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Abstract

Various forms of speech are utilized throughout social media. Advanced
speech technology, such as voice conversion techniques and speech synthesis,
can synthesize or clone speech entirely as a human voice. Distributing users’
speech publicly on a social network without privacy measures affects the
security of speech technology and privacy protection. Without protection,
speech samples on the internet could be used for theft of personally identifiable
information, fraud, and/or authentication of the ASV system for criminal
purposes. Therefore, there must be a solution to the emerging threat of
unauthenticated speech signals, such as synthesizing, cloning, and speech
conversion.

Speech information hiding (SIH) is one of the approaches for promoting
secure speech communication, which is also the main part of this study.
Information-hiding-based methods preserve the privacy and security of speech
data by imperceptibly embedding particular information that needs to be
hidden. SIH has at least three requirements: inaudibility (manipulation does
not cause distortion perceivable by the human auditory system), blindness (ac-
curate detection without the original signal), and robustness against common
signal processing operations. Although each existing method has advantages,
they have shortcomings and need improvement, especially in balancing the
trade-off between inaudibility and robustness.

Another approach to improve the trade-off between inaudibility and ro-
bustness is considering the features used in speech codecs. Speech codecs are
widely applied before speech is transmitted through a communication channel.
Thus, using features in speech codecs for speech information hiding improves
robustness. Line spectral frequencies (LSFs) are used as features in speech
codecs with several speech watermarking methods. LSFs can be directly
modified in accordance with a particular speech codec quantization method or
manipulated accordingly to control speech formants for representing hidden
information.

We investigate a parameter that affects the formation of auditory images,
namely the McAdams coefficient, for the feature of SIH in this study. The
modification of the McAdams coefficient is useful for adjusting frequency
harmonics in audio signals. It has also been introduced for de-identifying or
anonymizing speech signals. Since the McAdams coefficient is related to the
adjustment of frequency harmonics (related to LSFs), we hypothesize that
this coefficient is suitable for speech watermarking.



Another novelty presented in this study is that we propose a speech
watermarking method based on a machine learning model. Studies on digital
image watermarking based on machine learning models have shown impressive
results. However, due to the higher complexity of speech than image data,
machine learning models for speech watermarking have not been widely
explored. We constructed a machine-learning-based blind detection model
by using a binary classification task based on a random forest algorithm
(hereafter, we refer to this model as a random forest classifier). The results
indicate that our method satisfies the speech watermarking requirements with
a 16-bps payload under normal conditions and numerous non-malicious signal
processing operations.

Besides the conventional speech codecs, we also analyze a neural vocoder
based on the neural source-filter (NSF) model for secure speech communication.
We propose a method of improving the primary framework by modifying
the state-of-the-art speaker individuality feature (namely, x-vector). Our
proposed method is constructed based on x-vector singular value modification
with a clustering model. We also propose enhance the proposed technique
by modifying the fundamental frequency and speech duration to enhance the
anonymization performance. To evaluate our method, we carried out objective
and subjective tests. The overall objective test results show that our proposed
method improves the anonymization performance in terms of the speaker
verifiability, whereas the subjective evaluation results show improvement in
terms of the speaker dissimilarity. The intelligibility and naturalness of the
anonymized speech with speech prosody modification were slightly reduced
(less than 5% of word error rate) compared to the results obtained by the
baseline system in Voice Privacy Challenge 2020.

Index Terms: speech information hiding, speaker anonymization, McAdams
coefficient, x-vector, speech security and privacy

ii



Acknowledgements

First and foremost, I thank God for His abundant grace and blessings in
any circumstances during this study that make this study possible.

Secondly, I would like to express my sincere gratitude to my supervisor,
Prof. Masashi Unoki, for his continuous support for my study from my
master’s until the Ph.D. program. His patience, motivation, and guidance
helped me immensely, especially in understanding how to carry out research
and write research articles. My completion of this Ph.D. program could not
have been accomplished without his support.

Thirdly, I would like to express my special thanks and gratitude to Prof.
Masato Akagi as my secondary supervisor. His sincerity and attention in
laboratory meetings deeply inspired me to present the research works as
clearly and logically as possible.

Next, I would like to thank Prof. Shogo Okada for allowing me to conduct
a minor research project under his supervision. This opportunity leads me to
have a more diverse and broad perspective of computer science research.

My sincere gratitude goes to the rest of my thesis committee: Prof.
Jianwu Dang (JAIST), Prof. Atsuo Yoshitaka (JAIST), and Prof. Akinori Ito
(Tohoku University), for their insightful and constructive comments during
the preliminary examination and final formal hearing.

I am also overwhelmed in gratefulness to have my supportive fellow
labmates and friends for the stimulating discussions and for all the fun we
have had. I would like to thank my family for their prayers, caring, and
supportive encouragement in any situation.

Last but not least, I appreciate the financial support, travel grants, and
research facilities that are crucial for this research project. I would like to
express my gratitude for the fellowship granted by the Japan Society for
the Promotion of Science (JSPS) along with other supporting grants from a
Grant-in-Aid for Scientific Research (B) (No. 17H01761), JSPS KAKENHI
Grant (No.20J20580), Fund for the Promotion of Joint International Re-
search (Fostering Joint International Research (B))(20KK0233), and KDDI
Foundation (Research Grant Program).

Candy Olivia Mawalim
Ishikawa, Japan

iii



Contents

Abstract i

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables xiv

List Of Symbols/Abbreviations xv

1 Introduction 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Secure Communication Scenario . . . . . . . . . . . . . . . . . 4
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 11
2.1 Speech Communication System . . . . . . . . . . . . . . . . . 11

2.1.1 Elements of Speech Communication . . . . . . . . . . . 11
2.1.2 Speech Coding: Analysis by Synthesis Model . . . . . . 13
2.1.3 Progress in Secure Speech Communication . . . . . . . 15

2.2 Information Hiding for Secure Speech Communication . . . . . 17
2.2.1 Overview of Speech Information Hiding . . . . . . . . . 17
2.2.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Speech Information Hiding Methods . . . . . . . . . . 21
2.2.4 Applications of Speech Information Hiding . . . . . . . 23

2.3 Speaker Anonymization: Voice Privacy Challenge 2020 . . . . 25
2.3.1 Definition of Speaker Anonymization . . . . . . . . . . 25
2.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Baseline Systems . . . . . . . . . . . . . . . . . . . . . 29

iv



3 Content and Privacy Protection for Speech Communication
System 35
3.1 General Proposed Framework of Secure Speech Communication 35
3.2 Speech Analysis and Synthesis . . . . . . . . . . . . . . . . . . 37
3.3 Feature Extraction for Secure Speech Communication . . . . . 41
3.4 Secure Speech Communication Based on SIH . . . . . . . . . . 43

4 Content Protection Using Information Hiding Approach 46
4.1 SIH Based on Line Spectral Frequencies Modification . . . . . 46

4.1.1 LSFs Concept . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 LSFs Quantization in CELP Codec . . . . . . . . . . . 48
4.1.3 SIH by Direct Modification on LSFs Quantization Bits 49
4.1.4 SIH by McAdams Coefficient Modification . . . . . . . 59

4.2 Improving Robustness of SIH using Machine Learning . . . . . 64
4.2.1 McAdams coefficient manipulation . . . . . . . . . . . 65
4.2.2 Data-embedding process . . . . . . . . . . . . . . . . . 66
4.2.3 Data-detection process . . . . . . . . . . . . . . . . . . 66
4.2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . 70
4.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Voice Privacy Protection Based on Speaker Anonymization 80
5.1 Speaker Anonymization Based on X-Vector Singular Value

Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.1 Pseudo-target Generation . . . . . . . . . . . . . . . . 81
5.1.2 SVD-based X-vector Anonymization . . . . . . . . . . 82

5.2 Development of Speaker Anonymization by Modification of
Speech Prosody . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Experiments using SVD-based X-vector Speaker Anonymization 87
5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Experimental Setting . . . . . . . . . . . . . . . . . . . 87
5.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Comparison Analysis on Speaker Anonymization Approaches . 95

6 Evaluation and Discussion 102
6.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Analysis and Synthesis Assessment . . . . . . . . . . . 102
6.1.2 Watermarking Assessment . . . . . . . . . . . . . . . . 105
6.1.3 Speaker Anonymization Assessment . . . . . . . . . . . 111

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

v



7 Conclusion 121
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix A – Speaker Anonymization Evaluation 139

Publications 144

vi



List of Figures

1.1 Three categories of information that manifested in speech by
Fujisaki (1997) [38]. . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview of secure speech communication in cyber physical
system (CPS) by SIH. . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Illustration of voice privacy issue in speech communication. . . 5
1.4 Illustration of speaker anonymization for voice privacy preser-

vation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Illustration of voice privacy preservation by SIH, e.g. in au-

thentication system: (a) without watermark, (b) with watermark. 8
1.6 Thesis organization. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Key Elements of Digital Communication System . . . . . . . . 12
2.2 Simple Speech Synthesis Based on Source-Filter Model. . . . . 14
2.3 Source-filter model in AbS linear prediction. . . . . . . . . . . 15
2.4 Basic system design of cryptography or digital encryption in

PSTN [88]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Overview of an SIH framework . . . . . . . . . . . . . . . . . . 18
2.6 ASV evaluation for (a) clean trial and enrollment (o-o),

(b) anonymized trial and clean enrollment (o-a), and (c)
anonymized trial and enrollment (a-a) [112]. . . . . . . . . . . 27

2.7 Schematic diagram of the primary baseline speaker anonymiza-
tion system (B1) in Voice Privacy Challenge 2020 [112]. . . . . 28

2.8 Block diagram of speaker anonymization based on McAdams
coefficient [90]. “LP coeff.” is referred to as linear prediction
coefficients. “LPC” is referred to as linear predictive coding.
“ϕ” is the angle of poles with a non-zero imaginary part. “α” is
the McAdams coefficient. . . . . . . . . . . . . . . . . . . . . . 32

2.9 Pole locations and frequency-response envelopes of original
signal (ori) and modified signals with McAdams coefficients
(α = {0.85, 0.9, 0.95}). . . . . . . . . . . . . . . . . . . . . . . 34

vii



3.1 General abstraction of proposed framework for content and
privacy protection in speech communication. . . . . . . . . . . 37

3.2 Typical Speech Analysis and Synthesis Methods. . . . . . . . . 38
3.3 General model of the CELP codec [122]. . . . . . . . . . . . . 39
3.4 Simplified block diagram of the i-vector extraction process. . . 41
3.5 A deep neural network (DNN) with an embedding layer archi-

tecture as an x-vector extractor [105]. . . . . . . . . . . . . . . 42

4.1 Example of the frequency response of a linear predictive filter
overlaid with the corresponding LSFs obtained from the tenth-
order linear predictive analysis of a 25-ms-long voiced speech
segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Frequency response spectra from actual LSFs (ori), quantized
LSFs (quant), and modification of least significant quantized
LSFs (modif). . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Block diagram of proposed SIH based on direct modification on
LSFs quantization bits: (top) embedding process and (bottom)
detection process. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Objective evaluation of our proposed method in each LSF
quantization bit by using BER, PESQ, and LSD in the original
FS-1016 CELP quantization algorithm configuration. The
input signal is sampled at 8 kHz and its frame segmentation
length t is 30 ms. . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Objective evaluation of our proposed method in each LSF
quantization bit by using BER, PESQ, and LSD in the adapted
quantization configuration. The input signal is sampled at 16
kHz and its frame segmentation length t is 25 ms. . . . . . . . 54

4.6 Objective evaluation results of the proposed method in com-
parison with several frame segmentation lengths (5, 10, 20, and
25 ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Objective evaluation result of comparative methods under
normal conditions based on detection accuracy (BER) and
inaudibility (PESQ and LSD). . . . . . . . . . . . . . . . . . . 56

4.8 Comparative robustness evaluation of our proposed method
(single embedding), LSB, and DSS against signal processing
attacks: (a) FS-1016 CELP codec, (b) Gaussian noise addition
(AWGN), (c) down-sampling to 12 kHz, (d) up-sampling to 24
kHz, (e) requantization to 8 bit, (f) requantization to 24 bit,
(g) G.711 codec, and (h) G.726 codec. . . . . . . . . . . . . . . 57

viii



4.9 Block diagram of embedding process. α0 and α1 are the
McAdams coefficients for representing binary bit “0” and “1”.
a0(n) and a1(n) are the output anonymized speech in time
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Block diagram of blind detection process. “BPF” stands for the
band-pass filtering. “FFT” stands for fast Fourier transform.
|Y (ω)| is the power spectrum of the watermarked signal y(n)
obtained by FFT. θ is the power spectrum threshold for blind
detection process. w′(k) is the detected watermark bit of the
k-th frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.11 Robustness test results in terms of BER (bit error rate) in nine
cases: (a) normal, (b) AWGN, (c) resample-8, (d) resample-24,
(e) requant-8, (f) requant-24, (g) mp3, (h) flv, and (i) G723.1. 63

4.12 Robustness test results in nine cases: (a) normal, (b) AWGN,
(c) resample-8, (d) resample-24, (e) requant-8, (f) requant-24,
(g) mp3, (h) flv, and (i) G723.1. For metrics were used for
the robusness evaluation, including F1 (F1-score), FAR (false
acceptance rate), and FRR (false rejection rate). . . . . . . . . 64

4.13 Random Forest classifier for data-detection. X is set of features,
y is classification label (“0” or “1”), n is number of trees. . . . 67

4.14 LSF positions on frequency-response envelopes obtained from
various McAdams coefficients (α = {1, 0.95, 0.9, 0.85}). . . . . 69

4.15 Block diagram of blind-detection process. w′(k) is the detected
watermark bit-stream of k-th frame. . . . . . . . . . . . . . . . 70

4.16 Illustration of watermark detection using sliding window. Sam-
pling frequency (Fs) is 16 kHz, payload is 16 bps, and shift
length was set to half default short-time frame size (10 ms). . 70

4.17 Classification errors of constructed random forest classifiers
using several McAdams coefficients for representing bit-“0”
(α0 = {0.95, 0.925, 0.9, 0.875, 0.85}). Maximum number of
trees was set to 100. . . . . . . . . . . . . . . . . . . . . . . . 72

4.18 Watermark detection accuracy results using sev-
eral McAdams coefficients for representing bit-“0”
(α0 = {0.95, 0.925, 0.9, 0.875, 0.85}) in terms of: (a) BER, (b)
FAR, (c) FRR, and (d) F1-score. . . . . . . . . . . . . . . . . 73

4.19 Sound-quality results using several McAdams coefficients for
representing bit-“0” (α0 = {0.95, 0.925, 0.9, 0.875, 0.85}) in
terms of PESQ (top) and LSD (bottom). . . . . . . . . . . . . 75

ix



4.20 Robustness results in terms of BER, FAR, FRR, and F1-score
in eight cases: normal, resample-12, resample-24, requant-8,
requant-24, Ogg, G723, and MP4. The McAdams coefficient
for representing bit-“0” was 0.9 (α0 = 0.9). . . . . . . . . . . . 76

4.21 Evaluation of inaudibility results of three compared methods
(Proposed, LSB, and DSS). . . . . . . . . . . . . . . . . . . . . 77

4.22 Robustness results of three compared methods (Proposed, LSB,
and DSS) in terms of BER in eight cases: normal, resample-12,
resample-24, requant-8, requant-24, Ogg, G723, and MP4. . . 78

4.23 Application of embedding image information using proposed
method with 4-bps payload after several non-malicious signal
processing operations, i.e., (a) original watermark, (b) normal,
(c) resample-12, (d) resample-24, (e) G723, (f) requant-8, (g)
requant-24, (h) Ogg, and (i) MP4. McAdams coefficients for
representing bit-“0” and bit-“1” were 0.9 and 1, respectively
((α0, α1) = (0.9, 1.0)). . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Schematic diagram of proposed speaker anonymization system. 82
5.2 Illustration of x-vector selection algorithm using: (a) random se-

lection and (b) clustering-based selection. Round blue markers
indicate set of x-vector candidates, round red markers indicate
chosen x-vector candidates, black star markers indicate given
input x-vectors, and magenta star markers indicate chosen
pseudo-target x-vectors. . . . . . . . . . . . . . . . . . . . . . 83

5.3 Modification of x-vector SVs [74]. The xi,j refers to the element
of matrix X in row i and column j. Similarly, ui,j, Σi,j, and
V T
i,j are the elements of matrix U, Σ, and VT in row i and

column j, respectively. The VT is the transpose matrix of V.
The s determines the number of singular values. . . . . . . . . 84

5.4 Principal components (PCs) of x-vectors from five speakers in
VCTK development dataset for enrollment in 3D space. Colors
represent speaker labels (e.g., round orange markers represent
class of x-vectors of speaker with ID label ”p234”). . . . . . . 85

5.5 Schematic diagram of x-vector modification by SVD [74].
xi and the x′

i are the i-th element of input x-vector and
anonymized x-vector, respectively . . . . . . . . . . . . . . . . 86

x



5.6 Average ASVeval results from controlling SV threshold us-
ing k-means clustering and modification of F0 and duration.
Original speech as “ori” denotes ASVeval results using both
original enrollment and trials (o-o). “B1” denotes results of
ASVeval using primary baseline model [112]. “svd-09” and
“svd-08” denote ASVeval results by x-vector SV modification
with thresholds (s) 0.9 and 0.8, respectively. “P1” denotes
ASVeval results obtained by x-vector SV modification with k-
means clustering, whereas “P2” denotes results with additional
F0 and speech duration modification. Orange bars represent re-
sults in pairs of original enrollment and anonymized trials (o-a).
Gray bars represent results in pairs of anonymized enrollment
and anonymized trials (a-a). . . . . . . . . . . . . . . . . . . . 88

5.7 ASReval results of ori, anonymized speech by B1, control-
ling SV threshold (svd-09, svd-08), modifying x-vectors SV
(s={0.8,0.95}) with k-means clustering (P1), and modifying F0,
speech duration, and x-vector SV modification (s={0.8,0.95})
with k-means clustering (P2). . . . . . . . . . . . . . . . . . . 91

5.8 Overall subjective evaluation results in terms of intelligibility,
naturalness, and speaker dissimilarity. . . . . . . . . . . . . . . 93

5.9 Subjective evaluation results of speaker dissimilarity in utter-
ances from (a) LibriSpeech dataset, (b) VCTK dataset, (c)
female speakers, and (d) male speakers. . . . . . . . . . . . . . 94

5.10 Mean WER versus mean EER over all LibriSpeech and VCTK
datasets in (o-a) and (a-a) scenarios obtained from various
systems proposed in Voice Privacy Challenge 2020. Black dot
refers to results obtained by baseline system. Red dot refers
to results obtained by our proposed system. Blue dot refers to
results obtained by other systems proposed in Voice Privacy
Challenge 2020. Table 5.3 describes each system. . . . . . . . 97

5.11 Mean EER values over LibriSpeech (test set) in (o-a) and (a-a)
scenarios obtained by systems related to modifying speech
prosody. Table 5.3 describes each method. . . . . . . . . . . . 97

5.12 Mean EER values over all LibriSpeech and VCTK datasets
in (o-a) and (a-a) scenarios obtained by systems related to
x-vector anonymization. Table 5.3 describes each method. . . 98

6.1 Analysis and Synthesis Assessment using SNR. . . . . . . . . . 103
6.2 Analysis and Synthesis Assessment using LSD. . . . . . . . . . 104
6.3 Analysis and Synthesis Assessment using PESQ. . . . . . . . . 105

xi



6.4 Watermarking detection accuracy evaluation in terms of: (a)
BER, (b) FAR, (c) FRR, and (d) F1-score. . . . . . . . . . . . 106

6.5 Sound-quality evaluation results in terms of PESQ (top) and
LSD (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Robustness results in terms of BER, FAR, FRR, and F1-score
in eight cases: normal, resample-12, resample-24, requant-8,
requant-24, Ogg, G723, and MP4. . . . . . . . . . . . . . . . . 108

6.7 Evaluation of inaudibility results of three compared methods
(P-0708, LSB, and DSS). . . . . . . . . . . . . . . . . . . . . . 109

6.8 Robustness results of three compared methods (P-0708, LSB,
and DSS) in terms of BER in eight cases: normal, resample-12,
resample-24, requant-8, requant-24, Ogg, G723, and MP4. . . 110

6.9 ASReval results of ori, anonymized speech by B2, proposed
methods with several McAdams coefficient pairs and embedding
payloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.10 Average ASVeval results of ori, anonymized speech by B2,
proposed methods with several McAdams coefficient pairs
and embedding payloads. Orange bars represent results in
pairs of original enrollment and anonymized trials (o-a). Gray
bars represent results in pairs of anonymized enrollment and
anonymized trials (a-a). . . . . . . . . . . . . . . . . . . . . . 113

6.11 Average ASVeval results based on dataset and gender of ori,
anonymized speech by B2, proposed methods with several
McAdams coefficient pairs and embedding payloads. Or-
ange bars represent results in pairs of original enrollment and
anonymized trials (o-a). Gray bars represent results in pairs of
anonymized enrollment and anonymized trials (a-a). . . . . . . 114

6.12 Mean WER versus mean EER over all VCTK datasets in
(a-a) scenario obtained from various systems proposed in Voice
Privacy Challenge 2020. Black dot refers to results obtained
by the baseline system. Red dot refers to results obtained
by methods in [76]. Yellow and orange dots refer to results
obtained by proposed methods. Blue dot refers to results
obtained by other systems proposed in Voice Privacy Challenge
2020. The dots in the green shaded area are methods based
on a neural vocoder (mainly based on the primary baseline
framework). The dots in the pink shaded area are methods
based on the LP vocoder. . . . . . . . . . . . . . . . . . . . . 116

xii



6.13 Mean WER versus mean EER over LibriSpeech dataset
in (a-a) scenario obtained from various systems proposed
in Voice Privacy Challenge 2020. Black dot refers to results
obtained by the baseline system. Red dot refers to results
obtained by methods in [76]. Yellow and orange dots refer to
results obtained by proposed methods. Blue dot refers to results
obtained by other systems proposed in Voice Privacy Challenge
2020. The dots in the green shaded area are methods based
on a neural vocoder (mainly based on the primary baseline
framework). The dots in the pink shaded area are methods
based on the LP vocoder. . . . . . . . . . . . . . . . . . . . . 117

6.14 Mean WER versus mean EER over VCTK dataset in (o-
a) scenario obtained from various systems proposed in Voice
Privacy Challenge 2020. Black dot refers to results obtained
by the baseline system. Red dot refers to results obtained
by methods in [76]. Yellow and orange dots refer to results
obtained by proposed methods. Blue dot refers to results
obtained by other systems proposed in Voice Privacy Challenge
2020. The dots in the green shaded area are methods based
on a neural vocoder (mainly based on the primary baseline
framework). The dots in the pink shaded area are methods
based on the LP vocoder. . . . . . . . . . . . . . . . . . . . . 118

6.15 Mean WER versus mean EER over all VCTK dataset in
(a-a) scenario obtained from various systems proposed in Voice
Privacy Challenge 2020. Black dot refers to results obtained
by the baseline system. Red dot refers to results obtained
by methods in [76]. Yellow and orange dots refer to results
obtained by proposed methods. Blue dot refers to results
obtained by other systems proposed in Voice Privacy Challenge
2020. The dots in the green shaded area are methods based
on a neural vocoder (mainly based on the primary baseline
framework). The dots in the pink shaded area are methods
based on the LP vocoder. . . . . . . . . . . . . . . . . . . . . 119

xiii



List of Tables

2.1 Sound quality description with regards to PESQ (MOS) . . . 19
2.2 Description of the primary baseline (B1) of speaker anonymiza-

tion system: models and corpora [113]. Subscript numbers
represent the feature dimensions. . . . . . . . . . . . . . . . . 31

3.1 General Comparison of Alternative Solutions for Secure Speech
Communication. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 LSF quantization matrix in FS-1016 CELP codec [76]. . . . . 48
4.2 Evaluation results for multiple embedding in three selected

LSFs (LSF 4, 6, and 7) . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Optimization result using a combination of multiple embedding

and varying frame lengths. . . . . . . . . . . . . . . . . . . . . 58
4.4 MOSNet evaluation results. . . . . . . . . . . . . . . . . . . . 63
4.5 Statistics of dataset . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Training data for pool of x-vectors. . . . . . . . . . . . . . . . 89
5.2 Detailed ASVeval results using only x-vector SV modifica-

tion with 0.95 threshold for LibriSpeech and 0.8 threshold for
VCTK (SV Modif), our P1 method, and our P2 method. “Gen”
stands for gender (F: female and M: male). “=” stands for the
equivalent results to the left columns. . . . . . . . . . . . . . . 90

5.3 System description of related system anonymization methods. 96

xiv



List Of Symbols/Abbreviations

α McAdams coefficient
AbS Analysis-by-Synthesis
AIH Auditory information hiding
ASR Automatic speech recognition
ASV Automatic speaker verification
AWGN Adding white Gaussian-noise
BER Bit-error rate
BPF Band-pass filtering
B1 Primary baseline
B2 Secondary baseline
CD Cochlear delay
CELP Code-excited linear prediction
CPS Cyber-physical system
dB Decibel
F0 Fundamental frequency
FAR False acceptance rate
FFT Fast Fourier transform
FN False negative
FP False positive
FRR False rejected rate
Fs Sampling frequency
GMM Gaussian mixture models
HAS Human auditory system
HMM Hidden Markov Model
IHC Information Hiding Criteria
ITU International Telecommunication Union
LSB Least-significant-bit
LSD Log-spectral distance
LP Linear prediction
LSF Line spectral frequency
MOS Mean opinion score

xv



NSF Neural Source-Filter
PESQ Perceptual evaluation of speech quality
PCs Principal components
P-xxxx Proposed method with xxxx parameter(s)
RMSE Root-mean-square error
SNR Signal-to-noise ratio
SPSS Statistical parametric speech synthesis
SSA Singular spectrum analysis
SV Singular value
SVD Singular value decomposition
UBM Universal background model
VCTK Voice Cloning Toolkit
VoIP Voice over Internet Protocol

xvi



Chapter 1

Introduction

Communication in speech is preferable in human communication because of
the richness of its content. It conveys not only linguistic information but
also para-linguistic and non-linguistic information [38, 39]. Fujisaki defined
these three categories of information in [39] (as shown in Fig. 1.1). Linguistic
information is symbolic information that is comprised of a set of discrete
symbols and their rules. Linguistic information can be represented explicitly
in written text or implicitly inferred from the context in a speech. Para-
linguistic information is the additional information apart from the linguistic
information intentionally added by the speaker, such as speaker intentions
and attitudes. Non-linguistic information is the factor that generally cannot
be controlled by the speaker and is not directly related to both linguistic
and para-linguistic information. The speaker’s age, gender, physical, and
emotional states are examples of non-linguistic information.

Due to the richness of speech, the development of digital speech technology
has significantly advanced to this day. The advancement of speech technology
supports the availability of accessing speech or voice data, especially through
the Internet. These speech or voice data could improve the performance
of existing speech technology with an advanced machine learning approach.
For instance, the speech-to-text system, also known as automatic speech
recognition (ASR) system, could produce well-written transcription, especially
when the input speech is familiar to the system [10].

One of the critical shortcomings of the speech technology advancement
is related to the voice privacy and security issue [111, 112]. Exposing the
speech to the public causes privacy violation. For example, the currently
existing technology could provide us various information from the speech
content, deceit intention, until the speaker’s mental state with only a few
speech utterances of a particular person, we can extract various information.
Moreover, we are also able to regenerate new speech utterances (voice cloning)
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Figure 1.1: Three categories of information that manifested in speech by
Fujisaki (1997) [38].

of a particular person with exceptional quality [6]. For example, speech
tampering or spoofing techniques are possible with the recent advancement
in voice conversion, and text-to-speech (TTS) technology [111].

The ultimate goal of this study is to provide a solution to the privacy
violation problems in speech communication. The rest of this chapter states
the motivation of this study with regards to secure speech communication.
The motivation includes research problems on speech communication, an
overview of existing solutions and remaining issues, and the significance
of this research. Subsequently, the research objectives will be defined in
the succeeding section. Next, the secure speech communication scenario is
described as a brief explanation for addressing the proposed solutions to the
research problems. Finally, the organization of this thesis is shown at the end
of this chapter.

1.1 Research Motivation

Speech communication technology is usually implemented via a communi-
cation channel, such as the public switched telephone network (PSTN) and
Voice over Internet Protocol (VoIP). The speech communication channel
is considerably vulnerable against attacks; thus, protection and prevention
countermeasures are indispensable in speech research [111, 129]. Privacy-
preserving technology is required in speech communication to protect the
speech content and personal profiles of the speaker [112, 129].

In literature, the efforts in privacy-preserving technology can be categorized
into two main categories, i.e., cryptography and information hiding. Basically,
cryptography, or with regards to speech processing, also known as speech
encryption, converts the speech data to another form that only can be accessed
by an authorized person with a private key. This approach is useful for specific
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Figure 1.2: Overview of secure speech communication in cyber physical system
(CPS) by SIH.

applications that can afford the additional computational time and complexity
of the cryptography process. The limitation of cryptography is that it does not
protect the speech signal once the content is decrypted [112]. Since the form
of the encrypted data is intelligible and increases the suspicious level of the
speech content, the attackers may attempt to monitor this communication.
Subsequently, they can utilize cryptanalysis methods for decrypting the
encrypted data. On the other hand, the second category (information hiding)
preserves the privacy and security of speech data by imperceptibly embedding
particular information that needs to be hidden [49, 70]. Two information-
hiding categories are steganography and watermarking, depending upon the
purpose. The application of the information hiding approach can be used to
identify original or tampered signals [56, 126].

This study focuses on the information hiding approach to preserve both
security and privacy simultaneously in speech communication. The current
existing frameworks are generally developed by combining state-of-the-art
technologies in various areas of speech technology applications. For instance,
for protecting voice privacy, a speaker anonymization system was proposed as
the primary baseline system in the Voice Privacy Challenge 2020 based on the
state-of-the-art speaker embedding (x-vector) [107], and neural source-filter
(NSF) waveform modeling [35, 112]. Unfortunately, the performance still needs
further improvement, especially in promoting naturalness and intelligibility.
Additionally, the anonymization performance in terms of speaker verifiability
was also limited in dealing with attacks scenarios. This study contributes
to solving the current essential issues by the proposed framework, which
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is developed with consideration of concepts in speech perception, speech
production, and signal processing.

The proposed framework integrates the information hiding approach to
secure the speaker anonymization, which consists of two main parts, i.e.,
encoder and decoder (as shown in Fig. 1.2). The encoder is mainly aimed
to protect the speaker’s identity by using an anonymization approach. In
contrast to the other works, the anonymization is conducted with a parameter
that will be used to represent watermarks. The result of anonymized speech
should be able to conceal the sensitive personal information in speech while
maintaining the naturalness and intelligibility of the speech. Meanwhile, the
decoder is aimed to protect the authentication of the speech by accurately
detecting the embedded watermarks. To ensure reliability and robustness, the
proposed framework is evaluated by general datasets and protocols established
in the Information Hiding Criteria (IHC) [51] and the Voice Privacy Challenge
2020 [112]. In the application aspect, the proposed framework contributes as
an alternative approach for accounting the speech spoofing and tampering
detection.

1.2 Research Objectives

The main objective of this study is to propose the framework for preserving
both speech security and privacy using an information hiding approach.
In order to reach this objective, first, the robust speech properties and
their relationship correspond to linguistic, para-linguistic, and non-linguistic
information were investigated. Secondly, the analysis and synthesis process
based on these features will be studied. This second subgoal aims to study
hiding specific vulnerable speech information, e.g., speaking style and speaker
identity while maintaining the naturalness and intelligibility of resynthesized
speech. Finally, this proposed hiding framework is considered to solve the
real-world problem, such as tampering detection, and is evaluated by following
the established protocols described in the Information Hiding Criteria (IHC)
[51] and the Voice Privacy Challenge 2020 [112].

1.3 Secure Communication Scenario

Recent speech technology, especially speech synthesis, has significantly im-
proved our capability to re-create, clone, or manipulate human voice. The
synthesized voice is not only intelligible but also contains personal informa-
tion, which boosts its naturalness in the human auditory perception. For
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Figure 1.3: Illustration of voice privacy issue in speech communication.

instance, by using the neural speech synthesizers, such as WaveNet [119],
we can create relatively high-quality personalized speech. These kinds of
speech synthesis technology support many applications positively, such as
virtual voice assistants or even facilitating speech-impaired people in daily
communication. However, the advancement in speech technology also causes
drawbacks, primarily in those issues related to privacy.

As mentioned in the earlier section of this chapter, speech encapsulates
various information. Exposing it can cause privacy violations. Figure 1.3
shows the example of voice privacy issue in digital speech communication.
When the speech is exposed to the public communication channel, any at-
tackers can easily store and manipulate it to be a fake speech. Fake speech
causes a problematical issue when the attackers illegally use it to scam or
fraud. Several years ago, these scams were so frequent that they had been
warned in ATMs all around the country.

Speaker anonymization or de-identification has been introduced as one
of the solutions for privacy preservation in speech communication in the
Voice Privacy Challenge 2020 [112]. The goal of speaker anonymization is to
suppress the information related to the speaker’s identity while maintaining
the linguistic aspects and speech naturalness. Besides, it should have low
complexity and be flexible so that it can be applied to other existing speech
technology. The Voice Privacy Challenge 2020 provides a formal definition for
the task, metrics, and protocols of speaker anonymization system. As for the
task, speaker anonymization system depends on the following specifications:

5



Figure 1.4: Illustration of speaker anonymization for voice privacy preserva-
tion.

1. the characteristic of the speech data;

2. the personal identifiable information;

3. the desired goal(s) or application(s);

4. the accessible data by the attacker;

5. the additional information or knowledge of the attackers.

The main scenario of speaker anonymization based on the Voice Privacy
Challenge 2020 [112] is that the speakers intend to suppress their identity
while achieving the desired goals. Meanwhile, the attackers have access
to an utterance and attempt to identify the corresponding speaker. The
attack model is referred to as the model when the attacker has access to
various amounts of data, which may or may not have been anonymized.
Figure 1.4 shows the illustration of voice privacy preservation using speaker
anonymization. Before the real speech is exposed to the public communication
channel, the input speech is anonymized. For example, when we have a speaker
A and an anonymization technique is applied, we get the anonymized speech
(with pseudo-speaker A as the identity). The speaker anonymization knocked
off the possibility of attackers faking the voice of the particular speaker.
Additionally, hiding the information about the real speaker in the anonymized
speech can restore or de-anonymize the speech so that the receiver can perceive
the real speaker voice.
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Two approaches are commonly utilized for speaker anonymization. The
first approach is the approach based on a voice conversion system. The
goal of a voice conversion system is to transform the identity of the given
speaker to a specific target speaker while maintaining linguistic information.
Data from the given speaker and target speaker are required to train a voice
conversion model. On the basis of the speaker anonymization task defined in
the Voice Privacy Challenge 2020, the speaker anonymization should be able
to anonymize any given speakers even without data of target speakers (as in
common voice conversion systems). Moreover, a speaker-to-speaker manner is
one of the requirements of speaker anonymization, which causes the common
voice conversion systems to be inapplicable.

The second approach is the approach based on voice modulation. Voice
modulation techniques manipulate the voice features, including pitch, to
transform the original voice to a specific speech style. In earlier studies,
voice modulation was developed by using acoustic filters to alter spectral
information. This technique was often used in the interview session of TV news
to mask the voice of suspects, victims, and witnesses. Although using acoustic
filters is quite simple and easy to implement, it bears disadvantages, primarily
due to the possibility of illegal de-identification by using the corresponding
inverse filters. More recent voice modulation techniques are based on vocoders,
which are the focus of the speaker anonymization approach in this study.

Speaker-to-speaker manner in speaker anonymization means that the
anonymized utterances of a given speaker should not be the same with other
speakers. In the real scenario, we can imagine the scenario from an incoming
call from known speakers. The anonymized speech should have been able to be
recognized by the receiver side. Furthermore, speaker anonymization should
be robust in the attack model where the attacker has access to the anonymized
speech utterance(s). Due to this requirement, there is no guarantee that
the identity of the pseudo-speaker of a given speaker is equivalent over
time. Consequently, the difficulty of authenticating an anonymized speech is
significantly increased (as shown in Fig. 1.5 (a)).

To deal with the authentication issue, we proposed a SIH framework for
preserving voice privacy. We simultaneously performed the anonymization
and watermarking in the encoder part of the proposed solution. Figure 1.5
(b) shows the illustration of voice privacy preservation using watermark as
the authentication key. By integrating anonymization and watermarking, we
can preserve both the speech content and privacy. Furthermore, we can have
lower complexity and higher robustness in comparison to conducting both
independently.
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Figure 1.5: Illustration of voice privacy preservation by SIH, e.g. in authenti-
cation system: (a) without watermark, (b) with watermark.

1.4 Organization of the Thesis

This thesis is comprised of seven chapters. Figure 1.6 shows the schematic
outline of this thesis. Apart from this introduction chapter, the organization
of the remaining chapter from Chapter 2 to Chapter 7 is as follows.

Chapter 2 describes the literature review related to this study. Firstly,
this chapter explains the general overview of the speech communication
system and the problems related to security and privacy. The second chapter
introduces the information hiding for secure speech communication. Finally,
the last chapter introduces a method for protecting voice privacy, namely
speaker anonymization. This chapter will describe the definition, evaluation
metrics and criteria, and the existing baseline systems.

Chapter 3 presents the proposed framework for content and privacy pro-
tection in speech communication. The first section of this chapter introduces
the overview of the proposed framework. Next, the second section describes
speech processing based on analysis and synthesis in speech communication.
The third section describes the method of securing speech communication
based on the information hiding approach. Finally, this chapter ends with
using the information hiding approach to improve the security of speaker
anonymization methods.
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Chapter 4 elaborates the proposed method of content protection using
the information hiding approach. The description of the proposed method,
including the design of the information hiding method, the embedding, and
the detection scheme, will be explained. Additionally, the experiments using
the proposed method are explained and discussed.

Chapter 5 elaborates the proposed method of voice privacy protection
based on speaker anonymization. We describe the speaker anonymization
method by modifying the x-vector singular value and the development by
modifying speech prosody. Similar to Chapter 4, we also explain the experi-
ments on speaker anonymization. Finally, we discuss the comparative analysis
of speaker anonymization approaches.

Chapter 6 contains the total evaluation of our proposed framework on
secure speech communication. Furthermore, the results of the evaluation are
analyzed and discussed as the contributions of this thesis.

Chapter 7 contains a summary, highlights of contributions, and the
future direction (future works) of this study.
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Figure 1.6: Thesis organization.
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Chapter 2

Literature Review

This chapter reviews the background knowledge related to secure speech
communication systems into three sections. First, the introduction about
speech communication system is described, including the elements of speech
communication, the analysis-synthesis model for processing speech, and the
progress of secure speech communication. Subsequently, the second section
explains information hiding for secure speech communication. This section
describes the overview of the speech information hiding framework, evaluation
metrics, methods, and applications. This chapter ends with an explanation
of voice privacy protection via speaker anonymization.

2.1 Speech Communication System

This section provides a description of the speech communication system, i.e.,
what key elements in speech communication are, how to process speech in the
digital communication system (analysis by synthesis model), and the existing
approaches for secure speech communication.

2.1.1 Elements of Speech Communication

Typically, basic communication is comprised of four key elements, i.e., source
or sender, message, receiver, and feedback. The source speaker or sender is the
person who initiates a communication. The receiver is the person who receives
the message sent by the sender. The feedback is the response given by the
receiver to the sender. In digital communication, message and feedback are
encoded and decoded before/after passes through a communication channel.
Figure 2.1 shows the illustration of a digital communication system that
includes its key elements.
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Figure 2.1: Key Elements of Digital Communication System

With regard to speech communication, the transmitted message is in the
form of a speech signal. Speech produces by a speech production system,
which could be summarized into three mechanisms: (1) respiration by the
lungs, (2) phonation at the larynx, and (3) articulation from the movement
in the mouth (lips, tongue, jaws, and nasal cavity). Due to these mechanisms
and the unique anatomy characteristics, speech produces by each person
is unique despite the same linguistic content. As mentioned in Chapter 1,
speech signal conveys various information, including the three categories of
information described by Fujisaki [39] (also shown in Fig. 1.1).

A communication channel, such as the public switched telephone net-
work (PSTN) and Voice over Internet Protocol (VoIP), mediates the speech
communication in the digital system. Before the transmission through a
communication channel, a speech signal needs to be encoded so that it can be
digitally processed. A speech coder encodes and decodes speech signals into
digital information before storing or transmitting them through a communica-
tion channel. Most speech coders are based on the analysis by synthesis (AbS)
model. The following subsection explains the AbS model in more detail.
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2.1.2 Speech Coding: Analysis by Synthesis Model

Speech coding is the process of converting or transforming a speech signal
into a more compact digital representation for effective transmission. When
transmitting a digital signal, a function of bit rate (bandwidth) is required
[62]. The bit rate is the data rate in a given unit of time (commonly, in the
unit of bits per second (bps)). A speech coder is a device or technique that
performs speech coding, which always comprises an encoder and a decoder
(also known as codec). An encoder transforms the input speech to a low-rate
bitstream. Meanwhile, a decoder approximates the output bitstream to the
original input signal.

Most of the speech coders produce a reconstructed speech signal that
differs from the original one in order to remove the redundancy of speech
signals. However, sometimes the parameters that represent the speech are
reduced and cause a lossy coding. The representation of a vector or a value
with reduced precision is referred to as quantization [62]. The distortion
caused by this process is called quantization noise. To obtain a reliable speech
coder, we have to optimize the perceived similarity between the original
speech and the reconstructed speech. Therefore, the study of human auditory
perception, as well as the study of human speech production, are widely
considered in the development of speech coding.

At an earlier time, eight-bit logarithmic quantizers with a bit rate of 64
kbps are ordinarily applied in network telephony [4]. The speech coders based
on these quantizers simply perform the conversion of the analog-to-digital
(A/D) and digital-to-analog (D/A). Along with the development of hardware
technology, a linear PCM (pulse-coded modulator) system with a bit rate
of 128 kbps is used to convert the input speech before passing through an
encoder (to obtain a lower bitrate). In 1985, Manfred R. Schroeder and
Bishnu S. Atal proposed the code-excited linear prediction (CELP) codec
that is based on analysis by synthesis model for speech coding algorithm [8].
The analysis process is performed by encoding the signal with perceptual
optimization, and the synthesis process is performed by decoding the signal
in a closed-loop. This approach was significantly improved the reconstructed
speech than the other existing methods at that time.

Even until recent years, CELP codecs are the most common speech codecs
used in digital communication systems due to their low-bitrate high-quality
speech representation [8, 102]. These codecs are based on the source-system
model that mimics the human speech production mechanism through linear
prediction (LP) analysis [8, 96, 102]. In digital speech signal processing,
voiced speech is produced by the excitation of the vocal tract filter with
quasi-periodic glottal pulses. Meanwhile, unvoiced speech is produced by the
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Figure 2.2: Simple Speech Synthesis Based on Source-Filter Model.

air constriction in the vocal tract. Figure 2.2 shows the simplification process
of speech synthesis based on source-filter model.

Linear predictive coding attempts to estimate vocal tract parameters by
estimating a current speech signal using a linear combination of past samples.
The following differential equation characterizes the mathematical form of
linear predictive coding:

s(n) =
M∑
i=1

a(i)s(n− i) + e(n) (2.1)

where a(i) corresponds to the filter coefficient in i-th order, M is the maximum
order of the prediction (typically 10), and e(n) is the prediction error.

The transfer function for the corresponding linear prediction differential
equation is represented by tenth-order all-pole autoregressive filters, which is
given by:

H(z) =
1

1−
∑10

i=1 a(i)z
−i

(2.2)

Figure 2.3 illustrates the source-system model by AbS linear prediction.
In CELP coding, the excitation generator generates an excitation vector
codebook x by minimizing the residual error e, which can be written mathe-
matically as,

e(i) = sw − ŝ0w − g(i)ŝ(i)w (2.3)

where sw is a vector of perceptually-weighted input speech, ŝ0w is the initial

filter state output vector, g(i) is the gain factor, and ŝ
(i)
w is the synthetic speech

vector associated with the x(i) with i as the codebook index.
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Figure 2.3: Source-filter model in AbS linear prediction.

In standard AbS linear prediction algorithms, the tenth-order short term
linear prediction is used as the linear prediction synthesis filter (1/A(z)). A(z)
denotes the line spectrum pairs (LSPs) that can be given by:

A(z) = 1 + a1z
−1 + a2z

−2 + ...+ a10z
−10 (2.4)

where ai is the i-th order linear prediction coefficients (LPCs).
The long term prediction (LTP) synthesis filter (1/AL(z)) captures the

long-term correlation and represents the speech periodicity mechanism. The
perceptual weighting filter W (z) models errors by masking the quantization
noise with high-energy formants. The perceptual weighting filter W (z) can
be written as follows:

W (z) =
A(z/γ1)

A(z/γ2)
=

1−
∑M

i=1 γ1(i)a(i)z
−i

1−
∑m

i=1 γ2(i)a(i)z
−i

(2.5)

where γ1 and γ2 are the adaptive weights that satisfy 0 < γ1 < γ2 < 1, and
m is the order of the linear predictor. γ1 ranges between 0.94 and 0.98 and
γ2 ranges between 0.4 and 0.7 depending on the tilt or flatness characteristics
of the linear prediction spectral envelope [96, 101].

2.1.3 Progress in Secure Speech Communication

In recent years, speech communication has been rapidly developed along
with the development of network communication [86]. Even in our daily
life, we often use speech communication networks, including PSTN and
VoIP. Unfortunately, the channels utilized in communication networks are
not safe (vulnerable) to any threats. For example, the possibility of speech
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Figure 2.4: Basic system design of cryptography or digital encryption in
PSTN [88].

communication being hijacked or attacked by man-in-the-middle is high [129].
Without adequate countermeasures, attackers could easily attack a speech
communication [59, 86, 112, 129].

The classical techniques for securing speech communication come from
the studies of speech encryption [52, 66, 88, 129]. Speech encryption is the
art of securing information by transforming understandable data into another
form that is not intelligible for unauthorized parties. Similar to speech coding,
speech encryption is generally comprised of a pair of transformations, i.e.,
encryption and decryption.

Speech encryption can be categorized into two types: digital and analog
(scrambling) [128]. In digital speech encryption, a speech signal is digitized
before encrypting it into unintelligible signals. Figure 2.4 shows the basic
system design of digital encryption in PSTN [88]. Meanwhile, the analog
scrambling approach is conducted by segmenting and scrambling the intelli-
gible speech signals in a particular domain(s) to form unintelligible signals
[52]. In literature, digital encryption is more popular than analog scrambling
in speech secure communication because analog scrambling is poor in the
security aspect [98, 129].

Although digital encryption has high confidentiality and easy implemen-
tation, it also follows with several drawbacks. First, the strength of most
encryption methods highly depends on the encryption procedures and the
required capacity. For example, the password (secret key) that we set to
encrypt data is highly associated with the security level. Second, the form
of encrypted data is intelligible and therefore increases the suspicious level
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that it might contain secret and important information. When the attackers
monitor this communication, they can easily try to decrypt it with the existing
cryptanalysis methods. Another disadvantage of digital speech encryption is
that the process of encryption and decryption causes distortion to the speech
quality.

To overcome the drawbacks of the classical encryption techniques, the
chaotic secure communication methods were developed to improve confi-
dentiality by using the chaos system’s sensitivity [67, 129]. These methods
emerged along with the improvement in computing power and the advance-
ment in the quantum computer. However, most of the methods have not
been used in real applications (under development) and are limited to the
prototype implementation [129].

Another approach for securing speech communication is by using a speech
information hiding (SIH) technique. Although the idea of information hiding
was proposed systematically in the 1990s, its development in speech commu-
nication is still limited. This is because SIH has its own challenging points
compared with other digital data, such as images or video. The sensitivity
and dynamicity level of the human auditory system (HAS) is higher compared
with the human visual system, which caused difficulties in achieving the in-
audibility requirement in SIH (see Subsection 2.2.1). In addition, the trade-off
between the robustness and the inaudibility occurs since the total number of
representations for the audio signal is less than video at one particular time.
This study focuses on secure speech communication using the information
hiding approach.

2.2 Information Hiding for Secure Speech

Communication

This section describes the overview of speech information hiding (SIH), evalu-
ation metrics, the existing SIH methods, and SIH applications.

2.2.1 Overview of Speech Information Hiding

SIH literally means the technique of hiding data into a speech signal. A
reliable SIH should fulfill the following five requirements:

1. inaudibility means keeping the embedded message imperceptible to the
human auditory system;

2. robustness means keeping the embedded message able to withstand any
unintentional (signal processing operations) or intentional attacks;
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Figure 2.5: Overview of an SIH framework

3. blindness means the original signal is not required in the detection
process;

4. high payload means the output signal conveys a large amount of embed-
ded message;

5. confidentiality means secure concealment of embedded data.

Figure 2.5 shows the typical SIH framework. SIH contains three main
parts: (1) a hidden bit generator, (2) an embedder, and (3) a detector
[70]. Commonly, a hidden bit generator converts the hidden message into
the bitstreams s(m). The digital speech to be protected is defined as the
original signal x(n), and the signal after the embedding process is defined as
modified signal y(n). In order to improve the confidentiality requirements,
the additional key kw is used for generating the hidden bitstream. In contrast,
the additional secret key ks is used in embedder to provide a more secure
modified signal y(n). In general, the embedding process can be expressed as
follows:

y(n) = Embedding(x(n), s(m), kw, ks) (2.6)

where n is the number of sample and m is the hidden bit index.
The modified signal y(n) is then passing through the communication

or transmission channel. In this stage, the modified signal y(n) may be
changed due to unintentional signal processing operations (e.g., compression,
resampling) or intentional attacks (e.g., tampering or spoofing attacks). As a
result, the input of the detector can be referred to as attacked signal ŷ(n). In
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Table 2.1: Sound quality description with regards to PESQ (MOS)

PESQ (MOS) Speech Quality

1 bad (totally unacceptable, poor quality speech)
2 poor (poor speech quality with annoying distortion)
3 fair (acceptable quality with slightly annoying perceptible issue)
4 good (good speech quality with a slight perceptible issue but not annoying)
5 excellent (high speech quality and no perceptible issues)

general, the detector process of the hidden bitstream ŝ(m) can be expressed
as follows:

ŝ(m) = Detection(ŷ(n), x(n), kw, ks) (2.7)

for non-blind approach. On the other hand, for blind approach, the original
signal x(n) is not required as the input of the detector which is shown as
follows:

ŝ(m) = Detection(ŷ(n), kw, ks) (2.8)

2.2.2 Evaluation Metrics

In order to evaluate the effectiveness of various SIH schemes, a standard
benchmark for SIH performance evaluation is necessary [51]. The general
performance evaluation is comprised of the inaudibility, robustness, and
security level assessments.

• Inaudibility Assessment

Inaudibility assessment has two main categories: subjective listening tests
by human acoustic perception and objective tests by quality measurements
based on perception modeling. In subjective listening tests, the human opinion
from normal hearing audiences with different backgrounds is considered in
most of the applications [7]. On the other hand, the objective tests are
conducted by assessing the perceptual evaluation of speech quality (PESQ)
[97] and log-spectral distortion (LSD) [42].

PEAQ is one of the standards proposed by ITU-T P.862 to measure speech
quality. Principally, PESQ represents the perceptual speech quality of y(n)
with x(n) as the reference in mean opinion scores (MOS). The MOS varies
from a scale of 1 (bad) to 5 (excellent). The meaning of each scale is shown in
Tab. 2.1. Typically, the PESQ threshold for speech watermarking is 3 (fair or
slightly annoying). On the other hand, LSD is also important to measure the
distance or distortion between two spectral (in SIH case, between the original
spectra X(ω, k) and the modified spectra Y (ω, k)) with k is the frame index.
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The calculation of LSD is as follows:

LSD(X,Y) =

√√√√ 1

K

K∑
k=1

(
10log

10

|X(ω, k)|2
|Y(ω, k)|2

)2

, (2.9)

where X(ω, k) and Y(ω, k) are the short-time Fourier transform of the original
(x(n)) and modified signal (y(n)) of k-th frame, respectively. A lower LSD
indicates the better inaudibility (the threshold LSD < 1 dB is usually used
in SIH evaluation).

• Robustness Assessment

The robustness assessment aims to evaluate the resistance of the detector
system’s ability not only in normal conditions but also against signal mod-
ification in real applications. Practically, the bit error rate (BER) can be
used to check whether the embedded information is robust or not. BER is
the ratio between the total number of incorrectly extracted bits and the total
embedded bits, which is defined in the following equation:

BER =
Number of incorrect bits between ŝ(m) and s(m)

Number of bits of s(m)
× 100% (2.10)

A reliable robustness test should comprise unintentional attacks (common
signal-processing operations) and intentional attacks. For a brief description,
the signal manipulation operations (attacks) can be classified into three
categories:

(a) Common signal operations:

e.g., resampling (down-sampling and up-sampling), noise addition (e.g.,
additive white Gaussian noise (AWGN)), requantization, amplitude
scaling, low-pass filtering, echo addition, reverberation, speech coding,
compression, digital-to-analog and analog-to-digital (DA/AD) conver-
sion, and the combinations.

(b) Desynchronization attacks:

e.g., random samples cropping, zero inserting, jittering, time-scale, and
pitch-scale modification.

(c) Advanced attacks:

e.g., collusion, multiple watermarking.
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• Security Level Assessment

False acceptance rate (FAR) and false rejection rate (FRR) are metrics
to evaluate the security level in biometric systems. FAR represents the error
rate when unauthorized people are incorrectly accepted. Meanwhile, FRR
represents the error rate when authorized people are incorrectly rejected. The
point at which the FAR and FRR lines meet is called EER (Equal Error
Rate). In addition to FAR and FRR, we also calculate F1-score to evaluate
the overall performance (also describe the harmonic mean between precision
and recall of detection).

2.2.3 Speech Information Hiding Methods

On the basis of the hiding medium/domain, SIH techniques can be categorized
into two main groups: (1) time-domain methods and (2) transform domain
methods [49].

1. Time-domain methods

In time-domain methods, the hidden information was hidden into time
aligned signal [21, 22, 83, 100, 116, 118] or echo-based (not aligned)
signal [43, 60, 82, 84, 87]. The generic time-domain SIH techniques can
be expressed as:

y(n) = x(n) + αf [x(n), s(m)] (2.11)

where α refers to the strength of embedded signal and f [·] refers to the
hidden bit generation by using both original signal x(n) and the hidden
information s(m).

There are several traditional methods for time-aligned SIH techniques,
e.g., least significant bits (LSB), phase coding, and cochlear delay
(CD) based SIH. In LSB [21], the hidden information is embedded by
substituting the least significant bits of the speech samples. The payload
which can be achieved by this method can be very high (same rate with
the sampling rate, e.g., 44.1 kbps for a speech signal with a sampling
frequency of 44.1 kHz). However, it is predictable and vulnerable to
any attack. Other improvements for this method were also proposed
[22, 100] to improve the robustness, for example, by selecting the low-
frequency components only or using repetitive coding. Unfortunately,
this method can not fully satisfy the robustness against unintentional
and intentional attacks.

The phase modification techniques, including phase coding and phase
modulation, are based on the fact that the human auditory system
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(HAS) is not sensitive to the absolute phase difference. HAS can only
distinguish the relative phase [9]. In the phase coding technique, the
SIH is conducted by substituting the initial phase of the segment of
the original signal with a reference phase as the hidden-bit representa-
tion. This approach is more effective than LSB in terms of robustness.
However, when the phase between each frequency component is dras-
tically changed, sound distortion will occur. CD-based information
hiding method is one of the phase modulation techniques. Generally,
this method employed the all-pass filter for controlling the phase to
represent the bit information [83, 116, 118].

In echo hiding, the hidden information is embedded via an echo from
the original signal. It works by controlling three parameters of the
echo, including initial amplitude, decay rate, and offset [9, 43]. The
embedding process is conducted by setting two delays in time as the
representation of two binary bits (“0” or “1”). These delays should be
chosen carefully so that the quality of the modified signal can be reliable.
Subsequently, the extraction process is based on complex cepstrum
analysis [49]. A magnitude peak will occur at the appointed delay time
in the cepstrum spectrum of the modified signal. By comparing this
peak, the hidden bit information can be successfully extracted. There
are various techniques proposed to improve the traditional echo hiding
[60, 84, 87]. However, some remaining issues still remain, including the
difficulties in determining the exact delay time of low-magnitude echoes
when the attacks happen. The robustness and inaudibility trade-off is
also a big problem due to the echo magnitude and delay time.

2. Transform domain methods

Besides of time-domain, the hidden information can be embedded into
other domains [48, 50, 61, 63, 69, 73], for instance, in spread spectrum
(SS), wavelet domain, and cepstrum domain. The generic model for
transform domain methods is as follows:

Y (k) = X(k) + αm(k) (2.12)

where X(k) and Y (k) are the transform domain representations of
original signal x(n) and modified signal y(n), respectively; whereas
m(k) refers to either non-modulated or modulated hidden bit stream.

In the traditional SS technique, the hidden bitstream is spread across
the frequency spectrum of the original signal [9]. There is various SS
communication. One of them is the direct sequence spread spectrum
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(DSSS). This method works by introducing a chip (a modulated pseu-
dorandom sequence) that is multiplied by the signal. In other words, it
spreads the pseudorandom sequence into the original signal). For the
detection process, the chip signal is multiplied by the modified signal
and passes through both the band-pass filter and the phase detector
sequentially. Several approaches were also proposed to improve the
inaudibility performance of this technique [61, 73].

In the wavelet domain, the hidden information is embedded into wavelet
coefficients of original signal [50, 63]. Wavelet transform produces a bet-
ter time-frequency representation of a non-stationary signal, including
speech signals. The decomposition and reconstruction of this technique
require multiresolution analysis and synthesis. The wavelet domain
methods are generally lacking in robustness [70]. Alternatively, the cep-
strum domain SIH used the cepstral coefficient as embedding medium
[48, 69]. The complex cepstrum is referred to as the inverse Fourier
transform of the complex logarithm of the Fourier transform of an input
signal. Generally, the performance of the method based on the cepstrum
domain is similar to the one in wavelet domain [70].

2.2.4 Applications of Speech Information Hiding

SIH can be utilized in a wide variety of applications. In general, SIH can
be divided into two categories, i.e., watermarking and steganography [70].
The primary purpose of speech watermarking is copyright protection. On
the other hand, steganography is mainly used for providing secret commu-
nication. However, the applications of SIH are not only limited to those
two primary purposes but also for broadcast monitoring, usage tracking,
tampering detection, and spoofing detection.

• Copyright protection

During the past few years, protecting intellectual properties has become
a social issue due to the development of digital technology. SIH, especially
speech watermarking, is the most popular alternatives for providing the
solution for copyright protection [64]. This technique works by embedding
the additional data (called a watermark) into the speech contents that must
be protected before distributing it. The proof of ownership can be claimed
by detecting the watermark from this distributed speech data.

In order to reach the ideal copyright protection, the embedded watermark
should be robust and inaudible. The robustness is required since there may be
any unintentional or intentional signal processing affected in the distribution
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process. For example, when a user wants to reduce the file size by compressing
it to an MP3 type, the watermark detector should be able to detect it. The
watermark is also expected to be robust when the speech data gets uploaded
into a file-sharing website. Furthermore, it is essential to provide a highly
inaudible watermark because bad inaudibility implies the bad degradation in
the quality of the watermarked data.

• Secret communication

As mentioned previously, secret communication is the primary purpose of
steganography. The word “steganography” refers to the practice of conceal-
ing a secret message (i.e., the hidden information that nobody apart from
the sender and the appointed recipient notices it) into a cover signal [20].
Generally, speech steganography hides a message within a cover speech signal
using a stego key, which is equal at both the transmitter and receiver sides.
The output of the speech steganography embedder in the transmitter side is
referred to as stego speech signal. On the other hand, on the receiver side,
the embedded message is retrieved from the cover speech signal using the
stego key by extracting it via the speech steganography detector.

To achieve the “secret” communication by definition, the inaudibility
requirement is the most important that expected to be fulfilled. Only the
trusting parties are allowed to notice the presence of the hidden message. In
addition, the payload of the information to be embedded is also important.
The more information can be hidden, the more composite messages (e.g., not
only text, but also images, videos, etc.) can be used for communication.

• Broadcast monitoring

Utilizing SIH to the speech data at the time of production or broadcast
allows the content owners to identify with granular precision which is broad-
casting the data, when and where content is broadcast, and how long is the
duration for the data to be produced. SIH works by making slight modifica-
tions to the original data by adding some bits of data (hidden information,
e.g., watermark) disseminated throughout the content. The modifications are
expected to be inaudible to the human auditory system but can easily be
extracted and decoded using a dedicated SIH detector [7, 20, 70].

• Usage tracking

SIH can also be used to trace the source of illegal access, for example
tracing the camcorder piracy in theatre, which proposed in [81]. SIH enables
the content owner to monitor the usage of digital speech (whether it is legal
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or not). If the illegal copy is found, the appropriate amercement can be made
to compensate for the commercial loss.

By embedding the identity to the authorized copy (watermark or finger-
print), the owner can identify and track the source of the file. The robustness
requirement in the usage tracking application is the most essential since the
illegal copies are usually created by using several specific speech processing
tools, e.g., a speech recorder.

• Tampering detection

The negative impact on the development of speech processing technology
allows the illegal users to use the speech forgery techniques to conduct piracy
over the Internet or falsify court evidence. The speech forgery techniques are
performed by secretly modifying the digital speech to fabricated evidence.
SIH can be used by digital forensics to verify whether the digital speech data
is the original or fabricated/tampered signal.

Several methods in SIH proposed to detect the tampered signal [56,
117, 126, 128]. In tampering detection, limited robustness is required for
distinguishing the tampered signal and the location of tampering. The limited
robustness refers to the robustness only against common signal processing
operations but not against vicious attacks.

• Spoofing detection

Spoofing attacks have become one of the challenging issues in speech
communication, especially in speaker verification systems [130, 131]. It
attracts special attention to many researchers from not only inside but also
outside the speaker recognition community to develop a speech anti-spoofing
system [111]. SIH can be utilized in speaker verification systems to detect
the spoofed signal by embedding specific information (e.g., watermark) to
verify the authenticity of the transmitter, including the sensor and feature
extractors. SIH approach can also justify the integrity of the authentication
mechanism [37].

2.3 Speaker Anonymization: Voice Privacy

Challenge 2020

2.3.1 Definition of Speaker Anonymization

Speaker anonymization (also known as de-identification) is a method of
protecting voice privacy. It works by concealing the personally identifiable
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information of uttered speech without degrading the linguistic information
[113].

A speaker anonymization system must meet four requirements in accor-
dance with the Voice Privacy Challenge 2020:

1. output should be a speech waveform,

2. speaker identity should be hidden,

3. output speech should be natural and intelligible, and

4. anonymized utterances of a given speaker should be different from those
of other speakers.

Several open-source corpora are introduced in the Voice Privacy Challenge
2020 to develop a speaker anonymization system, as follows:

(a) LibriSpeech [89], a corpus of English read speech designed for automatic
speech recognition (ASR). This corpus contains a total of approximately
1,000 hours of 16-kHz speech.

(b) LibriTTS [133], a corpus of approximately 585 hours of 24-kHz speech
that derived from LibriSpeech corpus and designed for text-to-speech
(TTS).

(c) VCTK [120], a corpus of approximately 44 hours of 48-kHz English read
speech spoken by 109 native speakers with various accents and initially
designed for TTS.

(d) VoxCeleb-1,2 [19, 80], an audiovisual corpus designed for speaker verifica-
tion research. This corpus contains approximately 2,770 hours of 16-kHz
speech spoken by 7,360 speakers in various accents and languages.

These corpora were divided into several subsets for training, development,
and evaluation. The detail description and statistics of these subsets was
explained in the Voice Privacy Challenge 2020’s evaluation plan [112].

2.3.2 Evaluation Metrics

The privacy and utility metrics are assessed objectively and subjectively
based on the requirements of a speaker anonymization system mentioned in
Subsection 2.3.1.
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Figure 2.6: ASV evaluation for (a) clean trial and enrollment (o-o), (b)
anonymized trial and clean enrollment (o-a), and (c) anonymized trial and
enrollment (a-a) [112].

Objective Assessment

The privacy metric should measure the speaker verifiability, whereas the
utility metric should measure the ability to preserve the linguistic content.
An ASV system is deployed to assess the speaker verifiability metric and an
ASR system is deployed to assess utility metric [112]. Both ASV and ASR
systems for assessing an anonymization system (hereafter, we refer to these
systems as ASVeval and ASReval) are trained on a subset of the LibriSpeech
dataset (LibriSpeech-train-clean-360) using a Kaldi toolkit [94].

An evaluation using ASVeval is conducted utilizing probabilistic linear
discriminant analysis (PLDA) on the x-vector (state-of-the-art speaker em-
bedding) [107], under the three conditions shown in Fig. 2.6. In ASVeval, the
equal error rate (EER) and log-likelihood-ratio cost function (Cllr and Cmin

llr ,
proposed in [14]), are computed as the objective verifiability metrics.

EER is commonly used in a biometric system to predetermine the threshold
values of false acceptance rate (FAR) and false rejection rate (FRR) when
they are equals (EER = Pfa(θEER) = Pfr(θEER)). In a speaker anonymization,
the FAR (Pfa(θ)) and FRR (Pfr(θ)) are computed as follows [112]:

Pfa(θ) =
#{impostor trials with score > 0}

#{total impostor trials}
, (2.13)
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Figure 2.7: Schematic diagram of the primary baseline speaker anonymization
system (B1) in Voice Privacy Challenge 2020 [112].

Pfr(θ) =
#{target trials with score ≤ 0}

#{total target trials}
. (2.14)

Mathematically, log-likelihood-ratio cost function (Cllr) in the evaluation
set is computed as follows:

Cllr =
1

2

(
1

Ntar

∑
i∈targets

log2(1 + e−LLRi) +
1

Nimp

∑
j∈impostors

log2(1 + e−LLRj)

)
,

(2.15)
where Ntar and Nimp are the LLR values of the number of target and

impostor, respectively. The Cmin
llr is referred as a discrimination loss which

is estimated by calibration based on monotonic transformation and LLR
algorithm.

On the other hand, the evaluation using ASReval is conducted based on a
factorized time delay neural network (TDNN-F) acoustic model (AM) [35, 91]
and a trigram language model using a Kaldi recipe for a LibriSpeech dataset.
The word error rate (WER) is computed to identify the intelligibility of the
anonymized speech in comparison with the original speech only in the trial.
WER is calculated as the following formula:

WER =
Nsub +Ndel +Nins

Nref

, (2.16)

where Nsub, Ndel, Nins, and Nref are the number of substitution error,
deletion error, insertion error, and words in reference, respectively.
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Subjective Assessment

In the Voice Privacy Challenge 2020 evaluation plan [113], subjective assess-
ment was conducted to evaluate four metrics, i.e., speaker verifiability, speaker
linkability, speech naturalness, and speech intelligibility. This assessment was
conducted using large-scale crowd-sourced listening tests with 10-scale rating
system. The scenarios for evaluating each metric are as follows:

1. Speaker verifiability. The subjective assessment for this metric follows
the protocol in ASV spoof countermeasure [111]. It aims to measure
the similarity of the speaker between clean enrollment utterance and
anonymized trial utterance given the scenario when receiving a phone
call. The participants were instructed to judge whether the given voice
from the incoming call is similar to the clean utterance.

2. Speaker linkability. The subjective assessment for this metric is based
on clustering concept. The participants were instructed to place several
anonymized utterances from various speakers in dimensional space based
on their perceived speaker similarity.

3. Speech naturalness. The subjective assessment for this metric aims to
measure the naturalness of the speech. The participants were instructed
to evaluate the naturalness of a set of speech utterances, which contains
of either clean speech or anonymized speech.

4. Speech intelligibility. The subjective assessment for this metric is similar
to naturalness but with different purpose. In this assessment, the
participants evaluated the intelligibility of the given speech.

2.3.3 Baseline Systems

In the Voice Privacy Challenge 2020, two anonymization techniques were
introduced as the baseline systems [112]. The primary baseline (B1) system
was developed using x-vectors and an NSF model [35]. The second baseline
(B2) system was developed based on linear prediction analysis using McAdams
coefficient [77]. In this paper, we focus on developing an anonymization system
based on the B1.

Speaker anonymization using x-vectors and an NSF model (B1)

The B1 system is primarily built on the idea of separating linguistic content
and speaker individuality features from the input speech. The anonymized
speech is then synthesized by the extracted linguistic content (to preserve
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the linguistic information) and the modified speaker individuality feature.
Figure 2.7 shows the block diagram of the B1 system, which consists of
seven components: an F0 extractor, an ASR AM, an x-vector extractor, an
anonymization model, a pool of x-vectors, a speech synthesis AM, and an
NSF model. The anonymization process is subdivided into the following three
main steps:

(i) Feature extraction: extraction of the F0, a bottleneck feature (as lin-
guistic feature representation using an ASR acoustic model (AM) model
[35, 91]), and a speaker individuality feature (x-vector based on [107]);

(ii) X-vector anonymization: modification of the extracted x-vector by
averaging a set of candidate x-vectors from the pool of x-vectors; and

(iii) Speech synthesis: speech synthesis using the F0, the bottleneck features,
and the modified/anonymized x-vector based on the speech synthesis
AM [35] and NSF [127] models.

The Kaldi toolkit [94] is used in the feature extraction step. The YAAPT
algorithm is used as the F0 extractor. Subsequently, an ASR AMmodel is built
based on factorial time delay neural network (TDNN-F) model architecture
[35, 91] and trained using the training data of the LibriSpeech dataset [89] to
extract the bottleneck feature. The output of an x-vector extractor constructed
using a time delay neural network (TDNN) model [107] and trained using the
VoxCeleb-1,2 dataset is used to represent the speaker individuality feature.

In the x-vector anonymization step, the x-vector of a given input speaker
is modified by a new pseudo x-vector obtained by averaging a set of candidate
x-vectors determined by a given similarity distance range. The candidate
x-vectors belong to the pool of x-vectors extracted from the train-other-500
subset of the LibriTTS dataset [133]. The cosine similarity, or probabilistic
linear discriminant analysis (PLDA), is used as the similarity distance measure.
A smaller set of x-vectors is randomly chosen from a set of most farthest
x-vectors as the candidate x-vectors.

As the last step, the anonymized speech is resynthesized using a speech
synthesis AM model and an NSF model. Both models were trained using
the train-clean-100 of the LibriTTS dataset. The speech synthesis AM
model was constructed based on an autoregressive network [35]. This model
transforms the input F0, bottleneck features, and anonymized x-vector into
Mel-filterbanks features. Subsequently, the NSF model [127] is used to
generate the anonymized speech from the F0, Mel-filterbanks features, and
the anonymized x-vector. Table 2.2 shows the description of B1 with the
models and training corpora.
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Table 2.2: Description of the primary baseline (B1) of speaker anonymization
system: models and corpora [113]. Subscript numbers represent the feature
dimensions.

# Model Description Output features Training dataset

1 ASR AM

TDNN-F BN256 features Librispeech:
Input: MFCC40 + i− vectors100 extracted from train-clean-100
17 TDNN-F hidden layers the final hidden layer train-other-500
Output: 6032 triphone ids
LF-MMI and CE criteria

2
X-vector
extractor

TDNN speaker

VoxCeleb:1,2
Input: MFCC40 x− vectors512
7 hidden layers + 1 stats pooling layer
Output: 7232 speaker ids
CE criterion

3
Speech
synthesis
AM

Autoregressive (AR) network
Input: F0 + BN + x-vectors
FF * 2+ BLSTM + AR + LSTM * 2
+ highway-postnet
MSE criterion

Mel− filterbanks80
LibriTTS:
train-clean-100

4
NSF
model

sinc1-h-NSF
Input: F0 + Mel-fbanks + x-vectors
STFT criterion

speech waveform
LibriTTS:
train-clean-100

Pool of speaker x-vectors
LibriTTS:
train-other-500

Speaker anonymization using McAdams coefficient (B2)

The secondary baseline system (shown in Fig. 2.8) was developed on the basis
of modifications to the McAdams coefficient [90]. The McAdams coefficient is
related to the adjustment of harmonic frequency distributions, which affects
the perception of timbre [77]. Although the results of the secondary baseline
were not as good as the first baseline, it requires no training data and is much
less complex.

The McAdams coefficient proposed in [77] is a parameter derived on the
basis of the additive synthesis method in music signal processing [29]. This
method is applied to timbre generation by resynthesizing multiple harmonic
cosinusoidal oscillations. by an inverse Fourier series with magnitude and
phase shift. Mathematically, the additive synthesis process is expressed as

ysyn(t) =
H∑

h=1

rh(t) cos(2π(hf0)
αt+ Φh), (2.17)

where ysyn(t) is the synthesized signal, h is the harmonic index, rh(t) is
the amplitude, Φh is the phase, and α is the McAdams coefficient [77].
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Figure 2.8: Block diagram of speaker anonymization based on McAdams
coefficient [90]. “LP coeff.” is referred to as linear prediction coefficients.
“LPC” is referred to as linear predictive coding. “ϕ” is the angle of poles with
a non-zero imaginary part. “α” is the McAdams coefficient.

The McAdams coefficient is used for adjusting frequency harmonics to non-
harmonics components that affects the perception of timbre. Prior work on
speaker anonymization [90], has shown that the McAdams coefficient can
transform the spectral envelope of speech signals and affect timbre perception.
The McAdams coefficient was manipulated to alter the formant position of
original speech at the frame level on the basis of linear predictive coding (LPC)
analysis and a synthesis technique. The procedures of speaker anonymization
using McAdams coefficient are as follows.

The original signal in the time-domain (x(n)) is first divided into several
overlap frames. Each speech frame is then passed through a linear prediction
(LP) analysis filter, which is an all-pole filter that mimics the source-filter
analysis model of a speech production system. In this study, we used the LP
order of 12 (M = 12). The LPC analysis is characterized by the following
differential equation:

s(n) =
M∑
i=1

c(i)s(n− i) + e(n), (2.18)

where s(n) is the speech frame, c(i) is the i-th order LP coefficient, M is
the order of LP, and e(n) is the prediction error (residuals). The corre-
sponding transfer function (H(z)) for Eq. 2.18 is represented using all-pole
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autoregressive filters as follows

H(z) =
1

1−
∑M

i=1 c(i)z
−i
. (2.19)

The LP coefficients (c(i)) obtained from the LPC analysis are used to
derive the poles (ϕ). The derived poles can be categorized into complex and
real poles. Complex poles have non-zero imaginary values, whereas real poles
have a zero-valued imaginary term. The McAdams coefficient (α) corresponds
to the power of complex poles. The manipulation of alpha results in angle
shifting of complex pole positions (ϕα) either clockwise or counter-clockwise
depending on α and ϕ [90]. When α < 1, ϕα is in the counter-clockwise
direction when ϕ < 1 radian and in the clockwise direction when ϕ > 1
radian. The opposite direction applies when α > 1. We investigate McAdams
coefficient manipulation when α < 1 in this study. Figure 2.9 shows the poles
location and frequency-response envelopes obtained from original signal and
McAdams coefficient manipulation when α = {0.85, 0.9, 0.95}.

After shifting complex pole locations by manipulating the McAdams coeffi-
cient, both complex and real poles are converted to new LP coefficients (c′(i)).
These LP coefficients and the original residuals (e(n)) are resynthesized as
modified speech frames. Finally, the modified speech frames are concatenated
using the overlap and add technique to generate the modified speech signal
(a(n)).

In speaker anonymization, the McAdams coefficient is manipulated as
far as possible from the original speech (α = 1) with consideration of the
sound distortion caused. For example, the anonymization introduced as the
secondary baseline in the Voice Privacy Challenge 20201 used fixed α = 0.8
[112]. Those results indicate the degree of McAdams coefficient manipulation
on our perception of speaker individuality [90].

1https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020
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Figure 2.9: Pole locations and frequency-response envelopes of original signal
(ori) and modified signals with McAdams coefficients (α = {0.85, 0.9, 0.95}).
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Chapter 3

Content and Privacy Protection
for Speech Communication
System

As explained in Chapter 2, there are two categories that are mainly adopted
for content and privacy protection for speech processing, i.e., cryptography
and information hiding. This study adopts the information hiding approach as
the focus. This chapter introduces the general proposed framework to secure
speech communication which is based on information hiding. Subsequently,
the methods to protect the information in speech will be described in the
succeeding sections.

3.1 General Proposed Framework of Secure

Speech Communication

Speech signals contain various information, including linguistic content,
speaker intention, behavior, etc. Although it is difficult to definitely manifest
this information, the categorization by Fujisaki [38] highly contributes to
model analysis and synthesis processes in speech. Figure 1.1 shows three cate-
gories of information expressed in speech: linguistic, para-linguistic, and non-
linguistic information. This categorization is mainly based on two conditions:
(1) whether the speech is intentionally spoken and (2) whether continuous
intensity changes are allowed. Linguistic information is the discrete and cate-
gorical content that is intentionally spoken (which can be represented using a
set of discrete symbols and grammatical rules). Contrarily, para-linguistic
as well as non-linguistic information can be either discrete or continuous.
Para-linguistic information and non-linguistic information are distinguish-
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able based on the first condition (para-linguistic information is intentionally
spoken; otherwise, it is categorized into non-linguistic information).

Although the categorization by Fujisaki has been widely accepted and
practically used, the boundaries between those three categories may not
always be definite and independent [38]. For example, there is a dispute in
defining emotion as para-linguistic information. A speaker can deliberately
express emotion in the spoken utterances (para-linguistic), but the emotional
state of a speaker is not controllable (non-linguistic) [132]. Subsequently, the
factors that influence each category of information in speech are entangled.
For instance, the vocabularies chosen as in the linguistic information may
infer not only the speaker’s emotion but also the speaker’s behavior.

Due to those reasons, speech signal processing tasks are complex. In earlier
studies, the spectrum analysis, such as the Fourier transform [12], is very
useful to analyze the frequency-dependent energy distribution of a waveform
(including speech signal). However, a speech signal has its own characteristics
that are not considered in the Fourier transform. The source-filter model
is then proposed to improve speech analysis and synthesis based on the
excitation and modulation mechanisms in the speech production system [36].
Speech signals are processed by imposing several assumptions based on the
process of the speech production system (also known as physical assumptions),
i.e., (i) speech is produced by a source-filter process, (ii) source is white noise
(unvoiced) or pulse train (voiced), and (iii) the vocal tract filter is an all-pole
filter (linear prediction) [68, 110] (see Fig. 2.2). This source-filter model has
been widely utilized in many works of speech signal processing.

In this study, a framework based on the source-filter model is proposed
to protect the content and privacy of speech signals simultaneously. As
aforementioned, we know that there is entanglement in the factors that
influence each category of information in speech. Accordingly, content and
speaker-related information in speech share common features or attributes.
We have to investigate these common features to modify the speech signals
effectively. If we carried out double modifications for content and privacy
protection, not only the speech quality will be drastically reduced, but also
each modification will affect the unwanted changes to other information.

The excitation and modulation decomposition in the source-filter model is
generally used in speech codecs standards, such as CELP codecs [8]. Conse-
quently, controlling the features related to this composition may cause better
robustness of the proposed method. We investigate the features in CELP
codecs that are related to both content and speaker traits.

In spite of the advantage of the source-filter model, the excitation and
modulation decomposition was reported to work better for low-level signals but
not directly associated with high-level information, such as speaker traits [110].
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Figure 3.1: General abstraction of proposed framework for content and privacy
protection in speech communication.

Hence, we also investigate the current state-of-the-art speaker individuality
feature, namely x-vector speaker embedding [107]. More detail explanation
about this feature can be found in Section 3.3.

Figure 3.1 shows the general abstraction of our proposed framework for
content and privacy protection in speech communication. The proposed
framework is mainly comprised of three components, i.e., speech analysis and
synthesis, feature extraction, and speech information hiding. We investigated
and utilized the existing typical analysis and synthesis methods for speech
signals. Subsequently, we conducted an analysis on the robust features used
in the analysis and synthesis methods for SIH. These features were then
extracted and manipulated for protecting content and privacy in speech which
is the main contribution of this thesis. A brief description of each component
is explained in the following sections.

3.2 Speech Analysis and Synthesis

One of the substantial components in any speech processing tasks are speech
analysis and synthesis method. Input speech has to be convertible into
the form that can be processed by a computer. Recently, we can classify
speech analysis and synthesis methods into two main groups, including the
conventional speech coder and neural vocoder (as shown in Fig. 3.2).
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(a) Conventional speech analysis and synthesis coder.

(b) Speech analysis and synthesis based on neural vocoder.

Figure 3.2: Typical Speech Analysis and Synthesis Methods.

The conventional speech coder can be found in various speech codecs stan-
dards, especially the one from the CELP family. As explained in Section 2.1,
the CELP speech codecs are based on mechanisms in a speech production
system with linear predictive coding (LPC). The generic idea is shown in
Fig. 3.2a. First, the input speech is processed using spectral analysis. In
spectral analysis, the spectral envelope and harmonic structure of the input
speech are observed. The spectral envelope is related to short-term correla-
tions, whereas the harmonic structure is related to long-term correlations. By
using a linear prediction (LP) analysis filter, we can observe the short-term
correlations. Consequently, filtering a speech signal with an LP filter renders a
residual signal. The speech coder represents this residual signal in a quantized
version (excitation parameters) which is used to synthesize the reconstructed
output speech. The error minimization optimizes the quantization noise in
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Figure 3.3: General model of the CELP codec [122].

the excitation signal.
When the pulse excitation in the conventional speech analysis and synthe-

sis coder is replaced with a codebook excitation, the coder is referred to as
CELP codecs [8]. CELP codecs are based on vector quantization techniques
[62]. There are many variants of CELP codecs depending on several parame-
ters, such as pre-processing techniques, long-term and short-term predictors,
weighting filter, and post filter. Figure 3.3 shows the general model of the
CELP encoder and decoder.

In the encoding process, the input speech is segmented into frames (typ-
ically around 20 ms to 30 ms long) and subframes (typically around 5 ms
to 7.5 ms long). Next, a short-term LP analysis is applied to obtain the LP
coefficients (LPCs). Subsequently, a long-term LP analysis is performed on
each subframe with the short-term prediction error as its input. Afterward,
the perceptual weighting filter, pitch synthesis filter, and/or modified formant
synthesis filter are utilized. The output from those filters is the excitation
signal (y(n)) which will be converted to a codebook based on a particular
codebook searching algorithm and parameter optimization. The CELP output
stream obtained from the encoding processes is mainly comprised of the index
of excitation codebook, LPCs, gain, and long-term LP parameters. The
decoder, on the other hand, decodes and unpacks the CELP output stream as
the resynthesized speech (ŝ(n)). An adaptive post-filter is utilized to enhance
the resynthesized signal quality.

Along with the development of machine learning research and the availabil-
ity of big data, speech synthesis techniques also transformed from parametric
synthesis (such as CELP codecs) to neural synthesis [103]. With the statis-
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tical approach, the succeeding parametric synthesis approaches utilize the
availability of recorded human voices as a function with a set of parameters
in the training process of the synthesizer. The parametric synthesis based
on a statistical approach is also known as statistical parametric speech syn-
thesis (SPSS). SPSS approaches are reported to have several advantages,
including unnecessarily storing audio samples, language in-dependency, and
voice characteristics flexibility. The vocoders that developed using statistical
parametric synthesis could be categorized into three groups [2]:

1. sinusoidal vocoders: the vocoders that are typically that synthesize
speech as “a sum of sinusoidal signals”, such as HMPD (harmonic model
+ phase distortion) [24] and HNM (harmonic + noice model) [33];

2. glottal vocoders: the vocoders that parameterize speech signal into the
glottal excitation and vocal tract, such as GlottHMM [95] and GSS
(glottal spectral separation) [16];

3. mixed excitation with a spectral envelope: the vocoders that combined
the spectral analysis with the reconstruction method of time-frequency
components of speech signal, such as STRAIGHT [57, 58] and WORLD
[79].

Although those SPSS approaches have improved significantly, the quality
of output synthesized speech is relatively not satisfying yet. Recent speech
synthesis approaches are based on deep learning methods, which are also
referred to as neural vocoders. The term neural vocoder originates from the
use of neural networks in the encoding and decoding processes of the vocoder.
WaveNet [119] is one of the examples of neural vocoder that has achieved
great attention due to its ability to generate new high-quality speech-like
waveforms. The core idea of WaveNet is based on an autoregressive model
which mathematically expresses the joint probability of the waveform equals
to a product of conditional probabilities of the previous time steps. The
autoregressive model in WaveNet was constructed using a fully convolutional
network with dilated convolutions. Subsequently, some other neural vocoders
were also proposed, including WaveGAN [30], neural source-filter (NSF) model
[127], etc.

This study investigated the analysis and synthesis model from both the
conventional approach and the one using neural networks to propose robust
methods for protecting speech content and privacy. As a study case for the
conventional approach, we utilized the conventional CELP codecs, which
were based on LPC (as shown in Fig. 3.3). Meanwhile, as a study case
for the analysis and synthesis based on neural networks, we utilized the
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Figure 3.4: Simplified block diagram of the i-vector extraction process.

neural vocoder, which is based on an NSF model (as shown in Fig. 2.7).
Consequently, the observed features for SIH are based on the corresponding
vocoder.

3.3 Feature Extraction for Secure Speech

Communication

In order to modify the speech signal in an effort to secure speech communi-
cation, we have to determine the important features or attributes of speech
that are related to content and speaker characteristics. Speech signal contains
a lot of information, and some are irrelevant to the task that we aimed to
accomplish [5]. Accordingly, feature extraction is required as the preceding
process in most speech processing tasks. This section explains the features
that we observed for protecting speech content and speaker individuality.

Human auditory perception can understand speech from different speakers
easily, but machine speech recognition struggles with this task [28, 121]. The
environment and voice properties changes affect so much in the performance
of machine speech recognition. Meanwhile, the reasons that human auditory
perception is so robust against these variations are still unclear [85, 121]. The
prior studies showed that the main hurdle is the difficulty in pulling apart the
analysis of formant frequencies that contains entangled information of speech
content (i.e., the type of speech sound) and speaker-related information (i.e.,
vocal tract parameters) [121].

This study addresses the analysis of features related to formant frequencies
in conventional speech codecs for robust content and privacy protection in
speech communication. In the standardized CELP codecs, a speech signal
is analyzed based on LPC 3.3. From the LPC analysis, the direct-form of
LPCs and the residual signal were obtained. LPCs are often derived into
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Figure 3.5: A deep neural network (DNN) with an embedding layer architec-
ture as an x-vector extractor [105].

line spectrum pairs (LSPs) or line spectral frequencies (LSFs) for robust
representation in the quantization of the excitation codebook. LSFs are
highly related to formant frequencies. Consequently, the modification of LSFs
is promising to simultaneously affects the content-related and speaker-related
information. We described the method for SIH based on LSFs modification
in Chapter 4, i.e., SIH by direct modification on LSFs quantization bits and
SIH by modifying the McAdams coefficient.

Furthermore, we also investigate the method for privacy protection based
on a particular neural vocoder, specifically the NSF model (as shown in Fig.
2.7). The feature extraction for this approach utilizes the state-of-the-art
speaker individuality feature in speaker recognition systems, namely x-vector
[107]. X-vector is derived from an identity vector (i-vector) modeling approach
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with speaker embedding. In the i-vector approach for speaker recognition [26],
a low-dimensional vector that is extracted using joint factor analysis (JFA)
represents a speech segment. This approach has been reported to reduce
high-dimensional sequential speech data to a lower-dimensional fixed-length
vector representation that contains more relevant information. In an earlier
study, the i-vector model was formed by stacking the mean vectors of the
speaker and channel/session subspaces using a Gaussian mixture model with
a universal background model (GMM-UBM) [25], as follows:

M = m+ V y +Dz + Ux (3.1)

where M is a supervector representing a speaker utterance and m is a speaker-
and session-independent supervector. V and D represent a speaker subspace,
i.e., the eigenvoice matrix and diagonal residual, respectively. Furthermore,
U defines the session subspace (eigenchannel matrix). The vectors x, y, and z
are the speaker- and session-dependent factors that are assumed to be random
variables with normal distributions. Figure 3.4 shows the simplified block
diagram of the i-vector extraction process.

In the former i-vector modeling approach, the assumption of a Gaussian
feature distribution was made; however, this is not always applicable in
practice. Thus, a DNN model was developed to address this issue [104].
Subsequently, to improve the robustness of the i-vector obtained with the
DNN model, the process of obtaining an i-vector from a DNN with embedding
layers was proposed by Snyder et al. [106, 105]. This i-vector is also known
as an x-vector [105]. The architecture of the x-vector extractor is shown
in Figure 3.5. We utilized the pretrained VoxCeleb [19, 80] x-vector model
provided by David Snyder that are available in the Kaldi toolkit [94, 105].
Chapter 5 shows our proposed method for protecting voice privacy by x-vector
modification.

3.4 Secure Speech Communication Based on

SIH

This study aims to propose a SIH framework that can simultaneously protect
speech content and voice privacy. The protection of speech content is ex-
pected to be achieved by speech watermarking. Speech watermarking aims to
protect the security in a speech signal by imperceptibly embedding within it a
particular message, such as a signature that indicates the speech’s ownership.
Meanwhile, voice privacy is preserved by using speaker anonymization meth-
ods. Such methods are ideally expected to suppress the leakage of personally
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identifiable information (PII) while maintaining the linguistic information of
the speech signal.

Table 3.1 show the general comparison of alternative solutions for securing
speech communication. Although some points may not be applicable to a
particular method, this table is expected to overview the common existing
solutions and how they differ from the proposed solution. The proposed
solution aims to simultaneously protect voice privacy and authenticate the
content for any possible user in a widely used digital speech communication
system.

Speech watermarking should fulfill at least three requirements: inaudibility
(not perceivable by the human auditory system), blindness (detection without
the availability of original signal), and robustness against common signal
processing operations. The trade-off between inaudibility and robustness
has been the most pressing issue in existing speech watermarking techniques
[49]. On the other hand, four requirements were determined for the speaker
anonymization technique in the Voice Privacy Challenge 2020 [112]: (1) the
output had to be a speech waveform, (2) it must maximize the suppression
of speaker individuality information, (3) it must preserve speech naturalness
and intelligibility, and (4) it must ensure the distinction of voices of different
speakers. To evaluate our proposed framework, we conducted the objective
evaluation tests based on the standardization in speech watermarking [51]
and speaker anonymization [112].
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Chapter 4

Content Protection Using
Information Hiding Approach

This chapter provides an explanation of content protection using the speech
information hiding approach. We propose the SIH method by modifying line
spectral frequencies (LSFs) that are mostly found in CELP-based speech
codecs. Subsequently, we improve the proposed method by machine learning
technique.

4.1 SIH Based on Line Spectral Frequencies

Modification

Line spectral frequencies (LSFs) are one of the parameters derived by linear
predictive coding that is commonly used in speech technology, including
information hiding. It provides strong robustness for information hiding in
dealing with speech coding algorithms compared with other typical methods
[123, 124, 125, 129]. For example, a direct modification of LSFs for a speech
watermarking method using dither modulation-quantization index modulation
(DM-QIM) was proposed in [123]. Unfortunately, this method is weak against
several signal processing operations. To improve the robustness, Wang et al.
proposed an LSFs modification-based speech watermarking technique based
on the concept of formant tuning [124, 125]. A linear prediction analysis
was conducted to estimate the formants of the speech signal in each frame.
Subsequently, the formant tuning was performed by controlling the formant
bandwidth with regard to the desired watermark bit.
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Figure 4.1: Example of the frequency response of a linear predictive filter
overlaid with the corresponding LSFs obtained from the tenth-order linear
predictive analysis of a 25-ms-long voiced speech segment.

4.1.1 LSFs Concept

Direct quantization of LPCs, a(i), is commonly not applicable in standardized
coding algorithms due to its sensitivity. A slight modification to LPCs can
cause a significant distortion in the speech since it raises loss to the filter
stability. In other words, directly altering the LPCs will most likely causes
the poles to be positioned outside the unit circle. Due to this reason, another
quantization method is preferable. In the CELP-based speech coding algo-
rithm, LSPs are generated due to their superior quantization characteristics
[109, 78].

As described in Eq. (2.4), the LSPs are typically a tenth-order polynomial.
This polynomial is computed using two auxiliary polynomials P (z) and Q(z),
which are given by:

P (z) = A(z) + z−11A(z−1) (4.1)

Q(z) = A(z)− z−11A(z−1) (4.2)

where P (z) is a symmetric polynomial, and Q(z) is an anti-symmetric poly-
nomial. P (z) and Q(z) consist of five complex conjugate pairs of zeros that
typically lie on the unit circle. These two polynomials can be regarded as an
interconnected tube representation of the vocal tract in a speech production
system [78]. The linear combination of these two polynomials represents the
actual resonance A(z), which is given by:

A(z) =
P (z) +Q(z)

2
(4.3)
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Table 4.1: LSF quantization matrix in FS-1016 CELP codec [76].

Quantization Index

L
S
F
In
d
ex

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 100 170 225 250 280 340 420 500 0 0 0 0 0 0 0 0
2 210 235 265 295 325 360 400 440 480 520 560 610 670 740 810 880
3 420 460 500 540 585 640 705 775 850 950 1050 1150 1250 1350 1450 1550
4 620 660 720 795 880 970 1080 1170 1270 1370 1470 1570 1670 1770 1870 1970
5 1000 1050 1130 1210 1285 1350 1430 1510 1590 1670 1750 1850 1950 2050 2150 2250
6 1470 1570 1690 1830 2000 2200 2400 2600 0 0 0 0 0 0 0 0
7 1800 1880 1960 2100 2300 2480 2700 2900 0 0 0 0 0 0 0 0
8 2225 2400 2525 2650 2800 2950 3150 3350 0 0 0 0 0 0 0 0
9 2760 2880 3000 3100 3200 3310 3430 3550 0 0 0 0 0 0 0 0
10 3190 3270 3350 3420 3490 3590 3710 3830 0 0 0 0 0 0 0 0

The roots of the two polynomials P (z) and Q(z) are referred to as LSFs,
which are associated with speech formants [78]. The relationship between
LSFs and the frequency response of a linear prediction filter is shown in Fig.
4.1. Speech formants are important aspects of speech perception. Due to
this fact, the importance level of formants is considered in the quantization
process in the coding algorithm [78]. For example, on the basis of the example
in Fig. 4.1, the LSF lines 5 and 6 may be related to the formant F2. However,
since the formant F2 is less important than formant F1 (represented by lines
3 and 4), the quantization representation in CELP codecs for the LSF lines 3
and 4 is more detailed than LSF lines 5 and 6.

4.1.2 LSFs Quantization in CELP Codec

We investigate one of the classical standard CELP codec, namely the Federal
Standard-1016 (FS-1016) codec, to observe the quantization process of LSFs.
In standardized CELP codecs, three to four bits are allocated as quantization
bits to represent each LSF extracted from Eqs. 4.1 and 4.2. The FS-1016
CELP codec is one of the first-generation CELP codecs that operate at
a bitrate of 4.8 kb/s. This standard configuration is based on gain-shape
vector quantization and is designed for 8-kHz sampled speech segmented into
30-ms intervals. We chose this algorithm because the core element of the
CELP codec (AbS linear prediction coding) is clearly represented, and thus,
adapting the current technique to other more advanced algorithms is possible.
Furthermore, the simplicity of the FS-1016 CELP quantization process is
derived from using perceptual criteria, and good interpolation properties
[17, 96]. These criteria are based on the special properties when the LSPs
A(z) is in the minimum phase condition. In the minimum phase condition,
the zeros lie on the unit circle, and the zeros of the two polynomials are
interlaced [109]. These properties are perceptually meaningful, which should
be preserved after quantization [108].
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The FS-1016 CELP quantization algorithm uses an independent, non-
uniform scalar quantization procedure. The quantization of LSFs is based
on the quantization matrix (as shown in Table. 4.1). There are 34 bits per
frame that represent the LSFs. Three bits are used for representing LSF 1
and LSFs 6 to 10. Four bits are allocated for representing (LSFs 2 to 5). The
quantization procedure may result in non-monotonicity, which leads to the
loss of the minimum phase condition (ill-conditioned case) [55]. Accordingly,
after the quantization process, an adjustment process is required to restore
the monotonicity.

4.1.3 SIH by Direct Modification on LSFs Quantization
Bits

On the basis of LSFs quantization in FS-1016, we proposed a speech infor-
mation hiding method by modifying the least significant LSF quantization
bit. In this subsection, we explain the LSF quantization bit modification,
embedding, and detection process in detail.

LSFs Quantization Bits Modification

Instead of direct quantization of LSFs, we follow the FS-1016 gain-shape
vector quantization to preserve the robustness of the information hiding
method for this specific speech codec. The adjustment process in the FS-1016
CELP codec, as mentioned in Subsection 4.1.2, applies a slight modification
to the LSB of the allocated bits for LSFs. Since the speech distortion caused
by this adjustment is minor, it is promising to obtain an inaudible speech
information hiding method by modifying the most insignificant bit of the
allocated LSF quantization index.

Figure 4.2 shows the impact in frequency response spectra changing caused
by the LSF modification on the basis of the FS-1016 CELP quantization
algorithm. From this figure, we can see that the frequency response spectra
are shifted when the quantization process is performed. Despite this shifting,
the impact is less significant because this quantization algorithm is based on
perceptual criteria properties (e.g., the higher formant is less meaningful in
perception). Moreover, this figure also shows that since the embedding is
based on the standardized CELP quantization method, the different spectra
between the quantized LSFs and modified LSFs are insignificant (potential
for inaudible modification).
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Figure 4.2: Frequency response spectra from actual LSFs (ori), quantized
LSFs (quant), and modification of least significant quantized LSFs (modif).
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Figure 4.3: Block diagram of proposed SIH based on direct modification on
LSFs quantization bits: (top) embedding process and (bottom) detection
process.
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Embedding

Figure 4.3 (top) shows the embedding process of our proposed method. There
are five main steps as follows:

1. The input speech s(n) is segmented into non-overlapping t-length-frames.
t denotes the time length in ms (which we will use as our independent
variable in Section 4.1.3).

2. A 10-th order linear prediction (LP) filter is used to analyze the framed
input signal to obtain the 10 LPCs a(i), where i = 1, 2, ..., 10.

3. The LPCs a(i) obtained from the previous step are converted to LSF
quantization bits on the basis of the FS-1016 CELP quantization mech-
anism by using the following substeps:

(a) generating the LSP polynomials P (z) and Q(z) on the basis of
Eqs. (4.1) and (4.2) with regard to the LPCs a(i);

(b) computing both zeros from symmetrical and anti-symmetrical
polynomials on the basis of Descartes’ rule to obtain the LSFs;

(c) quantizing the LSFs on the basis of the LSF quantization matrix
in Table. 4.1 to obtain the LSF quantization indexes;

(d) adjusting the LSF quantization indexes to preserve monotonicity
by checking and correcting the ill-conditioned cases;

(e) converting the adjusted LSF quantization indexes to a binary form
as LSF quantization bits.

4. The least significant LSF quantization bits are manipulated in accor-
dance with the watermark bit stream w. After the modification, the
dequantization process is performed to obtain the modified LSP coef-
ficients p′(i) and q′(i). Next, these coefficients are converted to LPCs
a′(i).

5. Finally, the watermarked speech s′(n) is obtained by using LP synthesis
in accordance with the modified LPCs a′(i).

Detection

Figure 4.3 (bottom) shows the detection process of our proposed method. It
begins with the first three steps of our proposed embedding process with the
watermarked signal s′(n) as the input. Subsequently, we extract the least
significant LSF quantization bit as the detected watermarks w′.
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Figure 4.4: Objective evaluation of our proposed method in each LSF quan-
tization bit by using BER, PESQ, and LSD in the original FS-1016 CELP
quantization algorithm configuration. The input signal is sampled at 8 kHz
and its frame segmentation length t is 30 ms.

Evaluation and Discussion

We evaluated our proposed method using several scenarios to check the fea-
sibility and robustness of our proposed method. First, we investigated our
method’s feasibility by using the designated configuration (input signals and
analysis parameters) of the FS-1016 CELP codec. Then, we utilized another
speech dataset with a different configuration to investigate our method’s
flexibility despite the various input and analysis parameters. We also investi-
gated the possibility of enhancing the robustness and payload of our method.
Finally, we compared our method with a typical speech information hiding
method, such as LSB and DSS [49], under normal and several signal processing
attacks conditions. We performed an objective evaluation to measure the
robustness and inaudibility of our proposed method. We calculated the bit
error rate (BER) in % for the robustness evaluation, and calculated the LSD
[42] and perceptual evaluation of speech quality (PESQ) [97] ITU-T P.862
for the inaudibility evaluation.

Basic Evaluation

The basic evaluation follows our first evaluation scenario. This evaluation
aims to check the feasibility of hiding information in the least significant LSF
quantization indexes using the FS-1016 CELP codec. As per the aforemen-
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Figure 4.5: Objective evaluation of our proposed method in each LSF quan-
tization bit by using BER, PESQ, and LSD in the adapted quantization
configuration. The input signal is sampled at 16 kHz and its frame segmenta-
tion length t is 25 ms.

tioned description of the FS-1016 CELP algorithm, an opensource dataset
(VoxForge) with ten selected English-spoken speech stimuli was used in the
first evaluation scenario. Each stimulus in this dataset is sampled at 8 kHz
with 16-bit quantization. The duration of each stimulus ranges between five
and ten seconds. The frame length parameter is 30 ms, which is the same
as that in the coding algorithm. Since a fixed frame length and one LSF
channel is used, the maximum available payload is only 33 bps. Due to this
limitation, we analyzed the performance of our proposed method in various
bitrates (4, 8, 16, and 32 bps).

Figure 4.4 shows the result of the basic evaluation. This figure confirmed
the feasibility of hiding information in the speech by the proposed method.
The adequate detection rate could be obtained despite the watermark position
in any LSF, except LSF 1. The modification of LSF 1 caused a significant
distortion to the watermarked signal. LSF 1 often represents the first formant
that is significantly meaningful for speech perception. Thus, changing this
parameter is not recommended for information hiding.

The inaudibility of our proposed method can be represented in Fig. 4.4 at
the second and the third columns. The perceptual quality of the watermarked
signal is good (PESQ score almost around four4, even in the at a high-bitrate).
Along with the perceptual quality, the sound distortion is also small enough
(LSD is less than 1 dB).
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Figure 4.6: Objective evaluation results of the proposed method in comparison
with several frame segmentation lengths (5, 10, 20, and 25 ms).

Robustness Evaluation

Unlike the input parameter in the FS-1016 CELP codec, we utilized the
ATR Japanese speech dataset (B set) [65], which is sampled at 16 kHz, to
investigate our proposed method’s robustness. Twelve stimuli were selected
from this dataset for our evaluation. Each signal in this dataset has an 8.1-sec
duration length. In this subsection, we aim to investigate whether our method
can work regardless of the different input and analysis parameters.

Figure 4.5 shows the objective evaluation results of our proposed method
with a 25-ms-long analysis-synthesis frame. Although there is a slight drop
in performance, the overall result in this scenario ties well with that shown
in Fig. 4.4. In most cases, the robustness and inaudibility when hiding in
each LSF are sufficient (BER around 10%, PESQ around 3, and LSD less
than 1 dB), except for LSFs 1, 2, and 10. Thus, LSFs 1, 2, and 10 are not
recommended as embedding mediums.

In summary, this result highlights that our proposed method is robust
enough to deal with different segmentation lengths and input signals sampled
at the different sampling frequencies. The compression in the quantization
process does not cause significant defects in the embedded watermarks. More-
over, due to the fact that the process in our proposed method is based on
AbS with the FS-1016 CELP codec, the robustness for this coding algorithm
can be assured.

Further Potential Improvement

One of the straightforward methods to improve the robustness and payload
of our proposed method is by using multiple embedding or reducing the
duration of the analysis-synthesis frame. In this subsection, we investigate
the ways to improve the robustness and payload considering the impact of
degradation in sound quality.

On the basis of the detection accuracy evaluation results in Figs. 4.4 and
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Table 4.2: Evaluation results for multiple embedding in three selected LSFs
(LSF 4, 6, and 7)

Variable
Evaluation
Score

bit rate (bps)
12 24 48 96 120

Payload
BER % 8.54 8.59 8.7 8.56 8.54
PESQ (MOS) 3.81 3.39 3.00 2.57 2.42
LSD (dB) 0.08 0.16 0.33 0.59 0.61

4 8 16 32 40

Robustness
BER (%) 3.73 3.73 3.36 3.31 3.73
PESQ (MOS) 3.80 3.39 2.99 2.58 2.39
LSD (dB) 0.08 0.16 0.32 0.58 0.60
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Figure 4.7: Objective evaluation result of comparative methods under normal
conditions based on detection accuracy (BER) and inaudibility (PESQ and
LSD).

4.5, we selected the three most robust least significant LSF quantization bits
(LSFs 4, 6, and 7). We checked the improvement of payload and robustness
performance of multiple bit embedding in consideration of the sound quality
degradation impact. The evaluation for payload improvement was conducted
by inserting three different watermark binaries into the selected LSFs. Thus,
the payload could be improved threefold. Another evaluation for robustness
improvement followed the repetitive coding concept. A watermark bit is
duplicated into three watermarks, which were then embedded into the selected
LSFs. The detected watermark bit was determined by calculating the mean
value of those three watermarks and classifying them into binary 0 or 1 with
a threshold of 0.5.

Table 4.2 shows the evaluation results for multiple embedding. The
results suggest that multiple embedding could improve both the payload and
robustness of the proposed method with an almost similar sound quality with
single embedding. By embedding three different watermark bits into three
LSFs, the detection accuracy is also similar to that of single embedding (BER
is less than 10%). This result shows that we can also attempt to embed

56



0

10

20

30

40

50

B
E

R
 (

%
)

(a) FS-1016 CELP

0

10

20

30

40

50

B
E

R
 (

%
)

(b) AWGN

0

10

20

30

40

50

B
E

R
 (

%
)

(c) Resampling 12 kHz

0

10

20

30

40

50

B
E

R
 (

%
)

(d) Resampling 24 kHz

0

10

20

30

40

50

B
E

R
 (

%
)

(e) Requantization 8 bit

0

10

20

30

40

50

B
E

R
 (

%
)

(f) Requantization 24 bit

LSB

DSS

Proposed

4 8 16 32

Bit rate (bps)

0

10

20

30

40

50

B
E

R
 (

%
)

(g) G.711 Codec

4 8 16 32

Bit rate (bps)

0

10

20

30

40

50

B
E

R
 (

%
)

(h) G.726 Codec

Figure 4.8: Comparative robustness evaluation of our proposed method (single
embedding), LSB, and DSS against signal processing attacks: (a) FS-1016
CELP codec, (b) Gaussian noise addition (AWGN), (c) down-sampling to 12
kHz, (d) up-sampling to 24 kHz, (e) requantization to 8 bit, (f) requantization
to 24 bit, (g) G.711 codec, and (h) G.726 codec.
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Table 4.3: Optimization result using a combination of multiple embedding
and varying frame lengths.

Bit rate (bps) 50 100 200 400 800 1600

BER(%) 4.033 5.144 6.626 10.761 11.461 18.816
LSD 0.144 0.292 0.313 0.636 0.901 1.065
PESQ 3.499 3.042 2.996 2.479 2.065 1.833

the watermark stream into other LSF quantization bits (LSF 3 5 8, and 9)
as a further prospective improvement. Moreover, the evaluation result of
multiple embedding also shows that we could use repetitive coding if our
system requires a higher detection accuracy (BER is less than 5%).

Improving the payload robustness is also likely to be achieved by reducing
the fixed frame segmentation length of t. Figure 4.6 shows the comparison
result of the objective evaluation using BER, PESQ, and LSD where the
frame segmentation varies from 5 to 25 ms. This result indicates that the high
detection accuracy could be achieved at a high bitrate, although the frame
segmentation length is short (BER is less than 10%). As for the inaudibility
evaluation result, our proposed method could satisfy the threshold of the LSD
score even at a higher bitrate. In contrast, the result of the PESQ evaluation
shows the constraint in speech quality degradation at a higher bitrate.

Improving payload and detection accuracy could be achieved using either
multiple embedding or a shortened frame length (as shown in Table. 4.2 and
Fig. 4.6). On the basis of these results, we optimized the embedding capacity
by using both these methods. First, we improved the detection accuracy by
assigning weights to each LSF on the basis of the detection accuracy obtain in
the basic evaluation. Subsequently, on the basis of the weights, we performed
majority voting to determine a detected watermark. Finally, we preserved
the speech quality by not embedding to LSF 1 and 2, and optimizing the
repetitive embedded bits (minimizing the embedded bits but preserving the
accuracy) for a watermark.

Comparison with Typical Speech Information Hiding Methods

We performed a comparative evaluation between our proposed method
(single embedding in LSF 4) and two typical methods (LSB and DSS) with
the objective evaluation of robustness and inaudibility. The traditional LSB
method alters the most insignificant quantization bits of the speech signal
with watermarks to maintain the inaudibility of the distortion. In contrast,
the DSS method spreads the desired watermarks over the whole frequency
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band to ensure robustness. The comparative evaluation was conducted by
using the ATR dataset. The bitrate ranges from 4 to 32 bps.

Figure 4.7 shows the comparative evaluation result under the normal
condition (without considering any attacks). This result indicates that the
LSB method could achieve a high accuracy and inaudibility even at a high
bitrate. Contrarily, the DSS method caused a significant distortion to the
watermarked signal despite the high detection accuracy. Our proposed ap-
proach works in between the LSB and DSS methods. Although it could not
achieve perfect accuracy (BER is less than 10%), our proposed method could
achieve better inaudibility compared with the DSS method. In other words,
we could say that our proposed method is reliable (robust and inaudible) at
low bitrates (up to 16 bps for single embedding).

In the actual speech communication system, several signal processing
operations often invaded the transmitted speech. Figure 4.8 denotes the
robustness evaluation result of our comparative methods against several
signal processing operations. In most cases, the LSB method (black line) is
very fragile against any attacks, whereas the DSS method (blue line) is very
robust. Even though it is not as robust as the DSS method, our proposed
method (red line) could provide robustness against several operations. Figure
4.8(a) confirmed our hypothesis that our method is robust against the specific
FS-1016 CELP codec. Moreover, our proposed method is also robust against
noise addition (AWGN) (Fig. 4.8(b)), resampling (Fig. 4.8(c–d)), and
requantization to higher bits (Fig. 4.8(f)). The requantization to lower bits
(Fig. 4.8(e)) remains as a limitation robustness in our proposed method.
However, our proposed method is somewhat robust against other speech
codecs, e.g. G.711 and G.726 (Fig. 4.8(g–h)).

4.1.4 SIH by McAdams Coefficient Modification

Instead of direct modification on LSFs quantification bits, we also proposed a
novel SIH method based on LSFs modification by using McAdams coefficient.
McAdams coefficient is a parameter that controls the harmonic structure
of speech spectral information which is reported to have relationship with
speaker individuality information [77, 90, 112]. By modification of McAdams
coefficient, we hypothesized that our proposed method can simultaneously
protect both content and privacy of the speaker (as our goal of this study).

Embedding

Figure 4.9 shows the block diagram of our embedding process. The detail
embedding process is as follows:
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1. As the first step, we generated the anonymized signals from the original
signal (x(n)) using two different McAdams coefficients (α0 and α1). The
anonymization procedure follows the steps in Fig. 2.8.

2. Next, the original speech was segmented into speech frames with frame
length depending on the watermarking payload. Subsequently, the
speech frame was analyzed using linear predictive coding (LPC) with
an order of 20 (M = 20).

3. From LPC analysis, we obtained the linear prediction coefficients (LP
coefficients) and residuals. These LP coefficients (c(i)) were then used to
derive the pole positions. The derived poles were comprised of complex
poles (poles with non-zero-valued imaginary terms) and real poles
(poles with zero-valued imaginary terms). The shift of complex poles
position (ϕα) was resulting in the angle shifting to either clockwise or
counter-clockwise of the complex positions [90]. After the modification
of McAdams coefficients α, the modified complex poles and the real
poles were converted back to LP coefficients. The anonymized speech
frame was resynthesized from these LP coefficients and the original
residuals.

4. After obtaining the anonymized signals, we normalized them to be in
similar relative loudness (fixed a target peak level in decibel relative to
full scale (dBFS)) and range of frequency components (using a bandpass
filter (BPF)). The cut-off frequencies for the BPF were 125 Hz and 4
kHz.

5. Finally, we constructed the watermarked signal (y(n)) by frame-by-
frame concatenation of the anonymized signals obtained by bit inverse
according to watermarked bit-stream.

Detection

We found that the anonymized signals from different McAdams coefficients
carried different amounts of power spectrum, specifically in the lower frequency
components. Using a higher McAdams coefficient results in a higher power
spectrum in the lower frequency. On the basis of this characteristic, we
determined a power threshold for the blind detection process (shown in Fig.
4.10). The detection process was conducted by comparing the power spectrum
obtained by fast Fourier transform (FFT) of the watermarked signal (|Y (ω)|)
in a specific frequency range with the designated threshold θ. The detail
process of detection is as follows:
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Figure 4.9: Block diagram of embedding process. α0 and α1 are the McAdams
coefficients for representing binary bit “0” and “1”. a0(n) and a1(n) are the
output anonymized speech in time domain.

1. First, the watermarked signal y(n) was segmented into speech frames
with frame length depending on the watermarking payload.

2. Then, each watermarked speech frame was passed through a band-pass
filter with cut-off frequencies 125 Hz (lower) and 4 kHz (upper).

3. The filtered speech frame was then analyzed by FFT to derive the power
spectrum (|Y (ω)|). This power spectrum was compared to a threshold
(θ) to determine the detected bit information in each speech frame.
For example, if the |Y (ω)| is lower than θ, the detected bit from the
observed speech frame is assigned as ‘0’. On the other hand, if |Y (ω)|
is higher than θ, the detected bit is assigned as ‘1’.

Evaluation and Discussion

We used LibriSpeech [89] and VCTK [120] datasets (development and testing
sets) that were provided in VP2020. LibriSpeech is an English speech corpus
designed for automatic speech recognition (ASR) research sampled at 16 kHz
[89]. VCTK is an English speech corpus that contains 109 native speakers
with various accents and was designed for text-to-speech (TTS) research
sampled at 48 kHz. The development and training data of both datasets in
VP2020 consists of more than 20,000 utterances from almost 200 speakers.
The sampling rate of the speech data is set to 16 kHz. Similar to the secondary
baseline [90], we do not need any training data for our proposed method. The
McAdams coefficient used to represent bit “0” was 0.6 (α0 = 0.6) and bit “1”
(α1 = 0.8) was 0.8.
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Figure 4.10: Block diagram of blind detection process. “BPF” stands for the
band-pass filtering. “FFT” stands for fast Fourier transform. |Y (ω)| is the
power spectrum of the watermarked signal y(n) obtained by FFT. θ is the
power spectrum threshold for blind detection process. w′(k) is the detected
watermark bit of the k-th frame.

For speech watermarking, we also evaluated the speech quality and robust-
ness of our method with a total 100 randomly selected utterances from the
LibriSpeech and VCTK datasets. Since the original signal was not available,
we used MOSNet, the pretrained mean opinion score (MOS) predictor pro-
posed in [71]. MOSNet is an objective evaluation tool based on deep learning
approach for predicting human MOS ratings in a voice conversion system.
Subsequently, we evaluated the robustness of our propsed method as sug-
gested in [51] by calculating the bit error rate (BER) and balanced F1-score
during normal (no attack) operations along with several signal processing
operations, including noise addition, resampling, requantization, compression,
and speech codecs. We also examined the security level by calculating the
false acceptance rate (FAR) and false rejection rate (FRR). The maximum
acceptable BER threshold as the robustness indication is 10% [51]. We em-
bedded random binary streams with payloads of 2, 4, 8, 16, and 32 bps and
varied the detection threshold in the order of lower to higher payloads (0.15,
0.09, 0.05, 0.02, and 0.01, respectively). Due to the space limitation, the
results reported in this paper are mainly in mean value.

Table 4.4 shows the MOSNet results of original signal, anonymized signal
with McAdams coefficients α = 0.8, and the output signal of our proposed
method with various payloads. We can see that there was a speech quality
degradation (MOS degraded from 3.15 to 2.70) caused by the McAdams
coefficient-based anonymization method, while in contrast, the proposed
method could maintain a similar MOS even with a relatively high payload.

We carried out a robustness test by calculating the detection accuracy from
the output speech after several common signal processing operations. Figures
4.11 and 4.12 show the robustness test results. We examined nine cases: no
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Table 4.4: MOSNet evaluation results.

payload (bps) MOS

original - 3.15 ± 0.49

anonymized - 2.70 ± 0.18

2 2.73 ± 0.20
4 2.73 ± 0.21
8 2.70 ± 0.19
16 2.67 ± 0.18

proposed
method

32 2.60 ± 0.18
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Figure 4.11: Robustness test results in terms of BER (bit error rate) in nine
cases: (a) normal, (b) AWGN, (c) resample-8, (d) resample-24, (e) requant-8,
(f) requant-24, (g) mp3, (h) flv, and (i) G723.1.

attack (normal), addition of white Gaussian noise (AWGN), downsampling to
8 kHz (resample-8), upsampling to 24 kHz (resample-24), bit compression to 8
bits (requantize-8), bit extension to 24 bits (requantize-24), MP3 compression
(MP3), flash video format (flv), and G723.1 codec. For AWGN processing, the
signal to noise ratio used is 40 decibel (dB). Meanwhile, the bitrate range for
MP3 compression was from 220-260 kbps (kilo bits per second). The bitrate
of G723.1 codec was 5.3 kbps with algebraic code-excited linear prediction
(ACELP) algorithm. As we can see, our proposed method was robust against
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Figure 4.12: Robustness test results in nine cases: (a) normal, (b) AWGN, (c)
resample-8, (d) resample-24, (e) requant-8, (f) requant-24, (g) mp3, (h) flv,
and (i) G723.1. For metrics were used for the robusness evaluation, including
F1 (F1-score), FAR (false acceptance rate), and FRR (false rejection rate).

other operations (the BER was similar to the normal case), except for the
conversion to video codec (flv). The results here demonstrate that our method
is suitable for watermarking purposes, since the BER for 4 bps satisfied the
robustness criteria (BER < 10%). The results also suggest that the security
level indicated by the FAR, FRR, and F1-score is adequate for payloads up
to 4 bps.

4.2 Improving Robustness of SIH using Ma-

chine Learning

We previously proposed a watermarking framework for improving the secu-
rity of McAdams-coefficient-based speaker anonymization [75]. Two fixed
McAdams coefficients were used to represent the binary bit information for
speech watermarking. These values were chosen on the basis of the second
baseline speaker anonymization system in the Voice Privacy Challenge 2020
[112] and the optimal gap for stochastic McAdams-coefficient-based speaker
watermarking [90]. The further away the McAdams coefficient is from the
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original speech (α = 1), the greater level of anonymization (better perfor-
mance in reducing speaker verifiability metrics) [90]. However, this advantage
results in more speech distortion (degrades speech intelligibility and natural-
ness). Too much distortion is non-compensable for speech watermarking since
speech quality relates to one of the most important requirement in speech
watermarking, i.e., inaudibility. Our watermarking processes were conducted
in the manner similar to signal modulation. The watermark detection process
was based on the threshold of a certain parameter. The experimental results
indicated that our watermarking framework could be applied to improve the
security of speaker anonymization with a limitation of relatively low payload.

In contrast to the related studies on speaker anonymization [75, 90, 112],
we consider a McAdams coefficient closer to the original speech and a smaller
shift to maintain the inaudibility criteria on speech watermarking. A smaller
shift means that the McAdams coefficient for representing bit-0 (α0) is close to
that representing bit-1 (α1). We developed a random forest classifier to detect
embedded watermarks. We then investigated the optimal McAdams coefficient
that can balance inaudibility with the blind-detectability robustness.

4.2.1 McAdams coefficient manipulation

The manipulation of the McAdams coefficient follows the block diagram shown
in Fig. 2.8. The original signal in the time domain (x(n)) is first divided into
several overlap frames. Each speech frame is then passed through a linear
prediction (LP) analysis filter, which is an all-pole filter that mimics the
source-filter analysis model of a speech production system. In this study, we
used the LP order of 12 (M = 12).

The LP coefficients (c(i)) obtained from the LPC analysis are used to
derive the poles (ϕ). The derived poles can be categorized into complex and
real poles. Complex poles have non-zero imaginary values, whereas real poles
have a zero-valued imaginary term. The McAdams coefficient (α) corresponds
to the power of complex poles. The manipulation of alpha results in angle
shifting of complex pole positions (ϕα) either clockwise or counter-clockwise
depending on α and ϕ [90]. When α < 1, ϕα is in the counter-clockwise
direction when ϕ < 1 radian and in the clockwise direction when ϕ > 1
radian. The opposite direction applies when α > 1. We investigate McAdams
coefficient manipulation when α < 1 in this study. Figure 2.9 shows the poles
location and frequency-response envelopes obtained from original signal and
McAdams coefficient manipulation when α = {0.85, 0.9, 0.95}.

After shifting complex pole locations by manipulating the McAdams coeffi-
cient, both complex and real poles are converted to new LP coefficients (c′(i)).
These LP coefficients and the original residuals (e(n)) are resynthesized as
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modified speech frames. Finally, the modified speech frames are concatenated
using the overlap and add technique to generate the modified speech signal
(a(n)).

4.2.2 Data-embedding process

Figure 4.9 the block diagram of the data-embedding process. This embedding
process is based on signal modulation (similar to our previous study [75]).
Generally, we use two McAdams coefficients to represent binary information
(bit “0” and bit “1”). The watermarked bit-stream (w(k)) which is comprised
of binary information, is embedded in the following steps:

Step 1: The original signal (x(n)) is modified on the basis of the McAdams
coefficient manipulation process explained in Subsection 4.2.1. Two McAdams
coefficients are used in the embedding process to represent binary bit-“0” (α0)
and bit-“1” (α1). The gap between α0 and α1 can be regarded as the scaling
factor of watermarking. A larger gap creates a stronger watermark but
increases distortion. Next, a normalization method is applied based on the
ratio of the power spectral density of both modified signals to compensate for
the gap in spectral shift at frame transition. The results of this step are two
speech signals with new McAdams coefficients (a0(n) and a1(n)).

Step 2: The watermarked bit-stream (w(k)) is set in accordance with
the hidden information in a binary stream representation, e.g., w(k) =
{1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1}.

Step 3: The watermarked signal (y(n)) is determined by bit-inverse
switching between the modified signals (a0 and a1) and the watermarked
bit-stream (w(k)). For example, if the current bit is “1”, the current speech
frame is set to the speech frame derived using α1. We concatenate all the
speech frames obtained from this process to be y(n).

4.2.3 Data-detection process

As shown in Fig. 2.9, McAdams coefficient manipulation causes the shifting
in pole locations and frequency-response envelopes. We thus investigated the
statistical properties of these cues for the data-detection process. In contrast
to the common watermark detection methods that are based on a threshold or
fixed set of rules, a machine learning model was constructed to blindly detect
watermarks on the basis of those cues as features and is based on a random
forest algorithm [13] (as shown in Fig. 4.13). The random forest classifier
generates a number of decision tree classifiers on random sub-samples of the
training dataset to control overfitting and improve prediction accuracy.
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Figure 4.13: Random Forest classifier for data-detection. X is set of features,
y is classification label (“0” or “1”), n is number of trees.

Before deciding on a random forest algorithm for generating our data-
detection model, we carried out a preliminary experiment. We compared
three watermark detection methods: (1) using rule-based with thresholds on
power spectral density and pole location; (2) using a decision tree model;
(3) using a random forest model. The features for constructing the decision
tree and random forest models are power spectral density, pole locations, and
statistical features (minimum, maximum, mean, standard deviation, skewness,
and kurtosis) of the frequency-response envelope of the watermarked speech
frames (without any pre-processing). We evaluated these three methods
using a dataset consisting of 100 utterances randomly selected from the
LibriSpeech[89] and VCTK[120] corpora. These 100 utterances were selected
from one female speaker (LibriSpeech) and one male speaker (VCTK). We set
the watermarking payload to 4 bps, a fixed set of McAdams coefficients for
watermarking ({α0, α1} = {0.9, 1}), and a fixed frame size (20 ms) without a
sliding window. The average classification errors of methods using rule-based,
decision tree model, and random forest model in a 10-fold cross-validation
evaluation were 32.12%, 26.25%, and 16.42%, respectively. On the basis of
these results, we chose the random forest algorithm because it is the most
stable and robust against outliers than the others used in our preliminary
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experiment.
To improve our random forest classifier model for the blind-detection

process, we use a short-term analysis frame with a fixed length (default frame
size = 20 ms) with a sliding window. The features for constructing this
data-detection model are power spectral density, complex pole locations, and
statistical features of line spectral frequencies (LSFs) pairs on the frequency-
response envelope. The statistical features consist of mean, standard deviation,
skewness, and kurtosis. The statistical features of LSFs are used because they
are more relevant than the global statistical features of the frequency-response
envelope to represent the McAdams coefficient manipulation. Figure 4.14
the LSF positions on the frequency-response envelope of modified speech
signals when α = {1, 0.95, 0.9, 0.85}. We generate two modified speech signals
through McAdams coefficient modification (a0(n) and a1(n)) following the
process explained in Subsection 4.2.1 for the training process. The label
corresponds to the binary bit represented by the McAdams coefficient (“0”
or “1”).

Figure 4.15 shows the block diagram of the data-detection process. The
details of this process is as follows:

Step 1: The watermarked signal (y(n)) is passed through a pre-emphasis
filter. This filter is used to compensate for the average spectral shape that
emphasizes the higher frequency components. A finite impulse response (FIR)
filter is used as the pre-emphasis filter (P (z)), which is expressed as

P (z) = 1− 0.95z−1. (4.4)

Step 2: Since the constructed random forest classifier works on a short-
time frame basis, we used the sliding window technique to obtain more analysis
speech frames for optimizing the data-detection process. For example, if the
sampling frequency (Fs) is 16 kHz and default frame size is set to 20 ms, we
have almost double the number of speech frames when the shift length is set
to half the frame size. Figure 4.16 illustrates the data-detection process using
a sliding window.

Step 3: From each watermarked speech frame obtained from the sliding
window, we conduct feature extraction, i.e., complex pole positions, statistical
features of LSF pairs from the frequency-response envelope, and power spectral
density. The complex pole positions and statistical features of LSF pairs from
the frequency-response envelope are derived from LP analysis. The power
spectral density is obtained using the Fourier transform.

Step 4: Finally, our random forest classifier is used to generate the
detected watermarked bit-stream (w′(k)) on the basis of the majority voting
of the detected bit in all sliding window sub-frames in the corresponding
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Figure 4.14: LSF positions on frequency-response envelopes obtained from
various McAdams coefficients (α = {1, 0.95, 0.9, 0.85}).
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Figure 4.15: Block diagram of blind-detection process. w′(k) is the detected
watermark bit-stream of k-th frame.

Figure 4.16: Illustration of watermark detection using sliding window. Sam-
pling frequency (Fs) is 16 kHz, payload is 16 bps, and shift length was set to
half default short-time frame size (10 ms).

watermarked frame. The most common bit information shown in Fig. 4.16 in
five detected bits from the classification task of five sub-frames determine the
detected watermark bit of the first frame.

4.2.4 Experimental Setup

This section describes the dataset, random forest classifier for the data-
detection process and evaluation setting to analyze the performance of our
proposed method.
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Table 4.5: Statistics of dataset

Subset
Number of Speakers

Number of Utterances
Male Female Total

LibriSpeech (train) 4 4 8 225
LibriSpeech (test) 2 2 4 25
VCTK (train) 1 1 2 225
VCTK (test) 1 1 2 25

Total 8 8 8 500

Dataset

We semi-randomly selected 250 utterances from LibriSpeech [89], and 250 ut-
terances from VCTK [120]. Semi-randomly means that we selected utterances
from a particular number of speakers (with balance gender distribution). Lib-
riSpeech is sampled at 16 kHz and designed for automatic speech recognition
research, and VCTK is sampled at 48 kHz and designed for text-to-speech
research. We unified the sampling rate of both corpora to 16 kHz. The
selected utterances varied depending on the speaker and speech content.

Table 4.5 shows the distribution of the dataset. LibriSpeech has less
utterances but relatively long duration, and VCTK has more utterances
(almost 10 times that of LibriSpeech) but relatively shorter in duration. Due
to these differences, we used a different number of speakers from each corpus.
A total of 500 utterances were then split into 90% for the training set and
10% for the testing set. The training set was used for constructing the
random forest classifier for blind detection. The testing set was then used for
evaluating speech watermarking performance.

Evaluation setting

The testing set consisted of 50 utterances. The objective evaluation of our
proposed speech watermarking method was based on the information-hiding
criteria suggested in [51]. There were two main goals for this evaluation, i.e.,
(1) to investigate the trade-off between inaudibility and detection rate of our
method using various gaps between McAdams coefficients; and (2) investigate
the robustness of our method against various speech processing operations.

To reach the first goal, we considered five different McAdams coefficients
(α0 = {0.95,0.925,0.9,0.875,0.85}) as representations of bit-“0”, where we kept
α1 = 1 as representation of bit-“1”. These values were chosen to analyze the
optimal gap to balance the inaudibility and robustness requirements. We thus
constructed five random forest classifiers for blindly detecting the watermarks
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Figure 4.17: Classification errors of constructed random forest classi-
fiers using several McAdams coefficients for representing bit-“0” (α0 =
{0.95, 0.925, 0.9, 0.875, 0.85}). Maximum number of trees was set to 100.

with regards to the McAdams coefficient. The classification errors of all
random forest classifiers are shown in Fig. 4.17. The metrics for evaluating the
inaudibility requirement are log spectral distance (LSD) [42] and perceptual
evaluation of speech quality (PESQ) [97] ITU-T P.862 (see the description in
Tab. 2.1). LSD is used to measure the spectral distortion of watermarked
signal (y(n)) in comparison with the original signal (x(n)) in decibels (dB)
(as shown in Eq. 2.9).

For evaluating watermark detection accuracy and security level, we used
the bit error rate (BER), false acceptance rate (FAR), false rejection rate
(FRR), and F1-score. The threshold set for an acceptable BER is 10% [51].
In the evaluation, we defined the watermarked bit-stream (w(k)) as a random
binary stream with the length depending on the payload. We investigated the
payloads of 2, 4, 8, 16, and 32 bps. For robustness evaluation, we considered
eight cases of non-malicious signal processing operations, i.e., normal (no
attack), down-sampling to 12 kHz (resample-12), up-sampling to 24 kHz
(resample-24), bit compression to 8 bits (requant-8), bit extension to 24 bits
(requant-24), conversion to Ogg format (Ogg), conversion to MPEG-4 Part 14
or MP4 format (MP4), and conversion to G723.1 codec (G723). The bitrate
of G723.1 codec is 5.3 kbps with algebraic code-excited linear prediction
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Figure 4.18: Watermark detection accuracy results using several McAdams
coefficients for representing bit-“0” (α0 = {0.95, 0.925, 0.9, 0.875, 0.85}) in
terms of: (a) BER, (b) FAR, (c) FRR, and (d) F1-score.
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(ACELP) algorithm.
We also carried out a comparison analysis among our proposed method

using McAdams coefficients (α0, α1) = (0.9, 1.0) (Proposed) and two other
well-known speech watermarking methods, i.e., LSB and DSS. These two
methods were chosen because they can clearly represent the inaudibility
and robustness trade-off. LSB works by modifying the most insignificant
bits of the speech signal with watermarks, thus achieving high performance
in inaudibility requirements but very fragile against any signal processing
operation. In contrast, DSS works by spreading the watermarks over the
whole frequency band. Therefore, it is preferred due to its robustness, but it
causes significant distortion throughout the speech (lack of inaudibility). We
conducted the comparative analysis using payloads of 4, 8, 16, and 32 bps.

4.2.5 Results

Figure 4.18 shows the watermark detection accuracy and security level results
in terms of BER, FAR, FRR, and F1-score. Five McAdams coefficients
were used to represent bit-“0” (α0 = {0.95,0.925,0.9,0.875,0.85}),whereas the
McAdams coefficient for representing bit-“1” was set to 1 (α1 = 1). The
results indicate a similar tendency for all these metrics when using a larger
gap between α0 and α1, i.e., better detectability, except a slight anomaly in
FAR for payloads 16 and 32 bps. Considering the detectability threshold
(BER = 10%), only when α0 = 0.85, the embedding payload was up to 32
bps. With α0 = {0.875, 0.9}, the payload was 16 bps. For other observed α0

the payload was less than 16 bps. A similar error rate for FAR and FRR
was also found when we considered the observed payloads. When considering
the overall security level in F1-score with a threshold of 90%, the proposed
methods with α0 ≤ 0.9 reached a payload of 16 bps.

The results of the inaudibility test are shown in Fig. 4.19. On the basis
of the inaudibility threshold, the evaluation results indicate that with α0

≤ 0.9, both PESQ and LSD scores satisfied the requirement of up to 32
bps. The inaudibility requirement could be satisfied by watermarked signals
with α0 = 0.875 up to 16 bps and α0 = 0.85 up to 8 bps. We will thus
consider using α0 = 0.9 for further analysis of robustness. As a reference, we
provide demo speech outputs from our proposed method that can be accessed
publicly1.

The robustness results in eight cases are shown in Fig. 4.20. The water-
marked signal was generated with α0 = 0.9 and α1 = 1. By only considering
detectability and security level threshold, the results indicate that our pro-

1http://www.jaist.ac.jp/~s1920436/Entropy2021/demo/demo.html
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Figure 4.19: Sound-quality results using several McAdams coefficients for
representing bit-“0” (α0 = {0.95, 0.925, 0.9, 0.875, 0.85}) in terms of PESQ
(top) and LSD (bottom).

posed method had similar robustness with the normal case when dealing
with up-sampling (resample-24), bit extension (requant-24), Ogg, and MP4
processing operations. Robustness degraded when down-sampling (resample-
12), bit compression (requant-8), and G723.1 codec (G723) were applied.
For resample-12 and requant-8, we can say that our proposed method is
robust when the payload is 4 bps (BER < 10%). Unfortunately, our proposed
method is not robust when the G723.1 codec is applied (BER > 10%).

The results on the comparative analysis among our proposed method with
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Figure 4.20: Robustness results in terms of BER, FAR, FRR, and F1-score
in eight cases: normal, resample-12, resample-24, requant-8, requant-24, Ogg,
G723, and MP4. The McAdams coefficient for representing bit-“0” was 0.9
(α0 = 0.9).
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Figure 4.21: Evaluation of inaudibility results of three compared methods
(Proposed, LSB, and DSS).

(α0, α1) = (0.9, 1.0) (Proposed), LSB, and DSS are shown in Figs. 4.21 and
4.22. Figure 4.21 shows the inaudibility comparison results in terms of PESQ
and LSD. These results indicate that LSB and our proposed method could
pass the threshold of inaudibility but not DSS.

Figure 4.22 shows the robustness comparison results in terms of BER. In
contrast to the inaudibility results, the robustness results indicate that LSB
was fragile in dealing with almost all observed signal processing operations,
except with the up-sampling to 24 kHz. However, DSS was very robust even
in a higher payload, except with the G723.1 speech codec. Although not as
robust as DSS, Our proposed method had better robustness against most of
the observed signal processing operations (down-sampling, re-quantization,
Ogg format, and MP4 format) than LSB.

To better represent the application of speech watermarking, we embedded
an image as a watermark to a speech signal. The watermark detection
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Figure 4.22: Robustness results of three compared methods (Proposed, LSB,
and DSS) in terms of BER in eight cases: normal, resample-12, resample-24,
requant-8, requant-24, Ogg, G723, and MP4.

results are shown in Fig. 4.23. The size of the image in the binary bit-stream
was 80 × 192. The watermarked signal was generated using α0 = 0.9 and
α1 = 1 with 4-bps payload. Although not perfectly accurate, we could observe
the reflection of embedded image information even after certain operations,
including re-sampling, re-quantization, and conversion to Ogg and MP4
formats.
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(a) Original (b) Normal (c) Resample-12

(d) Resample-24 (e) G723 (f) Requant-8

(g) Requant-24 (h) Ogg (i) MP4

Figure 4.23: Application of embedding image information using proposed
method with 4-bps payload after several non-malicious signal processing
operations, i.e., (a) original watermark, (b) normal, (c) resample-12, (d)
resample-24, (e) G723, (f) requant-8, (g) requant-24, (h) Ogg, and (i) MP4.
McAdams coefficients for representing bit-“0” and bit-“1” were 0.9 and 1,
respectively ((α0, α1) = (0.9, 1.0)).
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Chapter 5

Voice Privacy Protection Based
on Speaker Anonymization

Speaker anonymization (also known as de-identification) is a method of
protecting voice privacy. It works by concealing the personally identifiable
information of uttered speech without degrading the linguistic information
[35]. Previously, voice transformation was utilized to suppress speaker identity
for anonymization purposes [53, 54]. Kaldi phone, a diphone-based syntactic
source speech, was transformed to attack the speaker identification system,
successfully fooling the Gaussian mixture model (GMM)-based speaker iden-
tification system [53]. Subsequently, de-identification of online speakers was
feasible with a voice transformation method that de-identifies speaker using
GMM mapping and harmonic-stochastic models [93]. Next, a voice transfor-
mation technique that uses a target’s natural speech instead of a synthetic
voice was developed to conceal speaker identity [1]. Cepstral frequency warp-
ing is another alternative approach implemented with an amplitude scaling
technique to transform speech and hide identity [72].

Recently, an anonymization method based on a neural source-filter (NSF)
model was proposed by Fang et al. [35]. This method separates the speaker
identity and the linguistic content from the input speech. An x-vector that
refers to the speaker identity was modified to hide personal information before
resynthesizing the speech data. In the Voice Privacy Challenge 2020 [112], this
method was introduced as the primary baseline system because the x-vector
could effectively encode speaker identity as a feature in a speaker verification
system [107]. Another baseline introduced in the Voice Privacy Challenge
2020 used the McAdams coefficient [77] to transform the spectral envelope
of speech signals to achieve speaker de-identification [90]. The objective
evaluation results showed the primary baseline based on the NSF model hid
speaker information better than the second baseline based on the McAdams
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coefficient [112], confirming that the x-vector is a practical feature to represent
speaker identity information.

In this study, we improve the primary baseline system by modifying the x-
vector singular value for speaker anonymization. Our preceding experimental
results in [74] showed that our method improves the anonymization rate and
is comparable with the baseline system. There is also room for improvement
that we intend to present in this study. First, we thoroughly analyze the
effectiveness of x-vector modification with singular value decomposition (SVD)
by considering various singular value thresholds. We predict that modifying
the significant elements represented in an x-vector singular value (SV) can
fulfill the speaker-to-speaker correspondence requirement in an anonymization
system. Second, despite using a regression model as in our prior work [74],
we construct a clustering model for selecting a set of x-vectors for generating
the pseudo-target x-vector. Third, we modify acoustic features such as
fundamental frequency (F0) and speech duration to improve our method.
The F0 and speech duration are strongly related to the perception of speaker
individuality [3, 27], so modifying these features should de-identify speaker
individuality. To evaluate the performance and effectiveness of our method,
we conduct an objective evaluation that follows the Voice Privacy Challenge
2020 [112], and we propose a more reliable subjective evaluation for assessing
the privacy and utility-related metrics in a speaker anonymization system.

5.1 Speaker Anonymization Based on X-

Vector Singular Value Modification

This section demonstrates our contributions based on the B1 system. Our
hypothesis is that modifying the F0 and the x-vector anonymization model by
using SVD could improve the verifiability performance of a speaker anonymiza-
tion system. We apply the modification to components 4 and 5 in Fig. 2.7.
Figure 5.1 shows the schematic diagram of our proposed method.

5.1.1 Pseudo-target Generation

In contrast to a voice conversion system, the speaker target is unknown in
an anonymization system, so a target anonymized speaker (pseudo-speaker)
must be determined. The x-vector of an input speaker in the B1 system was
modified as a speaker individuality feature using a selection algorithm on
a pool of x-vectors (as explained in Subsection 2.3.3) [112]. This selection
algorithm was utilized by randomly choosing 100 x-vectors from a set of 200

81



Figure 5.1: Schematic diagram of proposed speaker anonymization system.

x-vectors obtained from speakers who were the furthest distance from the
input speaker. The distance was determined using the PLDA.

As Fig. 5.2 (a) shows, the average x-vector from the randomly selected
subset from the furthest x-vectors set can cause the input speaker’s x-vector
to be given nearby. To reduce occurrences of this problem, we constructed
a gender-dependent clustering model based on k-means as the selection
algorithm for a set of the furthest x-vectors of the same-gender utterances.
K-means clustering is commonly used because of its simple implementation
and because it scales to large datasets and guarantees convergence [11]. The
pseudo x-vector was then determined using the mean of the set x-vectors.
Figure 5.2 (b) illustrates the selection algorithm of our method.

5.1.2 SVD-based X-vector Anonymization

For the x-vector anonymization technique, we applied one of the matrix
factorization concepts in linear algebra, namely, SVD [40]. SVD is widely used
for dimension reduction applications (e.g., data compression and denoising)
because it provides a more stable matrix decomposition than the other
methods [41, 99]. The SVD technique decomposes a given input matrix into
its constituent elements based on the polar decomposition. Mathematically,
the SVD is expressed by the following equation.

X = UΣVT, (5.1)

where U and V are the orthonormal eigenvectors of XXT and XTX, respec-
tively, and Σ consists of the square roots of the eigenvalues of XTX.
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Figure 5.2: Illustration of x-vector selection algorithm using: (a) random
selection and (b) clustering-based selection. Round blue markers indicate set
of x-vector candidates, round red markers indicate chosen x-vector candidates,
black star markers indicate given input x-vectors, and magenta star markers
indicate chosen pseudo-target x-vectors.
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Figure 5.3: Modification of x-vector SVs [74]. The xi,j refers to the element of
matrix X in row i and column j. Similarly, ui,j , Σi,j , and V T

i,j are the elements
of matrix U, Σ, and VT in row i and column j, respectively. The VT is the
transpose matrix of V. The s determines the number of singular values.

The x-vectors are extracted from a variety of utterances spoke by a speaker
which is not equivalent to each other. However, a PLDA classifier distinguishes
which speaker the x-vectors originated from [107]. Principal component
analysis shows that the distribution of a single speaker’s x-vectors are clearly
clustered close together (as shown in Fig. 5.4). Considering those preliminary
studies, x-vector anonymization by SVD could capture the eigenstructure
and result in a better representation of intra-speaker information. Thus,
modifying the SV of the x-vectors matrix could satisfy the speaker-to-speaker
correspondence requirement (the x-vectors of a given speaker should not be
similar to the other speakers).

Our SVD-based x-vector technique [74] is conducted in the following three
steps (shown in Fig. 5.5):

i. Pseudo-target x-vector matrix formation

After the pseudo-target x-vectors of a given speaker from all available
train utterances were chosen using the clustering model, we concatenated
those x-vectors into a matrix (X) that had an M ×N dimension, where
M is the total available utterances and N is the dimension of the
x-vector (512).

ii. SV decomposition and modification

The pseudo-target x-vector matrix was decomposed by SVD (as shown
in Eq. 5.1) into two singular matrices (U and V) and a diagonal singular
values matrix (Σ). In this approach, U could be interpreted as the
utterance-to-concept similarity matrix and V as the x-vector-to-concept
similarity matrix. Σ represents the strength of each concept involved.
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Figure 5.4: Principal components (PCs) of x-vectors from five speakers in
VCTK development dataset for enrollment in 3D space. Colors represent
speaker labels (e.g., round orange markers represent class of x-vectors of
speaker with ID label ”p234”).

The anonymization was conducted by controlling the dimension of Σ
using a threshold parameter (s) to obtain more general constituent
elements of the x-vector. Figure 5.3 shows the x-vector anonymization
by SV modification.

iii. Anonymized x-vector reconstruction

After the SV modification, we reconstructed the modified matrix using
U, V, and the modified Σ. The anonymized x-vector of the given
utterance was then extracted accordingly.

5.2 Development of Speaker Anonymization

by Modification of Speech Prosody

F0 contours and their dynamics are strongly related to speaker individuality
[3, 27] because F0 is an important physical factor that affects pitch perception.
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Figure 5.5: Schematic diagram of x-vector modification by SVD [74]. xi

and the x′
i are the i-th element of input x-vector and anonymized x-vector,

respectively

Furthermore, it accommodates the perception of several kinds of paralinguistic
and prosodic information [44, 47]. For instance, we could classify a speaker’s
gender solely by using the F0 as the feature because the F0 of female speech
is generally higher than that of male speech.

In this study, we modify the F0 using the mean F0 information of adult
female and male speakers from a previous study [114] by using WORLD
vocoder [79]. We classify the speech into a high F0 and a low F0 by comparing
the mean F0 of the input utterance and the mean F0 regarding gender.
Accordingly, we convert the low F0 into a high F0 by 1.5 times and vice
versa (as shown in Eq. 5.2). Factor 1.5 was chosen because our preliminary
experiment showed that it is the largest factor that outcome the possible F0

range [114] in the dataset.

f ′
0(n) =

{
1.5× f0(n), f0(n) ≤ F0

f0(n)/1.5, f0(n) > F0
, (5.2)

where m indicates the time frame, f0(n) and f ′
0(n) are the original F0 and

the modified F0 in the time domain, respectively. The f0(n) is the mean F0

value of original F0, whereas F0 is the mean female or male F0 value based
on [114].

In addition to F0 modification, we carry out speech duration modification.
Duration is a speech property relevant to expressing “stress” in speaking.
Consequently, the speaking rate varies from speaker to speaker [27]. Speaking
rates have been reported to significantly affect speaker verification system
performance [23]. In this study, we lengthen speech by increasing the frame du-
ration by 1.2 times because the mismatched speech tempo could be minimized
by this factor (minimizing the possible distortion caused by this modification)
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[23].

5.3 Experiments using SVD-based X-vector

Speaker Anonymization

The experiments were entirely based on the protocols and datasets provided
in the Voice Privacy Challenge 20201 [112]. In this Section, we provide
the specific description of our method, including the datasets we used, our
experiments, and our evaluation settings.

5.3.1 Datasets

We conducted our experiments using four publicly open-source corpora as
described in Section 4 of the Voice Privacy Challenge 2020’s evaluation
plan [112]: LibriSpeech (libri) [89], LibriTTS [133], the voice cloning toolkit
(VCTK) [120], and VoxCeleb-1,2 [19, 80]. Each corpus was split into training,
development, and testing data. Additionally, “common part” and “different
part” subsets of trial utterances were constructed specifically for the VCTK
dataset to evaluate speaker verifiability regardless of text-dependency. The
common part consisted of the utterances that were identical for all the
speakers, and the different part consisted of the distinct utterances for all the
speakers.

We utilized the available training subsets from LibriTTS (train-other-500
and train-clean-100) [133], comprised of approximately 1,400 speakers and
240,000 total utterances. Table 5.1 shows the statistics of these datasets. We
evaluated our method with both development and test data of libri [89] and
VCTK [120] in ASVeval and ASReval.

5.3.2 Experimental Setting

The experiments were conducted using the Kaldi toolkit [94] for the main
anonymization framework, WORLD for F0 modification [79], and the scikit-
learn software [92] for the k-means clustering model. First, we analyzed
the input signal using WORLD to obtain the F0, the aperiodicity, and the
spectral envelope. Subsequently, we modified the F0 based on Eq. 5.2 and
the frame duration before re-synthesizing the speech.

The output of the resynthesized speech was given input to the NSF-based
anonymization system. In the x-vector anonymization block (sub-element

1https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020
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Figure 5.6: Average ASVeval results from controlling SV threshold using
k-means clustering and modification of F0 and duration. Original speech
as “ori” denotes ASVeval results using both original enrollment and trials
(o-o). “B1” denotes results of ASVeval using primary baseline model [112].
“svd-09” and “svd-08” denote ASVeval results by x-vector SV modification
with thresholds (s) 0.9 and 0.8, respectively. “P1” denotes ASVeval results
obtained by x-vector SV modification with k-means clustering, whereas “P2”
denotes results with additional F0 and speech duration modification. Orange
bars represent results in pairs of original enrollment and anonymized trials
(o-a). Gray bars represent results in pairs of anonymized enrollment and
anonymized trials (a-a).
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Table 5.1: Training data for pool of x-vectors.

Subset Female Male Total #Utter

train-clean-100 123 124 247 33,236
train-other-500 560 600 1160 205,044

4 in Fig. 2.7), we utilized the pseudo-target generation and x-vector SV
modification as explained in Section 5.1. We conducted our method’s entire
process separately for each gender.

In pseudo-target generation, we chose the 200 furthest x-vectors using
PLDA and clustered those x-vectors into 50 groups by the k-means algorithm.
Finally, the pseudo x-vector of a given speaker was determined by the centroid
furthest from the corresponding x-vector. In these experiments, we also
analyzed the effect of controlling the SV threshold parameter. The threshold
values are 0.9 and 0.8.

5.3.3 Evaluation

We evaluated our method with both objective and subjective tests. The
evaluation was conducted based on a comparative study of the B1 method
and our method.

Objective Test

The general procedure of the objective test was based on the Voice Privacy
Challenge 2020 [112] and investigated three points. First, we investigated
how effectively we could control the SV threshold. Second, we investigated
how effectively we could select pseudo x-vectors using k-means clustering.
Third, we investigated how the anonymization system performs by modifying
the F0 and speech duration.

Figure 5.6 compares the average results of the corresponding development
and test datasets of the speaker verifiability assessment using ASVeval with
the B1 system with those of our method. These results were obtained by
averaging the EER results of development and test datasets. The subset of
the common part is not available in the LibriSpeech dataset; therefore, the
results in Fig. 5.6 were derived from all the results, excluding the subset of
the common part of the VCTK dataset. To determine the effectiveness of the
x-vector SV modification, we conducted the experiments without using the
random selection provided in the baseline (only the mean value of the 200
furthest x-vectors). The results shown in Fig. 5.6 indicate results comparable
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Table 5.2: Detailed ASVeval results using only x-vector SV modification with
0.95 threshold for LibriSpeech and 0.8 threshold for VCTK (SV Modif), our
P1 method, and our P2 method. “Gen” stands for gender (F: female and M:
male). “=” stands for the equivalent results to the left columns.

Anonymization SV Modif SV Modif + k-means (P1) SV Modif + k-means + F0 (P2)
Dataset Gen

Enroll Trial EER (%) Cmin
llr Cllr EER (%) Cmin

llr Cllr EER (%) Cmin
llr Cllr

ori 8.67 0.30 42.86 =
ori

51.99 1.00 147.21 50.57 0.998 145.131 55.82 1.00 156.61F
anon

anon
32.95 0.86 14.25 35.37 0.88 14.694 38.35 0.92 27.00

ori 1.24 0.03 14.25 =
ori

58.70 1.00 170.42 57.76 0.999 169.887 60.4 1.00 174.72

Libri
(dev)

M
anon

anon
28.88 0.78 18.43 34.01 0.861 24.696 34.32 0.87 29.11

ori 7.66 0.18 26.79 =
ori

48.72 1.00 151.98 48.36 0.996 152.426 55.29 1.00 153.69F
anon

anon
28.65 0.78 12.73 31.02 0.819 15.449 39.23 0.91 36.93

ori 1.11 0.04 15.30 =
ori

54.34 1.00 168.93 52.78 0.999 169.064 53.01 1.00 168.19

Libri
(test)

M
anon

anon
30.73 0.81 24.20 35.86 0.903 34.784 36.75 0.90 39.89

ori 2.62 0.09 0.87 =
ori

50.87 1.00 167.48 49.71 1.00 175.25 54.07 1.00 187.25F
anon

anon
24.42 0.70 7.12 26.16 0.71 6.66 24.71 0.72 21.19

ori 1.43 0.05 1.56 =
ori

57.26 1.00 191.60 55.27 1.00 194.49 56.13 1.00 207.22

VCTK
common
(dev)

M
anon

anon
25.93 0.71 18.20 32.76 0.84 23.69 26.21 0.72 23.89

ori 2.86 0.10 1.13 =
ori

50.14 0.99 165.94 51.04 0.99 168.53 54.86 1.00 188.41F
anon

anon
26.78 0.77 8.72 25.32 0.74 8.13 26.67 0.73 12.88

ori 1.44 0.05 1.16 =
ori

55.98 1.00 166.42 54.39 1.00 168.77 52.06 1.00 175.87

VCTK
diff
(dev)

M
anon

anon
25.31 0.74 18.28 29.73 0.82 22.89 25.46 0.74 17.49

ori 2.89 0.09 0.87 =
ori

50.00 1.00 156.09 50.00 1.00 156.09 56.36 1.00 178.95F
anon

anon
28.61 0.80 8.81 30.92 0.83 9.12 30.64 0.83 21.41

ori 1.13 0.04 1.04 =
ori

55.65 1.00 186.48 54.80 1.00 191.83 52.54 1.00 204.88

VCTK
common
(test)

M
anon

anon
20.34 0.62 9.79 30.51 0.82 20.60 25.42 0.72 23.73

ori 4.89 0.17 1.50 =
ori

49.64 1.00 142.88 48.77 1.00 148.15 54.78 1.00 161.07F
anon

anon
32.66 0.87 11.36 31.48 0.84 11.50 35.08 0.87 18.15

ori 2.07 0.07 1.82 =
ori

54.31 1.00 164.68 54.59 1.00 168.63 54.82 1.00 179.63

VCTK
diff
(test)

M
anon

anon
21.81 0.67 13.26 30.88 0.84 22.90 29.62 0.83 18.26
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Figure 5.7: ASReval results of ori, anonymized speech by B1, controlling
SV threshold (svd-09, svd-08), modifying x-vectors SV (s={0.8,0.95}) with
k-means clustering (P1), and modifying F0, speech duration, and x-vector SV
modification (s={0.8,0.95}) with k-means clustering (P2).

to the B1. By controlling the threshold, we could slightly improve speaker
verifiability.

The corresponding results of ASReval are provided in Fig. 5.7. The
ASReval performance with x-vector SV modification was slightly better than
the baseline, except for the LibriSpeech dataset with a 0.8 threshold (svd-08).
Although the ASVeval results from using svd-08 in the a-a case were improved
for the LibriSpeech dataset, the intelligibility in terms of ASReval degraded
significantly. We predict that this occurred because the LibriSpeech dataset
is a clean dataset. The dimension reduction modification on the SV could
distort the constituent elements of the x-vectors. To compensate for this
degradation, we used the 0.95 threshold parameter for the LibriSpeech dataset
and 0.8 for the VCTK dataset in the following experiments. In practical use,
when we have information about the characteristics of the dataset, we could
follow the threshold parameters of proposed methods (e.g., s=0.8 when the
dataset has high variabilities as the VCTK dataset). We suggest the value of
0.9 as the threshold parameter for a completely unknown dataset to maintain
a general anonymization performance based on x-vectors SV modification.

The two right bars in Fig. 5.6 show the comparative average ASVeval
results of our method using x-vector SV modification with k-means clustering
(P1) and additional F0 and speech duration modification (P2). Overall results
from this figure show no significant difference between the B1 method and the
P1 method. However, the additional F0 and speech duration modification in
the P2 method could effectively improve the performance of the anonymization
approximately 5% of the EER score in the o-a case and up to approximately
3% in the a-a case. The P2 method clearly yields better results than the B1
method, especially with the LibriSpeech dataset and the female utterances.
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In addition to the EER score, we calculated the log-likelihood-ratio cost
function for evaluating the speaker verifiability of the methods using x-vector
SV modification with 0.95 threshold for LibriSpeech and 0.8 threshold for
VCTK (SV Modif) only, SV Modif with k-means clustering (P1), and SV
Modif with k-means and F0 modification. The details of ASVeval are provided
in Table 5.2. The increasing trend in the EER and Cllr scores indicates
improvement in the privacy metric of a speaker anonymization system. In
terms of the utility metric, the ASReval results of the P1 and P2 systems
shown in Fig. 5.7 are almost similar to the B1 system.

Subjective Test

Compared with the B1 method, our P2 method showed distinguishable
results for the speaker verifiability assessment using ASVeval and slightly
inferior assessment results using ASReval. However, these results cannot
sufficiently determine the effectiveness of an anonymization system. For
instance, Table 5.2 shows that the P2 results are not always better than the
P1 results. Therefore, we propose a subjective test that considers human
hearing perception in the speaker anonymization system assessment.

In the initial state, we focused on the main purpose of an anonymization
system, which is to conceal as much personally identifiable information as
possible while maintaining the naturalness and intelligibility of the speech.
The attack model has not yet been considered in this test. Three metrics were
used for the subjective evaluation: speech intelligibility, speech naturalness,
and speaker dissimilarity. Since the listeners did not know the context of
the spoken utterances, we define “intelligible speech” as speech that contains
words that can clearly be heard in the corresponding language. In this
experiment, the words are in English. Meanwhile, “natural speech” is the
speech most closely perceived as a human voice.

We conducted our subjective evaluation with a listening test divided
into two main parts. The first part was measuring the intelligibility and
naturalness metrics. A 5-point scale was used for both intelligibility (1-
mostly unintelligible, 2-somewhat unintelligible, 3-cannot decide, 4-somewhat
intelligible, 5-mostly intelligible) and naturalness (1-mostly unnatural, 2-
somewhat unnatural, 3-cannot decide, 4-somewhat natural, 5-mostly natural).
The second part was measuring the verifiability metric. We provided paired
stimuli (original and anonymized utterances) and asked the participants to
determine whether the speakers of those two stimuli were the same. The
similarity metric was also a 5-point scale (1-completely similar, 2-mostly
similar, 3-somewhat similar, 4-mostly different, and 5-completely different).

Twenty-four participants (thirteen men and eleven women, aged 20–35)
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Figure 5.8: Overall subjective evaluation results in terms of intelligibility,
naturalness, and speaker dissimilarity.

were employed in our subjective test. Each participant had a normal hearing
ability and was a non-native speaker with a B2 English proficiency level. We
conducted a paired-comparison test (with the original utterance provided as
reference) to compensate for any bias from the participants as non-native
speakers.

The subjective evaluation compared three methods: B1, P1, and P2. Nine
stimuli containing both female and male utterances were randomly chosen
from both LibriSpeech and VCTK datasets to evaluate speech intelligibility
and naturalness (three stimuli from each method). The two stimuli used
to compare speaker dissimilarity consisted of 36 pairs (twelve of the same
stimuli from each method). These twelve pairs were randomly chosen from
the development and test data of the LibriSpeech and VCTK datasets. There
was an equal distribution of female and male utterances.

This test was conducted in a standard soundproof room equipped with a
computer, an audio interface (Roland OCTA-CAPTURE), and headphones
(SENNHEISER HDA 200) to avoid environmental bias. The sound pressure
level of the background noise in the room was lower than 28 dB. We also
randomized the order of the stimuli and normalized all the sound data of the
listening test at the same sound pressure level of −20 decibels relative to full
scale (dBFS) and sampled at 16 kHz. Before the experiment, we explained
the test to each participant and instructed them to ensure they understood
the test and the metrics. During the test, each stimulus was played only once
to prevent bias.

The overall results of our subjective evaluation are shown in Fig. 5.8. The
figure shows that the P1 method performed similarly to the B1 method with
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Figure 5.9: Subjective evaluation results of speaker dissimilarity in utterances
from (a) LibriSpeech dataset, (b) VCTK dataset, (c) female speakers, and
(d) male speakers.
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all the metrics, while the P2 method performed significantly better than the
B1 and P1 methods regarding dissimilarity. An apparent limitation of the P2
method is the slight reduction in the intelligibility and naturalness metrics. To
verify this result, we conducted a single-factor analysis of variance (ANOVA)
test using the mean of the total stimuli per method of the subject’s rating
score, i.e., the mean rating scores from three stimuli for the intelligibility &
naturalness and twelve stimuli for the speaker dissimilarity.

The results of the ANOVA test showed significant differences between the
three methods (B1, P1, and P2) in speech intelligibility (F (2, 69) = 3.90, p <
0.05), naturalness (F (2, 69) = 6.28, p < 0.01), and speaker dissimilarity
(F (2, 69) = 23.47, p < 0.01) between the three compared methods (B1, P1,
and P2). Subsequently, we conducted a post-hoc Tukey honestly significant
difference test to determine the differences between the two methods for
each metric. The results indicated that there is a statistically significant
difference between the B1 and the P2 (p < 0.05 for speech intelligibility,
p < 0.01 for naturalness, and p < 0.01 for speaker dissimilarity). Similarly,
the difference between the P1 and the P2 is also significant (p < 0.05 for
speaker intelligibility, p < 0.01 for naturalness, and p < 0.01 for speaker
dissimilarity). Meanwhile, there is no significant difference between the B1
and the P1 (p > 0.05 for speaker intelligibility, naturalness, and speaker
dissimilarity).

Figure 5.9 shows the speaker dissimilarity test distribution regarding
datasets and gender. The top two figures show the speaker dissimilarity
results of the three methods from the LibriSpeech dataset (left) and the
VCTK dataset (right). The bottom two figures show the speaker dissimilarity
results of the three methods from female utterances (left) and male utterances
(right). These figures are consistent with the overall results in Fig. 5.6 that
denote how the results of the P1 are relatively similar to the B1, whereas
speaker dissimilarity significantly improved using the P2 method.

A demo page of the output anonymized speech of this system is available
publicly as a reference2.

5.4 Comparison Analysis on Speaker

Anonymization Approaches

We proposed techniques to improve the primary baseline system introduced
in the Voice Privacy Challenge 2020. An ablation test was conducted to
determine the effectiveness of each method and its combinations. The de-

2http://www.jaist.ac.jp/˜s1920436/anon/demo.html
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Table 5.3: System description of related system anonymization methods.

System Description

B1 [112] primary baseline (x-vector anonymization)
B2 [112] secondary baseline (McAdams coefficient modification)

P1 proposed method 1 (B1 using SVD and k-means clustering)
P2 proposed method 2 (P1 + modification on F0 and speech duration)

O1 [115] B1 using cosine distances, GMM for sampling vectors in a PCA-reduced space
S2 [34] B1 using doman-adversarial training autoencoders

K2 [45]
anonymization using x-vectors and SS models, voice-indistinguishability metric,
Griffin-Lim algorithm based waveform vocoder

I1 [31] modification on formants, F0, and speaking rate

C1 [18] B1 + F0 modification

tailed results were excluded to condense the excess results obtained from our
experiments. Based on our experimental results shown in Subsection 5.3.3, in
this section, we discuss the effectiveness of each technique in our methods,
evaluation design & metrics for speaker anonymization, and we discuss the
limitations in the current methods and evaluation protocols.

Four key questions about our current study are the following:

1. How effective is modifying x-vector SV for speaker anonymiza-
tion with a k-means clustering model?

In this study, we conducted experiments using several SV thresholds
for anonymizing x-vectors. The average results are shown in Fig. 5.6
for speaker verifiability and in Fig. 5.7 for speech intelligibility. These
results suggest that anonymization by modifying x-vector SV could
achieve a performance comparable to the primary baseline. Speaker
verifiability slightly improved when the threshold of the SV was reduced
to 0.8, especially in the a-a scenario. Unfortunately, this improvement
significantly distorted speech intelligibility for the LibriSpeech dataset.

The trade-off between verifiability and intelligibility occurred from using
SVD. The SVD technique is used to capture the intra-speaker charac-
teristics. Consequently, the optimal SV threshold for the LibriSpeech
dataset is higher than for the VCTK dataset because the VCTK dataset
contains more variation (in accents, etc.) than the LibriSpeech dataset.
To control the trade-off between speaker verifiability and speech intelli-
gibility, we selected the best threshold for each dataset.

In our methods, we used the k-means clustering model to choose the
pseudo-target x-vector. This differs from our prior work [74] (labeled
as “A2” in Figs. 5.10 and 5.12) in which we constructed a regression
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Figure 5.10: Mean WER versus mean EER over all LibriSpeech and VCTK
datasets in (o-a) and (a-a) scenarios obtained from various systems proposed
in Voice Privacy Challenge 2020. Black dot refers to results obtained by
baseline system. Red dot refers to results obtained by our proposed system.
Blue dot refers to results obtained by other systems proposed in Voice Privacy
Challenge 2020. Table 5.3 describes each system.

Figure 5.11: Mean EER values over LibriSpeech (test set) in (o-a) and (a-a)
scenarios obtained by systems related to modifying speech prosody. Table 5.3
describes each method.
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Figure 5.12: Mean EER values over all LibriSpeech and VCTK datasets in (o-
a) and (a-a) scenarios obtained by systems related to x-vector anonymization.
Table 5.3 describes each method.

model that chose the pseudo-target x-vector. The contribution of this
clustering model is that it improves the speaker verifiability in the a-a
scenario without degrading the intelligibility achieved by our prior work
(compare A2 and P1 in Fig. 5.10).

2. How effective is modifying speech prosody, including the F0

and speech duration?

The evaluation results show the effectiveness of modifying the F0 and
speech duration for speaker anonymization. The objective evaluation
results of P1 and P2 (shown in Fig. 5.6) show a slightly better per-
formance of P2 in speaker verifiability, especially with the LibriSpeech
dataset and female utterances. Contrary to the results of ASVeval, P2
caused slightly reduced speech intelligibility. Additionally, the subjective
evaluation results of P1 and P2 showed more significant differences in
speaker verifiability. Unfortunately, P2 caused slightly more perceivable
distortion than P1 in terms of utility (intelligibility and naturalness).

To further investigate the effect of speech prosody modification, we
conducted comparative analysis of related speaker anonymization sys-
tems. Figure 5.11 shows the ASVeval results of five systems labeled
I1, C1, B1, A2, and P2 (detailed in Table 5.3). We could not obtain
full results for all the systems; therefore, the results shown are only
for LibriSpeech (test data). The results of I1 [31] in Figs. 5.11 and 5.12
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show that modifying formants, the F0, and the speaking rate alone
improves the anonymization performance (compared with the original
in Fig. 5.12). It supported the previous studies [3, 27] that described
the strong relationship between speaker individuality and the F0 &
speech duration. Unfortunately, modifying the speech prosody degraded
the intelligibility.

Combining the speech prosody modification with the main framework
in the primary baseline (systems C1, A2, and P2) improves speaker
anonymization. A study by Champion et al. [18] investigated the effect
of F0 modification in the primary baseline system across gender. Our
current work did not focus on cross-gender modification, so we only
compared their results obtained from same-gender modification labeled
C1. Although the C1 reduced the speaker verifiability performance
in the o-a scenario compared with B1, it significantly improved the
performance in the a-a scenario. The ASReval results showed a similar
tendency to other speech prosody modification systems in the slight
reduction in WER that occurred [18]. Due to incomplete results, the
mapping of WER and EER results across all datasets for the C1 could
not be included in Fig. 5.10.

In contrast to the C1, we carried out experiments using WORLD for the
F0 modification (systems A2 and P2). In A2 (our prior work [74]), we
used the estimated F0 obtained from the SWIPE algorithm in WORLD
in the primary baseline framework with SVD-based modification. Over-
all, the A2 performed slightly better than the B1 in the o-a scenario
but not as well in the a-a scenario. A more significant improvement
could be achieved by modifying the estimated F0 and speech duration
(method P2), especially in the o-a scenario (as shown in Fig. 5.11).
Despite improving privacy, we could see drawbacks similar to those that
occurred due to the speech prosody modification in Fig. 5.10.

In summary, all systems related to modifying speech prosody can sig-
nificantly improve privacy, but they also slightly degrade utility. In
addition, the P2 performed better in ASVeval for female utterances
than for male utterances. We predict that these results occur due to
the different F0 range between female and male speakers [114] and the
linear transformation utilized. An effective transformation of the F0

for anonymization is gender-dependent because female speakers have a
wider F0 range than male speakers.

3. How does the performance of the proposed method compare
with existing speaker anonymization systems?
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Figure 5.10 shows the scatter plot of the mean WER and mean EER
results of several existing systems in both scenarios (o-a and a-a). The
mean WER and mean EER were calculated by averaging the results
obtained from all the LibriSpeech and VCTK datasets (development
and test sets). In the Voice Privacy Challenge 2020 results, one criteria
for determining better privacy is a higher EER. Subsequently, better
utility is determined by having a lower WER. Although solely using
these two metrics might be considered an oversimplified evaluation, the
results in Fig. 5.10 gives insight into comparing the existing systems. For
example, one of the overall conclusions provided in the Voice Privacy
Challenge 2020 results indicated that the systems based on x-vector
anonymization (B1, P1, P2, O1, S2, and K2) could perform better than
the ones based on signal-processing methods (B2 and I1).

The overall results show that some systems (A2, P1, O1, and S2) have
nearly similar results as the primary baseline system (B1), especially in
the o-a scenario. Our prior work (A2) was less effective than B1 in the
a-a scenario. However, the results of other participants that also used
the primary baseline framework (O1 and S2) showed improved privacy
in the a-a scenario (mean EER increased around 5%), but the mean
EER reduced around 5% to 10% for the o-a scenario. Subsequently, our
P2 method, slightly improved in the o-a scenario but had a result similar
to B1 regarding privacy. Unfortunately, it increased the mean WER
by approximately 3.5% in comparison with B1. The B2, I1, and K2
systems not based on B1 were less effective than B1 in both privacy and
utility. Figure 5.12 compares ASVeval results of anonymization systems
that use x-vectors. Although there is a relatively slight degradation in
intelligibility, our P2 method achieved the highest mean EER in the o-a
scenario.

4. How reliable and significant is the subjective evaluation for
the speaker anonymization system?

There are limitations to the existing objective evaluation. One such
limitation is that speaker verifiability is evaluated using x-vector embed-
ding [107] in the ASVeval. Although this system performed the best in
terms of the EER for the VoxCeleb dataset, Hautamäki and Kinnunen’s
study [46] indicates that an x-vector embedding system that only uses
the Mel-spectrogram as its input is not robust with intra-speaker vari-
ations. Reportedly, this primarily results from the mismatch between
the F0 mean and the associated formant frequencies. Consequently, a
better objective evaluation for assessing the verifiability of a speaker
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anonymization system must be considered because it should distinguish
the uniqueness of anonymized speech for each speaker. Another lim-
itation is that it is quite difficult to decide which system is the most
effective in all cases regardless of the datasets and genders using only
the objective evaluation results (such as the results shown in Figs. 5.6
and 5.7).

Accordingly, we proposed a subjective evaluation that can more reliably
determine the effectiveness of different speaker anonymization systems.
This subjective evaluation differs from the one introduced in the Voice
Privacy Challenge 2020 [112]. Even though native speakers have a better
understanding of their mother language, we considered the difficulty
in gathering an adequate number of native speakers as suggested for
the challenge’s subjective evaluation. Collecting evaluation results via
the internet could be an alternative solution to deal with this problem;
however, there will be biases due to different environments, equipment,
etc. Furthermore, instead of using a 10-point scale opinion score, we
used a 5-point scale based on psychological studies that suggested higher
reliability regarding the response rate and quality [15, 32]. The 10-point
scale opinion score is too difficult and could increase the “frustration
level” even for a native speaker [15]. Furthermore, Eli P. Cox’s 1980
study on the optimal number of alternatives for a scale suggested that
an odd number of alternatives is preferable to enable a neutral response
[32].

To improve the reliability of our subjective evaluation, we anticipated
bias based on environment, equipment, understanding, and/or human
perceptual phenomena in the hearing system. We also compensated
for any potential misunderstandings from non-native speakers by using
pair-comparison even though we verified the participants’ English skills
(detailed in Subsection 5.3.3). We also conducted ANOVA tests to
analyze significant differences in the systems.

Figures 5.8 and 5.9 show our subjective evaluation results, comparing
B1 with our P1 and P2 systems. Unfortunately, the results obtained
using the P1 method are not significantly different from the results
obtained using the B1 method. However, combining all the techniques
proposed in this study (P2) could improve the speaker dissimilarity
significantly compared with the B1 method regardless of the dataset
and gender.
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Chapter 6

Evaluation and Discussion

This chapter provides an explanation of the extensive evaluation of the
proposed framework. We take a SIH method that utilized the McAdams coef-
ficient as a study case for evaluating both watermarking and anonymization
performance.

6.1 Evaluation

The evaluation is comprised of three sections, i.e., (1) assessment of the analysis
and synthesis process, (2) watermarking method in terms of inaudibility
and robustness, and (3) anonymization performance in terms of speaker
verifiability and speech intelligibility. The comparison analysis for each
evaluation is also conducted to compare the performance of our proposed
method and baseline systems. For instance, we analyze the performance of
speaker anonymization by comparing our proposed method with the primary
baseline anonymization system based on neural source-filter (NSF) model &
x-vector speaker embedding and secondary baseline anonymization system
based on McAdams coefficient.

6.1.1 Analysis and Synthesis Assessment

This assessment aims to investigate the reliability of the analysis and synthesis
methods utilized for SIH. Here, we assume that the hidden message (s(m)) is
an empty set. By investigating the analysis and synthesis methods, we expect
to infer the effectiveness of the SIH method regardless of the analysis and
synthesis methods.

We semi-randomly selected a total of 100 utterances from LibriSpeech
[89] and utterances from VCTK [120] (similar subset with the dataset for
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Figure 6.1: Analysis and Synthesis Assessment using SNR.

speech watermarking evaluation in [75]). Semi-randomly means that we
selected utterances from a particular number of speakers (with balance gender
distribution). LibriSpeech is sampled at 16 kHz and designed for automatic
speech recognition research, and VCTK is sampled at 48 kHz and designed
for text-to-speech research. We unified the sampling rate of both corpora
to 16 kHz. The selected utterances varied depending on the speaker and
speech content. For the assessment metrics, we used signal-to-noise ratio
(SNR), log-spectral density (LSD), and perceptual evaluation of speech quality
(PESQ).

The SNR is widely used to compare the noise level in comparison to the
signal for transmission. A higher SNR value indicates that the signal strength
is stronger than the noise levels. In SIH, noise is often referred to as the
subtraction of watermarked signal with the original signal. The SNR value
is expressed in dB. Although it is arguable to interpret the value of SNR
for speech quality assessment, the value greater than 40 dB is considered
excellent in several studies. Figure 6.1 shows the assessment results using
(SNR) metric. These results indicate that the output signal of the AbS
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Figure 6.2: Analysis and Synthesis Assessment using LSD.

method of our proposed method (AbSP) could achieve higher SNR than the
AbS method of baseline systems (AbSB1 and AbSB2). The mean SNR for
AbSP is approximately 45 dB, while the AbSB1 and AbSB2 are both less than
10 dB.

The LSD is often used to measure the log-spectral distortion in speech
coding. It has become one of the standards for measuring the performance of
quantization or interpolation. The threshold value for LSD to be considered
as good quality is less than 1 dB. Figure 6.2 shows the assessment results
using LSD metric. These results indicate that only AbSP could pass the
requirement of LSD (mean LSD value is approximately 0.05 dB). Meanwhile,
the analysis and synthesis method of both AbSB1 and AbSB2 caused high
spectral distortion with mean LSD values are around 1.45 dB and 2.35 dB,
respectively.

The PESQ is also one of the standards for automatic speech quality
assessment, which was originally addressed for a telephony system. The
PESQ represents the perceptual speech quality of y(n) with x(n) as the
reference in mean opinion scores (MOS). The MOS varies from a scale of 1
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Figure 6.3: Analysis and Synthesis Assessment using PESQ.

(bad) to 5 (excellent). Typically, the threshold of PESQ value is 3. Figure
6.3 shows the assessment results using PESQ metric. These results indicate
that the quality of output resynthesized speech using analysis and synthesis
method P is almost excellent (mean PESQ value is approximately 4.5). On
the other hand, the quality of output resynthesized signals of AbSB1 and
AbSB2 are not good (mean PESQ value is less than 3).

6.1.2 Watermarking Assessment

The watermarking assessment aims to investigate the reliability of our pro-
posed method in terms of watermarking requirements based on IHC [51].
Most of the evaluation setting follows the evaluation explained in Section 4.2.

We semi-randomly selected 250 utterances from LibriSpeech [89], and 250
utterances from VCTK [120]. We unified the sampling rate of both corpora to
16 kHz. The selected utterances varied depending on the speaker and speech
content. A total of 500 utterances were then split into 90% for the training
set and 10% for the testing set. The training set was used for constructing
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Figure 6.4: Watermarking detection accuracy evaluation in terms of: (a)
BER, (b) FAR, (c) FRR, and (d) F1-score.
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Figure 6.5: Sound-quality evaluation results in terms of PESQ (top) and LSD
(bottom).

the random forest classifier for blind detection. The testing set consisted of 50
utterances. The testing set was then used for evaluating speech watermarking
performance. The metrics for evaluating the inaudibility requirement are
log spectral distance (LSD) [42] and perceptual evaluation of speech quality
(PESQ) [97] ITU-T P.862.

For evaluating watermark detection accuracy and security level, we used
the bit error rate (BER), false acceptance rate (FAR), false rejection rate
(FRR), and F1-score. The threshold set for an acceptable BER is 10% [51].
In the evaluation, we defined the watermarked bit-stream (w(k)) as a random
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Figure 6.6: Robustness results in terms of BER, FAR, FRR, and F1-score in
eight cases: normal, resample-12, resample-24, requant-8, requant-24, Ogg,
G723, and MP4.
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Figure 6.7: Evaluation of inaudibility results of three compared methods
(P-0708, LSB, and DSS).

binary stream with the length depending on the payload. We investigated the
payloads of 2, 4, 8, 16, and 32 bps. For robustness evaluation, we considered
eight cases of non-malicious signal processing operations, i.e., normal (no
attack), down-sampling to 12 kHz (resample-12), up-sampling to 24 kHz
(resample-24), bit compression to 8 bits (requant-8), bit extension to 24 bits
(requant-24), conversion to Ogg format (Ogg), conversion to MPEG-4 Part 14
or MP4 format (MP4), and conversion to G723.1 codec (G723). The bitrate
of G723.1 codec is 5.3 kbps with algebraic code-excited linear prediction
(ACELP) algorithm.

We also carried out a comparison analysis among our proposed method
using McAdams coefficients (α0, α1) = {(0.6, 0.8), (0.7, 0.8)} (P-0608, P-0708)
and two other well-known speech watermarking methods, i.e., LSB and DSS.
We conducted the comparative analysis using payloads of 4, 8, 16, and 32
bps.
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Figure 6.8: Robustness results of three compared methods (P-0708, LSB,
and DSS) in terms of BER in eight cases: normal, resample-12, resample-24,
requant-8, requant-24, Ogg, G723, and MP4.

Figure 6.4 shows the watermark detection accuracy and security level
results in terms of BER, FAR, FRR, and F1-score. Considering the detectabil-
ity threshold (BER = 10%), the embedding payload for P-0608 was up to
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32 bps, where as for P-0708 was up to 16 bps. A similar error rate for FAR
and FRR was also found when we considered the observed payloads. When
considering the overall security level in F1-score with a threshold of 90%,
both of the proposed methods could pass the threshold level.

The results of the inaudibility test are shown in Fig. 6.5. On the basis of
the inaudibility threshold, the evaluation results indicate that both PESQ and
LSD scores for P-0708 satisfied the requirement of up to 32 bps. Meanwhile,
for P-0608, although the LSD score is acceptable even with embedding payload
32 bps, the PESQ score could be satisfied by embedding up to 8 bps watermark
signal. We will thus consider P-0708 for further analysis of robustness.

The robustness results in eight cases are shown in Fig. 6.6. The water-
marked signal was generated with α0 = 0.7 and α1 = 0.8. By only considering
detectability and security level threshold, the results indicate that our pro-
posed method had similar robustness with the normal case when dealing
with up-sampling (resample-24), bit extension (requant-24), Ogg, and MP4
processing operations. Robustness degraded when down-sampling (resample-
12), bit compression (requant-8), and G723.1 codec (G723) were applied.
For resample-12 and requant-8, we can say that our proposed method is
robust when the payload is 4 bps (BER < 10%). Unfortunately, our proposed
method is not robust when the G723.1 codec is applied (BER > 10%).

The results on the comparative analysis among our proposed method with
(α0, α1) = (0.7, 0.8) (P-0708), LSB, and DSS are shown in Figs. 6.7 and 6.8.
Figure 6.7 shows the inaudibility comparison results in terms of PESQ and
LSD. These results indicate that LSB and our proposed method could pass
the threshold of inaudibility but not DSS.

Figure 6.8 shows the robustness comparison results in terms of BER. In
contrast to the inaudibility results, the robustness results indicate that LSB
was fragile in dealing with almost all observed signal processing operations,
except with the up-sampling to 24 kHz. However, DSS was very robust even
in a higher payload, except with the G723.1 speech codec. Although not as
robust as DSS, Our proposed method had better robustness against most of
the observed signal processing operations (down-sampling, re-quantization,
Ogg format, and MP4 format) than LSB.

6.1.3 Speaker Anonymization Assessment

We evaluated the speaker verifiability of our proposed method by using a
pretrained automatic speaker verification system (ASVeval) and the intelligi-
bility by using a pretrained automatic speech recognition system (ASReval),
similar to the protocol in VP2020 (as explained in Section 2.3). Our intent
with this evaluation is mainly to investigate the effectiveness and reliability
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Figure 6.9: ASReval results of ori, anonymized speech by B2, proposed
methods with several McAdams coefficient pairs and embedding payloads.

of the proposed method in anonymizing the PII of the speaker individuality
information.

For the speaker anonymization, we conducted our evaluation using ASVeval
to check the speaker verifiability performance in three cases: original enrolls
and original trials case (o-o), original enrolls and anonymized trials case (o-a),
and anonymized enrolls and anonymized trials case (a-a). The metric used in
ASVeval is EER, where higher EER is regarded as higher anonymity.

Figure 6.10 compares the average results of the corresponding development
and test datasets of the speaker verifiability assessment using ASVeval with
the B1 system with those of our method. These results were obtained by
averaging the EER results of development and test datasets. These results
are categorized into female and male genders as the subset of the datasets,
i.e., (a) Libri female, (b) Libri male, (c) VCTK female, and (d) VCTK male.
The overall results show the same tendency that the proposed method with
McAdams coefficients pairs 0.6 and 0.8 could surpass the performance of the
B2 system. When the payload is set higher, the speaker verifiability also
improves (compare P-0608-4bps and P-0608-16bps). The results in Fig. 6.11
also show similar trend to Fig. 6.10.

The corresponding results of ASReval are provided in Fig. 6.9. The
ASReval results showed that the P-0808-4bps could slightly improve the
speech intelligibility than the B2 in terms of WER. Meanwhile, embedding
watermarks with McAdams coefficients pair 0.7 and 0.8 (P-0708-4bps) caused
slightly more distortion than the B2. Although the speaker verifiability in the
ASVeval surpassed the B2 system, embedding watermarks with McAdams
coefficients pair 0.6 and 0.8 (P-0608-4bps and P-0608-16bps) caused around

112



Figure 6.10: Average ASVeval results of ori, anonymized speech by B2,
proposed methods with several McAdams coefficient pairs and embedding
payloads. Orange bars represent results in pairs of original enrollment and
anonymized trials (o-a). Gray bars represent results in pairs of anonymized
enrollment and anonymized trials (a-a).
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Figure 6.11: Average ASVeval results based on dataset and gender of ori,
anonymized speech by B2, proposed methods with several McAdams coefficient
pairs and embedding payloads. Orange bars represent results in pairs of
original enrollment and anonymized trials (o-a). Gray bars represent results
in pairs of anonymized enrollment and anonymized trials (a-a).
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20% more WER than the B2 system, which apparently remains as the
limitation of this work.

In addition to the EER score, we calculated the log-likelihood-ratio cost
function for evaluating the speaker verifiability of the baseline systems (B1
and B2) and proposed methods with several McAdams coefficient pairs and
embedding payloads. As to compare the overall results of privacy metrics
versus utility metrics, Fig. 6.12, Fig. 6.13, Fig. 6.14, Fig. 6.15 show the
performance of several methods of speaker anonymization. The details of
ASVeval are provided in Appendix A. The increasing trend in the EER
and Cllr scores indicates improvement in the privacy metric of a speaker
anonymization system. In terms of the utility metric, the corresponding
ASReval results of compared methods are also available in Appendix A.

6.2 Discussion

In this chapter, we have conducted a thorough evaluation of our proposed
SIH framework for the purpose of watermarking and anonymization. We
took methods based on McAdams coefficient manipulation as our study case.
The evaluation was conducted into three main parts: analysis and synthesis
assessment, watermarking evaluation, and speaker anonymization evaluation.
The key information that we could draw from the evaluation results are as
follows:

1. The analysis and synthesis assessment results showed that the output
speech signals from our analysis and synthesis method have significantly
better quality than those from baseline systems. These results indicate
that the analysis and synthesis of baseline systems itself are causing
distortion and might cause a certain level of anonymity error.

2. The watermarking evaluation results showed that the proposed methods
with McAdams coefficients pairs (α0, α1) = {(0.6, 0.8), (0.7, 0.8)} (P-
0608, P-0708) are reliable (accomplished the requirements of SIH). The
embedding payload that satisfies both robustness and inaudibility is 8
bps and 16 bps for P-0608 and P-0708, respectively.

3. Finally, the speaker anonymization evaluation results showed that the
P-0608 method could improve the performance of speaker verifiability
of the B2 but not the speech intelligibility. Increasing the embedding
payload could also improve the speaker verifiability performance.

There are several limitations related to existing techniques and evaluations.
Per the summary in the Voice Privacy Challenge 2020, x-vector-anonymization
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Figure 6.12: Mean WER versus mean EER over all VCTK datasets in (a-a)
scenario obtained from various systems proposed in Voice Privacy Challenge
2020. Black dot refers to results obtained by the baseline system. Red dot
refers to results obtained by methods in [76]. Yellow and orange dots refer to
results obtained by proposed methods. Blue dot refers to results obtained
by other systems proposed in Voice Privacy Challenge 2020. The dots in
the green shaded area are methods based on a neural vocoder (mainly based
on the primary baseline framework). The dots in the pink shaded area are
methods based on the LP vocoder.
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Figure 6.13: Mean WER versus mean EER over LibriSpeech dataset
in (a-a) scenario obtained from various systems proposed in Voice Privacy
Challenge 2020. Black dot refers to results obtained by the baseline system.
Red dot refers to results obtained by methods in [76]. Yellow and orange
dots refer to results obtained by proposed methods. Blue dot refers to results
obtained by other systems proposed in Voice Privacy Challenge 2020. The
dots in the green shaded area are methods based on a neural vocoder (mainly
based on the primary baseline framework). The dots in the pink shaded area
are methods based on the LP vocoder.
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Figure 6.14: Mean WER versus mean EER over VCTK dataset in (o-a)
scenario obtained from various systems proposed in Voice Privacy Challenge
2020. Black dot refers to results obtained by the baseline system. Red dot
refers to results obtained by methods in [76]. Yellow and orange dots refer to
results obtained by proposed methods. Blue dot refers to results obtained
by other systems proposed in Voice Privacy Challenge 2020. The dots in
the green shaded area are methods based on a neural vocoder (mainly based
on the primary baseline framework). The dots in the pink shaded area are
methods based on the LP vocoder.
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Figure 6.15: Mean WER versus mean EER over all VCTK dataset in (a-a)
scenario obtained from various systems proposed in Voice Privacy Challenge
2020. Black dot refers to results obtained by the baseline system. Red dot
refers to results obtained by methods in [76]. Yellow and orange dots refer to
results obtained by proposed methods. Blue dot refers to results obtained
by other systems proposed in Voice Privacy Challenge 2020. The dots in
the green shaded area are methods based on a neural vocoder (mainly based
on the primary baseline framework). The dots in the pink shaded area are
methods based on the LP vocoder.
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methods could be more effective than signal-processing methods proposed by
other participants. However, we predicted a potential bias from the use of
x-vectors in the objective evaluation by the ASV system. Even if there is a
slightly better performance using any x-vector modification technique, the
output is greatly affected by the NSF model. We determined this through
our subjective evaluation, which showed very similar results between the B1
and the P1 (as shown in Chapter 5).

Regarding evaluation limitations, it could be argued that the current
evaluations remain insufficient for assessing a speaker anonymization sys-
tem. Although the metrics used in the current evaluations could give useful
information, there are many critical points that are not captured by those
metrics. Thus, it is quite difficult to conduct comparative studies solely using
those metrics because the results are inconsistent. For instance, the objective
evaluation results obtained by a system proposed in [45] are the opposite
of a subjective evaluation in terms of privacy metrics. Furthermore, the
difficulty in assessing the quality of a speaker anonymization system should be
considered. For example, the degradation of anonymized speech quality could
cause improve the EER despite the poor performance of the anonymization
task. Therefore, we attempted to provide a considerably more consistent
and reliable subjective evaluation. However, there are limitations, especially
regarding the attack models.
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Chapter 7

Conclusion

This chapter contains the summary and highlights of this research contribu-
tions. Finally, the remaining works and ideas for improving this research in
the future are also described.

7.1 Summary

This study addressed an information hiding approach to preserve both security
and privacy simultaneously in speech communication. We proposed a frame-
work to secure speech communication. The proposed framework integrates
the speech information hiding approach to secure the speaker anonymiza-
tion, which mainly consists of two main parts, i.e., encoder and decoder.
The encoder is mainly aimed to protect the speaker’s identity by using an
anonymization approach. In contrast to the other works, the anonymization
is conducted with a parameter that will be used to represent watermarks. The
result of anonymized speech should be able to conceal the sensitive personal
information in speech while maintaining the naturalness and intelligibility of
the speech. Meanwhile, the decoder is aimed to protect the authentication of
the speech by accurately detecting the embedded watermarks.

This study investigated the analysis and synthesis model from both the
conventional approach and the one using neural networks to propose robust
methods for protecting speech content and privacy. As a study case for the
conventional approach, we utilized the conventional CELP codecs based on
linear predictive coding (LPC). Meanwhile, as a study case for the analysis
and synthesis based on neural networks, we utilized the neural vocoder, which
is based on a neural source-filter (NSF) model.

The first proposed method utilized features related to formant frequencies
in conventional speech codecs. From the LPC analysis, the direct-form of linear
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predictor coefficients (LPCs) and the residual signal were obtained. LPCs are
often derived into line spectrum pairs (LSPs) or line spectral frequencies (LSFs)
for robust representation in the quantization of the excitation codebook. LSFs
are highly related to formant frequencies. Consequently, the modification of
LSFs is promising to simultaneously affects the content-related and speaker-
related information. We proposed SIH methods by direct modification on
LSFs quantization bits and by modifying the McAdams coefficient.

The second proposed method utilizes the state-of-the-art speaker individu-
ality feature in speaker recognition systems, namely, x-vector [107]. X-vector
is derived from an identity vector (i-vector) modeling approach with speaker
embedding. We modify the x-vector using singular vector decomposition
(SVD) to anonymize speaker identity. Besides, we also improve the proposed
method by modifying speech prosodies, such as fundamental frequency and
speech duration.

Finally, the proposed framework is evaluated to ensure reliability and
robustness by general datasets and protocols established in the Information
Hiding Criteria (IHC) [51] and the Voice Privacy Challenge 2020 [112]. In
these challenges, the full universal dataset from many speakers, various
sources, and recording environments were used to verify the performance of
the proposed framework.

7.2 Contributions

The main contribution of this study is to establish a framework for protecting
speech security and voice privacy in digital speech communication systems.
Privacy-preserving technology is required to protect the speech content and
personal profiles of the speaker. In this study, the framework for preserving
speech security and privacy using an information hiding approach has been
proposed. Besides, speech perception and production systems are considered
to solve the essential problems in existing methods, especially in promoting
naturalness and intelligibility. Besides, this study also contributes as an
alternative for detecting speech tampering and spoofing countermeasure.

7.3 Future Work

The SIH framework for protecting speech content and privacy in digital speech
communication has several rooms for improvement, as follows:

1. The proposed framework mainly applied to the conventional and neural
vocoders has shown a promising improvement in security and robustness
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compared to other existing methods. However, there is still a limitation,
especially when using a neural vocoder, that the results of anonymization
performance (as shown in Chapter 5) are not much different than the
baseline proposed in Voice Privacy Challenge 2020. This is mainly due
to the main scheme of NSF that is highly dependent on the pre-trained
models in each step. We would like to investigate speech analysis and
synthesis methods that better suit x-vector singular value modification
in future work.

2. Secondly, the method of speaker anonymization based on x-vector
singular value modification is possible to be improved by the SIH method
that is also based on singular value decomposition (SVD). SVD could
capture the eigenstructure and result in a better representation of intra-
speaker information. By controlling the less significant eigenstructure,
we could provide better protection to speech signals with additional
watermarks.

3. Besides features related to formant frequencies, we will investigate other
prominent features that are often utilized in speech codecs to improve
the performance of SIH and anonymization, including the robustness,
capacity, and intelligibility. Subsequently, we will develop a method
based on the proposed framework to deal with tampering and spoofing
countermeasure problems.

4. Furthermore, we plan to improve our evaluation methods, especially
the subjective evaluation, considering the attack models described in
the Voice Privacy Challenge 2020.
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Appendix A – Speaker
Anonymization Evaluation

A.1 – Primary Baseline (B1)

Table 1: ASV results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set EER, % Cmin
llr Cllr Enroll Trial Gen Test set EER, % Cmin

llr Cllr

1 libri dev 8.665 0.305 42.930 o o f libri test 7.664 0.184 26.799
2 libri dev 50.140 0.996 144.312 o a f libri test 47.260 0.995 151.803
3 libri dev 36.510 0.889 16.238 a a f libri test 31.390 0.832 16.157

4 libri dev 1.242 0.035 14.275 o o m libri test 1.114 0.041 15.342
5 libri dev 57.760 0.999 168.576 o a m libri test 52.560 0.999 166.873
6 libri dev 34.010 0.867 24.644 a a m libri test 35.410 0.898 33.938

7 vctk dev com 2.616 0.089 0.874 o o f vctk test com 2.890 0.092 0.858
8 vctk dev com 49.420 0.995 171.902 o a f vctk test com 47.980 0.994 161.972
9 vctk dev com 27.330 0.741 7.273 a a f vctk test com 31.790 0.840 9.291

10 vctk dev com 1.425 0.051 1.565 o o m vctk test com 1.130 0.035 1.029
11 vctk dev com 55.560 0.999 193.242 o a m vctk test com 52.820 1.000 190.361
12 vctk dev com 32.480 0.843 23.793 a a m vctk test com 31.640 0.833 21.642

13 vctk dev dif 2.920 0.102 1.152 o o f vctk test dif 4.990 0.170 1.501
14 vctk dev dif 50.140 0.988 165.941 o a f vctk test dif 48.510 0.998 146.746
15 vctk dev dif 26.450 0.760 8.480 a a f vctk test dif 32.250 0.849 11.377

16 vctk dev dif 1.439 0.052 1.164 o o m vctk test dif 2.067 0.071 1.819
17 vctk dev dif 53.950 1.000 167.862 o a m vctk test dif 53.730 1.000 167.741
18 vctk dev dif 31.360 0.843 24.112 a a m vctk test dif 31.230 0.842 23.781

Table 2: ASR results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set
WER, %

Data Test set
WER, %

LMs LMl LMs LMl

1 libri dev 5.25 3.82 o libri test 5.55 4.15
2 libri dev 8.82 6.37 a libri test 9.12 6.65

3 vctk dev 14.04 10.79 o vctk test 16.39 12.81
4 vctk dev 18.89 15.31 a vctk test 18.90 15.24
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A.2 – Secondary Baseline (B2)

Table 3: ASV results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set EER, % Cmin
llr Cllr Enroll Trial Gen Test set EER, % Cmin

llr Cllr

1 libri dev 8.665 0.305 42.930 o o f libri test 7.664 0.184 26.799
2 libri dev 8.665 0.305 42.930 o a f libri test 26.090 0.686 115.617
3 libri dev 32.670 0.840 108.906 a a f libri test 14.960 0.490 12.539

4 libri dev 1.242 0.035 14.275 o o m libri test 1.114 0.041 15.342
5 libri dev 18.010 0.527 105.706 o a m libri test 17.820 0.501 106.594
6 libri dev 10.560 0.359 11.920 a a m libri test 8.241 0.262 15.375

7 vctk dev com 2.616 0.089 0.874 o o f vctk test com 2.890 0.092 0.858
8 vctk dev com 34.010 0.880 85.953 o a f vctk test com 30.350 0.807 93.854
9 vctk dev com 11.630 0.367 43.531 a a f vctk test com 14.160 0.464 42.744

10 vctk dev com 1.425 0.051 1.565 o o m vctk test com 1.130 0.035 1.029
11 vctk dev com 23.930 0.671 90.882 o a m vctk test com 24.580 0.716 99.328
12 vctk dev com 10.540 0.319 24.985 a a m vctk test com 11.860 0.353 28.205

13 vctk dev dif 2.920 0.102 1.152 o o f vctk test dif 4.990 0.170 1.501
14 vctk dev dif 35.540 0.908 90.635 o a f vctk test dif 29.990 0.795 93.136
15 vctk dev dif 15.780 0.504 39.850 a a f vctk test dif 16.920 0.546 41.371

16 vctk dev dif 1.439 0.052 1.164 o o m vctk test dif 2.067 0.071 1.819
17 vctk dev dif 28.290 0.743 98.595 o a m vctk test dif 28.190 0.721 101.692
18 vctk dev dif 11.170 0.383 23.060 a a m vctk test dif 12.230 0.398 25.125

Table 4: ASR results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set
WER, %

Data Test set
WER, %

LMs LMl LMs LMl

1 libri dev 5.25 3.82 o libri test 5.55 4.15
2 libri dev 8.22 5.95 a libri test 11.75 8.93

3 vctk dev 14.04 10.79 o vctk test 16.39 12.81
4 vctk dev 30.06 25.52 a vctk test 33.26 28.17
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A.3 – Proposed Methods

A.3.1 P-0608 with 4-bps embedding payload

Table 5: ASV results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set EER, % Cmin
llr Cllr Enroll Trial Gen Test set EER, % Cmin

llr Cllr

1 libri dev 8.665 0.305 42.930 o o f libri test 7.664 0.184 26.799
2 libri dev 38.640 0.835 117.674 o a f libri test 26.090 0.663 110.969
3 libri dev 26.850 0.705 15.622 a a f libri test 18.250 0.534 14.741

4 libri dev 1.242 0.035 14.275 o o m libri test 1.114 0.041 15.342
5 libri dev 20.960 0.575 103.135 o a m libri test 18.930 0.517 103.554
6 libri dev 13.510 0.431 9.314 a a m libri test 13.140 0.412 13.054

7 vctk dev com 2.616 0.089 0.874 o o f vctk test com 2.890 0.092 0.858
8 vctk dev com 30.520 0.816 84.261 o a f vctk test com 29.190 0.802 88.586
9 vctk dev com 14.240 0.466 39.201 a a f vctk test com 18.500 0.562 36.712

10 vctk dev com 1.425 0.051 1.565 o o m vctk test com 1.130 0.035 1.029
11 vctk dev com 25.640 0.702 91.400 o a m vctk test com 24.010 0.691 90.957
12 vctk dev com 11.970 0.413 21.099 a a m vctk test com 10.450 0.374 21.652

13 vctk dev dif 2.920 0.102 1.152 o o f vctk test dif 4.990 0.170 1.501
14 vctk dev dif 32.400 0.855 90.458 o a f vctk test dif 26.340 0.753 81.154
15 vctk dev dif 21.170 0.646 26.852 a a f vctk test dif 22.530 0.680 27.273

16 vctk dev dif 1.439 0.052 1.164 o o m vctk test dif 2.067 0.071 1.819
17 vctk dev dif 27.590 0.754 95.502 o a m vctk test dif 24.860 0.713 89.943
18 vctk dev dif 17.220 0.534 14.107 a a m vctk test dif 15.440 0.501 13.896

Table 6: ASR results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set
WER, %

Data Test set
WER, %

LMs LMl LMs LMl

1 libri dev 5.25 3.82 o libri test 5.55 4.15
2 libri dev 31.49 26.47 a libri test 29.98 25.48

3 vctk dev 14.04 10.79 o vctk test 16.39 12.81
4 vctk dev 49.44 45.33 a vctk test 52.85 48.76

A.3.2 P-0708 with 4-bps embedding payload

Table 7: ASR results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set
WER, %

Data Test set
WER, %

LMs LMl LMs LMl

1 libri dev 15.92 11.95 a libri test 14.89 11.42
2 vctk dev 33.09 28.38 a vctk test 36.57 31.49
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Table 8: ASV results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set EER, % Cmin
llr Cllr Enroll Trial Gen Test set EER, % Cmin

llr Cllr

1 libri dev 8.665 0.305 42.930 o o f libri test 7.664 0.184 26.799
2 libri dev 32.670 0.778 107.673 o a f libri test 21.170 0.551 96.312
3 libri dev 25.140 0.649 9.507 a a f libri test 13.320 0.435 6.493

4 libri dev 1.242 0.035 14.275 o o m libri test 1.114 0.041 15.342
5 libri dev 11.490 0.363 83.463 o a m libri test 10.690 0.339 85.415
6 libri dev 8.696 0.304 3.065 a a m libri test 7.795 0.263 2.736

7 vctk dev com 2.616 0.089 0.874 o o f vctk test com 2.890 0.092 0.858
8 vctk dev com 25.870 0.724 62.693 o a f vctk test com 23.700 0.704 65.093
9 vctk dev com 9.593 0.333 24.118 a a f vctk test com 11.850 0.406 22.352

10 vctk dev com 1.425 0.051 1.565 o o m vctk test com 1.130 0.035 1.029
11 vctk dev com 18.520 0.546 67.914 o a m vctk test com 19.490 0.593 69.656
12 vctk dev com 7.407 0.274 8.183 a a m vctk test com 6.780 0.264 9.816

13 vctk dev dif 2.920 0.102 1.152 o o f vctk test dif 4.990 0.170 1.501
14 vctk dev dif 26.560 0.749 72.751 o a f vctk test dif 20.630 0.635 56.653
15 vctk dev dif 14.090 0.459 15.077 a a f vctk test dif 16.560 0.532 16.813

16 vctk dev dif 1.439 0.052 1.164 o o m vctk test dif 2.067 0.071 1.819
17 vctk dev dif 22.330 0.623 74.767 o a m vctk test dif 16.530 0.515 66.357
18 vctk dev dif 10.270 0.341 5.980 a a m vctk test dif 10.160 0.343 6.750

A.3.3 P-0808 (enhanced version of B2) with 4-bps em-
bedding payload

Table 9: ASV results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set EER, % Cmin
llr Cllr Enroll Trial Gen Test set EER, % Cmin

llr Cllr

1 libri dev 8.665 0.305 42.930 o o f libri test 7.664 0.184 26.799
2 libri dev 26.140 0.690 96.768 o a f libri test 15.330 0.441 81.382
3 libri dev 21.020 0.570 10.075 a a f libri test 12.410 0.385 5.936

4 libri dev 1.242 0.035 14.275 o o m libri test 1.114 0.041 15.342
5 libri dev 6.211 0.200 60.645 o a m libri test 4.454 0.164 64.308
6 libri dev 5.280 0.196 2.083 a a m libri test 3.786 0.124 0.932

7 vctk dev com 2.616 0.089 0.874 o o f vctk test com 2.890 0.092 0.858
8 vctk dev com 20.930 0.638 44.948 o a f vctk test com 17.920 0.532 44.433
9 vctk dev com 7.558 0.260 16.426 a a f vctk test com 7.803 0.281 14.287

10 vctk dev com 1.425 0.051 1.565 o o m vctk test com 1.130 0.035 1.029
11 vctk dev com 10.830 0.351 44.467 o a m vctk test com 15.250 0.463 48.008
12 vctk dev com 4.843 0.175 3.181 a a m vctk test com 4.237 0.169 3.270

13 vctk dev dif 2.920 0.102 1.152 o o f vctk test dif 4.990 0.170 1.501
14 vctk dev dif 18.420 0.584 55.530 o a f vctk test dif 16.100 0.520 32.814
15 vctk dev dif 9.882 0.326 9.350 a a f vctk test dif 12.190 0.399 11.307

16 vctk dev dif 1.439 0.052 1.164 o o m vctk test dif 2.067 0.071 1.819
17 vctk dev dif 15.580 0.465 52.854 o a m vctk test dif 10.510 0.350 42.699
18 vctk dev dif 6.203 0.213 2.727 a a m vctk test dif 6.487 0.223 2.794
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Table 10: ASR results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set
WER, %

Data Test set
WER, %

LMs LMl LMs LMl

1 libri dev 9.43 6.69 a libri test 9.48 7.00
2 vctk dev 24.67 20.42 a vctk test 27.58 22.95

A.3.4 P-0608 with 16-bps embedding payload

Table 11: ASV results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set EER, % Cmin
llr Cllr Enroll Trial Gen Test set EER, % Cmin

llr Cllr

1 libri dev 8.665 0.305 42.930 o o f libri test 7.664 0.184 26.799
2 libri dev 39.910 0.866 124.824 o a f libri test 28.280 0.740 118.686
3 libri dev 25.850 0.702 23.618 a a f libri test 19.160 0.571 25.027

4 libri dev 1.242 0.035 14.275 o o m libri test 1.114 0.041 15.342
5 libri dev 25.310 0.664 112.781 o a m libri test 20.270 0.577 111.402
6 libri dev 13.040 0.429 18.250 a a m libri test 14.920 0.438 23.244

7 vctk dev com 2.616 0.089 0.874 o o f vctk test com 2.890 0.092 0.858
8 vctk dev com 32.560 0.857 87.035 o a f vctk test com 29.480 0.801 91.132
9 vctk dev com 12.790 0.440 52.581 a a f vctk test com 18.790 0.579 48.899

10 vctk dev com 1.425 0.051 1.565 o o m vctk test com 1.130 0.035 1.029
11 vctk dev com 26.210 0.693 96.002 o a m vctk test com 25.990 0.718 94.127
12 vctk dev com 10.830 0.380 36.521 a a m vctk test com 10.730 0.366 34.889

13 vctk dev dif 2.920 0.102 1.152 o o f vctk test dif 4.990 0.170 1.501
14 vctk dev dif 34.190 0.893 93.492 o a f vctk test dif 26.800 0.773 86.021
15 vctk dev dif 20.550 0.616 38.573 a a f vctk test dif 21.760 0.647 39.856

16 vctk dev dif 1.439 0.052 1.164 o o m vctk test dif 2.067 0.071 1.819
17 vctk dev dif 28.680 0.762 98.909 o a m vctk test dif 27.320 0.753 91.545
18 vctk dev dif 17.420 0.546 25.231 a a m vctk test dif 14.290 0.470 24.479

Table 12: ASR results for both development and test partitions (o-original,
a-anonymized speech).

# Dev. set
WER, %

Data Test set
WER, %

LMs LMl LMs LMl

1 libri dev 35.09 29.98 a libri test 32.95 28.12
2 vctk dev 53.67 49.92 a vctk test 56.56 52.60
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