
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
F_0-Noise-Robust Glottal Source and Vocal Tract

Analysis Based on ARX-LF Model

Author(s)
Li, Yongwei; Tao, Jianhua; Erickson, Donna; Liu,

Bin; Akagi, Masato

Citation
IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 29: 3375-3383

Issue Date 2021-10-15

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/18117

Rights

This is the author's version of the work. Copyright

(C) 2021 IEEE. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 29, 2021,

pp.3375 - 3383. DOI:

10.1109/TASLP.2021.3120585. Personal use of this

material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or

future media, including reprinting/republishing this

material for advertising or promotional purposes,

creating new collective works, for resale or

redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Description



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XXX, NO. XXX, XXX 2020 1

F0-noise-robust glottal source and vocal tract
analysis based on ARX-LF model

Yongwei Li, Jianhua Tao, Senior, IEEE, Donna Erickson Member, IEEE, Bin Liu Member, IEEE,
and Masato Akagi, Member, IEEE

Abstract—This paper proposes a robust automatic speech
analysis method based on a source-filter model constructed of an
Auto-Regressive eXogenous (ARX) model and the Liljencrants-
Fant (LF) model. The proposed method estimates glottal source
waveform and vocal tract shape parameters using an analysis-
by-synthesis approach. Structurally, the first step is to initialize
the glottal source parameters using the inverse filter method,
and the second step is to simultaneously estimate the glottal
source waveform and the vocal tract shape parameters using an
analysis-by-synthesis approach with an iterative algorithm. The
proposed method was verified on synthetic voices with different
glottal noise (signal to noise ratio) from 0 dB to 50 dB and
different fundamental frequency (F0) from 80 Hz to 320 Hz
levels. The results show that the proposed method achieved a
much higher estimation accuracy than that of the state-of-the-
art inverse filtering methods on both different glottal noise and
different F0 levels.

Index Terms—Glottal source, vocal tract, source-filter model,
ARX-LF model.

I. INTRODUCTION

THE separation of glottal source and vocal tract filter from
speech signals plays an important role in understanding

speech production mechanisms. Glottal source and vocal tract
cues are frequently used for many speech technologies with
applications to speech recognition [1], speech synthesis [2],
speech conversion [3], detection of language impairment [4],
pathological voice detection [5], dysphonic voice analysis [6],
speech emotion recognition [7], and speaker identification [8].
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With the help of high-speed videoendoscopy [9] and mag-
netic resonance imaging (MRI) [10], the glottal source and
vocal tract can be measured directly and somewhat accurately
when uttering a speech sound. However, it is difficult to
measure glottal source and vocal tract simultaneously on
an utterance, and it is not always convenient to use such
measuring equipment.

Based on the source-filter theory of speech production, the
speech signal is represented by the output signal of a linear
vocal tract filter with a glottal source excitation signal. Studies
of separating glottal source and vocal tract from the speech
signal based on the source-filter model have been going on
for decades [11].

The earliest study for estimating vocal tract filters is linear
prediction (LP) analysis [12]. It assumes the vocal tract
filter as an auto-regressive model and its coefficients can be
estimated from the speech signal. The LP residual signal is
considered as the glottal source, and the frequency of periodic
impulse in the LP residual signal is considered the fundamental
frequency (F0). However, the main problem of this method is
the difficulty of removing the glottal source from the speech
signal when estimating the vocal tract filter. To avoid the
glottal source effects, vocal tract filters were estimated within
the glottal closed phase, e.g., Wong et al. [13] estimated
vocal tract filters during glottal closed phase with LP analysis
(CPLP). Yegnanarayana et al. [14] estimated vocal tract
characteristics using a closed phase inverse filter (CPIF), since
no glottal source waveform occurs during the glottal closed
phase. Although this solution can accurately estimate vocal
tract filters in a prolonged glottal closed phase, it fails in the
case of speech with short glottal source closed phases, which
frequently happens in real conditions, such as female speech
and aroused speech, where the F0 is high, and the glottal
period is short.

A straightforward method for estimating glottal source
waveform is to process the speech signal using inverse fil-
tering, such as CPLP, CPIF, and iterative and adaptive inverse
filtering (IAIF) [15], where glottal sources can be considered
as the residual signal or periodic pulse for voiced speech.
However, these methods faced a fundamental problem that the
oversimplified glottal source assumption could not describe the
complex glottal source waveform. A more effective method is
to process the residual signal of inverse filtering by parametric
glottal source models [16], [17], such as the Liljencrants-Fant
(LF) model [11], the Fujisaki-Ljungqvist (FL) model [18],
and the Rosenberg-Klatt (RK) model [19]. The commonality
of these glottal source models is the time-domain description
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of the glottal source waveform, whereas the difference is the
number of parameters. These models provided a more appro-
priate assumption for describing the glottal source waveform.
However, the source-filter interaction still remained since the
vocal tract filter was estimated firstly to fit the residual signal
by using glottal source models.

The most complete assumption is to separate the glottal
source and vocal tract parameters in a simultaneous man-
ner, which would reduce the source-filter interaction [20].
However, it is difficult to simultaneously optimize multiple
parameters of glottal source and vocal tract. To solve this
problem, Funaki et al. [21] presented a hybrid approach
using a genetic algorithm and simulated annealing to optimize
multiple parameters of the glottal source waveform with the
RK model and parameters of the vocal tract filter with an auto
regressive and moving average exogenous (ARMAX) model.
Fu et al. [22] presented a two step strategy for optimization, in
which a simplified glottal source model (RK model) was used
to estimate the initial values for a more complex glottal source
model (LF model), and then the auto-regressive exogenous
(ARX) model, as the vocal tract model, was combined for
joint optimization. Vincent et al. [23] and Ghosh et al. [24]
optimized the ARX-LF model parameter values by searching
the entire possible space. Schleusing et al. [25] presented a
differential evolution approach to optimize the ARX-LF model
parameters. Li et al. [26] and Takahashi et al. [27] presented
an iterative algorithm to optimize the ARX-LF model parame-
ters, in which an electro-glottograph (EGG) signal was used to
estimate initial values of the LF model for the iteration. Due to
the inconvenience of EGG in real conditions, in our previous
study [28], we proposed a simple framework for estimating
glottal source and vocal tract parameters, in which an inverse
filter was used to estimate the LF model parameter values,
and these values were used as the initial values for the iterative
algorithm based on the ARX-LF model. We tested this method
on synthetic vowels on clear conditions (without glottal noise)
with an almost fixed F0, and the results are comparable
with the state-of-the-art method (IAIF with DyProg-LF) [17].
However, in the real-world scenario, glottal noises and F0 have
a wide range of variation, which appears frequently in many
voices, e.g., varying glottal noise levels on different voice
types and varying F0 on female, male, and emotional voices.
Therefore, it is important to know the robustness of the glottal
source and vocal tract estimation method for different glottal
noise and F0 levels.

This paper extends our previous work [28] to more complex
conditions of different glottal noise and different F0 levels in
order to further assess the interaction between glottal noise
and F0. In this present study, we propose a two-step strategy.
The first step initializes the glottal source parameters using the
inverse filter method; the second step simultaneously estimates
accurate glottal source and vocal tract shape parameters using
an analysis-by-synthesis approach with an iterative algorithm.
The proposed method effectively estimates the glottal source
and vocal tract parameters based on the ARX-LF model to
show robustness for different amounts of glottal noise and F0

levels.
The remainder of this paper is structured as follows. Section

Fig. 1. One period of glottal source waveform (top) and its derivative
waveform modeled by the LF model (bottom).

2 describes the ARX-LF model of speech production. Section
3 presents the implementation of the estimation algorithm.
Section 4 describes the detailed synthetic vowels conditions
and the performance evaluations. The conclusions are given
in section 5.

II. SOURCE-FILTER MODEL OF SPEECH PRODUCTION

Among source-filter models, the ARX-LF model is fre-
quently used, in which the LF model is for glottal source
and the ARX model is for vocal tract shape. The reason for
choosing the ARX model is because the auto-regressive (AR)
process models human speech production [29]. The reason
for choosing the LF model is listed in the following, it is
a suitable model for describing the glottal source waveform
derivative [30], and is flexible enough for speech synthesis.
Furthermore, the LF model has the smallest prediction error
compared with other glottal source models [31]. Therefore, the
ARX-LF model was chosen for this study and is introduced
in this section.

A. ARX-LF model

The LF model mainly consists of six parameters to represent
the glottal source waveform derivative, including five time-
domain parameters Tp, Te, Ta, Tc, T0 and one amplitude
parameter Ee. One period of glottal source waveform and its
derivative waveform of the LF model is plotted in Fig. 1. T0

is one period of glottal source waveform, Tp is the instant of
the maximum glottal source waveform, Te is the instant of
the maximum negative differentiated glottal source waveform,
Ta is the duration of the return phase, Tc is the instant at
the complete glottal closure, and Ee is the amplitude at the
glottal closure instant. Since Tc is often set to T0 in a simple
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LF model version, five parameters are used in this paper. The
LF model in the time domain can be formulated as:

u(n) =

{
E1e

an sin (wn) 0 ≤ n ≤ Te

−E2[e
−b(n−Te) − e−b(T0−Te)] Te ≤ n ≤ Tc

0 Tc ≤ n ≤ T0

(1)

where E1, E2, a, b and w are the parameters related to Tp,
Te, Ta ,Ee and T0 [11].

Given the LF glottal source waveform derivative, the speech
signal s(n) can be synthesized by means of an ARX model:

s(n) = −
p∑

i=1

ai(n)s(n− i) + b0u(n) + e(n). (2)

where ai are the coefficients of the p-order ARX model char-
acterizing the vocal tract filter, b0 is related to the amplitude
of the LF glottal source waveform derivative and e(n) is the
glottal noise signal (residual signal).

III. IMPLEMENTATION OF THE SIMULTANEOUS
ESTIMATION ALGORITHM

In this section, the detailed implementation of the estimation
algorithm based on the ARX-LF model is described. The
structure of implementation is shown in Fig. 2. There are
two components in the proposed structure, initialization and
iterative algorithm.

A. Initialization

The purpose of this sub-section is to provide initial param-
eter values for the ARX-LF model, including glottal closure
instant (GCI), T 0

p , T 0
e , T 0

a , and E0
e .

1) GCI determination: The purpose of this step is to find
the vocal fold vibration period for the LF model, especially
to find the start and end positions in each period, which
correspond to the start and end point of one period of the LF
model. It is well known that GCI is the easiest to detect during
a vocal fold vibration period. Thus, GCIs, which correspond to
the minimum amplitude position of the LF model waveform,
are estimated first for the ARX-LF model.

There are various methods to estimate GCI from voice
speech signals, such as hilbert envelope-based detection
(HE) [32], dynamic programming phase slope algorithm
(DYPSA) [33], yet another GCI algorithm (YAGA) [34], zero
frequency resonator-based method (ZFR) [35], and speech
event detection using the residual excitation and a mean based
signal (SEDREAMS) [36], etc. Among these methods, the SE-
DREAMS technique shows the best performance [37]. Thus,
the SEDREAMS method was chosen for GCIs estimation. T0

is the distance between two continuous GCIs (T0= GCIi+1-
GCIi, i is number of periods).

2) Initial values of T 0
p , T 0

e , T 0
a , and E0

e : The purpose of this
step is to estimate initial parameter values (T 0

p , T 0
e , T 0

a , and
E0

e ) for the next iterative algorithm of the ARX-LF model. In
this step, the state-of-the-art of glottal inverse filtering (IAIF)
is firstly used to process the voiced speech signals, then a
Dynamic programming (DyProg-LF) is used to estimate the
(T 0

p , T 0
e , T 0

a , and E0
e ) values. The detailed implementation of

the IAIF and DyProg-LF algorithm was described in [16].

B. Implementation of the iterative algorithm

The optimal parameter values of the LF model and the
ARX model are iteratively found in the sense of minimizing
the mean square error (MMSE) for each three periods of
the glottal source waveforms. There are two procedures in
this step. The first procedure is under a fixed GCI condition.
The glottal source waveform derivative u(n) is synthesized
by initial values of T 0

p , T 0
e , T 0

a , and E0
e , u(n) and then input

to the ARX model. The ARX model parameters (vocal tract
filter coefficients: ai) can be estimated by using Eq. (2) with
the least square method. Eq. (2) can be transformed to:

e(n) = s(n)−
p∑

i=1

ai(n)s(n− i)− b0u(n). (3)

the p-order ARX model coefficients ai and b0 can be
calculated by h in Eqs. (4), (5), and (6). s(n) is the speech
waveform at time n, and u(n) is the glottal source waveform
derivative at time n. N is the number of sampling points in
one glottal vibration period (T0).

Eq. (3) can be transformed into a matrix form, as

e = x0 +Xa− u0b0

= x0 +
[
X | −u0

]  a
−
b0


= x0 + Fh.

(4)

where

xi =


s(n− i)

s(n− i− 1)
...

s(n− i−N + 1)

 ,

F =
[
X | −u0

]
,

h =

 a
−
b0

 ,

X =
[
x1 x2 · · · xp

]
,

u0 =


u(n)

u(n− 1)
...

u(n−N + 1)

 ,

a =


a1
a2
...
ap

 .

(5)

h = −
(
FTF

)−1
FTx0 (6)

As shown in Fig. 2, x(n) can be synthesized using u(n)
and the estimated coefficients, glottal noise ê(n) is calculated
by the output of a inverse ARX model with s(n)- x(n). In
each iteration of this procedure, the LF model parameters are
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Fig. 2. Structure of the simultaneous estimation of glottal source and vocal tract parameters based on the ARX-LF model

ranged around the initial values of T 0
p , T 0

e , T 0
a , and E0

e , and
the glottal source waveform derivative is regenerated using
these parameter values. Note that, in order to enhance the
spectral flatness in the high frequency, the voiced speech signal
s(n) and glottal source waveform derivative u(n) are pre-
emphasized. This seems to improve the estimation accuracy
in the high frequency region.

In the second procedure, although the high GCI estimation
method (SEDREAMS) was used in the initial step, the es-
timation accuracy of the ARX-LF model is sensitive to the
accuracy of GCI [38]. Therefore, the GCIs are further shifted

around the initial GCI0, to obtain more accurate GCI location.
GCI0 is further searched in the four sampling points from
GCI0 left and right. Then, the first procedure is run again for
each shifted GCI. For a shifted GCI, the iteration processing in
the MMSE optimization is set to 2000. After all the iterations,
glottal source parameters (Tp, Te, Ta, and Ee) and vocal tract
filter coefficient values with the least MMSE are regarded as
the optimal parameter values.

In this paper, the sampling frequency is set to 12000Hz, the
vocal tract filter order p is set to 14, the frame length is set to
3 periods of the glottal source waveforms, and the frame shift



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XXX, NO. XXX, XXX 2020 5

TABLE I
VARYING GLOTTAL SOURCE PARAMETERS FOR SYNTHESIZING VOICED SPEECH

Glottal source

F0 Noise (SNR) Tp Te Ta Ee

80 : 20 : 320 0:10:50 0.75*Te 0.35 : 0.1 : 0.85 0.08 1

TABLE II
VARYING VOCAL TRACT FILTERS PARAMETERS FOR SYNTHESIZING VOICED SPEECH

Vocal tract filters

/a/ /e/ /i/ /o/ /o/

Formants F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

Frequency (Hz) 960 1184 516 1959 301 1916 516 796 366 1206

is set to 1 period of the glottal source waveform.

IV. EXPERIMENTS AND RESULTS

Most studies test their methods on synthetic voiced
speech[17], [20], [22], [24], [28], since the glottal source and
vocal tract parameter values of synthesized speech are known
as reference values, and the accuracy of the estimated parame-
ter values can be calculated by comparing with the referenced
parameter values. In our previous study [28], the performance
of the proposed method was tested on the synthesized vowels
that assume no glottal noises in the glottal source waveform
and almost fixed F0 conditions. In this paper, much closer
to real conditions with varying glottal noise and F0 levels on
synthesized vowels are used for the performance evaluation of
the proposed method.

A. Synthesized vowels

The source-filter model was used to synthesize the vowels
that were the output signals of vocal tract filters with an input
glottal exciton. The LF model was used to synthesize the
glottal exciton that was input to the vocal tract filters/shape
of five vowels (/a/, /e/, /i/, /o/, and /u/). Two steps were used
for synthesizing vowels: the first step was to synthesize the
glottal source waveform using the different parameter values
of Table I; the second step was to synthesize the vocal tract
filter shape for the vowels by using the formant frequencies
listed in Table I. The detailed procedures of vowel synthesis
have been described in [39].

To discuss the performance of the proposed method for
varying glottal noises and F0 levels, F0 was varied from
low levels (80 Hz) to high levels (320 Hz), and glottal
noises were modeled by adding the white noise to the glottal
source waveform derivative, which varied from strong noise
conditions with signal-to-noise ratio (SNR = 0 dB) to almost
clean conditions (SNR = 50 dB). Glottal source and vocal tract
parameter values for synthesizing vowels are summarized in
Table I. 2340 different conditions (6 Te × 13 F0 × 6 SNR ×
5 filters =2340) were investigated for synthesized vowels, and
each condition has 10 glottal source periods, thus, a total of
23400 periods of synthesized vowels for testing the proposed
method.

B. Results and evaluation

To evaluate the performance of the proposed method and
IAIF-DyProg-LF method, based on the structure in section
III; the accuracy of the proposed method is compared with the
IAIF-DyProg-LF method. The estimated LF model parameter
values, and first formant frequency (F1) and second formant
frequency (F2) were compared with the reference values. Let
the reference values be vector β ∈ {Tp, Te, Ta, Ee, F1, F2}
and the estimated values be vector β̂. The estimation error
of one parameter (γm,m = 1, 2..., 6) between reference and
estimated values can be calculated by Eq. (7):

γm =
|β̂m − βm|

βm
× 100%. (7)

1) Robustness to glottal noise: To examine the robustness
on varying SNR levels of the proposed method and IAIF-
DyProg-LF methods, as mentioned in section IV-A, white
noise with various SNR levels has been added to the glottal
source waveform derivative for synthesizing voiced speech. In
each different SNR level, a total of 3900 glottal periods voiced
speech (6 Te × 13 F0 × 5 filters × 10 periods) are analyzed
by the proposed method and IAIF-DyProg-LF methods.

The performance of the proposed method and IAIF-DyProg-
LF method are compared according to Eq. (7). The averaged
estimation errors of {Tp, Te, Ta, Ee, F1, F2} for the proposed
method and IAIF-DyProg-LF methods in varying SNR levels
(from 0 dB to 50 dB) are plotted in Fig. 3. As shown in
Fig. 3, the estimation errors of the proposed method were
smaller than those of IAIF-DyProg-LF under the differenent
SNR levels. The estimation errors were different for each SNR
level, the estimation errors of all parameters (except Ee of
IAIF-DyProg-LF) were the largest in voiced speech with 0 dB
(SNR), and the estimation errors of all parameters (except Ee

of the proposed method) were the smallest in voiced speech
with 50 dB (SNR). More specifically, the averaged estimation
errors of the proposed method are in following ranges: Tp:
between 20.4 % and 11.1 %; Te: between 19.2 % and 9.7 %;
Ta: between 15.3 % and 9.7 %; Ee: between 67.1% and 19.7
%; F1: between 3.1 % and 2.7 %; F2: between 33.3 % and
3.9 %. The averaged estimation errors of the IAIF-DyProg-LF
methods are in the following ranges: Tp: between 23.1 % and
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Fig. 3. Estimation errors of the six parameter values (Tp, Te, Ta, Ee, F1, F2) of five vowels (different colors, first and third rows) for the proposed method
and IAIF-DyProg-LF methods under varying SNR levels, and the averaged estimation errors (second and fourth rows): IAIF-DyProg-LF (red lines) and the
proposed method

(black lines).

20.0 %; Te: between 22.7 % and 18.7 %; Ta: between 70.0
% and 65.3 %; Ee: between 83.8 % and 38.6 %; F1: between
16.3 % and 5.0 %; F2: between 39.0 % and 16.4 %.

2) Robustness to F0: To examine the robustness on varying
F0 levels of the proposed method, as mentioned in sec-
tion IV-A, F0 was varied form 80 Hz to 320 Hz with steps
of 20 Hz for synthesizing voiced speech. In each different F0

level, a total of 1800 glottal periods of voiced speech (6 Te ×
6 SNR × 5 filters × 10 periods) are analyzed by the proposed
method and IAIF-DyProg-LF methods.

The performance of the proposed method and IAIF-DyProg-
LF methods are compared according to Eq. (7), the averaged

estimation errors of {Tp, Te, Ta, Ee, F1, F2} for the proposed
method and IAIF-DyProg-LF methods in different F0 levels
(from 80 Hz to 320 Hz) are plotted in Fig. 4. As shown
in Fig. 4, for the two methods, the estimation errors were
different for each F0 level: the estimation errors of Tp, Te,
Ta, F1, and F2 were the largest in voiced speech with 320 Hz
(F0), and were smallest in voiced speech with 80 Hz (F0). The
estimation errors parameter Ee of the proposed method kept
nearly the same values for each different F0 level, whereas
estimation errors of the parameter IAIF-DyProg-LF were the
largest in voice speech with 80 Hz (F0), and were smallest in
voice speech with 320 Hz (F0). More specifically, the averaged
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Fig. 4. Estimation errors of the six parameter values (Tp, Te, Ta, Ee, F1, F2) of five vowels (different colors, first and third rows) for the proposed method
and IAIF-DyProg-LF methods under varying F0 levels, and the averaged estimation errors (second and fourth rows): IAIF-DyProg-LF (red lines) and the
proposed method (black lines).

estimation errors of the proposed method have the following
ranges: Tp: between 22.9 % and 7.2 %; Te: between 20.0 %
and 6.8 %; Ta: between 13.2 % and 9.7 %; Ee: between 41.7%
and 26.7 %; F1: between 2.8 % and 0.9 %; F2: between 1.9
% and 0.2 %. For averaged estimation errors of the IAIF-
DyProg-LF methods, the ranges are as follows: Tp: between
33.2 % and 18.0 %; Te: between 34.3 % and 16.7 %; Ta:
between 69.1.0 % and 63.7 %; Ee: between 73.7 % and 62.4
%; F1: between 14.5 % and 8.1 %; F2: between 28.2 % and
4.3 %.

C. Discussion

Fig. 3 clearly shows that the performance of the two
methods was strongly affected by the different glottal noise
levels. The results show that estimation errors of the proposed
method were much smaller than those of IAIF-DyProg-LF on
different glottal noise levels, which indicates the estimation
accuracy of the proposed method was higher than that of IAIF-
DyProg-LF on different glottal noise levels. It is further noted
that the estimation errors of the two methods (except parameter
Ee of the IAIF-DyProg-LF) decrease with the increase of
SNR level. This result is similar to the findings in [40] which
reported a high SNR level has high performance of IAIF-
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DyProg-LF method. As expected, more aperiodic components
in the glottal source waveform result in estimation perfor-
mance decrease; therefore, it may be more difficult to analyze
whisper and breathy speech (high level aperiodic components)
than normal speech, either by the the proposed method or the
IAIF-DyProg-LF method. More importantly, for conditions of
glottal noise level greater than 20dB, estimation errors of the
proposed method for glottal source parameters and formant
frequencies (F1 and F2) were smaller than 15% and 5%,
respectively. Moreover, the estimation errors of the proposed
method for F1 and F2 are insensitive to the different glottal
noise levels. These results indicate that the proposed method
has a strong robustness with regard to the different glottal
noise levels.

Fig. 4 clearly shows that the performance of the two
methods was strongly affected by the different F0 levels. The
results show that estimation errors of the proposed method
were much smaller than these of IAIF-DyProg-LF on different
F0 levels, which indicates the estimation accuracy of the
proposed method was higher than that of IAIF-DyProg-LF
on different F0 levels. It is further noted that the estimation
errors of the two methods increase with the increase of F0

levels for Tp, Te, and Ta, whereas the estimation errors of
the two methods keep spectral flatness or decrease with the
increase of F0 for parameters Ee, F1, and F2, which is in
line with the findings in [17]. More importantly, estimation
errors of the proposed method were smaller than 20% for all
parameters (except Ee). Noted also is that the estimation errors
of the proposed method for parameters Ta, Ee, F1, and F2 are
insensitive to the different F0 levels. These results indicate that
the proposed method has strong robustness with regard to the
different F0 levels.

Figs. 3 and 4 clearly show that the estimation error of
the proposed method was much smaller than those of IAIF-
DyProg-LF on different glottal noise and F0 levels. It is noted
that the estimation errors of the proposed method for F1

and F2 on different glottal noise and F0 levels are different;
the estimation error differences for F1 and F2 were also
found in [25]. Moreover, the estimation errors of the proposed
method for F1 and F2 were insensitive to both different glottal
noise and F0 levels.

All the above results indicate that the proposed method has
strong robustness with regard to the different glottal noise and
F0 levels, and the estimation accuracy of the proposed method
is higher than that of IAIF-Dyprog-LF for both conditions. It
suggests that the proposed method can be used to analyze
speech signals with high F0 and low SNR, such as falsetto
voice of females, more breathy voice quality, and high arousal
emotional voice.

V. CONCLUSION

In this paper, an automatic speech analysis method to
estimate the glottal source and vocal tract parameters was
proposed based on the ARX-LF model; then the performance
of the proposed method on different glottal noise and F0 levels
was discussed. The glottal source and vocal tract parameters
of the synthesized vowels with different glottal noise and

F0 levels were estimated by the proposed method and IAIF-
DyProg-LF methods. The results show that (1) the estimation
accuracy of the proposed method is higher than that of IAIF-
Dyprog-LF for both different glottal noise and different F0

levels, and (2) the performance of the proposed method is
insensitive for different glottal noise and different F0 levels.
It indicates that the proposed method is robust for estimating
glottal source and vocal tract parameters.

Limitations of this study are that the performance of the
proposed method was tested only for the synthesized vowels
(/a/, /e/, /i/, /o/ and /u/); real voice speech should be taken
into account. Also, the focus of this study was the estimation
accuracy of the proposed method. Since an iterative algorithm
was used, we analyzed vowel of glottal vibration in 10
periods, which takes an average of 20 seconds. Future work
is necessary to reduce analysis time.
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