
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
DWARF2デバッグ情報を用いたプログラム理解ツールの

設計と実現

Author(s) 鈴木, 朝也

Citation

Issue Date 2004-03

Type Thesis or Dissertation

Text version none

URL http://hdl.handle.net/10119/1800

Rights

Description Supervisor:片山 卓也, 情報科学研究科, 修士



Design and Implementation for Program
Understanding

Tool using DWARF2 Debug Information

Tomoya Suzuki (210051)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 13, 2004

Keywords: DWARF2, debug information, XML, CASE tool, data

integration.

C language is useful because using C improves significantly development ef-

ficiency and portability without degrading much execution time and mem-

ory in the case of demanding assembly language though it has some prob-

lems such as security. It is important to improve reliability of software
which is described in C language and used for fundamental computer sys-

tems like OS or language processors. However, since access to fixed address

of hardware using addressing operators is permited in C, checking is not
thoroughly done in compile-time and run-time. Thus, for reducing bugs

in C’s code and making the system safer, it is necessary to provide CASE

tools which assist efficient development and maintenance.

For efficient development of flexible CASE tools, data integration which
defines a common format so that CASE tools can use the same data is

supposed and some studies, e.g., PCTE and CDIF have been already done.

But they are not widely used because their specifications are complicated.
Some studies, e.g., Sapid, ACML, GCC-XML, JavaML, have proposed

to use XML as a data format. They enable developing opened flexible

CASE tools effectively. On the other hand, it is difficult them to deal

with software such as libraries with no source code and difference of C

Copyright c© 2004 by Tomoya Suzuki

1



processors. For example, Sapid and ACML cannot process GCC exten-

sions such as asm syntax and attribute syntax because they do not deal

with all extensions. Thus, they cannot process programs which GCC can.

Furthermore if they take care of each GCC version, it will cost very much.
Source code level data integration provides a common format for static

source code information such as syntax, type and symbol information. Tt

is becoming clearer that using XML as common formats is quite effective
to reduce development cost of CASE tools.

However, each of these approaches has its own parser and analyser since

they are all source code level in the sense that they extract information

from source code.
To solve this problem, we introduce a new approach of applying binary

code to CASE tools. There are many tools using binary level information.

For example, Purify and PureCoverage are tools for inspecting or modifying
binary code not source code. Using binary code information, we can cope

with C extension problem because compilers not CASE tools, take care of

C extensions, and also we can analyze libraries without their source code.

Therefore, we examine validity of binary level data integration and ap-
plicability of binary level information.

Binary codes have debug information, for example of local variables, user-

defined types, line numbers, scopes and stack frames, which is primarily

used for debuggers. We think that these information is useful for CASE
tools.

DWARF2 is one of the debugging information formats, which is sup-

ported by a wide variety of language processors (e.g., GCC and GDB).
This implies CASE tools using DWARF2 will cover large application area.

On the other hand, debugging information lacks some information such

as expressions and sentences.

In this paper, using DWARF2, we designed and implemented a cross
referencer as a program understanding tool, and we examined the appli-

cability of debug information for CASE tools by comparison experiments

with other cross referencers.
Moreover, to partially solve the problem of information lacking in debug

information, we experimentally implemented a hybrid cross referencer of

the cross referencer and GNU GLOBAL.

2



In the result, as long as this experiment, we developed a flexible and

practical cross referencer in a man-month. Unfortunately, because of using

XML and Ruby, the executing time of the tool is slower than the existing

ones.

3


