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Abstract

Separating singing voice from a musical mixture remains an important task in

the field of music information retrieval. Recent studies on singing voice separa-

tion have shown that robust principal component analysis (RPCA) with rank-1

constraint approach can improve separation quality. However, the performance

of separation is limited because the vocal part can not be described well by the

separated matrix. Therefore, prior information such as fundamental frequency

(F0) should be considered. F0 can significantly improve separation performance

by removing the spectral components of non-repeating instruments (e.g., bass

and guitar). In this paper, we propose a novel singing voice separation al-

gorithm by combining prior information and non-negative constraint RPCA,

which incorporates F0 and non-negative rank-1 constraint minimization of sin-

gular values in RPCA instead of minimizing the nuclear norm. In addition, we

use the original phase recovery in estimating the spectral components of the sep-

arated singing voice. Experimental results on the iKala and MIR-1K datasets

show higher efficiency of the proposed algorithm compared with state-of-the-art

methods in terms of separation accuracy.
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Non-negative rank-1 constraint; F0

1. Introduction

Singing voice separation is a process of separating the singing voice from a

musical mixture and is widely used in chord recognition [1], singer identification

[2], music auto-tagging [3], singing lyric recognizer [4], and music information

retrieval [5] [6]. However, state-of-the-art methods of singing voice separation5

are still far behind human hearing capability, so this task remains extremely

challenging [7] [8] due to the musical instruments involved and the time-varying

spectral overlap between the singing voice and accompaniment.

Until recently, deep learning-based methods [9] [10] [11] [12] [13] [14] [15] [16]

are perhaps the most widely used supervised learning methods for singing voice10

separation. In particular, Convolutional Neural Networks (CNN) seem to be

especially adapted for this separation task. Lin et al. [11] proposed CNN-based

model with ideal binary masking and cross entropy for singing voice separa-

tion. He [12] also proposed a sound level invariant singing voice separation by

CNN with two types of data augmentation, frame normalization and zero-mean15

convolution. U-Net architecture described in [15] is modified the convolutional

layers on the down-sampling and up-sampling sides. Although they have proven

to be effective for separating the singing voice, a large amount of training data

is needed in advance, which makes these models difficult to apply in the case of

small audio data. Additionally, when there is a mismatch between the training20

and the testing samples [17], separation quality decreases due to overfitting. For

this reason, unsupervised methods are often preferable for singing voice separa-

tion, particularly when only a limited amount of audio data is available or when

there is no additional prior information [18]. Many unsupervised methods are

inspired by, or loosely based on, non-negative matrix factorization (NMF) [19]25

[20] [21] [22], which is a type of dimensionality reduction that decomposes a non-

negative matrix into a non-negative basis matrix and a non-negative activation

matrix by using an iterative cost-minimization algorithm with multiplicative
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update rules. Although NMF has shown impressive results in singing voice sep-

aration, it is difficult to determine the appropriate number of non-negative basis30

vectors. An algorithm based on robust principal component analysis (RPCA)

[23] is effective for singing voice separation because singing voice can be well

modeled as a sparse matrix, while the accompaniment is modeled as a low-rank

matrix.

Inspired by the sparse and low-rank model for singing voice separation, Yang35

[24] proposed the multiple low-rank representations to decompose a magnitude

spectrogram into two low-rank matrices. In a similar vein, a new RPCA-based

method that incorporates harmonicity priors and a back-end drum removal pro-

cedure was proposed by [25]. Sprechmann et al. [26] proposed real-time online

singing voice separation by robust low-rank modeling. Yu et al. [27] proposed40

sparse and low-rank representation with pre-learned dictionaries under the al-

ternating direction method of multipliers framework. Rafii et al. [28] proposed

a repeated accompaniment concept for background music and used the repeat-

ing pattern extraction technique for separating the repeating music part from

the non-repeating singing voice in a mixed signal. Jeong et al. [29] proposed45

an extension of RPCA by generalizing the nuclear norm and the l1-norm to

Schatten-p norm and lp-norm, respectively.

As mentioned above, RPCA is an effective strategy to separate singing voice

from a musical mixture. It decomposes a given amplitude spectrogram of a

mixture signal into a sum of a low-rank matrix and a sparse matrix. Because50

musical instruments reproduce almost the same sounds every time, a given note

is played in a given song, the magnitude spectrogram of these sounds can be

considered as a low-rank structure. Singing voice, in contrast, varies signifi-

cantly but has a sparse distribution in the spectrogram domain to its harmonic

structure. Although RPCA has been successfully applied to singing voice sepa-55

ration, it fails when there are significant differences in dynamic range among the

different background instruments. Some instruments such as drums correspond

to singular values with tremendous dynamic range. Because RPCA uses a nu-

clear norm to estimate the rank of the low-rank matrix, it over-estimates the
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rank of the matrix that includes drum sounds. The accuracy of such separation60

thus decreases, as drums may be placed in a sparse subspace instead of being

low-rank.

To solve these problems, Mikami et al. [30] proposed a residual drum sound

estimation method for singing voice separation. Jeong et al. [31] proposed

an extension of RPCA with weighted l1-norm minimization for singing voice65

separation but only studied the different weighted values on a sparse matrix

without including the low-rank matrix. In another work, Li et al. [32] proposed

an extension of the RPCA algorithm called weighted robust principal compo-

nent analysis (WRPCA), which utilizes different weighted values to describe

the low-rank matrix for singing voice separation. However, it suffers from high70

computational cost due to computing the singular value decomposition at each

iteration. Therefore, Li et al. [33] proposed an extension of RPCA with rank-1

constraint (CRPCA) that can improve both the separation performance and

running time. But the quality of singing voice separation is limited because

the vocal part can not be described well by the separated matrix. Separation75

algorithm with additional prior information such as fundamental frequency (F0)

can enhance the effectiveness of separation results [34]. Because F0 varies over

time and is a property of the parts played by various singing voice and accom-

paniment, it can greatly improve separation quality by removing the spectral

components of non-repeating instruments (e.g., bass and guitar). Li et al. [35]80

proposed a method on singing voice separation by predominant F0 estimation

with singing voice detection. Hsu et al. [36] proposed a tandem algorithm that

estimated F0 information and separated the singing voice jointly and iteratively.

Virtanen et al. [37] proposed a separation algorithm from polyphonic music

accompaniment by combining F0 estimation and non-negative spectrogram fac-85

torization. Chan et al. [38] proposed an informed group-sparse representation

for singing voice separation with the idea of informed separation incorporating

F0 estimation.

Motivated by the above considerations, in this paper, we propose a novel

singing voice separation algorithm by combining prior information and non-90
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negative rank-1 constraint RPCA (NCRPCA) called informed non-negative

rank-1 constraint RPCA (NCRPCAi), which incorporates human-labeled F0

and non-negative rank-1 constraint minimization of singular values in RPCA

for separating the singing voice. Furthermore, to minimize the reconstruction

error when synthesizing the singing voice, we use the original phase recovery in95

estimating the spectral components of the separated singing voice.

In summary, we briefly summarize the main contributions of this paper as

follows.

• We propose a novel singing voice separation NCRPCAi algorithm, which

incorporates human-labeled F0 and non-negative rank-1 constraint min-100

imization of singular values in RPCA to separate singing voice from a

musical mixture.

• In addition, to minimize the reconstruction error when synthesizing the

singing voice, we use the original phase recovery in estimating the spectral

components of the separated singing voice.105

• The proposed method yields state-of-the-art separation results on the

iKala and MIR-1K datasets.

The remainder of this paper is organized as follows. Section 2 elaborates on

our proposed NCRPCAi algorithm. Section 3 and Section 4 describe the frame-

work of the reconstructed voice spectrogram and phase recovery. Experimental110

results are presented in Section 5. Finally, we conclude this paper in Section 6.

2. Informed NCRPCA

Informed NCRPCA is an extension of RPCA, which incorporates F0 and

non-negative rank-1 constraint minimization of singular values in RPCA. The

NCRPCAi model can be defined as115

minimize

min(m,n)∑
i=2

δi(L) + λ|S|1 +
γ

2
|S − E0|,

subject to X = L+ S,L ≥ 0, S ≥ 0.

(1)
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where E0 denotes the reconstructed voice spectrogram from F0. In section 3,

we describe the value of E0 in detail. The L is a low-rank matrix, X ∈ Rm×n is

an input matrix, and λ > 0 is a trade-off constant parameter between the sparse

matrix S and the low-rank matrix L. The δi(L) is the i-th singular value of L.

γ > 0 is a parameter. The same value λ = γ = 1/
√

max(m,n) as suggested120

by [38] [39]. We adopt an inexact augmented Lagrange multiplier (iALM) [40]

to solve this convex model. The corresponding augmented Lagrange function is

defined as

J(X,L, S, µ) = min

min(m,n)∑
i=2

δi(L) + λ|S|1

+ < J,X − L− S > +
µ

2
|X − L− S|2F +

γ

2
|S − E0|, (2)

where J is the Lagrange multiplier, µ is a positive value, and < J,X −L−S >

denotes Jk+1 = Jk + µk(X − Lk+1 − Sk+1).125

From the above Lagrangian function, we can obtain the non-negative values

of L and S,

Lk+1 = min
L

min(m,n)∑
i=2

δi(L) + 〈Jk, X − L− Sk〉

+
µk
2
|X − L− Sk|2F +

γ

2
|Sk − E0|, (3)

Sk+1 = min
S

λ|S|1 + 〈Jk, X − Lk − S〉

+
µk
2
|X − Lk − S|2F +

γ

2
|S − E0|, (4)

2.1. Update rules based on rank-1 constraint

As suggested by Oh et al. [41], the update rules of L and S are obtained as

Lk+1 = P1,µ−1
k

(X − Sk + µ−1
k Jk), (5)

Sk+1 = Qλµ−1
k

(X − Lk+1 + µ−1
k Jk + γE0), (6)

and P1,µ−1
k

(·) can be defined as

P1,µ−1
k

(Y ) = UY (DY1
+Qµ−1

k
(DY2

))V TY , (7)
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Algorithm 1 NCRPCAi for singing voice separation.

Input: Mixture signal X (X ∈ Rm×n), F0

1: Initialize: ρ > 1, µ0 > 0, λ = γ > 0, k = 0, J0 = L0 = S0 = 0.

2: While not converge, do :

3:

∣∣∣∣ Lk+1 = P1,µ−1
k

(X − Sk + µ−1
k Jk).

4:

∣∣∣∣ Lk+1= max (Lk+1, 0).

5:

∣∣∣∣ Sk+1 = Qλµ−1
k

(X − Lk+1 + µ−1
k Jk + γE0).

6:

∣∣∣∣ Sk+1= max (Sk+1, 0).

7:

∣∣∣∣ Jk+1 = Jk + µk(X − Lk+1 − Sk+1).

8:

∣∣∣∣ µk+1 = ρ ∗ µk.

9:

∣∣∣∣ k = k + 1.

10: end while.

Output: Lm×n ≥ 0, Sm×n ≥ 0.

where the soft-thresholding operator [42] can be defined as130

Qµ−1
k

(DY2) = sign(DY2) ·max(|DY2 | − µ−1
k , 0), (8)

where Y = Y1+Y2 (Y ∈ Rm×n), DY1
= diag(δ1, 0, ..., 0), DY2

= diag(0, δ2, ..., δmin(m,n)),

and δ1 and δ2 are the first and second singular values.

The specific process for separating singing voice from a mixed music signal

is outlined in Algorithm 1. The input value of X is a musical mixture signal and

F0 is the human-labeled from the observed audio data. E0 can be obtained from135

the values of F0. After the separation using the NCRPCAi algorithm, we can

obtain a low-rank matrix L (accompaniment) and a sparse matrix S (singing

voice).

7



3. Reconstructed voice spectrogram

To obtain the aforementioned reconstructed voice spectrogram E0 from F0,140

we define harmonic masking Mh by the human-labeled F0 as the following equa-

tion:

Mh(t, f) =


1 nFt −

w

2
< f < nFt +

w

2

0 others,

(9)

where Ft is F0 estimated at frame t, n is the index of a harmonic part, and w is a

frequency width for extracting the energy around each harmonic part, which we

set to w = 80 Hz as suggested by [34]. Therefore, we define the reconstructed

vocal spectrogram from the vocal annotations as

E0 = X �Mh(t, f), (10)

where � denotes the element-wise multiplication operator (Hadamard product).

4. Phase recovery

We calculate the magnitude spectrogram (X) by short-time Fourier trans-

form (STFT) in a musical mixture. Additionally, we estimate the magnitude

and the phase of each source to resynthesize the singing voice in the time do-

main. The original phase P [43] can be defined as

P = angle(X); (11)

Therefore, the recovered spectrogram X̃ with the original phase in the complex145

coordinate can be obtained as

X̃ = S � cos(P ) + i(S � sin(P )), (12)

where S is the value of the sparse matrix separated by NCRPCAi algorithm.

Figure 1 shows an example of the waveform and spectrogram comparison of

the clean and separated results using the proposed NCRPCAi and NCRPCA
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(a)

(b)

(c)

Figure 1: Example of waveform and spectrogram comparison of the clean and separated audio

using NCRPCAi and NCRPCA methods on the iKala dataset (71716 chorus). The left parts

are for singing voice and the right parts are for accompaniment. (a) is clean audio (Top), (b)

and (c) are the audio separated by NCRPCAi (Middle: SDR is 12.30 dB) and NCRPCA

(Bottom: SDR is 6.82 dB), respectively.
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algorithms on the iKala dataset (71716 chorus). The left parts are for singing150

voice and the right parts are for the accompaniment. (a) is clean audio, (b)

and (c) are the singing voice and accompaniment separated by NCRPCAi and

NCRPCA, respectively. As shown in the figure, (b) contains the least amount

of interference from the background music (accompaniment), in other words,

NCRPCAi performs much better than NCRPCA.155

5. Experimental evaluation

This section will focus on evaluating the proposed method and comparing it

with the previous ones at the different evaluation metrics.

5.1. Experiment settings

To confirm the effectiveness of the proposed algorithm, our evaluation is160

carried out on two datasets on singing voice separation. One is iKala dataset

[44]1. This dataset contains 252 clips, each 30 sec long. Each song in the

database is recorded in a wave file, sampled with 44.1 kHz, and has two channels.

One channel is a ground truth singing voice, and the other is a ground truth

music accompaniment. To reduce memory usage, we downsampled all the audio165

from 44.1 kHz to 22.05 kHz and computed its STFT by sliding a hamming

window of 1411 samples with a 75% overlap to obtain the spectrogram. The

mixture was of the singing voice and accompaniment at 0 dB signal-to-noise

ratio (SNR = 0).

The other experiment dataset is MIR-1K dataset[45]2. It contains 1000170

Chinese pop songs recorded at 16 kHz sampling rate. The duration of each

song slip ranges from 4 to 13 seconds. The right channel is singing voice and

the left channel is background music. The mixture was of the singing voice and

accompaniment at 0 dB signal-to-noise ratio.

1http://mac.citi.sinica.edu.tw/ikala/
2https://sites.google.com/site/unvoicedsoundseparation/mir-1k/
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5.2. Evaluation metrics175

To evaluate the performance of the proposed method, we assessed its sep-

aration performance in terms of source-to-distortion ratio (SDR), source-to-

interference ratio (SIR), source-to-artifact ratio (SAR), and normalized SDR

(NSDR) by using the BSS-EVAL evaluation toolbox 3.0 [46] [47]3. The princi-

ple of the separation performance measures is to be decompose estimate signal

Ŝ(t) of a source Si(t) is defined as

Ŝ(t) = Starget(t) + Sinterf (t) + Sartif (t), (13)

where Starget(t) is the allowable deformation of the target sound Si(t), Sinterf (t)

is the allowable deformation of the sources that account for the interferences of

the undesired sources, and Sartif (t) is an artifact term that may correspond to

the artifact of the separation method such as musical noise or the deformations

included by the separation method that are not allowed. The formulas for SDR,

SIR, SAR, and NSDR are respectively defined as

SDR = 10 log10

∑
t Starget(t)

2∑
t (Sinterf (t) + Sartif (t))

2 , (14)

SIR = 10 log10

∑
t Starget(t)

2∑
t Sinterf (t)

2 , (15)

SAR = 10 log10

∑
t Starget(t)

2∑
t Sinterf (t)

2 , (16)

and

NSDR(v̂, v, x) = SDR(v̂, v)− SDR(x, v), (17)

where v̂ is the separated voice part, v is the clean singing voice signal, and x is

the clean mixture value.

Higher values of SDR, SIR, SAR, and NSDR mean that the method ex-

hibits better separation performance in singing voice separation task. More

specifically, the value of SDR indicates the overall quality of the separated tar-180

get sound signals, the value of SIR reflects the suppression of the interfering

3http://bass-db.gforge.inria.fr/bss eval/
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source, and the value of SAR represents the absence of artificial distortion. In

this work, we report the global values of SDR, SIR, SAR, and NSDR, respec-

tively. In other words, the separation results are described with GSDR, GSIR,

GSAR, and GNSDR, respectively. In a similar vein, higher values of GSDR,185

GSIR, GSAR, and GNSDR represent better quality of separation, especially the

value of GNSDR, which is the most important metric in the aspect of overall

performance evaluation. All the metrics are expressed in decibels.

5.3. Experimental results

In this section, we evaluate the proposed algorithm on the iKala and MIR-190

1K datasets, and compare it with unsupervised and supervised methods. To

compare with the informed RPCA, the model can be defined as

minimize |L|∗ + λ|S|1 +
γ

2
|S − E0|,

subject to X = L+ S.

(18)

where E0 denotes the reconstructed voice spectrogram from F0.

5.3.1. Comparison with RPCA method

Table 1 shows the experimental results of the proposed algorithm and RPCA195

method on the iKala dataset. The results in this table confirm that NCRPCA

shows better separation performance than RPCA. Meanwhile, with the corre-

sponding approach of using F0, NCRPCAi also shows much better results than

RPCAi in all evaluation metrics on the iKala dataset (252).

• RPCA: [23]200

• RPCAi: Informed RPCA [48]

• NCRPCA: Non-negative constraint RPCA (Proposed 1)

• NCRPCAi: Informed NCRPCAi (Proposed 2)

12



Table 1: Singing voice separation results on the iKala dataset in dB (252).

Method GSDR GSIR GSAR GNSDR

RPCA 6.41 8.37 12.65 2.46

RPCAi 11.91 18.09 13.46 7.96

NCRPCA 6.75 9.73 11.19 2.80

NCRPCAi 12.03 18.31 13.54 8.08

5.3.2. Comparison with state-of-the-art methods

In order to compare our proposed method with state-of-the-art supervised205

methods, we used 208 clips for testing in the experiment and another 44 clips for

obtaining codebooks in the training process. The supervised methods mainly

utilize online dictionary learning [49]. We used the SPAMS toolbox4 to learn

codebooks on 44 clips with the dictionary size of 100 atoms and the remaining

208 clips for testing.210

• LRR: Low-Rank Representation [50]

• LRRi: Informed LRR [38]

• GSR: Group-Sparse Representation [38]

• GSRi: Informed GSR [38]

Table 2 shows the experimental results of the proposed NCRPCAi and state-215

of-the-art methods on the iKala dataset (208). These results were obtained

with the supervised (LRR, LRRi, GSR, and GSRi) and unsupervised (RPCA,

RPCAi, NCRPCA, and NCRPCAi) methods, respectively.

4http://spams-devel.gforge.inria.fr/
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Table 2: Singing voice separation results on the iKala dataset in dB (208).

Method GSDR GSIR GSAR GNSDR

LRR 7.73 11.41 11.17 3.93

LRRi 11.55 16.92 13.38 7.75

GSR 6.30 7.63 14.80 2.50

GSRi 11.51 16.34 13.63 7.71

RPCA 6.21 8.14 12.53 2.41

RPCAi 11.74 17.82 13.31 7.93

NCRPCA 6.55 9.49 11.05 2.74

NCRPCAi 11.85 18.04 13.39 8.05

The results in this table indicate that all methods performed better when

using F0 than without it. The proposed NCRPCAi showed better results than220

supervised methods which use online dictionary learning (LRR, LRRi, GSR, and

GSRi). As for the most important separation performance metric, the GNSDR,

the proposed NCRPCAi method shows the best results among all methods with

the value of 8.05 dB.

5.3.3. Comparison with RPCAi method225

We also comparison with the proposed method with RPCAi on the MIR-1K

dataset. Table 3 shows the experiment results of singing voice and accompani-

ment, respectively. From the experimental results obtained with GSDR, GSIR,

GSAR, and GNSDR in the above table, again, it clearly shows that the pro-

posed NCRPCAi delivered the best separation results between the separated230

singing voice and accompaniment parts.
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Table 3: Singing voice separation results on the MIR-1K dataset in dB.

Singing Vocie

Method GSDR GSIR GSAR GNSDR

RPCAi 5.40 8.89 8.91 5.25

NCRPCAi 6.97 10.42 10.41 6.83

Accompaniment

RPCAi 4.79 10.21 7.00 4.68

NCRPCAi 6.66 12.81 8.41 6.54

5.4. Discussion

The experiment results are described in Tables 1, 2 and 3. From the values

on the three tables, we can clearly see that NCRPCA with F0 achieves better

separation results than without it on the iKala and MIR-1K datasets. Therefore,235

the prior information F0 is useful for the separation results. As demonstrated

in [34] [36] [37], there are dependencies between singing voice separation and

F0 estimation, which allows for improving the performance on one task by in-

tegrating information obtained via a method designed for the other. On the

contrary, the inaccuracy of F0 estimation will lead to the worse values of re-240

covered singing voice (e.g., E0), which brings the separated sparse matrix is

not exact from the mixture matrix in Algorithm 1. It means that the results

of separation performance are not better. The more accuracy of F0 estimation

from singing voice is expected to be further research.
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6. Conclusion245

In this paper, we proposed a singing voice separation method by combin-

ing prior information and non-negative constraint RPCA that incorporates F0

and non-negative rank-1 constraint minimization of singular values in RPCA.

In addition, we used the original phase recovery in estimating the spectral com-

ponents of the separated singing voice. Experimental results on the iKala and250

MIR-1K datasets demonstrate that the proposed NCRPCAi algorithm outper-

forms the conventional RPCA and state-of-the-art methods. For future work,

since the dependencies between singing voice separation and F0 estimation, the

accuracy of F0 estimation will bring the different separation results. This is a

topic worth further studying. Future research will pursue this possibility.255
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