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Abstract

With the increase in use of social networks, users on these micro-blogging
platforms usually share their thoughts and interests via short texts such as
posts, status, or reactions. Capturing user preferences or interests from these
kinds of data has attracted much attention. This process is known as the
user profiling or user preferences. This problem aims at processing, inferring,
and extracting a list of weighted keywords (or a semantic-based structure)
that correctly represent the expertise or preferences of a specific user on
these networking platforms. The problem has various potential applications
in practice such as researcher finding in academic projects, item recommen-
dation in e-commerce systems, or job offering in labour markets. However
seeking an efficient solution is not trivial but a challenging task. Researchers
working on this problem usually face following common challenges: (1) The
data sparsity and cold-start issues existing in user texts; (2) user preferences
dynamically change over time; (3) social networking users usually create lots
of short documents. The consecutive documents are often not very closely
related to each other. This causes difficulties for inferring the desired profile;
(3) data may come in different formats (e.g., images, texts, or reactions) from
multiple sources (e.g., one user may simultaneously have multiple accounts
across networking platforms).

This research is motivated by three major factors. The first factor is
reasoning ability in evidence theory (also preferred to as Demspter-Shafer
theory). This theory is theoretically well-studied to become a full-fledged
theory of uncertainty. It has been widely applied to various topics, includ-
ing machine learning problems (e.g., classification and clustering), problems
involving uncertainty (e.g., database management with uncertainty), and
multiple-attribute decision making. The second factor is that advancements
in machine learning and deep learning have shown significant remarkable
achievements in both academic and practice. Machine learning practitioners
proposed many robust, data-driven models that can learn from input obser-
vations to make accurate predictions, find hidden patterns, or even create
new instances that are very similar to the input data. The third factor is
the increasing of short texts shared by users on social networking platforms.
Additionally, a number of open-sourced libraries make such kind of data ob-
tainable and feasible to be processed.

Taking the aforementioned challenges and motivations into consideration,
this research proposed two novel frameworks for capturing user profiles using
short texts under both static and dynamic scenarios. The first framework is



designed for inferring static profiles, which is based on evidence theory and
k-means clustering. The second framework is designed for inferring dynamic
profiles, which is based on deep generative networks and evidence theory. In
both proposed frameworks, advanced machine learning techniques, such as
k-means clustering and deep generative neural networks, are used for con-
cept learning from user short texts. The learned concepts form the so-called
frame of discernment in Dempster-Shafer theory for reasoning process. These
concepts are quantitatively transformed into the so-called mass function in
the evident theory by maximum a posterior estimation. The derived mass
functions are then considered as pieces of evidence at the reasoning phase.
Finally, Dempster’s rule and the so-called pignistic probability distribution
are used for information fusion and profile extraction. The experiments on
short text data sets verified that the proposed methods outperform base-
line models on many evaluation metrics. Additionally, we also propose an
approach for visualizing the fluctuation of user preferences on various topics
over time by using the output of the proposed frameworks. This visualization
may reveal significant insights that are useful for many practical applications.

Keywords: User profiling, user preferences, Dempster-Shafer theory,
user profile visualization, deep generative networks.
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Chapter 1

Introduction

1.1 User profiles and user profiling problem

With the dramatic increase in use of social networks, many users usually
share their thoughts or emotions via these micro-blogging platforms. There-
fore, a large amount of data associated with these platforms are created in a
plentiful formats such as texts, photos, or reactions. This trend brings oppor-
tunities for organizations, especially e-commerce companies. If a company
is able to build a user model for mining such kinds of data, then it could be
able to detect user preferences and recommend appropriate products basing
on the detected insights. These insights may reveal many practical appli-
cations such as marketing campaigns for the launch of new products, job
offering on labour markets, or user clustering in customer management sys-
tems. However, this mining process is not a trivial, but a challenging task.
Researchers working on this task usually face with questions such as how to
collect and normalize user data, or how to extract and combine useful in-
formation from such kind of data for building the desired user model. That
process is known as the user profiling or user preferences problem. And
this research aims at finding an efficient approach for the problem. Figure
1.1 provides an overview picture of the user profiling process.

User Profiles. A user profile is a collection of information pieces as-
sociated with a specific person. These information pieces could be either
personal identity (e.g., name, age, portrait picture, and locations) or individ-
ual characteristics (e.g., knowledge, expertise, and hobbies) or both. Figure
1.2 demonstrates an example of digital user profiles. There are two kinds
of profiles, physical user profiles (e.g., resident cards, passports, or driving
license) and digital user profiles (e.g., a virtual representation of individual
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Figure 1.2: An example of a digital user profile.

data in computer systems associated with a specific user account). This
research solely focuses on digital user profiles, more specifically profiles on
social media. A social networking profile of one person is a record of skills



or preferences plus a network description of that person [3].

User Profiling Problem. The problem of user profiling aims at iden-
tifying a list of weighted keywords (or a semantic-based structure) for each
account that represent the expertise or preferences of that user [3, 4, 5, 6].

An accurate representation of user profiles is crucial in various business
contexts, especially item recommendation in e-commerce systems. The next
section will introduce some applications of user profiles in practice.

1.2 Applications of user profiles

This part briefly introduces practical applications that motivates the user
profiling problem, including researcher profiles, and item recommendation.

Researcher profiles. The first application is the construction of profiles
for researchers on ArnetMining system![1]. One basic requirement in this
system is to built a profile for each researcher. Each profile usually contains
basic information (e.g., photo, affiliation, position, and contact), educational
background (e.g., university graduated from and major), research interests,
and key publications. Each profile could be built from the partial information
extracted from multiple sources on web environments. For example, basic in-
formation and educational background may come from the researcher home-
page or from a Web page that introduces him /her, information about pub-
lications may be integrated from online digital libraries (e.g., DBLP, IEEE,
or ACM), and research interests could be deduced from a collected database.
Figure 1.3 illustrates one instance from researcher profiles. The left-top part
shows the researcher homepage, the left-bottom shows the DBLP/ACM page
listing the publications. The right part of the figure display the ideal profile
of that researcher. It contains research interests mined from the publica-
tion papers. If all researcher profiles are constructed correctly, we will have
a large collection of well-structured database about researchers around the
world. Then this database can benefit many practical tasks such as expert
finding on a given topic or a research project.

Item recommendation. Users on e-commerce systems usually change
their concerns on different product types over time. One crucial requirement
in such systems is how to correctly capture the dynamics of these changes in
order to recommend appropriate products for a given time interval. Inferring

thttp://www.arnetminer.org
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Figure 1.3: An instance from researcher profiles (source: [1]).

user concerns and visualization the results can benefit the recommendation
process. Figure 1.4 visually depicts the “interest” level of two Twitter users
on five given topics (Education, Economics, Science & Technology, Enter-
tainments, and Politics) over time. Some insights could be drawn from this
visualization: (1) the most concerned topic of the user 1 is Education while
the most concerned topic of the user 2 is Entertainments; (2) the level of
concern on Politics is on the upward trend for the user 1. These observations
are useful for item recommendation. For example, we can suggest a discount
coupon which can be used for online courses for the user 1, or suggest cinema
tickets or sport equipment for the user 2.

1.3 Motivations of the research

Three major factors that motivate this research are advancements in machine
learning and deep learning, reasoning ability in Dempster-Shafer theory of
evidence, and the increase of obtainable short texts shared by users on social
networking platforms.
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Figure 1.4: The changes of Twitter user preferences over time.

Advancements in machine learning and deep neural networks. In
two recent decades, research on machine learning and deep learning has
brought remarkable achievements in various machine learning problems, in-
cluding supervised learning, semi-supervised learning, and unsupervised learn-
ing [7, 8, 9]. Practitioners have proposed many robust, data-driven models
that can learn from input observations to make accurate predictions, find hid-
den patterns, or even create new instances that are very similar to the input
data (e.g., generative models) [10, 11, 12]. Additionally, machine learning
has been widely applied to real-world products that enhance both industrial
processes and human life. The applications should be mentioned are image
recognition (e.g., face recognition in smart home systems), speech recogni-
tion (e.g., Siri, Cortana, or Google Assistant), and text processing (e.g., spam
filters, smart replies, or plagiarism checking).

Dempster-Shafer theory and its applications. Dempster-Shafer the-
ory (DST) was first introduced by Dempster [13], then developed by Shafer
[14]. Tt is a general approach for modeling and reasoning with uncertain,
imprecise information. DST is understood as the extension of propositional
logic and probabilistic reasoning. The theory is proven as a generalization of
Bayesian inference [15]. DST is feasibly applied in practice by decomposing
the available evidence into elementary pieces of evidence according to a cer-
tain perspective. Then these pieces are combined by an appropriate operator
called Dempster’s rule of combination. Thanks to this property, practition-
ers can apply the theory for solving problems where there may be a chance
that different evidence may lead to different results. Additionally, this the-
ory can be applied to a large-scaled problem [16]. These features makes DST
applicable to a wide range problems involving uncertainty. Started from the
work on statistical inference [13, 14, 15], DST is theoretically well-studied to
become a full-fledged theory of uncertainty, and now commonly referred to as



Dempster-Shafer (DS) theory or evidence theory [17, 18]. It has been applied
in many research topics, including knowledge-based systems [19], multiple-
attribute decision making [20], association mining [21], collaborative filtering
[22], database management [23], image processing [24, 25], pattern recogni-
tion [26], target tracking [27, 28, 29|, information fusion [30], classification
[31, 32], and clustering [33, 34].

The increase of obtainable short texts on networking platforms.
With the increase in use of social networks in recent years, users on these
platforms tend to express their feelings or share their personal characteristics
via short texts. Capturing the dynamics of user interests in a correct manner
using these short texts plays an essential role in various business contexts,
especially in e-commerce systems. Besides, a variety of open-source libraries
make it feasible to collect user textual data, and make the process of trans-
forming these data into a fine, well-structured format possible. As a result, a
collection of informative data sets becomes obtainable, and is ready to serve
as input for building user models. One advantage of text-based user profiling
problem is that the models can be built at a low cost, and be feasible to be
deployed in practice.

Inspired by these factors, this research aims at incorporating the ad-
vancements of machine learning and Dempster-Shafer theory of evidence into
proposing novel, robust models for the user profiling problem using short
texts collected social networking platforms.

1.4 Research objectives and approaches

Although this research has many potential applications in practice, seeking
an efficient solution is a challenging task. This is because of two main rea-
sons. The first reason comes from the nature of short texts created by social
networking users. The second reason arisen when the problem is considered
under a dynamic context. These challenges are summarized in Figure 1.5.

In more details, researchers working on this problem usually face common
challenges as follows:

e The data sparsity and cold-start issues existing in short texts. Data
sparsity issue means that the amount of input data within a specific
time interval is limited. This is the case when user corpus is divided
into small batches according to timestamp for inferring the dynamics
of user interests. Cold-start issue appears when the desired user model
needs to capture/generate fresh, appropriate words/tokens that first
appear anywhere in user corpus.

6
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e User preferences dynamically change over time. This attribute requires

a mechanism to connect the information extracted from the current
batch of texts and the information extracted from the historical texts
when building the model. This is necessary for capturing the fluctua-
tions of user interest over time, which is valuable for decision making
(e.g., the concerning level of the user 1 on Politics is on the upward
trend over time as shown in Figure 1.4).

Social network users create lots of short documents. This leads to
some related issues such as short text mining and information selection.
Short text mining is the ability to extract and combine useful informa-
tion from these documents to identify user preferences. In many cases,
practitioners need to mine the abstract concepts that are stored behind
plain texts. Information selection is the ability to relate relevant in-
formation pieces from a pool of extracted information for building user
models. This case occurs because consecutive documents are often not
very closely related to each other in terms of content. As a result, the
distribution of user concerned topics is nearly uniform or divergent.
For example, a social networking user may share their thoughts about
politics on the first post, introducing an charity event in the second
post, and marketing a product in the third post. This case explains
why previous approaches such as Topic Models (e.g., [35, 36, 35]) and
Sequence Models (e.g., [37]) do not work well on such kind of data.
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Figure 1.6: An integration of machine learning techniques and evidential
reasoning for learning user preferences.

e Data may come from multiple sources (e.g., one user may simultane-
ously has multiple accounts on different social networking platforms).
The data in each source could exist in different formats (e.g., texts,
photos, and reactions). Seeking a robust model for coping with these
attributes is still a research issue.

Taking these challenges into consideration, the main objective of this research
is to propose novel approach(es) for capturing profiles (or preferences) using
short texts made by social networking users. The problem is considered under
two scenarios, the static context and the dynamic context. The problem is
formally defined as follows:

Problem Formulation. Given a corpus of short texts made by social
networking users (e.g., Twitter, Facebook, or Instagram), the objective of
this problem is to dynamically extract a semantic profile that represents
user preferences on various topics (e.g., education, science & technologies,
entertainments, politics, and economics) at a specific time t. The results
are represented by a list of keywords that are most similar to words in user
vocabulary. Mathematically, the objective is to find a function f such that:

(U, D) — W
where U = {uy, Uy, ..., u,, } Tepresents a set of users, with u; being the it user
in U and m = |U| is the total number of users; D* = {D% D}, ..., D! } is
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Figure 1.7: An intuitive view point of the proposed framework for learning
static profiles.

the set of all users’ corpora, each corpus D! stores all posts (short doc-
uments) made by the corresponding user u; within the time span ¢ (in
the case of static profile, the number of time spans is equal to 1); and
W = {kw!, kw?, ..., kwt,} represents all users’ preferences over time with
kw! = {kw!, kw!,, ..., kw!,} being the topic that the i"* user concerns at
time ¢, and the top-n keywords are obtained such that they are most similar
to words from that user u;’s vocabulary.

To cope with the aforementioned challenges, the overall approach of this
research is to find an appropriate integration of machine learning techniques
and evidential reasoning for inferring user profiles (or user preferences). This
approach is illustrated in Figure 1.6. Particularly, the research objective is
divided into sub goals, each of which is accompanied by an appropriate ap-
proach described as follows:

e Obtaining a collection of data from social network users: we develop
computer programs for automatically crawling textual data from social
networks, processing, and storing the pre-processed data into a mini,
unique data “warehouse” which enables the later phase to learn and
extract information efficiently.

e Representation learning from pre-processed data for the reasoning pro-
cess: we apply advanced machine learning techniques such k-means
clustering and deep neural network models for learning hidden spaces.
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Figure 1.8: An intuitive view point of the proposed framework for learning

dynamic profiles.

Then the learning results are represented at an appropriate abstraction
level which is useful for the inferring task. Besides, we design models
which are able to generate meaningful words that semantically repre-
sent user preferences based on the general information extracted from
user texts within a specific time span.

Reasoning and modeling user profiles from the extracted information:
firstly, we find a mathematical approach to quantitatively transform
information learning in previous tasks into a format that could be mod-
eled by the so-called mass function in evidence theory. These masses are
considered as pieces of evidence, which are used for reasoning purpose.
Then, we apply Dempster’s rule for combining partial information from
multiple sources into a unified format that is useful in decision making
when extracting the desired profile.
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1.5 Key contributions of the research

This research results in two novel frameworks for the user profiling problem.
The first framework is designed for inferring static user profiles, which is intu-
itively illustrated in Figure 1.7. This framework is based on evidence theory
and k-means clustering. The second framework is designed for inferring user
profiles in a dynamic context, which is intuitively depicted in Figure 1.8.
This framework is based on deep generative networks and evident theory.
Technical details of these two frameworks will be described in Chapter 3
and Chapter 4, respectively. In summary, the key contributions of these
two frameworks are briefly summarized as follows:

e Advanced machine learning techniques are utilized for concept learning
from user short texts. Particularly,

— In the first proposed framework, k-means clustering algorithm is
employed to learn the abstract concepts that are stored inside user
plain texts. These concepts are represented at multiple levels of
abstraction, which are useful for the modeling process.

— In the second proposed framework, two deep generative networks,
the Variational AutoEncoder (VAE) and the Generative Adversar-
ial Network (GAN), are used to separately learn the latent spaces
of user texts. The trained networks then work independently to
generate bunches for modelling user profiles.

— The learned concepts form the so-called frame of discernment
in Dempster-Shafer theory. Then these frames are used for mod-
eling and extracting top-n keywords to form the user profile.

e We propose a mathematical approach which utilizes maximum a pos-
terior estimation (MAP) in statistic to quantitatively transform the
learned concepts into the so-called mass function in evidence theory.
These masses are then viewed as pieces of evidence while inferring and
determining the user profile.

e We propose an approach for visualizing the fluctuation of user prefer-
ences over time by using the output of the proposed frameworks (Figure
1.4). This visualization may reveal significant insights that are useful
in many practical applications.

e We integrate two concepts in Dempster-Shafer theory, the total igno-
rance and the open-world, into the proposed models to capture fresh
tokens that may first appear anywhere in user corpus (the cold-start
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issue). This approach is useful when considering the dynamics of user
preferences over time.

e Overall, we propose a new integrated approach in which advanced ma-
chine learning techniques are paired with Dempster-Shafer theory to
tackle the aforementioned issues in user profile learning.

1.6 Organization of the research

This dissertation consists of five chapters. The connection between chapters
is demonstrated in Figure 1.9. Also, main content of each chapter is described
as follows:

Chapter 1 introduces an overview of the research. It includes the defini-
tion of user profiles and user profiling problem, practical applications,
motivations, objectives, approaches, and organization of the research.

Chapter 2 provides background knowledge which is necessary for the re-
search. These backgrounds include the introduction of basic concepts
in evident theory and machine learning techniques (such as k-clustering
and deep generative neural networks). Additionally, this chapter also
highlights the influent works related to user profiling problem in liter-
ature.

Chapter 3 presents in details the proposed framework for the static pro-
file. It first introduces the proposed method, then shows experimental
results on short text data sets. Finally, the chapter discusses some
related issues.

Chapter 4 describes in details the proposed framework for the dynamic pro-
file. It first introduces the proposed method, then shows experimental
results on short text data sets. This chapter also provides explana-
tion on why the proposed framework works efficiently on short texts in
comparison with baseline models.

Chapter 5 concludes the dissertation. It provides a summary on the re-
search, discusses the related issues, lists limitations, and introduces
future works.
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Chapter 2

Background and
Literature Review

2.1 Basics of evidence theory

Evidence theory was first introduced by Dempster [13], then developed by
Shafer [14]. The theory provides a general approach for modeling and reason-
ing with uncertain, imprecise information pieces. The theory is also preferred
as Dempster-Shafer theory (DST), theory of evidence, or theory of belief
functions. It is proven as a more generalization of the Bayesian probability
[15], and has been widely used in various fields such as knowledge-based sys-
tems [19], multiple-attribute decision making [20], image processing [24, 25],
object monitoring [27, 28], pattern matching and recognition [26], [29], and
information fusion [30]. In machine learning, DST is utilized to solve two
typical problems, classification [31], [38] and clustering [33, 16]. This sec-
tion will briefly introduce basic concepts of the theory which are used in this
research.

2.1.1 Mass function

Let Q = {w1,ws, ...,wn} be a finite set 2 of N mutually exclusive, exhaustive
hypotheses. These hypothesises are possible answers to a given question, and
also preferred to as frame of discernment for that question [14]. A mass
function m defined on () is a mapping:

m: 2% [0,1] (2.1)
such that
m (@) =0, and Z m(S) =1 (2.2)
5CQ



The mass function m is also preferred to as the basic probability as-
signment BPA) on (), and could be interpreted as below:

The frame of discernment €2 contains possible answers to a given ques-
tion. For example, in this research, the question could be “Which
keyword in user vocabulary is the most important word that reflects
user profile?”.

The quantity m(S), where S is a subset of 2, is the degree of belief
exactly assigned to the proposition “the true answer is in S” and noth-
ing more. This means that the quantity m(S) does not reveal any
specific conclusion about the relationship between the actual answer

and the subset of S).
m describes one piece of evidence pertaining to that question.

if m(@) = 0, then m is said to be normalized. Otherwise, there may
be some answers outside 2 (open-world).

if m(Q) > 0, then this quantity quantitatively represents the concept
total ignorance in DST.

The focal set of m, denoted as F,,, is defined as the set of all subsets
A C Q satisfying m(A) > 0. In special cases, m degenerates to categorical,
Bayesian, and consonant mass functions [15]:

if the cardinality of A is equal to 1, for all A in F,,, then m is known
as Bayesian mass function.

if there is only one element in F (|F| = 1), then m is called a categorical
mass function. This case is equivalent to a traditionally logical set.

if focal elements in F,, form a chain in (29, - ), then m is known
as consonant mass function. This case is equivalent to a possibility
distribution.
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2.1.2 Plausibility, belief, and contour functions

Definition. Given a normalized mass function m on €, and S C €2, the
belief and plausibility functions of S are defined respectively as following:

Bel(S) <= 3" m(S"), (2.3)
S'CS

PI(S) == > m(Y) =1- Bel(S). (2.4)
S'NS#D
Interpretation:

e Bel(S) is a measure of the total belief support for S.

e PI(S) is the measure of the lack of support in S (or consistency
with 5).

e We always have: Bel(S) < PI(S).

The mass function, belief function, and plausibility function are mathemati-
cally equivalent. This means that if one of the three functions is determined,
then the other two functions can be identified [14]:

m(s) = 3 (- )% pa(sy. (2.5)

S'cs

The contour function is the mapping pl : 2 — [0, 1] defined by
pl(w;) = PL({w;}), Vw; € . (2.6)

The basic probability assignment can be viewed as determining a set of the
probability distribution m on the power set 2 satisfying:

Bel(S) < PI(S),VS C . (2.7)

Thanks to the inequalities in (2.7), Pl and Bel are interpreted as the upper
and the lower probability of S, respectively. These probabilities quantita-
tively reflect the incompleteness of the available evidence. If m is a Bayesian
probability, then the inequalities in (2.7) degenerate to the equality ones.

16



2.1.3 Combination rule in evidence theory

Let my and my be two mass functions over the same frame of discernment
Q). Each m; is derived from one piece of evidence. These two mass functions
could be combined via the so-called Dempster’s rule defined as following:

0 if S =0
ﬁ ZS’QS”;&@ [ml (S/) X My (S”)] if S0

where x is the degree of conflict between two sources identified by:

K= Z my(S') x my(S"). (2.9)

S'NS"=0

(2.8)

m o ma)(s) - {

In general, this rule could be repeatedly applied as many times as possible
when there are more than two pieces of evidence. This advantage is useful
for making decision. It implicitly assumes that two evident sources agree
with each other in supporting a common proposition.

2.1.4 Decision making

Assume that we have a mass function m storing all knowledge about a ran-
dom variable X. Our objective is to choose one predicted value w; € € for
the random variable X. The mass function m can be converted into the so-
called pignistic probability distribution defined by BetPm : Q — [O, 1}
[39], and:

A
BetPm(w;) = Z m (2.10)
Al
ACQ, wieA
Basing on (2.10), the element w; with the highest value is selected as the

prediction for X, i.e.,

X = w* = argmax Bet Pm(w;). (2.11)
wiEQ

The rule (2.11) yields a unique conclusion because it selects a single element
in 2 with the highest value.

2.1.5 Example of decision making in DST

Assume that there are three keywords in user vocabulary called pet, food,
and sport, denoted as wi, we, and w3 respectively. In this case, the frame
of discernment €2 = {w;,wq,ws}. Our objective is to compute the weight of
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each keyword. Additionally suppose that there are five pieces of evidence,
each of which is somehow transferred into the so-called mass functions as
given in table 2.1. In that table, the mass mg is known as absolute certainty,
my is completely ambiguous (i.e., total ignorance), and my totally refutes all
words in € (i.e., open-world). The mass functions m4 and mj correspond
to situations of imperfect knowledge (my4 is Bayesian). In this case, com-
bining m4 and ms, then computing pignistic probability yields BetP(w;) =
0.09/(1 — 0.21), BetP(ws) = 0.60/(1 — 0.21), BetP(ws) = 0.10/(1 — 0.21),
and k = 0.21'. The value x = 0.21 is the conflict degree between two sources
my and ms. Basing on these weights, we can extract top-n keywords to form
the user preferences, where n could be equal to 1 (only select ws), 2 (wy and
ws), or 3 (wa, ws, wi).

Table 2.1: An example of combination and decision making in DST.

F ml(]-") mg(f) mg(f) m4(.7-") m5(]:)
0 0 1 0 0 0
{wr} 0 0 0 0.3 0
{ws} 0 0 0 0.6 0
{ws} 0 0 1 0.1 0
{wl, wz} 0 0 0 0 0
{wl, (,L}3} 0 0 0 0 0
{wa, w3} | O 0 0 0 0.7
Q 1 0 0 0 0.3

2.2 Machine learning techniques

2.2.1 Overview of k-means clustering

Informally, k-means clustering is an approach for partitioning n observations
into k distinct, non-overlapping partitions. Each partition is called a cluster,
and is represented by a cluster center (usually referred to as a centroid). A
cluster is a collection or group of “similar” data points according to certain
criteria. To perform k-means clustering, practitioners must first specify a
value for k - the desired number of clusters and the similarity criteria between
two data points (e.g., Manhattan distance and Euclidean distance). Then
the k-means algorithm will repeatedly assign each data point to the closest
cluster. The algorithm is briefly described as below:

'In general, we have to fuse all masses into an overall one before decision making. Here
we ignore m, ma, ms because my ®m; = m;, Vi, ma@m; = me, Vj, and mz®my, = ms, Vk
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Figure 2.1: The demonstration of k-means clustering (1/2)

2.2.2 Deep generative neural networks

An Overview of Neural Networks. An artificial neural network (or a
Neural Network for simplicity) can be defined as a computational model that
“mimics” biological neural networks of the human brain in processing infor-
mation. The elementary unit of the brain is a biological neuron as depicted
in left part of Figure 2.3. One biological neuron consists of cell body, axon,
dendrites, and synapses or “axon terminals”. The human brain contains ap-
proximately 86 billion neurons, and they are connected by dendrites with
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Figure 2.2: The demonstration of k-means clustering (2/2)

Cell body

Nucleus

Synaptic terminals

Golgi apparatus
Endoplasmic
reticulum

Mimchondriuk Dendrite
J \ Dendritic branches

(a) The biological neuron, (source:
wikipedia, keyword: Neuron)

o wo

synapse
WoTo

axon from a neuron

dendrite

cell body

Z'wﬂii +b

f (Z: wiz; + b)

output axon
activation
function

w1y

(b) The simulated, computational
neuron (source: Doctoral thesis of
Andrej Karpathy).

Figure 2.3: The biological neuron and the computational neuron.

about 10'* — 10 synapses [40]. The elementary computational unit of an
artificial neural network is called a node corresponding to the cell body in
a biological neuron. The right part of Figure 2.3 demonstrates a snapshot
of one node. It receives input from some other nodes (or from an external
source), carries out a computation process to produce an output. Each in-
put has an associated weight (w), which is modeled as its relative significance
level to other inputs. The node applies an activation function to the weighted
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sum of its inputs to produce the output. This output then serves as input
to other nodes through a connection. These connections forms a network
architecture. The typical architecture of a network consists of input nodes
(input layers), hidden nodes (hidden layers), output nodes (output layers),
connections and weights, activation functions, and training rule (a mecha-
nism defines the way the parameters of the neural network are updated during
training process). A neural network that has more than one hidden layer is
called a deep neural network. Figure 2.4 demonstrates a network architec-
ture and its application on image classification. Researchers have proposed
many kinds of efficient deep neural networks depending on a specific kind of
input data, such as a Convolutional Neural Network (CNN) [41] to work with
image data, or a Recurrent Neural Network [42] to deal with with textual
data. In two recent decades, deep neural networks have brought remark-
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Figure 2.4: Neural network architectures [2].

able achievements in various machine learning problems, including super-
vised learning, semi-supervised learning, and unsupervised learning [7, 8, 9].
Practitioners have proposed many robust, data-driven models that can learn
from input observations to make accurate predictions, find hidden patterns,
or even create new instances that are very similar to the input data (e.g.,
generative models) [10, 11, 12]. Next paragraphs will briefly introduce two
widely used generative models, the Variational Autoencoder and Generative
Adversarial Network.

Variational Autoencoders. First introduced by Kingma and Welling in
[11]; and Rezende et al. in [43], the VAE model and its variants ([44, 45, 46,
47, 48]) are the typical approaches for unsupervised learning of complicated
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Figure 2.5: A typical architecture of an Autoencoder.

distributions. From the first launch, VAE has already demonstrated its ef-
ficient ability in generating many kinds of complicated data, including face
images [11, 43, 49], handwritten digits [11, 50], CIFAR images [51], house
numbers [12, 51], segmentation [52], physical models of scenes [49], and fore-
casting from static images [53].

Before describing Variational Autoencoders in details, it is necessary to
define an autoencoder. An AutoEncoder (AE) is a special class of of
neural networks, and is used for learning efficient data representations of
unlabeled data in unsupervised learning. During the training process, AE
ignores insignificant data (“noise”) to focus on learning a representation of
the data set. This representation is usually used for data dimensionality
reduction in machine learning. Typically, an AE consists of two compo-
nents, the encoder and the decoder. Each component corresponds to a neu-
ral network. The encoder compresses original data points from the initial
space into the encoded space (also referred to as the latent space). The de-
coder reverses that process. These two components work in collaboration to
learn a “good” encoding-decoding scheme through an iterative optimisation
process. The objective function of AE is to minimze total loss during the
encoding-decoding process over the entire data set. Technically, at each it-
eration a group of data instances is fed to the network (a encoder followed
by a decoder), then the encoded-decoded instances (the output from the
network) are compared with the original instances, and the errors are back-
propagated throughout the network to update the parameters by gradient
descent algorithm. Figure 2.5 depicts a typical architecture of an autoen-
coder. Informally, a VAE could be defined as an autoencoder in which the
latent space in the encoder is regularised during the training process to be
able to generate new instances. Additionally, the term “variational” arrives
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from the close relation between two techniques in statistics, the regularisation
and the variational inference.

The Objective Function of VAE. This section introduces some basic
concepts that are necessary for mathematically deriving the optimization
function of a VAE. The derivation primarily follows the work in [54].

Bayes’ Theorem. This theorem provides a mathematical approach to up-
date conditional probability of an event when new pieces of evidence are
observed. The theorem is stated mathematically as below:

X|Y) x P(Y)
P(X)

pvix) = 2 (2.12)

where X and Y are two events, P(X) # 0, and:

e P(Y|X): the conditional probability that the event Y occurs, given
that X is observed. P(Y'|X) is usually preferred to as the posterior
probability of Y given X.

e P(X|Y): the conditional probability that the event X occurs, given
that Y is observed. P(X|Y) is usually called the likelihood of Y
given a fixed X because P(X|Y) = L(Y|X).

e P(X) and P(Y) are the probabilities that the event X and the event
Y are observed, respectively, without any given conditions. These two
terms are preferred as the prior or marginal probability.

e X and Y are not identical events.

Bayes formula could be derived from the conditional probability as follow:

P(X-Y)

POXIY) = =5

if P(Y) #0 (2.13)

where P(X-Y) is the joint probability that both event X and Y are observed.

Similarly,
P(X-Y)

P(X)
Solving for P(X -Y') and substituting into the above equation for P(Y|X)
gives us the Bayes’ formula:

P(Y|X) = Jif P(X) 0. (2.14)

PXIY)PY)

P(Y|X) = 259

(2.15)
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Kullback-Leibler Divergence (KL divergence). This divergence is a
measure to compare the density similarity between two distributions. It is
the expectation of the difference of information content between the two
distributions. Information content (or self-information, or Shannon informa-
tion) is a quantity that reflects the level of “surprise” of a particular outcome
from a random variable. Intuitively, an event with high probability contains
lower information content. Given a random variable u, p(u) and ¢(u) are two
distributions associated with u, then:

The information content associated with p(u): IC,(u) = —log (p(u))
The information content associated with g(u): IC,(u) = —log (¢(u)

(2.1
Therefore, the difference between information content associated with p(u)
and information content associated with ¢(u) is,

AIC = I1Cy(u) — I1Cy(u) = —logp(u) + log g(u) = log (%) . (2.18)

The KL divergence is defined as the expectation of the above expression, i.e.,

KL (p(w)la(u) € E-, [AIC] = / (AIC) p(u)du
_ / p(u) log <@) du. (2.19)

q(u)
Similarly,

def

KL (g(u)||p(w)) & By [AIC] = / (AIC) q(u)du

_ / g(u) log <%) du. (2.20)

Note that the KL divergence is not a metric because it does not satisfy the
symmetric property, i.e,

KL(p(u)llg(u)) # K L(g(u)[[p(u)). (2.21)

This is because the expectation is computed with respect to p(u) in K L(p(u)]||q(u))
while the expectation is calculated with respect to g¢(u) in K L(q(u)||p(uw)).
Additionally, the KL divergence always yields a non-negative value, i.e.,

KL (pw)law)) = [ plu)tog ({%) du >0 (2.22)
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To prove this property, we utilize the inequality (2.23) in mathematics.
logez <z —1,for x >0 (2.23)

Therefore

which implies,
KL (p(u)llg(uw) > 0. (2.24)

Optimization function of VAE. The objective of encoder in VAE is to
approximately estimate the posterior distribution ¢, (2|u), where u is the ob-
served data (or evidence), z is the latent variable, ¢ is a set of parameters
representing the encoder network. Similarly, the decoder part in VAE ap-
proximately estimates the likelihood distribution pg(u|z), where 6 is a set of
parameters representing the decoder network. Output created by the encoder
is a set of parameters forming the distribution in the latent space. This latent
distribution is then sampled to serve as the input of the decoder. Figure 2.6
illustrates a typical scheme of a VAE in which the latent space are assumed
to followed a bi-variate Gaussian distribution (i.e., the number of dimensions
of z is 2). The KL divergence between the approximate distribution gg(z|u;)
and the real posterior distribution p(z|u;) is determined by equation (2.25):

KL aa el lptel)) = = [ ao(elu) 10g (M) >0, (225)

Go(2]us)

By applying the Bayes’ rule to the equation (2.25), we get:

K L (g (=) [p(zus)) = — / 4o (zJ11s) Tog (M) dx >0

G (2|ui)p(u;)

_ / 0o (=) [log (%) log p(ui)} dz > 0.
(2.26)
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encoder - decoder -

input output

qp(z]x)

Figure 2.6: An typical scheme of an VAE with bivariate Gaussian
distribution in the latent space.

Applying the distributive law into (2.26) yields,
— /q¢(z|ui) log (M) dz + /qqg(z]ui)logp(ui)dz >0. (2.27)
G (2[ui)

Note that log(p(u;)) is just a constant, we can pull it out of the second inte-
gral, and [ gs(z|u;)dz = 1 because g4(z|u;) is a probability density function,
the expression (2.27) becomes:

Po(uil2)p(2)
— | qs(z]u;) log (— dz +log p(u;) > 0. (2.28)

/ ’ e
Equivalently,

log p(u;) > [ qs(2|u;)log (%) dz

[ astelus)
/q¢(z|ui)[10g (po(ui|2)) + log p(z) — log qs(z|u;) |dz
= /qqs(Z\ui)log (%) dZ+/Q¢(Z!ui)10gpg(ui]z)dz. (2.29)

Substituting the formula of KL divergence and Expectation into the right
hand side of (2.29) yields,

logp(u;) > =KL <Q¢(Z’Ui) | p(Z)) + Eegy (o) [logpe(uiIZ)} (2.30)
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The right hand side of (2.30) is called the Evidence Lower Bound (ELBO)
(also preferred to as the variational lower bound). Because it is a lower
bound of the log likelihood of the data (logp(u;)) that needs to be maxi-
mized. Therefore, maximizing the ELBO means looking for the largest value
of the log likelihood of the evidence (our observed data). This is the key
idea of variational inference because maximization of the log likelihood
directly is usually an intractably computational task. The KL factor in the
ELBO expression is called a regularizer because it imposes a constraint on
the approximate posterior distribution g, (z|u) at the encoder. The expecta-
tion part in the ELBO is considered as the reconstruction term because it
measures the likelihood of the reconstructed data produced by the decoder.
Now, if we impose a Gaussian distribution onto the latent prior p(z) and the
approximate posterior g4(z|u;), then a closed form for the loss function in

VAE could be obtained.

Closed form of the objective function in VAE. Assume that we im-
pose Gaussian distribution onto

p(z) ~ — e(_gi%%ﬁi) (2.31)

and

(2.32)

Z|Ui) ~ )

then the regularization term (KL) in the ELBO becomes:

— KL (gs(z|w) || p(2)) =
,M)

1 202
(z=1q)? ona2® ’
Zﬁ)xbg Vi dz. (2.33)

_t
/ \ /2%036 (_ (Hg)z)
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Applying the logarithm laws and simplifying the terms in the right hand side
of (2.33), then expressing the result in term of Expectation yields,

~KL(go(zlu) || p(2)) = By |log <0q> Gt D Gl ) ]

— 2 2
Op 20p 20q

= log (?) +E,
V4
ag ]_ 2 ]_ D)
—-k%§(5i) ~ 552t [(z = pp)°] +’§;§Eq[(z_'ﬂq)}-

’ ' (2.34)

2 2
20p 20q

(z=m)* | (2= W]

Because the variance o2 is defined as the expectation of the squared distance
from the mean, i.e.,

o2 =K, [(z — 1g)?] - (2.35)
Substituting (2.35) into (2.34) yields,

o 1 o2
“KL 1- —log (22) = = E [(z— 1)?] + -2
(et 11 9) = 1os (%) = 258, (2= )] + 52
o, 1
—1 A I ) 2 -
o8 (2) = 55 [ = )] +
o, 1 1
= log (U_q) - W]Eq [(z — Mg + g — MP)Q] + B
p p
(2.36)
o 1 2
=log { =% ) = 55 [(2 = pa)” +2 (2 = 41q) (ttg = 1) + (g = )] + 5
O'p Up

—. 2.
557 t3 (2.37)
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Therefore,

Uq) . 02 + (g — ,up)2 n 1 (2.38)
5 )

—K L (gy(z|wi) || p(2)) = log (J 202

p

In the case of standard normal Gaussian distribution (i.e., u, = 0,0, = 1),
we get,

o2 — 2 1
KL (go(zlu) || p(2)) = log(og) — 7210 4
1 o2 —p2 1
= §log(a§) Z 5 £ 5
1
=5 [1+ log(ag) — 02 — “?1] . (2.39)
Recall that the ELBO in (2.30) is
log p(us) = KL (s(21w) || D(2)) + By oty | logpo(lz)|. (240)

With a specific data point u; and a single random draw from the hidden
space z, the right hand side of (2.40) reaches the maximum value at

1
3 [1+log(o7) — o} — k] + Ergy(elur) [logpg(ui|z)] (2.41)

where o7 and py, are parameters of the approximate distribution gy(z|z;),
and k is an index corresponding to the k' component of the latent space
vector 2. Therefore, the loss for a batch of data points is determined by,

UQC ¢7

M%
l\DI»—t

1
1+logo? —o? — ] + Vi > logp(i]z)  (2.42)
!

Jj=1

where J is the dimensional size of the Gaussian latent Z ~ N(7, i), qo (Z]1)
is the approximate posterior, M is the number of samples randomly drawn
regarding to the trick of reparametrization, and (¢, ) are the parameters of
the network to be optimized. The expression in (2.42) finishes deriving the
loss function of VAE. Figure 2.7 summarizes the whole process of training a
VAE using a batch of data points.

Generative Adversarial Networks. Generative Adversarial Network was
introduced in 2014 by Ian J. Goodfellow et al. in the work entitled Genera-
tive Adversarial Nets [10]. A Generative Adversarial Network is an instance
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Learning The Latent Space by VAE
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Figure 2.7: The training process in Variational Autoencoders.

of generative models. It consists of two neural networks, the generator and
the discriminator. These two agents contest with each other in a zero-sum
game. The gain of this agent is the loss of another agent and vise versa.
Given a set of input data following a hidden distribution, the objective of
the generator is to generate “fake” instances to lie the discriminator regarding
to the distribution of given data. In contrast, the objective of the discrim-
inator is to detect “fake” instances made by the generator. In term of loss
value, the generator is trained to increase the error rate of the discriminator.
The objective function of GAN is given by (2.43). Its derivation is provided
concretely in the work [10].

mén max Loan (D, G) =Ezp,...7) log(D(Z))] +
Ezopz) [log (1 — D(G(2)))] (2.43)

where G is a differentiable function defined by a multilayer perceptron with
parameters 6, (6, is a set of weights that need to be trained in the perceptron
(), known as the generator, and D is a second multilayer perceptron D(Z;6,)
that outputs a single scalar (0 or 1) (6, is a set of weights that need to be
trained in the perceptron D), known as the discriminator. D(Z) represents
the probability that  came from the distribution learned from the observed
data rather than “true” distribution pg. The process of training a GAN
model is carried out as follows:

e Noise from a random distribution is drawn, then fed into the Generator
G to create the fake data = to produces the fake pair (z,y = 0).

e The fake pair (z,y = 0) and the real pair (z,y = 1) are fed into the
Discriminator D alternatively.
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Learning The Latent Space by GAN
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Figure 2.8: The training process in Generative Adversarial Networks.

e The discriminator D is a binary classifier network . It computes the
loss for both fake x and real z, then combine these two losses as the
final loss at D.

e Because G and D have different objective functions. Therefore the
generator GG also computes the loss from its noise as G loss.

e The two losses at G and D are backpropagated respective to their
networks to update the parameters within its own networks.

e An optimization algorithm is utilized (e.g., Grad Descent, ADAM, or
RMS prop) for training, and this process is iterated for a number of
epochs or as long as the two networks are “good” enough in their
learning task.

Although the Discriminator’s loss is better than the Generator’s loss in gen-
eral. A good hint to stop training is that the losses of these two components
are quite equivalent. This means that the Discriminator is extremely con-
fused when deciding a “fake” or “real” on samples generated by the Gener-
ator. Figure 2.8 illustrates the training process of GAN model. GAN has
been widely applied by research communities in many studies such as image
generation [55, 56, 57, 58], anomaly detection for medical images [59], image
inpainting or editing [60, 61, 62, 63], 3d object generation [64], anime char-
acters or Emojis creation [65, 66], text to images [67, 68, 69, 70], and music
generation [71].

2.3 Literature review

The research topic that is closely related to this research is user profil-
ing, also referred to as expert profiling [72]. The approach for this topic
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has increasingly attracted much attention after Craswell and his research
team suggested the task of expert searching at Text REtrieval Conference
Enterprise Track in 2005 [73]. The objective of this task is to extract an
appropriate list of experts for a given queried topic. This is a sub-task of a
more general problem called enterprise track. This enterprise track includes
two tasks, the email search task and the expert search task. In that work,
the authors aim at building an appropriate representation for the enterprise
profile from a collection of heterogeneous documents. These collections could
be obtained from a corporate intranet, email archives, and document reposi-
tories. Later, in [3] the authors introduced an approach for modeling expert
profiles as a numerical vector. Each component of the modeled vector is
expressed by a score value that reflects a specific skill of an expert. In ad-
dition, Balog et al. proposed a generative language modeling algorithm for
the same problem [74]. Although these tasks are expected to work for the
web track, the experiment is conducted on an internal enterprise data to
mine the hidden relationships between entities inside the same organization.
Recently, the increase in the amount of texts shared by users on social net-
working platforms requires more advanced methods which are able to cope
with this kind of data. In [75], Estival et al. proposed a way of identify-
ing author profiles by using texts extracted from English emails. However,
this approach is challenging in practice because of user privacy issues. The
problem is more challenging when input data are short texts, (e.g., a tweet on
Twitter). There are taking short texts into account such as applying a neural
network to classify gender based on manually labeled tweets [76], or seeking
the set of most effective features for author identification problems by using
messages extracted from Twitter [77]. Some other works used short texts to
identify user occupation, infer basic demographic information [78, 79], detect
the geographical location [80, 81, 82], learn user concern in politics and their
intentions on election [83, 84], or infer the semantics of user profiles that are
mainly used for improving the solution of the sentiment classification prob-
lem [85]. Most recently, the work in [86] uses tweets to infer the static profile
of users on Twitter. Besides, in [4] the authors considered the problem of dy-
namic user profile for streams of short texts. In that work, they applied topic
modeling for inferring the important terms in user vocabulary to form the
final profile. However, this approach faces difficulties in capturing new topics
which first appear anywhere in the timeline of user corpus. A summary on
this research direction is that although these previous studies were designed
for short texts, they considered different problem types, they did not consider
the user preference problem, or did not consider the user preference problem
under a dynamic context. If there exists some, then the proposed models are
unable to efficiently generate fresh topics/tokens that have never appeared
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in user vocabulary.

Another research approach is to consider the dynamics of user prefer-
ences as a topic model. A topic model is commonly viewed as a statistical
model for inferring the distribution of virtual “topics” that are hidden inside
a set of documents (corpus). Although researchers have introduced differ-
ent approaches for the problem, the Latent Dirichlet Allocation-based model
(LDA) [87, 35] is still one of the state-of-the-art approaches. LDA is a gener-
ative statistical model for textual data. It is claimed as the generalization of
Probabilistic latent semantic indexing model (PLSI) [88]. The LDA model
degenerates to PLSI model when the Dirichlet distribution of the prior is
uniform [89]. In the assumption of the LDA model, each document is con-
sidered as a mixture of topics. Each topic is constituted by a set words.
The main target is to infer the distribution of topics in each document and
the distribution of words in each topic for a given corpus. Two typical ap-
proaches are Variational Inference [87] and Gibb Sampling [36]. Conjugate
distribution pairs is important for the inferring process in LDA model, es-
pecially the Dirichlet-Multinomial conjugacy. This pairs allow the integral
in the denominator of Bayesian theorem to be integrated out. Therefore,
the inference process computationally feasible [90]. Besides, many dynamic
topic models have been proposed for tracking the changes of topics in stream
of short texts such as analyzing the evolution of topics over time via Gaus-
sian distribution [35], dynamically tracking of single topic [91], reasoning the
changes of consumer behavior over time [92]. There is a close relationship
between text-based user preferences and the topic model. The user prefer-
ences problem could be solved by topic model-based approach, e.g., applying
the LDA with collapsed Gibb sampling [87, 36, 93, 94] as our proposed one
provided in Section 3.7. This idea has been used on literature such as emo-
tion classification using short texts [95, 6, 96]. LDA and PLSI models work
efficiently on long documents. However, their performances on short text
data are not as efficient as expected because of feature sparsity issues[97].
Additionally, the work in [97] also provides a good survey about the problem
of user preferences using the topic model. Taking short texts into consider-
ation, Liang et al. applied topic model for the user profile problem [4, 98].
In these studies, the authors also considered the problem under a dynamic
context which means that the profile changes over time. In our work, we
define the problem in a similar manner but with a dramatically different
approach. Overall, we applied deep generative networks for the purpose of
learning and generating. Additionally, we use Dempster-Shafer theory of ev-
idence for reasoning user preferences. The proposed approach is helpful for
decision making, especially in recommendation systems. This is because the
framework is able to generate a very fresh topic that a user may concern in

33



future while researchers in previous approaches face difficulties.
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Chapter 3

The Integrated Framework of
Learning and Reasoning for
Static Profiles

3.1 Introduction

In the framework, word embedding technique, evidence theory, and k-means
clustering are combined for learning the user profile under a static context.
This framework is specifically designed for working with short texts created
by social networking users, and dealing with uncertainty existing in each of
user documents. Overall, the proposed framework consists of three main
phases: (1) concept learning; (2) user modeling; (3) user profile extraction.
Figure 3.1 intuitively provides an overview of the proposed framework. The
main task in each phase is summarized as following:

Phase 1 - Concept learning: Abstract concepts are learned and rep-
resented at multiple levels of abstraction from user texts. At this phase,
user texts are converted into word vectors via word embedding. Then
abstract concepts are learned via k-means clustering. The learned con-
cepts are organized in a hierarchical structure. Each concept reflects an
appropriate semantic degree of user text which is helpful for reasoning
user profiles.

Phase 2 - User modeling: Each document in user corpus is consid-
ered as one piece of evidence carrying some partial information that
contributing to the user profile. These evident pieces are mathemat-
ically transferred into the so-called mass function in evidence theory
by maximum a posterior estimation. Then Dempster’s rule is utilized
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Figure 3.1: An intuitive viewpoint of the proposed framework for static

profiles.

to combine all pieces of evidence into an overall mass function that
represents for the entire corpus;

Phase 3 - Profile extraction: the so-called pignistic probability
principle is used to compute the weigh of individual concepts in a set
of abstract concepts learned from Phase 1. Then top-n concepts are

are extracted to define the user profile.

Figure 3.2 provides a technical viewpoint of the proposed framework. Tech-
nical details will be described in the sections below.

3.2 Text collecting and preprocessing

One objective of the proposed framework is able to work with short texts
made by users on social networks. Therefore, two data sets will be used are
Twitter and Facebook. The raw data sets are processed through three main
steps: tokenization, normalization, and noise elimination. Particularly, the
following tasks will be carried out sequentially:

e White spaces, HI'ML tags, and special characters are removed.

e Stop words defined in the English word set are eliminated.
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Figure 3.2: The proposed for the static profile using short texts.

e All remaining texts are converted into the corresponding lowercase.

e A stemming process is carried out to transfer a word into its original
form. For example, the words “wolves” and “loving” are transferred
into “wolf” and “love”, respectively.

When this process is finished, two refined data sets are archived, the Facebook
data set and the Twitter data set. These data sets are now ready to be used
in the next step of the proposed framework for building the user vocabulary.
Then this vocabulary is used for building the user model in the subsequent.

3.3 Learning the hierarchy of abstract con-
cepts

This task is carried out by employing two machine learning techniques, the
word embedding and the k-means clustering. Word embedding vectors store
the semantics of words via the idea that “a word is characterized by the
company it keeps”!. k-means clustering is used for learning and representing
the hierarchy of abstract concepts. Fach cluster is a representation of some

!This idea was first introduced by John Rupert Firth. Professor J. R. Firth is an
English linguist and a leading scientist in British linguistics during the 1950s
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hidden concepts shared by a group words in user vocabulary that are partially
contribute to the user profile. Details of the two steps are described as follows.

Converting words into word vectors via a pretrained model In this
phase, the pretrained word embedding technique, called Global model [99],
is used to convert individual words into vectors. Omne reason of choosing
GloVe model is that it was trained on Twitter data set. The training data
set contains around two billion tweets with approximately 27 billion tokens.
Weighted least squares regression was used as an objective function while
training GloVe model. This function is defined as below:

V|
Z jk 0 ex +c¢j+ ¢ — logXJk) (3.1)

IIM<

where |V| is the total number of tokens in the vocabulary, ¢;, ¢, are two bias
terms, X} is the count number that the word j appears under the context of
the word k, f(Xj;) is a weighting value, this value is equal to zero if X, = 0.
There are many heuristics to select the value for f such that both frequent
and rare co-occurrences are not over-weighted. After being trained, either
er’s, ;’s, or the average value of these two vectors are possibly considered
as the desired word vectors because these variables are exchangeable in the
objective function (3.1).

Learning the hierarchy of abstract concepts by k-means cluster-
ing The objective of this task is to mine a set of abstract concepts that are
hidden inside user plain texts. The learned concepts are represented into a
hierarchical structure that is similar to the idea of ontology learning [100],
[101], [102], [103]. This hierarchy explicitly provides the relationship between
conceptual concepts. The lowest abstraction level in the hierarchy is used for
representing plain texts. The words in a higher level are the abstract con-
cepts. These abstract concepts are mined by k-means clustering algorithm.
This hierarchical structure is visually depicted in Figure 3.3. Each abstract
concept at a particular level generally captures some semantic features of the
tokens at the lower level. For example, the words glad, pleasure, and funny,
in a particular scenario, describe the similar user emotions. Therefore, these
words could be represented by using one common abstract concept called
“happiness” or “good_feelings”, denoted as ak;. This representation is useful
for inferring user profiles because each abstract concept is assumed to store
some pieces of conceptual information that partially contribute to the de-
sired user profile. In practical application, this hierarchy is also necessary for
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Figure 3.3: Learning the hierarchy of abstract concepts hide inside plain
texts.

decision making. For instance, a web-based movie provider needs to estimate
how much science fiction movies attract a specific user. This question can
not be estimated directly via plain texts because there is no token in user
observed keywords that exactly matches the top keywords in science fiction
movies. Instead, the application can consider the similarity between these
words in a more abstraction way. For example, the word “virtual reality”
in some scenarios stores partial information about science fiction, although
fiction and reality have opposite meaning in their plain forms. When this
task is finished, a set of abstract concepts are obtained, called the abstract
vocabulary. Each user has a corresponding conceptual hierarchy. Each ab-
stract keyword in the hierarchy is represented by two terms, the abstract
name and the corresponding word vector in R” space (n € ZT). With this
representation, the framework could be able to utilize semantically statistical
properties of words in user texts to infer the desired profile.

3.4 Building abstract corpora

For every document d in user corpus, the word w; is replaced by its nearest
abstract concepts basing on a similarity measure (e.g., cosine similarity or
Euclidean distance). This process is provided in Algorithm 1. An extra
keyword, called ‘omega’, is added into the set of abstract concepts. This

39



Algorithm 1: Building abstract corpus for a particular user

Input: text corpus U, user dictionary, distant function d, threshold e
Output: abstract corpus U’ for the given user

1 for each document d € U do

2 for each word w; € d do

3 get word vector of w;

4 calculate all similarities sim(w;, ak;), V7

5 if all sim > e then

6 L replaced w; by ‘omega’ in d

7 else
8 | replaced w; by ak; such that sim(w;, ak;) is largest

9 Return abstract corpus U’

addition is carried out at step 5 of Algorithm 1. The word wj is replaced by
‘omega’ if all similarities between w; and abstract concepts ak; (Vj) exceed
a predefined threshold e. If this condition is satisfied, then it means that the
framework is highly uncertain on which abstract concept the word w; should
be assigned. Therefore, it is reasonable to assigned w; to all abstract concepts
in the vocabulary set. This situation is interpreted as the total ignorance in
evidence theory which is helpful for eliminating common words but not stop
words in the abstract vocabulary (i.e., thing, object, people).

When this task is finished, an abstract corpus is obtained for each user.
This corpus consists of abstract documents. Each document contains a list
of “virtual” keywords, each of which stores some semantic concepts that are
shared between concepts at a lower abstraction level according the hierarchy
learned from the previous step. The next task is to quantitatively estimate
the weight of individual concepts in the abstract vocabulary to infer the user
profile.

3.5 Mass functions: derivation and combina-
tion

From now we use the term documents (or corpus) with means that abstract
documents (or abstract corpus) for brevity. The user profiling problem now
could be reformulated as below.
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Reformulated Problem. Given a list of documents, each of which con-

tained a list of abstract keywords, and V = {aky, aks, ..., aky} = Q is the set

of all abstract keywords for a given user. The problem is to extract top-n

keywords in V such that their weights are highest to form the user profile.
This reformulated problem could be broken into into sub-tasks:

Task a: How to estimate the quantitative contribution of each docu-
ment into the concepts in user vocabulary; and

Task b: How to combine all quantities in the previous task into an
overall one to assist the process of profile extraction.

In order to solve Task a, each document is considered as one piece of
evidence carrying some partial information that contributes to the desired
profile. Then each evident piece is mathematically transferred into the so-
called mass function in Dempster-Shafer theory by maximum a posterior
estimation. Each mass function is a quantitative measure of the correspond-
ing document in user corpus. The solution for Task b could be found by
utilizing Dempster’s rule to combine all masses into an overall mass which is
a representation for the entire corpus. This overall mass function provides a
fundamental for the process of profile extraction in the final phase. Technical
details on how to solve these two tasks are described as below.

Deriving Mass Functions.

o Let V= {akl, aksy, ...,aky,aky 1 = ‘omega’} be the set of all abstract
keywords extracted at a specific level in the hierarchical structure.

e Consider a given set W = {wy, wy,...,wy} of N independent, iden-
tically distributed (i.i.d.) draws from a multinomial distribution on

V.

e In this case, W is considered as the document d created by a social
networking user u;, (e.g., a tweet on Twitter or a status on Facebook).

The likelihood of these drawings in the document d is computed by (3.2).

N V41 V1
L(piw) =pWIp) = [T ] » =" = I »i* (3:2)
i=1 t=1 t—1
Vi1 Vil
Znt = N and Zpt =1, (3.3)
t=1 t=1

where:
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v’ n, is the number of times abstract keyword ak; was observed as a word
in the document d (i.e., W)

v Abstract keywords in V are assumed to follow a multinomial distribu-
tion, denoted as Mult(ak; € V|p)

v/ Each component p; in p'is the probability that an abstract keyword ak;
is observed as a word w; in a given document.

Applying Bayes’ theorem to infer the posterior distribution yields,

Hff , p(w,|[P)p(p )

W,a) = 3.4
P9 = I o) 47 4
where
F( v+l Oét) V41
7~ Dir(pld) = EicaETe H P (3.5)

t=1
and @ is a concentration parameter vector which each element «; corresponds
to p; in p.

Because the denominator of (3.4) is a normalization factor, maximum
a posterior estimation the right hand side of this equation means solving
the constraint optimization problem defined by (3.6)

Vi1 (Zytl o ) V1
arg max H Y V+1 H o (3.6a)

V4l
V41 F( tt at>

ni+az—1
= arg max prTN T X e (3.6b)
P H 1 Tlaw)
V+1
subject to Zpt =1 (3.6¢)

Apply Lagrange multiplier method for solving this constraint optimiza-
tion problem, we obtain,

nt—l—ozt—l

by = V1
t+ (nt —l—th/—l)

LVt e [,V 4+ 1]. (3.7)

In words, the posterior distribution of an abstract concept ak; is pro-
portional to the frequency of that concept in the document d. The hyper-
parameter @ is considered ad the pseudo-count vector. Each component «;
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of that vector corresponds to the abstract keyword ak; in the abstract vo-
cabulary V. An appropriate choice of the vector @ may vary depending on
applications. In this work, a uniformly smoothed vector is assigned to all
abstract keywords (i.e., Laplacian smoothing).

Now, applying (3.7) to compute the mass function associated with each
document d, we obtain,

(#times ak; appears in d) +a; — 1

md({akt}) B (#words in d) + Z:Q;l a; — (V + 1)’

(3.8)

ma(Q) = (#times ‘omega’ appears in d) + Qomega — 1 39
’ (#words in d) + Zl:;l o — (V41) '

where {ak;} C Q = {akl,akg, ...,akv}, Vt € [I,V}.

We verify that the total sum of all masses is equal to 1 (m(Q2) + m({ak;}) =
1,Vi € [1, VD In the next step, Dempster’s rule is used to combined all
mass functions into an overall mass which is the representation for the entire
corpus.

Combining mass functions. Let £ = {my,my,...,mp} be a set of mass
functions over the same frame of discernment €2, where €2 is a set of all
abstract concepts mined by k-means clustering plus the additional concept
total ignorance ‘omega’ (2 = {aky,aks,...,aky,aky 1 = ‘omega’}). Each
m; is derived from the corresponding document d; in user corpus via (3.8),
(3.9).

If there is only two pieces of evidence (L = 2), then the Dempster’s rule
could be used for combining these two masses as defined by (3.10), (3.11).

1

(my ® ma) ({aki}) = g > mu(8) xma(S), (1<t <V +1),
{ak:}=5nS"
(3.10)
m() = M8 X ma(©) (3.11)

1—-k

where £ is the conflict degree between two evident pieces identified by (3.12):

k=) mi(S) x my(S). (3.12)
SNS'=p

In general, if there are many pieces of evidence L > 2, then the general
formula for combining all evident pieces into an overall mass are provided in
(3.13) and (3.14). In the Appendix section, we derive these equations by
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inductive proof. The combination mass function is the representation for the
entire user corpus.

m(1,2,.A,L)<{akt}) = % (H m;({ak:}) —|—C> ,(1<t<V+1) (3.13)

L
m{t2-1(Q) = —Z“;Cn i (3.14)
L-1 V41
c=>" > I]mu{ak}) [] m.() (3.15)
k=1 Sj\gs{-l{;l;” u€s; vv$:5'1~

V+1

K=Y [ m;({ak,}) + C + H m;(Q) (3.16)

""" L) ({ak,}) is a mass value assigned for a given subset {ak,} C
Q, Vg € [1,V], and K is known as the normalization factor. This resulting
mass function is the basis for extracting top-n concepts to form the user
profile in the final phase of the proposed framework.

3.6 Profile extraction and abstract concept
naming

In this phase, basing on the overall mass function in the previous step, the
so-called pignistic probability principle defined in (2.10) is used for comput-
ing the weight of all singletons in 2. Then, top-n concepts with highest
probability are extracted to define the user profile via (2.11). Algorithm 2
summarizes the entire process. Algorithm 2 outputs the profile in two
formats, the semantic/abstract profile and the actual profile. The semantic
profile contains a list of abstract keywords (i.e., only word vectors of the
abstract keywords). The actual profile is achieved by naming all abstract
keywords to their nearest tokens in user vocabulary according to cosine sim-
ilarity. Both formats are helpful depending on contexts. If an application
concerns on the conceptual abstraction of user references, then abstract key-
words are useful. If we care about what actual keywords that approximately
best reflect user preferences, then the actual keyword profile is helpful. In
practice, the semantic profile is quite more meaningful for decision making.
For instance, a job offering application, or an recommendation agent wants to
quantitatively estimate the concerning level of a given user on three topic
entertainment, technology, and education. Assuming that the top-keywords
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Algorithm 2: The integrated framework of learning and evident
reasoning for static user profiles

Input: a positive integer k, text corpus, distance function d
Output: top-k abstract/actual keywords

1 Phase 1:

2 Get word vector of words via pretrained GloVe model

3 Learn the hierarchy of abstract concepts

4 Phase 2:

5 Build abstract corpus: replace individual words by its nearest
centroid

6  Infer mass function for each document via (3.8), (3.9)

7 Combine all mass functions via (3.13), (3.14),(3.15), (3.16)

8 Phase 3:

9 Compute pignistic probability for all singletons via (2.10)

1 Sort pignistic probabilities in descending order

11 Pick up top-k abstract keywords with highest pignistic
probability, called set S

12 Name the abstract keywords if necessary, called S’

13 Return S/S’ as user profile

14 End Algorithm.

o

on each topic are suggested by experts. Then, cosine similarity between the
user semantic profile and the top-keywords in each topic could be computed
to satisfy this requirement. In this case, the exact match becomes unfeasible
and meaningless because of highly zero probabilities in the results.

3.7 Empirical Results

This section introduces the data sets, experiments, and evaluation metrics
for comparing the efficiency between the proposed framework and baseline
models.

3.7.1 Data sets

Two data sets are used in the experiments are Twitter? and Facebook®. The
Facebook data set contains 1180 users after being processed. All posts in

2 Available at https://bitbucket.org/sliangl/uct-dataset/get/UCT-Dataset.zip [98].
3This data set is collected by our research team under the policy of Facebook.
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user timeline are crawled from the date of signing up the account to March
30, 2020. On average, each user uploaded approximately 620 posts, each
of which contains about 36 words. Similarly, the Twitter data set contains
1020 users after being processed. All tweets in user timeline are collected
from the date of opening account to May 31, 2015. In average, each user
create around around 3219 tweets, each of which consists of approximately
12 tokens. The vocabulary size of both data sets is around 6068.

The ground true keywords is achieved by considering the hashtags is user
posts. Particularly, an automatic process is implemented as following:

1. extract the hashtags from user posts

2. sort these hashtags by their frequency in descending order
3. eliminate the symbol ‘#’ in each hashtag

4. lowercase all capital letters

5. leave the resulting hashtags as ground truth keywords.

For instance, the crawled hashtag “#HumanRights” is transformed into “hu-
manright” and this hashtag is then used for evaluation.

3.7.2 Baselines

Baseline models used in the experiments are described as below:

e GSDMM: this is a Dirichlet Multinomial Mixture model with a col-
lapsed Gibbs Sampling technique for clustering short texts. The model
is proposed by Yin et al. in 2014 [104].

e Rake: the Rapid Automatic Keyword Extraction model proposed by
Rose et al. in 2010 for text description [105].

e TextRank: this is a graph-based model for summarizing text proposed
in 2016 [106, 107].

e TFIDF: this is a traditionally statistical model that estimate how im-
portant a keyword is to a document in a corpus* [108].

e LDA: the Latent Dirichlet Allocation model uses a Gibb Samping tech-
nique to topic modelling. We based on this model to derive the algo-
rithm for user profiling problem as shown in Algorithm 4.

4https://en.wikipedia.org/wiki/Tf-idf
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e The proposed methods: Evidence theory-based user profiling. For each
user, the proposed framework outputs two profiles, the semantic profile
(dst_ab) and the actual profile (dst).

The Algorithm 3 depicts an approach for user profiling basing on TFIDF,
RAKE, and TextRank models. Similarly, the Algorithm 4 provides the
approach for LDA-based user profiling.

Algorithm 3: TFIDF/RAKE/TEXTRANK - based user profiling
algorithm

Input: n - a positive integer (the profile length)
Input: Preprocessed text corpus
Output: top-n keywords representing the user profile
Merge all posts from user corpus into one document
Split the one document into n documents
Compute score for words in n documents
Let S =1
while |S| <n do
for each document d do
extract the word w with highest score
remove w from the d
if w¢ S then
10 L insert w into S

© 00 N O Ok W N =

11 Return S
12 End Algorithm.

3.7.3 Experimental criteria and evaluation metrics
We conduct the experiments to evaluate the following criteria:

CR1. How is the overall performance of all models in capturing actual
keywords?

CR2. How is the overall performance of all models in capturing the
abstract concepts?

CR3. How does the size of word vectors affect the overall performance
of all models?

CR4. What is the time complexity of all models when being applied
for practical data sets?
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Algorithm 4: LDA/GSDMM - based user profiling algorithm
Input: n - a positive integer (the profile length
Input: Preprocessed text corpus
Output: top-n keywords representing the user profile
Build LDA/GSDMM model with n topics
Let S =10
while |S| <n do
for each topic-term distribution do

extract the term ¢ with highest score

remove t from the topic-term

if t ¢ S then

L insert ¢ into .S

o N o ;A W N R

Return S
10 End Algorithm.

©

The CR1 can be evaluated by using standard precision metric. The standard
precision score is 1 if w, and wg are identical, 0 otherwise, where w, is a
keyword in the extracted profile and wg is a ground truth keyword. The
CR2 can be evaluated via semantic precision (s-precision). The semantic
precision is defined as the cosine similarity between the word vector e(wgy;)
of the ground truth keyword wy, and the word vector e(w,) of the retrieved
keyword w,. This score may provide some useful insights for decision making
in many contexts such as recommendation systems. The CR3 is evaluated
by adjusting the size of word vectors to different values (e.g., 25, 50, 100, or
200) [99]. And the CR4 can be evaluated by estimating executive time of
all models when being applied on practical data sets.

3.7.4 Results

In all experiments, the value of hyper-parameters is set as follows: the ab-
straction level is 2, the distant function = cosine similarity. For each user,
the profile length is varied from 5 to 50 with the a step size of 5. The pre-
processed data sets are partitioned into train set and test set with ratio 7/3.
The train set is used to tune for the best value of threshold ¢ and number
of abstract keywords ¢ (¢ = 0.8, and ¢ = 50). The reported results are aver-
age values obtaining from 10 times of running the same experiments. Figure
3.4 to Figure 3.8 illustrate the average performance on various metrics of all
models, including TextRank, RAKE, TFIDF, LDA, GSDMM, and the two
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proposed models (dst_ac and dst_ab).

Standard Precision and Semantic Precision.
3.5 respectively provides the average performance of all models on Facebook
and Twitter data sets. According to these figures, the proposed models (dst
and dst_ab) outperform all baselines on both standard precision metric and
semantic precision metric at many values of the profile length, especially at
lengths 10, 15, 40, 45, and 50 on both data sets. These results confirm the
efficiency of the proposed model, and validate the CR1 and CR2. Addi-
tionally, the fluctuation of the proposed model (dst_ab) is more stable in

comparison with the baselines on when the profile length is changed.

Average Semantic Precision at n

Average semantic of the methods:
RAKE, TXTRK, TFIDF, LDA, GSMM, and DST
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Figure 3.4: The average performance on semantic precision of all
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Figure 3.5: The average performance on standard precision of all

models.
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The impact of word vectors’ size. The size of word embedding vectors
is adjusted to different values (25, 50, 100, and 200) for checking the impact of
this adjustment on the performance of all models. The semantic precision is
recorded for comparison. Figure 3.6 and Figure 3.7 illustrate the results
on Twitter and Facebook data sets. Inspecting these figures reveals some
observations as below:

v/ All models work most efficiently in capturing semantic concepts in user
texts when the word vector takes size 25.

v/ The rank in performance of all models is nearly identical when the
size of word vectors is changed. This rank could be classified into
three categories in a descending order as follow: (dst-ab, dst) > (LDA,
GSDMM, TextRank) > (RAKE, TFIDF).

This experiment again confirms the stability of the proposed model in the
case of changing word vector size.
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data set when the word vector size is changed (200, 100, 50, and 25).
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Figure 3.7: The performance on semantic precision of all models on
Facebook data set when the word vector size is changed (200, 100, 50, 25).

Time Complexity Comparison. This experiment will compare the ex-
ecutive time of all models in practical data sets. A Python built-in library
was used for estimating the runtime of all models. The runtime is the dif-
ference between the start time when a built-in function is called and the end
time when the called function is finished. In dst model, two types of exec-
utive time is recorded, the time required for user corpus preprocessing and
the time required for profile extraction. The former type can be eliminated
in comparison because it is executive only once per user. The later type is
reported in the results. Figure 3.8 shows the average runtime of all models
on both Facebook and Twitter data sets. As illustrated in that figure, dst
model gives the second worst performance on runtime when being compared
with baselines. This is one of the disadvantages of the proposed framework
because evidence theory considers all subsets of a given set when modelling
the user profile. In the worst case, the time complexity of the proposal is pro-
portional to exponential functions (O(2"), where n is the number of element
in the frame of discernment €2).
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Figure 3.8: The runtime performance of all models.

3.7.5 Why does the proposed framework work quite
well on short texts?

Baseline models, such as LDA or GSDMM, essentially base one the frequency
of keywords in user vocabulary to compute the weight of individual term
while inferring the user profile. For example, the posterior of topic assignment
of each word z; in collapsed Gibb Sampling-based LDA model ([87], [36]) is
estimated by (3.17)

/Ukvwd,n"!‘ﬂwdm UZN> + (093

(3.17)
> Ukt s Zf; Ng; + Q;

p<zi = k}Z’i,X,o_Z, 5) x

where
V' Ukw,, is the number of times the word type wg, assigned to topic k,

v ngy is the number of times the topic k£ appears in the document d,

v 5 is the Dirichlet parameter vector for word distribution within a topic,

v @ is the Dirichlet parameter vector for topic distribution within a doc-
ument,

The first factor of (3.17) estimates to how much a topic f; “likes” the word
type wq,,. The second factor estimates how much a document d “likes” the
topic k. In words, these two factors indicate that the more frequent a key-
word with assigned topic appears in user documents, the higher opportunity
that keyword is chosen as a candidate for the user profile. This is reasonable
and performs well for long texts. However, for short or medium size texts,
this approach faces difficulties. This is because all terms in user short texts
usually converge a uniformed distribution. This fact causes troubles for the
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frequency-based models while sampling and choosing one specific term with
highest frequency. In order to defeat this challenge, the proposed method
replaces every individual keyword by a nearest abstract concept mined from
user texts. Therefore, this replacement is helpful when deriving the so-call
mass function in Dempster-Shafer theory by maximum a posterior estima-
tion. Example 2 below demonstrates how this process works on a simple
user corpus.

Example 2. Assume that there is a simple corpus created by a Twitter
user. This corpus contains four documents as provided in Table 3.1. The
frequency of each keyword w; in V is equal to 1 for the entire corpus. There-
fore, the formula (3.17) faces difficulties in sampling and selecting the key-
words with highest posterior probability. The proposed model, however, can
overcome this challenge by considering the frequency of abstract concepts
instead (Table Table 3.2). Particularly, the words puppy, parrot, kitty, dog
are viewed as a abstract concept called “pet”, denoted as ‘ak;’. The words
look, see, style is replaced by a concept called “picture” or “photo”, denoted
as ‘ake. Similarly, other groups of similar plain texts are represented by a
unique corresponding abstract concept (e.g., “food” is used as a representa-
tion of hungry, eat, whistle, denoted as ‘aks’). Consequently, these abstract
concepts, aky, aks, and aks are more frequent in compared to other concepts
in V. Therefore, the weight associated with these concepts is high when
applying maximum a posterior estimation for deriving the associate mass
function for each document. Consequently, these abstract keywords are top

candidates for profile extraction. Details of calculation process are demon-
strated in Table 3.3 and Table 3.4.

Table 3.1: The demonstration of the proposed framework on a simple user
corpus (1/4).

Doc | Step 1. Original Texts

Look at the style of my puppy when eating. How lovely he is!
Nothing better than starting a day with your parrot’s whistle
See how this kitty is extremely clever in her own way

My dog is always hungry although eating a lot

Step 2. Texts after being preprocessed

[look, style, puppy, eat, love]

[good, start, day, parrot, whistle]

[see, kitty, extreme, clever, way]

[dog, hungry, eat, lot]

=W DN =

= Wl N —
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Table 3.2: The demonstration of the proposed framework on a simple user

corpus (2/4).

Step3. User Vocabulary

Step 4. Building Abstract Corpora

[dog, kitty, parrot, puppy,

dog, kitty, parrot, puppy|: ‘pet’, denoted as ‘ak;’

look, see, style,

look, see, style]: ‘photo’, denoted as ‘aky’

eat, hungry, whistle,

eat, hungry, whistle|: ‘food’, denoted as ‘aks’

extreme, lot,

[
[
[
[extreme lot]: ‘degree’, denoted as ‘aky’
[
[wa
[
[

start, day, start, day]: some concept, denoted as ‘aks’
way, wa, ]: some concept, denoted as ‘akg’

clever, good, clever, good]: some concept, denoted as ‘ak;’
love] love]: some concept, denoted as ‘aks’

Table 3.3: The demonstration of the proposed framework on a simple user

corpus (3/4).

Doc | Step 5. Building Abstract Corpus

[‘photo’, ‘photo’,

‘pet’, food’, ‘aks ]

[‘ak;’, ‘aks’, ‘aks’, ‘pet’; ‘food’]

[‘photo’, ‘pet’; ‘aky’,

Lak77’ Lak67]

=W DN =

[‘pet’, ‘food’, ‘food’, ‘ak,’]

6. Each document is considered as one piece of evi-
dence contributing to the weight of abstract concepts

0.09, m(aks) =

user vocabulary)

1 | m(aky) = 0.13, m(aks) = 0.16, m(aks) = 0.13, m(aks) =
0.09, m(aks) = 0.09, m(ak;) = 0.09,
m(aks) = 0.13, m(2) = 0.09 (Q is the set of all terms in

0.09, m(aks) =

2 | m(aky) = 0.13, m(aks) = 0.09, m(aks) = 0.13, m(aky) =
0.16, m(aks) = 0.09, m(ak;) = 0.13,
m(aks) = 0.09, m(€2) = 0.09

0.13, m(aks) =

3 | m(aky) = 0.13, m(aky) = 0.13, m(aks) = 0.09, m(aky) =
0.09, m(aks) = 0.13, m(ak;) = 0.134,
m(aks) = 0.09, m(€2) = 0.09

4 | m(aky) = 0.129, m(aks) = 0.16, m(aks) = 0.097, m(aks) =
0.129, m(aks) = 0.097, m(aks) = 0.097, m(ak;) = 0.097,
m(aks) = 0.097, m(§2) = 0.097
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Table 3.4: The demonstration of the proposed framework on a simple user
corpus (4/4).

Step 7. Fusing all pieces of evidence into an overall mass

m(aky) = 0.17,m(aks) = 0.18, m(aks) = 0.12,m(aky) = 0.11,
m(aks) = 0.11,m(aks) = 0.10,m(ak;) = 0.11,m(aks) = 0.10,
m(€2) = 0.005

Step 8. Calculating the weight for individual abstract key-
words and Extracting top-3 keywords to define the profile
m(aky) = 0.17,m(aks) = 0.18, m(aks) = 0.12,m(aks) = 0.11,
m(aks) = 0.11,m(aks) = 0.10, m(ak;) = 0.11, m(aks) = 0.10

The extracted profile is: [ “pet”, “photo”, “food”]
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Chapter 4

Deep Generative Networks
Paired with Evidential
Reasoning for Dynamic Profiles

4.1 The proposed framework: an overview

The proposed framework combines advancements of deep neural networks
and evidence theory for dynamically capturing user preferences. It consists
of three primary components: (1) Learning the hidden space of user texts
by two neural networks; (2) word generation and mass inference; (3) mass
combination and keyword extraction. It consists of three primary phases:
(1) learning the hidden space of user texts; (2) word generation and mass
inference; and (3) mass combination and keyword extraction. In the first
phase, user texts are grouped into small batches according to timestamps.
Each batch is used for separately training two types of neural networks, the
Generative Adversarial Network (GAN) and the Variational Autoencoder
(VAE). In the second phase, the generators in the trained VAE and GAN
work independently as two ezperts to generate bunches of tokens for mod-
eling user preferences. Each bunch is considered as one piece of evidence,
and is transformed into the so-called mass function in evidence theory by
maximum a posterior estimation. In the final phase, Dempster’s rule is uti-
lized for combining the two independent pieces of evidence into an overall
mass function. This mass is used for keyword extraction to form the user
preferences within a specific time span. The experiments on short text data
sets are conducted to inspect the efficiency of the proposed model on various
evaluation metrics. Additionally, the output profile is also used for visualiza-
tion, which is useful in many practical applications (Section 4.7.4). Figure
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Figure 4.1: The proposed framework for capturing the dynamics of user
preferences using short texts.

4.1 provides an overview of the proposed framework. The following sections
will describe these components in details.

4.2 Learning the hidden space of user texts

User texts are grouped into small batches, each of which is used for learning
the impact information which is useful for the generating step. Particularly,
two deep neural networks, the Generative Adversarial Network (GAN) [10]
and the Variational Autoencoder (VAE) [11], are trained separately by feed-
ing the embedding vector of words extracted from the current batch. In
this work, we used pre-trained word vectors from Glove model which was
proposed by Pennington et al. [99]. Particularly, the word vector of each
keyword is extracted thanks to the Glove model. Then these vectors serve
as input data for training the two networks, VAE and GAN. The goal of this
training process is to simultaneously satisfy these criteria: (1) input tokens
could be reconstructed with highly similar scores; (2) the training error is
minimum; (3) general information of user texts is kept.

The optimization functions we used for training the VAE and GAN are
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similar to its original forms as shown in (4.1) and (4.2), respectively.

[~
DN | —

Loae(0,0) = — [L+logo? —of —uif]
j=1
1 o
+ z;logp (xz|5( ’Z)) (4.1)

where J is the number of dimensions in the Gaussian latent z ~ N (&, i),
qo (Z]77) is the approximate posterior, L is the number of samples stochasti-
cally drawn regarding to reparametrization trick, and (6, ¢) are the parame-
ters of the network to be optimized.

ngn mgx Egan(D? G) =Eimpyora (@) [log(D(%))] +
Ezop(z) [log (1 — D(G(2)))] (4.2)

where G is a differentiable function defined by a multilayer perceptron with
parameters ¢,, known as the generator, and D is a second multilayer percep-
tron D(Z; 6,) that outputs a single scalar (0 or 1), known as the discriminator.
D()Z' ) represents the probability that Z came from the data rather than p,.

The architectures of VAE and GAN are hyperparameters depending on
the dimension d of word embedding vectors (e.g., 25, 50, 100, or 200). Be-
sides, data augmentation is also applied for increasing the number of in-
put instances before being fed into the training processes. At this step, we
randomly select some components in the embedding vectors, then adjust
these components (adding or subtracting randomly) by a predefined epsilon
€ (e.g., e € [1071,1079]). To ensure that this technique does not dramatically
change the characteristics of input data, we just keep augmented tokens that
are highly similar with original ones by considering cosine similarity (e.g.,
cosine value > 0.85).

4.3 Word generation

After being trained, the latent spaces in VAE and GAN are used as two
independent generators in generating words that represent user preferences
at the current batch. Each generator (VAE’s and GAN’s) is formed by two
sources. The first source is trained by texts in the current batch. The
second source comes from VAE’s and GAN’s in all previous batches with a
discounted weight determined by equation (4.3):

(0 G if ¢t =1
Gvae|gan - t __\t—iybatch; : (43)
axy  _(1-—a)7'G ift>1

vae|gan
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where G*<" g the generator of VAE model or GAN model learned from

vae|gan

the batch #" of user texts. The discounted weight « is bounded between 0
and 1. It reflects how much the foa)e‘gm relies on the information extracted
from texts in the current batch rather than the information extracted from
historical texts in previous batches. By this way, our approach uses both
information extracted from the current batch and all pieces of information
extracted from all historical batches for the generating task. This task is
described in Algorithm 5. In that algorithm, the weight «, the lower bound
€1, and the upper bound €, are hyper-parameters which values could be tuned
by using the testing set when building the model. The English vocabulary
could be employed from common built-in libraries such as Wordlist corpora
in the NLTK python library. Additionally, we integrated two concepts in
Demster-Shafer theory into this algorithm to cope with special cases, the
total ignorance (denoted as the set Q) and the open-world (denoted as the
set ). The empty set () copes with unknown tokens in user vocabulary.
When conditions of unknown tokens are satisfied, the model will generate a
new word in English instead of user vocabulary. This approach makes our
model flexible in predicting what new topics users may concern in future.
This is essential for capturing the dynamic change of user preferences over
time. The set 2 eliminates too common words (not stop words) like thing(s),
object(s), or people because these words are similar to many other words.
This is not useful for our prediction task.

4.4 Mass functions: inference & combination

The generating process in previous step results in two bunches of keywords,
the first bunch is created by the latent space in VAE and the second bunch
is made by GAN’s generator. These two bunches are then used for quan-
titatively transforming into the mass functions corresponding to VAE and
GAN, respectively. Then, two subtasks need to be solved are: (1) inferring
mass functions; (2) combining two mass functions into an overall mass that
represents user preferences at time interval ¢. The first task can be solved by
maximum a posterior estimation. The second task’s solution could be found
by utilizing the Dempster’s rule. Details are given as follows:

Inferring Mass Functions

Let W = {wy, wy, ..., wy} be a set of N independent, identically distributed
draws from a multinomial distribution V of size V. In this case, each element
in W is a combinatorial extension of one bunch of words that are most
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Algorithm 5: DST-based Word Generation

[ NS B N VR R

®

10

11
12
13

14
15

16

Input: current VAE/GAN, previous VAE/GAN, lowerBound ¢,
upperBound €5, User Vocabulary, English, and number of
draws N
Output: A bunch of generated word vectors that represent user
preferences
Compute generator at the current timestamp G via (4.3)
Let set S = ()
Let the count for €2 set countq = 0
while |S| < N do
Generate one word vector v by G
Extract top-n keywords in user vocabulary that are most similar
to v, denoted as keyiargests ---» K€Ysmatest
if sim(keyiargest, v) < €1 then
Extract top-k keywords in English that are most similar to v
Add top-k keywords into .S
Extend User Vocabulary with these new tokens (a set of new
words is added into S)

Ise if sim(keysmaliest, V) > €2 then
counto +=1
(Nothing is added into S because of drawing a common word)

®

else
L Add top-n keywords to S

Return S, countg
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similar to the word vector generated by the generating process. The set
V = {sety, sety, ..., set,,—ov } is the power set of the set of unique tokens
built from the current batch in user corpus. This vocabulary includes fresh
tokens created by Algorithm 5. For instance, if Vocabulary, = {a,b,c},
then V = {0, {a}, {b}, {c},{a, b}, {a,c},{b, c},{a,b,c}}. For each draw, the
likelihood of an element in V is computed by (4.4).

L(71) = pWi7) = [T L= - [ (4.4)

1=1 j=1

v 14
an = N and ij =1 (4.5)
j=1

j=1
where n; is the total number of times the set set; is observed in W. Each set
in the power set V is assumed to follow a multinomial distribution, denoted
as Mult(set; € V|p), where ' is the probability that the set set; is observed
when drawing. Applying Bayes’ theorem to infer the posterior distribution

yields,
Hff L p(set,|P)p(p1a)

PEIV-9) = et Pl 47

To make the computational process feasible, Dirichlet distribution on the
prior parameter p is applied on the likelihood to form conjugate distribution
pairs as shown in (4.7).

(4.6)

r(ge) ¢
P~ Dir(pld) = % Hp?j_l (4.7)

j=1 i) j=1
where & = a1, o, ..., @j, ...] is the concentration parameter vector, each com-
ponent «; corresponds to p; in p. Because the denominator of (4.6) is a nor-
malization factor, maximum a posterior estimation the right hand side of
this equation means solving the constraint optimization problem defined by

(4.8)
ZY Oé] v 1
argmax H p;’ ( F(a >> H p?r (4.8a)

: 0] )

nj+o;—1
= argmax pil T X = (4.8b)
v ]ljll ’ Hj:l I'(ay)
v
subject to ij = (4.8¢)
j=1
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Apply Lagrange multiplier method for solving this constraint optimization
problem, we obtain the solution in (4.9)

nj + Oéj —1
\%
Zj':l (nj/ + Oéj/ — 1)

pj = , Vi el V] (4.9)

By applying (4.9), mass functions associated with each bunch of samples
drawn by VAE’s generator and GAN’s generator are determined as in (4.10),
(4.11), respectively.

(#times the set S; appears in W) 4+ «; — 1
Wi+ 0=V
(#times Q appears in W) + aq — 1
W+ Zz/:l a =V '

m(S;) = : (4.10)

m(Q) = (4.11)

We verified that the sum of all masses is equal to 1 (i.e., m(S;) + m(Q) =
1,Vi € [1, VD In the next step, Dempster’s rule is used to combined two
pieces of evidence into an overall mass function which is the representation
for user preferences within the time interval .

Combining masses from multiple sources

Suppose that we have a set M = {mq, ma, ..., my} where |[M| = M, each m;
is a mass function corresponding to the i source over a frame of discernment
Q. Q= {51,52, ...,SV} is a set of all possible subsets S; in V, |Q] = V. In
our case, M = 2, and each mass m; is induced from one bunch of tokens
generated by either VAE or GAN via (4.10), (4.11) in the previous step.
Here we consider each of the predictions made by VAE and GAN as an
evidential source that is valuable for reasoning process. Combining these
two sources gives the results determined by the equations (4.12) and (4.13).

iy & ma(S1) = 2_sns!'=s, ”111_(5;;) X my(S; )’ (4.12)
m(Q) = [ml(Qi “ KmQ(Q)} (4.13)

where k is the degree of conflict between two sources identified by (4.14):

k=Y mi(A) x my(A") (4.14)
ANAT=0
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4.5 Profile extraction

In this phase, basing on the overall mass function in the previous step, the
so-called pignistic probability principle defined in (2.10) is used for comput-
ing the weight of all singletons in 2. Then, top-n concepts with highest
probability are extracted to define the user profile at the time interval ¢
via (2.11). The entire process of the proposed framework is represented in
Algorithm 6.

Algorithm 6: The entire process for finding user preferences within
a specific time interval

Input: a positive integer n, batch; of user texts, the generator G~
at the previous time span
Output: top-k£ keywords
1 Phase 1:
2 Learn the latent space of current batch; via VAE
3 Learn the latent space of current batch; via GAN

4 Calculate the generator Giie via (4.3)

5  Calculate the generator GE,Q” via (4.3)
6 Phase 2:

7 Generate the first bunch of words via G5, and Alg. 5
8  Generate the second bunch of words via GE,’ZBn and Alg. 5
o Infer the mass function corresponding to Gl via (4.10), (4.11)

10 Infer the mass function corresponding to G4, via (4.10), (4.11)
11 Phase 3:

12 Combine two mass functions via (4.12), (4.13)

13 Compute pignistic probability of singletons via (2.10)

14 Sort pignistic probabilities in descending order

15 Pick up top-n keywords called set S

16 Return S as user preferences at time ¢

17 End Algorithm.

4.6 The rationality of the proposed approach

Our model just uses a few of texts in user corpus for training VAE and GAN
separately. After being trained, the generators of VAE and GAN work in-
dependently as two “experts” in predicting user preferences within a specific
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time interval. Each prediction made by one expert is viewed as a piece of
evidence in Dempster-Shafer theory. After that, we quantitatively fuse these
two pieces of evidences into an overall mass function. This mass function is
the basis for extracting top-n keywords to define the user profile at time t.
By this way the proposed framework is able to work properly when we insert
more predictors to work as a new “expert”. Additionally, when generating
words at time ¢, the model uses two sources of information. The first source is
extracted from texts in the current batch. The second source comes from the
representative information learned from texts in all previous batches with a
discount weight. This way ensures that the proposed framework uses both
current texts and historical texts to predict the dynamics of user preferences
at time ¢t. Additionally, the Algorithm 5 is able to generate fresh tokens that
may appear anywhere in user corpus. Therefore, this approach is reasonable
in practice because user concerns on various topics usually change over time,
especially customers on e-commerce systems.

4.7 Experimental results

This section introduces the data sets, experiments, and evaluation metrics
for comparing the efficiency between the proposed framework and baseline
models. Finally, we conduct an extra experiment which uses the output of
the proposed framework to visualize the dynamics of user preferences over
time.

4.7.1 Data sets and baseline models

The experiments are conducted ontwo data sets: (1) Twitter data set - a
publicly available data set collected from Twitter [5]'; (2) Facebook data
set which is crawled by our research team. Twitter data set consists of
1189 users after being preprocessed. There were around 2689 tweets per
user, each of which contains about 9 words on average. Facebook data set
consists of 500 users after being preprocessed. There were around 816 posts
per user, each of which contains about 36 words on average. All texts in
both data sets are passed through a preprocessed pipeline, including noise
removal, tokenization, and normalization. Particularly, we carried out the
following tasks sequentially: eliminate HTML tags and white spaces, delete
special characters, lowercase all texts, remove all stop words, apply stemming
process to transform a word into its base form (e.g., “loving” or “loves” to
“love”, “wolves” to “wolf”).

! Available at https://bitbucket.org/sliang1/uct-dataset/get/UCT-Dataset.zip
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We conducted experiments to make comparisons between our proposed
method and the baseline models that work efficiently on text summarizing
and keyword extraction as described as follows [109]: Baseline models used
in the experiments are described as below:

e GSDMM: this is a Dirichlet Multinomial Mixture model with a col-
lapsed Gibbs Sampling technique for clustering short texts. The model
is proposed by Yin et al. in 2014 [104].

e Rake: the Rapid Automatic Keyword Extraction model proposed by
Rose et al. in 2010 for text description [105].

e TextRank: this is a graph-based model for summarizing text proposed
in 2016 [106, 107].

e TFIDF': this is a traditionally statistical model that estimate how im-
portant a keyword is to a document in a corpus?® [108].

e LDA: the Latent Dirichlet Allocation model uses a Gibb Samping tech-
nique to topic modelling. We based on this model to derive the algo-
rithm for user profiling problem as shown in Algorithm 4.

e YAKE: an unsupervised, statistical model proposed in 2020 for key-
word extraction from single documents using multiple local features
[110];

e PositionRank: An unsupervised, graph-based model proposed in 2017
for keyphrase extraction from documents [111].

e MultipartiteRank: an unsupervised model proposed in 2018 for keyphrase
extraction with multipartite graphs [112]

e dst: the proposed model bases on Dempster-Shafer theory and deep
generative networks.

The procedures of LDA, GSDMM, YAKE, PositionRank, MultipartiteRank,
RAKE, TextRank, and TFIDF models are similar to the models we presented
in Section 3.7.2.

2https://en.wikipedia.org/wiki/Tf-idf
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4.7.2 Evaluation metrics

The experiments are to answer these criteria: CR1. How is the overall
performance of all models in predicting the dynamics of user preferences
using short texts according to common evaluation metrics? CR2. How
is the overall performance of all models in capturing the abstract concepts
shared between words in user texts that implicitly reflect their preferences at
time span t?7 CR3. How does the size of word vectors impact the efficiency
of the proposal framework? CR4. How is the time complexity of all models
when working on practical data sets? and CR5. Is there an appropriate
approach for visualizing the dynamics of user preferences over time?
Common metrics such as standard precision at n, Mean Reciprocal Rank
(MRR), and Mean Average Precision (MAP) are usually used for evaluating
CR1 [113]. The semantic precision, denoted as s-precision, could be used
for evaluating CR2 [4]. Executive time is usually used for answering CR3
in practice. We record the semantic precision performance of all models at
different sizes of word vectors for answering CR4. Finally, the approach for
the CR5 could be found by using the output of our proposed framework to
visualize the changes of user preferences on five given topics over time.

Models: RAKE, TFIDF, LDA, GSMM, TextRank (txtrk),
YAKE, PositionRank (posrk), MultipartiteRank (mulrk), and DST
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Figure 4.2: Twitter dataset: Semantic precision.
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Models: RAKE, TFIDF, LDA, GSMM, TextRank (txtrk),
YAKE, PositionRank (posrk), MultipartiteRank (mulrk), and DST
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Figure 4.3: Twitter dataset: Standard precision.

4.7.3 Results

Each of the data sets is divided into two subsets, the train set and the test
set, with the ratio 8/2. The train set is used for tuning hyper-parameters
such as network architectures, learning rate, and slope value in activation
functions. Additionally, for each user corpora, we further group preprocessed
texts into n = 12 batches corresponding to 12 time intervals. Each batch
consists of around 134 posts, 95 percentages of posts in the batch are used
for training and inferring. In this stage, we also applied data augmentation
with an amount of 20 folds to increase the size of input data. Five remaining
percentages are used as candidate keywords (eliminated stop words) which
are sorted in an ascending order of time for evaluation purpose. At each batch
of user texts, the number of keywords extracted by all competitors varies from
5 to 50 with step size 5 (e.g., [5, 10, ...,50]). We report the average result of
30 runs in the test set.

Figure 4.2 to Figure 4.15 show the performance of textrank, rake, tfidf,
lds, gsdmm, and our proposed method (dst) on following metrics: semantic
precision at n (the number of keywords in prediction), standard precision at
n, MRR at n, MAP at n, and runtime at n. As illustrated in Figure 4.2
and Figure 4.4, dst model outperforms all the baselines in almost values of n
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Models: RAKE, TFIDF, LDA, GSMM, TextRank (txtrk),
YAKE, PositionRank (posrk), MultipartiteRank (mulrk), and DST
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Figure 4.4: Facebook dataset: Semantic precision.

according to semantic precision. For the performance on standard precision
metric, the fluctuation of dst model is more stable when the number of key-
words increases. And in many values of n, our proposed model outperforms
the baselines, especially at length 35,40, 45, and 50.

In MRR and MAP metrics, the dst model is more stable in comparison
with the baselines when making first correct prediction (MRR) and when
ranking a list of keywords to be appeared for representing user preferences in
the next time step (MAP). This is because the ranking made by Smets prin-
ciple in Dempster-Shafer theory does not depend on the number of keywords
to be extracted. Overall, these results validate the efficiency of our proposed
framework for the first two research questions C1 and C2.

Turning to C3, we estimated the semantic precision of all models by vary-
ing the size of word embedding vectors within the range [25,50, 100, 200].
For each vector size, we tuned the networks of VAE and GAN then se-
lected the architecture which gave the highest performance. Figure 4.10 to
4.13 show experimental results on Twitter data set. We observe that: (1)
the word vector of size 50 give the best performance compared to the re-
maining sizes; and (2) the ranking of all models is nearly identical, and is
distributed into three categories with the descending order as follow: dst >
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Models: RAKE, TFIDF, LDA, GSMM, TextRank (txtrk),
5 1Y(,)A‘KE, PositionRank (posrk), MultipartiteRank (mulrk), and DST
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Figure 4.5: Facebook dataset: Standard precision.

(lda, gsdmm, yake, tfidf, yake) > (posrk, mulrk,txtrk). This observations
again validate the efficiency and the stability of the proposed framework
when the size of word vector is dramatically changed. Additionally, the result
of this experiment type also reveals an appropriate approach for visualizing
the dynamics of user preferences over time as proposed in Section 4.7.4.
Turning to C4, the dst model gives the second worst performance on runtime
when being compared with baselines. This is one of the disadvantages of our
proposed framework because Dempster-Shafer theory considers all subsets of
a given set when inferring and combining mass functions. In theory, the time
complexity of our proposal is proportional to exponential functions in worst
case.

4.7.4 User preference visualization

From semantic precision we propose an approach for visualizing the change
of the level user concern on common topics over time. The approach is briefly
described as follows: Predefined keywords in five common fields, including
Education, Politics, Science & Technology, Entertainments, and Economics,
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Models: RAKE, TFIDF, LDA, GSMM, TextRank (txtrk),
YAKE, PositionRank (posrk), MultipartiteRank (mulrk), and DST
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Figure 4.6: Twitter dataset: MRR.

are listed by experts®. The semantic similarity between each of predicted
words at time ¢ and all words in the predefined keywords of the given topic
is calculated. Then average value is computed and plotted in a graph to
represent the preference level of the user on that topic at time ¢. The entire
procedure is provided in Algorthm 7. Figure 4.16 shows the visualization
of two randomly selected users. We observed that the most concerned topic
of the user 1 is Education while the most concerned topic of the user 2 is En-
tertainments. Additionally, the level of concern on Politics is on the upward
trend for the user 1. This observation may reveal the insight that the user
1 is more concerned in Politics over time. Besides, the results in this visu-
alization approach are helpful and interpretable because cosine similarity is
bounded in [—1,1]. This value can be interpreted as “dislike” (-1), “neutral”
(0), or “like” (1). Many applications such as recommendation systems can
utilize these insights to offer appropriate items that best match user demand.
Another application is that users can be clustered into groups regarding to
their preferences so that a number of useful insights may be revealed for
decision making in various business contexts.

3There are 6 annotators who are experts in the field participating in our experiments.
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YAKE, PositionRank (posrk), MultipartiteRank (mulrk), and DST

Models: RAKE, TFIDF, LDA, GSMM, TextRank (txtrk),
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Figure 4.7: Twitter dataset: MAP.
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Algorithm 7: Estimation of the level of user concern on a given
topic at specific time ¢

Input: A list of top m keywords representing topic i
Input: A list of top k keywords at time t of a given user u;
Input: Pre-trained word vector model
Output: A real number between [—1, 1] that quantitatively
represents user concern on the topic ¢ at time ¢
1 Get word vectors of all keywords in topic i, called the set T
Obtain word vectors of all keywords of user preferences at time ¢,
called the set K
Let S =1
for each word vector wy, in K do
for each word vector wy in T do
Compute cosine similarity cos(wy, w;)
L Add cos(wg, w;) into the set S

EN B - RS B N N

Qo

Compute the average of all values in S, called r
9 Return r
10 End Algorithm
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Chapter 5

Conclusion

5.1 Summary

This research integrated advancements of machine learning and evidential
reasoning in Dempster-Shafer theory for the problem of capturing user profile
using short texts on social networks. The user profiling problem is considered
under two scenarios, the static profile and the dynamic profile. This research
proposed two novel frameworks, each of which corresponds to one scenario.

Intuitively, the approach in the first proposed framework is to reasonably
estimate the “important” level of each abstract concepts in user vocabulary.
Basing on this important level, top-n concepts are extracted to define the
user profile. Overall, these tasks are solved sequentially:

1. mine the hierarchy of abstract concepts that are hidden inside plain
texts via k-means clustering;

2. quantitatively estimate one piece of information stored in each docu-
ment that contributes to the desired profile. This task is carried out
by maximum a posterior estimation;

3. combine mass via the Dempster’s rule and extract the profile via the
so-called pignistic probability principle in evidence theory.

All experiments are conducted on two short text data sets to validate the
effectiveness and stability of the proposed model. The advantage of this ap-
proach is that the extracted profile is visualizable and interpretable. This
ability may reveal useful insights for decision making in practice. Addi-
tionally, this proposed framework is feasible to be scaled in some extension.
For example, the input data may come from multiple sources on web envi-
ronment, each of which may exists in different formats (i.e., texts, photos,
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reactions).

In the second proposed framework, the advancements of state-of-the-art
generative neural networks and Dempster-Shafer theory of evidence are first
integrated into a framework for capturing the dynamics of user preferences
over time using short texts. The proposed framework has three primary
components: (1) learning the latent space; (2) word generation and mass in-
ference; and (3) mass combination and keyword extraction. We carried out
experiments to answer five evaluation criteria for verifying the effectiveness
and stability of our proposed framework. Besides, we also proposed an ap-
proach for visualizing the dynamics of user preferences over time on various
topics of daily activities. The proposed approach can be integrated into ap-
plications to obtain insights which are helpful for decision making, especially
in recommendation systems.

5.2 Research impacts

Thanks to key contributions of two proposed frameworks, the expected im-
pact of this research could be listed as follows:

e This research opens a new direction for the user profiling problem in
both static and dynamic contexts. In this direction machine learning
techniques can be used for learning and evidential reasoning can be
used for fusing and inferring the user profile. Besides, input data may
not only exist in different modes, but also come from multiple sources.

e Many practical applications could be beneficial from this research. For
example, there are applications such as friendship recommendations on
social networks, job offers on labor markets, item recommendations on
e-commerce platforms, and user clustering for decision making in many
business scenarios.

e The research output could be a clue for user preference visualization
which is helpful in various business contexts. Visualization is a com-
mon requirement in practice, especially e-commerce recommendation
systems.
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5.3 Discussions

5.3.1 The interpretability of the extracted profiles: what
insights may be obtained

The performance of extracted profile was evaluated on semantic precision
metric is beneficial. Particularly, the semantic score may reveal valuable
insights for decision making in many business contexts. For example, assume
that the scores of a specific user on three topics, including politics, education,
and technology, are -0.90, 0.02, and 0.86, respectively. Then, we can conclude
that this user highly concerns on technology, totally does not like politics, and
is neutral in education. These insights are useful for item recommendation
systems, especially on e-commerce platforms.

5.3.2 Potential applications: user clustering

Similar users could be dynamically clustered into groups in which individual
shares similar interests on a specific topic. This research issue is more chal-
lenging when input data are short texts and the problem is considered under
a dynamic context [98]. Due to our approach, this problem could be benefi-
cial from the output of the proposed framework. For example, the semantic
measure between pairs of keywords in user preferences may reveal similar
users at a specific time interval. Thanks to this insight, a recommendation
system can suggest an appropriate item to not only individuals but also a
group of customers in the system. Additionally, these insights can help in
detecting interests of users whose profiles are totally different under a static
context but converged at some point of time under a dynamic context. For
example, the interested topics of a politician and an athlete may differ on
overall, but they could share the same concerns on cinema, sightseeing, or
travelling at a specific time span.

5.3.3 The appropriate length of user profiles

The length of user profile can take a value in the set S = 5,10, 15, ..., 50. This
number is usually suggested by experts, and depends on applications. For
example, one application needs to estimate how much a given user concerns
on three topics, including technology, education, and politics. Some experts
are invited, and they suggest that the number of keywords for each topics is
3,5,2, respectively. Then, the profile length should be 10 in this case.

In literature, this aspect has been research in [114]. The authors claimed
that the rational profile does exist by a reasonable size controlling method. In
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our work, the profile length is not profoundly considered yet, it much depends
on the expert committees and toward specific domains. In the future work,
further experiments need to be conducted before determining an appropriate
number of keywords in extracted profiles.

5.3.4 How to quantitatively and qualitatively evaluate
the generators in GAN and VAE models?

Although many metrics (e.g., average log-likelihood, Inception Score, Fréchet
Inception Distance (FID) score, or visual fidelity of samples) were intro-
duced/used to evaluate the quality and quantity of generative models such
as the works in [115, 116, 117, 118], many researchers pointed that extrapo-
lation from one criterion to another is not warranted and generative models
need to be evaluated directly with respect to a downstream task they were
intended for [119, 115]. In our case this downstream task is to predict texts
reflecting what a given user may concern in future.

Initially, VAE and GAN are designed for image data. We need to adapt
these models for textual data appropriately. Therefore, the evaluation cri-
teria usually used in qualitative and quantitative processes also need to be
reasonably adjusted before being applied for our work. Particularly, the fol-
lowing measures are suitable and feasible enough:

e For quantitative measures, we used: (1) Token Quality Measure to
subjectively evaluate the quality of generated tokens [120, 121, 122];
(2) Reconstruction Error (or Root Mean Squared Error) to objectively
measure the different between reconstructed tokens and input tokens
[123, 117].

e For qualitative measures, we used: (1) Nearest Neighbors to detect over
fitting. Generated samples are shown next to their nearest neighbors for
checking the similarity [115]; (2) Preference Judgment [124, 125, 126]
to rank the fidelity of generated tokens in term of cosine similarity
(objectively) and the judgment of annotators (subjectively). Besides,
mode drop and collapse [127, 128] in GAN model are also taken into
consideration carefully to ensure that the trained models is diverse
enough when being used.

In the framework, these measures are combined into a two-step process as
follows: (1) train the VAE and GAN separately white carefully checked the
loss and reconstructed errors during the training process; (2) a preference
judgment process is carried out by annotators to post-check the generators
of two networks.
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5.4 Limitations

5.4.1 Computational efficiency

Runtime is one of the most disadvantages of our approach. This is because all
subsets of a given set is considered in Dempster-Shafer theory. Consequently,
the time complexity is proportional to an exponential function in worst case.
However, this factor could be significantly improved if the framework is re-
stricted to consider only a limited number of focal sets. For instance, we may
constrain the focal sets to be either a singleton, a 2-element set, a 3-element
set, an €2, or the empty set (). In this way, the time complexity is reduced to
maximum a cubic function (O(n?)) in the worst case, without sacrificing too
much the flexibility of the proposed framework. This solution is used to be
applied in previous studies such as [33, 16].

5.4.2 Word vectors should be trained on each user cor-
pus?

In this work, the proposed frameworks employed a pretrained model, called
GloVe, to convert words into vectors. Although this model was trained on
a large numbers of tokens created by Twitter users, there is a fact that
“different users have different manners”. Therefore, word embedding model
should be trained only on user own corpus. This approach may make the
framework more robust in capturing the abstract concepts hidden inside plain
texts created by individual user.

5.5 Future works

5.5.1 Applicable aspects of the proposed frameworks

The proposed framework would be more appreciated if their outputs could
be integrated in a specific application (e.g., item recommendation). Besides,
the integration could evaluate the impact or influence of the acquired user
preferences. We are going to accomplish this requirement. One more research
problem need to be solved, called “User Identification” across multiple plat-
forms [129, 130, 131, 132]. This research problem aims at connecting indi-
viduals across social media sites to integrate partial information of a user for
building a better profile/preference. However, seeking an efficient solution
for “User Identification” is not straightforward. It is an extremely challeng-
ing task as users provide limited or no information for matching purposes,
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or the connectivity among user identities across different sites is often un-
available [129, 131]. As for future work, we plan to integrate the acquired
user preferences into an application for job recommendation in the LinkedIn
System. In that application, we will solve the following tasks sequentially:

Task 1: Collect partial information (short texts) of users in social net-
works. Then we mine user concerned topics or preferences via the
proposed methods in this research.

Task 2: Solve the User Identification Problem to combine the par-
tial information of a user across multiple platforms such as Facebook,
Twitter, Instagram, and LinkedIn.

Task 3: Recommend an appropriate job for users on LinkedIn based
on their personal traits and concerned topics acquired by the Task 1.

5.5.2 Consideration of different formats of input data

One advantage of the proposed frameworks is that they are able to work prop-
erly when data exist in many formats (such as photos, texts, or number of
reactions) or come from multiple sources (such as Twitter, Facebook, and In-
stagram). For example, captioning techniques could be utilized for obtaining
textual data from photos and the number of reactions on them such as gener-
ating image descriptions [133] or transforming objects into words [134]. Then
these obtained textual data could be fed into the framework to be treated
as user texts. In these cases, we just need to add an additional model into
the framework to work as a new, independent “sources” in the prediction
process. The choice of added models is flexible, such as Convolutional Neu-
ral Networks to cope with photos or Recurrent Neural Networks cope with
textual data when the order between words is important. Additionally, to
carry out the evaluation process in a more appropriately convinced manner,
the gold keywords should be manually prepared by several human experts.
Therefore, we should invite experts to involve in this process, especially in
the process of profile visualization.
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Appendices

This appendix provides the derivation mass function combination in the case
that there are more than 2 pieces of evidence as mentioned in Chapter 3.

Problem. Let £ = {my,my,...,mp} be a set of mass functions over the
same frame of discernment €2, where (2 is a set of all possible answer to a
question (2 = {aky, aks, ..., aky }). Each m; is a mass function corresponding
to one piece of evidence. Prove that the overall mass function when fusing
all m; is determined by:

M—-1

2 (Lo, Hmz fak))+ 3 Y [ mu({akd Hmv 1<tV

k=1 S;C{1,. M}ues
|5;1=k is

(5.1)

M
m 12 Zml (5.2) where m»?2) ({ak,;}) is a mass value

M-1

K= Z Hmz {ak:}) +Z Z Hmu {ak:} Hmv +HmZ(Q)

k=1 S;C{1,....M} ues;
15 1=k ves

(5.3)

assigned for a particular subset {ak;} C Q, Vt € [1, V}, and K is the normal-
ization factor when combining masses from M different sources.

Proof.

Because K is just a normalization factor, we ignore it during proving
process. According to the fomula for m(2), observing that the only way to
get mass value for the set €2 is to multiply the one in each source, so that:

m12 ’M) Hml (5.4)

We now give a proof for m(?-+M ({ak,}) by induction as below:
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Basecase: M =1, we get:

m({aki}) =mi({ak:}), 1 <t <V 5.
m(Q) = my(Q) (5.6)
D

These formula are valid

Hypothesis: assume that is valid for M = n, we have:

m2-m) ({ak,}) ]:[mZ {ak:}) + Z Z H my ({ak.}) H my(Q)],1<t<V

k=1 S;C{1,.... M} ues;

IS;1=k QS
(5.8)
mb2n)(Q Z m; (5.9)
\4 n
/C:Z Hmz {ak:}) +C+Hm
t=1 Li=1 =1
(5.10)

Inductive Step: combine n sources with the (n + 1) source gives us:
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n

m2-m D Lok, }) = Hml {aki}) +Z Z H ma ({ak} H my(Q) | * myp1({aki})

i=1 k=1 S;C{1,....M} ues; v=1
\bj\:k vgS;

+ I_ImZ {ak}) —|—Z Z Hmu {ak;} Hmv * My 11(Q)

k=1 5;C{1,...M} ues;
|S;1=k ¢5

) # M1 ({ake})
i 1
n+1

= [ m({ak})

i=1

fmealak) Y Y TLm(fak Hmu

k=1 8;C{1,....M} ues;
1S;1=k és

+ My s1() Hmi({akt})

@Y Y [ malaky) Hmv

k=1 S;C{1,....M} ues;
1S;1=k Efb

(5.11)

+ Mgt ({akt}) H m;(Q)

(5.12)

Now expanding the term in (5.11), then taking the sum with (5.12) yields,

(5.12) + (5.11) = mnﬂ({akt}) HmZ(Q) + Mpy1(Q Z H mu {akt H my (€

S;C{1,....,n} uES;

I5;1=1 ¢5

+ mu1(Q Z Z Hmu {ak} Hmv

k=2 S;C{1,...M} ues;

I5;1=k $S
= Z H mu {akt H my(Q)+
§;C{1,n+1} ues v=1
Isjl=1 vES;
(5.13)

n—1

= Mp11(Q) Z Z Hmu {ak} Hmv

k= 25C{1 ..... n} Eb
15;1=k “

(5.14)

Similarly, continuing the same process with other terms ends up with:
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(12....n+1 {(Zk’} Hmz {(l]{’t

+ Z H mu({akt}) H m, ()

vel
SjC{l,...,n+1} ues; e
[Sjl=1 J

+ Z H my ({ake}) ﬁ m.,(82)

S;C{1,..., 1} ues vel
sVJQ(‘ ntl}ues; o
|51=2 J

+ Z Hmu {ak:} Hm, Q)

SjC{l, 1} ues;

IS; \ n eEb
n+1
meI ({ak:}) +Z Z Hmu {ak:} H m,(Q), (1<t<V)
k=1 S;C{1,....n+1} ues; v=1
151k vES;
(5.15)
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