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Abstract 
The Gaussian CEO problem is a crucial joint-source coding (JSC) problem in distributed 

source coding (DSC) category. Although it has been studied for over two decades, 

researchers are still keen to make improvements. This research aims at solving the 

Gaussian CEO problem by combing Wyner-Ziv coding and convolutional lattice codes. 

The Wyner-Ziv coding scheme aims at compressing the source with the help of side 

information. In addition, the side information can be easily determined by using the cosets 

of the lattices. There are several classic lattices, such as the 𝐸8 lattices and Barnes-Wall 

lattices, which are already known to researchers. However, such lattices have very strict 

structures, setting obstacles for researchers to use. Moreover, there always exists a huge 

gap between the Normalized Second Moment (error-correcting ability) and the theoretical 

bound. Therefore, convolutional code lattices are proposed, providing better Normalized 

Second Moment and flexibility for structures compared to classic lattices. However, there 

is not much research on combing them. Thus this work combines the Wyner-Ziv coding 

and convolutional code lattices to solve the Gaussian CEO problem. The simulation 

results show that convolutional lattice codes outperform classic lattice codes for the 

considered model. 

 

    Keywords: the Gaussian CEO problem, convolutional lattice code, rate-distortion 

function, Wyner-Ziv coding 
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Chapter 1   

Introduction 

Wireless sensor networks (WSN) are network systems deployed in a large number of 

wireless sensors that monitor and record the physical and environmental conditions and 

then forward the collected data to a central location. WSNs rely on wireless connectivity 

and the spontaneous formation of networks so that data can be transmitted wirelessly. 

There are numerous WSN applications, and sometimes they have to be set in 

unpredictable environments to perform various tasks such as battlefield surveillance. 

Therefore, it is essential to design an efficient system for reliable transmission. The 

information gathered by different sensors is often correlated. Hence, exploiting correlated 

information is vital to reduce transmission power and decrease transmission rate. 

Distributed source coding (DSC) problem is one of the critical problems in information 

theory and communication. The DSC problem regards the compression of multiple 

correlated information sources that do not communicate with each other [1]. DSC is able 

to shift the computational complexity from the encoder side to the decoder side [2], which 

provides appropriate frameworks with complexity-constrained senders, such as sensor 

networks and video compression.  

    This chapter introduces the background of DSC problems and recent development 

results. The motivation of this research is introduced with a literature view of recent work. 

The outline of the thesis is shown at the end of this chapter. 

 

 Background 

The core problem of DSC is to decide the tradeoff between the encoder rates and the 

accuracy of the recovered correlated sources. To solve this problem, it is critical to begin 

with rate-distortion analysis in information theory since it shows the criteria for how to 

design a communication system. 

    In general, the DSC problem can be divided into two categories: one is lossless DSC, 

and the other is lossy DSC. The difference between these two problems is that lossless 

DSC requires the distortion should be arbitrarily small while lossy DSC allows the 

distortion can be a certain value with a specified distortion measure function. The block 

diagram of the two problems is shown in Fig. 1 with two independent sources 𝑋1 and 

𝑋2. 
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Figure 1.1: Two cases of distributed source coding  

 

1.1.1. Lossless Distributed Source Coding 

In 1973, David Slepian and Jack Keil Wolf started the pioneering work by proposing the 

information-theoretical lossless compression bound on distributed compression of two 

correlated independent and identically distributed (i.i.d) sources 𝑋1 and 𝑋2 which are 

shown in Fig 1.1 (a) [3]. The region of the compression rate pair is determined for which 

two sources can be recovered with an arbitrarily small error probability. According to the 

Slepian-Wolf theorem, two correlated sources 𝑋1 and 𝑋2 can be losslessly recovered 

with joint decoding, as long as the compression rate of each source is larger than their 

conditional entropy for each and their joint entropy. 

    After the introduction of the Slepian-Wolf theorem, Thomas M. Cover extended to 

cases with more than two cases in 1975 [4]. Ahlwede and Korner focused on recovering 

one of the correlated sources. This problem was then referred to as source coding with 

side information[5]. Wyner independently studied the source coding with side 

information, where the joint decoder reconstructs two sources with side information[6]. 

Korner and Marton studied a specific problem where a primary source is the exclusive-

OR (XOR) version of two helper information in [7]. Gel'fand and Pinsker [8] studied the 

rate region for reproducing an underlying source via corrupted observations of the source 

based on the assumption that the observations are conditionally independent. This 

problem is named as lossless CEO problem. 

 

1.1.2. Lossy Distributed Source Coding 

As shown in Fig 1.1 (b), another case of the DSC problem defines that the decoder needs 

to recover the sources at certain distortions with some functions, such as Hamming 

distortion. 
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    Wyner and Ziv gave the solution for a source coding problem with side information  

only available at the decoder [9]. The rate-distortion function was induced, and the 

required transmission rate for this coding scheme is that the rate must be larger than the 

side information. The difference between the Wyner-Ziv coding problem and the Slepian-

Wolf coding problem is that the knowledge of side information at the encoder does not 

reduce the rate. Afterwards, Wyner extended the Wyner-Ziv coding problem to non-

discrete sources [10]. Henceforward, the Wyner-Ziv coding was intensively researched 

with applications to wireless video networks such as [11][12][13][14] and the wireless 

relaying network such as [15][16][17]. 

    For the multi-terminal source coding problem, Berger and Tung first began their 

work by characterizing the bounds of the rate-distortion region [18], where correlated 

sources are encoded seperately and decoded together. Oohama derived the rate-distortion 

theory for multi-terminal source coding with correlated Gaussian sources and squared 

distortion afterward [19]. He gave a bound on the rate-distortion region and proved direct 

coding theorem using random coding arguments which first proposed by Berger. After 

that, Oohama [20] studied the multi-terminal Gaussian source coding problem, where 

multiple correlated Gaussian sources are encoded distributedly, one of which is the 

decoder's source of interest. 

    The chief executive officer (CEO) problem, which is a special case of multi-terminal 

source coding and has been attracting attention for two decades. T. Berger first gave the 

name of the CEO problem in [21]. The CEO problem can be given as: A CEO is interested 

in an underlying source that can not be observed directly. So, he hires several agents to 

observe the source and report to him from their point of view. Unfortunately, each agent 

suffers from unpleasant noise and then encodes the noisy source information 

independently under a sum rate 𝑅. Finally, the CEO gather all the encoded information 

and make an estimate of the underlying source as accurately as possible. In general, the 

CEO problem is to determine the tradeoff between the sum rate and the distortion. Berger 

et al studied the distortion function for the quadratic Gaussian CEO problem, where the 

source and observations are Gaussian distributed[22]. Oohama then derived an explicit 

form of the rate-distortion function for the quadratic Gaussian CEO problem by using the 

conditionally independent property[23].  

 

 Motivation 

The CEO problem is still drawing attention nowadays, especially not only from the 

information theory community but also from industry, especially with the aim of creation 
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of Internet-of-Things (IoT) applications, because IoT networks do not have to recover the 

observed information losslessly but may make accurate decisions based on observations. 

In this case, communications over multiple links should not necessarily be lossless, and 

the received data can be lossy so far as accurate decisions can be made. Nevertheless, in 

sensor networks, the observation in many cases is already noise-corrupted. 

    Numerous works have been proposed. For example, side information coding 

strategies based on Wyner-Ziv coding were proposed for a tree-structured sensor network 

[24]. A successive Wyner-Ziv coding strategy was applied to the quadratic Gaussian CEO 

problem to achieve the bound in the rate region [25]. A joint source-channel coding 

exploiting lattices was further considered for a Gaussian source with multiple sensors 

[27]. By using lattices, higher channel space dimensions were utilized to achieve the 

bound asymptotically. An application of successive Wyner-Ziv using Low-Density 

Generator-Matrix (LDGM) codes for binary quantization while Low-Density Parity-

Check (LDPC) codes for syndrome generation indicate that the rate-distortion 

performance of the proposed scheme can approach the theoretical inner bound [27].  

    By studying the literature on the state-of-the-art techniques for the CEO problem, 

most previous work focused on the binary CEO problem, even [26] proposed a practical 

encoding/decoding strategy by adopting lattice code, but only classical lattices like E8, 

Barnes-Wall lattices. It is of great importance to consider some new lattices like Low-

Density lattices code (LDLC) and Convolutional Lattice code (CLC) which are more 

effective in error-correcting ability to achieve better performance.  

    What is more, IoT, the sensors' observations are often used to make an accurate 

decision rather than to achieve lossless reconstruction of the source information. 

According to this concept, many new applications are possible, such as autonomous car 

driving or factory automation. For the purpose of achieving greater signal to noise ratio 

(SNR) gain in the joint source-channel coding system, a new coding scheme needs to be 

designed. Lattice codes have been proven to work well for source and channel coding. 

Thus, this research focuses on multi-terminal lossy source-channel coding systems using 

lattices, which may contribute to future IoT design.  

 

 

 Outline of the Dissertation 

This dissertation provides a practical encoding/decoding strategy for the quadratic 

Gaussian CEO problem. 
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    In Chapter 2, the background knowledge required in this research is summarized. 

The basic concept of entropy and mutual information is first reviewed, followed by rate-

distortion theory. Then, classical results in multi-terminal source coding, such as the 

Slepian-Wolf theorem and the Wyner-Ziv bound are included. After that, lattice codes, 

convolutional codes, and convolutional lattice codes based on construction A are briefly 

discussed. 

    In Chapter 3, the coding scheme design is introduced. Firstly, the Gaussian CEO 

problem is proposed, followed with the system model of two sensors. Then, the evaluation 

method CEO bound is given. Lattice Wyner-Ziv coding, which is the inspiration for the 

proposed model, is introduced. The model and block diagram are represented at the end 

of the chapter. 

    In Chapter 4, the method to decide the parameters is firstly introduced. Secondly, 

Simulation results under different scenarios are given. 

    In Chapter 5, the evaluation of the proposed system is briefly discussed. The first 

section is the strengths and weaknesses of the system. The second section is memories 

and the complexity of the convolutional lattices. 

    In Chapter 6, the conclusion and future work are discussed together.  
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Chapter 2   

Preliminaries 

In this chapter, the necessary background knowledge for this research is introduced. The 

concepts of entropy and mutual information are reviewed in Section 2.1. In Section 2.2, 

the rate-distortion theory is included. Then, some classical results in the DSC problem, 

such as the Slepian-Wolf theorem and the Wyner-Ziv problem, are reviewed in Section 

2.3. Lattice codes are briefly discussed in Section 2.4. Finally, convolutional codes and 

convolutional lattice codes based on construction A are described in Section 2.5. 

 

 Entropy and Mutual Information 

Information theory, entropy was first described by Shannon in [28], which is the measure 

of the uncertainty of information. Consider a random variable 𝑋 taking i.i.d values from 

𝒳  with a probability function 𝑃𝑋(𝑥) = 𝑃𝑟{𝑋 = 𝑥} , the entropy of 𝑋  is given as 

follows: 

 

𝐻(𝑋) =  −∑ 𝑃𝑋(𝑥)𝑥∈𝒳 𝑙𝑜𝑔(𝑃𝑋(𝑥)).                  (1) 

 

The logarithm is base 2, which corresponds to measuring entropy in bits.  

    The joint entropy 𝐻(𝑋, 𝑌)  of discrete random variables 𝑋  and 𝑌  jointly 

distributed as 𝑃𝑋𝑌(𝑥, 𝑦) = 𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦} is: 

 

𝐻(𝑋, 𝑌) =  −∑ ∑ 𝑃𝑋𝑌(𝑥, 𝑦)𝑦∈𝒴𝑥∈𝒳 𝑙𝑜𝑔(𝑝𝑋𝑌(𝑥, 𝑦)).           (2) 

     

The conditional entropy of 𝐻(𝑌|𝑋) is the uncertainty of 𝑌 given that 𝑋 is known. If 

𝑋  and 𝑌  are dependent, then knowledge of 𝑋  can reduce the uncertainty of 𝑌 . 

Conditional entropy is one of the most important concepts in information theory. There 

are two types of conditional entropy, 𝐻(𝑌|𝑋 = 𝑥)  and 𝐻(𝑌|𝑋) . The conditional 

entropy 𝐻(𝑌|𝑋) is given by: 
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                   𝐻(𝑌|𝑋) =  ∑ 𝑃𝑋𝑥∈𝒳 (𝑥)𝐻(𝑌|𝑋 = 𝑥)  

                          = −∑ 𝑃𝑋(𝑥)∑ 𝑃𝑌|𝑋𝑦∈𝒴𝑥∈𝒳 (𝑦|𝑥)𝑙𝑜𝑔 (𝑃𝑌|𝑋(𝑦|𝑥)) 

                          = −∑ ∑ 𝑃𝑋𝑌(𝑥, 𝑦)𝑙𝑜𝑔 (𝑃𝑌|𝑋(𝑦|𝑥))𝑦∈𝒴𝑥∈𝒳 ,      (3) 

 

where 𝐻(𝑌|𝑋) = 0 if and only if the exact state of 𝑌 can be entirely determined by 𝑋. 

Conversely, 𝐻(𝑌|𝑋) = 𝐻(𝑌) if and only if 𝑌 and 𝑋 are independent. 

The chain rule of entropy [29] for random variables 𝑋 and 𝑌: 

 

𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌|𝑋).                     (4) 

 

The proof is simple and basic in information theory. Therefore it is omitted. 

    Mutual information measures a quantity of the mutual dependence of two variables,  

mutual information 𝐼(𝑋; 𝑌)  is the reduction in the uncertainty of 𝑋  by knowing 𝑌 . 

Consider random variables 𝑋  and 𝑌  with a joint probability distribution function 

𝑃𝑋𝑌(𝑥, 𝑦) and marginal distributions 𝑃𝑋(𝑥) and 𝑃𝑌(𝑦). Then 𝐼(𝑋; 𝑌) is given by: 

 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑃𝑋𝑌(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
)𝑦∈𝒴𝑥∈𝒳 ,            (5) 

 

which can also be expressed as: 

 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) 

                              = 𝐻(𝑌) − 𝐻(𝑌|𝑋).                      (6) 

 

 Rate-Distortion theory 

In lossless compression, for compression of a random vector 𝑋, the single-letter entropy 

𝐻(𝑋) is a lower bound on the compression rate, that is 𝐻(𝑋) ≤ 𝑅. However, in lossy 

compression, rates less than 𝐻(𝑋) can be achieved. The reconstructed sequence is not 

the same as the original sequence. Regardless, the original and reconstructed sequences 

should be as similar as possible. Therefore, a way of measuring the similarity is 

introduced. There is a tradeoff between rate and distortion, and the tradeoff is the subject 

of rate-distortion theory. 
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2.2.1. Rate-Distortion Code 

There is a source 𝑥 with elements from 𝜒𝑛: 

 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛).                          (7) 

 

A source encoder 𝑓 maps 𝑥 to a codeword, 𝑓(𝑥). There are 𝑀 = 2𝑛𝑅 codewords. A 

decoder 𝑔  maps a codeword to a sequence 𝑥̂ , from an alphabet 𝜒̂𝑛 . Therefore, the 

encoding function 𝑓𝑛 is: 

 

𝑓𝑛: 𝜒
𝑛 → {1,2, … , 2𝑛𝑅},                       (8) 

 

and the decoding function 𝑔𝑛 is: 

 

𝑔𝑛: {1,2, . . , 2
𝑛𝑅} → 𝜒̂𝑛.                      (9) 

 

    The set 𝜒 is called the source alphabet, and the set 𝜒̂ is called the reconstruction 

alphabet.  

    A codebook 𝐶  has 𝑀  codewords of 𝑛  symbols each. If 𝑥 ∈ 𝜒𝑛  is a source 

sequence, then 𝑓(𝑥) is the message from the set {1,2, … ,𝑀}. If 𝑚 ∈ {1,2, . . , 𝑀} is a 

message, then 𝑔(𝑚) is a reconstructed codeword, from 𝜒̂. The codeword corresponding 

to 𝑥  is 𝑔(𝑓(𝑥)) ∈ 𝐶 . The encoding function should choose the message 𝑓(𝑥)  so to 

minimize the distortion of the corresponding 𝑔(𝑓(𝑥)). 

    Since the codebook consists of 𝑀 messages, the code rate is: 

 

𝑅 =
1

𝑛
𝑙𝑜𝑔𝑀.                           (10) 

 

2.2.2. Distortion Measure 

We need a measurement of the difference,between two sequences and the measurement 

is called distortion. A distortion function is 𝑑(𝑥, 𝑥̂) for sequences. We want 𝑥 and 𝑥̂ 

to be as close as possible, and the distortion should be as small as possible. 

    For discrete random variables, including binary random variables, an important 

distortion function is Hamming distortion [29]: 
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𝑑(𝑥, 𝑥̂) =
1

𝑛
∑ 𝑑(𝑥𝑖 , 𝑥𝑖̂)
𝑛
𝑖=1 ,                     (11) 

 

where 

 

𝑑(𝑥𝑖, 𝑥𝑖̂) = {
0   𝑖𝑓 𝑥𝑖 = 𝑥𝑖̂
1   𝑖𝑓 𝑥𝑖 ≠ 𝑥𝑖̂

.                     (12) 

 

For continus random variables, widely used distortion function is Quadratic distortion 

[23]: 

 

𝑑(𝑥, 𝑥̂) =
1

𝑛
∑ 𝑑(𝑥𝑖 , 𝑥𝑖̂)
𝑛
𝑖=1 ,                     (13) 

 

where 

𝑑(𝑥𝑖, 𝑥𝑖̂) = 𝐸(𝑥𝑖 − 𝑥𝑖̂)
2.                      (14) 

 

2.2.3. Rate-Distortion Theorem 

Expected distortion is the distortion averaged over all source sequences. The expected 

distortion for a (2𝑛𝑅 , 𝑛) code is defined as: 

 

                          𝐷 = 𝐸 [𝑑 (𝑋, 𝑔(𝑓(𝑋)))]        

                           = ∑ 𝑝𝑋(𝑥)𝑥∈𝜒𝑛 𝑑 (𝑥, 𝑔(𝑓(𝑥))).              (15) 

 

    The optimized tradeoff between rate and distortion is characterized by the rate-

distortion function. It is expected that as the allowed distortion 𝐷 increases, the code 

rate 𝑅  will decrease. Therefore, the information-rate distortion function 𝑅(𝐷)  for a 

source 𝑋 is given by [29]: 

 

𝑅(𝐷) =
𝑚𝑖𝑛

𝑝𝑋|𝑋 (𝑥̂|𝑥): 𝐸[𝑑(𝑋, 𝑋̂)] ≤ 𝐷
      𝐼(𝑋; 𝑋̂),           (16) 
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where the minimum is taken over all 𝑝𝑋|𝑋 (𝑥̂|𝑥) that satisfy 𝐸𝑑(𝑋, 𝑋̂) ≤ 𝐷 where, 

 

𝐸[𝑑(𝑋, 𝑋̂)] = ∑ ∑ 𝑝𝑋,𝑋̂𝑥̂∈𝜒̂𝑥∈𝜒 (𝑥, 𝑥̂)𝑑(𝑥, 𝑥̂).             (17) 

 

    The goal of rate-distortion theory is to find good 𝑝𝑋|𝑋 (𝑥̂|𝑥). The source distribution 

𝑝𝑋(𝑥) is fixed, this is equivalent to finding good 𝑝𝑋|𝑋 (𝑥̂|𝑥). A good code 𝐶 can satisfy  

𝑝𝑋|𝑋 (𝑥̂|𝑥). With those definitions, we can now give the rate-distortion theorem for an i.i.d 

source 𝑋  with distribution 𝑝𝑋(𝑥)  and distortion function 𝑑(∙,∙)  is equal to the 

information rate-distortion function. That is [29]: 

 

𝑅(𝐷) = 𝑅𝐼(𝐷)                         (18) 

𝑅(𝐷) =  
𝑚𝑖𝑛

𝑝𝑋|𝑋 (𝑥̂|𝑥): 𝐸[𝑑(𝑋, 𝑋̂)] ≤ 𝐷
      𝐼(𝑋; 𝑋̂).          (19) 

 

The rate-distortion function 𝑅(𝐷) is given by the definition that the infimum of rates 𝑅 

such that (𝑅, 𝐷) is in the rate-distortion region of the source of a given distortion 𝐷, 

which concerns the construction of codes. The information rate-distortion function 

𝑅𝐼(𝐷), given by (16)(17), concerns minimization of mutual information.  

 

2.2.4. Rate-Distortion for Gaussian Sources 

Consider a Gaussian source with 𝑋~𝑁(0, 𝜎2) . The rate-distortion function 𝑅(𝐷)  for 

lossy compression of a Gaussian source 𝑋 with squared-error distortion 𝐷 is: 

 

𝑅(𝐷) = {
1

2
𝑙𝑜𝑔

𝜎2

𝐷
      0 ≤ 𝐷 ≤ 𝜎2

0            𝐷 > 𝜎2
.                    (20) 

     

The proof is in [29]. 

 

 Theorems in Distributed Source Coding 

Fig. 1(a) shows a lossless source coding problem where the decoder aims to reconstruct 

two correlated sources without any loss. Consider two sources 𝑋1  and 𝑋2  with 𝑛 

symbols 𝑋1
𝑛 and 𝑋2

𝑛. Each encoder assigns an index from the set {1,2, … , 2𝑛𝑅𝑖} for the 

sequence 𝑋𝑖
𝑛 and transmits to the decoder, 𝑖 = 1,2. After receiving the indices from the 

encoder, the joint decoder assigns an estimate of (𝑋̂1
𝑛, 𝑋̂2

𝑛) or an estimate of error. The 
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probability of error is defined as: 

 

𝑃𝑒
(𝑛) = 𝑃𝑟{(𝑋̂1

𝑛, 𝑋̂2
𝑛) ≠ (𝑋1

𝑛, 𝑋2
𝑛)}.                  (21) 

 

A rate pair (𝑅1, 𝑅2) is admissible if there exist codes (2𝑛𝑅1 , 2𝑛𝑅2) such that 𝑃𝑒
(𝑛)
→ 0 

with 𝑛 → ∞. Slepian and Wolf [3] characterized the admissible rate region, which is a 

closure of a set of admissible rate pairs.  

    The Slepian-Wolf rate-region is given by:  

 

ℛ𝑆𝑊 = {

(𝑅1, 𝑅2): 𝑅1 ≥ 𝐻(𝑋1|𝑋2)

𝑅2 ≥ 𝐻(𝑋2|𝑋1)

𝑅1 + 𝑅2 ≥ 𝐻(𝑋1, 𝑋2)
}.                  (22) 

 

Two sources 𝑋1  and 𝑋2  are i.i.d sources determined by a joint distribution 

𝑃𝑋1𝑋2(𝑥1, 𝑥2) . The rate region is determined by the joint entropy of 𝑋1  and 𝑋2  and 

conditional entropy of each. 

 

 

Figure 2.1 : Slepian-Wolf rate region for lossless distributed source coding of two 

sources 

 

Figure 1.2 shows the admissible rate region of compressing two sources 𝑋1 and 𝑋2 by 

applying the Slepian-Wolf theorem. From the figure, it can be seen that the total 

compression rate is significantly decreased compared to the independent case. 

    The generalized Slepian-Wolf theorem [4] is aimed to achieve lossless compression 

of 𝐿  correlated sources {𝑋1,  𝑋2,⋯ , 𝑋𝐿} , the source rate 𝑅𝑖  satisfies the following 
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conditions: 

 

∑ 𝑅𝑖𝑖∈ℒ ≥ 𝐻(𝑋ℒ|𝑋ℒ𝐶)      ℒ ∈ {1,2, … , 𝐿},               (23) 

 

where ℒ𝐶 = {1,2, … , 𝐿}\ℒ  represents the complementary set of ℒ  and 𝑋ℒ = {𝑋𝑖|𝑖 ∈

ℒ}.  

 

DECENC𝑋 

𝑌 

𝑋̂ 
𝑅0 

 

Figure 2.2 : The Wyner-Ziv source coding problem 

 

    Figure 1.3 shows the source coding problem that Wyner and Ziv studied in [6]. The 

problem depicts that there is a pair of dependent i.i.d sources (𝑋, 𝑌), the encoder assigns 

an index from the set {1,2, … , 2𝑛𝑅0} for the source sequence 𝑋𝑛, the decoder estimates 

the source 𝑋̂𝑛 using the side information provided by 𝑌 and the received index from 

the encoder. Wyner-Ziv derived the rate-distortion function 𝑅𝑊𝑍(𝐷) . Therefore, the 

Wyner-Ziv bound is given that a pair of sources (𝑋, 𝑌) which generates i.i.d sequnces, 

and there exists a 𝑍  forms Markov chain 𝑍 → 𝑋 → 𝑌 . The decoder reconstructs 𝑋̂ 

based on 𝑍  and 𝑌 . The rate 𝑅  is achievable if 𝑅 ≥ 𝑅𝑊𝑍(𝐷) , where 𝑅𝑊𝑍(𝐷)  is 

defined as:  

 

𝑅𝑊𝑍(𝐷) = 𝑖𝑛𝑓[𝐼(𝑋; 𝑍|𝑌)].                     (24) 

 

The 𝐷 is distortion measure 𝐷 = 𝐸[𝑑(𝑋, 𝑋̂)] and 𝑖𝑛𝑓[∙] is the infimum of a subset. 
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 Lattices 

Lattices serve as a bridge from the high dimension of Shannon’s theory to that of digital 

communication techniques [30]. Good lattices can form effective structures for various 

coding problems. Lattices for quantization and modulation always draw the attention of 

communication engineers and information theorists. Lattices have been proved that they 

are suitable for both lossy compression and noise immunity, also known as source coding 

and channel coding respectively. Hence, it is crucial to review lattices in this part. 

 

2.4.1. Fundamental Characteristics of Lattices 

    An n-dimensional lattice 𝛬 is a discrete additive subgroup of ℝ𝑛. Since lattice 𝛬 

is a Euclidean space, this space can be spanned by a set of basis vectors 𝑔1, 𝑔2, … , 𝑔𝑛, 

where, 

 

𝑔 = [

𝑔1
𝑔2
⋮
𝑔𝑛

]                              (25) 

 

is a column vector representing a point in ℝ𝑛. 

    If there is a lattice point 𝑥, it can be formed as a linear combination of the basis 

vectors scaled by 𝑏𝑖 ∈ ℤ. 

 

𝑥 = 𝑔1𝑏1 + 𝑔2𝑏2 +⋯+ 𝑔𝑛𝑏𝑛.                   (26) 

 

The matrix form is: 

 

𝑥 = 𝑮𝑏,                             (27) 

 

where 𝐺 is an 𝑛-by-𝑛 generator matrix of lattice 𝛬. 

    For a lattice 𝛬, a fundamental region 𝒱 ∈ ℝ𝑛 is a region that, if each lattice point 

in 𝛬 shifts in this region, will cover the whole real space ℝ𝑛. This can be expressed as: 

 

ℝ𝑛 =∪𝑥∈𝛬 𝒱 + 𝑥 and                      (28) 

{𝒱 + 𝑥} ∩ {𝒱 + 𝑦} = ∅.                     (29) 

 



 

14 

 

For any 𝑥 ≠ 𝑦 . Any point 𝑦 ∈ ℝ𝑛  is in one fundamental region. The volume of any 

fundamental region is constant, which is denoted as 𝑉(𝛬): 

 

𝑉(𝛬) = |𝑑𝑒𝑡(𝑮)|.                        (30) 

 

The Voronoi region is an important fundamental region, the Voronoi region for 𝑥 ∈ 𝛬 is 

a region that, if there is a point 𝑥, covers all points with Euclidean distances to 𝑥 less 

than that to any other lattices. 

    Lattices can also be scaled. If there is a lattice 𝛬 and 𝑘 ∈ ℝ with 𝑘 ≠ 0, 𝑘𝛬 is a 

scaled lattice. If 𝛬 has a generator matrix 𝐺, then 𝑘𝛬 has a generator matrix 𝑘𝑮. For 

𝑘 > 0, the volume of 𝑘𝛬 is: 

 

𝑉(𝑘𝛬) = |𝑑𝑒𝑡(𝑘𝑮)| = 𝑘𝑛|𝑑𝑒𝑡(𝑮)|.                  (31) 

 

    Lattice cosets are sets of points such that the difference vectors between every pair 

of points belong to the lattice, defined as: 

 

𝛬𝑥 = 𝒙 + 𝛬 = {𝒙 + 𝜆: 𝜆 ∈ 𝛬}.                    (32) 

 

2.4.2. Lattice Quantization 

Lattice quantization is to find the lattice point 𝒙 ∈ 𝛬 which is closest to an arbitrary 𝑦 ∈

ℝ𝑛. If there is a lattice point 𝒙 which is closest to 𝒚, the definition of lattice quantization 

is: 

 

𝒙 = argmin
𝜆∈𝛬
‖𝒚 − 𝜆‖2.                      (33) 

Also written as: 

 

𝒙 = 𝑄𝛬(𝒚).                           (34) 

 

    Quantization in scaled lattices is simple. The point closest to 𝒚 ∈ ℝ𝑛 in a scaled 

lattice 𝑘𝛬 for any real number 𝑘 is: 

 

𝑄𝑘𝛬(𝒚) = 𝑘𝑄𝛬 (
1

𝑘
𝒚).                     (35) 
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    Quantization in a lattice coset is also simple. The closest point to 𝒚 ∈ ℝ𝑛 in a lattice 

coset 𝛬′ = 𝛬 + 𝑠 of a lattice 𝛬 is: 

 

𝒛 = 𝑄𝛬′(𝒚) = 𝑄𝛬(𝒚 − 𝑠) + 𝑠.                   (36) 

 

Lattice modulo function is to find the difference between 𝒚 ∈ ℝ𝑛 and the quantization 

of 𝒚, which is usually written as 𝒚 mod 𝛬: 

 

𝒚 𝑚𝑜𝑑 𝛬 = 𝒚 − 𝑄𝛬(𝒚).                      (37) 

 

    In order to measure the quantization capability for a lattice, the normalized second 

moment is an important tool to measure the quantization error and be used for designing 

lattice codes. 

    The normalized second moment, also known as 𝐺(𝑛), which is used to measure the 

average quantization error by the mean squared error per dimension, defined as: 

 

𝐺𝑛(𝛬) =
1

𝑛𝑉(𝛬)
2
𝑛
+1
∫ ‖𝒕‖2𝑑𝒕,
𝒱

                   (38) 

 

𝒕 represents the quantization error 𝒕 = 𝒚 − 𝑄𝛬(𝒚). 

    The shaping gain measures the improvement in Normalized Second Moment (NSM) 

to scalar quantization. It is defined as: 

 

𝛾𝑆(𝛬) = 10𝑙𝑜𝑔10
1

12𝐺𝑛(𝛬)
 𝑑𝐵.                  (39) 

 

The shaping gain is usually expressed in dB. As the lattice dimension increases, the 

shaping gain also increases, the asymptotic value of 
𝜋𝑒

6
, which is 1.53 dB. 

 

2.4.3. Nested Lattice Codes 

A nested lattice code is a lattice code where the shaping region is the fundamental region 

of some other lattice. Therefore, there are two lattices. The coding lattice 𝛬𝐶 provides 

the lattice code with error-correcting ability, and the shaping lattice 𝛬𝑆  provides the 



 

16 

 

lattice code with shaping ability. Nested lattice codes require 𝛬𝑆 is a sublattice of 𝛬𝐶. 

The definition can be given as follows: 

    𝛬𝑠 and 𝛬𝐶 are two lattices with 𝛬𝑆 ⊆ 𝛬𝐶.  ℱ is the fundamental region for 𝛬𝑆. 

Then: 

 

𝒞 = 𝛬𝐶 ∩ ℱ                           (40) 

 

is a nested lattice code. 

    The rate of a lattice code with 𝑀 codewords is 𝑅 =
1

𝑛
𝑙𝑜𝑔2𝑀. For a nested lattice 

code, the size of the codebook is 𝑉(𝛬𝑆)/𝑉(𝛬𝐶), the code rate is: 

 

𝑅 =
1

𝑛
𝑙𝑜𝑔

𝑉(𝛬𝑆)

𝑉(𝛬𝐶)
=
1

𝑛
𝑙𝑜𝑔

|𝑑𝑒𝑡(𝐺𝑆)|

|𝑑𝑒𝑡(𝐺𝐶)|
.                  (41) 

 

    If the shaping lattice is a scaled coding lattice, such kind of nested lattice code is 

called self-similar lattice code. If 𝛬𝑆 = 𝐾𝛬𝐶, where 𝐾 is a positive integer. The code 

rate 𝑅 is: 

 

𝑅 =
1

𝑛
𝑙𝑜𝑔

𝑑𝑒𝑡(𝐾𝛬𝐶)

𝑑𝑒𝑡(𝛬𝐶)
= 𝑙𝑜𝑔2𝐾.                   (42) 

 

 Convolutional Lattice Code based on Construction A 

Convolutional lattice code (CLC) proposed by Erez and ten Brink to be used for vector 

quantization for dirty-paper coding problems [31] has recently attracted attention from 

academics and industries. Several works proved that employing convolution lattice code 

for shaping brings many advantages, such as good shaping gain, flexibility for dimensions,  

and straightforwardness for applying the Viterbi algorithm which is optimal. Therefore, 

CLC should be considered for solving DSC problems. 

 

2.5.1. Construction A 

Assume that there is an (𝑛, 𝑘, 𝑑) binary code 𝐶, which maps 𝑘 information bits into 

binary codewords of length 𝑛 . Construction A is a method for generating lattices by 

lifting 𝐶 to the Euclidean space [30]. For example, for a modulo-2 lattice, the set of all 
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integer vectors whose modulo-2 results belong to code 𝐶 forms a lattice. As is shown 

below:  

 

𝛬𝐶 = {𝑥 ∈ ℤ
𝑛: 𝑥  𝑚𝑜𝑑 2 ∈ 𝐶}.                    (43) 

Equivalently,  

 

𝛬𝐶 = 2ℤ
𝑛 + 𝐶.                          (44) 

 

The volume of binary construction A lattice is: 

 

𝑉(𝛬𝐶) = |ℤ
𝑛/𝛬𝐶| =

2𝑛

𝑀
,                      (45) 

 

where 𝑀 is the size of code 𝐶. Also, if 𝐶 is generated by a full-rank 𝑛 × 𝑘 matrix, 

then 𝑀 = 2𝑘, the volume is: 

 

𝑉(𝛬𝐶) = 2
𝑛−𝑘.                          (46) 

 

The minimum distance between any two points in 𝛬𝐶 is： 

 

𝑑𝑚𝑖𝑛(𝛬𝐶) = 𝑚𝑖𝑛{2, √𝑑},                     (47) 

 

where 𝑑 is the minimum Hamming distance of code 𝐶. 

 

2.5.2. Convolutional Code 

Convolutional codes were first introduced by Elias in 1955 [32]. Different from block 

codes, convolutional codes contain memories in the encoder, an (𝑛, 𝑘,𝑚) convolutional 

code can be implemented with a 𝑘  inputs, 𝑛  outputs with 𝑚  input memories. For 

example, there is a (3,1,3) binary convolution codes, the encoder is shown in Figure 

2.3: 
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input
output

1

2

3

 

 

Figure 2.3 : (3,1,3) binary convolutional encoder 

    For a general case of an (𝑛, 𝑘,𝑚)  code, the generator matrix is formed by 
𝑛

𝑘
 

generator polynomials, which are: 

 

𝒈(0)(𝐷) = 𝑔0
(0) + 𝑔1

(0)𝐷 +⋯+ 𝑔𝑚
(0)𝐷𝑚

𝒈(1)(𝐷) = 𝑔0
(1) + 𝑔1

(1)𝐷 +⋯+ 𝑔𝑚
(1)𝐷𝑚

⋮

𝒈(
𝑛

𝑘
−1)(𝐷) = 𝑔0

(
𝑛

𝑘
−1)
+ 𝑔1

(
𝑛

𝑘
−1)
𝐷 +⋯+ 𝑔𝑚

(
𝑛

𝑘
−1)
𝐷𝑚

,            (48) 

 

where 𝑔𝑖
(𝑗)

 can be interpreted as the encoder transfer function relating input 𝑖 to output 

𝑗 , 𝐷  is the delay operator, 𝑚  is defined as the number of the shift registers. The 

generator matrix of a rate 
𝑘

𝑛
  convolutional code 𝑮(𝐷) =

[𝑔(0)(𝐷)𝑔(1)(𝐷)…𝑔(
𝑛

𝑘
−1)(𝐷)]

𝑡

  is equivalent to 𝑮(𝐷) = 𝐺0 + 𝐺1𝐷 +⋯+ 𝐺𝑚𝐷
𝑚 , 

where 𝑮𝑖 = [𝑔𝑖
(0)𝑔𝑖

(1)…𝑔
𝑖

(
𝑛

𝑘
−1)
]

𝑡

 , for 𝑖 = 0,1, … ,𝑚 . 𝑮𝑖  is the submatrix of the 

generator matrix, which has 
𝑛

𝑘
 rows and 1 column for each submatrix. 

    Therefore, the convolutional code generator matrix is defined as: 
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𝑮 =

[
 
 
 
 
 
𝑮0
𝑮1
⋮

𝑮0
⋮ ⋱

𝑮𝑚 𝑮𝑚−1
𝑮𝑚 ⋱

⋱ ]
 
 
 
 
 

.                        (49) 

 

The generator matrix 𝑮 is an 𝑛 × 𝑘 matrix. 

 

2.5.3. Convolutional Lattice Code 

Convolutional lattice code based on construction A is obtained by applying convolutional 

code to construction A. The method is straightforward, first the convolutional code 

generator matrix 𝑮 is transformed to a canonical form which is: 

 

𝑮 = [𝑰𝑘|𝑷
𝑡]𝑡,                          (50) 

 

where 𝑰𝑘 is the 𝑘 × 𝑘 identity matrix, 𝑷 is an (𝑛 − 𝑘) × 𝑘 matrix. The information 

vector 𝑤  is encoded as 𝑐 = 𝑮𝑤 , concatenated with 𝑷𝑤 . Therefore, the generator 

matrix of convolutional lattice code based on construction A is defined as: 

 

𝑮𝛬𝐶 = [
𝑰𝑘 0
𝑷 2𝑰𝑛−𝑘

].                       (51) 

 

𝑮𝛬𝐶 is an 𝑛 × 𝑛 generator matrix for 𝛬𝐶. 
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Chapter 3   

Coding Scheme Design 

In this chapter, the model for the Gaussian CEO problem is proposed. The Gaussian CEO 

problem with two sensors and the evaluation method are described in 3.1. Then, the 

Wyner-Ziv coding problem is discussed in 3.2, which is widely used in lossy DSC 

problems. Finally, the proposed model based on Wyner-Ziv coding strategy is given in 

3.3. 

3.1 Problem Statement 

In this section, the Gaussian CEO problem [20] is discussed. As is introduced in Chapter 

1, the Gaussian CEO problem estimates a Gaussian source using multiple agents who can 

only provide a corrupt version of the source under Gaussian noise. The target of the CEO 

problem is to determine the tradeoff between the total rate 𝑅 and the distortion 𝐷. The 

Gaussian CEO problem with two agents (sensors), which is a basic case of the problem, 

is mainly investigated. 

 

3.1.1. Gaussian CEO Problem with Two Sensors 

The system model of estimating a Gaussian source through two sensors with joint-source 

coding is shown in Figure 3.1.  

 

𝑥 

𝑔1 

𝑔2 

𝑥1 

𝑥2 

𝑅1 

𝑅2 

𝑥1  

𝑥2  

𝑥̂ 

Encoder

Encoder

Joint 

Decoder
Decision 

Maker

 

Figure 3.1 : The system model of estimating a Gaussian source through two sensors 

with joint-source coding 
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In Figure 3.1, 𝑥 is an i.i.d Gaussian source, which produces a sequence 𝒙 = {𝑥(𝑡)}𝑡=1
𝑛 . 

Source 𝑥(𝑡)~𝑁(0, 𝜎𝑥
2) is observed by two sensors and forwarded to the encoders. Due 

to the corruption during the observation, the sequences acquired by sensors contain 

observation errors. For 𝑖 = 1,2, the corrupted version of 𝑥 is called 𝒙𝑖 = {𝑥𝑖(𝑡)}𝑡=1
𝑛 , 

which can be expressed as: 

 

𝑥𝑖(𝑡) = 𝑥(𝑡) + 𝑔𝑖(𝑡)                       (52) 

 

where 𝒈𝑖 = {𝑔𝑖(𝑡)}𝑡=1
𝑛   for 𝑖 = 1,2  are independent additive white Gaussian noise, 

each 𝑔𝑖(𝑡) obeys an identical distribution with mean 0 and variance 𝜎𝑜
2. Although 𝒙𝑖 

contain errors, the sensors still forward the erroneous sequences to the two encoders, 

which is also known as lossy forwarding [33]. 𝒙𝑖 are seperately lossy encoded, which 

based on rate-distortion function 𝑅𝑖(𝐷𝑖)  for 𝑖 = 1,2 . The Joint-source coding (JSC) 

decoder then performs JSC coding to estimate 𝒙𝑖, the estimation results are denoted as 

𝒙𝑖̂ = {𝑥𝑖(𝑡)̂}𝑡=1
𝑛

 . Finally, the decision maker reconstructs the source 𝑥  with an 

estimation denoted as 𝒙̂ = {𝑥(𝑡)̂}
𝑡=1

𝑛
. The decision rule is decided by: 

 

𝒙̂ = 𝐹𝑑(𝑥1 ,𝑥2 ),                          (53) 

 

where function 𝐹𝑑(∙)  is designed based on the variance of the source 𝜎𝑥
2  and the 

variance of the observation error 𝜎𝑜
2. 

 

3.1.2. Evaluation Method  

Quadratic distortion function (13) (14) is applied to measure the distortion. For evaluating 

the proposed system, the Gaussian CEO bound [20] is given as: 

For every 𝐷 > 0 

 

𝑅𝐶𝐸𝑂(𝐷) =
𝜎𝑜
2

2𝜎𝑥
2 [
𝜎𝑥
2

𝐷
− 1]

+

+
1

2
𝑙𝑜𝑔+ (

𝜎𝑥
2

𝐷
),              (54) 

 

where [𝑎]+ = 𝑚𝑎𝑥{0, 𝑎} and 𝑙𝑜𝑔+𝑎 = [𝑙𝑜𝑔𝑎]+.  
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3.2 Lattice Wyner-Ziv Coding 

For the coding strategy, it is not difficult that Wyner-Ziv coding strategy to be considered, 

which exploits the correlation of the two estimations of the source. Moreover, under the 

quadratic-Gaussian model there is no loss in rate-distortion performance for the side 

information only available at the decoder.  

    For the code selection, as is introduced in Chapter 2, lattices are defined directly in 

the Euclidean space, they do not require mapping, which saves complexity. Besides, it is 

easy to design the codebook by applying lattices since the rate can be changed by 

changing the volume of the lattice. 

    Therefore, in this part, the lattice Wyner-Ziv coding is briefly introduced since it 

may inspire the idea of how to design the system for the CEO problem. 

    Assuming that there is a source 𝑋 and 𝑌, which 𝑌 is known to the decoder as the 

side information. 𝑍 = 𝑋 − 𝑌  is called the innovation component, 𝑍~𝑁(0, 𝜎𝑍
2) . 

According to the Wyner-Ziv rate-distortion function, 

 

𝑅𝑊𝑍(𝐷) =
1

2
𝑙𝑜𝑔 (

𝜎𝑋|𝑌
2

𝐷
) =

1

2
𝑙𝑜𝑔 (

𝜎𝑍
2

𝐷
),                (55) 

where 𝜎𝑋|𝑌
2  represents the conditional variance of 𝑋 is given 𝑌. 

    The idea is to transmit innovation 𝑍 without wasting bits on 𝑌 which is already 

known to the decoder. Therefore, the encoder initially quantizes the source 𝑋 to lattice 

points 𝜆 in a lattice 𝛬1, Then sends the relative cosets 𝜆/𝛬2 to the decoder. The rate is 

𝑙𝑜𝑔|𝛬2/𝛬1| bits. The decoder knows that 𝜆 is around 𝑌, at a distance determined by 

𝑑𝑚𝑖𝑛 of lattice 𝛬2 and innovation 𝑍. If the lattice 𝛬2 is sparse enough, the 𝜆 would 

be the only member in the cosets within the distances to 𝑌 . Finally, the decoder can 

reconstruct 𝑋 by decoding 𝜆.  

    The coding scheme is based on a nested lattice pair 𝛬1 ⊂ 𝛬2, which generates a 

codebook 𝐶 = {𝒗1, … , 𝒗𝑚}. Given a source 𝒙 = 𝒚 + 𝒛, the encoding operation can be 

expressed as: 

 

𝒗 = [𝑄𝛬1𝒙] 𝑚𝑜𝑑  𝛬2,                        (56) 

 

and the decoding operation is: 

 

𝒛̂ = (𝒗 − 𝒚) 𝑚𝑜𝑑  𝛬2.                      (57) 

𝒙̂ = 𝒚 + 𝒛̂.                            (58) 
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3.3 Proposed Model 

The model for the CEO problem with two sensors is proposed in this part. As is introduced 

in 3.1, 𝒙1 and 𝒙2 are correlated. Thus it is reasonable to transform the CEO problem 

into a special case of the Wyner-Ziv coding problem. Since 𝒙𝑖~𝑁(0, 𝜎𝑥
2 + 𝜎𝑜

2) for 𝑖 =

1,2, the innovation component is 𝒛 = 𝒙1 − 𝒙2 with mean 0 and variance 𝜎𝑜
2. Hence, it 

is straightforward to generate a codebook of 𝑧, which is similar to the Wyner-Ziv coding. 

    The block diagram of the coding scheme is shown below: 

 

 

Figure 3.1 : The block diagram of the coding scheme 

 

where 𝛬 = 𝛼𝛬, 𝛬2 = 𝐾𝛬. 

    First, encoder 1 and encoder 2 quantize the source vector 𝒙1, 𝒙2 to points 𝜆1 and 

𝜆2 in a fine lattice 𝛼𝛬, where α is a scaling factor. 

    Encoder 1 transmits 𝜆1 , encoder 2 sends relative coset 𝒄2  of 𝜆2  to the joint 

decoder. 𝒄2 is defined as: 

 

 𝒄2 = [𝜆2] 𝑚𝑜𝑑 𝛼𝐾𝛬,                       (59) 

 

where K is a shaping factor, which is a positive integer. 

    The joint decoder receives 𝜆1 and  𝒄2. The decoder needs to recover 𝜆2 by using 

 𝒄2 and 𝜆1. The decoder first finds the coset 𝒄1 of 𝜆1: 

 

𝒄1 = [𝜆1] 𝑚𝑜𝑑 𝛼𝐾𝛬,                      (60) 

 

then the decoder can recover 𝜆2: 
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𝜆2 = 𝜆1 + [ 𝒄2 − 𝒄1] 𝑚𝑜𝑑 𝛼𝐾𝛬                 (61) 

 

Finally, an estimation of 𝑥 can be made by the decision maker: 

 

𝑥̂ = 𝐹𝑑(𝜆1, 𝜆2 ).                         (62) 

 

The parameter settings and simulation results will be introduced in Chapter 4.  
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Chapter 4   

Numerical Results 

In this chapter, the parameter settings and simulation results are introduced. Parameter 

settings are discussed in section 4.1. Simulation results and analysis are shown in section 

4.2. 

 

4.1 Parameter Settings 

    As is introduced in Chapter 3, scaling factor α is to match the source to the fine 

lattice resolution. In order to avoid failing to reconstruct the source, it is necessary to 

make lattice points 𝜆1 and 𝜆2 not so far from each other. In other words, the source 

variance should match the volume of the lattice.  

    Consider quantizing a single source using a nested lattice 𝛼𝑁𝛬/𝛼𝛬 with rate 𝑅 =

𝑙𝑜𝑔 𝑁. The source is fixed with variance 𝜎2. Given a rate 𝑅 and probability 𝑃𝑒 that the 

source is not in the Voronoi region of 𝛼𝑁𝛬, 𝑁 and 𝛼 should be found. 

    Let 𝑆 be an n-ball of radius 𝑟. The probability that Gaussian noise is inside the 

sphere is, 

 

𝐼𝑛 = ∫ 𝑓(𝑥)𝑆
𝑑𝑥,                         (63) 

where 

𝑓(𝑥) =
1

(√2𝜋𝜎)
𝑛 𝑒𝑥𝑝 (

−‖𝑥‖2

2𝜎2
)                    (64) 

 

and is given by [34], 

𝐼𝑛 = 𝐼𝑛−2 − 𝑒
−𝑧 𝑧

𝑛
2
−1

(
𝑛

2
−1)!

                      (65) 

where 𝑧 =
𝑟2

2
 and 

𝐼2 = 1 − 𝑒
−𝑧                          (66) 

So, 
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𝑃𝑒 = 𝑒
−𝑧 (1 +

𝑧

1!
+
𝑧2

2!
+⋯+

𝑧
𝑛
2
−1

(
𝑛

2
−1)!
)                (67) 

 

where 𝑧 =
𝑟2

2𝜎2
. 

    Let 𝜌∗(𝜎2)  be the value of 𝑟  such that 𝑃𝑒 = 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 . Let 𝜌𝛬  be the packing 

radius of 𝛬,  𝜌𝛼𝑁𝛬 be the scaled packing radius of 𝛼𝑁𝛬. Then: 

 

𝜌𝛼𝑁𝛬 = 𝛼𝑁𝜌𝛬.                          (68) 

 

When 𝑃𝑒 = 𝑃𝑡𝑎𝑟𝑔𝑒𝑡, 

 

𝜌∗ = 𝛼𝑁𝜌𝛬,                          (69) 

𝛼 =
1

𝑁

𝜌∗

𝜌𝛬
                            (70) 

 

    Therefore, scaling factor 𝛼 depends on rate 𝑙𝑜𝑔𝑁 and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡. 

    Consider designing a coding scheme to test the rate-distortion performance. The 

source variance 𝜎𝑠𝑟𝑐
2  and the observation variance 𝜎𝑜𝑏𝑠

2  are fixed. Let 𝑅2 = 𝑙𝑜𝑔𝐾 to 

transmit the difference between the two cosets 𝒄2 − 𝒄1  and 𝑅1 = 𝑙𝑜𝑔𝐾 + 𝑙𝑜𝑔𝑀  to 

transmit the lattice code 𝛼𝛬. The procedures are shown below: 

 

    1. Make a prelimary choice for 𝑅1 and work with 2𝑅1. 

 

    2. Find 𝛼 to satisfy the target error probability 𝑃𝑡𝑎𝑟𝑔𝑒𝑡. 

 

𝛼 =
1

𝑁

𝜌∗(𝜎𝑠𝑟𝑐
2 )

𝜌𝛬
.                       (71) 

      

      where 𝑁 = 2𝑅1. 

 

    3. Find 𝐾 to satisfy the target error probability 𝑃𝑡𝑎𝑟𝑔𝑒𝑡. (𝛼 is already fixed). 

 

𝐾 = ⌈
1

𝛼

𝜌∗(𝜎𝑜𝑏𝑠
2 )

𝜌𝛬
⌉ = ⌈2𝑅1

𝜌∗(𝜎𝑜𝑏𝑠
2 )

𝜌∗(𝜎𝑠𝑟𝑐
2 )
⌉.               (72) 
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    4. Find 𝑀 by using 𝑅1 and 𝐾, 

     

𝑀 = ⌈
2𝑅1

𝐾
⌉.                        (73) 

 

    5. Find value for 𝑅1 using 𝑅1 = 𝑙𝑜𝑔𝑀 + 𝑙𝑜𝑔𝐾. 

 

4.2 Simulation Results 

Several well-known low-dimensional lattices, such as 𝐸8  lattice, Barnes-Wall lattice, 

and Leech lattice have been well-studied and proved to provide good shaping gains. What 

is more, they all have optimal quantization algorithms [35][36]. 

    Besides, convolutional lattices also have been proved to provide good shaping gains, 

flexibility for dimensions, and straightforwardness for applying the Viterbi algorithm, 

which is already discussed in Chapter 2. 

    The quantization algorithm of convolutional lattice code (CLC) is given to show 

how to apply the Viterbi algorithm [37] to it. 

                                                         

Algorithm: Quantizing convolutional lattice code 

                                                         

               Input: noisy input 𝒚, Viterbi decoder 𝑉𝑑𝑒𝑐(∙),  

                     convolutional encoder 𝐸𝑛𝑐(∙). 

               Output: convolutional lattice point 𝒙̂ nearest to 𝒚 

               Compute the following: 

               𝒚′ = |𝑚𝑜𝑑2(𝒚 + 1) − 1|; 

               𝒃 = 𝑉𝑑𝑒𝑐(𝒚′); 

               𝒄̂ = 𝐸𝑛𝑐(𝒃); 

               𝒚′′ =
𝒚−𝒄̂

2
; 

               𝒛̂ = ⌊𝒚′′⌉; 

               𝒙̂ = 𝒄̂ + 2𝒛̂; 

                                                          

Table 4.1: Quantization algorithm of CLC 

 

    Simulations are implemented on MATLAB by applying Barnes-Wall lattice code 

and convolutional lattice code. Barnes-Wall lattices have 16 dimensions, while the 
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dimension of CLC is set to 1152 with a 1/2 rate. The CEO makes a final decision as 𝑥̂ =

𝜆1+𝜆2 

2
 because the two sensors suffer the same observation error. 

    Given the source variance 𝜎𝑠𝑟𝑐
2 = 1, the variance of observation error 𝜎𝑜𝑏𝑠

2 = 0.01, 

the error target 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 10
−4. figure 4.1 shows the simulation result: 

 

 

 

Figure 4.1 : Rate-distortion function of BW lattice and m=2, 5, 7 CLC when 𝜎𝑠𝑟𝑐
2 = 1, 

𝜎𝑜𝑏𝑠
2 = 0.01 

 

    Fix the source variance 𝜎𝑠𝑟𝑐
2 = 1, set the variance of observation error 𝜎𝑜𝑏𝑠

2 = 0.05, 

the error target 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 10
−4. figure 4.2 shows the simulation result. 
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Figure 4.2 : Rate-distortion function of BW lattice and m=2, 5, 7 CLC when 𝜎𝑠𝑟𝑐
2 = 1, 

𝜎𝑜𝑏𝑠
2 = 0.05 

 

Fix the source variance 𝜎𝑠𝑟𝑐
2 = 1 , set the variance of observation error 𝜎𝑜𝑏𝑠

2 = 1 , the 

error target 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 10
−4. figure 4.3 shows the simulation result: 

 

Figure 4.3 : Rate-distortion function of BW lattice and m=2, 5, 7 CLC when 𝜎𝑠𝑟𝑐
2 = 1, 

𝜎𝑜𝑏𝑠
2 = 1 

 



 

30 

 

    From Figure 4.1, Figure 4.2, and Figure 4.3, it can be seen that there is a gap between 

the Gaussian CEO bound and the proposed system. The CEO bound assumes that an 

infinite number of sensors are used, while the proposed system only uses two sensors. 

However, the proposed system still performs well when the observation error is small. 

Besides, The convolutional lattice codes outperform the BW lattice in general. Moreover, 

convolutional lattice codes with high memories perform better than those with low 

memories. In addition, when the observation error becomes very large, the distance 

between the curve of the proposed system and the CEO bound becomes very far, which 

shows that this two-sensor system may not be able to deal with such cases, more sensors 

should be considered. 
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Chapter 5   

Conclusion and Future Work 

In this chapter, the evaluation of the proposed coding system is discussed. Strengths and 

weaknesses are discussed in 5.1. The relationship between memories and complexity is 

introduced in 5.2. 

 

5.1 Strengths and Weaknesses of the Proposed System 

As is shown in Figure 4.1, Figure 4.2, and Figure 4.3, the system performs well under the 

variance of observation error 𝜎𝑜𝑏𝑠
2 = 0.01  and 𝜎𝑜𝑏𝑠

2 = 0.05  with fixed 𝜎𝑠𝑟𝑐
2 = 1 . 

Significantly, the convolutional lattices with only 2 memories outperform the Barnes-

Wall lattices, which means the complexity of the quantization algorithm is not so high. 

Besides, the block length is variable for different practical use. In addition, the parameter 

settings are based on the probability of error. Therefore, the system can satisfy different 

requirements by changing the parameters. 

    As for the weaknesses, it is obvious that the two-user system is only a primary case 

of the multi-terminal communication system. Considering the real communication system, 

the observation error and channel noise are very large. Normally hundreds, thousands, 

even millions of sensors are applied. The coding system is much more complicated than 

the two-user case. 

 

5.2 Memories and Complexity 

According to Figure 4.1, Figure 4.2, and Figure 4.3, the performance becomes better as 

the memory of the convolutional code increases. Therefore, the normalized second 

moment of convolutional lattice code with different memories 𝒎 are shown below [38]: 
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m 𝐠(𝟎) 𝐠(𝟏) 𝛄𝐍𝐒𝐌(𝐝𝐁) 

2 7 5 0.9734 

3 17 13 1.0622 

4 31 23 1.1233 

5 75 57 1.1814 

6 165 127 1.2251 

7 357 251 1.2574 

BW lattice 

  

0.86 

 

Table 5.1: Half-rate convolutional code generator polynomials for different m based on 

best-found convolutional lattices for NSM 

 

Table 5.1 gives the asymptotic shaping gains based on different memories, which shows 

the reason why the convolutional lattices achieve better performance with 𝑚 increases. 

    However, the complexity comes from the Viterbi algorithm, which means the Viterbi 

decoder has 2𝑚  states and basically the complexity of viterbi decoding is 2𝑚 . In 

addition, the quantization algorithm based on construction A requires 5 steps to lift the 

binary codeword to a lattice point and inverse. Therefore, the complexity of the whole 

quantization is  5 + 2𝑚. 

 

5.3 Conclusion 

This research aims to solve the Gaussian CEO problem, which is one of the most 

important and popular problems in lossy DSC. The CEO problem describes recovering 
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an underlying source with the help of several observations of the source which are 

corrupted by the noise. In this research, a system model of estimating a Gaussian source 

through two sensors with joint-source coding is proposed, combining the Wyner-Ziv 

coding scheme and convolutional lattice code. The Wyner-Ziv coding scheme exploits 

the side information in the research, which represents the subtraction of the cosets in this 

research. By applying the Wyner-Ziv coding scheme to the CEO problem, the source 

being transmitted can be further compressed. Besides, applying the convolutional lattice 

codes based on construction A provides more shaping gain, which outperforms the classic 

lattices such as 𝐸8  lattice, Barnes-Wall lattice, and Leech lattice according to the 

simulation results. However, this research only focuses on the two-sensor system, a basic 

CEO problem model. It is believed that the system can be improved by utilizing more 

sensors. 

 

5.4 Future Work 

There are several directions for extending this research. 

 

1) Extending the two-sensor model to the multiple-sensor model. As is discussed 

already, with the variance of the observation error increases, there is a large gap 

between the two-sensor system and CEO bound in the rate-distortion bound. By 

utilizing more sensors, more side information can be used to compress the 

source. 

 

2)  Considering introducing the channel and the noise. This research does not 

consider introducing the channel and the noise for simplicity. Different channels 

such as additive white Gaussian noise (AWGN) channel, binary symmetrical 

channel (BSC), and rayleigh fading channel can be considered in future work. 

 

3) Applying successive Wyner-Ziv coding scheme. The successive Wyner-Ziv 

coding scheme [39], also known as quantization splitting, is a generalization of 

the source splitting technique and the rate splitting technique in channel coding. 

[27] shows that quantization splitting can be achieved via successive Wyner-Ziv 

coding, and the results show that the rate-distortion performance can approach 

the theoretical bound based on BSC. Therefore, applying successive Wyner-Ziv 

coding also deserves further study.  



 

34 

 

Bibliography 

[1] Zixiang Xiong, A. D. Liveris, and S. Cheng, "Distributed source coding for sensor 

networks," in IEEE Signal Processing Magazine, vol. 21, no. 5, pp. 80-94, Sept. 2004. 

[2] K. Chen and K. Chen, "Quantization for Distributed Estimation," 2014 IEEE 

International Conference on Internet of Things (iThings), and IEEE Green 

Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social 

Computing (CPSCom), 2014, pp. 223-227. 

[3] D. Slepian and J. Wolf, "Noiseless coding of correlated information sources," in IEEE 

Transactions on Information Theory, vol. 19, no. 4, pp. 471-480, July 1973.  

[4] T. Cover, "A proof of the data compression theorem of Slepian and Wolf for ergodic 

sources (Corresp.)," in IEEE Transactions on Information Theory, vol. 21, no. 2, pp. 

226-228, March 1975. 

[5] R. Ahlswede and J. Korner, "Source coding with side information and a converse for 

degraded broadcast channels," in IEEE Transactions on Information Theory, vol. 21, 

no. 6, pp. 629-637. 

[6] A. Wyner, "On source coding with side information at the decoder," in IEEE 

Transactions on Information Theory, vol. 21, no. 3, pp. 294-300, May 1975. 

[7] J. Korner and K. Marton, "How to encode the modulo-two sum of binary sources 

(Corresp.)," in IEEE Transactions on Information Theory, vol. 25, no. 2, pp. 219-221. 

[8] S. I. Gel'fand and M. S. Pinsker, "Coding of sources on the basis of observations with 

incomplete information," Problems of Information Transmission, vol. 15, pp. 115–

125, 1979. 

[9] A. Wyner and J. Ziv, "The rate-distortion function for source coding with side 

information at the decoder," in IEEE Transactions on Information Theory, vol. 22, 

no. 1, pp. 1-10, January 1976. 

[10] Wyner, Aaron D.. "The Rate-Distortion Function for Source Coding with Side 

Information at the Decoder-II. General Sources." Inf. Control. 38 (1978): 60-80. 

[11] A. Aaron, S. Rane, Rui Zhang and B. Girod, "Wyner-Ziv coding for video: 

applications to compression and error resilience," Data Compression Conference, 

2003. Proceedings. DCC 2003, 2003, pp. 93-102. 

[12] C. Yaacoub, J. Farah and B. Pesquet-Popescu, "Joint Source-Channel Wyner-Ziv 

Coding in Wireless Video Sensor Networks," 2007 IEEE International Symposium 

on Signal Processing and Information Technology, 2007. 



 

35 

 

[13] J. D. Areia, C. Brites, F. Pereira and J. Ascenso, "Wyner-Ziv Stereo Video Coding 

using a Side Information Fusion Approach," 2007 IEEE 9th Workshop on 

Multimedia Signal Processing, 2007, pp. 453-456. 

[14] Pereira, Fernando, Catarina Brites, João Ascenso and Marco Tagliasacchi. "Wyner-

Ziv video coding: A review of the early architectures and further developments." 

2008 IEEE International Conference on Multimedia and Expo (2008): 625-628. 

[15] Zhixin Liu, V. Stankovic and Zixiang Xiong, "Wyner-Ziv coding for the half-duplex 

relay channel," Proceedings. (ICASSP '05). IEEE International Conference on 

Acoustics, Speech, and Signal Processing, 2005.  

[16] Zhixin Liu, M. Uppal, V. Stankovic and Zixiang Xiong, "Compress-forward coding 

with BPSK modulation for the half-duplex Gaussian relay channel," 2008 IEEE 

International Symposium on Information Theory, 2008. 

[17] H. H. Sneessens, L. Vandendorpe and J. N. Laneman, "Adaptive Compress-and-

Forward Relaying in Fading Environments with or without Wyner-Ziv Coding," 2009 

IEEE International Conference on Communications. 

[18] T. Berger, "Multiterminal Source Coding" in The Information Theory Approach to 

Communications, New York:Springer, 1978. 

[19] Y. Oohama, "Gaussian multi-terminal source coding," Proceedings of 1995 IEEE 

International Symposium on Information Theory, 1995. 

[20] Y. Oohama, "Rate-distortion theory for Gaussian multi-terminal source coding 

systems with several side informations at the decoder," in IEEE Transactions on 

Information Theory, vol. 51, no. 7, pp. 2577-2593, July 2005. 

[21] T. Berger, Zhen Zhang and H. Viswanathan, "The CEO problem [multi-terminal 

source coding]," in IEEE Transactions on Information Theory, vol. 42, no. 3, pp. 887-

902, May 1996. 

[22] H. Viswanathan and T. Berger, "The quadratic Gaussian CEO problem," in IEEE 

Transactions on Information Theory, vol. 43, no. 5, pp. 1549-1559, Sept. 1997. 

[23] Y. Oohama, "The rate-distortion function for the quadratic Gaussian CEO problem," 

in IEEE Transactions on Information Theory, vol. 44, no. 3, pp. 1057-1070, May 

1998. 

[24] S. C. Draper and G. W. Wornell, "Side information aware coding strategies for sensor 

networks," in IEEE Journal on Selected Areas in Communications, vol. 22, no. 6, pp. 

966-976, Aug. 2004. 

[25] J. Chen and T. Berger, "Successive Wyner–Ziv Coding Scheme and Its Application 

to the Quadratic Gaussian CEO Problem," in IEEE Transactions on Information 

Theory, vol. 54, no. 4, pp. 1586-1603, April 2008. 



 

36 

 

[26] J. Karlsson and M. Skoglund, "Lattice-Based Source-Channel Coding in Wireless 

Sensor Networks," 2011 IEEE International Conference on Communications (ICC), 

2011, pp. 1-5. 

[27] M. Nangir, R. Asvadi, J. Chen, M. Ahmadian-Attari and T. Matsumoto, "Successive 

Wyner-Ziv Coding for the Binary CEO Problem Under Logarithmic Loss," in IEEE 

Transactions on Communications, vol. 67, no. 11, pp. 7512-7525, Nov. 2019. 

[28] C. E. Shannon, "A mathematical theory of communication," in The Bell System 

Technical Journal, vol. 27, no. 3, pp. 379-423, July 1948. 

[29] Cover T & Thomas J, Elements of Information Theory. USA: John Wiley & Sons, 

Inc., 2006, 2nd edition. 

[30] B. Nazer and R. Zamir, Lattice Coding for Signals and Networks, R. Zamir, Ed. 

Cambridge, U.K.: Cambridge Univ. Press, 2014, ch. 12. 

[31] U. Erez and S. ten Brink, “A close-to-capacity dirty paper coding scheme,” IEEE 

Transactions on Information Theory, vol. 51, no. 7, pp. 3417–3432, October 2005. 

[32] P. Elias, “Coding for Noisy Channels”, IRE Conv. Rec., Part 4, pp.37–47, 1955. 

[33] J. He et al., "A Tutorial on Lossy Forwarding Cooperative Relaying," in IEEE 

Communications Surveys & Tutorials, vol. 21, no. 1, pp. 66-87, Firstquarter 2019. 

[34] V. Tarokh, A. Vardy and K. Zeger, "Universal bound on the performance of lattice 

codes," in IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 670-681, 

March 1999. 

[35] J. H. Conway and N. J. A. Sloane, “On the Voronoi regions of certain lattices,” SIAM 

Journal on Algebraic Discrete Methods, vol. 5, no. 3, pp. 294–305, Sep. 1984. 

[36] J. H. Conway and N. J. A. Sloane, “Fast quantizing and decoding and algorithms for 

lattice quantizers and codes,” IEEE Transactions on Information Theory, vol. 28, no. 

2, pp. 227–232, Mar. 1982. 

[37] A. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum 

decoding algorithm," in IEEE Transactions on Information Theory, vol. 13, no. 2, pp. 

260-269, April 1967. 

[38] F. Zhou, A. Fitri, K. Anwar and B. M. Kurkoski, "Encoding and Decoding 

Construction D' Lattices for Power-Constrained Communications," 2021 IEEE 

International Symposium on Information Theory (ISIT), 2021, pp. 1005-1010. 

[39] J. Chen and T. Berger, "Successive Wyner–Ziv Coding Scheme and Its Application 

to the Quadratic Gaussian CEO Problem," in IEEE Transactions on Information 

Theory, vol. 54, no. 4, pp. 1586-1603, April 2008. 

 


