JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title gooooogo

Author(s) Jin, Yu

Citation

Issue Date 2004-03

Type Thesis or Dissertation

Text version

aut hor

.net/101p9/1810

URL http:/7/7 hdl handl
Rights
Description Supervisor: gooo 0Od, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

The study of execution mechanism of Function
Language for A Multithread Processor Architecture

Jin Yu (210027)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 13, 2004

Keywords: parallel,SML,thread,multithread,token,top-down
parsing,symbol table.

Abstract

In this paper, it aims at efficient execution of a functional language with the
combination of multi-thread processor architecture and the functional language.
Although paradigm of functional language, logical language and object-oriented
language are efficiently simulated by the sequential architecture, the parallel per-
formance possibility which is in those paradigms is ignored. Moreover, although
the multithread type processor architectures that were suitable for execution of
a function type program were proposed, the compiler applied to the multi-thread
processor was not proposed. In this research, the compiler which performs paral-
lelism detection, generation of multi threads and the synchronization of threads is
proposed. First of all, let’s pay attention to Standard ML.

1 INTRODUCTION

In this paper, it aims at efficient execution of a functional language with
the combination of multi-thread processor architecture and the functional
language. Formerly,architectural support for programming language has
traditionally been popular as an in indirect way of application specific sup-
port. But ”High-Level Language Computer” has been forgotten. Today,the
Microprocessor focuses our attention on RISC. Pepople tried that problems
of software was solved by hardware on ”High-Level Language Computer”.
Nevertheless,for users, value of computer systems is not the archievement

Copyright (© 2004 by Jin Yu

of ”High-Level Language Computer” but the ratio of cost and efficiency.
There are two major subjects in software development. One approach is
to catch the method of software development in engineering function. The
other one improves from the base of the programming paradigm and aims
at conversion from the imperative paradigm which bases on von Neumann
type architecture to other paradigms. So,parallel processing or the par-
allel computer architecture make an interest in the functional and logical
programming. However, this is not in agreement with overall cost effective-
ness.From the viewpoint of cost effectiveness, if a machine is created with
simpler structure and less resources is priority even if its performance is a
little inferior. Therefore, a “High-Level Language Computer” is no worth
to exist.

Generally programming language processing is divided into three phases.
First is language translation phase. Second is operation sequence control
phase. Third is execution phase. In translation phase, we can see that it
is cost effectiveness to assign the software compiler translation jobs. On
the other hand, in order to speed up execution phase, using hardware
leads execution pahse themselves to highest effectiveness. Speed-up by
hardware is effective in parallel processing. Remaining opinion that we
have already discussed in ”High-Level Language Computer” is operation
control phase. So far, this is discussed in the problems of instruction is-
sue or instruction scheduling for sequntial architecture having instruction
pipeline. Although the paradigms including functional, logical, and object
oriented langurages can be simulated effectively in cost on sequential ar-
chitecture, those paradigms involving parallel execution potentialities are
ignored. Moreover, although there are some researches on parallel exe-
cution of each paradigms parallel language, few of them concerned about
parallel execution of language, i.e. the compiler which can detect paral-
lelism.

2 Functional Language and the manner of process

In this paper, there are some discussions about Standard ML and research
its interior parallel execution possibility. There are two main reasons that
interfere with the efficient execution of a functional language. First, it is

execution of a command of the stack operation by the function call which
occurs frequently in a program. This operation produces a hazard on the
usual pipeline. A multi-thread processor J can avoid the hazard. Next,
a program’s interior parallel execution possibility is ignored. In a strict
meaning, The functional language does not have side effect. Program is
defined as f like a certain function. It is defined as evaluation of f appli-
cation f(z) when input z. In the definition of function f, fitself and other
functions can be used. For example, the evaluation of f(z)=g(h(z),k(z))can
start from the outside of it-g, or can start from the inside h(z) or k(z), or
can start from h(z) and k(z) simultaneously. In strict function language,
the same evaluation result is guaranteed in different order evaluation. This
character shows the possibility of parallel processing. Thus, it is believed
that a compiler which can perform parallelism detection and the synchro-
nization of threads is necessary.

3 Detection of Parallelism and Synchronous Process-
ing

In this paper, a data dependency relation and synchronous processing
which are necessary for the implementation of the complier are proposed
as follows.

3.1 The detection method of a data dependency

In SML, evaluation of a expression is under a certain environment. En-
vironment is a set of the variable bounded by the value. Therefore, a
expression is evaluated by the environment. SML is a language with a
static scope rule, and the value of a variable will not change after the defi-
nition of the value. This rule is also applied to a function definition. There
are free variables without bounded variables in the body of a function. A
free variable are a values bound to the variable at the time of a function
definition, and is not related to the definition of the same name variable
when a function is performing.

Therefore, in this research,a data dependency is inspected while observ-
ing environment. Making environment in a symbol table at the each stage

of the front-end, and investigating the symbol table in the next processing
stage at the compile time check the data dependency. It is necessary to
add new attribute of environment into the symbol management table.

3.2 Synchronous processing along Expressions

The execution times of the expressions are various, and along the expres-
sions it is necessary to synchronize after parallel operation. If the value of
a expression returns a value before the complete evaluation of its partial
expressions , it will cause a incorrect result. In order to avoid incorrect
result, in this research,synchronous processing is performed as follows.

When evaluating the whole expression, evaluation of the expression ele-
ment (partial expression) returns the mark which means the finish status
of the formula and its the value together. If an element is all completed,
returns 1, if not 0 will be returned. For example,

val Exp = expl+exp2+exp3;

if expy,expy and exps are parallel executions possible, synchronous pro-
cessing is judged by checking Marks A, B, and C. Figurel is the diagram
of synchronous processing of the expression which bases on the proposed
method.

T

ks

r

h |

T

s

r

"

- - rlian — T
SRy aEATE T | m— h
b

=2

==1

Figure 1: synchronous processing

4 Implementation of a Compiler

4.1 Lexical Analysis

Lexical analysis is the first phase of a compiler. The main task is to outputs
the sequence of tokens by the demand of syntax analysis, while reading
characters in order. When lexical analysis receives a demand of “get the
following token” from syntax analysis, an input character will be read and
the following token will be decided. For the implementation of lexical
analysis, make the definitions as follows. The data type is integer and it is
forbidden to use a keyword as a identifier. Token is specified in Table 1.

token = keywords | identifier | numeric | special_sign
keywords := andalso | orelse | if
| then | else | fun
| val | let | in
| end | ture | false
identifier = letter | identifier alphanumeric
alphanumeric == letter | digit

Table 1: specification of tokens

Mainly, lexical analysis consists of three portions; blank skip, token judg-
ment, reading of token. Always, lexical analysis pre-read next character
and judges it should be the end of the present word or the head of the
following word.

4.2 Syntax Analysis

Syntax analysis match the combination of the token delivered by lexical
analysis with grammar, and shows the processing which changes to a tree
structure as a result. Grammar is described in Table2. Generally there
are two kinds of syntax analysis, the top-down analysis analyzed from the
route of a tree structure, and the bottom-up analysis analyzed from a leaf.
In this research, top-down parsing analysis is used.

This grammar is ”If one character’s is predicted, it is possible to ana-
lyze syntactically without ambiguous”. Therefore, a ”prediction token” is

needed in order to perform syntax analysis. A pair of a prediction token
and a syntax tree is delivered in syntax analysis processing.

The information about a token is registered into the symbol table during
the syntax analysis. That means, the variable name and the function name
will be registered and researched. Since operation of a syntax error is not
the main goal of this research, it is simplified. After finding a syntax error,
analysis will stop, and will not execute an error recovery.

phrase_list
phrase
pharase phrase_list
declaration
exp
erpy
LET declaration IN exp THEN
IF exp THEN exp ELSE exp
exps
€xTp3) €TP4
erps
€TP2 = €TP3
expo <> exrps
exp
exrpy + exrps
exp - erps
expo
expo * expy
€XPo / ETP1
EXPsimple
EXPsimple €XPo
integer
identifier
boolean
(exp)
()
VAL exp
FUN exp

program
phrase_list

phrase

exp

Ty

ETP3

eTpy

erpr

expo

ETPsimple

declaration

Table 2: specification of grammar

4.3 Management of a Symbol table and Code Generation

In a source program, identifier means a variable or a function. Each iden-
tifier has various information, such as the data type and the scope. A
compiler extracts these information from a program and holds it to the
symbol table. In source program, a variable name or a function name ex-
presses a certain object. These are declared with the information of data
type in the declaration part of the program. Moreover, these are referred
to in the execution part of a program.

In common for the symbol table is treatedas a whole, no matter what
kind the identifier is. However, in this research, the variable name and
the function name are handled in different table. Only a variable name is
put into the symbol table and a function name is put into another table.
Declaration of a symbol table is implemented as follows.

(**k*kvariable-nameskkskkxk)

type binding = {count:int, level:int,
value:{tag:int,boundvalue:int} list}
type bucket = (string*binding) list
type table = bucket Array.array

val t : table = Array.array(SIZE,nil)

In this, count is used for the management of the identifier and the value
of count will increase 1 if the same name declaration appears.

When [evel meets a local declaration, it increases a value, and refer to the
no.level value list. Tag records the information of whether the identifier is
defined or not.

The function table is implemented as a simple array. The element of
the array is implemented by record which has 4 fields;name, parameter,
funcbody and idtable. funcbody means the defined function and idtable is
the symbol table of the identifier which appears in the definition place of
a function. If there is a global variable in a function definition, a top-level
table is referred to. If there is a local one, it will be registered into the
idtable of the function.

A instruction code is generated with using the syntax tree and the symbol
table which were obtained from syntax analysis, while carrying out a hand
compiler.

5 Conclusion

In this paper, we discussed the union between multithread process and
functional language, furthermore, we think that it is very possible to im-
plement functional language high-efficiently. Here, we only deal with it in
theory, in our future research, we will further to perfect this proposal in
theory then to implement it.

