JAIST Repository

https://dspace.jaist.ac.jp/

Title

iUy UUg o

googogo
Author(s) oo, 00
Citation
Issue Date 2004-03
Type Thesis or Dissertation

Text version

aut hor

.net/101p9/1798

URL http:/7/7 hdl handl
Rights
Description Supervisor: oo 0O4d, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Implementation and Comparative Experiments of
Translating Algorithms to SSA form based on pointer
analysis

Shinsuke Nishimoto (210067)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 13, 2004

Keywords: Static single assignment form (SSA form), Pointer analysis,
Compiler framework, XML.

Introduction

Static single assignment form (SSA form) is a program representation. In
SSA form, each use of a variable has a single definition point. This property
facilitates a possibility and execution efficiency of program optimization.

It is necessary for SSA optimization to translate from an intermediate
form in each compiler into SSA form. The algorithm for translating into
SSA form proposed by Cytron et al.[1] and that by Sreedhar et al.[2] are
well known. In SSA translation, occurrences of alias such as a pointer vari-
able become a subject of discussion, since pointer variables make it more
difficult to analyze the data flow. Actually, the conventional algorithms
above cannot analyze programs including pointers.

In order to solve this problem, several algorithms that utilize a pointer
analysis information to translate into SSA form have already been pro-
posed. Many of these algorithms use flow-sensitive pointer analysis. The
algorithm proposed by Cytron et al.[3] is one of this type. In contrast, Hasti
et al.[4] suggested the algorithm based on flow-insensitive pointer analysis
of late years. Generally, while flow-sensitive analysis provides more precise

Copyright (© 2004 by Shinsuke Nishimoto



information than flow-insensitive one, it is more costly in terms of time
and space.

The experiments for comparing these algorithms are seldom carried out
on the same compiler framework, though the proposers of the algorithm
usually has their own implementations. For example, Nakaya[5] has re-
ported that two SSA translation algorithms[1][2] which have the different
order of computational effort are not so much of a difference regarding the
performance except for particular cases. Thus, practical performance is
sometimes better than theoretical (i.e., worst-case) performance.

Purpose

In this paper, we present (i)our own compiler framework based on XML
program representation as testing environment, (ii)implementations of two
contrasting algorithms[3][4] for translating into SSA form with pointer
analysis information, and (iii)a comparison of the two algorithms.

Conclusions

We have implemented a compiler framework based on XML program repre-
sentation with a goal of comparing algorithms for translating into SSA form
with pointer analysis information. Then, we implemented algorithms|3][4]
on our compiler framework, which shows that it has advantages as de-
scribed below.

e Our compiler framework has sufficient functions to deal with algo-
rithms for SSA translation based on pointer analysis.

e A program representation based on XML reduces the cost of imple-
mentations.

e [t is possible to compile and execute programs, measure the perfor-
mance on our compiler framework as a practical matter.

Of course, further comparative experiments for these algorithms are re-
quired. Therefore, the evaluation of our compiler framework, that have
been carried out in this paper, is regarded as a preliminary experiment

2



for comparing algorthms. In the future, we need to improve our compiler
framework for further detailed experiments.

References

[1] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. An Efficient Method of Computing Static
Single Assignment Form. Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
25-25, January 1989.

[2] Vugranam C. Sreedhar and Guang R. Gao. A Linear Time Algo-
rithm for Placing @ -Nodes. Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
62-73, January 1995.

[3] Ron Cytron and Reid Gershbein. Efficient accommodation of may-
alias information in SSA form. Proceedings of the Conference on Pro-

gramming Language Design and Implementation, pages 36-45, June
1993.

[4] Rebecca Hasti and Susan Horwitz. Using static single assignment
form to improve flow-insensitive pointer analysis. Proceedings of the
ACM SIGPLAN ’98 Conference on Programming Language Design
and Implementation, pages 97-105, 1998.

[5] Toshiharu Nakaya. Implementation and Evaluation of Static Single
Assignment Form Converter in Compiler Infrastructure. Tokyo Insti-
tute Technology, Information Science, Graduate Thesis, 2001. (In
Japanese)



