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Abstract—Hidden Markov model based synthesized speech is
intelligible but not natural because of over-smoothing of the
speech spectra. The purpose of this study is improving natural-
ness without violating acceptable intelligibility by decomposing
the naturalness and intelligibility of synthesized speech using a
novel asymmetric bilinear model involving non-negative matrix
factorization. Subjective evaluations carried out on English data
confirm that the proposed method outperforms original asym-
metric bilinear model involving singular value decomposition in
factorizing naturalness and intelligibility. Moreover, the perfor-
mance of the proposed method is comparable with other methods.

Index Terms—Hidden Markov model (HMM), Non-negative
matrix factorization (NMF), Singular value decomposition (SVD).

I. INTRODUCTION

The HMM-based speech synthesis is a state-of-the-art
method due to its flexibility and compact footprint [1]. The
HMM can model not only the statistical distribution of speech
parameters but also their rate of change. As a result, synthe-
sized speech is intelligible but not natural due to statistical
averaging or over-smoothing effect. There have been several
attempts to overcome the over-smoothing effect. One approach
is using objective evaluations of this effect such as global-
variance [2], and modulation-spectrum [3], integrating them
into the parameter generation phase to obtain better speech
parameter values. Since the quality improvement is dependent
on synthesizers, we cannot improve the naturalness of exist-
ing speech synthesizers without re-training the synthesizers.
Another possible approach to reduce the gap between the
spectra of natural and synthetic speech is to learn the acoustic
differences directly from the data. If we have a parallel set of
natural and synthesized speech, voice conversion techniques
[4], [5] can be used as mapping from natural speech to
synthetic speech. Since quality improvement is independent
from synthesizers, we can improve the naturalness of existing
speech synthesizers. Thus, a voice-conversion approach is used
to improve naturalness.

With the majority of previous voice-conversion approaches,
all spectra are modified to improve naturalness. However,

applying these approaches often negatively affect intelligibil-
ity. To improve naturalness without violating intelligibility,
an asymmetric bilinear model [6] was introduced to decom-
pose naturalness and intelligibility. Popa et al. [7] used an
asymmetric bilinear model to decompose a speech parameter
vector into speaker information and phonetic information using
singular value decomposition (SVD). From this idea, a speech
parameter vector y can be represented as a combination of
the naturalness factor W and intelligibility factor hc of an
intelligibility class c:

y = Whc (1)

In the above representation, naturalness can be modified,
whilst intelligibility can be preserved.

There are two problems with applying an asymmetric bilin-
ear model. The first is finding an efficient acoustic feature vec-
tor strongly related to naturalness. The naturalness-associating
acoustic feature will be modified, while intelligibility-
corresponding acoustic features will be preserved.

The second problem is finding an efficient constraint to
decompose naturalness and intelligibility. Although an asym-
metric bilinear model using SVD is an excellent approach,
SVD allows negative combinations of intelligibility and nat-
uralness. Since combinations indicate unrealistic subtractions
of intelligibility (or naturalness), negative combinations are
unnecessary. To avoid subtractive combinations, we propose a
method that uses a novel asymmetric bilinear model involving
non-negative matrix factorization (NMF).

Section II shows that modifying spectral parameters is very
important for improving perceived-naturalness. In the work,
we modify spectra of HMM-based synthesized speech and
retain other acoustic features as in Fig. 1.

II. FINDING EFFICIENT ACOUSTIC FEATURE VECTOR

We carried out an experiment to find an efficient acoustic
feature vector strongly related to naturalness. With a certain
kind of acoustic feature, the feature values are exchanged
between a pair of human speech and synthesized speech. If
such an exchanging drastically improves the naturalness of



Fig. 1: Schematic of improving naturalness of HMM-based
synthesized speech by modifying synthesized spectra

TABLE I: Stimuli obtained from exchanging different acoustic
feature vectors between natural speech and synthesized speech

Group Stimuli Natural speech
with acoustic
feature of
synthesized
speech

Stimuli Synthesized
speech with
acoustic feature
of human speech

A A1 Cepstrum A2 Cepstrum
B B1 F0 B2 F0
C C1 LPC C2 LPC
D D1 LPC with power D2 LPC with power
E E1 LSF E2 LSF
F F1 LSF with power F2 LSF with power
G G1 MCC G2 MCC
H H1 MFCC H2 MFCC
J J1 PLP J2 PLP

synthesized speech, that acoustic feature strongly relates to
naturalness. Therefore, our experiment was composed of three
steps:

1) Exchanging acoustic feature values.
2) Comparing naturalness by using a listening test.
3) Finding an efficient acoustic feature

In the first step, several types of acoustic features were
prepared, i.e., fundamental frequency (F0), formant-related
parameters, e.g., the linear prediction coefficient (LPC) w/wo
residual power, linear spectral frequency (LSF) w/wo residual
power, and perceptual linear prediction (PLP), and fine–
structure– related coefficients, e.g., Mel-frequency cepstral
coefficient (MFCC) [8], Mel-cepstral coefficient (MCC) (γ =
0, α = 0.42 for 16 kHz speech) [9] and cepstrum. Since
over-smoothing broadens the formants’ bandwidth of speech
spectra, sharpening the formant peaks can mitigate over-

Fig. 2: Schematic of exchanging process; I1 denotes HMM-
based synthesized speech; I2 denotes corresponding human
speech

smoothing of the spectral envelope. Therefore, the LPC, LSF,
and PLP are taken into consideration to control formants. Since
improving the fine structure enhances the dynamics of the
generated spectral envelope, the MFCC, MCC, and cepstrum
are considered to manipulate the fine-structure of speech
spectra. In the experiment, one utterance for one natural speech
sentence was synthesized by HMM-based speech synthesis
system (HTS) [1]. The synthesized speech was aligned to
its original speech with guide–of–label files. The STRAIGHT
vocoder[11] was used to analyze the speech. It decomposes
speech into a spectral envelope, F0, and aperiodicity. The
STRAIGHT-based spectral parameters are further encoded into
LPC, LSF, MFCC, MCC, PLP, and cepstrum. After this step,
20 stimuli including the 18 stimuli listed in Table I, natural
speech (denoted as I1), and HMM-based synthesized speech
(denoted as I2) were obtained.

Figure 2 shows an example of exchanging F0-related
features between HMM-based synthesized utterance and its
corresponding natural utterance. The F0 contour is extracted
from synthesized speech I2, appropriately time-aligned with
the guide-of-label files, and then imposed to natural speech I1.
In essence, the HMM-based F0 contour replaces the Natural
F0 contour, while all other Natural attributes are retained, thus
creating an hybrid waveform B1.

In the second step, the naturalness of the 20 stimuli was
compared using Scheffe’s method of paired comparison [10].
Six individuals (non native English speakers with fluent En-
glish level) participated in the experiment. Each participant
listened to 380 pairs of stimuli. With each pair, they compared
the naturalness of the stimuli on a five–point scale, e.g., -2 (the
former is more natural), 0 (comparable), +2 (the latter is more
natural).

In the third step, the efficient acoustic feature was deter-
mined by looking for one that improved the naturalness of
synthesized speech the most. The experimental results in Fig. 3
indicate that exchanging MCC values improves the naturalness
of synthesized speech the most (I2 to G2).

In the frequency domain, fine structure is more important
than formant in perceiving naturalness. For the first problem
of using asymmetric bilinear model, the MCC is the most
efficient acoustic feature for improving naturalness.

Although the MCC can represent the fine structure in the
frequency domain, it cannot represent the dynamics of the
spectra in the time domain. The modulation spectrum has re-
cently become a popular concept in capturing the fine structure
of speech spectra in the time domain. We used the modulation-
spectrum of MCC sequences ck = [c1k, c2k, ..., cPk]

>
, k =

1, 2, ..., T , in which P is the order of cepstral coefficients
and T is the number of frames, to determine the over-
smoothing effect in both the time and frequency domains
of speech spectra. Short-term spectral analysis of a speech
utterance yields a matrix R = [c1, c2, ..., cT ] of size P × T .
The time trajectory of cepstral coefficient p is defined as
rp = [cp1, cp2, ..., cpT ] , p = 1, 2, ..., P . The modulation-



Fig. 3: Results of pair-comparison test

Fig. 4: Schematic of applying asymmetric bilinear model for
modifying synthesized spectra; N training sentences with 1
target sentence

spectrum of trajectory rp is defined as:

M(p, f) = |FT [rp]| , (2)

where f is the modulation frequency bin, defined by the
number of points in the Fourier transform (FT). The number
of points in the FT must be greater than the maximum
number of frames T of an utterance. The modulation-spectrum
of each utterance is calculated for each coefficient. Using
an asymmetric bilinear model, the modulation-spectrum of
synthetic trajectories is modified to be closer to the modulation
characteristics of natural speech.

III. OVERVIEW OF MODIFYING SYNTHESIZED SPECTRA
USING ASYMMETRIC BILINEAR MODEL INVOLVING NMF

In the section, we describe the process of applying an
asymmetric bilinear model for modifying HMM-based speech

Fig. 5: Our asymmetric bilinear model using NMF; S: same
sentence and different HTSs

spectra. The process consists of three major steps as shown in
Figure 4:

1) Decomposing HMM-based spectral-parameters into nat-
uralness and intelligibility components.

2) Obtaining naturalness component of actual spectral-
parameters.

3) Reconstructing modified spectral-parameters with target-
intelligibility of HMM-based spectra and naturalness of
actual spectral-parameters.

A. Decomposing HMM-based spectral-parameters into natu-
ralness and intelligibility components

The goal with step 1 was to obtain acceptable intelligibility
from parallel data of synthesized spectra to preserve the
intelligibility-component. The naturalness and intelligibility
components were factorized from the parallel data using NMF.

1) Stacking parallel data of S synthesized voices: We first
prepared parallel data of a number of S HTS voices, as shown
in Fig. 5. In the parallel data, the variation in the quality
of different HTS voices is presented in columns and that in
phonetic information of a number of N different sentences
is presented in rows. Phonetic information is assumed to be
intelligible. To build the parallel data, modulation-spectrum
of the MCC sequence from N sentences were stacked hor-
izontally when the parallel data is decomposed into two
components: Matrix 1 and Matrix 2, as shown in Fig. 5, where
M denotes the number of FT points for modulation-spectrum,
P is the MCC order, S is the number of HTSs [1] (S ≥
2), and J is the number of model dimensions determined as
J = S × P [7]. The next step was to prove that the proposed
method involving NMF can decompose naturalness and in-
telligibility components from the parallel data of synthesized
spectral-parameters. Evidence about strong relation between
Matrix 1 and perceived-naturalness, and between Matrix 2 and
perceived-intelligibility is provided in the next subsections.

2) Examining relation between Matrix 1 and perceived-
naturalness: We conducted an experiment to prove the relation
between Matrix 1 and perceived-naturalness. To do so, several
pairs of HMM synthesized speech and natural speech were
decomposed into two components. The first component called
Matrix 1 is exchanged between the HMM-based synthesized



speech and natural speech. If exchanging Matrix 1 improves
the perceived-naturalness of synthesized speech and decreases
that of human speech, Matrix 1 strongly relates to naturalness.
The experiment consisted of the following steps:

(i) Decomposing HMM-based synthesized speech and nat-
ural speech using our asymmetric bilinear model with
NMF

(ii) Exchanging Matrix 1 between HMM-based synthesized
speech and natural speech

(iii) Comparing naturalness of obtained stimuli using prefer-
ence test

Figure 6 shows the process of decomposing human speech
and synthetic speech in step (i). First, parallel data of human
voices and that of HMM-based voices were prepared. A
number of S = 3 HMM-based synthesized voices were trained
using 3 CMU datasets (SLT, CLB, and RMS). A number
of N = 18 sentences were synthesized using the S = 3
HMM-based synthesizers with the guide-of-label files (in total
54 utterances). The 54 HMM-based synthesized utterances
were used to build a parallel data of HMM-based voices.
We used 54 original utterances with the same sentences as
synthesized ones from the 3 CMU datasets (SLT, CLB and
RMS) to build a parallel data of human voices. To stack the
parallel data, all utterances were analysed into F0, spectral
envelope, and aperiodicity using STRAIGHT. The frame-shift
was 5 ms and the frame-length was 10 ms. The spectral
envelope was represented by the MCC. The cepstral order
was 49 and the MCC sequences were transformed into the
modulation-spectrum using FT; M = 4096. In other word,
each utterance was described with M = 4096 parameter
vectors. The modulation-spectrum of N = 18 utterances from
one dataset was horizontally stacked as row of the parallel
data. The modulation-spectrum of 3 utterances which has
same content and come from different speakers was stacked
vertically as column of the parallel data. Then the parallel
data were decomposed by NMF. In Fig. 6, the D denotes
the speech parameters of a synthesized utterance generated
by SLT-synthesizer. The A denotes the speech parameters of a
human utterance of the same sentence and same SLT dataset;
A is decomposed into two components denoted as (1) and (2)
and D is factorized into two factors denoted as (3) and (4).

In step (ii), the first components (or Matrix 1) in the
factorized matrices were exchanged between HMM-based
synthesized speech and natural speech of the same sentence,
and speaker. For example, in Fig. 6, components (1) and (3)
were exchanged. Therefore, with each sentence of a certain
speaker, there are four types of stimuli as follows:

• Stimuli A consists of spectral parameters A comprising
of (1) and (2).

• Stimuli B consists of spectral parameters B comprising
of (1) and (4).

• Stimuli C consists of spectral parameters C comprising
of (3) and (2).

• Stimuli D consists of spectral parameters D comprising
of (3) and (4).

Fig. 6: Decomposing of synthesized speech and human
speech; S: same sentence and different HTSs for HTS voice;
S: same sentence and different natural voices for human voice;
M: order of modulation spectrum; N: no. different sentences

In step (iii), the naturalness of the stimuli was compared
using a preference test. Ten individuals (8 non-native English
speakers and 2 native English speakers) participated. Each
participant listened to 216 pairs of stimuli. With each pair, they
compared the naturalness of stimuli on a two-point scale, i.e., 1
(the former is more natural), and -1 (the later is more natural).
In Fig. 8(a), the preference score of Stimuli A (or natural
speech) reduced to that of Stimuli C, while, that of Stimuli
D (or HMM-based synthesized speech) increased to that of
Stimuli B after exchanging component (1) and component (3).
In other words, the naturalness of Stimuli A decreased and the
naturalness of Stimuli D increased after exchanging Matrix
1 (e.g., component (1) and component (3) in Fig. 6). This
indicates a strong relation between Matrix 1 and naturalness.

Figure 7 shows the differences between Matrix 1 of one
synthesized speech and that of the original speech. The
columns of the matrix contain information about the mag-
nitude of the cepstral coefficients. The difference becomes
clear in high-order cepstral coefficients, which represent the
fine structure of speech spectra. The magnitude of cepstral
coefficients from the human speech is larger than that of
the HMM-based synthesized speech, especially in the high-
order region. Moreover, the fine structure is strongly related
to naturalness. Therefore, by emphasizing the magnitude of
the cepstral coefficients, especially in the high-order region,
naturalness can be improved.

3) Examining relation between Matrix 2 and perceived-
intelligibility: Another experiment was conducted to prove
the relation between Matrix 2 (e.g., component (2) and com-
ponent (4) in Fig. 6) and perceived-intelligibility with the
same procedure and configuration as the previous experiment.
Unlike the previous test, testing words in modified rhythm test
were synthesized by using 3 HMM-based synthesized voices
trained from SLT, CLB and RMS datasets. Matrix 2 was
exchanged between synthesized word segments and natural
word segments. Four types of stimuli were obtained, similar
to the previous experiment. The intelligibility of the stimuli



Fig. 7: Difference between Matrix 1 of synthesized speech
and that of human speech

(a) Preference test (b) Modified rhythm test

Fig. 8: Experimental results with 95% confidence interval

was compared using the modified rhythm test. Ten individuals
(eight native English speakers and two non-native English
speakers) with normal hearing ability participated. As shown
in Fig. 8(b), the word correctness of Stimuli A decreased to
that of Stimuli B, and that of Stimuli D increased to that of
Stimuli C. Expected results are Stimuli B is comparable to
Stimuli D while Stimuli C is comparable to Stimuli A. The
experimental results indicate a strong relation between Matrix
2 and intelligibility. Our asymmetric bilinear model involving
NMF can decompose the naturalness and intelligibility of
HMM-based synthesized speech.

B. Modification of HMM-based spectral-parameters

In step 2 for modifying HMM-based speech spectra in Fig.
4, the naturalness-component of actual spectral-parameters W
was obtained using a small set of of actual speech y and
corresponding intelligibility set C obtained from step 1 as
shown in Fig. 4. We derived the desired-naturalness W by
minimizing the total squared error over actual speech data,

E =
∑
c∈C
||y −Whc||2 (3)

In Equation 3, intelligibility vectors bc are learned from
step 1. The desired naturalness A can be found by solving the
linear system

∂E

∂W
= 0 (4)

In step 3 in Fig. 4, the naturalness of actual spectral-
parameters W and intelligibility of synthesized spectral-

parameters: target hc are combined to obtained an improved
spectral-parameters as shown in Fig. 4.

IV. EVALUATION AND DISCUSSION

We evaluated the naturalness and intelligibility of the pro-
posed method using a preference test and modified rhythm test.
In the preference test, the proposed method was compared
with other improvement methods such as those involving
global-variance [2], and modulation-spectrum post-filter [4].
Two HMM-based synthesizers (S = 2) were trained using
2 CMU datasets (SLT and RMS). With each dataset, 500
utterances were used for training an HMM-based synthesizer.
Ten sentences were chosen as testing sentences. Ten sentences
were synthesized using synthesizer trained from SLT dataset
as baseline samples. We applied proposed method and those
involving SVD, global-variance, and modulation-spectrum to
improve the quality of the samples. A number of 500 training
utterances which were used to train HMM-based synthesizer
were used for training both methods involving global-variance
and modulation-spectrum. To improve spectral parameters of
the baseline samples using our proposed method involving
NMF, we synthesized 5 training sentences using S = 2
synthesizers trained from SLT and RMS datasets (in total 10
training utterances) in step 1 in Fig. 4. We also synthesized
fifteen testing sentences using S = 2 synthesizers trained from
SLT and RMS datasets (in total 20 testing utterances). With
each testing sentence, a parallel data of spectral parameters
was formed using spectral parameters of 10 training utterances
and 2 testing utterances from S = 2 different HMM-based
synthesized voices and N = 5 different sentences. The
objective is modifying the testing utterance generated by SLT-
synthesizer. In step 2 in Fig. 4, original utterances of 5
training sentences from SLT dataset was also used to derive
naturalness of actual speech. We combined the naturalness of
actual speech with intelligibility of testing sentence obtained
from step 1 to obtain modified spectral parameter for the
testing sentence. The process of modifying F0 contour is the
same as that of modifying spectral parameter. All HMM-
based synthesized utterances were aligned with their original
human-speech using the guide of label files from SLT dataset.
The configurations were similar to the previous experiments.
Eleven participants (ten non-native and one native English
speakers) listened to 400 pairs of stimuli. The participants are
graduate students with normal hearing ability. They listened
to each pair only once, then compared the naturalness of
utterances on a two-point scale, i.e., 1 (the former is more
natural), and -1 (the latter is more natural). Natural speech
was defined as actually human-speech.

Figure 9(a) shows that preference score of proposed method
involving NMF is higher than method involving SVD, and
comparable to the method involving global-variance (denoted
as GV) and modulation-spectrum post-filter (denoted as MS).
It’s important to notice that a number of 500 training sen-
tences was used for methods involving global-variance and
modulation-spectrum post-filter, while only a number of 5
training sentences was used for methods involving NMF and



(a) Preference test (b) Modified rhythm test

Fig. 9: Experimental results with 95% confidence interval

SVD. It indicates that proposed method involving NMF out-
perform original asymmetric bilinear model involving SVD.
It also indicates that NMF is more efficient than SVD in
decomposing naturalness and intelligibility. At the end of the
experiments, participants were asked what factors contribute
to their decisions. All participants agreed that speech with
buzzing sound and speech that were flat is not natural.

In modified rhythm test, we evaluated intelligibility of
synthesized speech after applying proposed method. Ten in-
dividuals (eight non-native and two native English speakers)
with normal hearing ability participated. Figure 9(b) show that
the correctness are comparable in all methods. The results
indicate that intelligibility of synthesized speech is preserved
with the proposed method (denoted as NMF).

For the second problem of applying asymmetric bilinear
model in factorizing naturalness and intelligibility of syn-
thesized speech, the experimental results indicate that non-
negativity constrain is an efficient constraints to decompose
naturalness and intelligibility.

V. CONCLUSION

We proposed a novel asymmetric bilinear model using
NMF to decompose the naturalness and intelligibility of
HMM-based synthesized speech. The MCC was determined
as an efficient acoustic feature strongly related to perceived-
naturalness of speech. The proposed method outperforms
original asymmetric bilinear model involving SVD. The NMF
is more efficient than the SVD in decomposing naturalness
and intelligibility. In other words, non-negativity constraint
is efficient in decomposing naturalness and intelligibility of
synthesized speech. The proposed method is comparable to
other methods although our method use only 5 training sen-
tences. Our method provides a new way to control naturalness
of speech through modifying the magnitude of high-order
cepstral coefficients.
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