) = (1− ϵ)2.

For decoding u2, y1, y2, u1 should be used. Since u1 is always known, the decoding

table of u2 is:

y1 y2 u1 û2

u1 ⊕ u2 u2 u1 u2

? u2 u1 u2

u1 ⊕ u2 ? u1 u2

? ? u1 ?

(3.9)

Those probabilities are summarized below:

W (y1, y2u1 | u2) =





(1− ϵ)2 with (u1 ⊕ u2, u2, u1)

ϵ(1− ϵ) with (? , u2, u1)

(1− ϵ)ϵ with (u1 ⊕ u2, ?, u1)

ϵ2 with (? , ?, u1)

(3.10)

The probability that u2 is correctly decoded is: 1− ϵ2.

Since the range of ϵ is always [0, 1] so that (1− ϵ)2 ≤ 1− ϵ2. The smaller the value

of ϵ, the more significant the difference between W
(1)
2 and W

(2)
2 .

Channel polarization gives a way to design a polar code. The basic idea is that

according to the different reliability of the splitting sub-channels, the more reliable

K channels are used to transmit useful information and the less reliable N − K

channels are frozen to a fixed value.

3.2 Encoding

Polar codes transmit K information bits in a block length N code. Polar code

encoding will polarize the channel into reliable and unreliable sub-channels. So that

K information bits will be transmitted on the most reliable K sub-channels. The

remaining N −K channels are unreliable are usually set to a fixed value.

Given N = 2n, n ≥ 1 and information bits indices I ⊆ {1, 2, 3, . . . , N}, a polar

code is the linear block code with codewords generated by I that can be obtained

by a generator matrix:

GN = BN · F⊗n,

16

where BN is the bit-reversal permutation matrix and F⊗n denotes the n-th K Kro-

necker power of F. Kronecker powers are defined by A⊗n ≜ A⊗A⊗n−1 = A⊗n−1⊗A.

For n = 1, 2, 3 that is N = 2, 4 and 8, F and its Kronecker powers are given as:

F = F⊗1 =

[
1 0

1 1

]
, F⊗2 =




1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1



,

F⊗3 =




1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1




.

For the Kronecker product, A ⊗ B differs from B ⊗ A. By using reverse shuffle

matrices, the order of rows and columns in A⊗B can be rearranged into B⊗A. In

particular, let A be a 2× 2 matrix and B be an (N/2)× (N/2) matrix, then

B⊗ A = ST
2,N/2(A⊗ B)S2,N/2

= RN(A⊗ B)RT
N .

(3.11)

From Eqn. 3.11, it is clear that RN = ST
2,N/2. RN denotes the N ×N reverse shuffle

permutation matrix defined by:

(s1, s2, . . . , sN)RN = (s1, s3, . . . , sN−1, s2, s4, . . . , sN) .

17

For N= 2, 4 and 8, RN is shown as:

R2 =

[
1 0

0 1

]
,

R4 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



,

R8 =




1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1




.

In the permutation matrix, only one 1 in each column and one 1 in each row,

all the other elements are 0. The permutation matrix for bit-reversal can be found

recursively by:

BN = RN ·
(
I2 ⊗BN/2

)
= RN

[
BN/2 0

0 BN/2

]
, (3.12)

where B2 = I2 and RN is the reverse shuffle, that is RN = Bt
N .

For N= 2, 4, 8, bit-reversal permutations BN and reverse shuffle RN is shown as:

B2 =

[
1 0

0 1

]
,

B4 = R4 · (I2 ⊗B2) =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



·




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



,

18

B8 = R8 · (I2 ⊗B4) =




1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1




.

For the code length N , given an input sequence u = (u1, u2, u3, . . . , uN), the code-

word x can be generated by:

x = u ·GN ,

where GN denotes the generator matrix.

• Encoding Example

To design a P(8, 4,F) polar code, F= {5, 3, 2, 1} and I = F c = {8, 7, 6, 4}
(unsorted). The information set of the input sequence is uI = (u8, u7, u6, u4).

The generator matrix of P(8, 4,F) is:

G(8,4) =




1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0




− g8

− g7

− g6

− g4

The original generator matrix of N = 8 polar code is:

G8 =




1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1




.

19

The codeword x can be obtained by:

x = uN
1 ·GN or uI ·G(8,4)

The encoding process can be efficiently realized with O(N logN) exclusive or (XOR)

complexity [2].

3.2.1 Information Bit Selection

As we mentioned already, to construct polar codes, selecting a set of the most

reliable bit positions is necessary. One possibility for the construction is to measure

the reliability of a channel by the Bhattacharyya parameter that we introduced in

Section 3.1. However, as was expained at Eqn. 3.3, for the local transformation of

rate and reliability, equality holds iff W is a BEC. For any other channel, to use the

Bhattacharyya parameter measure the reliability of a channel, we have to give an

approximation of Z(W) such as:

• For a BSC with error probability p, Z(W) = 2
√
(1− p)p

• For an AWGN with noise variance σ2, Z(W) = e−
1

2σ2

By using the approximation, sometimes, it does not give a precise calculation. De-

sign of polar codes using density evolution was first described by Mori and Tanaka [9]

in 2009. Instead of using an approximation, density evolution gives probability dis-

tribution for each bit position under SC decoding. These distributions can be used

to obtain decoder error rates. Then, positions with lower error rates can be selected

as information bits.

For the general decoder, density evolution is a recursive distribution for the dis-

tribution of the messages. Density evolution provides a probability distribution for

each bit position; this method can achieve good performance. In this work, since

we design short block-length code, it is reasonable to use density evolution.

Assume that an all-zeros coderword is transmitted over a symmetric channel. Let

the probability density function of the memoryless channel LLR message be a
(1)
1 (x).

20

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(a) 8th channel

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(b) 7th channel

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(c) 6th channel

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(d) 4th channel

Figure 3.8: Good channels.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(a) 1st channel

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(b) 2nd channel

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(c) 3rd channel

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(d) 5th channel

Figure 3.9: Bad channels.

The densities may be calculated recursively using the polar code structure by:

a
(2j)
2N (x) =

(
a
(j)
N ⋆ a

(j)
N

)
(x)

a
(2j−1)
2N (x) =

(
a
(j)
N � a

(j)
N

)
(x)

(3.13)

for j = 1, 2, . . . , N where ⋆ is standard convolution for the variable node and � is

the specific check node convolution operation. For a block length N polar code,

given positions 1 to j − 1 are correct, the probability of error in position j can

be calculated by a
(j)
N (x) = Pr

(
Lj = x | ûj−1

1 = 0
)
. a

(j)
N (x) is used to make a hard

decision in position j. Then, the probability of error in position j can be obtained

by:

pj =

∫ 0

−∞
a
(j)
N (x)dx. (3.14)

Using the values of pj, K positions with smallest values can be selected to be infor-

mation bits I and the remaining N −K bits are set to frozen bits.

Fig. 3.8 and 3.9 show an example of good channels and bad channels of code

length N = 8 with BPSK modulation under AWGN channel with noise variance

σ = 0.6. By observing the shaded part, the error probability of each channel can be

also observed.

21

3.3 Decoding

Polar codes provably achieve the symmetric capacity of binary input discrete mem-

oryless channels with SC decoding. However, SC decoding is a greedy algorithm.

For each layer of the code tree, only the locally optimal path is searched for the next

layer. At finite code length, due to incomplete channel polarization, there are still

some information bits that cannot be decoded correctly. In particular, polar codes of

short block length do not give an efficient performance. To address this issue, some

improved decoding algorithms have been proposed, such as successive cancellation

list (SCL) decoding [10], successive cancellation flip (SCF) decoding [11], successive

cancellation stack (SCS) decoding [12], etc. As well, polar codes can be improved by

concatenating cyclic redundancy check (CRC) bits. Using ordered statistic decoding

(OSD) [13] to decode polar codes is described in [14], which can also improve the

performance of polar codes.

3.3.1 Successive Cancellation (SC) Decoding

Arikan described a low-complexity decoding algorithm, SC decoding of polar codes in

[2]. From the polar coding principle, the main idea is to select polarization channels.

In this work, we use density evolution to obtain the probability distribution for each

position. Then, the channel selection is actually based on the error rate for each

position. As we mentioned in Sec 3.1.1, for any n ≥ 0, N = 2n, 1 ≤ i ≤ N , the

polarization channel transfer probability function was given by:

W
(2i−1)
2N

(
y2N1 , u2i−2

1 | u2i−1

)

=
∑

u2i

1

2
W

(i)
N

(
yN1 , u2i−2

1,o ⊕ u2i−2
1,e | u2i−1 ⊕ u2i

)
·W (i)

N

(
y2NN+1, u

2i−2
1,e | u2i

)

W
(2i)
2N

(
y2N1 , u2i−1

1 | u2i

)

=
1

2
W

(i)
N

(
yN1 , u2i−2

1,o ⊕ u2i−2
1,e | u2i−1 ⊕ u2i

)
·W (i)

N

(
y2NN+1, u

2i−2
1,e | u2i

)

(3.15)

According to the transfer probability function, each polarization channel is not inde-

pendent of each other, but has a definite dependency relationship: the polarization

channel with a larger channel number depends on all the polarization channels with

22

channels with smaller numbers. In other words, the decoder makes a hard decision

for bit ui using all the previous estimates û1, û2, . . . , ûi−1 as well as the entire received

sequence y = (y1, . . . , yN). Decoding begins by making an estimate û1 ∈ {0, 1} us-

ing the received sequence y. Then the decoder makes an estimate û2 ∈ {0, 1} using

û1 and y. Successive cancellation decoder proceeds in this way until it estimates

ûN using û1, . . . , ûN−1 and y. Frozen bits are set to a fixed value and do not need

to be estimated. Based on this dependency between the polarization channels, the

SC decoding algorithm decodes the individual bits assuming that the results of the

previous decoding steps are correct.

Given yN1 and estimates ûi−1
1 of ui−1

1 , the SC decoding algorithm attempts to

estimate ui. This can be implemented by computing the following log-likelihood

ratios (LLRs):

L
(i)
N

(
yN1 , ûi−1

1

)
= log

W
(i)
N

(
yN1 , ûi−1

1 | ui = 0
)

W
(i)
N

(
yN1 , ûi−1

1 | ui = 1
) (3.16)

The LLR can be computed recursively by:

L
(2j−1)
N (yN1 , û2j−2

1) = 2 tanh−1

(
tanh(

αN,j

2
) · tanh(βN,j

2
)

)

L
(2j)
N (yN1 , û2j−1

1) = (−1)û2j−1αN,j + βN,j

(3.17)

where

αN,j = L
(j)
N/2(y

N/2
1 , û2j−2

1,even + û2j−2
1,odd),

βN,j = L
(j)
N/2(y

N
N/2+1, û

2j−2
1,even).

Then the hard decision of ûi is equivalent to:

ûi

(
yN1 , ûi−1

1

)
=





0, if L
(i)
N

(
yN1 , ûi−1

1

)
≥ 0

1, if L
(i)
N

(
yN1 , ûi−1

1

)
< 0

(3.18)

or

ûi

(
yN1 , ûi−1

1

)
= δ

(
L
(i)
N

(
yN1 , ûi−1

1

))
=

1

2
(1− sign(L

(i)
N

(
yN1 , ûi−1

1

)
)) (3.19)

The SC decoding algorithm uses the LLR as the decision criterion. It performs

23

u4 u4

u3

u4 u4

u3

u4 u4

u3

u4 u4

u3

u2 u2

u1
0

1

Figure 3.10: SC decoding tree structure.

a hard decision on each bit, then decodes bit-by-bit. As the code length tends to

infinity, each information bit is decoded correctly as each split channel approaches

complete polarization (its channel capacity is either 0 or 1), which can theoretically

make polar codes reach the symmetric channel capacity I(W). In addition, the

complexity of the SC decoder is only O(N logN). However, with finite code lengths,

due to incomplete channel polarization, some information bits cannot be decoded

correctly.

Consider SC decoding on a tree structure as Fig. 3.10 shows. The SC decoder

only selects the optimal branch and use the estimated value to decode the next

layer. However, when an decoding error occurs in the (i − 1)th layer, the error

will be propagated to the ith layer. Then SC decoder continues decoding the rest

layers by using the error; that is the most erroneous frames are due to one wrong

decision. Therefore, polar codes using SC decoding do not perform as efficiently as

other codes for finite code lengths.

SC Decoding Example

• Construct a P(4, 2, [1, 2]) binary polar code with input sequence:

u = [0, 0, 1, 0].

Note that: we froze the first two bits to 0.

24

• The codeword is obtained by:

x = mod2(u ·G4) = [1, 1, 0, 0].

• Then x is transmitted over an AWGN channel with noise variance σ2 = 0.1:

y = [1.2119, 1.2150, −0.1108, 0.0914].

• From Fig. 3.5, we use L(u1) to denote the LLR value at position u1 and û1 to

denote the estimated information of u1. The the LLR of y is:

L(y) = [−7.1190, −7.1500, 6.1080, 4.0860].

• Since F = [1, 2], [û1, û2] = [0, 0]. These values was propagated backward to

obtain [v̂1, v̂3] = [0, 0].

• By Eqn. 3.17,

L(v1) = 2 tanh−1

(
tanh(

L(y1)

2
) · tanh(L(y2)

2
)

)
= 6.4412

L(v2) = (−1)v̂1L(y1) + L(y2) = −14.2690

L(v3) = 2 tanh−1

(
tanh(

L(y3)

2
) · tanh(L(y4)

2
)

)
= 3.9617

L(v4) = (−1)v̂3L(y3) + L(y4) = 10.1940

(3.20)

• Similarly, L(u3) can be obtained by L(v2) and L(v4) which gives L(u3) =

−10.1772. By the hard decision shows in Eqn. 3.18, û3 = 1.

• Using û3, L(v2) and L(v4), L(u4) = 24.4630, so that û4 = 0.

• We obtained û = [0, 0, 1, 0] that is û = u, BER=0 and WER=0.

The decoding processing on a tree structure can be shown as Fig. 3.11 that ex-

plains SC decoder decodes from a root node. It use the hard decision value of last

layer to decode bit-by-bit.

25

u1

u2

u3

u4

(a) û1 is frozen to 0.

0

1

(b) û2 is frozen to 0.

u1

u2

u3

u4

(c) Since L(u3) = −10.1772, û3 = 1. (d) Since L(u4) = 24.4630, û4 = 0.

Figure 3.11: Tree Structure of SC decoding example.

3.3.2 Successive Cancellation List (SCL) Decoding

SCL decoding is an improved decoding algorithm. To address the shortcomings of

the SC decoding algorithm, an immediate improvement is to increase the number of

candidate paths allowed to be retained after each layer of path search. SC decoding

allows only the best path to be selected for the next layer; for SCL, it will enable the

selection of L paths for the next layer, where L ≥ 1. Like the SC decoding algorithm,

SCL decoding still starts from the root node of the code tree and proceeds to the

leaf node layer by layer. The difference is that after each layer of expansion, SCL

decoding considers both possible values ui = 0 and ui = 1 that is as many successor

paths as possible are retained. To avoid growing the number of paths exponentially

at each layer, L upper bounds the number of the most reliable paths are preserved.

The path metric (PM) based on LLRs is used to measure the reliability of a path.

Let ûi[l] denote the estimation of ui in the l-th path, where l ∈ {1, 2, . . . , L} and

i ∈ {1, 2, . . . , N}. PM at ûi[l] can be approximated by:

PM
(i)
l =




PM

(i−1)
l +

∣∣∣L(i)
N [l]

∣∣∣ if ûi[l] ̸= ûi[l] = δ
(
L
(i)
N [l]

)

PM
(i−1)
l otherwise

(3.21)

26

where PM
(1)
l = 0 and δ(x) = 1

2
(1 − sign(x)) as we mentioned in Eqn. 3.19. Then

the hard decision of ûi is equivalent to:

ûi = δ
(
L
(i)
N

(
yN1 , ûi−1

1

))
(3.22)

After completing the path expansion in one layer, the L entries with the smallest

PM values are selected and saved in a list, waiting for the expansion in the next

layer. As Eqn. 3.21 shows, the path of the less likely bit value is penalized by∣∣∣L(i)
N [l]

∣∣∣ of that bit. The L paths with smallest PMs are chosen from 2L paths at

the ith step and stored in ascending order from PM
(i)
1 to PM

(i)
L . After decoding

the N -th bit, the path with the smallest path metric PM
(N)
1 is selected as the

estimated codeword. Therefore, the algorithm is called successive cancellation list

decoding, and the parameter L is called the list-size. When L = 1, the SCL decoding

degenerates to the SC decoding algorithm; when L ≥ 2K, the SCL decoding is

equivalent to the maximum likelihood decoding. SCL decoding with list size L

complexity scales as O(LN logN).

The term L(i) is used to refer to the set of candidate paths corresponding to the

ith level of code tree T in the SCL decoder. di1 = (d1, d2, . . . , di) ∈ T is defined as

decoding path where di ∈ {0, 1}, i ∈ I consists of i branches from level 1 to level i.

SCL decoding step can be explained as:

• Step 1 Initialization: The candidate path list is initialized to an empty

path, and the corresponding PM is set to 0 that is L(1) = {∅}, PM (1) = 0.

• Step 2 Extension: For each node in the list, generate 2 sequences of length

i corresponding to the estimation of ûi = 0 or 1 that can be explained as:

L(i) =
{(

di−1
1 , di

)
| di−1

1 ∈ L(i−1), di ∈ {0, 1}
}

(3.23)

for each di1 ∈ L(i) update the PM.

• Step 3 Comparison: After step 2, if the number of paths in the list does not

reach L paths, skip this step. Otherwise, save the first L paths with smallest

PM values and delete the remaining paths.

27

CRC Channel SCL
Decoder

k bits K=k+m bits N bitsPolar
Encoder

Candidate seq

CRC check

DeCRC

CA-SCL Decoder

u u’ x

Figure 3.12: Polar coding and CRC-aided decoding schemes.

• Step 4 Selection: Repeat step 2 and 3 until the Nth level of the code tree.

Sort the candidate paths by PM values, select the 1st sequence as the output.

In addition, when the SCL decoding fails to decode, that is: û ̸= u or x̂ ̸= x. The

correct path might still be in the list but not the most likely path. [15] proposed

a combination of cyclic redundancy check aided successive cancellation (CA-SCL)

decoder to further improve the performance of polar codes. The main idea is to add

anm-bit cyclic redundancy check (CRC) code as an additive code to the information

bits. It can help the decoder to determine if error exist and find the correct path

among the L paths.

As shown in Fig. 3.12, assume u = (u1, . . . , uk) is the information bits to be

transmitted. Append m-bit CRC to u hence the data fed to the encoder is u′ =

(u1, . . . , uk, p1, . . . , pm), and p = (p1, . . . , pm) denotes the generated CRC bits. En-

coding u′ as information bits of a polar code and transmit over a channel. The SCL

decoder will not output an û as the estimation, but outputs L candidate sequences

û1, . . . , ûL into CRC detector. The CRC detector checks these sequences and gives

check results determined the codeword.

For CA-SCL decoding, the only difference from SCL decoding is the 4th step:

• Step 4 CRC check and Selection: Repeat step 2 and 3 until the Nth

level of the code tree. Sort the candidate paths by PM values and perform

CRC check sequentially. The 1st path that passes CRC check is the estimated

sequence output by the decoder. If no path passes CRC check, the 1st path

is used as the decoder output estimation sequence.

However, by adding CRC bits, it increases the polar code rate R from k/N to

(k + m)/N that means at low SNR the performance of CA-SCL might not better

28

than SCL. In this thesis, P (N, k + m) denotes a polar code of length N with k

information bits concatenated with m-bit CRC.

3.3.3 Ordered Statistic Decoding (OSD)

In [13], ordered statistics decoding (OSD) is introduced as a general method for

decoding a linear binary block code. It can be considered as an simplified of the

maximum likelihood (ML) decoder for linear block codes. OSD is a type of most

reliable independent position (MRIP) processing decoding algorithm. For a code

which has K information bits, it performs bit-flips over at most K bits. Due to the

high complexity, it is efficient only for short block length codes. In this section, we

mainly talk about OSD for binary polar codes that has been described in [14].

Let uK
1 be an information sequence of P(N,K,F) code. After encoding, transmit

the codeword xN
1 over the AWGN channel. The code can be represented by G(N,K)

that is an K × N generator matrix. For i = 1, . . . , N , the LLRs of each bit Losd
i

based on the channel output sequence y are given by:

Losd
i = log

W (yi | 0)
W (yi | 1)

=
1− 2yi
2σ2

(3.24)

The OSD algorithm requires to find the position of the MRIP from the columns of

G due to absolute values of LLR in Losd and a reprocessing stage. Here, position

with great absolute value of LLR means more reliable.

To find the MRIP, first, reorder y according to the reliability in descending order

that can be representated by:

ỹ = λ · y (3.25)

where λ is a permutation function corresponding to the reordering.

Apply the same ordering on the columns of G, i.e., G′ = λ ·G in order to obtain

the first K positions of linearly independent columns by Gaussian elimination. Then

by performing elementary row operations on G′, we obtained the systematic form

of G′ that can be represented:

G̃ = [IK | A] (3.26)

29

where IK is the K × K identity matrix, and A is a K × (N − K) matrix. The

first K columns of G̃ stand for the most reliable independent basis columns of G

correspond to the indices in Losd.

Perform permutation λ of Losd that L̃osd = λ · Losd. For the first K values that

is 1 ≤ i ≤ K, L̃osd
i can be used to obtain an initial estimation ĉK1 by using hard

decisions:

ĉi =




0, L̃osd

i ≥ 0

1, else

(3.27)

Then, a hard decision codeword can be obtained by âN1 = ĉK1 G1. The estimated

codeword can be evaluated by x̂N
1 = λ−1 · âN1 .

To achieve better performance, after we obtained x̂ and û, defined an l-order OSD

that allows at most l reprocessing stage where 0 ≤ l ≤ K. For each 0 ≤ i ≤ l, flip

all possible combinations of i bits in û. The term E refers to a set of error patterns.

The cardinality of error patterns |E| is
∑l

i=0

(
K
i

)
. For each error pattern e,

re-encode û ⊕ e using G̃, and calculate the Euclidean distance between the BPSK

representation of the resulting codeword m and the permuted channel output vector

ỹ by:

d
(
mN

1 , ỹ
N
1

)
=

N∑

i=1

(
1 + ỹ2i

)
− 2

N∑

i=1

mi ỹi (3.28)

where for a given y,
∑N

i=1 (1 + ỹ2i) is a constant. After calculating the Euclidean

distances for all possible codewords, select the permuted codewordm with minimum

Euclidean distance from ỹ, and inversely permute m by x̂ = λ−1 · m. Finally,

the OSD(l) gives x̂ as an estimation of the transmitted codeword. Order-l OSD

decoding complexity is proportional to
∑l

i=0

(
K
i

)
. For OSD using different order,

the performances are clearly different.

OSD Decoding Example

Given a example for P(128, 7,F) code transmit over an AMGN channel with noise

variance σ2 under OSD with different order. (AMGN channel is introduced in

Sec.5.1.1.) The performances shows in Fig.3.13. The information set we use is

I = [128, 127, 126, 124, 120, 112, 96].

30

4 4.5 5 5.5 6 6.5 7 7.5 8

1/
2
 dB

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

W
E

R

Mod-2 Channel OSD(1,0) N=128 Info=7

Mod-2 Channel OSD(1,1) N=128 Info=7

Mod-2 Channel OSD(1,2) N=128 Info=7

Mod-2 Channel OSD(1,3) N=128 Info=7

Mod-2 Channel OSD(1,4) N=128 Info=7

Figure 3.13: On a AMGN channel with noise σ2, P(128, 7,F)
under different order of OSD.

31

Chapter 4

Construction D Lattices

4.1 Lattices

In wireless communications, lattices can implement shaping technique efficiently to

obtain about 1.53 dB shaping gain on the AWGN channel and can be used for

physical layer network coding scheme compute and forward.

An n-dimensional lattice Λ is a discrete additive subgroup of Rn and can be

represented by Λ ⊂ Rn. In an n-dimensional space, a lattice point x is a set of

points given by integral, linear combination of up to n linearly independent basis

vectors, and can be represented as:

x = g1b1 + g2b2 + · · ·+ gnbn (4.1)

where gi are linearly independent basis vectors and bi are integers.

Any lattice Λ in Rn is spanned by some n× n generator matrix GΛ such that:

Λ = {x = GΛb : b ∈ Zn} (4.2)

where the generator matrix GΛ is:

GΛ =




| | |
g1 g2 · · · gn

| | |


 (4.3)

32

From the definition, it is clear that lattices are codes based on the real field Rn but

not binary. It makes lattices closer to the real physical channel.

Lattices can be formed by different constructions [6] [7] such as Construction A,

Construction B and Construction D. While Construction A makes lattices from one

code but has limitation that binary codes are not practical at high block length.

Construction B is a special case of Construction D. The subject of this thesis is to

form polar code lattices using Construction D. Construction D forms lattices from

nested binary codes using a multilevel construction. Furthermore, Construction D

allows decoding lattices using binary code decoders that significantly reduce the

decoding complexity.

4.2 Construction D

Fig. 4.1 [16] shows the multi-level of Construction D lattices which are formed by

nested binary codes.

4.2.1 Nested Binary Code

For a ≥ 1, C0 ⊆ C1 ⊆ · · · ⊆ Ca = Fn
2 are nested binary code if g1,g2, . . . ,gki span

Ci, where g1,g2, . . . ,gn is a basis for Fn
2 that can be written as an n× n matrix:

G̃ =




| | | | |

g1 g2 · · · gk0 · · · gk1 · · · gn

| | | | |




(4.4)

Let G̃0, · · · , G̃a−1, G̃ be generator matrices of binary sub-code C0, C1, · · · , Ca.

Table. 4.1 gives several generator matrices that shows C0 ⊆ C1 ⊆ · · · ⊆ Ca.

4.2.2 Construction D Lattice Encoding and Decoding

G̃ can be used to construct the generator matrix of Construction D as a specific

basis for Fn
2 with k0, k1, . . . , ka−1. The Construction D generator matrix GΛD

is

33

Table 4.1: Generator matrices for nested binary code.

Code Ci Generator matrix G̃i

C0 G̃0 = [g1,g2, . . . ,gk0]

C1 G̃1 = [g1,g2, . . . ,gk0 , . . . ,gk1]

· · · · · ·

Ca G̃a = [g1,g2, . . . ,gk0 , . . . ,gk1 , . . . ,gn]

given by:

GΛD
= G̃ ·D−1, (4.5)

where D is a diagonal matrix with diagonal entries dii :

dii = 2−k for rk−1 ≤ i ≤ rk (4.6)

with k = 0, 1, . . . , a.

From Fig. 4.1, basically, Construction D forms a lattice from two or more codes

that a ≥ 2. The Construction D lattice ΛD consists of all vectors of the form can

be represented by:

x =
a−1∑

i=0

2iG̃i · ui + 2aG̃ · z (4.7)

where z ∈ Zn and ui = (u1,i, u2,i···, uk,i)
t, i ∈ {0, 1, ..., a − 1} and uj,i ∈ {0, 1} are

information bits. A lattice point x can be also represented as:

x = x0 + 2x1 + · · ·+ 2a−1xa−1 + 2az. (4.8)

As we mentioned before, for lattices, operations are over the real field but not the

binary field. For Construction D lattices ΛD, the volume V (ΛD) = | det(GΛD
)| is

defined:

V (ΛD) = 2aN−N
∑a−1

i=0 Ri . (4.9)

x ∈ ΛD is transmitted over an AWGN channel with w ∼ N (0, σ2) and the received

sequence is y refers to

y = x+w.

34

Figure 4.1: Multilevel construction of Construction D.

By using the unconstrained power channel, the lattice is constrained by the volume

of the Voronoi region. The volume-to-noise ratio (VNR) is

VNR =
V (ΛD)

2/N

2πeσ2
. (4.10)

so that VNR is the distance to the Poltyrev limit.

Before decoding the component code, perform a modulo operation to preserve

distances to (0, 1). The modulo operation can be represented by:

mod∗ (yi) = |mod2 (yi + 1)− 1| (4.11)

where mod2 refers to a modulo-2 function.

After performing the modulo operation, the result y′i is the input to binary code

decoder Deci and then, obtain the estimated information sequence ûi. By using

binary code decoder, the decoding complexity of lattice can be reduced. Re-encode

ûi to a codeword x̂i. Again, either the encoding or the re-encoding is over the real

field. Then propagate x̂i to next level and obtain yi by yi+1 =
yi−x̂i

2
. The estimated

lattice point can be represented by:

x̂ = x̂1 + 2x̂2 + · · ·+ 2a−1x̂a−1 + 2aẑ. (4.12)

From the decoding processing we introduced above, Construction D start to de-

35

code C0, then by using the estimation of last level, then continue decoding layer-

by-layer. This processing can be interpreted as successive cancellation decoding but

not successive cancellation decoding for polar code we introduced before.

Construction D forms lattices from nested binary codes and allows decoding using

binary code decoder. However, how to choose the code rate for each component code

is a challenge we have to solve.

4.2.3 Design of Construction D Lattices

Construction D lattices are formed by nested binary codes C0, C1, · · · , Ca. For a

Ci (n, ki) code, ki is the dimension dim(Ci) and ri = n− ki refers to the number of

rows in parity check matrix. Code rate can be represented by Ri = ki/n. It also

has minimum distance di. Then, the code nesting gives all of the code rate, the

dimension, the number of rows in parity check matrix and the minimum distance

are also nested, that is:

R0 ≤ R1 ≤ · · · ≤ Ra

k0 ≤ k1 ≤ · · · ≤ ka

r0 ≤ r1 ≤ · · · ≤ ra and

d0 ≤ d1 ≤ · · · ≤ da

(4.13)

From the properties above, Construction D lattices can be designed by following

various rules such as:

• Balanced distances rule

Balanced distances rule uses the minimum distance d in the design and have

systematic approach for moderate dimension. It has been used to design the

Barnes-Wall lattice Λ16, BCH code lattices [17], etc. However, it is hard to

find the minimum distance for long block length codes. Designing polar code

lattices using minimum distance is a topic for future research.

• Capacity design rule

Capacity design rule allows selecting the component codes that achieve the

capacity of additive mod-2 Gaussian noise (AMGN) channel on each layer of

Construction D. It is reasonable to use capacity design rule in high dimen-

36

sion lattices [5], but in this work we consider to design lattices of moderate

dimension.

• Probability of error design rule

Probability of error design rule uses the probability of error on the multilevel

structure in the design. In this work, we use equal error probability rule which

is actually use the probability of error in the design. On each level, the error

probability is set to be equal so that the each level contributes equally to the

union bound of the lattice error probability. Using density evolution can avoid

doing a lot of simulations. It will be introduced more detail in Sec. 5.1.1

37

Chapter 5

Polar Code Lattices

In this chapter, we introduce proposed methods in designing polar code lattices.

Then we show how we design the polar code lattices and give a design example to

introduce design methods in more detail. Finally, simulation results are shown in

Sec. 5.4.

5.1 Design Methods

5.1.1 Equal Error Probability Rule

The equal error probability rule was given byWachsmann et al. [8] and can be used to

design multilevel codes. Due to the multilevel structure of Construction D as Fig. 4.1

shows, the estimate in the ith level is used to decode the codeword in i+ 1th level,

so that level i+1 is decoded successfully only if level i gives the correct estimation.

Under the assumption that all levels are decoded successfully, each level can be

treated as coding over independent channels. Fig. 5.1 shows the construction with

the equivalent encoder, channel and decoder for multilevel decoding of Construction

D. On each equivalent layer, each channel can be seen as AMGN channel with noise

w0 ∼ N (0, σ2), w1 ∼ N (0, s1), w2 ∼ N (0, s2), · · · , wi ∼ N (0, si) for i = 1, 2, · · · .
It is clear that si = σ2/4i. Then, Pe(Ci, si) denotes the decoding error probability

on each level.

Nested binary codes C0, C1, · · · , Ca−1 form a Construction D lattice, the error

38

Enc0 Mod-2 Dec0 Enc0

<latexit sha1_base64="iD0F7rGKaaB7ButVVSiOJWZuooc=">AAAB/nicbVBPS8MwHE3nvzn/VcWTl+AmeBrtDupx6MXjBDcHay1plm5hSVqSVChl4Ffx4kERr34Ob34b060H3XwQeLz3+/F7eWHCqNKO821VVlbX1jeqm7Wt7Z3dPXv/oKfiVGLSxTGLZT9EijAqSFdTzUg/kQTxkJH7cHJd+PePRCoaizudJcTnaCRoRDHSRgrso4bHkR6HUZ5NH7xEUk4CtxHYdafpzACXiVuSOijRCewvbxjjlBOhMUNKDVwn0X6OpKaYkWnNSxVJEJ6gERkYKhAnys9n8afw1ChDGMXSPKHhTP29kSOuVMZDM1lkVYteIf7nDVIdXfo5FUmqicDzQ1HKoI5h0QUcUkmwZpkhCEtqskI8RhJhbRqrmRLcxS8vk16r6Z433dtWvX1V1lEFx+AEnAEXXIA2uAEd0AUY5OAZvII368l6sd6tj/loxSp3DsEfWJ8/5EiVbw==</latexit>

y0
1

<latexit sha1_base64="pms016bP8H0kps8D1xBW0k60QjU=">AAAB/nicbVBPS8MwHE3nvzn/VcWTl+AmeBrtDupx6MXjBDcHay1plm5hSVqSVChl4Ffx4kERr34Ob34b060H3XwQeLz3+/F7eWHCqNKO821VVlbX1jeqm7Wt7Z3dPXv/oKfiVGLSxTGLZT9EijAqSFdTzUg/kQTxkJH7cHJd+PePRCoaizudJcTnaCRoRDHSRgrso4bHkR6HUZ5NH7xEUk4CpxHYdafpzACXiVuSOijRCewvbxjjlBOhMUNKDVwn0X6OpKaYkWnNSxVJEJ6gERkYKhAnys9n8afw1ChDGMXSPKHhTP29kSOuVMZDM1lkVYteIf7nDVIdXfo5FUmqicDzQ1HKoI5h0QUcUkmwZpkhCEtqskI8RhJhbRqrmRLcxS8vk16r6Z433dtWvX1V1lEFx+AEnAEXXIA2uAEd0AUY5OAZvII368l6sd6tj/loxSp3DsEfWJ8/4sOVbg==</latexit>

y0
0

<latexit sha1_base64="8QRL5jM+iQNbTQWLSneY0CR7ra4=">AAAB+HicbVC7TsMwFL0pr1IeLTCyWLRITFXSARgrWBiLRB9SG0WO67RWHSeyHaQQ9UtYGECIlU9h429w2gzQciRLR+fcq3t8/JgzpW372yptbG5t75R3K3v7B4fV2tFxT0WJJLRLIh7JgY8V5UzQrmaa00EsKQ59Tvv+7Db3+49UKhaJB53G1A3xRLCAEayN5NWqjVGI9dQPsnTuOY2KV6vbTXsBtE6cgtShQMerfY3GEUlCKjThWKmhY8fazbDUjHA6r4wSRWNMZnhCh4YKHFLlZovgc3RulDEKImme0Gih/t7IcKhUGvpmMk+pVr1c/M8bJjq4djMm4kRTQZaHgoQjHaG8BTRmkhLNU0MwkcxkRWSKJSbadJWX4Kx+eZ30Wk3nsunct+rtm6KOMpzCGVyAA1fQhjvoQBcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDm/mSZg==</latexit>y1

<latexit sha1_base64="qUN/7KuuTRYCd0uLNVZzDLl4wPM=">AAAB+HicbVC7TsMwFL0pr1IeLTCyWLRITFXSARgrWBiLRB9SG0WO67RWHSeyHaQQ9UtYGECIlU9h429w2gzQciRLR+fcq3t8/JgzpW372yptbG5t75R3K3v7B4fV2tFxT0WJJLRLIh7JgY8V5UzQrmaa00EsKQ59Tvv+7Db3+49UKhaJB53G1A3xRLCAEayN5NWqjVGI9dQPsnTu2Y2KV6vbTXsBtE6cgtShQMerfY3GEUlCKjThWKmhY8fazbDUjHA6r4wSRWNMZnhCh4YKHFLlZovgc3RulDEKImme0Gih/t7IcKhUGvpmMk+pVr1c/M8bJjq4djMm4kRTQZaHgoQjHaG8BTRmkhLNU0MwkcxkRWSKJSbadJWX4Kx+eZ30Wk3nsunct+rtm6KOMpzCGVyAA1fQhjvoQBcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDmnOSZQ==</latexit>y0
<latexit sha1_base64="oFxofRgwLM4RJVAqJ5DSOm+PNf4=">AAAB+HicbVC7SgNBFL0bXzE+smppM5gIVmE3hVoGbSwjmAckyzI7mU2GzD6YhxCXfImNhSK2foqdf+NssoUmHhg4nHMv98wJUs6kcpxvq7SxubW9U96t7O0fHFbto+OuTLQgtEMSnoh+gCXlLKYdxRSn/VRQHAWc9oLpbe73HqmQLIkf1CylXoTHMQsZwcpIvl2tDyOsJkGY6bnv1Cu+XXMazgJonbgFqUGBtm9/DUcJ0RGNFeFYyoHrpMrLsFCMcDqvDLWkKSZTPKYDQ2McUelli+BzdG6UEQoTYV6s0EL9vZHhSMpZFJjJPKVc9XLxP2+gVXjtZSxOtaIxWR4KNUcqQXkLaMQEJYrPDMFEMJMVkQkWmCjTVV6Cu/rlddJtNtzLhnvfrLVuijrKcApncAEuXEEL7qANHSCg4Rle4c16sl6sd+tjOVqyip0T+APr8weUT5Jh</latexit>u0

<latexit sha1_base64="Hy4DPPIVGmdw0j7uDBWLqIYFlQQ=">AAAB+HicbVC7SgNBFL0bXzE+smppM5gIVmE3hVoGbSwjmAckyzI7mU2GzD6YhxCXfImNhSK2foqdf+NssoUmHhg4nHMv98wJUs6kcpxvq7SxubW9U96t7O0fHFbto+OuTLQgtEMSnoh+gCXlLKYdxRSn/VRQHAWc9oLpbe73HqmQLIkf1CylXoTHMQsZwcpIvl2tDyOsJkGY6bnv1iu+XXMazgJonbgFqUGBtm9/DUcJ0RGNFeFYyoHrpMrLsFCMcDqvDLWkKSZTPKYDQ2McUelli+BzdG6UEQoTYV6s0EL9vZHhSMpZFJjJPKVc9XLxP2+gVXjtZSxOtaIxWR4KNUcqQXkLaMQEJYrPDMFEMJMVkQkWmCjTVV6Cu/rlddJtNtzLhnvfrLVuijrKcApncAEuXEEL7qANHSCg4Rle4c16sl6sd+tjOVqyip0T+APr8weV1ZJi</latexit>u1

<latexit sha1_base64="mytWVGlyJvAvxvvKsq0SlsHsWpE=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJB2CsYGEsEm2R2ihyXKe16jiR7YBK1F/CwgBCrPwUNv4NTpsBWk6ydLp7T+98QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYVXEqCe2QmMfyPsCKciZoRzPN6X0iKY4CTnvB5Dr3ew9UKhaLOz1NqBfhkWAhI1gbyber9UGE9TgIs8eZ79Yrvl1zGs4caJW4BalBgbZvfw2GMUkjKjThWKm+6yTay7DUjHA6qwxSRRNMJnhE+4YKHFHlZfPgM3RqlCEKY2me0Giu/t7IcKTUNArMZJ5SLXu5+J/XT3V46WVMJKmmgiwOhSlHOkZ5C2jIJCWaTw3BRDKTFZExlpho01Vegrv85VXSbTbc84Z726y1roo6ynAMJ3AGLlxAC26gDR0gkMIzvMKb9WS9WO/Wx2K0ZBU7R/AH1ucPmOeSZA==</latexit>w1

<latexit sha1_base64="8pmXMAPKTFEPFO7bsQ5iM4+QskA=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJB2CsYGEsEm2R2ihyXKe16jiR7YBK1F/CwgBCrPwUNv4NTpsBWk6ydLp7T+98QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYVXEqCe2QmMfyPsCKciZoRzPN6X0iKY4CTnvB5Dr3ew9UKhaLOz1NqBfhkWAhI1gbyber9UGE9TgIs8eZ79Qrvl1zGs4caJW4BalBgbZvfw2GMUkjKjThWKm+6yTay7DUjHA6qwxSRRNMJnhE+4YKHFHlZfPgM3RqlCEKY2me0Giu/t7IcKTUNArMZJ5SLXu5+J/XT3V46WVMJKmmgiwOhSlHOkZ5C2jIJCWaTw3BRDKTFZExlpho01Vegrv85VXSbTbc84Z726y1roo6ynAMJ3AGLlxAC26gDR0gkMIzvMKb9WS9WO/Wx2K0ZBU7R/AH1ucPl2GSYw==</latexit>w0

<latexit sha1_base64="uQbIeGKkLaaRFNO7n1ApHWHfBXI=">AAAB9HicbVBNTwIxFHzFL8Qv1KOXRjDxRHY5qEeiF4+YCJjAhnRLFxq63bXtkuCG3+HFg8Z49cd489/YhT0oOEmTycx7edPxY8G1cZxvVFhb39jcKm6Xdnb39g/Kh0dtHSWKshaNRKQefKKZ4JK1DDeCPcSKkdAXrOOPbzK/M2FK80jem2nMvJAMJQ84JcZKXrUXEjPyg/RpVi31yxWn5syBV4mbkwrkaPbLX71BRJOQSUMF0brrOrHxUqIMp4LNSr1Es5jQMRmyrqWShEx76Tz0DJ9ZZYCDSNknDZ6rvzdSEmo9DX07mWXUy14m/ud1ExNceSmXcWKYpItDQSKwiXDWAB5wxagRU0sIVdxmxXREFKHG9pSV4C5/eZW06zX3oube1SuN67yOIpzAKZyDC5fQgFtoQgsoPMIzvMIbmqAX9I4+FqMFlO8cwx+gzx/3LpGS</latexit>z

<latexit sha1_base64="QQPl/kEZ+i9hyWLL5UactDjUXqs=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJB2CsYGEsEm2R2ihyXKe16jiR7SBK1F/CwgBCrPwUNv4NTpsBWk6ydLp7T+98QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYVXEqCe2QmMfyPsCKciZoRzPN6X0iKY4CTnvB5Dr3ew9UKhaLOz1NqBfhkWAhI1gbyber9UGE9TgIs8eZ79Qrvl1zGs4caJW4BalBgbZvfw2GMUkjKjThWKm+6yTay7DUjHA6qwxSRRNMJnhE+4YKHFHlZfPgM3RqlCEKY2me0Giu/t7IcKTUNArMZJ5SLXu5+J/XT3V46WVMJKmmgiwOhSlHOkZ5C2jIJCWaTw3BRDKTFZExlpho01Vegrv85VXSbTbc84Z726y1roo6ynAMJ3AGLlxAC26gDR0gkMIzvMKb9WS9WO/Wx2K0ZBU7R/AH1ucPmOqSZA==</latexit>x0

<latexit sha1_base64="0GDGWh8I0bPNYEyMXus+KiMgnlw=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJB2CsYGEsEm2R2ihyXKe16jiR7SBK1F/CwgBCrPwUNv4NTpsBWk6ydLp7T+98QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYVXEqCe2QmMfyPsCKciZoRzPN6X0iKY4CTnvB5Dr3ew9UKhaLOz1NqBfhkWAhI1gbyber9UGE9TgIs8eZ79Yrvl1zGs4caJW4BalBgbZvfw2GMUkjKjThWKm+6yTay7DUjHA6qwxSRRNMJnhE+4YKHFHlZfPgM3RqlCEKY2me0Giu/t7IcKTUNArMZJ5SLXu5+J/XT3V46WVMJKmmgiwOhSlHOkZ5C2jIJCWaTw3BRDKTFZExlpho01Vegrv85VXSbTbc84Z726y1roo6ynAMJ3AGLlxAC26gDR0gkMIzvMKb9WS9WO/Wx2K0ZBU7R/AH1ucPmnCSZQ==</latexit>x1

<latexit sha1_base64="3kJYH4b6RgNBRD87iF4v3sauZA8=">AAACAnicbVDLSsNAFJ3UV62vqCtxM9gKrkrShbosunFZwT6gCWEymbRDJ5MwM1FKCG78FTcuFHHrV7jzb5y0WWjrgQuHc+7l3nv8hFGpLOvbqKysrq1vVDdrW9s7u3vm/kFPxqnApItjFouBjyRhlJOuooqRQSIIinxG+v7kuvD790RIGvM7NU2IG6ERpyHFSGnJM48azgMNyBipzImQGvthlua5ZzVqnlm3mtYMcJnYJamDEh3P/HKCGKcR4QozJOXQthLlZkgoihnJa04qSYLwBI3IUFOOIiLdbPZCDk+1EsAwFrq4gjP190SGIimnka87izPloleI/3nDVIWXbkZ5kirC8XxRmDKoYljkAQMqCFZsqgnCgupbIR4jgbDSqRUh2IsvL5Neq2mfN+3bVr19VcZRBcfgBJwBG1yANrgBHdAFGDyCZ/AK3own48V4Nz7mrRWjnDkEf2B8/gC+dpb/</latexit>bu0

<latexit sha1_base64="lESuNfJfJGUZO/liPQP7sqiUdTc=">AAACAnicbVC7TsMwFHV4lvIKMCEWixaJqUo6AGMFC2OR6ENqoshxnNaq40S2A1RRxMKvsDCAECtfwcbf4LQZoOVIVzo6517de4+fMCqVZX0bS8srq2vrlY3q5tb2zq65t9+VcSow6eCYxaLvI0kY5aSjqGKknwiCIp+Rnj++KvzeHRGSxvxWTRLiRmjIaUgxUlryzMO6c08DMkIqcyKkRn6YPeS5Z9WrnlmzGtYUcJHYJamBEm3P/HKCGKcR4QozJOXAthLlZkgoihnJq04qSYLwGA3JQFOOIiLdbPpCDk+0EsAwFrq4glP190SGIiknka87izPlvFeI/3mDVIUXbkZ5kirC8WxRmDKoYljkAQMqCFZsognCgupbIR4hgbDSqRUh2PMvL5Jus2GfNeybZq11WcZRAUfgGJwCG5yDFrgGbdABGDyCZ/AK3own48V4Nz5mrUtGOXMA/sD4/AHDFJcC</latexit>bx0

<latexit sha1_base64="oQWls81+QPacvMiG/OkvdsYBQJk=">AAACAnicbVC7TsMwFHV4lvIKMCEWixaJqUo6AGMFC2OR6ENqoshxnNaq40S2A1RRxMKvsDCAECtfwcbf4LQZoOVIVzo6517de4+fMCqVZX0bS8srq2vrlY3q5tb2zq65t9+VcSow6eCYxaLvI0kY5aSjqGKknwiCIp+Rnj++KvzeHRGSxvxWTRLiRmjIaUgxUlryzMO6c08DMkIqcyKkRn6YPeS5Z9ernlmzGtYUcJHYJamBEm3P/HKCGKcR4QozJOXAthLlZkgoihnJq04qSYLwGA3JQFOOIiLdbPpCDk+0EsAwFrq4glP190SGIiknka87izPlvFeI/3mDVIUXbkZ5kirC8WxRmDKoYljkAQMqCFZsognCgupbIR4hgbDSqRUh2PMvL5Jus2GfNeybZq11WcZRAUfgGJwCG5yDFrgGbdABGDyCZ/AK3own48V4Nz5mrUtGOXMA/sD4/AHEmpcD</latexit>bx1

<latexit sha1_base64="3pplTaNZDsnN2QNW0ruF3nqSi+c=">AAACAnicbVDLSsNAFJ3UV62vqCtxM9gKrkrShbosunFZwT6gCWEymbRDJ5MwM1FKCG78FTcuFHHrV7jzb5y0WWjrgQuHc+7l3nv8hFGpLOvbqKysrq1vVDdrW9s7u3vm/kFPxqnApItjFouBjyRhlJOuooqRQSIIinxG+v7kuvD790RIGvM7NU2IG6ERpyHFSGnJM48azgMNyBipzImQGvthlua5Zzdqnlm3mtYMcJnYJamDEh3P/HKCGKcR4QozJOXQthLlZkgoihnJa04qSYLwBI3IUFOOIiLdbPZCDk+1EsAwFrq4gjP190SGIimnka87izPloleI/3nDVIWXbkZ5kirC8XxRmDKoYljkAQMqCFZsqgnCgupbIR4jgbDSqRUh2IsvL5Neq2mfN+3bVr19VcZRBcfgBJwBG1yANrgBHdAFGDyCZ/AK3own48V4Nz7mrRWjnDkEf2B8/gC//JcA</latexit>bu1

<latexit sha1_base64="Fie1eqC3amiddz9zacVNqGsOU/E=">AAACAHicbVC7TsNAEFyHVwgvAwUFzYkEiSqyUwBlBA1lkMhDSqzofD4np5zP1t0ZFCw3/AoNBQjR8hl0/A124gISRlppNLOr3R034kxpy/o2Siura+sb5c3K1vbO7p65f9BRYSwJbZOQh7LnYkU5E7Stmea0F0mKA5fTrju5zv3uPZWKheJOTyPqBHgkmM8I1pk0NI9qgwfm0THWySDAeuz6yWOa1ipDs2rVrRnQMrELUoUCraH5NfBCEgdUaMKxUn3birSTYKkZ4TStDGJFI0wmeET7GRU4oMpJZg+k6DRTPOSHMiuh0Uz9PZHgQKlp4Gad+ZFq0cvF/7x+rP1LJ2EiijUVZL7IjznSIcrTQB6TlGg+zQgmkmW3IjLGEhOdZZaHYC++vEw6jbp9XrdvG9XmVRFHGY7hBM7Ahgtowg20oA0EUniGV3gznowX4934mLeWjGLmEP7A+PwBkESWYQ==</latexit>bz

Enc1 Mod-2 Dec1 Enc1

.

.

.

Mod-2

.

.

.

<latexit sha1_base64="2lNvIeG22+M+gZGdEzSoU+yWda0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJB2CsYGEsEm2R2ihyXKe16jiR7YBK1F/CwgBCrPwUNv4NTpsBWk6ydLp7T+98QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYVXEqCe2QmMfyPsCKciZoRzPN6X0iKY4CTnvB5Dr3ew9UKhaLOz1NqBfhkWAhI1gbyber9UGE9TgIs8eZj+sV3645DWcOtErcgtSgQNu3vwbDmKQRFZpwrFTfdRLtZVhqRjidVQapogkmEzyifUMFjqjysnnwGTo1yhCFsTRPaDRXf29kOFJqGgVmMk+plr1c/M/rpzq89DImklRTQRaHwpQjHaO8BTRkkhLNp4ZgIpnJisgYS0y06SovwV3+8irpNhvuecO9bdZaV0UdZTiGEzgDFy6gBTfQhg4QSOEZXuHNerJerHfrYzFasoqdI/gD6/MH4geSlA==</latexit>wa

<latexit sha1_base64="aXvJp57x2AUsUU/OlF2CsGulJ0s=">AAAB/XicbVC7TsMwFL3hWcorPDYWixaJqUo6AGMlFtiKRB9SE1WO47RWnTiyHaQSVfwKCwMIsfIfbPwNbpsBWo50paNz7rXvPUHKmdKO822trK6tb2yWtsrbO7t7+/bBYVuJTBLaIoIL2Q2wopwltKWZ5rSbSorjgNNOMLqe+p0HKhUTyb0ep9SP8SBhESNYG6lvH1c9HnEhpEdCoT3zKOPVvl1xas4MaJm4BalAgWbf/vJCQbKYJppwrFTPdVLt51hqRjidlL1M0RSTER7QnqEJjqny89n2E3RmlBBFQppKNJqpvydyHCs1jgPTGWM9VIveVPzP62U6uvJzlqSZpgmZfxRlHGmBplGgkElKNB8bgolkZldEhlhiok1gZROCu3jyMmnXa+5Fzb2rVxq3RRwlOIFTOAcXLqEBN9CEFhB4hGd4hTfryXqx3q2PeeuKVcwcwR9Ynz9GsZUh</latexit>b·e

CHANNEL

CHANNEL

CHANNEL

Figure 5.1: Equivalent layer of Construction D.

probability of decoding lattice is defined as:

Pe(σ
2).

There is a relationship between the decoding error probability on each level Pe(Ci, si)

and the decoding error probability for lattice Pe(σ
2). By the union bound:

Pe(σ
2) ≤ Pe(C0, σ

2) + Pe(C1,
σ2

4
) + · · ·+ Pe(Ca,

σ2

4a
). (5.1)

Under the equal error probability rule, the codes Ci are selected such that Pe

(
Ci,

σ2

4i

)

are equal.

5.1.2 ρ Function for binary polar codes

In this section, we define a target error rate Ptrgt that can be used to construct a

function ρ. Given a target error rate Ptrgt, consider a binary polar code P(N,K,F)

transmitted over an AMGN channel with noise variance σ2. To reach the Ptrgt, as

the code rate R increases, the SNR is also needed to increases. Equivalently, the

value of σ2 required to achieve Ptrgt will decrease as K increases.

We propose a function ρ to express this trade-off. Given the σ2 and Ptrgt, let

ρ (σ2, Ptrgt) denote the greatest code rate such that the decoder word-error rate

39

Pe (C, σ
2) is not greater than a target error rate Ptrgt. When N becomes small,

Pe (C, σ
2) may be significantly smaller than Ptrgt because K is an integer. Evidently,

the function ρ (σ2, Ptrgt) depends on the decoding algorithm, the number of CRC

bits, and the method to select the frozen bits.

For polar codes with successive cancellation decoding, the function ρ (σ2, Ptrgt)

may be found efficiently by density evolution. Since the AMGN channel is symmet-

ric, analysis of the all-zeros codeword by density evolution is sufficient. Recall that

pj is the probability of error in position j under the assumption of positions 1 to

j − 1 are correct, shown in Equ. 3.14, and I refers to the set of information bits.

Then, under density evolution, the probability of word error for a polar code C can

be calculated as:

Pe

(
C, σ2

)
= 1−

∏

j∈I

(1− pj) . (5.2)

For a fixed channel, ρ (σ2, Ptrgt) can be set equal to the code rate R, so that

under density evolution the decoder error rate Pe (C, σ
2) is as high as possible, while

satisfying Pe (C, σ
2) ≤ Ptrgt.

Using density evolution, it is feasible to obtain the ρ (σ2, Ptrgt) function under SC

decoding, but not for other decoders. For other decoders, such as in [16], they found

function ρ under successive cancellation list decoding by Monte Carlo simulations.

For a given number of information bits K, it requires a large number of simulations

to find the noise variances σ2 which produce decoder error rates both above and

below Ptrgt.

For different code lengths under different decoding methods, the function ρ (σ2, Ptrgt)

is shown in Fig. 5.2. Under successive cancellation decoding withN = 128, . . . , 262144,

ρ is shown for a target error rate of Ptrgt =
1
3
· 10−4. For reference [16], under SCL

decoding with list size 8 and 10 CRC bits and N = 128, ρ is shown for Ptrgt = 10−4

and the capacity is also given [5, Fig. 6] [8, Fig. 7]. As can bee seen from the figure,

as the block length N increases, the ρ curve is approaches the S-shape characteristic

of the capacity curve.

40

0 2 4 6 8 10 12 14 16 18 20 22

1/
2
(dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

d
e

 R
a

te

AMGN Channel Capacity

N=262144 (2
18

) SC Decoding

N=131072 (2
17

) SC Decoding

N=65536 (2
16

) SC Decoding

N=32768 (2
15

) SC Decoding

N=16384 (2
14

) SC Decoding

N=8192 (2
13

) SC Decoding

N=4096 (2
12

) SC Decoding

N=2048 (2
11

) SC Decoding

N=1024 (2
10

) SC Decoding

N=512 (2
9
) SC

N=256 (2
8
) SC

N=128 (2
7
) SC

K with 6dB gap (SC N=128)

Figure 5.2: On a AMGN channel with noise σ2, the function ρ(σ2, Ptrgt) gives a code
rate to achieve SC decoder Ptrgt =

1
3
· 10−4 .

5.2 Design of Polar Code Lattices

We design Construction D polar code lattices using two or more nested binary polar

code C0, C1, · · · , C(a−1). For binary polar code Ci with information bit indices Ii on

each level. To satisfy the nesting condition, it has:

C0 ⊆ C1 ⊆ · · · ⊆ Ca−1 and

I0 ⊆ I1 ⊆ · · · ⊆ Ia−1.
(5.3)

The structure of information sets are naturally nested to comply with requirements

of Construction D.

However, to design Construction D polar code lattices, the challenge is to choose

the information bits Ki (or code rates Ri) for component codes Ci such that the

polar code lattice has the lowest possible VNR for the word error rate Pe. Under

the equal error probability rule, each component code C0, C1, . . . , Ca−1 should have

41

equal error probabilities:

Pe

(
C0, σ

2
)
= Pe

(
C1, σ

2
1

)
= · · · = Pe

(
Ca−1, σ

2
a−1

)
, σ2

i = σ2/4i

when decoding on the independent equivalent channel shows in Fig. 5.1. Combining

the ρ function and equal error probability rule we proposed in Sec. 5.1, the error

probability for the component codes Pe (Ci, σ
2
i) is set to a target error rate Ptrgt. The

function ρ (σ2, Ptrgt) gives the greatest code rate under Pe(C, σ
2) ≤ Ptrgt. Moreover,

each layer sees an AMGN channel as described in Sec. 5.1.1.

Under a designed lattice error rate of Pe, the ρ function can be used to design a

Construction D polar code lattice of dimension N by using at least two binary polar

codes of block length N . Following the union bound in Equ. 5.1, the designed lattice

error rate of Pe needs to satisfy the conditions of Pe = (a + 1) · Ptrgt for an a-level

lattice where Ptrgt is the target error rate for component codes. In addition, under

the equal error probability rule, we allow Ptrgt ≈ Pe (Ci, σ
2
i), for i = 0, 1, . . . , a.

The ath level of Construction D refers to the integer level which means uncoded.

In this level, Ka = N and Ra = 1. Let σ2
a = σ2/4a be the noise variance of level a

that the decoder error rate achieves Ptrgt. It has:

ρ
(
σ2
a, Ptrgt

)
=

Ka

N
= 1. (5.4)

In addition, ρ function allow us obtain the σ2
a from the equation above by:

σ2
a = ρ−1 (N,Ptrgt) . (5.5)

[18, eqn. (5)] shows that in level a, the probability of error Pe(Ca, σ
2
a) can be

computed explicitly. Under the equal error probability rule, we have assumed that

Ptrgt ≈ Pe (Ca, σ
2
a). Then, by the inverse of the function, σ2

a can be obtained by:

σ2
a =

1

8 ·
(
erfc−1

(
1− N

√
1− Ptrgt

))2 , (5.6)

where erfc−1 is the inverse of the complementary error function.

With the fixed σ2
a, use the function ρ to find the rates of component codes Ri for

42

4 6 8 10 12 14 16 18 20 22

1/
2
 dB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

d
e

 r
a

te

P
trgt

=10
-4

P
trgt

=(1/3) *10
-4

Figure 5.3: The function ρ(σ2, Ptrgt) gives a code rate to achieve Ptrgt = 10−4 and
Ptrgt =

1
3
10−4 over an AMGN channel with noise variance σ2.

i = 0, . . . , a− 1:

Ri = ρ
(
4a−iσ2

a, Ptrgt

)
. (5.7)

From the equation above, it is clear that for different values of Ptrgt Ri is also

different. For N = 128 polar codes, given Ptrgt = 10−4 and Ptrgt = 1
3
10−4, the

different ρ curves are shown in Fig. 5.3.

σ2
i refers to the noise variance of the equivalent AMGN channel in level i which

is shown in Fig. 5.1. By the definition of Eqn. 2.3, here, we represent 1
σ2
i
dB by

SNRi dB in order to make the function clear. In the design of polar code lattices, as

Fig. 5.2 shows. We use the 6 dB gap of SNR dB between two level which corresponds

to the factor of 4, that is the 6 dB gap satisfies σ2
i = σ2/4i for i = 0, . . . , a. For

j ≥ i and i, j ∈ {0, 1, . . . , a}, it has:

SNRi dB = SNRj dB− (j − i) · 6 (5.8)

43

5.3 Design Example

In this section, we propose a design example of Construction D polar code lattice

with N = 128. Design a polar code lattice with a = 2, N = 128 and a designed

lattice error rate Pe = 10−4. Since a = 2, under equal error probability rule, Ptrgt =

1
3
· 10−4. By Equ. 5.6, we obtain the σ2

2 = 0.0094258, which is SNR2 dB = 20.26 dB.

Continuing the design procedure, by Fig. 5.8 using the 6dB gap, it means:

SNR0 dB = SNR2 dB− 12 dB

SNR1 dB = SNR2 dB− 6 dB.
(5.9)

Since SNR2 dB = 20.26 dB, evidently, SNR0 dB = 8.26 dB and SNR1 dB = 14.26 dB.

Not only for the SC decoder, but these values are also feasible for any other decoders

to design a = 2, N = 128 polar code lattice under Ptrgt =
1
3
· 10−4.

5.3.1 Polar Code Lattices Under SC Decoding

Under SC decoding, from Fig. 5.2, we obtain the design of K0 = 7 at SNR0 dB =

8.26 dB and K1 = 88 at SNR1 dB = 14.26 dB by density evolution efficiently. Den-

sity evolution allows calculating the error probability for each position. A position

with a small value of error probability means more reliable. We sort the positions in

increasing order of error probability from left to right and summarize in Table. 5.1

and choose the first 7 and 88 positions at 8.26 dB and 14.26 dB that marked to red.

Note that: the information set satisfy I0 ⊆ I1, thus the nested structure needed by

Construction D is met. In addition, I0 is bolded in I1.

In addition, Table. 5.2 shows polar code lattice designs for various dimensions

N , based on density evolution result in Fig. 5.2 under the defined lattice error rate

Pe = 10−4.

5.3.2 Polar Code Lattices Under SCL

We consider the design of polar code lattices using CA-SCL decoder. Since SCL

decoding has good performance-complexity trade-off at high SNR, CRC can help to

improve the performance. For moderate dimension, selecting the number of CRC

bits is particularly important to the performance of the SCL decoder. [19] proposed

44

Table 5.1: Reliability for N = 128 polar code under different VNR.

128 127 126 124 120 112 96 125 123 122 119 64 118 111 116 110

108 95 94 104 121 92 63 117 62 88 115 109 60 114 107 80

56 93 106 103 91 48 102 90 61 7 87 100 32 59 113 86

At 8.26 dB 79 58 84 55 105 78 54 76 47 101 52 89 46 72 99 31

3 44 19 85 35 30 98 57 11 40 83 67 77 28 53 75

5 51 45 24 15 71 97 29 43 13 82 81 23 39 73 27

49 21 41 9 25 69 37 65 33 17 1 16 74 50 6 70

42 14 38 26 22 10 66 34 18 2 68 36 12 20 4 8

128 124 120 127 126 112 96 64 119 118 116 108 125 123 122 111

110 92 104 95 94 88 60 80 63 62 56 48 32 121 117 115

114 109 107 106 103 102 100 93 91 90 87 86 84 79 78 61

At 14.26 dB 59 58 76 55 54 52 72 47 46 44 40 31 30 28 24 16

113 105 101 99 98 89 85 83 82 77 75 74 57 53 71 51

50 70 45 43 42 68 39 29 38 27 26 36 23 22 15 20

14 97 81 73 12 49 69 41 67 8 37 66 25 35 21 34

19 13 18 11 10 7 65 6 33 4 17 9 5 3 2 1

Table 5.2: Polar code lattice designs under SC decoding and Pe = 10−4.

n = 64 n = 128 n = 256 n = 512 n = 1024

k0 1 7 24 68 178

k1 40 88 192 410 866

k2 64 128 256 512 1024

SNR2 dB 20.03 dB 20.26 dB 20.47 dB 20.68 dB 20.87 dB

choosing the number of CRC bits that balance the trade-off between reliability and

code rate.

Compare with the SC decoding, density evolution is not practical under SCL

decoding due to list decoding. Accordingly, SCL decoding requires the use of Monte

Carlo simulations which is beyond the scope of this thesis. Over the equivalent

AMGN channel, Monte Carlo simulation results give the number of information bits

K0 and K1 that achieve SNR of 8.26 dB and 14.26 dB, respectively.

[16] obtains the ρ(σ2, 10−4) function by Monte Carlo simulation under SCL de-

coder with 10 CRC bits and decoder list size 8. The curve is shown in Fig. 5.4. The

designed lattice error probability Pe = 3 · 10−4. By Equ. 5.6, SNR2 dB corresponds

to 19.98 dB. From Fig. 5.4, we obtain the designs of k0 = 7 at 7.85 dB and k1 = 95

at 13.82 dB.

45

6 8 10 12 14 16 18 20

1/
2
 dB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
d
e
 r

a
te

N=128 SCL Decoding

K with 6 dB gap

Figure 5.4: On a AMGN channel with noise σ2, the function ρ(σ2, Ptrgt) gives a code
rate to achieve SCL(CRC-10, Listsize-8) decoder Ptrgt = 10−4.

5.3.3 Polar Code Lattices Under OSD

Under OSD, we continue selecting the set of information bits Ii using Table. 5.1.

To obtain the number of information bis K0 and K1 on each level, similarly, we use

Monte Carlo simulation at the designed lattice word error rate WER of Pe = 10−4.

Due to the complexity of OSD, K0 is a small value so that we can use a high order

4 to decode. For K1, to obtain a better performance with low complexity, the order

is set to 3. We perform simulations for different lengths of information bits on

each level. In the first level, the simulation result is shown in Fig. 5.5. To achieve

Ptrgt =
1
3
· 10−4 at 8.26 dB, K0 = 7 are selected for the first level. Similarly, for the

second level, due to the simulation result in Fig.5.6, K1 = 97 achieves Ptrgt =
1
3
·10−4

at 14.26 dB

46

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

1/
2
 dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

W
E

R

Mod2 Polar Code N=128 K=6

Mod2 Polar Code N=128 K=7

Mod2 Polar Code N=128 K=8

Mod2 Polar Code N=128 K=9

Mod2 Polar Code N=128 K=10

Figure 5.5: On a AMGN channel with noise σ2, P(128, K0,F) polar code using
OSD(4) with different K0 to achieve Ptrgt =

1
3
· 10−4.

10 10.5 11 11.5 12 12.5 13 13.5 14

1/
2
 dB

10
-4

10
-3

10
-2

10
-1

10
0

W
E

R

Mod2 Polar Code N=128 K=97

Mod2 Polar Code N=128 K=98

Figure 5.6: On a AMGN channel with noise σ2, P(128, K1,F) polar code using
OSD(3) with different K1 to achieve Ptrgt =

1
3
· 10−4.

47

5.4 Evaluation by Simulation

0 0.5 1 1.5 2 2.5 3 3.5

VNR dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

W
E

R

Polar lattice with SC - N=128

Polar lattice with SC - N=256

Polar lattice with OSD(1,4)(1,3) - N=128

Polar lattice with SCL(L-128,CRC-6) - N=128

BCH lattice with OSD(1,4) - N=128

Figure 5.7: WER comparison between N = 128 BCH code lattice with OSD decod-
ing and N = 128, 256 polar code lattices with SC decoding, OSD and SCL decoding.

We evaluated these polar code lattices with their respective decoders by simula-

tion, WER is shown in Fig. 5.7. In summarize:

• Under SC decoding, at WER of Pe = 10−4, dimension n = 128 polar code

lattice with K0 = 7 and K1 = 88 achieves a VNR of 3.25 dB.

The n = 256 polar code lattice with K0 = 24 and K1 = 192 achieves a VNR

of 3.0 dB under similar conditions.

• Under SCL decoding, polar code lattice with K0 = 7, K1 = 95 achieves a VNR

of 2.5 dB with 6 CRC bits and list size L = 128 at WER of Pe = 10−4.

• Under OSD, polar code lattice with K0 = 7 and K1 = 97 using order OSD(4)

and OSD(3) achieves a VNR of about 2.75 dB.

• For reference [17], the WER of the (128, 120, 4), (128, 78, 16) BCH code lattice

with order (1, 4) OSD decoding achieves a VNR of 2.3 dB, at a WER Pe =

48

10−4.

Table 5.3: Performance Comparison of Dimension N = 128 lattices.

Code Decoder VNR at 10−4 Time complexity Remark (K0,K1)

Polar lattice SC 3.25 dB O(N logN) - (7, 88)

Polar lattice SCL 2.50 dB O(LN logN) CRC-6 L=128 (7, 95)

Polar lattice OSD 2.75 dB
Proportional to

∑l
i=0

(K
i

) l=(4,3) (7, 97)

BCH lattice OSD 2.30 dB l=(4,1) (78, 120)

49

Chapter 6

Conclusions and future work

6.1 Conclusions

In this work, we construct polar code lattices of moderate dimension using Con-

struction D by nested binary codes. Each component code is a binary polar code

such that the lattice can be decoded by binary code decoder. We considered SC de-

coding, SCL decoding and OSD on each level to decode lattices. We give N = 128,

a = 2 polar code lattices as design examples.

Under error probability rule, function ρ expresses the greatest rate which achieves

a target word error rate of lattice Pe. To find the function ρ, under SC decod-

ing, density evolution can be used efficiently. However, under SCL decoding and

OSD, density evolution is not feasible, we use Monte Carlo simulation to obtain the

function ρ.

Under SC decoding with complexity O(N logN), polar code lattice comes within

1 dB of the BCH code lattice. Under SCL decoding with L=128 and CRC-6, polar

code lattice comes within 0.2 dB of the BCH code lattice. SCL decoding with

list size L, complexity scales as O(LN logN). OSD decoding of BCH lattices has

significantly higher complexity. The complexity of order-l OSD is proportional to
∑l

i=0

(
K
i

)
.

For polar code lattice under OSD, there is still 0.45 dB gap between BCH code

lattice. Increasing the value of the order from 3 to 4 for decoding K1 may be a slight

performance improvement, but it also dramatically increases decoding complexity.

Thus, we decide to use OSD(3) to decode on the second level.

50

6.2 Future Work

In current work, we propose design of polar code lattices, better performances are

still expected. For the OSD, one possible way to improve the performance is to

increase the order of OSD in the first layer. Since the length of information bits is

not too long, it is reasonable to consider using order-5 or higher order. Or achieve

a better performance with low complexity on each layer by using improved OSD.

We also consider to design Construction D polar code lattice by balanced distance

rule. Polar code with some special distances form Reed-Muller codes [20] so that we

can also use good decoder for Reed-Muller to decode lattices.

Another idea is to increase the dimension of lattice that may also improve the

performance.

51

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[2] E. Arikan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE Trans-

actions on Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[3] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference

through structured codes,” IEEE Transactions on Information Theory, vol. 57,

no. 10, pp. 6463–6486, 2011.

[4] J. Harshan, A. Sakzad, and E. Viterbo, “Integer-forcing linear receivers: A de-

sign criterion for full-diversity stbcs,” in 2017 IEEE Wireless Communications

and Networking Conference (WCNC), 2017, pp. 1–6.

[5] L. Liu, Y. Yan, C. Ling, and X. Wu, “Construction of capacity-achieving lattice

codes: Polar lattices,” IEEE Transactions on Communications, vol. 67, no. 2,

pp. 915–928, 2019.

[6] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups.

Springer Science & Business Media, 2013, vol. 290.

[7] E. S. Barnes and N. J. A. Sloane, “New lattice packings of spheres,” cjm, vol.

XXXV, no. 1, pp. 117–130, 1983.

[8] U. Wachsmann, R. F. Fischer, and J. B. Huber, “Multilevel codes: theoretical

concepts and practical design rules,” it, vol. 45, no. 5, pp. 1361–1391, Jul. 1999.

52

[9] R. Mori and T. Tanaka, “Performance of polar codes with the construction

using density evolution,” IEEE Communications Letters, vol. 13, no. 7, pp.

519–521, 2009.

[10] I. Tal and A. Vardy, “List decoding of polar codes,” in 2011 IEEE International

Symposium on Information Theory Proceedings, 2011, pp. 1–5.

[11] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity im-

proved successive cancellation decoder for polar codes,” in 2014 48th Asilomar

Conference on Signals, Systems and Computers, 2014, pp. 2116–2120.

[12] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics Letters,

vol. 48, pp. 695–697, 2012.

[13] M. Fossorier and S. Lin, “Soft decision decoding of linear block codes based on

ordered statistics,” in Proceedings of 1994 IEEE International Symposium on

Information Theory, 1994, pp. 395–.

[14] D. Wu, Y. Li, X. Guo, and Y. Sun, “Ordered statistic decoding for short polar

codes,” IEEE Communications Letters, vol. 20, no. 6, pp. 1064–1067, 2016.

[15] K. Niu and K. Chen, “Crc-aided decoding of polar codes,” IEEE Communica-

tions Letters, vol. 16, no. 10, pp. 1668–1671, 2012.

[16] O. R. Ludwiniananda, N. Liu, K. Anwar, and B. M. Kurkoski, “Design of polar

code lattices of finite dimension,” in 2021 IEEE International Symposium on

Information Theory (ISIT), 2021, pp. 1011–1016.

[17] T. Matsumine, B. M. Kurkoski, and H. Ochiai, “Construction D lattice decod-

ing and its application to BCH code lattices,” in 2018 IEEE Global Communi-

cations Conference (GLOBECOM), 2018, pp. 1–6.

[18] P. R. Branco da Silva and D. Silva, “Multilevel LDPC lattices with efficient

encoding and decoding and a generalization of construction D’,” it, vol. 65,

no. 5, pp. 3246–3260, 2019.

[19] T. Murata and H. Ochiai, “On design of CRC codes for polar codes with succes-

sive cancellation list decoding,” in isit. Aachen, Germany: IEEE, Jun. 2017,

pp. 1868–1872.

53

[20] D. E. Muller, “Application of boolean algebra to switching circuit design and to

error detection,” Transactions of the I.R.E. Professional Group on Electronic

Computers, vol. EC-3, no. 3, pp. 6–12, 1954.

54

	List of Figures
	List of Tables
	Acronym
	Notations
	Introduction
	Background and Motivation
	Contributions
	Thesis Organization

	Preliminaries
	System Model
	Additive White Gaussian Noise Channel
	Performance Measurements

	Binary Polar Codes
	Introduction to Polar Codes
	Channel Polarization

	Encoding
	Information Bit Selection

	Decoding
	Successive Cancellation (SC) Decoding
	Successive Cancellation List (SCL) Decoding
	Ordered Statistic Decoding (OSD)

	Construction D Lattices
	Lattices
	Construction D
	Nested Binary Code
	Construction D Lattice Encoding and Decoding
	Design of Construction D Lattices

	Polar Code Lattices
	Design Methods
	Equal Error Probability Rule
	 Function for binary polar codes

	Design of Polar Code Lattices
	Design Example
	Polar Code Lattices Under SC Decoding
	Polar Code Lattices Under SCL
	Polar Code Lattices Under OSD

	Evaluation by Simulation

	Conclusions and future work
	Conclusions
	Future Work

