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Abstract

Automatic speech emotion recognition (SER) by a computer is a critical compo-

nent for more natural human-machine interaction. As in human-human inter-

action, the capability to perceive emotion correctly is essential to taking further

steps in a particular situation. One issue in SER is whether it is necessary to

combine acoustic features with other data such as facial expressions, text, and

motion capture. This research proposes to combine acoustic and text informa-

tion by applying a late-fusion approach consisting of two steps. First, acoustic

and text features are trained separately in deep learning systems. Second, the

prediction results from the deep learning systems are fed into a support vector

machine (SVM) to predict the final regression score. Furthermore, the task in

this research is dimensional emotion modeling, because it can enable deeper

analysis of affective states. Experimental results show that this two-stage, late-

fusion approach, obtains higher performance than that of any one-stage pro-

cessing, with a linear correlation from one-stage to two-stage processing. This

late-fusion approach improves previous early fusion result measured in concor-

dance correlation coefficients score.

Keywords: automatic speech emotion recognition, affective computing, late

fusion, multimodal fusion, dimensional emotion
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1. Introduction

Understanding human emotion is important for responding properly in a

particular situation for both human-human communication and future machine-

human communication. Emotion can be recognized from many modalities: fa-

cial expressions, speech, and motion of body parts. In the absence of visual fea-5

tures, speech is the only way to recognize emotion, as in the case of a telephone

call or a call-center application (Petrushin, 1999). By identifying caller emotion

automatically from a system, appropriate feedback can be applied quickly and

precisely.

Speech is a modality in which both acoustic and verbal information can be10

extracted to recognize human emotion. Unfortunately, most speech emotion

recognition (SER) systems use only acoustic features for predicting categorical

emotion. In contrast, this research proposes to use both acoustic and text fea-

tures to improve dimensional SER performance. Text can be extracted from

speech, and it may contribute to emotion recognition. For example, an inter-15

locutor can perceive emotion not only from prosodic information but also from

semantics. Grice (2002) stated in his implicature theory that what is implied de-

rives from what is said. For example, if someone says that he is angry but looks

happy, then the implication is that he is indeed angry. Hence, it is necessary to

use linguistic information to determine expressed emotion from speech. A fusion20

of acoustic and linguistic information from speech is viable since (spoken) text

can be obtained from speech-to-text technology. This bimodal features fusion

strategy may improve the performance of SER over acoustic-only SER.

Besides the categorical approach, emotion can also be analyzed via a di-

mensional approach. In dimensional emotion, affective states are lines in a25

continuous space. Some researchers have used a two-dimensional (2D) space

comprising valance (positive or negative) and arousal (excited or apathetic).

Other researchers have proposed a 3D emotional space by adding either domi-

nance (degree of power over emotion) or liking/disliking. Although it is rare, a

4D emotional space has also been studied by adding expectancy or naturalness.30
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While some researchers, e.g., Russell (1980), argue that a 2D emotion model

is enough to characterize all categorical emotions, in this research, we choose a

3D emotion model with valence, arousal, and dominance as the emotion dimen-

sions/attributes.

Darwin argued that the biological category of a species, like emotion cat-35

egories, does not have an essence due to the high variability of individuals

(Charles et al., 1872). Mehrabian and Russell (1974) developed a pleasure,

arousal, and dominance (PAD) model to assess environmental perception, ex-

perience, and psychological responses, as an alternative to categorical emotion.

The latter, also called as dimensional emotion, may represent human emotion40

better than categorical emotion. This dimensional emotion view is also known

as the circumplex model of affect, and the pleasure dimension is often replaced

by valence for the same meaning (the VAD model). Although most research

used the 2D model (valence and arousal), recent research shows four dimensions

needed to represent the meaning of emotion words (Fontaine et al., 2017). How-45

ever, current datasets lack from the availability of the fourth dimension label

(i.e., expectancy). We evaluate the VAD emotion model since the datasets also

present the labels in 3D space.

Deep neural networks (DNN) have recently gained more interest in modeling

human cognitive processing for several tasks. Fayek et al. (2017) evaluated50

some DNN architectures for categorical SER. They found fully-connected (FC)

networks and recurrent neural network (RNN) worked well for SER task using

acoustic features only. In neuropsychological science, the neural mechanism

that integrates acoustic (verbal) and linguistic (non-verbal) information remains

unclear (Berckmoes and Vingerhoets, 2004). The paper also stated that ”the55

various parameters of prosody [acoustics] are processed separately in specific

brain areas” while no information is given for linguistic processing. In this

understanding, separation of acoustic and linguistic/text processing is better

modeled by a late fusion than an early fusion. This research makes use of

support vector machine (SVM) for a late-fusion prediction from DNN based60

acoustic and linguistic emotion recognitions. The small remaining test data
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after used by DNNs is a reason to use SVM over DNN.

This study aims to evaluate the combination of acoustic and text features

to improve the performance of dimensional automatic SER by using two-stage

processing. Current research on pattern recognition has also shown that the use65

of multimodal features from audio, visual, and motion-capture data increases

performance as compared to using a single modality (Hu and Flaxman, 2018;

Yoon et al., 2018; Tripathi and Beigi, 2018). Meanwhile, research on big data

has revealed that the use of more data will improve performance for results

from the same algorithm (Halevy et al., 2009). By using both acoustic and text70

features, SER should obtain improved performance over acoustic-only and text-

only recognition. This assumption is also motivated by the fact that human

emotion perception uses multimodal sensing, peculiarly verbal and non-verbal

information. Many technologies, such as human-robot interaction, can poten-

tially benefit from such improvement in emotion recognition.75

The main contributions of this study then are: (1) a proposal of two-stage

processing for dimensional emotion recognition from acoustic and text features

using LSTM and SVM, and a comparison of the results with unimodal re-

sults and another fusion method on the same metric and dataset scenario; (2)

an evaluation of different acoustic and text features to find the best pair of80

acoustic-text pair based on evaluated features, including a frame-based acoustic

feature and utterance-based statistical functions with and without silent pause

features; (3) evaluation of speaker-dependent vs. speaker-independent scenarios

in dimensional speech emotion recognition from text features; and (4) evalua-

tion of using text features on a dataset that originally contains target sentences85

but removed to avoid the effect of these target sentences.

The rest of this paper is organized as follows. “Related work” reviews closely

related work to this research including the difference of this study from previous

research, “Datasets and features” outlines the datasets and feature sets used in

this research, “Two-stage bimodal emotion recognition” explains the method to90

achieve the results, “Results and discussion” shows the results and its discussion,

and finally “Conclusions” concludes this study and proposes future work.
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2. Related work

Speech emotion recognition (SER) began to be seriously researched as part

of human-computer interaction with the work by e.g., Kleine-cosack (2006). The95

amount of research has grown as datasets have become publicly available, includ-

ing the Berlin EMO-DB, IEMOCAP, MSP-IMPROV, and RAVDESS datasets.

To enable the analysis and comparison with previous research, we include the

following literature reviews of related work. We focus on comparing previous

work that used the same or similar datasets as this work does (specifically,100

IEMOCAP, MSP-IMPROV, or both), and especially on research that focused

on dimensional rather than categorical emotion. While the focus here is on

bimodal emotion recognition using both acoustic and text data, some work on

speech-only or text-only emotion recognition is briefly described.

2.1. Acoustic emotion recognition105

Recognition of emotion within speech signals has been actively developed

since the success of recognizing emotion via facial expressions. From categor-

ical emotion detection, the paradigm of SER has shifted to predicting degrees

of emotion attributes, or dimensional emotion. One of the earliest papers on

(categorical) SER (Petrushin, 1999) explored how well humans and computers110

recognize emotion in speech. Since then, research on categorical emotion recog-

nition has grown following the development of affective research in psychology.

Jin and Wang (2005) reported a first trial on SER in categorical and two-

dimensional (2D) spaces. They found that acoustic features are helpful in de-

scribing and distinguishing emotion through the concept of emotion modeling115

(2D space). In 2009, Giannakopoulos et al. (2009) re-investigated the associa-

tion of speech signals with an emotion wheel (continuous space). They proposed

a method to estimate the degrees of valence and arousal. Their method, includ-

ing a proposed feature set, could estimate both valence and arousal, with error

close to that of average human annotation. Grimm et al. (2007) used a fuzzy-120

logic estimator and a rule base derived from acoustic features in speech, such as
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pitch, energy, speaking rate, and spectral characteristics, to describe emotion

primitives (valence, arousal, and dominance). They obtained moderate to high

correlation (0.42 < r <0.85) between their method and human annotation.

Using the IEMOCAP dataset, Parthasarathy and Busso tried to train a neu-125

ral network system to predict valence, arousal, and dominance simultaneously

(Parthasarathy and Busso, 2017). They proposed a multitask learning (MTL)

system based on the mean squared error (MSE) to balance prediction of the

three emotion dimensions. They found that, by combining a shared layer and

an independent layer, the MTL system’s best performance exceeded that of the130

traditional single-task learning (STL) method.

AbdelWahab and Busso (2018) proposed using a domain-adversarial neural

network (DANN) to solve the problem of mismatch between training and test

data in dimensional SER. Using the DANN, they obtained performance that

significantly improved that of a source-trained DNN. Thus, they addressed the135

importance of minimizing the mismatch between the source (training) and target

(test) data. Furthermore, using the DANN showed that creating a flexible,

discriminant feature representation can reduce the gap in the feature space

between the source and target domains.

Some of the above results on dimensional SER showed that recognizing va-140

lence is more difficult than recognizing arousal. To overcome this issue, Sridhar

et al. (2018) used higher regularization (dropout) for valence than for the other

dimensions when training SER through a DNN. Their system analysis showed

that higher dropout is needed for predicting valence. By using higher regular-

ization, models could identify more general acoustic patterns that were observed145

across speakers. Elbarougy and Akagi (2014) used a three-layer model based on

human perception for the same purpose. Li and Akagi (2019) improved on that

work by combining acoustic features for multilingual emotion recognition.

Although some improvements have been achieved, El Ayadi et al. (2011)

addressed the SER issue of whether it suffices to use acoustic features for mod-150

eling emotions or it is necessary to combine them with other types of features,

such as linguistic discourse information or facial features. Text features can
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be obtained through automatic speech recognition (ASR) and may be helpful

in significantly improving SER performance. In particular, text features are

expected to improve the performance of valence recognition, for which acous-155

tic features have typically failed to achieve high performance. Moreover, text

features are commonly used for sentiment analysis, which is similar to valence

prediction.

2.2. Text emotion recognition

As mentioned above, one area of research on text processing focuses on160

sentiment analysis. This area is closely related to recognizing valence, i.e.,

the polarity or semantic orientation of an event, object, or situation (Jurafsky

and Martin, 2017). Although the early research sought to recognize sentiment

in text, extension to recognize categorical and dimensional emotion has been

attempted in recent years. As in other areas of research on pattern recognition,165

some researchers in text processing have used unsupervised learning to detect

emotion in text (Mäntylä et al., 2016; Mohammad, 2016), while others have

used supervised learning based on machine learning (Alm et al., 2005; Yang

et al., 2016).

Alm et al. (2005) used a bag-of-words (BoW) model and other text features170

from text datasets to predict emotion within those datasets. Using a multiclass

linear classifier, they obtained encouraging results that suggest a potential di-

rection for future research. Their proposed method could predict basic emotion

from text with accuracy close to 70%.

Kim et al. (2010) used unsupervised learning to predict categorical emotion175

from three different datasets: SemEval, ISEAR, and Fairy Tales. Using three

different techniques, they found that the best performance was achieved with

categorical classification based on non-negative matrix factorization (NMF).

Atmaja and Akagi (2019) used a deep-learning-based classification model and

improved the precision, recall, and F-score results for the ISEAR dataset from180

0.528, 0.417, and 0.372 to 0.56, 0.54, and 0.54, respectively. They showed the

effectiveness of the deep-learning-based method for categorical emotion recogni-
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tion on a larger dataset, while on a smaller dataset, the unsupervised approach

achieved better results. Apart from categorical emotion recognition, Atmaja

and Akagi (2019) also performed dimensional emotion recognition on the same185

dataset used for the categorical task. Similar to the categorical task, the results

showed fewer errors when the size of the training set was increased.

Mäntylä et al. (2016) used emotion words from an affective lexicon to mine

valence, arousal, and dominance in text communication. Specifically, they used

text communication data from a software development situation, including is-190

sues and comments captured through issue repository technology. They used

the measure of valence, arousal, and dominance (VAD) to detect the productiv-

ity and burnout of the software developers. The results showed that increased

emotions in terms of VAD correlated with increased productivity. Their results

also complemented previous results showing that VAD can be measured from195

text, though at first only the sentiment (valence) was used in text processing.

Research on text emotion recognition has usually used written language

(from chats, Twitter, forum threads, etc.), which differs from spoken language.

Also, most such work on text processing has detected only the valence, i.e., only

one emotion dimension. Because speech transcription converts spoken language200

to a written form, it should contain more emotion information than written

plain text does. Evaluation on the other emotion dimensions (arousal and dom-

inance) is also necessary to determine the impact on those dimensions, along

with evaluation on the combination with acoustic features for that purpose.

2.3. Bimodal emotion recognition205

Using bimodal or multimodal features for emotion recognition is not new.

Among many modalities, audio and visual features are the most used for extract-

ing emotion information. When only speech is conveyed, however, two types of

information can be extracted: acoustic and text features. Among many research

papers, the reports by Eyben et al. (2010), Karadogan and Larsen (2012), Ye210

and Fan (2014), Jin et al. (2015), Aldeneh et al. (2017), Yoon et al. (2018), At-

maja et al. (2019), and Zhang et al. (2019) are the most related to this paper.
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Eyben et al. (2010) proposed an online method to detect not only valence and

arousal but also the time when those emotion attributes are detected. They used

a recurrent neural network (RNN) based on long short-term memory (LSTM)215

to recognize a framewise valence-arousal continuum with time. By adding a

keyword spotter, they were able to improve the performance by using regression

analysis. The results were measured in Pearson correlation coefficient (PCC).

They also found that keywords like “again,” “angry,” “assertive,” and “very”

were related to activation, while typical keywords correlated to valence were220

“good,” “great,” “lovely,” and “totally.” Similar to that idea, Karadogan and

Larsen (2012) used affective words from Affective Norms for English Words

(ANEW) to determine a valence-arousal value and combine it with a result

from acoustic features. The latter paper also obtained similar improvement

over using a single modality.225

Ye and Fan (2014) used bimodal features from acoustic and text information

to recognize emotion within speech. The acoustic features were trained in two

parallel classifiers: an SVM and a backpropagation network. The text features

were trained in two serial classifiers, which were both Naive Bayes classifiers.

The second classifier acted as a filter for unreliable parts from the first classi-230

fier. Decision-level fusion (late fusion) was then implemented by combining the

acoustic and text features with tree-weighting factors for the SVM, backpropa-

gation network, and text classifiers. The resulting fusion method obtained 93%

accuracy, as compared to 83% from the acoustic features only and 89% from the

text features only. The task was categorical emotion detection from a Chinese235

database. Similar to that approach for a categorical task, Jin et al. (2015) used

the IEMOCAP dataset to test combinations of acoustic and text features for

SER. The novelty of their method was the use of an emotion vector for lexical

features, which improved the accuracy in four-class emotion recognition from

53.5% (acoustic) and 57.4% (text) to 69.2% (acoustic + text).240

Aldeneh et al. (2017) used acoustic and lexical features to detect the degree

of valence from speech. They used 40 mel-filterbanks (MFBs) as acoustic fea-

tures and word vectors as text features. Continuous valence values were then
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converted to three categorical classes: negative, neutral, and positive. Using

that approach, they improved the weighted accuracy from 64.5% (text) and245

58.9% (acoustic) to 69.2% (acoustic + text).

Yoon et al. (2018) used audio and text networks to predict emotion classes

from the IEMOCAP dataset. Both networks used RNNs with inputs of mel-

frequency cepstral coefficients (MFCCs) for audio and word vectors for text.

The proposed multimodal dual recurrent encoder (MDRE) improved on the250

single-modality RNNs from 54.6% (audio) and 63.5% (text) to 71.8% (audio +

text). Atmaja et al. (2019) obtained a better result by using 34 acoustic features

after silence removal and combining them with word embeddings. With LSTM

used for the text and dense networks for speech, the latter paper obtained an

accuracy of 75.49% on the same dataset and task.255

Instead of using lexical features, Zhang et al. (2019) used phonemes and

combined them with acoustic features to recognize valence in speech. They

used 39 unique phonemes from the IEMOCAP and MSP-IMPROV datasets

and a 40-dimensional log-scale MFB energy for the acoustic features. Using a

scaled version of valence, converted from a 5-point scale to three categorical260

classes, they showed that their multistage fusion model outperformed all other

models on both IEMOCAP and MSP-IMPROV.

2.4. Multimodal emotion recognition

The term multimodal used in this subsection refers to the use of three or more

modalities for emotion recognition. These modalities are usually visual, audio,265

text, gesture, and eye gaze. In a recent survey (Yang and Hirschberg, 2018),

it is confirmed that the use of multimodal classifiers can outperform unimodal

classifiers. Motivated by human multimodal experiences, multimodal processing

not only applies for emotion recognition, but also for other applications, e.g.,

audio-visual speech recognition, event detection, and media summarization.270

Zadeh et al. (2017) used audio, visual, and text for sentiment analysis.

They proposed a model, termed as tensor fusion network (TFN), by posing

intra-modality and inter-modality dynamics of multimodalities. The proposed
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method represents interactions between unimodal, bimodal, and trimodal fea-

tures. The experiment on publicly available CMU-MOSI dataset produced275

state-of-the-art results for sentiment analysis.

Tripathi and Beigi (2018) used audio, text, and motion capture (mocap)

to identify the categorical emotion of the IEMOCAP dataset. Using unimodal

features, they obtained an accuracy of 55.65%, 64.78%, and 51.11% for audio,

text, and mocap, respectively. Using multimodal features, they improved the280

accuracy of 71.04%. They concatenated different classifiers (LSTM for text and

audio, CNN for mocap) to obtain the final categorical emotion prediction.

The lack of multimodal emotion recognition itself is the necessity of several

modalities, mainly audio and video. In some cases, only audio data are available,

e.g., telephone calls, voice assistants, and audio messages. Due to privacy and285

other reasons, the use of videos and other modalities may limit obtained data

for predicting emotional states. In the case of speech, acoustic and linguistic

features can be extracted back to obtain bimodal features.

Apart from the advantages and disadvantages of bimodal/multimodal recog-

nition over using a single modality, there is a need to develop a new method290

for SER. The reasons are (1) some prior research did not predict all emotion

attributes (Eyben et al., 2010; Karadogan and Larsen, 2012; Zhang et al., 2019),

while other studies predicted emotion categories instead of attributes; (2) in-

stead of predicting continuous emotion attribute scores, some studies switched

to a categorical task for simplicity (Zhang et al., 2019; Aldeneh et al., 2017); and295

(3) some of the reported results are not up to date and showed low improvement

(Eyben et al., 2010; Karadogan and Larsen, 2012).

Although we have limited our work to using both acoustic and text features,

other researchers have already proposed another solution to solve the issues

above, namely, using audiovisual emotion recognition. Nevertheless, there is still300

a need to propose and evaluate methods using both acoustic and text features,

because some target applications only involve speech data. In these voice-based

applications, no visual or written-text information is acquired. To maximize

the resources for extracting emotion within speech, this paper exploits both
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acoustic and text features (obtained via speech transcription) and combines305

them for dimensional emotion regression. By using both kinds of information in

a two-stage process, we expect the proposed method’s performance to be close

to or exceed the performance obtained by using visual information. Note here

that visual information, particularly facial expressions, has been reported to

have more influence on dimensional emotion than other modalities do (Fabien310

Ringeval et al., 2018).

3. Data and feature sets

3.1. Datasets

Datasets for investigating our proposal to use two-stage processing for di-

mensional SER must meet certain requirements. The requirements are that (1)315

the dataset has both speech data and text transcription (to speed up text data

acquisition), (2) the dataset is already annotated with dimensional labels, and

(3) the dataset is publicly available. The following two datasets satisfy these

requirements.

1. IEMOCAP320

IEMOCAP, which stands for interactive emotional dyadic motion capture database,

contains recordings of dyadic conversations with markers on the face, head, and

hands. The recordings thus provide detailed information about the actors’s

facial expressions and hand movements during both scripted and spontaneous

spoken communication scenarios (Busso et al., 2008). This research only uses325

the acoustic and text features, because the goal is bimodal speech emotion recog-

nition. The IEMOCAP dataset is freely available upon request, including its

labels for categorical and dimensional emotion. We use the dimensional emo-

tion labels, which are average scores for two evaluators, because they enable

deeper analysis of emotional states. The dimensional emotion scores, for va-330

lence, arousal, and dominance, are meant to range from 1 to 5 as a result of

Self-Assessment Manikin (SAM) evaluation. We have found some labels with

scores lower than 1 or higher than 5; however, we remove those data (seven sam-
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ples). All labels are then converted from the 5-point scale to a floating-point

values in range [-1, 1] when they are fed to a DNN system.335

The total length of the IEMOCAP dataset is about 12 hours, or 10039

turns/utterances, from ten actors in five dyadic sessions (two actors each). The

speech modality used to extract acoustic features is a set of files in the dataset

with a single channel per sentence. The sampling rate of the speech data was

16 kHz. For text data, we use the manual transcription in the dataset without340

additional preprocessing.

2. MSP-IMPROV

MSP-IMPROV, developed by the Multimodal Signal Processing (MSP) Lab at

the University of Texas, Dallas, is a multimodal emotional database obtained

by applying lexical and emotion control in the recording process while also pro-345

moting naturalness. The dataset provides audio and visual recordings, while

text transcriptions are obtained via automatic speech recognition (ASR) pro-

vided by the authors. As with IEMOCAP, we use the speech and text data

with dimensional emotion labels. The annotation method for the recordings

was the same as for IEMOCAP, i.e., SAM evaluation, with rating by at least350

five evaluators. We treat missing evaluations as neutral speech (i.e., a score of

3 for valence, arousal, and dominance). Also as with IEMOCAP, all labels are

converted to floating-point values in range [-1, 1] from the original 5-point scale.

The MSP-IMPROV dataset was designed within a dialogue framework to

elicit target sentences which had the same semantic content, but were produced355

with different emotional expressions. In one recording, the target sentences were

produced ad lib; for another recording, the target sentences were read. These

two recordings are referred to as “Target-improvised” and “Target-read”, re-

spectively. For our purposes, since our goal is to examine the effect of both

linguistic and acoustic information on emotional ratings, these recordings were360

not appropriate for our study. However, we were able to use two sets of record-

ings which did not have the same semantic content, which is called “Other-

improvised” and “Natural-interaction”. The former included conversations of

the actors during improvisation sessions; the latter included the exchanges dur-
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ing the breaks, while the actors were not acting, which also were being recorded.365

A similar protocol was used by Zhang et al. (2019), and we follow their lead in

referring to this subset of the MSP-IMPROV dataset as MSP-I+N (MSP im-

provised and natural interaction), or MSPIN. In our work, we included the text

transcriptions used by Zhang et al. (transcriptions are provided by the authors

of the dataset); for the additional utterances not included in the Zang study,370

transcriptions were obtained using Mozilla’s DeepSpeech (Mozilla, 2019). We

thus use 7166 utterances from a total of 8438. The speech data in the dataset

was sampled in mono at 44.1 kHz, with one file per utterance/sentence.

We split each dataset into two partitions to observe any differences between

a speaker-dependent (SD) partition and a speaker-independent partition made375

by leaving one session out (LOSO) for each dataset. For example, for the IEMO-

CAP dataset, the last session (i.e., session 5) which is recorded from two different

actors (out of 10) is only used for testing. Similarly, for MSP-I+N, all utterances

from session 6 (two speakers out of 12) are used for the test set. Our rule for data

splitting is to divide between the training + development and test sets in a ratio380

close to 80:20. This rule is applied for both the SD and LOSO partitions. Then,

of the training + development data, 80% is used for training and the remaining

20% is used for development, as shown in Figure 1. Both methods are evaluated

with the same unseen test sets to compare the performance and measure the

improvement. Note that we did not use cross validation (but instead divided385

into training and test data) for evaluation since the number of samples for both

datasets is adequate (10039 and 7166 samples). This strategy is also utilized to

keep the same test set for LSTM (one-stage processing) and SVM (two-stage

processing) which is difficult if the samples are shuffled/cross-validated.

3.2. Feature sets390

Most research on SER, or generally on pattern classification, focuses on

two main topics: feature extraction, as in Batliner et al. (2011), and classi-

fication/regression methods, as in Albornoz et al. (2011). While this research

focuses on the second topic, we also evaluate state-of-the-art feature sets used for
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Figure 1: Proportions of data splitting for each partition of each dataset. In one-stage LSTM

processing, the outputs of the model are both development and test data. In the second stage

SVM processing, the input data is the prediction from the development set of the previous

stage and the output is the prediction of test data.
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SER. For acoustic features, we evaluate three feature sets: the Geneva Minimal-395

istic Acoustic Parameter Set (GeMAPS), statistical functions from GeMAPS,

and the same functions from GeMAPS with a silence feature. For text features,

aside from the original word vectors extracted from the text transcription, we

also evaluate two word embeddings that are pretrained on a larger corpus: the

Word2Vec embedding (Mikolov et al., 2013) and GloVe embedding (Pennington400

et al., 2014). These feature sets are explained below.

Acoustic features. The type of acoustic features extracted from a speech signal

is the most important part of an SER system. GeMAPS is an effort to stan-

dardize the acoustic features used for voice research and affective computing

(Eyben et al., 2016a). The feature set consists of 23 acoustic low-level descrip-405

tors (LLDs) such as fundamental frequency (f0), jitter, shimmer, and formants,

as listed in Table 1. As an extension of GeMAPS, eGeMAPS includes statistical

functions derived from the LLDs, such as the minimum, maximum, mean, and

other values. Since these features are extracted on frame-based processing, the

size of feature becomes large for one utterance (e.g., 3409 × 23 for IEMOCAP),410

which is suitable for deep learning methods like LSTM. Including the LLDs,

the total number of features in eGeMAPS is 88. These statistical values are

often called high-level statistical functions (HSF). Schmitt and Schuller (2018)

found, however, that using only the mean and standard deviation (std) from the

LLDs achieved a better result than using eGeMAPS and audiovisual features.415

These global features may represent more emotion information within speech

than frame-based features. We thus coded these two statistical functions (47

values) from the LLDs as the HSF1 feature set. We also investigate the effect of

including a silence feature in this SER research, as explained below. We define

the combination of HSF1 with the silence feature as HSF2.420

Silence, in this paper, is defined as the proportion of silent frames among all

frames in an utterance. In human communication, the proportion of silence in

speaking depends on the speaker’s emotion. For example, a happy speaker may

have fewer silences (or pauses) than a sad speaker. The proportion of silence in
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an utterance can be calculated as425

S =
Ns
Nt

, (1)

where Ns is the number of frames categorized as silence (silent frames), and Nt

is the total number of frames. A frame is categorized as silent if it does not

exceed a threshold value defined by multiplying a factor by a root mean square

(RMS) energy, Xrms. Mathematically, this is formulated as

th = α×Xrms, (2)

where Xrms is defined as430

Xrms =

√√√√ 1

n

n∑
i=1

x[i]2. (3)

This silence feature is similar to the disfluency feature proposed in Moore

et al. (2014). In that paper, the author divided the total duration of disfluency

by the total utterance length for n words. Figure 2 illustrates the calculation of

our silence feature. If Xrms from a frame is below th, then it is categorized as

silent, and the calculation of equation 1 is applied.435

Figure 2: Moving frame to calculate the silence feature.
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Table 1: Acoustic feature sets derived from the GeMAPS features by Eyben et al. (2016a)

and the statistical functions used for dimensional SER in this research.

LLDs HSF1 HSF2

intesity, alpha ratio, Hammar-

berg index, spectral slope 0-500

Hz, spectral slope 500-1500 Hz,

spectral flux, 4 MFCCs, F0, jit-

ter, shimmer, harmonics-to-noise

ratio (HNR), harmonic difference

H1-H2, harmonic difference H1-

A3, F1, F1 bandwidth, F1 ampli-

tude, F2, F2 amplitude, F3, and

F3 amplitude.

mean (of LLDs),

standard deviation

(of LLDs)

mean (of LLDs),

standard deviation

(of LLDs), silence

Text features. To process a word sequence in a computational model, the text

must be converted to numerical values. The resulting text feature is commonly

known as a word embedding and is a vector representation of a word. Numerical

values in the form of a vector are used to enable a computer to process text data,

as it can only process numerical values. The values are points (numeric data) in440

a space whose number of dimensions is equal to the vocabulary size. The word

representations embed those points in a feature space of lower dimension. In

the original space, every word is represented by a one-hot vector, with a value of

1 for the corresponding word and 0 for other words. The element with a value

of 1 is converted to a point in the range of the vocabulary size.445

In addition to directly converting the text in the transcriptions of the datasets

(IEMOCAP and MSP-I+N) to sequences, two pretrained word embeddings are

used to weight the original word embeddings. As mentioned above, the two

word-embedding models are Word2Vec (Mikolov et al., 2013) and GloVe (Pen-

nington et al., 2014). Hence, we have three different text features for word em-450

beddings: (1) a text sequence, or word embedding (WE), without any weighting,

(2) a WE weighted by a pretrained Word2Vec model, and (3) a WE weighted by
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a pretrained GloVe embedding model. Word2Vec is trained on large datasets to

model its vector representation by using either continuous bag-of-words or con-

tinuous skip-gram model. GloVe is another model to represent vector in words455

by analyzing linear direction by using global log-bilinear regression method. All

these features are fed into the same embedding layer in the text network.

4. Two-stage bimodal emotion recognition

4.1. Acoustic emotion recognition system

Most SER research uses only acoustic features. Our approach to acoustic460

SER is similar to that research. The contribution of our acoustic network is the

evaluation of mean + std features at the utterance level and the use of a silence

feature with the statistical functions to investigate any improvement. This

evaluation is a continuation of (Tris Atmaja and Akagi, 2020) with extension

on different feature sets and datasets. As explained in section 3.2, we evaluate465

three acoustic feature sets: LLDs, HSF1, and HSF2.

The LLD features are the 23 acoustic features listed in Table 1. For each

frame (25 ms), these 23 acoustic features are extracted. With a hop size of

10 ms, the maximum number of sequences is 3409 for the IEMOCAP dataset

and 3812 for the MSP-I+N dataset. Hence, the size of the input is 3409 × 23470

for IEMOCAP and 3812 × 23 for MSP-I+N. The extraction process uses the

openSMILE toolkit (Eyben et al., 2016b).

Figure 3 shows an overview of the acoustic network. LSTM is chosen because

the number of training samples is adequate (> 5000 samples) and it shows good

results on the previous research (Schmitt and Schuller, 2018). Before entering475

the LSTM layers, the LLD features at the input layer are fed into a batch

normalization layer to speed up the computation process. The three subsequent

LSTM layers are stacked with 256 nodes in each layer, following one of the

configurations in AbdelWahab and Busso (2018). Instead of returning the last

output of the last LSTM layer, we designed the network to return the full480

sequence and flatten it before inputting it to three dense layers that represent
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Table 2: The hyper-parameter used in experiments

Hyper-parameter Acoustic network Text network

network type LSTM LSTM

number of layers 3 3

number of units 256 256

fourth layer Flatten Dense

hidden activation linear linear

output activation linear (LLD) / tanh (HSF) linear

dropout rate 0.3 (LLD) / 0 (HSF) 0.3

learning rate 0.001 0.001

batch size 8 8

maximum epochs 50 50

optimizer RMSprop RMSprop

valence, arousal, and dominance. The outputs of these last dense layers are

then the predictions for those emotion attributes, i.e., the degrees of valence,

arousal, and dominance in the range [-1, 1].

The tuning of hyper-parameters follows the previous research (Atmaja et al.,485

2019; Atmaja and Akagi, 2020). A batch size of 8 was used with a maximum of

50 epochs. An early stop criterion with ten patiences stops the training process if

no improvement were made in 10 epochs (before the maximum epoch) and used

the last highest-score model to predict the development data. An RMSprop

optimizer was used with its default learning rate, i.e., 0.001. Table 2 shows490

the setups on acoustic and text networks. These setups were obtained based

on experiments with regard to the size of networks. For instance, the smaller

acoustic networks with HSF features employed tanh output activation function

and did not use the dropout rate while the larger acoustic networks (with LLD)

and text networks employed linear activation function and dropout rate.495

For the HSF1 and HSF2 inputs on acoustic networks, the same setup applies.
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These two feature sets are very small as compared to the LLDs: HSF1 has a

size of 1 × 46, while HSF2 has a size of 1 × 47. This big difference in input size

(1:1800) leads to faster computation on HSF1 and HSF2 than on the LLDs. Note

that, although Figure 3 shows HSF2 as the input feature, the same architecture500

also applies for the LLDs and HSF1.

Figure 3: Structure of acoustic network to process acoustic features.

The idea of using LSTM is to hold the last output in memory and use the

that output as successive step. For instance, LLD with (3409, 23) feature size

will process the first time step 1 to the last time step 3409. For HSF1 and HSF2,

which contains a single time stamp, the data is processed only once ([1, 46] and505

[1, 47] for HSF1 and HSF2). Here, the only difference, from multi time steps,

is that the network performs three passes (forget gate, input gate, and output

gate) instead of a single pass (see Eyben et al. (2010)). This information will
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include all information from the networks’s memory.

4.2. Text emotion recognition system510

The text network, shown in Figure 4 for the MSP-I+N dataset, uses the same

input size for the three different text features. The WE, WE with pretrained

Word2Vec, and WE with pretrained GloVe embedding have 300 dimensions for

each word. The longest sequence in the IEMOCAP dataset is 100 sequences

(words), while for MSP-I+N, the longest is 300 sequences. Hence, the input515

feature sizes for the LSTM layers are 100 × 300 for IEMOCAP and 300 ×

300 for MSP-I+N with its corresponding number of samples. The same three

LSTM layers are stacked as in the acoustic network, but the last LSTM layer

only returns the last output. A dense layer with a size of 128 nodes is added

after the LSTM layers and before the last three dense layers. Between the dense520

layers is a dropout layer with the same probability of 0.3 to avoid overfitting.

4.3. Multitask learning

The task here in dimensional emotion recognition is to simultaneously pre-

dict the degrees of three emotion attributes, i.e., the degrees of valence, arousal,

and dominance, for any given utterance. As the main target metric is the concor-

dance correlation coefficient (CCC), the loss function is the CCC loss (CCCL).

CCC also measures the performance of regression analyses by comparing gold

standard labels and the predictions. CCCL computes the score difference be-

tween the labels and predicted values for the three attributes. The CCC and

CCCL are formulated as the following:

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
, (4)

CCCL = 1 − CCC, (5)

where ρ is the Pearson correlation coefficient between the predicted emotion

degree x and the true emotion degree y, σ2 is the variance, and µ is the mean.

As the learning process minimizes three variables, we use the following multitask
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Figure 4: Structure of text network to process word embeddings/vectors.
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learning approach to optimize the CCC score:

CCCLtot = αCCCLV + βCCCLA + (1 − α− β)CCCLD, (6)

where α and β are respective CCCL parameters for valence (V) and arousal

(A). The parameter for dominance (D) is obtained by subtracting α and β from

1. The same parameter range [0, 1] with 0.1 step is investigated for α and β for525

both the acoustic and text networks, resulting in different optimal parameters,

which are obtained by using linear search. Note that only positive values of

CCCLD’s parameters are used to investigate the optimal parameters.

4.4. SVM-based late fusion

We choose an SVM as the final classifier to fuse the outputs of the acous-530

tic and text networks because of its effectiveness in handling smaller data (as

compared to a DNN) and its computation speed. The datapoints produced by

LSTM processing as the input of SVM is small; i.e., 1600, 1538, 1147, and 1148

for IEMOCAP-SD, IEMOCAP-LOSO, MSPIN-SD and MSPIN-LOS0, respec-

tively. The SVM then applies a regression analysis to map them to the given535

labels. Figure 5 shows the architecture of this two-stage emotion recognition

system using DNNs and an SVM. Each prediction from the acoustic and text

networks is fed into the SVM. From two values (e.g., valence predictions from

the acoustic and text networks), the SVM learns to generate a final predicted

degree (e.g., for valence). The concept of using the SVM as the final classifier540

can be summarized as follows.

Suppose that two valence prediction outputs from the acoustic and text

networks, xi = [xser[i], xter[i]], are generated by the DNNs, and that yi is the

corresponding valence label. The problem in dimensional SER fusing acoustic
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and text results is to minimize the following:545

min
w,b,ζ,ζ∗

1

2
wTw + C

n∑
i=1

ζi + C

n∑
i=1

ζ∗i

subject to wTφ(xi) + b− yi ≤ ε+ ζi,

yi − wTφ(xi) − b ≤ ε+ ζ∗i ,

ζi, ζ
∗
i ≥ 0, i = 1, . . . , n,

(7)

where w is a weighting vector, C is a penalty parameter, ζ and ζ∗ is the dis-

tance between misclassified points and the corresponding marginal boundary

(above or below). Here, φ is the kernel function. We choose a radial basis func-

tion (RBF) kernel because of its flexibility to model a nonlinear process with

a dimensional emotion model close to this kernel. The function φ for the RBF550

kernel is formulated as

K(xi, xj) = eγ(xi−xj)
2

, (8)

where γ defines how much influence a single training has on the model. All

parameters in this SVM are obtained empirically via linear search in a specific

range. Although the explanation above uses valence, the same also applies for

arousal and dominance.555

4.5. Reproducibility

The experimental code was written in Python and, for the sake of research

reproducibility, it is available in the following repository: https://github.

com/bagustris/two-stage-ser. The DNN part was implemented using Keras

by Chollet and Others (2015) and Tensorflow, while the SVM-based fusion was560

implemented using the scikit-learn toolkit by Pedregosa et al. (2011). To ob-

tain consistent results for each run, some fixed numbers are initialized at the

beginning, as can be found in the repository above.
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Figure 5: Proposed two-stage dimensional emotion recognition method using DNNs and an

SVM. The inputs are acoustic features (af) and text features (tf); the outputs are valence (v),

arousal (a), and dominance (d).

5. Results and discussions

5.1. Results from single modality565

Before presenting the bimodal feature-fusion results, it is important to show

the results of unimodal emotion recognition. The goals here are (1) to ob-

serve the (relative) improvement of bimodal feature fusion over using a single

modality, and (2) to observe the effects of different features on different emotion

attributes.570

Tables 3 and 4 list the single-modality results of dimensional emotion recog-

nition from the acoustic and text networks, respectively. In general, acoustic-

based SER gave better results than text-based SER in terms of the average

CCC score. For particular emotion attributes, the text network gave a higher

CCC score for valence prediction than those obtained by the acoustic network,575

except on the MSPIN datasets. This confirms the previous finding by Karado-

gan and Larsen (2012) that valence is better estimated by semantic features,

while arousal is better predicted by acoustic features. In addition, we found

that the dominance dimension was better predicted by acoustic features than

by text features. This finding can be inferred from both tables, in which the580

CCC scores for the dominance dimension are frequently higher from the acoustic
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network than from the text network.

The exception of a higher valence score on the MSPIN-SD dataset by the

acoustic network can be seen as the effect of either the DNN architecture or the

dataset’s characteristics. In Chen et al. (2017), the obtained score was higher for585

valence than for arousal or liking (the third dimension, instead of dominance)

with their strategy on acoustic features. In contrast, AbdelWahab and Busso

(2018) obtained a lower score for valence than for arousal and dominance by

using their proposed DANN method on the same MSP-IMPROV dataset (whole

data, all four scenarios). Given this comparison, we conclude that the higher590

valence score obtained here was an effect of the DNN architecture, because

of the multitask learning. Our result on a single modality (acoustic network)

outperformed the DANN result on MSP-IMPROV, where their highest CCC

scores were (0.303, 0.176, 0.476) as compared to our scores of (0.404, 0.605,

0.517) for valence, arousal, and dominance, respectively.595

To find the optimal parameter values for α and β, a linear search was per-

formed on the scale [0.0, 1.0] with a step of 0.1. Using this conventional tech-

nique, we found four sets of optimal parameters for the acoustic and text net-

works. Note that, while only the improvised and natural scenarios (MSP-I+N)

were used to find the optimal text-network parameters for the MSP-IMPROV600

dataset, the whole dataset was used to find the optimal acoustic-network pa-

rameters. Table 5 lists the optimal parameter values for α and β.

To summarize the single-modality results, average CCC scores from three

emotion dimensions can be used to justify which features perform better among

others. The results show that HSF2 was the most useful of the acoustic feature605

sets (in two of four datasets), while the word embedding (WE) with pretrained

GloVe embedding was the most useful of the text feature sets. The performance

of dimensional emotion recognition in the speaker-independent (LOSO) case

was lower than in the speaker-dependent (SD) case, as predicted. Note that

both acoustic and text emotion networks used a fixed seed number to achieve610

the same result for each run; however, text network resulted in different scores.

Hence, standard deviations were given to measure fluctuation in 20 runs.
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Table 3: CCC score results of dimensional emotion recognition using an acoustic network. The

best results on the test set are in bold. LLDs: low-level descriptors from GeMAPS (Eyben

et al., 2016a); HSF1: mean + std of LLDs; HSF2: mean + std + silence.

Feature set V A D Mean

IEMOCAP-SD

LLD 0.153 0.522 0.534 0.403

HSF1 0.186 0.535 0.466 0.396

HSF2 0.192 0.539 0.469 0.400

MSPIN-SD

LLD 0.299 0.545 0.441 0.428

HSF1 0.400 0.603 0.506 0.503

HSF2 0.404 0.605 0.517 0.508

IEMOCAP-LOSO

LLD 0.168 0.486 0.442 0.365

HSF1 0.206 0.526 0.442 0.391

HSF2 0.204 0.543 0.442 0.396

MSPIN-LOSO

LLD 0.176 0.454 0.369 0.333

HSF1 0.201 0.506 0.357 0.355

HSF2 0.206 0.503 0.346 0.352
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Table 4: CCC score results of dimensional emotion recognition using text networks; each score

is an averaged score of 20 runs with its standard deviation. WE: word embedding; Word2Vec:

WE weighted by pretrained word vector (Mikolov et al., 2013); GloVe: WE weighted by

pretrained global vector (Pennington et al., 2014).

Feature set V A D Mean

IEMOCAP-SD

WE 0.389 ± 0.008 0.373 ± 0.010 0.398 ± 0.017 0.387 ± 0.010

Word2Vec 0.393 ± 0.012 0.371 ± 0.018 0.366 ± 0.024 0.377 ± 0.016

GloVe 0.410 ± 0.007 0.381 ± 0.013 0.393 ± 0.016 0.395 ± 0.010

MSPIN-SD

WE 0.120 ± 0.047 0.148 ± 0.023 0.084 ± 0.024 0.105 ± 0.026

Word2Vec 0.138 ± 0.031 0.108 ± 0.024 0.101 ± 0.024 0.116 ± 0.017

GloVe 0.147 ± 0.043 0.141 ± 0.019 0.098 ± 0.017 0.128 ± 0.015

IEMOCAP-LOSO

WE 0.376 ± 0.008 0.359 ± 0.018 0.370 ± 0.020 0.368 ± 0.013

Word2Vec 0.375 ± 0.058 0.357 ± 0.058 0.365 ± 0.065 0.366 ± 0.059

GloVe 0.405 ± 0.009 0.382 ± 0.020 0.378 ± 0.021 0.389 ± 0.014

MSPIN-LOSO

WE 0.076 ± 0.013 0.196 ± 0.011 0.136 ± 0.015 0.136 ± 0.009

Word2Vec 0.162 ± 0.008 0.202 ± 0.005 0.147 ± 0.003 0.170 ± 0.000

GloVe 0.192 ± 0.004 0.189 ± 0.007 0.129 ± 0.004 0.170 ± 0.003

Table 5: Optimal parameters for multitask learning.

Dataset Modality α β

IEMOCAP acoustic 0.1 0.5

text 0.7 0.2

MSP-IMPROV acoustic 0.3 0.6

text 0.1 0.6
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5.2. Results from SVM-based fusion

The main proposal of this research is the late-fusion approach combining the

results from acoustic and text networks for dimensional emotion recognition.615

This subsection presents the results for the late-fusion approach, including the

obtained performances, comparison with the single-modality results, which pairs

of acoustic-text results performed better, and our overall findings.

For each dataset (IEMOCAP-SD, MSPIN-SD, IEMOCAP-LOSO, MSPIN-

LOSO), nine combinations of acoustic-text result pairs could be fed to the SVM620

system. Tables 6, 7, 8, and 9 list the respective CCC results for these datasets.

Generally, our proposed two-stage dimensional emotion recognition improved

the CCC score from single-modality emotion recognition. The pair of results

from HSF2 (acoustic) and Word2Vec (text) gave the highest CCC score on

speaker-dependent scenarios.625

On the speaker-independent IEMOCAP dataset (IEMOCAP-LOSO), the

result from the pair of HSF2 and GloVe gave the highest CCC score. This result

linearly correlated with the single-modality results for that dataset, in which

HSF2 obtained the highest CCC score among the acoustic features, and GloVe

was the best among the text features. On the four datasets, the results from630

HSF2 obtained the highest CCC score for two out of four datasets while GloVe

obtained the highest CCC score for all four datasets. Hence, we conclude that

the highest result from a single modality, when paired with the highest result

from another modality, will achieve the highest performance among possible

pairs.635

To evaluate the improvement obtained by SVM-based late fusion, average

CCC scores again can be used as a single metric. The rightmost column in Ta-

bles 6, 7, 8, and 9 shows the average CCC scores obtained from the nine pairs

of acoustic and text results on the four different datasets. Comparing these

bimodal results to unimodal results (Table 3 and 4) shows the difference. All640

results from SVM improved unimodal results. In speaker-independent (LOSO)

results (which are more appropriate for real-life analysis), the scores resulted by

pairs of HSF with any word vector obtain remarkable improvements, particularly
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Table 6: CCC score results after late fusion using an SVM on the IEMOCAP-SD test set.

Inputs V A D Mean

LLD + WE 0.520 0.602 0.519 0.547

LLD + Word2Vec 0.552 0.613 0.524 0.563

LLD + GloVe 0.546 0.606 0.520 0.557

HSF1 + WE 0.578 0.575 0.490 0.548

HSF1 + Word2Vec 0.599 0.590 0.491 0.560

HSF1 + GloVe 0.595 0.582 0.495 0.557

HSF2 + WE 0.598 0.591 0.502 0.564

HSF2 + Word2Vec 0.595 0.601 0.499 0.565

HSF2 + GloVe 0.598 0.591 0.502 0.564

Table 7: CCC score results after late fusion using an SVM on the MSPIN-SD dataset.

Inputs V A D Mean

LLD + WE 0.344 0.591 0.447 0.461

LLD + Word2Vec 0.326 0.586 0.439 0.450

LLD + GloVe 0.344 0.585 0.439 0.456

HSF1 + WE 0.461 0.637 0.517 0.538

HSF1 + Word2Vec 0.464 0.634 0.518 0.539

HSF1 + GloVe 0.466 0.630 0.510 0.535

HSF2 + WE 0.475 0.640 0.522 0.546

HSF2 + Word2Vec 0.486 0.641 0.524 0.550

HSF2 + GloVe 0.485 0.638 0.523 0.549
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Table 8: CCC score results after late fusion using an SVM on the IEMOCAP-LOSO test set.

Inputs V A D Mean

LLD + WE 0.537 0.583 0.431 0.517

LLD + Word2Vec 0.528 0.580 0.421 0.510

LLD + GloVe 0.539 0.587 0.430 0.518

HSF1 + WE 0.565 0.565 0.453 0.528

HSF1 + Word2Vec 0.536 0.559 0.434 0.510

HSF1 + GloVe 0.559 0.570 0.452 0.527

HSF2 + WE 0.524 0.566 0.452 0.514

HSF2 + Word2Vec 0.531 0.571 0.445 0.516

HSF2 + GloVe 0.553 0.579 0.465 0.532

Table 9: CCC score results after late fusion using an SVM on the MSPIN-LOSO test set.

Inputs V A D Mean

LLD + WE 0.204 0.485 0.387 0.358

LLD + Word2Vec 0.267 0.487 0.386 0.380

LLD + GloVe 0.269 0.482 0.375 0.376

HSF1 + WE 0.224 0.565 0.410 0.400

HSF1 + Word2Vec 0.286 0.558 0.411 0.418

HSF1 + GloVe 0.282 0.555 0.409 0.415

HSF2 + WE 0.232 0.566 0.421 0.406

HSF2 + Word2Vec 0.287 0.562 0.411 0.420

HSF2 + GloVe 0.291 0.570 0.405 0.422
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in the MSPIN-LOSO dataset. For any other pair involving LLDs, the obtained

score was also lower as compared to other pairs. Considering all low scores645

involved LLD results, improving the performance of dimensional emotion recog-

nition by using LLDs is more complicated than by using HSF1 and HSF2, apart

from the larger feature size and the longer training time. The large network size

created by an LLD input as a result of its much bigger feature dimension (e.g.,

3409 × 23 on IEMOCAP) did not help either the single-modality or late-fusion650

performance. In contrast, the small sizes of the functional features (HSF1 and

HSF2) enabled better performance on a single modality, which led to better

performance for the late-fusion score. To obtain functional features, however, a

set of LLD features must be obtained first. This problem is a challenging future

research direction, especially for implementing dimensional emotion recognition655

with real-time processing.

Aside from the fact that a speaker-independent dataset is usually more dif-

ficult than a speaker-dependent dataset, the low score on MSPIN-LOSO was

due to its low scores on a single modality. In other words, lower pair perfor-

mance from a single modality will result in low performance in late fusion. In660

particular, these low results derive from low CCC scores from the text modality

(Table 4). The average CCC score for the text modality on the MSPIN-LOSO

dataset was less than 0.16, compared to an average score higher than 0.34 for

the acoustic modality. All nine pairs in late-fusion approaches improved on

the single-modality results because of the two-stage DNN and SVM regression665

analysis. Thus, out of 36 trials (9 pairs × 4 datasets), our proposed two-stage

dimensional emotion recognition outperforms any single modality result (used

in a pair).

The low score on MSPIN for the text modality can be tracked to the origin

of the dataset, that is, there may have been a number of sentences semantically670

identical to the target sentences in the dataset we used. Although we chose

sentences only from the improvised dialogues (minus the target sentence) and

from the natural interactions (those sentences produced by the experimenters

and subjects during the breaks), some of the sentences in this corpus were se-
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mantically identical to that of the target sentences in the “Target-Improvised”675

data set. This was confirmed retroactively by manually checking the provided

transcription and our automatic transcription. Given the nature of the elicita-

tion task in a dialogue framework, this is not surprising. A similarly low result

for the text modality on this MSPIN dataset was also shown in Zhang et al.

(2019). In general, compared to the IEMOCAP dataset, the MSPIN dataset680

suffers from low accuracy in recognizing the valence category by using acoustic

and lexical properties. Interestingly, however, those authors also did not show

improvement on the IEMOCAP scripted dataset, another text-based session in

which lexical/text features do not contribute significantly.

To measure the improvement by our proposed two-stage late fusion, we cal-685

culated the relative improvement obtained by late fusion from the highest CCC

scores for a single modality. For example, the pair of LLD + WE used the

results from the LLDs in the acoustic network and the WE in the text network.

We compared the result for LLD + WE with that for the LLDs, as it had a

higher score than the WE did. Figure 6 thus shows the relative improvement690

for all nine pairs. All of 36 trials showed improvements ranging from 5.11%

to 40.32%. Table 10 lists the statistics for the obtained relative improvement.

Our results show higher relative accuracy improvement as compared to those

obtained by Zhang et al. (2019) for valence prediction, which ranged from 6% to

9%. Nevertheless, their multistage fusion method also showed benefits over the695

multimodal and single-modality approaches. These findings confirm the ben-

efits of using bimodal/multimodal fusion instead of single-modality processing

for valence, arousal, and dominance prediction.

5.3. Speaker-dependent vs. speaker-independent text emotion recognition

While speech-based emotion recognition is performed with a fixed random700

seed to generate the same result for each run, text-based emotion recognition

resulted in different scores for each run. The different results on text emotion

recognition probably is caused by initiation of weightings on embedding layers.

In this case, statistical tests can be performed on text emotion results to observe
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Figure 6: Relative improvement in average CCC scores from late fusion using an SVM as

compared to the highest average CCC scores from a single modality.

Table 10: Statistics of relative improvement by late fusion using an SVM as compared to the

highest scores for a single modality across datasets; the scores were extracted from the data

shown in Figure 6.

Statistic IEMOCAP-SD MSPIN-SD IEMOCAP-LOSO MSPIN-LOSO

Average 39.73% 7.01% 34.15% 15.23%

Max 41.45% 8.22% 40.32% 19.93%

Min 35.80% 5.11% 29.69% 7.64%

Std 1.90% 0.93% 3.84% 3.90%
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Table 11: Significant difference between speaker-dependent and speaker-independent scenario

on the same text feature set; statistical tests were performed using two-tail paired t−test with

p−value = 0.005.

Feature IEMOCAP MSPIN

WE Yes Yes

Word2Vec No Yes

GloVe Yes Yes

the difference between speaker-dependent and speaker-independent scenario. In705

contrast, statistical tests cannot be performed between acoustic results and

bimodal acoustic-text results due to differences of the data (deterministic vs

non-deterministic).

Table 11 shows if there is a significant difference between speaker-dependent

and speaker-independent results on the same feature set. We set p−value =710

0.05 with two-tail paired t-test between mean scores of speaker-dependent and

speaker-independent results. This paired t-test was based on the assumption

that there are no outliers (after pre-processing) and two different inputs are fed

into the same system. Only one result from text emotion recognition shows

no significant difference on IEMOCAP dataset while all results on MSPIN715

dataset shows a significant difference between speaker-dependent and speaker-

independent results. This result reveals a tendency for a difference on evaluating

speaker-dependent and speaker-independent data. The results from speaker-

dependent data were different from those of the speaker-independent data. In

other words, results from speaker-dependent data cannot be used to justify720

speaker-independent or whole data.

5.4. Effect of removing target sentence from MSPIN dataset

Since the goal of this research is to evaluate the contribution of both acous-

tic and linguistic information in affective expressions, it is necessary to have

sentences in the dataset that are free from any stimuli control. However, the725

original MSP-IMPROV dataset contains 20 “target” sentences; a sentence with
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the same linguistic content, but produced with different emotions. These parts

of MSP-IMPROV dataset are irrelevant to this study; hence, we remove it from

the dataset (Target - improvised and Target - read parts). However, we found

that the results show low CCC scores (Table 4, particularly on valence) in-730

dicating influence from target sentences. These results may be explained, as

mentioned in section 5.2, that some utterances in the data analyzed in this

study also inadvertently included sentences semantically the same as those in

the improvised target sentences.

5.5. Final remarks735

We tried to perform a benchmark between our results and others on the same

datasets, scenarios, and metrics. Unfortunately, to the best our knowledge, the

only reference is the one reported by Atmaja and Akagi (2020), which reports

an early fusion method on IEMOCAP dataset. We improve the average CCC

score from 0.508 to 0.532. This higher result suggests that late fusion is better740

than early fusion to model how humans fuse multimodal information, which

is inline with neuropyschological research. This late-fusion approach can be

embedded with current speech technology, i.e., ASR, in which the text output

can be processed to weigh emotion prediction from acoustic features.

AbdelWahab and Busso (2018) used MSP-Podcast (Lotfian and Busso, 2019)745

as a target corpora, which is not available for the public yet, and IEMOCAP

with MSP-IMPROV as source corpus to implement their DANN for cross-corpus

speech emotion recognition. Although the goal is different, we observed simi-

lar patterns between theirs and our acoustic-only speech emotion recognition.

First, we observed that the order of highest to lowest CCC scores is arousal,750

dominance, and valence. This pattern is also consistent when IEMOCAP is

mixed with MSP-IMPROV as reported by Parthasarathy and Busso (2017) (in

Table 2). Second, we observed that the CCC scores obtained in IEMOCAP are

higher than those obtained in MSP-IMPROV; we believe that this lower score

in MSP-IMPROV was due to the smaller size of the dataset.755

Along with our SVM architecture, we also explored the parameters C and
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γ, because both parameters are important for an RBF-kernel-based SVM ar-

chitecture (Pedregosa et al., 2011). Linear search was used in the ranges of

[10−2, 1, 102, 2× 102, 3× 102] for C and [10−2, 10−1, 1, 10, 102] for γ with a fixed

value of ε, i.e., 0.01. The best parameter values were C = 200 and γ = 0.1. The760

repository includes the detailed implementation of the SVM architecture.

Per our stated objective, we applied two-stage processing by using DNNs and

an SVM for dimensional emotion recognition from acoustic and text features on

four different datasets. We found that the combination of mean + std + silence

from the acoustic features and word embeddings weighted by pretrained GloVe765

embeddings achieved the highest result among the nine pairs of acoustic-text

results from DNNs trained with multitask learning. When the performance in

obtaining one input to the SVM is very low, the resulting relative improvement

due to the SVM is also low. For instance, the lowest improvement on MSPIN-

LOSO was from LLD + WE features, in which WE obtained a low score (CCC =770

0.136) on text network. This phenomenon suggests a challenging future research

direction for dealing with minimal linguistic information in the fusion strategy.

One strategy applied in this research was to use a pretrained GloVe embedding

on text features with HSF2 on acoustic features, which improved the CCC score

from 0.358 (relative improvement = 7.64%) to 0.422 (relative improvement =775

19.93%). Other strategies should also be proposed, such as on how to handle

the data differently when the linguistically identical sentences elicits different

emotions (i.e., whole MSP-IMPROV dataset). In contrast, the current evaluated

word embeddings treat the same words to have the same representations, even

when it conveys different emotions.780

6. Conclusions

In conclusion, we summarize several findings. First, we found a linear corre-

lation between the single-modality and late-fusion methods in dimensional emo-

tion recognition. The best results from each modality, when they were paired,

gave the best fusion result. In the same way, the worst results obtained from785
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each network, when they were paired, gave the worst fusion results for bimodal

emotion recognition. This finding differs from that reported in Atmaja et al.

(2019), which used an early-fusion approach for categorical emotion recognition.

In their work, the best pair differs from the best methods in single modalities.

Second, text features strongly influenced the score of dimensional SER on790

the valence dimension, while acoustic features strongly influenced arousal and

dominance scores. Accordingly, the proposed two-stage processing can take

advantage of text features which are commonly used in predicting sentiment

(valence) for the dimensional emotion recognition task. The proposed fusion

method improves all three emotion dimensions without attenuating the perfor-795

mance of any dimension. That is, the proposed method elevates the scores for

valence, arousal, and dominance subsequently from the highest to the lowest

gain.

Third, the combination of input pairs does not matter in the proposed fusion

method, as indicated by the low deviation in relative improvement across the800

nine possible input pairs. What does matter is the performance on the input

in the DNN stage. If the performance of a feature set in the DNN stage is low

(CCC ≤ 0.2), it will also result in low performance when paired with another

low-performance input in the SVM stage.

Finally, this bimodal approach can be extended to a multimodal approach.805

Both acoustic and text features can be combined with visual and motion-capture

measurements that have advantages in specific emotion dimensions (liking or

naturalness). The results can be benchmarked with current results to observe

such improvements by adding more modalities. The SVM stage itself can be

performed many times to obtain such improvements. These broad research810

directions are open challenges for researchers in human-computer interaction.
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