
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
蛋白質の折りとデザインに応を持つグラフ埋め込み問題の

計算複雑さ

Author(s) FENG, TIANFENG

Citation

Issue Date 2022-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/17791

Rights

Description Supervisor:上原　隆平



Doctoral Dissertation

Computational Complexity of Graph Embedding Problems
Inspired by Protein Folding and Design

Feng Tianfeng

Supervisor: Ryuhei Uehara

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Information Science

March, 2022



Abstract

Protein folding is a central problem in bioinformatics. The protein fold-
ing problem asks how a protein’s amino acid sequence dictates its three-
dimensional atomic structure. This problem has wide applications and a
long history dating back to the 1960s. From the viewpoint of theoretical
computer science, there is ongoing research aiming at revealing insights into
reality by working on simplified abstract models. A protein is modeled by
an abstract linkage in a lattice space, which has been proven to be an ex-
tremely useful tool for reasoning about the complexity of protein structure
prediction and design. Since protein functionality is controlled by the native
state structure, these models provide the ideas of theoretical investigations
for future use in studies on real proteins.

In this thesis, we aim to explore the computational tractability or in-
tractability of protein structure prediction and design using techniques from
computational complexity theory and algorithm design and analysis. In-
spired by the popular hydrophobic-polar (HP) model, we have developed
some new graph-theoretic models and problems that may be seen as varia-
tions or extensions of the standard HP one. We then studied the tractability
of these problems, by finding polynomial-time algorithms or by proving that
they are NP-hard. In our model, we combine the basic ideas of protein fold-
ing with the complementary problem of protein design, where the goal is
to synthesize a protein of a given shape (and function) from an amino acid
sequence. We modeled proteins and amino acid chains in two different set-
tings. In each setting, we studied structure prediction and design of proteins
by folding amino acid chains.

The first setting is protein folding prediction and design in grid graphs. It
is inspired by the famous hydrophobic-polar (HP) model for protein folding.
A protein in the HP model is represented as an abstract open chain, where
each link has a unit length and each joint is marked either hydrophobic or
polar. Grid graphs are graphs that form a regular tiling of the 2D plane or
3D space; these graphs are the standard setting for the traditional HP model.
Here a protein is a (connected) subgraph 𝐺 of the grid graph, possibly with
colors assigned to nodes. An amino acid chain is a path graph 𝑃 with colored
nodes. We thus propose the bicolored path embedding problem. A graph is
said bicolored if each vertex is assigned a label in the set {red, blue}. For
a given bicolored path 𝑃 and a given bicolored graph 𝐺, our problem asks
whether we can embed 𝑃 into 𝐺 in such a way as to match the colors of
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the vertices. In our model, 𝐺 represents a protein’s “blueprint,” and 𝑃 is an
amino acid sequence that has to be folded to form (part of) 𝐺.

In this setting, we first prove that the bicolored path embedding problem
is NP-complete even if 𝑃 is monochromatic (e.g., all its vertices have the same
color). Then we prove that the problem is NP-complete even if 𝐺 and 𝑃 are
bicolored and have the same number of vertices. The latter result is a fairly
technical reduction from the Hamiltonian path problem. The importance of
this result lies in the fact that, when 𝐺 has the same number of vertices as
𝑃, it represents an exact “blueprint” of the protein we want to obtain, as
opposed to just an “ambient space” for it.

Next, we contrast these hardness results with a polynomial-time algo-
rithm for the case where 𝐺 is a grid of fixed height: thus, the bicolored path
embedding problem, parameterized according to the height of 𝐺, is in 𝑋𝑃.
The technique we used is dynamic programming, and the significance of this
result is that it offers an efficient algorithm for a generic grid 𝐺, although the
algorithm’s performance deteriorates with the height of 𝐺 (but not as much
with its width).

We further showed that the classical problem of maximizing H-H contacts
is also NP-hard in the context of the bicolored path embedding problem.
Note that, in previous work, it has been established that the problem of
maximizing H-H contacts is NP-hard when 𝐺 is not given, and 𝑃 can be
embedded in any way on a grid.

In the second setting, we studied the protein folding prediction and design
in general graphs. These are graphs with either colored vertices or edges of
a given length. Here a protein is a graph: the idea is that a protein has a
“high-level” shape that can be represented by some graph 𝐺, even if at “low
level” the protein is just a chain. An amino acid chain is a path 𝑃, possibly
with colored nodes or fixed edge lengths. The prediction problem asks, for
a given amino acid chain, what graphs it can fold into (i.e., what graphs it
can be mapped onto), satisfying some local constraints. The design problem
asks, for a given graph (i.e., a protein), whether we can design an amino acid
chain that can be mapped onto it satisfying some local constraints.

In this setting, we first study graphs with colored vertices. We prove
that the bicolored path embedding problem is NP-complete even if 𝐺 is a
dense graph with the same number of vertices as 𝑃. Here, the previous
remark about 𝐺 being an exact “blueprint” of a protein holds, since it has
the same number of vertices as 𝑃. Additionally, the fact that 𝐺 is dense
(i.e., it has a quadratic number of edges) makes this result surprising for
another reason: intuitively, a blueprint with many edges should allow greater
leeway in the construction of an embedding of 𝑃. As it turns out, a greater
amount of freedom does not necessarily translate into our ability to easily
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find embeddings. We also prove a complementary result: the problem of
constructing a path 𝑃 that embeds in a given bicolored graph 𝐺 maximizing
H-H contacts is Poly-APX-hard. In particular, it has no polynomial-time
approximation algorithm with a sub-polynomial approximation ratio unless
P = NP.

We also considered a different model, where 𝐺 is a (non-colored) graph
with given edge lengths, and 𝑃 is a linkage (a path with edge lengths). Our
goal is to find an embedding of 𝑃 in 𝐺 that matches the lengths of edges. The
problem asks if there is an edge-weighted Eulerian path of target graph 𝐺
spanned by the linkage 𝑃. We showed that the problem is strongly NP-hard
even if edges have only two possible lengths. Together with the fact that the
problem is solvable in linear time if edge lengths are all the same, this result
gives a precise characterization of the problem’s tractability.

We tackled this intractability result by considering two different variants
of the problem. In the first variant, we allow the edges in 𝑃 to be elastic,
that is, we can stretch or shrink the edges in the elastic linkage 𝑃. The goal
is to minimize the elastic ratio of the embedding. Remarkably, we found that
when 𝐺 is a path, there is a polynomial-time algorithm based on dynamic
programming. In the second variant, we allow 𝑃 to cover an edge of 𝐺 twice
or more. We showed that the problem is NP-hard even if 𝐺 consists of a single
edge. Furthermore, with the requirement that each edge of 𝐺 is covered by
𝑃 exactly twice, we obtained three hardness results and one polynomial-time
algorithm when 𝐺 and edge lengths are restricted.

This research has applications that go beyond protein folding and design,
and has laid the foundations for interesting future developments, as well.

Keywords— protein folding problem, HP (hydrophobic-polar) model,
embedding problem, Hamiltonian path problem, edge-weighted Eulerian path
problem
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Chapter 1

Introduction and Background

In this chapter, we will introduce the background of the protein folding prob-
lem and the motivation for this research topic.

1.1 The HP-Model

The protein folding problem asks how a protein’s amino acid sequence dic-
tates its three-dimensional atomic structure. This problem has wide appli-
cations and a long history dating back to the 1960s [12]. From the viewpoint
of theoretical computer science, there is ongoing research aiming at revealing
insights into reality by working on simplified abstract models.

One of the most popular such models is the hydrophobic-polar (HP) model
[10, 11, 14, 20, 23, 26, 9, 17]. A protein in the HP model is represented as
an abstract open chain, where each link has unit length and each joint is
marked either H (hydrophobic, i.e., non-polar) or P (hydrophilic, i.e., polar).
A protein is usually envisioned as a path embedded in a grid within the 2D
or 3D lattice, where each joint in the chain maps to a point on the lattice,
and each link maps to a single edge. The HP model of energy specifies that
a chain desires to maximize the number of H-H contacts, which are pairs of
H nodes that are adjacent on the lattice but not adjacent along the chain.
The Figure 1.1 shows an example of counting the number of H-H contacts,
and the Figure 1.2 shows the structures of a given sequence in the HP-model.
The optimal folding problem in the HP model asks to find an embedding of a
sequence of Hs and Ps on the 2D square lattice that maximizes the number
of H-H contacts.

Previous results on the HP model mostly concern the 2D square lat-
tice, where commonly used techniques can be criticized for relying on the
properties of parity in the lattice. For example, [19, 24, 27] provide several
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Hydrophobic Polar h=# H-H contacts

h = 0 h = 4 h = 6

Figure 1.1: An example of counting the number of H-H contacts. Three
possible configurations of embedding an amino acid chain in 2D lattice are
given, the number of H-H contacts are 0, 4, and 6.

approximation algorithms, all of which bound the maximum number of H-H
contacts in terms of the number of odd-parity H nodes and the number of
even-parity H nodes in the chain. This is because two H nodes can be em-
bedded in adjacent nodes on the square lattice only if their distance along
the chain is odd, i.e., if they have opposite parity. Such observations make
sense in the discrete setting, but have no obvious meaning in the real protein
folding problem that the theory aims to model. Thus, parity-related argu-
ments should not be taken as the only reason as to why an amino acid chain
can or cannot fold in a certain way.

Solving the optimal folding problem in a square lattice is shown to be
NP-hard in [7]. Although the proof does not suffer from the aforementioned
parity-related issues, it constructs a hard-to-fold chain whose properties heav-
ily rely on Hadamard codes and Hamming distances. Again, appealing to
these inherently discrete concepts is a departure from the continuous nature
of real protein folding.

A final point of criticism to the traditional HP model is that the number
of H-H contacts is not the only possible measure that may be used to capture
the intricate physical and chemical laws that describe how a real protein folds.

In mathematics and theoretical computer science, there is a vast literature
on embeddings of paths and graphs. The general problem of embedding an
unlabeled path into a given graph is well-known to be NP-hard [7]. However,
the graph embedding problem is efficiently solvable in some special cases.
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Figure 1.2: Structures in the HP-model of the sequence “HPPHPH”. Struc-
tures with H-H contacts are circled. The structure with the largest number
of H-H contacts is circled in purple.

Notably, there is a linear-time algorithm for embedding graphs of constant
size into planar graphs [15]. Unfortunately, these results say nothing about
labeled graphs, which are the focus of the research on protein folding.

Restricting our attention to labeled graphs, there are substantially fewer
works. To the best of our knowledge, the literature in this field is limited to
exponential-time algorithms for the general embedding problem, e.g., [6, 22].

1.2 Our Approach and Motivation

Our critique of the standard HP model has inspired us to formulate the
bicolored path embedding problem, which, apart from being an interesting
graph embedding problem in its own right, may be seen as a new variant of
the protein folding problem within the HP model.

In our model, we combine the basic ideas of protein folding with the
complementary problem of protein design, where the goal is to synthesize a
protein of a given shape (and function) from an amino acid sequence. Thus,
we provide the “blueprint” of the folded shape of a protein, in the form of
an input (grid) graph 𝐺 with colors assigned to its vertices, and we ask if
a given colored path 𝑃 can be (injectively) embedded in 𝐺 in such a way
that vertex colors match. In other terms, we are effectively asking whether a
given amino acid sequence can fold into (part of) a protein with a prescribed
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structure. Since the HP model has nodes of only two types, we assume both
𝐺 and 𝑃 to be bicolored, say, with colors “red” and “blue.”

Furthermore, we consider a different model where the amino acid chain
is modeled as a simple linkage (i.e., a path with assigned edge lengths). Here
a protein is a graph with fixed edge lengths. For a given (non-colored) path
𝑃 and a (non-colored) graph 𝐺 with edge lengths, our goal is to find an
embedding of 𝑃 in 𝐺 that matches the lengths of edges.

The significance of our model is that it more accurately captures some
of the crucial and practical problems of protein folding. These problems
do not only concern the way a given amino acid chain folds spontaneously,
but also involve the design of proteins with desired attributes and shapes.
Additionally, in our analysis we strive to avoid any argument that seems too
closely related to the arbitrary choices we made when designing our model
(for example, none of our proofs relies on the fact that a grid is 2-vertex-
colorable, unlike some previous works [19, 24, 27]).

The underlying idea of our research is that, in biological processes, na-
ture “solves” some computational problems related to protein folding in a
seemingly efficient way. In order to explain these phenomena, the approach
of theoretical computer science is to formulate abstract models of proteins
and amino acid chains and study the computational complexity of protein
folding problems under these models.

1.3 Contents of Thesis

The thesis is organized as follows. In Chapter 2, we give a formal definition
of the bicolored path embedding problem and linkage simulation problem
inspired by the protein folding model.

In Chapter 3, we study the protein folding prediction and design in grid
graphs. In this setting, a protein is a (connected) subgraph 𝐺 of the grid
graph, possibly with colors assigned to nodes. An amino acid chain is a path
graph 𝑃 with colored nodes.

In Section 3.1, we prove that the path embedding problem is NP-complete
even if 𝑃 is monochromatic (e.g., all its vertices are blue), and then in Sec-
tion 3.2 we consider the case where 𝐺 is a rectangular grid, which is the
standard assumption in the HP model. We prove that the bicolored path
embedding problem is NP-complete even if 𝐺 and 𝑃 have the same order
(i.e., number of vertices). Next, we contrast this hardness result with a
polynomial-time algorithm for the case where 𝐺 is a grid of fixed height;
thus, our embedding problem, parameterized according to the height of 𝐺,
is in 𝑋𝑃. In Section 3.3, we show that maximizing red-red contacts in the
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bicolored path embedding problem (defined in the same way as H-H contacts
in the HP model) is also NP-hard, even if 𝐺 is a rectangular grid. We remark
that, in previous work, it has been established that the problem of maximiz-
ing H-H contacts is NP-hard when 𝐺 is not given, and 𝑃 can be embedded
in any way on a grid [7]. We also propose the bicolored synthesis problem.
It is a complementary problem of constructing a path 𝑃 that embeds in a
given bicolored graph 𝐺 maximizing red-red contacts, which is related to the
protein design.

In Chapter 4, we study the protein folding prediction and design in general
graphs. These are graphs with either colored vertices or edges of a given
length. In this setting, a protein is a graph, the idea is that a protein has a
”high-level” shape that can be represented by some graph 𝐺, even if at ”low
level” the protein is just a chain. An amino acid chain is a path P, possibly
with colored nodes or fixed edge lengths.

In Section 4.1, we first study graphs with colored vertices. We prove
that the bicolored path embedding problem is NP-complete even if 𝐺 is a
dense graph with the same number of vertices as 𝑃. In Section 4.2, we
prove that the bicolored synthesis problem is Poly-APX-hard. In particular,
it has no polynomial-time approximation algorithm with a sub-polynomial
approximation ratio, unless P = NP.

In Section 4.3, we also consider a different model, where 𝑃 and 𝐺 are
(non-colored) graphs with given edge lengths, and our goal is to find an
embedding of 𝑃 in 𝐺 that matches the lengths of edges. The first interesting
result is that this problem is strongly NP-hard even if edge lengths are quite
restricted (Theorem 7). We remind that if they consist of unit length edges,
the problem is linear-time solvable. We thus tackle this problem in two
different ways in Section 4.4 and 4.5.

In Section 4.4, we allow the edges in 𝑃 to be elastic. We consider a
linkage is elastic, that is, the length of one line segment is not fixed and can
be changed a little bit. This situation is natural not only in the context of
the linkage simulation but also in the approximation algorithm. Formally,
we allow the edges in 𝑃 to be elastic to fit the vertices of 𝑃 to ones of 𝐺.
Our goal is to minimize the stretch/shrink ratio of each edge of 𝑃. We show
that when 𝐺 is a path, this can be solved in polynomial time by dynamic
programming.

In Section 4.5, we allow 𝑃 to cover an edge of 𝐺 twice or more. In
this situation, we can simulate 𝐺 by 𝑃 even if 𝐺 does not have an Eulerian
path. We first show that the problem is weakly NP-hard even if 𝐺 is an edge
(Theorem 9). In fact, this problem is similar to the ruler folding problem (see,
e.g., [2, 13]). Furthermore, in Section 4.5.2, with the requirement that each
edge of 𝐺 is covered by 𝑃 exactly twice, we obtained three hardness results
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and one polynomial-time algorithm when 𝐺 and edge lengths are restricted.
Finally, in Chapter 5, we discuss the contribution and possible applica-

tions of this research. In Section 5.2, we conclude this thesis with a list of
open problems and some directions for future research.

The main results are shown in (Table 1.1).

Protein folding prediction and design in grid graphs
Bicolored Path Embedding Problems:
General Grid Graphs NP-hard
Rectangular Grid Graphs NP-hard
Fixed-Height Rectangular Grid Graphs Polynomial-time solvable
Maximizing Red-Red Contacts NP-hard
Protein Folding Prediction and Design in General Graphs
Bicolored Path Embedding Problem in General Graphs NP-hard
Bicolored Synthesis Problem Poly-APX-hard
Weighted Eulerian Path Problem NP-hard
Elastic Linkage Problem Polynomial-time solvable
Covering Problem of a Tree by a Path:
General Cover Problem NP-hard
Tree Traversal Problem (Case 1) NP-hard
Tree Traversal Problem (Case 2) Polynomial-time solvable

Table 1.1: Main Results
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Chapter 2

Definitions and Preliminaries

We modeled proteins and amino acid chains in two different settings: In
each setting, we studied (a) structure prediction and (b) design of proteins
by folding amino acid chains.

(1) Protein folding prediction and design in grid graphs: This model
is inspired by the famous hydrophobic-polar (HP) model for protein folding.
A protein in the HP model is represented as an abstract open chain, where
each link has a unit length and each joint is marked either hydrophobic or
polar. Grid graphs are graphs that form a regular tiling of the 2D plane or
3D space; these graphs are the standard setting for the traditional HP model.
Here a protein is a (connected) subgraph 𝐺 of the grid graph, possibly with
colors assigned to nodes. An amino acid chain is a path graph 𝑃 with colored
nodes.

(a) Prediction: Given an amino acid chain, can we embed it into the
grid in such a way that some local constraints are satisfied? (E.g., the colors
on the chain match the colors on the grid, or the H-H contacts are maximized,
etc.)

(b) Design: Given a pattern on the grid (i.e., a protein), can we design
an amino acid chain that can fold into it, satisfying some local constraints?
(E.g., at every hydrophobic amino acid there must be a 90-degree turn in the
folded state, the H-H contacts are maximized, etc.)

In this setting, we propose the bicolored path embedding problem asking
whether a given bicolored path 𝑃 can be embedded in a bicolored grid graph
𝐺 with color matching.
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(2) Protein folding prediction and design in general graphs: These
are graphs with either colored vertices or edges of a given length. Here a
protein is a graph: the idea is that a protein has a ”high-level” shape that
can be represented by some graph 𝐺, even if at ”low level” the protein is
just a chain. An amino acid chain is a path 𝑃, possibly with colored nodes
or fixed edge lengths.

(a) Prediction: Given an amino acid chain, what graphs can it fold
into (i.e., what graphs can it be mapped onto), satisfying some local con-
straints?

(b) Design: Given a graph (i.e., a protein), can we design an amino
acid chain that can be mapped onto it satisfying some local constraints?

In this setting, we first study the bicolored path embedding problem
in general graphs, and then we propose the linkage simulation problem
asks whether a given linkage 𝑃 can simulate a target edge-weighted graph 𝐺.

In the next two sections, we will give the definitions of these two problems
and the definitions related to their derivative problems.

2.1 Bicolored Path Embedding Problem

In this thesis, a graph is said “bicolored” if each of its vertices is assigned
one of two possible colors, e.g., red or blue:

Definition 1. A bicolored graph is a labeled undirected graph 𝐺 = (𝑉, 𝐸, 𝜔),
where 𝜔 : 𝑉 → {red, blue}.

If the image of 𝜔 is {blue}, then 𝐺 is monochromatic. A bicolored path is a
bicolored graph with the topology of a path, i.e., such that 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
and 𝐸 = {{𝑣𝑖, 𝑣𝑖+1} | 1 ≤ 𝑖 < 𝑛}.

If 𝑃 = (𝑉, 𝐸, 𝜔) is a bicolored path with 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and 𝐺 =

(𝑉 ′, 𝐸′, 𝜔′) is a bicolored graph, we say that a function 𝑓 : 𝑉 → 𝑉 ′ is an
embedding of 𝑃 into 𝐺 if:

• 𝑓 is injective, i.e., 𝑖 ≠ 𝑗 =⇒ 𝑓 (𝑣𝑖) ≠ 𝑓 (𝑣 𝑗 ).

• 𝑓 maps edges of 𝑃 to edges of 𝐺, i.e., { 𝑓 (𝑣𝑖), 𝑓 (𝑣𝑖+1)} ∈ 𝐸′ for all
1 ≤ 𝑖 < 𝑛.

• 𝑓 respects colors, i.e., 𝜔(𝑣) = 𝜔′( 𝑓 (𝑣)) for all 𝑣 ∈ 𝑉 .
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Definition 2. The bicolored path embedding problem asks whether a given
bicolored path 𝑃 has an embedding into a given bicolored graph 𝐺.

In the context of the bicolored path embedding problem, the graph 𝐺 is
called the blueprint.

Our first observation is that the NP-complete Hamiltonian path problem
(i.e., given a graph, decide if there is a walk that visits every vertex ex-
actly once [18]) is a special case of our bicolored path embedding problem.
Namely, if both 𝑃 and 𝐺 are monochromatic and have the same order, then
an embedding of 𝑃 into 𝐺 is precisely a Hamiltonian path in 𝐺.

It follows that the problem of finding a bijective embedding of a monochro-
matic path 𝑃 is NP-complete. Furthermore, it remains NP-complete for all
classes of blueprints 𝐺 where the Hamiltonian path problem is NP-complete.
These include split graphs, which are graphs whose vertices can be parti-
tioned into a clique and an independent set. Finding a Hamiltonian path in
a split graph is NP-complete even if the clique and the independent set have
the same order, as shown in [25].

In particular, such graphs are dense, i.e., they have a number of edges that
are quadratic in the number of vertices. The fact that our path embedding
problem is NP-complete even for dense blueprints is somewhat surprising:
intuitively, a blueprint 𝐺 with many edges should allow greater leeway in the
construction of an embedding of 𝑃. As it turns out, a greater amount of free-
dom does not necessarily translate into our ability to easily find embeddings.

The second class of interest is that of grid graphs, sometimes also called
lattice graphs :

Definition 3. A grid graph is an induced subgraph of a regular tiling of the
plane.

Note that there are only three possible regular tilings of the plane: the square
lattice, the triangular lattice, and the hexagonal lattice.

Grid graphs are the typical setting of the standard HP model. It is known
that the Hamiltonian path problem is NP-complete even if 𝐺 is a grid graph
in the square lattice, in the triangular lattice, or in the hexagonal lattice [3].
Thus, so is our monochromatic path embedding problem.

Furthermore, the bicolored path embedding problem is NP-complete when
𝐺 is a solid grid graph. Formally, let us define 𝑅(𝑎, 𝑏) as the grid graph in
the square lattice whose vertex set is {(𝑖, 𝑗) | 1 ≤ 𝑖 ≤ 𝑎 and 1 ≤ 𝑗 ≤ 𝑏}.

Definition 4. A rectangular grid graph is any subgraph of the square lattice
that is isomorphic to 𝑅(𝑎, 𝑏) for some integers 𝑎 and 𝑏.
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Rectangular grid graphs are also called solid grid graphs in the square lattice.
Given any grid graph 𝐺′ on 𝑛 vertices in the square lattice, we can find

the smallest integers 𝑎 and 𝑏 such that the graph 𝐺 = 𝑅(𝑎, 𝑏) contains
an induced subgraph 𝐺′′ isomorphic to 𝐺′ (intuitively, 𝐺 is the “bounding
rectangle” of 𝐺′′). We color in blue all vertices of 𝐺′′, and we color in red all
other vertices of 𝐺. This operation is called “completing” 𝐺′ to a solid grid
graph 𝐺. Now, we can embed a path 𝑃 of 𝑛 blue vertices into 𝐺 if and only
if 𝐺′ has a Hamiltonian path: this proves that the problem is NP-complete.

We can easily generalize the previous observation to solid graphs in the
triangular or hexagonal lattice, which are defined similarly, as equilateral
triangles and equilateral hexagons, respectively. This NP-completeness re-
sult will be strengthened in the next chapter, where we consider bijective
embeddings.

2.2 Linkage Simulation Problem

Linkages are mechanisms composed of stiff, rigid chains, which are jointed
at freely rotating joints. The Figure 2.1 shows a desk-lamp linkage, and the
linkage flexes at the circled joints. A linkage is a collection of fixed-length
1D segments joined at their endpoints forming a path (See [13] for further
details). In this research, we only consider simple linkages:

Figure 2.1: A linkage. The linkage flexes at the circled joints; the two left
most joints are pinned to the plane. The shaded lamp structure is rigid.
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Definition 5. A linkage is a path 𝑃 = (𝑉, 𝐸, ℓ), where ℓ : 𝐸 → R.

If 𝑃 = (𝑉, 𝐸, ℓ) is a linkage with 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, where 𝑣𝑖 is an endpoint,
then 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1} is an edge in 𝐸 = {{𝑣𝑖, 𝑣𝑖+1} | 1 ≤ 𝑖 ≤ 𝑛 − 1}, and its length
is given by ℓ(𝑒𝑖).

Now we consider the following situation in Figure 2.2.

3
3

3
3

4
2

4

3

4
3

3 3 3 3 2 2 2 2 2 3 3 2 2

G

P

3
3

3
3

3

3

s t

s

t

P simulates G

2

2
2

2

2

2

2

Figure 2.2: A simple example. A linkage 𝑃 can simulate a given target graph
𝐺 as shown in the figure. When 𝑃 simulates 𝐺, each circled joint is fixed, and
two joints of the linkage on the same vertex of 𝐺 move with synchronization.

You are given a simple undirected target graph 𝐺 = (𝑉 ′, 𝐸′), and a linkage
𝑃 = (𝑉, 𝐸) as above with length function ℓ : 𝐸 ∪ 𝐸′ → R. Our mission is
to simulate the target graph 𝐺 by the given linkage 𝑃. The joints in 𝑃 are
programmable, and each joint (or vertex) of 𝐺 should be simulated by a joint
of 𝑃, however, we can also put the joints of 𝑃 on some internal points of edges
of 𝐺 because they can be fixed. Therefore, our problem can be formalized
as finding the following mapping 𝜙 from 𝑃 to 𝐺:

• Each vertex of 𝐺 should be mapped from some vertices of 𝑃;

• Each edge of 𝐺 should be mapped from a subpath of 𝑃 by 𝜙;

• Each edge of 𝑃 should be mapped to an edge of 𝐺, which may span
from one internal point to another on the edge.

Definition 6. The linkage simulation problem asks if there exists a mapping
𝜙 from a given linkage 𝑃 to a given target graph 𝐺.

The decision problem asks if there exists a mapping 𝜙 from 𝑃 to 𝐺. That is,
it asks if there is an Eulerian path of 𝐺 spanned by 𝑃 such that (1) when
𝑃 visits a vertex in 𝐺, a vertex of 𝑃 should be put on it, and (2) some
vertices in 𝑃 can be put on internal points of edges of 𝐺. When all edges
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in 𝑃 and 𝐺 have the same length, it is easy to solve that in the linear time
since the problem is the ordinary Eulerian path problem. In the context of
formal languages, there are some variants of the Eulerian path problem with
some constraints (see [4] for a comprehensive survey). However, as far as the
authors know, the linkage simulation problem, our variant of the Eulerian
path problem has not been investigated, while the situation is quite natural.

In this thesis, we only consider a simple undirected graph 𝐺 = (𝑉, 𝐸). A
path 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) consists of 𝑛 vertices with 𝑛 − 1 edges 𝑒𝑖 joining 𝑣𝑖
and 𝑣𝑖+1 for each 𝑖 = 1, . . . , 𝑛−1. The vertices 𝑣1 and 𝑣𝑛 of the path are called
endpoints.

Let 𝐺 = (𝑉 ′, 𝐸′) and 𝑃 = (𝑉, 𝐸) be a graph and a path (𝑣1, 𝑣2, . . . , 𝑣𝑛). Let
ℓ : 𝐸′∪𝐸 → R be an edge-length function of them. We say the linkage 𝑃 can
simulate the graph 𝐺 if each edge in 𝐺 is spanned by at least one subpath
of 𝑃, and no subpath of 𝑃 properly joins two non-adjacent vertices in 𝐺. We
formalize the notion of simulation by a mapping 𝜙 that maps each vertex 𝑉
in 𝑃 to a point in 𝐺 as follows. For each edge 𝑒′ = {𝑢, 𝑣} ∈ 𝐸′, we consider
𝑒′ as a line segment (𝑢, 𝑣) of length ℓ(𝑒′). Then the intermediate point 𝑝 at
distance 𝑡ℓ(𝑒′) from 𝑢 is denoted by 𝑝 = 𝑡𝑣 + (1 − 𝑡)𝑢, where 0 < 𝑡 < 1. We
note that the endpoints of an edge 𝑒′ are not considered intermediate points
of 𝑒′. Now we first define a set of points in 𝐺 by 𝑉 ′ and all intermediate
points on edges of 𝐸′. Then we define a mapping 𝜙 from 𝑉 to points of 𝐺 as
follows. To make it clear, we first divide 𝑉 in 𝑃 into two subsets 𝑉𝑜 and 𝑉𝑖
such that each vertex in 𝑉𝑜 is mapped to a vertex in 𝑉 ′, and each vertex in 𝑉𝑖
is mapped to an intermediate point of 𝐺. In our problems, we assume that
𝜙(𝑣0) and 𝜙(𝑣𝑛) should be in 𝑉𝑜. That is, 𝑃 should start and end at vertices
in 𝐺. Depending on the restrictions, we consider some different simulation
problems as follows.

Weighted Eulerian path problem We consider the mapping 𝜙 from 𝑉𝑜
to 𝑉 ′ that satisfies some conditions as follows; (1) for every 𝑣′ ∈ 𝑉 ′, there is
at least one vertex 𝑣 ∈ 𝑉𝑜 with 𝜙(𝑣) = 𝑣′; (2) for each edge 𝑒′ = {𝑣′, 𝑢′} ∈ 𝐸′,

there is a pair of vertices 𝑣𝑖 and 𝑣 𝑗 in 𝑉𝑜 such that (2a) ℓ(𝑒′) = ∑ 𝑗−1
𝑘=𝑖

ℓ(𝑒𝑘 ),
and (2b) there is no other vertex 𝑣𝑘 is in 𝑉𝑜 between 𝑣𝑖 and 𝑣 𝑗 . Intuitively,
each edge 𝑒′ in 𝐺 corresponds to a subpath (𝑣𝑖, . . . , 𝑣 𝑗 ) in 𝑃, and vice versa.
In other words, some vertices in 𝑃 are mapped to some intermediate points
in 𝐺, and the corresponding joints of the linkage are fixed when the linkage
𝑃 simulates the target graph 𝐺. We note that by the length condition (2a),
we can assume that when the subpath (𝑣𝑖, . . . , 𝑣 𝑗 ) in 𝑃 simulates an edge
𝑒′ = {𝜙(𝑣𝑖), 𝜙(𝑣 𝑗 )}, it is not allowed to span it in a zig-zag way. We also
add one condition: (3) for each edge (𝑣𝑘 , 𝑣𝑘+1) in 𝑃, {𝜙(𝑣𝑘 ), 𝜙(𝑣𝑘+1)} should
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be on an edge 𝑒′ in 𝐺. That is, there is a subpath (𝑣𝑖, . . . , 𝑣𝑘 , 𝑣𝑘+1, . . . , 𝑣 𝑗 )
with 𝑖 ≤ 𝑘 < 𝑘 + 1 ≤ 𝑗 such that (3a) 𝑒′ = {𝜙(𝑣𝑖), 𝜙(𝑣 𝑗 )} and 𝜙(𝑣𝑘 ) is on an
intermediate point on 𝑒′ for each 𝑖 < 𝑘 < 𝑗 . In other words, all edges in 𝑃
are used for spanning some edges in 𝐺, and there is no other subpath in 𝑃
joining two endpoints in 𝐺 by the length condition (2a). Then we say that
the linkage 𝑃 can simulate the graph 𝐺 if there is a mapping 𝜙 satisfying the
conditions (1), (2), and (3). This problem can be seen as the Eulerian path
problem with edge weights.

Definition 7. The weighted Eulerian path problem asks if there is an Eu-
lerian path of a graph 𝐺 spanned by a path 𝑃 with length consistency.

We show proved that the weighted Eulerian path problem is strongly NP-
hard even if edge lengths are quite restricted. We thus consider two variants
of the weighted Eulerian path problem.

The first variant is the elastic linkage problem.
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Figure 2.3: A simple example. A elastic linkage 𝑃 simulates the given target
graphs 𝐺1 and 𝐺2 as shown in the figure. Any edge in 𝑃 can be stretched
(colored purple) or shrank (colored green) to match some certain edge lengths
in 𝐺1 and 𝐺2.
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Elastic linkage problem In this problem, we allow all edges in 𝑃 to be
elastic to simulate the path 𝐺 by the path 𝑃. As shown in Figure 2.3, some
edges in 𝑃 are stretched (colored purple) or shrank (colored green) to match
some certain edge lengths in the target graphs.

Definition 8. The elastic ratio 𝜌 of an edge 𝑒 is max {𝑙′/𝑙, 𝑙/𝑙′}, where 𝑙 is
the length of the edge 𝑒 = {𝑢, 𝑣} in a path 𝑃 and 𝑙′ is the length of the segment
{𝜙(𝑢), 𝜙(𝑣)} in a graph 𝐺.

Intuitively, the length of edge 𝑒 is changed from 𝑙 on 𝑃 to 𝑙′ on 𝐺. For a
given graph 𝐺 = (𝑉 ′, 𝐸′) and a path 𝑃 = (𝑉, 𝐸), it is easy to observe that 𝑃
can simulate 𝐺 (with elastic edges) if and only if 𝐺 has an Eulerian path and
|𝑉 ′| ≤ |𝑉 |. When 𝐺 has an Eulerian path by 𝑃 with elastic edges, the elastic
ratio of the mapping is defined by the maximum elastic ratio of all edges in
𝑃.

Definition 9. The elastic ratio of a mapping 𝜙 is max {𝜌1, 𝜌2, . . . , 𝜌𝑛−1},
where 𝜌𝑖 is the elastic ratio of the edge 𝑒𝑖 in a path 𝑃.

Then the elastic linkage problem asks to minimize the elastic ratio of the
mapping from 𝑃 to 𝐺 for given 𝐺 and 𝑃. We show that the elastic linkage
problem can be solved in polynomial time by dynamic programming when
𝐺 is a path.

The other variant of the weighted Eulerian path problem is the traverse
problem by a path.

We first consider the general cover problem. Since a linkage is flexible at
each joint, so we can fold it back and forth. That is, when we simulate a
target graph 𝐺 by a given linkage 𝑃, an edge in 𝐺 can be covered twice or
more, see Figure 2.4. We noticed that the general cover problem of 𝐺 by 𝑃
is NP-complete even if 𝐺 is an edge, we thus consider a more restricted case.

Traverse problem by a path In this variant, we allow the mapping to
map two subpaths of 𝑃 to an edge of 𝐺, however, we do not allow 𝑃 to be
elastic, or its ratio is fixed to 1. For a given graph 𝐺 = (𝑉 ′, 𝐸′) and a path
𝑃 = (𝑉, 𝐸), when all edges have a unit length, it is easy to observe that 𝑃
can simulate 𝐺 in this manner if and only if 𝐺 is connected and 2|𝐸 | = |𝐸′|:
We first perform the depth-first search on 𝐺 and traverse this search tree
(see Figure 2.5). We also consider its edge-weighted version as the traverse
problem for a graph 𝐺 and a path 𝑃. In this research, in fact, we only
investigate the cases that 𝐺 is a tree.

Definition 10. A tree is a connected acyclic graph.
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Figure 2.4: General cover problem. A linkage 𝑃 can simulate a given target
graph 𝐺 as shown in the figure. An edge in 𝐺 can be covered twice or more
by some links in 𝑃.

Precisely, we consider the following problem: For a given tree 𝐺 and a path
𝑃 (with edge lengths), the traverse problem asks if 𝐺 has a trail by 𝑃 such
that each edge of 𝐺 is traversed exactly twice. (We note that trees form a
representative class of graphs that have no Eulerian paths.) We first mention
that this problem is quite easy when each edge has a unit length. The answer
is yes if and only if 𝐺 = (𝑉, 𝐸) is connected and 𝑃 contains 2|𝐸 | edges. From
the practical viewpoint, it seems to be reasonable when we simulate a graph
by a linkage. However, this problem is still strongly NP-hard even in quite
restricted cases; (1) 𝐺 is a star, and 𝑃 consists of edges of only two different
lengths, and (2) 𝐺 is a spider, and all edges are of two different lengths. On
the other hand, the problem is polynomial-time solvable when 𝐺 is a star
and its edge lengths are of 𝑘 different values for some fixed 𝑘.

Definition 11. A complete bipartite graph 𝐾𝑛,𝑚 is a 𝐺 = (𝑋,𝑌, 𝐸) such that
|𝑋 | = 𝑛, |𝑌 | = 𝑚, and every pair of a vertex in 𝑋 and a vertex in 𝑌 is joined
by an edge.

Definition 12. A star is a complete bipartite graph 𝐾1,𝑛−1.

Definition 13. A spider is a tree that has only one vertex of degree greater
than 2.

Definition 14. The center in a star or a spider is the unique vertex of degree
greater than or equal to 3.
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Linkage Simulation Problem:

We now summarize and define this linkage simulation problem in another
way.

For a given path (linkage) 𝑃 = (𝑉, 𝐸, ℓ), and a target graph𝐺 = (𝑉 ′, 𝐸′, ℓ′),
with |𝑉 | = 𝑛 and |𝑉 ′| = 𝑛′, we define 𝑃 = (𝑉, 𝐸) and 𝐺 = (𝑉 ′, 𝐸′) as follows:

𝑉={𝑣̃1, 𝑣̃2, 𝑣̃3, . . . , 𝑣̃𝑛} ⊂ R where

𝑣̃𝑖 =

{
0 if 𝑖 = 1
𝑣̃𝑖−1 + ℓ({𝑣𝑖−1, 𝑣𝑖}) if 𝑖 > 1

𝑉 ′ = {𝑢1 = {1, 0, 0, 0, . . . }, 𝑢2 = {0, 1, 0, 0, . . . }, 𝑢3 = {0, 0, 1, 0, . . . }, . . . , 𝑢𝑛′ =
{0, 0, . . . , 0, 1}} ⊂ R𝑛′.

𝐸′ = {𝑢𝑖, 𝑢 𝑗 } for each {𝑢𝑖, 𝑢 𝑗 } ∈ 𝐸′.

𝑆 ⊂ R𝑛′ is the union of all segments 𝑢𝑖𝑢 𝑗 with {𝑢𝑖, 𝑢 𝑗 } ∈ 𝐸′.
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Let 𝑓 : 𝑣̃1𝑣̃𝑛 → 𝑆 be a continuous function that is linear on the segment 𝑣̃𝑖 𝑣̃𝑖+1
for all 1 ≤ 𝑖 < 𝑛, such that 𝑓 −1({𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑛′}) ⊆ {𝑣̃1, 𝑣̃2, 𝑣̃3, . . . , 𝑣̃𝑛}.

Let ∇ 𝑓 (𝑥) denote the gradient of 𝑓 at point 𝑥 ∈ 𝑣̃1𝑣̃𝑛 ⊂ R.

Define ℓ̃ : 𝑆 \ 𝑉 ′ → R+ such that, for any internal point 𝑥 ∈ 𝑢𝑖𝑢 𝑗 ⊆ 𝑆, we

have ℓ̃(𝑥) = ℓ′({𝑢𝑖, 𝑢 𝑗 }).

The stretch factor of a point 𝑥 ∈ 𝑣̃1𝑣̃𝑛 \𝑉 is 𝜌(𝑥) = ∥∇ 𝑓 (𝑥)∥ · ℓ̃( 𝑓 (𝑥))
√
2

.

The elastic ratio of a point 𝑥 ∈ 𝑣̃1𝑣̃𝑛 \𝑉 is 𝜌′(𝑥) = 𝑚𝑎𝑥{𝜌(𝑥), 1

𝜌(𝑥) }.

Weighted Eulerian Path Problem :

• 𝑆 is covered once, i.e., ∀𝑥 ∈ 𝑆 \ 𝑓 (𝑉), we must have | 𝑓 −1(𝑥) | = 1.

• 𝑓 maps the first and last vertex of 𝑃 to vertices of 𝐺, i.e., 𝑓 ({𝑣̃1, 𝑣̃𝑛}) ⊆
𝑉 ′.

• Stretching is not allowed, i.e., 𝜌(𝑥) = 1 for all 𝑥 ∈ 𝑣̃1𝑣̃𝑛 \𝑉 .

Elastic Linkage Problem :

• 𝑆 is covered once, i.e., ∀𝑥 ∈ 𝑆 \ 𝑓 (𝑉), we must have | 𝑓 −1(𝑥) | = 1.

• 𝑓 maps the first and last vertex of 𝑃 to vertices of 𝐺, i.e., 𝑓 ({𝑣̃1, 𝑣̃𝑛}) ⊆
𝑉 ′.

General Cover Problem :

• 𝑆 is covered, i.e., 𝑓 (𝑣̃1𝑣̃𝑛) = 𝑆.

• Stretching is not allowed, i.e., 𝜌(𝑥) = 1 for all 𝑥 ∈ 𝑣̃1𝑣̃𝑛 \𝑉 .

Traverse Problem of a Tree by a Path (Cover Twice):

• 𝐺 is a tree.

• 𝑆 is covered twice, i.e., ∀𝑥 ∈ 𝑆 \ 𝑓 (𝑉), we must have | 𝑓 −1(𝑥) | = 2.

• 𝑓 maps the first and last vertex of 𝑃 to vertices of 𝐺, i.e., 𝑓 ({𝑣̃1, 𝑣̃𝑛}) ⊆
𝐸′.
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• Stretching is not allowed, i.e., 𝜌(𝑥) = 1 for all 𝑥 ∈ 𝑣̃1𝑣̃𝑛 \𝑉 .

In this thesis, we will often use the following problems to show the hardness
of our problems: Hamiltonian path problem and 3-Partition problem.
A Hamiltonian path is a path between two vertices of a graph that visits each
vertex of the graph exactly once. The problem of finding a Hamiltonian path
of a given general graph is well known to be NP-complete [28].
In this research, we focus on square grid graphs, and more specifically, rect-
angular grid graphs. Therefore, the NP-completeness of the Hamiltonian
path problem in grid graphs shown in [3, 4, 8] is important in our context.
Itai et al. also proved that the Hamiltonian path problem for general grid
graphs is NP-complete [21]. We will use this result, as well as the 3-Partition
problem.
The 3-Partition problem is to decide if a given multiset 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎3𝑚}
of 3𝑚 positive integers can be partitioned into 𝑚 subsets, each of which has
the same sum 𝐵.

3-Partition Problem

Input: An integer 𝐵 and a multiset 𝐴 of 3𝑚 integers 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎3𝑚}
with 𝐵/4 < 𝑎𝑖 < 𝐵/2.

Output: Determine if 𝐴 can be partitioned into 𝑚 multisets 𝑆1, 𝑆2, . . . , 𝑆𝑚
such that

∑
𝑎 𝑗∈𝑆𝑖 𝑎 𝑗 = 𝐵 for every 𝑖.

Without loss of generality, we can assume that
∑
𝑎𝑖∈𝐴 𝑎𝑖 = 𝑚𝐵, and |𝑆𝑖 | = 3.

It is well known that the 3-Partition problem is strongly NP-complete [18].
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Chapter 3

Protein Folding Prediction and
Design in Grid Graphs

In this Chapter we focus on blueprint graphs 𝐺 which are grid graphs, i.e.,
they are obtained from regular tilings of the plane (sometimes these are also
called lattice graphs). This is the typical setting of the standard HP model.

3.1 Monochromatic Path

Let us first assume that the path 𝑃 is monochromatic, i.e., all its vertices
have the same color (say, blue). We will prove that the embedding problem
is already NP-hard in such a simple setting.

Theorem 1. The bicolored path embedding problem is NP-complete even if
the blueprint 𝐺 is a (square, triangular, or hexagonal) grid graph, and 𝑃 is
a monochromatic path.

Proof. Let 𝑃 be a path that consists of only blue vertices, and 𝐺 be a bi-
colored grid graph (square, triangular or hexagonal) containing the same
number of blue vertices. Examples are shown in Figure 3.1.

We reduce the Hamiltonian path problem for square grid graphs, triangu-
lar grid graphs, or hexagonal grid graphs to our problem [3, 4, 8]. Precisely,
we can use the same strategy in [3, 4, 8] to prove the theorem. In [3, 4, 8], they
reduced the Hamiltonian path problem in a 3-regular planar graph to one in
a subset of a grid graph. More precisely, for a given 3-regular planar graph,
they represent the graph by a subset of a grid graph. Then the problem asks
if we can visit all grid points exactly once on the subset of a grid graph. In
our case, the subset of a grid graph can be represented by blue vertices, and
we fill the other grid points by red vertices. Then it is straightforward that
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Figure 3.1: A bicolored path consists of ten blue vertices and three types of
bicolored grid graphs that contain ten blue vertices.

the results in [3, 4, 8] can be translated into the bicolored path embedding
problem. Thus we can conclude that the bicolored path embedding prob-
lem is NP-complete each of square grid graphs, triangular grid graphs, and
hexagonal grid graphs. □

3.2 Embeddings in Rectangular Grids

In this section, we focus on rectangular blueprints, i.e., blueprints that are
rectangular grid graphs, as defined in the previous section. As already men-
tioned, this is the typical setting of the traditional HP model of protein
folding.

3.2.1 Bijective Embeddings

Let us first consider the case where the bicolored blueprint 𝐺 is a “precise”
description of a protein, i.e., it has to be matched exactly by the amino acid
sequence represented by the bicolored path 𝑃. In other words, 𝐺 and 𝑃

have the same number of vertices, and the embedding should therefore be
bijective.
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As observed at the end of Section 3.1, the non-bijective bicolored em-
bedding problem in a rectangular grid is NP-complete. On the other hand,
the bijective embedding problem in a rectangular grid is polynomial-time
solvable if 𝑃 and 𝐺 are monochromatic: indeed, this is equivalent to the
Hamiltonian path problem in a rectangular grid, which is solved in [21].

In the following theorem, we will close the gap between the two afore-
mentioned results: We will show that the bijective bicolored path embedding
problem is NP-complete.

k
2

k
2

k
2

k
2

k+2

R(m',n')

G'

v

Figure 3.2: Example of a grid graph 𝐺′ and the transformation of a vertex 𝑣
of 𝐺′ into the (𝑘 + 2) × (𝑘 + 2) block 𝐵𝑣 (in this example, 𝑚′ = 5, 𝑛′ = 4, and
𝑘 = 12)

Theorem 2. The bicolored path embedding problem is NP-complete even if
the blueprint 𝐺 is a rectangular grid with the same number of vertices as the
path 𝑃.

Proof. We will give an NP-hardness reduction from the Hamiltonian path
problem on grid graphs in the square lattice, which is NP-complete [21].

Construction of the reduction We start from a rectangular grid 𝑅(𝑚′, 𝑛′)
with an induced subgraph 𝐺′ (which is an instance of the Hamiltonian path
problem), and we construct the blueprint 𝐺 by “expanding” each vertex 𝑣
of 𝑅(𝑚′, 𝑛′) into a (𝑘 + 2) × (𝑘 + 2) block 𝐵𝑣 (where 𝑘 is a large-enough even
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Figure 3.3: Complete construction of 𝐺 from the graph 𝐺′ of Figure 3.2 (now
with 𝑘 = 8): each of the circled blocks represents a vertex in the original graph
𝐺′

constant, defined later). If 𝑣 is not a vertex of 𝐺′, then all vertices of 𝐵𝑣 are
blue; if 𝑣 is a vertex of 𝐺′, then 𝐵𝑣 is illustrated in Figure 3.2 (right): its
four central vertices are red, and all other vertices are blue. The order of 𝐺
is therefore (𝑘 + 2) · 𝑚′ × (𝑘 + 2) · 𝑛′; an example of the full construction is
shown in Figure 3.3.

The path 𝑃 is constructed as follows. Let 𝑃′ be a path consisting of 4 red
vertices followed by 2𝑘 blue vertices. 𝑃 is made up of 𝑛 consecutive copies of
𝑃′, where 𝑛 is the order of 𝐺′, followed by a trail of blue vertices such that
the total length of 𝑃 matches the order of 𝐺. Namely, the final trail of 𝑃
consists of (𝑘 + 2)2 ·𝑚′𝑛′ − (2𝑘 + 4)𝑛 blue vertices. Refer to Figure 3.4 for an
example.

Embedding the first part of the path In order to embed 𝑃 into 𝐺, we
have to start from a set of four red vertices in some block 𝐵𝑣, and then move
to another set of four red vertices in some other block 𝐵𝑤. Since we must
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Figure 3.4: Construction of the path 𝑃 (in this example, 𝑘 = 3 and 𝐺′ has
order 2)

traverse exactly 2𝑘 blue vertices between these two red sets, this is possible
only if 𝑣 and 𝑤 are adjacent in 𝐺′ (note that a “diagonal” move would take
2𝑘 + 1 steps on blue vertices). Thus, embedding 𝑃 into 𝐺 is impossible if 𝐺′

is not Hamiltonian.
Assume now that 𝐺′ is Hamiltonian. We can embed all copies of 𝑃′ into

𝐺 by “mimicking” a Hamiltonian path in 𝐺′ and moving from one set of red
vertices to the next by covering the 2× 𝑘 rectangle between them in a zig-zag
fashion. Eventually, the region of 𝐺 covered by all the copies of 𝑃′ looks like
a winding “tube” of width 2, as sketched in Figure 3.5.

Embedding the trailing blue vertices Now we have to cover the re-
maining part of 𝐺 with the trailing sequence of blue vertices of 𝑃. Observe
that this part of 𝐺 is connected, because the copies of 𝑃′ were embedded
according to a Hamiltonian path, which has no cycles, and therefore did not
disconnect 𝐺.

In order to cover this last region, we partition it into maximal “horizontal
rectangles,” i.e., in such a way that no two rectangles touch each other along
vertical edges. Figure 3.5 shows an example of the partition. Then we do
a depth-first traversal of these rectangles. When we visit a new rectangle
𝑅 (perhaps coming from its parent rectangle 𝑅′), we cover 𝑅 as exemplified
in Figure 3.6: we further divide it into smaller rectangular “tiles,” one for
each unvisited neighboring rectangle. After completely covering a tile, we
continue the depth-first traversal by visiting its adjacent rectangle 𝑅′′ in the
partition. When we backtrack from 𝑅′′ and get back to 𝑅, we move to the
next tile of 𝑅, and so on.

Note that the last tile we visit is again adjacent to 𝑅′, and thus we are
able to backtrack once all tiles of 𝑅 have been completely covered (if 𝑅 is the
root of the spanning tree, we just terminate). It is straightforward to prove
by induction that this embedding algorithm completely covers all rectangles
in the partition.
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Figure 3.5: Example of a partition into rectangles of the region not covered
by the zig-zagging copies of 𝑃′

Detailed construction of tiles We still need to prove that it is possible to
construct the tiles in such a way that each of them can be covered completely
before moving on to the next rectangle. We will use a result from [21], where
the grid graphs containing a Hamiltonian path with assigned endpoints have
been characterized. The characterization includes some special cases of small
order, but since our 𝑘 is a large constant, we can ignore them.

What we can gather from [21] is that, if the order (i.e., the number of
vertices) of a tile is even and one of its sides is longer than four vertices, then
there is a Hamiltonian path in the tile with any assigned endpoints having
odd distance along the grid. Because 𝑘 is a large even constant, we can
indeed subdivide each rectangle in the appropriate number of tiles, arranged
as exemplified in Figure 3.6, each of which has an even order and at least
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Figure 3.6: The shaded rectangle 𝑅 is subdivided into six tiles, one for each
neighboring rectangle. The numbers and arrows show the order in which tiles
and neighboring rectangles are covered. The path comes from the parent
rectangle 𝑅′, covers a tile, and moves to the next unvisited rectangle, etc.
When 𝑅 is fully covered, the path returns to the parent 𝑅′.

one side longer than four vertices (choosing 𝑘 = 32 abundantly suffices).
When covering a tile, we want to start on an edge and either end on the

same edge or on the opposite edge. For example, referring to Figure 3.6,
when covering tile 1 we want to enter and exit from the same edge, but when
covering tile 2 we want to enter from an edge and exit from the opposite one.
So, it is sufficient to choose any pair of starting and ending vertices (along
the appropriate edges) having odd distance, and the characterization in [21]
guarantees that there is a Hamiltonian path in the tile having these starting
and ending vertices. It follows that we can embed 𝑃 into 𝐺. □

3.2.2 Fixed-Height Rectangular Blueprints

We can contrast our previous hardness results with an embedding algorithm
that runs in polynomial time, provided that the blueprint 𝐺 is a rectangular
grid of fixed height 𝑘.
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Figure 3.7: Example of a sub-problem of the dynamic-programming algo-
rithm for rectangular blueprints. The sub-problem specifies which vertices of
the path 𝑃 should be embedded in the 𝑎th column of 𝐺, and where: this is
indicated by the function 𝑓 . Each arrow represents a direction bit : the vertex
𝑣𝑖+1 should be mapped to the left of 𝑓 (𝑣𝑖), etc. The value of the direction
bit at 𝑓 (𝑣 𝑗+1) is irrelevant, because both 𝑣 𝑗 and 𝑣 𝑗+2 are mapped to the 𝑎th
column. The sub-problem asks if there exists a partial embedding of 𝑃 in the
sub-grid going from the first column to the 𝑎th column that matches vertex
colors and satisfies the constraints imposed by 𝑓 and the direction bits.

Lemma 1. For all integers 𝑎 > 2 and 𝑏 > 0,

min{(𝑎 + 1)𝑏, (𝑏 + 1)𝑎} < 𝑒 · 𝑎𝑏 .

Proof. It is well known from elementary calculus that, if 𝑘 > 0, the function
𝑓𝑘 (𝑥) = (1 + 𝑘/𝑥)𝑥 is monotonically increasing for 𝑥 > 0, and its limit as
𝑥 approaches +∞ is 𝑒𝑘 . Hence, by rearranging terms, we have, for every
𝑥, 𝑘 > 0,

(𝑥 + 𝑘)𝑥 < 𝑒𝑘𝑥𝑥 . (3.1)

If 𝑎 ≥ 𝑏, we plug 𝑘 = 1 and 𝑥 = 𝑎 in Equation 3.1, obtaining

(𝑎 + 1)𝑏 = ((𝑎 + 1)𝑎)
𝑏
𝑎 < (𝑒 · 𝑎𝑎)

𝑏
𝑎 = 𝑒

𝑏
𝑎 · 𝑎𝑏 ≤ 𝑒 · 𝑎𝑏 .

If 𝑎 < 𝑏, by a similar reasoning, we have (𝑏 + 1)𝑎 < 𝑒 · 𝑏𝑎. To conclude, it is
now sufficient to prove that 𝑏𝑎 ≤ 𝑎𝑏. This is done by plugging 𝑘 = 𝑏 − 𝑎 and
𝑥 = 𝑎 in Equation 3.1:

𝑏𝑎 = (𝑎 + (𝑏 − 𝑎))𝑎 < 𝑒𝑏−𝑎 · 𝑎𝑎 < 𝑎𝑏−𝑎 · 𝑎𝑎 = 𝑎𝑏,

recalling that, by assumption, 𝑒 < 3 ≤ 𝑎. □
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Theorem 3. Given a bicolored rectangular grid 𝐺 of order 𝑚 × 𝑘 and a
bicolored path 𝑃 of order 𝑛, the embedding problem for 𝐺 and 𝑃 can be solved
in 𝑂 (2𝑘𝑛2𝑘𝑚) time.

Proof. Let 𝐺 be a bicolored 𝑚 × 𝑘 grid, and let 𝑃 be a bicolored path of
𝑛 vertices. If 𝑛 ≤ 2, the problem can be trivially solved in 𝑂 (𝑘𝑚) time by
searching 𝐺 for one or two adjacent vertices with colors matching 𝑃. Hence,
let us assume that 𝑛 > 2.

Sub-problem specification Our approach is based on dynamic program-
ming, where a sub-problem consists in embedding part of 𝑃 (not necessarily
all of 𝑃) into a sub-grid of 𝐺 going from the first column to the 𝑎th column,
with 1 ≤ 𝑎 ≤ 𝑚. A sub-problem’s specification also contains a description of
the intersection between a hypothetical embedding of 𝑃 and the 𝑎th column
of 𝐺: for each vertex 𝑤 in the 𝑎th column, the sub-problem specifies which
vertex 𝑣𝑖 of 𝑃 is mapped to 𝑤 (if any), as well as an extra bit of information:
the direction bit. This bit encodes whether the left or right neighbor of 𝑣𝑖
along 𝑃 should be mapped to the left neighbor of 𝑤 (if such information is
incompatible with the rest of the specification, the direction bit is ignored).
Figure 3.7 sketches a sub-problem with a function 𝑓 specifying which vertices
of 𝑃 are mapped into the 𝑎th column.

Thus, the total number of sub-problems is 2𝑘𝑐𝑛,𝑘𝑚, where the factor 𝑚
represents the possible choices of 𝑎, and 𝑐𝑛,𝑘 is the number of ways a subset
of vertices of 𝑃 can be injectively mapped into a column of 𝐺. Informally,
we can say that 𝑐𝑛,𝑘 is the number of ways two paths of length 𝑛 and 𝑘

(representing 𝑃 and a column of 𝐺, respectively) can “intersect.”

Solving sub-problems The output to a sub-problem is “Yes” if an em-
bedding of part of 𝑃 satisfying the given constraints exists, “No” if it does
not exist, and “N/A” if the sub-problem specifies no intersection on the 𝑎th
column, and it is not possible to embed 𝑃 entirely to the left of the 𝑎th
column (this implies that 𝑃 must be embedded entirely to the right of the
𝑎th column, but we are still unable to determine if this is possible).

Solving a sub-problem 𝑆 for column 𝑎 amounts to finding a sub-problem
𝑆′ for column 𝑎− 1 with a “Yes” answer such that the specifications of 𝑆 and
𝑆′ are compatible. In other words, the mappings described by 𝑆 and 𝑆′ on
columns 𝑎 and 𝑎 − 1 should (i) match the colors in 𝐺 and 𝑃, and (ii) match
with each other. For example, assume that the sub-problem 𝑆 is the one
illustrated in Figure 3.7, where the direction bit at 𝑓 (𝑣𝑖) indicates that the
vertex 𝑣𝑖+1 of 𝑃 should be mapped to the left neighbor 𝑤′ of 𝑤 = 𝑓 (𝑣𝑖) (where
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𝑤 is in column 𝑎). Then, the sub-problem 𝑆′ should agree with this specifi-
cation: namely, its function 𝑓 ′ should indicate that 𝑓 ′(𝑣𝑖+1) = 𝑤′ (which is in
column 𝑎 − 1).

Full algorithm To summarize, the algorithm for solving a sub-problem 𝑆

for column 𝑎 is as follows:

• If 𝑎 = 1, then:

– If 𝑆 specifies that the embedding of 𝑃 does not intersect column
1, then return “N/A.”

– Else, if 𝑆 specifies that the embedding of 𝑃 intersects column 1 in
a way that (i) matches vertex colors, (ii) whenever it maps two
consecutive vertices 𝑣𝑖 and 𝑣𝑖+1 of 𝑃 to column 1, it maps them
to adjacent vertices, and (iii) the direction bits of 𝑆 specify that
the embedding of 𝑃 continues to the right (whenever this makes
sense), then return “Yes.”

– Else, return “No.”

• If 𝑎 > 1, and 𝑆 specifies that the embedding of 𝑃 does not intersect
column 𝑎, then:

– If there is a compatible sub-problem 𝑆′ for column 𝑎 − 1 with
answer “Yes,” then return “Yes” (by “compatible” we mean that
the direction bits of 𝑆′ imply that no vertex of 𝑃 mapped to column
𝑎 − 1 should have a neighbor mapped to column 𝑎).

– Else, return “N/A.”

• If 𝑎 > 1, and 𝑆 specifies that the embedding of 𝑃 has some intersections
with column 𝑎, then:

– If 𝑆 specifies that the embedding of 𝑃 intersects column 𝑎 in a
way that (i) matches vertex colors, (ii) whenever it maps two
consecutive vertices 𝑣𝑖 and 𝑣𝑖+1 of 𝑃 to column 𝑎, it maps them to
adjacent vertices, (iii) there is a sub-problem 𝑆′ for column 𝑎 − 1
with answer “Yes” or “N/A” that is compatible with 𝑆, and (iv)
if 𝑎 = 𝑛, the direction bits of 𝑆 specify that the embedding of
𝑃 continues to the left (whenever this makes sense), then return
“Yes.”

– Else, return “No.”
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Optimizations and remarks As an optimization, we do not have to look
up all sub-problems 𝑆′ for column 𝑎 − 1, but only the ones whose direction
bits are compatible with 𝑆. In other words, we only need to choose which
vertices of 𝑃 are mapped to the column 𝑎 − 1 and where, and the correct
direction bits can be inferred. Hence, in order to solve 𝑆, it is sufficient to
look up at most 𝑐𝑛,𝑘 sub-problems.

Also, for each sub-problem 𝑆′, the compatibility test between 𝑆′ and 𝑆

can be done in constant amortized time. Indeed, the sub-problems 𝑆′ are
enumerated by locally changing the function that maps points on the col-
umn 𝑎 − 1 to vertices of 𝑃; as each of these local changes takes place, the
corresponding compatibility check is performed in constant time. Hence, 𝑆
can be solved in 𝑂 (𝑐𝑛,𝑘 ) time.

As there are 2𝑘𝑐𝑛,𝑘𝑚 sub-problems in total, it takes 𝑂 (2𝑘𝑐2
𝑛,𝑘
𝑚) time to

solve all of them. In the end, the algorithm returns “Yes” if there is a sub-
problem for 𝑎 = 𝑛 with a “Yes” answer; it returns “No” otherwise.

Correctness and running time The correctness of this algorithm can
be proved straightforwardly by induction. Note that the distinction between
“N/A” and “Yes” implies that, if the final answer is “Yes,” then at least
some vertices of 𝑃 have indeed been embedded somewhere in 𝐺. If this is
the case, then the compatibility tests between columns guarantee that all of
𝑃 has been correctly embedded.

In order to show that our algorithm has the desired running time, it
remains to prove that 𝑐𝑛,𝑘 = 𝑂 (𝑛𝑘 ). Recall that 𝑐𝑛,𝑘 is the number of ways 𝑃
can intersect a column of 𝐺. We can give two upper bounds on this number.
Each of the 𝑘 vertices in a column of 𝐺 may intersect one of the 𝑛 vertices
of 𝑃 or none of them. This yields at most (𝑛 + 1)𝑘 different configurations in
total, and thus 𝑐𝑛,𝑘 ≤ (𝑛 + 1)𝑘 . Note that this is insufficient to conclude that
𝑐𝑛,𝑘 = 𝑂 (𝑛𝑘 ), because 𝑘 is not a constant. Let us give a second upper bound:
each of the 𝑛 vertices of 𝑃 may be mapped either to one of the 𝑘 vertices in
the given column of 𝐺 or to a different column. This yields 𝑐𝑛,𝑘 ≤ (𝑘 + 1)𝑛.
Now, Lemma 1, with 𝑎 = 𝑛 and 𝑏 = 𝑘, gives

𝑐𝑛,𝑘 ≤ min{(𝑛 + 1)𝑘 , (𝑘 + 1)𝑛} < 𝑒 · 𝑛𝑘 = 𝑂 (𝑛𝑘 ),

as required (recall that we were assuming that 𝑛 > 2). □

We immediately have the following:

Corollary 1. The bicolored path embedding problem where the blueprint 𝐺
is a rectangular grid, parameterized according to the height of 𝐺, is in XP.
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Proof. According to Theorem 3, if 𝐺 has order 𝑚×𝑘 and 𝑃 has order 𝑛, there
is an algorithm that solves the embedding problem for 𝐺 and 𝑃 in 𝑂 (2𝑘𝑛2𝑘𝑚)
time. Now, if 𝑘 is a constant, the running time of the algorithm is 𝑂 (𝑛2𝑘𝑚),
hence polynomial. □

3.3 Maximizing Red-Red Contacts

Finally, let us turn to the problem of maximizing red-red contacts in the
context of the bicolored path embedding problem. Recall that, according to
the HP model of energy, an amino acid chain tends to fold in a way that
maximizes the number of H nodes that are close together in the folded state,
even if they are not adjacent along the chain. In other words, when 𝐺 and
𝑃 are given, we seek an embedding of 𝑃 into 𝐺 that covers a large number
of adjacent red vertices of 𝐺 without traversing the edges that connect them
with each other.

Definition 15. A red-red contact in an embedding of 𝑃 into 𝐺 is a pair of
adjacent red vertices 𝑢, 𝑣 in 𝐺 such that the embedding of 𝑃 covers both 𝑢
and 𝑣, but does not contain the edge {𝑢, 𝑣}.

The problem of maximizing red-red contacts in the bicolored path em-
bedding problem is also NP-hard, even when restricted to instances where
the path 𝑃 is guaranteed to be embeddable into 𝐺, and even when 𝐺 is a
solid grid graph (in a square, triangular, or hexagonal lattice).

Theorem 4. Given a bicolored solid grid graph 𝐺 and a bicolored path 𝑃

that can be embedded in 𝐺, it is NP-hard to find an embedding of 𝑃 in 𝐺 that
maximizes red-red contacts.

Proof. We will describe a reduction from the Hamiltonian path problem in
the case of a square lattice. A similar construction can be used for triangular
and hexagonal lattices, as well.

Given a connected input grid graph 𝐺′ on 𝑛 vertices, we construct a
rectangular grid graph 𝐺 by juxtaposing three blocks, each of which is in turn
a rectangular grid graph. Figure 3.8 shows a sketch of the whole construction.

Block 2 of 𝐺 is constructed by completing 𝐺′ to a rectangular grid graph,
as we did at the end of Section 3.1. That is, Block 2 of 𝐺 is the smallest rect-
angular graph 𝑅(𝑎, 𝑏) containing (an isomorphic copy of) 𝐺′ as an induced
subgraph; we color in blue the 𝑛 vertices of this subgraph, and we color in
red the 𝑟 = 𝑎𝑏 − 𝑛 remaining vertices in 𝑅(𝑎, 𝑏).

Next we define 𝑘 = 𝑟 + 𝑏 + 1, and we construct Block 1 as a grid graph
isomorphic to 𝑅(⌈𝑘/𝑏⌉, 𝑏) whose vertices are all red. Note that Block 1 has
at least 𝑘 vertices.
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Figure 3.8: Sketch of the NP-hardness reduction for the problem of maximiz-
ing red-red contacts (the value of 𝑛 should match the number of blue vertices
in Block 2)

Block 3 of 𝐺 is isomorphic to 𝑅(max{𝑘, 𝑛}+2, 𝑏), and is colored as shown
in Figure 3.8. Namely, the column adjacent to Block 2, i.e., the leftmost
column, is all red; each of the 𝑘 rightmost columns has the topmost vertex
in red and all other vertices in blue; all other columns are entirely blue.

Finally, the path 𝑃 consists of 𝑛 blue vertices followed by 𝑘 red vertices.
Without loss of generality, we may assume that, if a Hamiltonian path

exists in 𝐺′, one of its endpoints 𝑠 must be on the perimeter of the bounding
rectangle of 𝐺′. (This is a well-known fact in Hamiltonicity theory; see for
example [21].) When constructing 𝐺, we can embed 𝐺′ into Block 2 in such
a way that 𝑠 is in the column adjacent to Block 1. Thus, if 𝐺′ has indeed a
Hamiltonian path, we can embed the blue part of 𝑃 in Block 2 and the red
part of 𝑃 in Block 1, which produces a large number of red-red contacts.

On the other hand, if 𝐺′ does not have a Hamiltonian path, we can
only embed 𝑃 in Block 3, which yields no red-red contacts. This is because
embedding some red vertices of 𝑃 in Block 1 would force us to embed all the
blue vertices in Block 2, which is impossible because 𝐺′ is not Hamiltonian.
Also, if we embedded some red vertices in the leftmost column of Block 3,
we would have to embed all of them in this column or in Block 2 (because
𝐺′ is connected, and thus there is no path of red vertices connecting Block 1
with Block 3). However, there are only 𝑟 + 𝑏 red vertices in this region, and
therefore we cannot fit all the 𝑘 = 𝑟 + 𝑏 + 1 red vertices of 𝑃. The only
possibility is to embed these 𝑘 red vertices in the topmost row of Block 3,
which always yields a feasible embedding, as Block 3 has a large-enough blue
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region to fit the 𝑛 blue vertices of 𝑃, as well.
In conclusion, 𝑃 can always be embedded in 𝐺; however, finding an em-

bedding that produces any red-red contacts at all is NP-hard. □

We also consider a complementary problem of constructing a path 𝑃 that
embeds in a given bicolored graph 𝐺 maximizing red-red contacts, which is
related to the protein design. The Figure 3.9 shows a simple example. We
are given a bicolored grid 𝐺, the goal is to find a Hamiltonian path 𝑃 such
that embedding 𝑃 in a grid in such a way as to maximize red-red contacts
yields again 𝐺.

Figure 3.9: Two Hamiltonian paths in a bicolored grid with different number
of H-H contacts.

We call this problem bicolored synthesis problem . We will introduce
the result we got about this problem in the next chapter.
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Chapter 4

Protein Folding Prediction and
Design in General Graphs

In this chapter, we consider two different models. We study both bicolored
path embedding problems and linkage simulation problems in general graphs.

4.1 Bijective Embedding in a Dense Graph

Let us first consider the case where the bicolored blueprint 𝐺 is a “precise”
description of a protein, i.e., it has to be matched exactly by the amino acid
sequence represented by the bicolored path 𝑃. In other words, 𝐺 and 𝑃

have the same number of vertices, and the embedding should therefore be
bijective.

We will show that the embedding problem is NP-hard even if 𝐺 is a dense
graph. This is a somewhat surprising result: intuitively, a blueprint with
many edges should allow greater leeway in the construction of an embedding
of 𝑃. As it turns out, a greater amount of freedom does not necessarily
translate into our ability to easily find embeddings.

Theorem 5. The bicolored path embedding problem is NP-complete even if
the blueprint 𝐺 is a dense graph of the same size as the path 𝑃.

Proof. We give a reduction from the strongly NP-complete 3-Partition prob-
lem [18]. We recall that the input to the 3-Partition problem is a multiset
of 3𝑚 positive integers {𝑎1, 𝑎2, . . . , 𝑎3𝑚}, and the goal is to decide whether it
can be partitioned into 𝑚 multisets of equal sum 𝑆. Our reduction is sketched
in Figure 4.1.

The path 𝑃 has length 𝑚 · (𝑆 +1), and is made up of 𝑚 consecutive copies
of a sub-path denoted by 𝑃𝑆+1, which in turn consist of a red vertex followed
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by 𝑆 blue vertices. The blueprint 𝐺 contains a complete bipartite graph
𝐾6𝑚,𝑚 with 𝑚 red vertices on one side and 6𝑚 blue vertices on the other
side. These blue vertices are further connected in all possible ways, forming
a clique 𝑄 of size 6𝑚 (the gray box in the figure). Additionally, for each 𝑎𝑖,
we construct a clique of 𝑎𝑖 − 2 blue vertices (in the 3-Partition problem, we
can safely assume that 𝑎𝑖 > 2), and we connect two of its vertices with two
vertices of 𝑄.

The construction can be done in polynomial time. It is easy to see that
the graph 𝐺 is dense (i.e., asymptotically, the number of edges is a quadratic
function of the number of vertices), it has the same size as 𝑃, and there is an
embedding of 𝑃 into 𝐺 if and only if the 𝑎𝑖’s can be partitioned into multisets
of sum 𝑆.

We show that the 3-Partition problem has a solution if and only if 𝑃 can
be embedded in 𝐺 with color matching. First, we must embed red vertices
of 𝑃 in the red vertices of the complete bipartite graph 𝐾6𝑚,𝑚 in 𝐺. Then
𝑆 blue vertices of each subpath 𝑃𝑆+1 should be embedded in 𝑆 blue vertices
of 𝐺, hence each subpath 𝑃𝑆+1 should be embedded in 𝑆 blue vertices in the
set of cycles 𝐶𝑎𝑖 . That is, each subpath 𝑃𝑆+1 is embedded in exactly three
cycles 𝐶𝑎𝑖 , 𝐶𝑎 𝑗

and 𝐶𝑎𝑘 for some 𝑖, 𝑗 , 𝑘 with 𝑎𝑖 + 𝑎 𝑗 + 𝑎𝑘 = 𝑆. Clearly, each
embedding of a subpath 𝑃𝑆+1 gives a subset of 𝐴, and the collection of these
subsets gives us a solution to the 3-Partition problem and vice versa. □

4.2 Bicolored Synthesis Problem

For a bicolored path 𝑃 and a bicolored graph 𝐺, let 𝑚𝑃,𝐺 be the maximum
number of red-red contacts across all embeddings of 𝑃 into 𝐺. In the previous
section, we showed that computing 𝑚𝑃,𝐺 is NP-hard, even assuming that the
solution space is non-empty. Now, in the spirit of protein synthesis, we
formulate the following problem:

Definition 16. Given a bicolored graph 𝐺, the bicolored synthesis problem
asks for the bicolored path 𝑃 of the same order as 𝐺 that maximizes 𝑚𝑃,𝐺 .

Translated into the language of protein folding, we are given the “form” of a
protein (i.e., a bicolored graph 𝐺), and we ask for the amino acid chain that
is most likely to fold into a protein of that particular form.

We will show that this problem is Poly-APX-hard, i.e., the optimum is
NP-hard to approximate within a sub-polynomial ratio.

Theorem 6. The bicolored synthesis problem is Poly-APX-hard.
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Figure 4.1: Sketch of the NP-hardness reduction from the 3-Partition prob-
lem. For clarity, the edges of the clique 𝐾6𝑚, as well as some edges of the
complete bipartite graph 𝐾6𝑚,𝑚, have been omitted.

Proof. We will give an approximation-preserving reduction from the Inde-
pendent Set problem, which is Poly-APX-complete [5]. For the reduction,
we borrow the edge gadget from [18], which is illustrated in Figure 4.2, top.
The top six vertices (next to the letter 𝑢) constitute the “top half” of the
gadget; the other six are the “bottom half”. If this gadget is part of a larger
graph, there are only three ways a Hamiltonian path can traverse it, as shown
in the figure.

Now, given a connected graph 𝐺′ = (𝑉 ′, 𝐸′), where 𝑉 ′ = {𝑣1, . . . , 𝑣𝑛},
we will construct a bicolored graph 𝐺 that implements our approximation-
preserving reduction as follows (an example is shown in Figure 4.3). First
we construct an edge gadget for each edge in 𝐸′. Then we connect edge
gadgets together in such a way that, for each vertex 𝑣𝑖 ∈ 𝑉 ′, there is a path,
called “strand,” that traverses (either the top or the bottom half of) each of
the edge gadgets corresponding to edges incident to 𝑣𝑖 in 𝐺

′. For example,
in Figure 4.3, the three gadgets labeled {𝑣2, 𝑣3}, {𝑣1, 𝑣2}, and {𝑣2, 𝑣4} are
connected together in sequence, forming a strand whose endpoints are labeled
𝑣2 in the figure. This represents the fact that the vertex 𝑣2 ∈ 𝑉 ′ is adjacent
to 𝑣1, 𝑣3, and 𝑣4 in 𝐺

′. It follows that each edge gadget is shared by precisely
two strands.

Next, we construct a selector gadget, shown at the top of Figure 4.3, which
simply consists of a path of 𝑛 + 3 vertices, the endpoints of which are called
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𝑠 and 𝑡. We connect each vertex of the selector gadget, except 𝑠 and 𝑡, to
both endpoints of all the previously constructed strands; these connections
are represented by dashed edges in the figure.

Finally, we color all vertices of 𝐺 blue except for 2𝑛 of them, as follows.
For each vertex 𝑣𝑖 ∈ 𝑉 ′, we choose one adjacent vertex 𝑣 𝑗 , we identify the
edge gadget corresponding to {𝑣𝑖, 𝑣 𝑗 }, and we color in red the two central
vertices in the gadget that belong to the strand of 𝑣 𝑗 , as shown in Figure 4.3.

This completes the construction. We will now prove that 𝐺′ has an
independent set 𝑆 ⊆ 𝑉 ′ of 𝑘 vertices if and only if there is a bicolored path 𝑃
of the same order as 𝐺 that can be bijectively embedded in 𝐺 forming exactly
𝑘 red-red contacts. This will imply that our reduction is approximation-
preserving. In the example in Figure 4.3, the independent set is 𝑆 = {𝑣1, 𝑣4}.

Note that the existence of an embedded path 𝑃 that forms 𝑘 red-red
contacts is equivalent to the existence of a Hamiltonian path in 𝐺 that avoids
exactly 𝑘 edges whose endpoints are both red. Now, any Hamiltonian path in
𝐺 must have endpoints in 𝑠 and 𝑡, and use the selector gadget to access some
of the strands. Once a strand has been chosen, it must be followed until the
end; after that, the path goes to the next vertex of the selector gadget, and
then into another strand. Along the strand of vertex 𝑣𝑖, each encountered
edge gadget {𝑣𝑖, 𝑣 𝑗 } has to be covered in one of two possible ways, depending
on whether the strand of 𝑣 𝑗 will be traversed or not. If the strand of 𝑣 𝑗 is
not going to be traversed, the path must cover all vertices in the edge gadget
{𝑣𝑖, 𝑣 𝑗 }; for example, see the edge gadget {𝑣1, 𝑣2} in the figure, where the
strand of 𝑣2 is traversed and the strand of 𝑣1 is not. In this case, if the edge
gadget contains two red vertices corresponding to 𝑣 𝑗 , these vertices will form
a red-red contact.

Thus, if a Hamiltonian path forms two red-red contacts corresponding to

u

v

Figure 4.2: Illustration of the edge gadget used in Theorem 6 (see [18]). The
bottom part of the figure shows the three possible ways a Hamiltonian path
can traverse this gadget.

36



1v 1v

2v

3v

4v 4v

}2, v1v{ }3, v1v{

}3, v2v{

}4, v3v{ }4, v2v{

1v

2v

3v

4v

s t

2v

3v

G

′G

Figure 4.3: Example of the approximation-preserving reduction used in The-
orem 6. As the dashed edges suggest, each vertex in 𝐺 labeled 𝑣1, . . . , 𝑣4 is
adjacent to all vertices in the top selector gadget, except 𝑠 and 𝑡. The vertices
of 𝐺′ circled in purple constitute an independent set that corresponds to a
path embedded in 𝐺 (drawn in green) with as many red-red contacts.

vertices 𝑣𝑎 and 𝑣𝑏, it means that it does not traverse the strands of 𝑣𝑎 and
𝑣𝑏. Hence 𝑣𝑎 and 𝑣𝑏 are not adjacent in 𝐺

′, otherwise there would be an edge
gadget {𝑣𝑎, 𝑣𝑏} in 𝐺 that is not covered by the path. So, the set of red-red
contacts determined by a Hamiltonian path corresponds to an independent
set of 𝐺′. Conversely, if 𝑆 is an independent set, traversing the strands of
the vertices in 𝑉 ′ \ 𝑆 yields a Hamiltonian path with |𝑆 | red-red contacts. □

4.3 Weighted Eulerian Path Problem

Now we show the main theorem in this section.

Theorem 7. Let 𝑃, 𝐺, ℓ be a path, an undirected graph, and a length func-
tion, respectively. Then the weighted Eulerian path problem is strongly NP-
hard even if ℓ(𝑒) is either 1 or 2 for any 𝑒 in 𝑃 and 𝐺.

Proof. It is easy to see that the problem is in NP. Therefore we show the
hardness. We reduce the 3-Partition problem to the weighted Eulerian path
problem.
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Let 𝑃𝐵+1 be a path that consists of 𝐵 consecutive edges of length 2, and 𝑃4
be a path that consists of 3 consecutive edges of length 1. Then the path 𝑃 is
obtained by joining 𝑚 subpaths 𝑃𝐵+1 and 𝑚 subpaths 𝑃4 alternatingly, that
is, 𝑃 is constructed by joining 𝑃𝐵+1, 𝑃4, 𝑃𝐵+1, 𝑃4, . . . , 𝑃4, 𝑃𝐵+1, and 𝑃4. The
graph 𝐺 is constructed as follows. For each 𝑖 with 1 ≤ 𝑖 ≤ 3𝑚, we construct a
cycle 𝐶𝑎𝑖 of 𝑎𝑖 edges of length 2. We also construct 𝑚 cycles 𝐶3 of 3 edges of
length 1. Then these 4𝑚 cycles share a special vertex 𝑐 in common. That is,
𝐺 is a cactus that consists of 4𝑚 cycles, and all vertices have degree 2 except
the common vertex 𝑐 that has degree 8𝑚. The construction is illustrated in
Figure 4.4.
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Figure 4.4: Construction of 𝑃 and 𝐺; bold lines are of length 2, and thin
lines are of length 1. Each 𝑃𝑖+1 consists of 𝑖 edges and each 𝐶𝑖 consists of 𝑖
edges.

It is easy to see that this is a polynomial-time reduction. Thus, we show
that 𝐴 has a solution if and only if 𝑃 can simulate 𝐺.

We first observe that no edge of length 2 in 𝑃𝐵+1 in 𝑃 can cover a cycle 𝐶3

in 𝐺. Therefore, when 𝑃 covers 𝐺, every 𝐶3 of 𝐺 has to be covered by 𝑃4 in
𝑃. Thus, each endpoint of 𝑃4 should be on 𝑐 in 𝐺, and no edge in 𝑃𝐵+1 can
cover edges in 𝐶3. Hence, each subpath 𝑃𝐵+1 in 𝑃 covers exactly 𝐵 edges in
the set of cycles 𝐶𝑎𝑖 that consists of edges of length 2. Since 𝐵/4 < 𝑎𝑖 < 𝐵/2
for each 𝑖, each subpath 𝑃𝐵+1 covers exactly three cycles 𝐶𝑎𝑖 , 𝐶𝑎 𝑗

and 𝐶𝑎𝑘
for some 𝑖, 𝑗 , 𝑘 with 𝑎𝑖 + 𝑎 𝑗 + 𝑎𝑘 = 𝐵. Clearly, each cover for a subpath 𝑃𝐵+1
gives a subset of 𝐴, and the collection of these subsets gives us a solution to
the 3-Partition problem and vice versa. □
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4.4 Elastic Linkage Problem

In this section, we consider the elastic linkage problem for two paths 𝐺 and
𝑃:

Elastic linkage problem from path to path

Input: Two paths 𝐺 = (𝑉 ′, 𝐸′) and 𝑃 = (𝑉, 𝐸) with length function ℓ.

Output: a mapping 𝜙 with minimum elastic (or stretch/shrink) ratio.

In this problem, we allow all edges in 𝑃 to be elastic to simulate the path 𝐺
by the path 𝑃.

We let 𝐺 is a path (𝑢1, 𝑢2, . . . , 𝑢𝑛′) and 𝑃 is a path (𝑣1, 𝑣2, . . . , 𝑣𝑛), see
Figure 4.5.

Figure 4.5: A path 𝑃 and a path 𝐺, path 𝑃 is an elastic linkage, edges in 𝑃
are allowed to be elastic to fit the vertices of 𝑃 to ones of 𝐺.

Without loss of generality, we assume that 𝑛′ ≤ 𝑛. Since each vertex in
𝐺 should be mapped from only one vertex in 𝑃, it should be 𝜙(𝑣1) = 𝑢1 and
𝜙(𝑣𝑛) = 𝑢𝑛′, otherwise the elastic ratio will be infinity.

We show a polynomial-time algorithm for this problem based on dynamic
programming.

First, we show a technical lemma when 𝐺 is just an edge. In this case,
the optimal value is achieved when all ratios are even.

Lemma 2. Assume that 𝐺 consists of an edge 𝑒′ = (𝑢1, 𝑢2). When 𝑃 = (𝑉, 𝐸)
is a path, the minimum elastic ratio is achieved when the ratio of each 𝑒 ∈ 𝐸
takes the same value.

Proof. Assume that the length of the edge 𝑒′ = (𝑢1, 𝑢2) in 𝐺 is 𝐿, 𝐸 =

{𝑒1, 𝑒2, . . . , 𝑒𝑛−1}, and the length of each 𝑒𝑖 is 𝑙𝑖. For a mapping 𝜙, let 𝑟𝑖 be
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Figure 4.6: An elastic linkage 𝑃 simulates a path 𝐺. The elastic ratio of an
edge {𝑣 𝑗 , 𝑣𝑘 } in 𝑃 is obtained by comparing the ratio of its original length to
the stretched length and the ratio’s reciprocal.

the ratio of the edge 𝑒𝑖 for each 𝑖 = 1, 2, . . . , 𝑛 − 1. Then we have 𝑟1𝑙1 + 𝑟2𝑙2 +
· · · + 𝑟𝑛−1𝑙𝑛−1 = 𝐿.

Assume the maximum among 𝑟𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 − 1 is 𝑟𝑘 , and the
minimum among 𝑟𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 − 1 is 𝑟ℎ. Thus, it is obvious that
𝑟𝑘 ≥ 𝐿/(𝑙1 + 𝑙2 + · · · + 𝑙𝑛−1), 1/𝑟ℎ ≥ (𝑙1 + 𝑙2 + · · · + 𝑙𝑛−1)/𝐿.
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Figure 4.7: An elastic linkage 𝑃 simulates an edge 𝐺, the minimum elastic
ratio is achieved when all edges in 𝑃 are stretched by the same factor.

According to the definition, the elastic ratio 𝑒𝑟 of this mapping is the
maximum among 𝑟𝑖 and its reciprocal for all 1 ≤ 𝑖 ≤ 𝑛 − 1 (see Figure 4.6).
That is, 𝑒𝑟 equals the larger of 𝑟𝑘 and 1/𝑟ℎ.

When 𝑟1 = 𝑟2 = · · · = 𝑟𝑛−1, max{𝑟𝑘 , 1/𝑟ℎ} takes the minimum. That
means the minimum elastic ratio can be achieved if and only if the ratio of
each 𝑒 ∈ 𝐸 takes the same value. Figure 4.7 gives us an example. An elastic
linkage 𝑃 simulates an edge 𝐺, the minimum elastic ratio is achieved when
all edges in 𝑃 are stretched by the same factor. □

Now we turn to the main theorem.
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Theorem 8. We can solve the elastic linkage problem from path to path in
𝑂 (𝑛3) time.

Proof. We assume path 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑛), the length of each edge {𝑣𝑖, 𝑣𝑖+1}
is 𝑙𝑖, path 𝐺 = (𝑢1, 𝑢2, . . . , 𝑢𝑛′), the length of each edge 𝑒′

𝑗
= {𝑢 𝑗 , 𝑢 𝑗+1} is 𝑤 𝑗 ,

and 𝑛 ≥ 𝑛′ ≥ 2.
We define two functions as follows for 𝑖 > 𝑖′ ≥ 𝑗 :

𝑑𝑖𝑠𝑡 (𝑣𝑖′, 𝑣𝑖) = 𝑙𝑖′ + 𝑙𝑖′+1 + · · · + 𝑙𝑖−1, and

𝑆𝑒𝑟 (𝑣𝑖′, 𝑣𝑖, 𝑒′𝑗 ) = max

{
𝑤 𝑗

𝑑𝑖𝑠𝑡 (𝑣𝑖′, 𝑣𝑖)
,
𝑑𝑖𝑠𝑡 (𝑣𝑖′, 𝑣𝑖)

𝑤 𝑗

}
.

That is, 𝑑𝑖𝑠𝑡 (𝑣𝑖′, 𝑣𝑖) is the length of the path (𝑣′
𝑖
, . . . , 𝑣𝑖), and 𝑆𝑒𝑟 (𝑣𝑖′, 𝑣𝑖, 𝑒′𝑗 )

is the minimum elastic ratio of all edges in the subpath 𝑃′ = (𝑣𝑖′, 𝑣𝑖′+1, . . . , 𝑣𝑖)
of 𝑃 that covers the edge {𝑢 𝑗 , 𝑢 𝑗+1}. We first precompute these functions as
tables which will be referred in our polynomial-time algorithm. The com-
putation of the corresponding table 𝑆𝑒𝑟 [(𝑣𝑖′, 𝑣𝑖), 𝑒′𝑗 ] can be done as follows1:

(1) for each (𝑣𝑖′, 𝑣𝑖) with 𝑖′ < 𝑖, compute 𝑑𝑖𝑠𝑡 (𝑣𝑖′, 𝑣𝑖) and fill in the table
𝑑𝑖𝑠𝑡 [𝑣𝑖′, 𝑣𝑖], (2) for each 𝑗 = 0, 1, . . . , 𝑛′, compute 𝑆𝑒𝑟 (𝑣𝑖′, 𝑣𝑖, 𝑒′𝑗 ) and fill in the

table 𝑆𝑒𝑟 [(𝑣𝑖′, 𝑣𝑖), 𝑒′𝑗 ]. In (1), each 𝑑𝑖𝑠𝑡 (𝑣𝑖′, 𝑣𝑖) can be computed in a constant
time by using 𝑑𝑖𝑠𝑡 (𝑣𝑖′, 𝑣𝑖) = 𝑑𝑖𝑠𝑡 (𝑣𝑖′, 𝑣𝑖−1) + ℓ(𝑒𝑖−1) when we compute the val-
ues of this table in the order of (𝑖 − 𝑖′) = 1, 2, 3, . . . . On the other hand, in
(2), each 𝑆𝑒𝑟 (𝑣𝑖′, 𝑣𝑖, 𝑒′𝑗 ) can be computed in a constant time. Therefore, the

precomputation can be done in 𝑂 (𝑛3) time in total.

Figure 4.8: We consider to use the subpath 𝑃′ = (𝑣1, 𝑣2, ..., 𝑣𝑖) of path 𝑃 to
simulate the subpath 𝐺′ = (𝑢1, 𝑢2, ..., 𝑢 𝑗 ) of path 𝐺, and we have 𝜙(𝑣1) = 𝑢1,
𝜙(𝑣𝑖) = 𝑢 𝑗 .

To solve the elastic linkage problem efficiently, we define two more func-
tions 𝐸𝑅(𝑣𝑖, 𝑢 𝑗 ) and 𝑀 (𝑣𝑖, 𝑢 𝑗 ) as follows. First, 𝐸𝑅(𝑣𝑖, 𝑢 𝑗 ) is the minimum

1In this thesis, for a function 𝑓 () and a predicate 𝑝(), their corresponding tables (or
arrays in program) are denoted by 𝑓 [] and 𝑝 [], respectively.
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Figure 4.9: We consider to use the subpath 𝑃′ = (𝑣1, 𝑣2, ..., 𝑣𝑖) of path 𝑃 to
simulate the subpath 𝐺′ = (𝑢1, 𝑢2, ..., 𝑢𝑚−1) of path 𝐺, and we have 𝜙(𝑣1) =
𝑢1, 𝜙(𝑣𝑖) = 𝑢𝑚−1.

elastic ratio of the mappings from the subpath 𝑃′ = (𝑣1, 𝑣2, . . . , 𝑣𝑖) of 𝑃 to
the subpath 𝐺′ = (𝑢1, 𝑢2, . . . , 𝑢 𝑗 ) of 𝐺, see Figure 4.8 and Figure 4.9. Then
we have the following:
𝐸𝑅(𝑣𝑖, 𝑢 𝑗 ) ={

𝑆𝑒𝑟 (𝑣1, 𝑣𝑖, 𝑒′1) 𝑗 = 2
min{max{𝐸𝑅(𝑣𝑘 , 𝑢 𝑗−1), 𝑆𝑒𝑟 (𝑣𝑘 , 𝑣𝑖, 𝑒′𝑗−1)}𝑘 = 𝑗 − 1, 𝑗 , . . . , 𝑖 − 1} 𝑗 > 2

Our goal is to obtain the mapping from 𝑃 to 𝐺 with elastic ratio 𝐸𝑅(𝑣𝑛, 𝑢𝑛′).
Next, 𝑀 (𝑣𝑖, 𝑢 𝑗 ) is a sequence of 𝑗 vertices of path 𝑃 that represents the

mapping with minimum elastic ratio from the subpath 𝑃′ to the subpath
𝐺′. The first and last vertices in 𝑀 (𝑣𝑖, 𝑢 𝑗 ) are 𝑣1 and 𝑣𝑖. Then we have the
following:

𝑀 (𝑣𝑖, 𝑢 𝑗 ) =
{
(𝑣1, 𝑣𝑖) when 𝑗 = 2
(𝑀 (𝑣𝜏, 𝑢 𝑗−1), 𝑣𝑖) when 𝑗 > 2,

where 𝜏 is determined by the following equation;

𝐸𝑅(𝑣𝑖, 𝑢 𝑗 ) = max{𝐸𝑅(𝑣𝜏, 𝑢 𝑗−1), 𝑆𝑒𝑟 (𝑣𝜏, 𝑣𝑖, 𝑒′𝑗−1)}.

Then our goal is to obtain 𝑀 (𝑣𝑛, 𝑢𝑛′). The 𝐸𝑅(𝑣𝑛, 𝑢𝑛′) and 𝑀 (𝑣𝑛, 𝑢𝑛′) can
be obtained simultaneously by the dynamic programming technique. In the
tables of 𝐸𝑅(𝑣𝑛, 𝑢𝑛′) and 𝑀 (𝑣𝑛, 𝑢𝑛′), 𝐸𝑅(𝑣𝑛, 𝑢𝑛′) and 𝑀 (𝑣𝑛, 𝑢𝑛′) are easy to
get if the values in the (𝑛′ − 2)-nd row are available. The table 𝐸𝑅(𝑣𝑛, 𝑢𝑛′) is
filled from 𝑗 = 2, that is, for each 𝑣𝑖 = 𝑣1, 𝑣2, . . . , 𝑣𝑛, 𝐸𝑅(𝑣𝑖, 𝑢1) = 𝑆𝑒𝑟 (𝑣1, 𝑣𝑖, 𝑒′1)
has already been computed, and accordingly, the first row of table 𝑀 (𝑣𝑛, 𝑢𝑛′)
is 𝑀 (𝑣𝑖, 𝑢1) = (𝑣1, 𝑣𝑖). After filling in the first row of the tables, it is easy to
get the values in the second row, the third row, up to the (𝑛′−2)-nd row and
finally get 𝐸𝑅(𝑣𝑛, 𝑢𝑛′) and 𝑀 (𝑣𝑛, 𝑢𝑛′). Each element of the table 𝐸𝑅(𝑣𝑛, 𝑢𝑛′)
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can be computed in 𝑂 (𝑛) time, and each element of the table 𝑀 (𝑣𝑛, 𝑢𝑛′) can
be computed in constant time. Therefore, the computation of 𝐸𝑅(𝑣𝑛, 𝑢𝑛′)
and 𝑀 (𝑣𝑛, 𝑢𝑛′) can be done in 𝑂 (𝑛3) time, and the precomputation also can
be done in 𝑂 (𝑛3) time. Thus, the algorithm runs in 𝑂 (𝑛3) time, which means
the elastic linkage problem can be solved in polynomial time. □
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Figure 4.10: General cover problem. 𝑃 is a linkage and 𝐺 is an edge with
length 𝐿 = 3.

4.5 Traverse Problem of a Tree by a Path

In this section, we focus on the traverse problem of 𝐺 by 𝑃. In this variant,
we allow 𝑃 to cover an edge of 𝐺 twice.

4.5.1 General Cover Problem

Before the traverse problem, we consider a more general case that allows 𝑃 to
cover an edge of 𝐺 twice or more. This general simulation problem is similar
to the following ruler folding problem:

Ruler Folding: Given an integer 𝐿 and a polygonal chain with links of
integer length ℓ1, . . . , ℓ𝑛−1, can the chain be folded flat so that its total
folded length is 𝐿?
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The details of this problem and related results can be found in [18]. In our
context, we have the following theorem:

Theorem 9. The general simulation problem of 𝐺 by 𝑃 is NP-complete even
if 𝐺 is an edge.

Proof. We can reduce the ruler folding problem to our problem by just letting
𝐺 be an edge of length 𝐿 (see Figure 4.10). □

We note that the ruler folding problem is weakly NP-complete, and we
have a simple pseudo-polynomial-time algorithm that runs in 𝑂 (𝑛𝐿) time as
follows;

Input: Set of integers 𝑆 = {ℓ1, . . . , ℓ𝑛−1} and an integer 𝐿
Output: Determine if there is 𝐼 ⊆ {1, . . . , 𝑛 − 1} with

∑
𝑖∈𝐼 ℓ𝑖 == 𝐿

begin
Initialize array 𝑎[0], . . . , 𝑎[𝐿] by 0;
Set 𝑎[0] = 1;
foreach 𝑖 = 1, . . . , 𝑛 − 1 do

foreach 𝑗 = 0, . . . , 𝐿 do
if 𝑎[ 𝑗] == 1 and 𝑗 + ℓ𝑖 ≤ 𝐿 then 𝑎[ 𝑗 + ℓ𝑖] = 1;

end

end
if 𝑎[𝐿] == 1 then output “Yes”;
else output “No”;

end

4.5.2 Tree Traversal Problem

Now we turn to the traverse problem. Even if a connected graph 𝐺 has no
Eulerian path, when we allow 𝑃 to visit each edge in 𝐺 twice, we can visit
all vertices of 𝐺 by a path in the depth-first search manner.

Therefore, we consider the following traversal problem as a kind of the
linkage simulation problem:

Input: A path 𝑃 = (𝑉, 𝐸) that forms a path (𝑣1, 𝑣2, . . . , 𝑣𝑛), and a graph
𝐺 = (𝑉 ′, 𝐸′) with length function ℓ : 𝐸 ∪ 𝐸′ → R.

Output: A mapping 𝜙 from 𝑃 to 𝐺 such that each edge in 𝐺 is mapped
from exactly two subpaths of 𝑃, or “No” if it does not exist.
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We first observe that it is linear-time solvable when each edge has the unit
length just by depth-first search. Therefore, it is an interesting question
that asks the computational complexity when ℓ maps to few distinct values,
especially, ℓ maps to two distinct values.

NP-Completeness Results

We give three hardness results about the traversal problem even if the graph
𝐺 is a simple tree 𝑇 and the edge lengths are quite restricted.

Theorem 10. The traversal problem of a tree 𝑇 by a path 𝑃 is strongly NP-
complete in each of the following cases: (1) 𝑇 is a star 𝐾1,𝑛−1, and 𝑃 consists
of edges of two different lengths. (2) 𝑇 is a spider, and all edges in 𝐺 and 𝑃
are of length 𝑝 and 𝑞, where (2a) 𝑝 and 𝑞 are any two positive integers that
are relatively prime, or (2b) 𝑝 = 1 and 𝑞 = 2.

Proof. Since it is clear that each of the problems is in NP, we show their
hardness. We will give polynomial-time reductions from the 3-Partition to
our problems.
(1) 𝑇 is a star 𝐾1,4𝑚+1. Among 4𝑚 + 1 edges, the length of 𝑚 + 1 edges is 𝐵,
and the other 3𝑚 edges have length 𝑎𝑖 for each 𝑖 = 1, 2, . . . , 3𝑚 (Figure 4.11).
The construction of 𝑃 is as follows. Let 𝑃′ be a path that consists of 2𝐵
edges of length 1, and 𝑃′′ be a path that consists of 2 edges of length 𝐵.
Then the path 𝑃 is obtained by joining 𝑚+1 subpaths 𝑃′′ and 𝑚 subpaths 𝑃′

alternatingly, that is, 𝑃 is constructed by joining 𝑃′′, 𝑃′, 𝑃′′, 𝑃′, 𝑃′′, . . . , 𝑃′, 𝑃′′

as shown in Figure 4.11.

P
P’’ P’

B

ai

T

B

1

m+1 3m

B 1 1

P’’

2B

P’ P’ P’’

Figure 4.11: Reduction to 𝐾1,4𝑚+1 and a path 𝑃.

The construction is done in polynomial time. Thus, we show that the 3-
Partition problem has a solution if and only if the constructed cover problem
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has a solution. We first observe that 𝑃′′ cannot cover any short edge of length
𝑎𝑖 in 𝑇 . Therefore, each 𝑃′′ should cover each edge of length 𝐵 in 𝑇 twice.
Hence all of the endpoints of 𝑃′′s (and hence 𝑃′) are on the central vertex of
𝑇 . Therefore, if 𝑃 can cover 𝑇 properly, it is easy to see that each 𝑃′ should
cover three edges of length 𝑎𝑖, 𝑎 𝑗 , and 𝑎𝑘 with 𝑎𝑖 + 𝑎 𝑗 + 𝑎𝑘 = 𝐵 exactly twice.
This concludes the proof of (1).
(2a) This reduction is similar to (1). Let 𝑃′ be a path that consists of 2𝐵
edges of length 𝑝, and 𝑃′′ be a path that consists of 2 edges of length 𝑞.
Then the path 𝑃 is obtained by joining 𝑚 + 1 subpaths 𝑃′′ and 𝑚 subpaths
𝑃′ alternatingly. On the other hand, the spider 𝑇 is obtained by sharing the
central vertex of 4𝑚 + 1 subpaths (Figure 4.12). Among 4𝑚 + 1 subpaths,
𝑚 + 1 paths are just edges of length 𝑞. The other 3𝑚 subpaths are of 𝑎𝑖
edges for each 1 ≤ 𝑖 ≤ 3𝑚, and each edge has length 𝑝. Since 𝑝 and 𝑞 are
relatively prime, 𝑃′′ cannot cover each of the edges of length 𝑝. Therefore,
their endpoints (and the endpoints of 𝑃′) share the central vertex of 𝑇 . Thus,
each 𝑃′ gives us the solution of the 3-Partition as in (1), which completes the
proof of (2a).
(2b) The reduction itself is the same as (2a) except 𝑝 = 1 and 𝑞 = 2. In
this case, we observe that no edge of length 1 can be covered by any edge of
length 2 in 𝑃′′. Therefore, each edge of 𝑃′′ of length 2 should cover the edges
of 𝑇 of length 2. Thus, each 𝑃′ gives us the solution of the 3-Partition as in
(2a), which completes the proof of (2b). □
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Figure 4.12: Reduction to spider of two different lengths.
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Polynomial Time Solvable Case

In Theorem 10, we show that the traversal problem of a tree by a path
is NP-hard even if we strictly restrict ourselves. Now we turn to show a
polynomial-time algorithm for the case that we furthermore restrict. The
Figure 4.13 shows the constructions of a path 𝑃 and a tree 𝑇 in this case, 𝑇
is a star and its edge lengths are of 𝑘 different values.

Figure 4.13: Constructions of a star 𝑇 with 𝑘 different edge lengths
ℓ1, ℓ2, . . . , ℓ𝑘 and a path 𝑃 of length 𝑛.

Theorem 11. Let 𝑇 be a star 𝐾1,𝑛′ and the number of distinct lengths of
its edges is 𝑘. Let 𝑃 be any path of length 𝑛. Without loss of generality,
we suppose 2𝑛′ ≤ 𝑛. Then the traversal problem of 𝑇 by 𝑃 can be solved in
𝑂 (𝑛𝑘+1) time and 𝑂 (𝑛𝑘 ) space. That is, it is polynomial-time solvable when
𝑘 is a constant.

Proof. We suppose that each edge of 𝑇 has a length in 𝐿 = {ℓ1, ℓ2, . . . , ℓ𝑘 },
and 𝑇 contains 𝐿𝑖 edges of length ℓ𝑖 for each 𝑖. For a vertex 𝑣𝑖 in 𝑃 and length
ℓ 𝑗 in 𝐿, we define a function pre(𝑣𝑖, ℓ 𝑗 ) as follows;

pre(𝑣𝑖, ℓ 𝑗 ) =

𝑣𝑘 there is a vertex 𝑣𝑘 with 𝑘 < 𝑖 on 𝑃
ℓ(𝑒𝑘 ) + ℓ(𝑒𝑘+1) + · · · + ℓ(𝑒𝑖) = ℓ 𝑗 .

𝜙 otherwise

We first precompute this function as a table which will be referred to in
our polynomial-time algorithm. To distinguish the function pre(𝑣𝑖, ℓ 𝑗 ), we
refer to this table as pre[𝑣𝑖, ℓ 𝑗 ] which uses 𝑂 (𝑛𝑘) space. The computation of
pre[] can be done as follows; (0) initialize pre[] by 𝜙 in 𝑂 (𝑛𝑘) time, (1) sort
𝐿 in 𝑂 (𝑘 log 𝑘) time, and (2) for each 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑘−1, the
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vertex 𝑣𝑖 fills the table pre[𝑣𝑖′, ℓ 𝑗 ] = 𝑣𝑖. In (2), the vertex 𝑣𝑖 can fill pre[𝑣𝑖′, ℓ 𝑗 ] =
𝑣𝑖 in 𝑂 (𝑛+ 𝑘) time. Therefore, the precomputation takes 𝑂 (𝑛(𝑛+ 𝑘) + 𝑘 log 𝑘)
time in 𝑂 (𝑛𝑘) space.

Figure 4.14: For each edge in 𝑇 , find a subpath of 𝑃 which covers this edge
exactly twice.

Now we turn to the computation for the traversal problem. To do that, we
define a predicate 𝐹 (𝑑1, 𝑑2, . . . , 𝑑𝑘 , 𝑣𝑖) which is defined as follows: When there
is a cover of a subtree 𝑇 ′ of 𝑇 that consists of 𝑑1 edges of length ℓ1, 𝑑2 edges
of length ℓ2, . . ., and 𝑑𝑘 edges of length ℓ𝑘 by the subpath 𝑃′ = (𝑣1, 𝑣2, . . . , 𝑣𝑖)
when 𝑣1 and 𝑣𝑖 are put on the center of 𝑇 , 𝐹 (𝑑1, 𝑑2, . . . , 𝑑𝑘 , 𝑣𝑖) is true, and false
otherwise. (For notational convenience, we define that 𝐹 (𝑑1, 𝑑2, . . . , 𝑑𝑘 , 𝜙) is
always false.) Thus, our goal is to determine if 𝐹 (𝐿1, 𝐿2, . . . , 𝐿𝑘 , 𝑣𝑛) is true
or false. The predicate 𝐹 (𝑑1, 𝑑2, . . . , 𝑑𝑘 , 𝑣𝑖) is determined by the following
recursion;
𝐹 (𝑑1, 𝑑2, . . . , 𝑑𝑘 , 𝑣𝑖) =∨

1≤ 𝑗≤𝑘
((pre(𝑣𝑖, ℓ 𝑗 ) ≠ 𝜙) ∧ 𝐹

(𝑑1, . . . , 𝑑 𝑗 − 2, . . . , 𝑑𝑘 ,
pre(pre(𝑣𝑖, ℓ 𝑗 ), ℓ 𝑗 )))

.

That is, for the vertex 𝑣𝑖, we have to have two vertices 𝑣𝑖′ = pre(𝑣𝑖, ℓ 𝑗 )
and 𝑣𝑖′′ = pre(pre(𝑣𝑖, ℓ 𝑗 ), ℓ 𝑗 ) such that ℓ(𝑒𝑖′) + ℓ(𝑒𝑖′+1) + · · · + ℓ(𝑒𝑖) = ℓ 𝑗 and
ℓ(𝑒𝑖′′) + ℓ(𝑒𝑖′′+1) + · · · + ℓ(𝑒𝑖′) = ℓ 𝑗 for some 𝑗 with 1 ≤ 𝑗 ≤ 𝑘. The correctness
of this recursion is trivial. The basic idea is shown in Figure 4.14.

The predicate 𝐹 (𝐿1, 𝐿2, . . . , 𝐿𝑘 , 𝑣𝑛) is computed by a dynamic program-
ming technique. That is, the table 𝐹 [𝑑1, 𝑑2, . . . , 𝑑𝑘 , 𝑣𝑖], corresponding to the
predicate 𝐹 (𝐿1, 𝐿2, . . . , 𝐿𝑘 , 𝑣𝑛), is filled from 𝑑1 = 0, 𝑑2 = 0, . . . , 𝑑𝑘 = 0 for the
center vertex 𝑐, which is true. Then, we increment in the bottom up manner;
that is, we increment as (𝑑1, 𝑑2, . . . , 𝑑𝑘 ) = (0, 0, . . . , 0, 1), (0, 0, . . . , 1, 0), . . .,
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(0, 1, . . . , 0, 0), (1, 0, . . . , 0, 0), (0, 0, . . . , 0, 2), (0, 0, . . . , 1, 1), . . ., (0, 1, . . . , 0, 1),
(1, 0, . . . , 0, 1), and so on. The number of combinations of (𝑑1, 𝑑2, . . . , 𝑑𝑘 ) is
𝐿1 · 𝐿2 · · · · · 𝐿𝑘 ≤ 𝑛′𝑘 = 𝑂 (𝑛𝑘 ), and the computation of 𝐹 [𝑑1, 𝑑2, . . . , 𝑑𝑘 , 𝑣𝑖]
for the (𝑑1, 𝑑2, . . . , 𝑑𝑘 ) can be done in linear time. Therefore, the algorithm
runs in 𝑂 (𝑛𝑘+1) time and 𝑂 (𝑛𝑘 ) space. □
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Chapter 5

Concluding Remarks

This research starts from the observation that standard techniques for the
HP model can be criticized for embedding proteins in a square 2D lattice
and relying on the properties of parity in the lattice. In fact, such parity-
related observations have no meaning in the real protein folding problem
that the theory aims to model. Also, the standard measure being used in
the HP model for how well an amino acid chain folds into a protein (namely,
the number of amino acids of a certain type that are close together in the
embedding) is not the only possible way to capture the intricate physical and
chemical laws that describe how a real protein folds.

These observations led us to some new variants of the protein folding
model, which we defined and explored in this thesis. We combined the basic
ideas of protein folding with the complementary problem of protein design,
thus formulating several protein folding problems in terms of embedding of
paths into graphs.

Inspired by protein folding in the HP model, we proposed the bicolored
path embedding problem and linkage simulation problem. We studied these
problems in both grid graphs and general graphs. We showed that these
problems are NP-hard in several settings, and polynomial-time solvable under
some constraints.

5.1 Contribution and Conclusion

Most of our results indicate that several protein folding problems are compu-
tationally intractable in our models. In general, knowing that a problem is
computationally hard (e.g., NP-hard) should discourage us from seeking an
efficient solution. However, in the context of protein folding, a proof of NP-
hardness can also provide insights on the deeper reasons why nature works in
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a certain way. For example, the fact that protein folding is computationally
hard in a given model might be evidence that the model is incorrect and
should be modified. Nonetheless, it could also mean that the model is accu-
rate, but the instances of the problem that have been proved to be hard never
occur in practice. In this case, a hardness result sheds some light on which
patterns and configurations are naturally avoided in biological systems, and
why.

As a result of this research, we now have some alternative models for
protein folding and design, and some efficient algorithms for solving typical
problems in these models. We also have several results that indicate when
such problems are computationally intractable, which is a contribution to our
theoretical understanding of protein folding and graph embedding problems
in general.

Indeed, since this thesis studies fairly general and abstract graph-theoretic
problems, its applications are not limited to protein folding and design, but
extend to any problem where a foldable chain has to be packed into a space
of a certain shape while satisfying some constraints. A notable application
is in robotics: some of the folding models we introduced pertain to linkages,
which serve as a model for robot arms and mechanisms.

Furthermore, this research did some ground work to enable new and ex-
citing lines of investigation including, for example, smoothed analysis. The
models we have created and the intractability results we obtained offer the
ideal setting for studying protein folding in the presence of small amounts
of random noise in the input data. This new direction of research, based on
smoothed analysis, would offer a theoretically valid explanation as to why
nature is able to efficiently solve protein folding problems, while the same
problems are classified as intractable by traditional worst-case complexity
theory.

5.2 Future Work

In this section, we will discuss some open questions related to this research
and possible future research directions.

Our hardness results indicate that certain general problems related to
protein folding are probably intractable by computers. Interpreting some of
these results in practical terms is ultimately a philosophical matter: since
nature does indeed seem to solve NP-hard protein folding problems in an
efficient way, this may indicate that our ways of modeling computation (e.g.,
Turing machines) do not correctly reflect the way nature works. It may also
indicate that discrete models of protein folding such as the HP model do
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not faithfully capture the essence of real protein folding, or that our NP-
hardness reductions produce instances of amino acid chains and proteins
that are unlikely to be found in real biological systems. To address the latter
issue, we suggest studying the same problems under the smoothed analysis
paradigm: adding small amounts of random noise to an amino acid chain
may be sufficient to eliminate the special patterns that cause protein folding
to be computationally intractable.

5.2.1 Open Problems

Another way of interpreting our hardness results is as an “upper bound” on
what can be done efficiently by computers. For example, Theorem 6 states
that guessing an amino acid chain that is likely to fold into a protein of a
given arbitrary shape is a hopelessly hard problem. This knowledge should
discourage us from attempting to find efficient algorithms for the general
problem, and direct us toward special cases or relaxations of the problem.
For instance, it would be interesting to know if Theorem 6 remains true when
𝐺 is a grid graph: we leave this as an open question.

Some other open questions are whether the running time of the dynamic-
programming algorithm in Section 3.2.2 and Section 4.4 can be improved.

Also, it would be interesting to find other natural classes of blueprints
for which the bicolored path embedding problem is polynomial-time solvable.
Moreover, we would like to study more variants of the weighted Eulerian path
problem. For example, the advanced elastic linkage problem, which combines
the ideas of the elastic linkage problem and the tree traversal problem. In
this problem, we do not only want 𝑃 to cover an edge of 𝐺 twice or more,
but we also let the edges in 𝑃 be elastic.

5.2.2 New Techniques

Aside from the above results, there are also some promising directions and
techniques that we are currently exploring. These methods include Smoothed
Analysis and Linear Programming .

Smoothed Analysis

In theoretical Computer Science, Smoothed Analysis is a method to measure
the complexity of an algorithm. It is a hybrid between worst-case analysis
and average analysis, taking the best aspects of both approaches.

Smoothed Analysis is based on the assumption that the input to real
problems is subject to small random perturbations. The premise is that
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what makes some problems (NP-)hard is the coexistence of several factors
that are statistically unlikely. For example, there are algorithms (such as the
simplex algorithm for linear programming) that run in exponential time in
the worst case, but become very efficient as soon as small perturbations are
introduced in the input data.

A similar phenomenon may very well be occurring with protein folding.
Indeed, random perturbations are extremely common in chemical reactions,
and amino acid chains spontaneously fold into proteins by undergoing lo-
cal deformations that may be described by simple algorithms. Essentially,
nature can solve the protein folding problem efficiently in spite of its NP-
hardness, and the explanation may be that the input data always has some
random noise. Smoothed Analysis provides the theoretical tools to validate
this assumption and make it rigorous.

Thus, our approach is to find greedy and local protein-folding algorithms,
inspired by the laws of Chemistry and Biology, which necessarily converge
very slowly on some pathological inputs (since the problem is NP-hard in
general), but become very efficient as soon as small perturbations are intro-
duced in the input data. Our goal is to use Smoothed Analysis to prove that
such algorithms achieve good approximation ratios with high probability.

Linear Programming

In previous works, the problem of optimal protein folding in the HP model
(maximizing some objective function given by local constraints) has been
successfully modeled as a Mixed Integer Programming problem (where some
of the variables are real numbers, and some of them are integers). Typi-
cally, in this line of research, a Linear Optimization solver is used to find
an optimal solution. This step takes exponential time, and the technique
is only applicable to very small instances; also, previous works are mostly
experimental.

Our approach is to study the continuous relaxation of a suitably mod-
eled problem in the HP model. In practice, the protein folding problem is
modeled as a Linear Programming problem where all variables are real, and
the optimal solution is found efficiently by standard methods. This solution
may be fractional; this means that, instead of giving the exact position of
every amino acid in the folded state, it only gives a probability distribution
describing where it is likely to be. The problem we are studying now is how
to sample from this probability distribution to obtain a valid embedding for
the amino acid chain which achieves a good approximation of the optimum.
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