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Introduction

Static single assignment form (SSA form) is a program representation. In
SSA form, each use of a variable has a single definition point. This property
facilitates a possibility and execution efficiency of program optimization.

It is necessary for SSA optimization to translate from an intermediate
form in each compiler into SSA form. The algorithm for translating into
SSA form proposed by Cytron et al.[1] and that by Sreedhar et al.[2] are
well known. In SSA translation, occurrences of alias such as a pointer vari-
able become a subject of discussion, since pointer variables make it more
difficult to analyze the data flow. Actually, the conventional algorithms
above cannot analyze programs including pointers.

In order to solve this problem, several algorithms that utilize a pointer
analysis information to translate into SSA form have already been pro-
posed. Many of these algorithms use flow-sensitive pointer analysis. The
algorithm proposed by Cytron et al.[3] is one of this type. In contrast, Hasti
et al.[4] suggested the algorithm based on flow-insensitive pointer analysis
of late years. Generally, while flow-sensitive analysis provides more precise
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information than flow-insensitive one, it is more costly in terms of time
and space.

The experiments for comparing these algorithms are seldom carried out
on the same compiler framework, though the proposers of the algorithm
usually has their own implementations. For example, Nakaya[5] has re-
ported that two SSA translation algorithms[1][2] which have the different
order of computational effort are not so much of a difference regarding the
performance except for particular cases. Thus, practical performance is
sometimes better than theoretical (i.e., worst-case) performance.

Purpose

In this paper, we present (i)our own compiler framework based on XML
program representation as testing environment, (ii)implementations of two
contrasting algorithms[3][4] for translating into SSA form with pointer
analysis information, and (iii)a comparison of the two algorithms.

Conclusions

We have implemented a compiler framework based on XML program repre-
sentation with a goal of comparing algorithms for translating into SSA form
with pointer analysis information. Then, we implemented algorithms|3][4]
on our compiler framework, which shows that it has advantages as de-
scribed below.

e Our compiler framework has sufficient functions to deal with algo-
rithms for SSA translation based on pointer analysis.

e A program representation based on XML reduces the cost of imple-
mentations.

e [t is possible to compile and execute programs, measure the perfor-
mance on our compiler framework as a practical matter.

Of course, further comparative experiments for these algorithms are re-
quired. Therefore, the evaluation of our compiler framework, that have
been carried out in this paper, is regarded as a preliminary experiment
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for comparing algorthms. In the future, we need to improve our compiler
framework for further detailed experiments.
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