
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 形式検証ツールの並列化

Author(s) DO, MINH CANH

Citation

Issue Date 2022-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/18129

Rights

Description Supervisor:緒方 和博, 先端科学技術研究科, 博士



Parallelization of Formal Verification Tools 
DO, Minh Canh 

September, 2022 

 
Abstract 

Today, software systems are used in various applications where failure is 
unacceptable. Among them are airplanes, utilities, telephones, banking & financial 
systems, commerce, logistics, appliances, houses, and securities. Very important 
systems, such as operating systems and the Internet that have been used as 
infrastructures, are typically in the form of concurrent/distributed programs. We 
are undeniable that the quality of software systems will affect the quality of our life 
more and more considerably. Therefore, the need for reliable software systems is 
critical. Model checking is one of the most successful achievements in computer 
science for hardware and software verification. However, there are still some 
challenges to tackle. One of them is the state space explosion problem, which can 
make it impossible to conduct model checking experiments. Many techniques have 
been proposed to alleviate the problem to some extent, but the problem still remains 
when dealing with large systems and often prevents model checking experiments 
from being carried out. Another challenge is to increase the running performance of 
model checking. One promising approach to this challenge is to parallelize model 
checking, which can make the best use of multicore architectures. In this thesis, we 
propose some techniques to mitigate the state space explosion problem (space 
challenge) and improve the running performance of model checking (time challenge) 
by parallelization for some formal verification tools. In summary, the thesis describes 
three non-trivial cases to demonstrate the proposed techniques: (1) parallelization 
of Java Pathfinder, a software model checker, for testing concurrent programs, (2) 
parallelization of Maude LTL model checker for checking leads-to properties, and 
(3) parallelization of Maude-NPA, a logical model checker, for cryptographic 
protocol analysis. Besides, we describe some shared techniques used for 
parallelization in this thesis and a generic approach to parallelizing tools used for 
formal methods. 



Studies on testing concurrent programs have been conducted for nearly 40 years 
or even more. Compared to testing techniques for sequential programs, however, 
any testing techniques for concurrent programs do not seem mature enough. 
Moreover, many important software systems, such as operating systems, are in the 
form of concurrent programs. Therefore, testing techniques for concurrent programs 
must be worth studying so that they can be matured enough. We propose a 
specification-based testing technique for concurrent programs. For a formal 
specification 𝑆 and a concurrent program 𝑃, state sequences are generated from 
𝑃	and checked to be accepted by 𝑆. We suppose that 𝑆 is specified in Maude and 𝑃 
is implemented in Java. Java Pathfinder (JPF) and Maude are then used to generate 
state sequences from 𝑃 and to check if such state sequences are accepted by 𝑆, 
respectively. Even without checking any property violations with JPF, JPF often 
encounters the notorious state space explosion while only generating state sequences. 
Thus, we propose a technique to generate state sequences from 𝑃 and check if such 
state sequences are accepted by 𝑆 in a stratified way. A tool is developed to support 
the proposed technique that can be processed naturally in parallel. Some 
experiments demonstrate that the proposed technique mitigates the state space 
explosion and improves the verification time, which cannot be achieved with the 
straightforward use of JPF. 

Our research group has proposed the 𝐿 + 1-layer divide & conquer approach to 
leads-to model checking (𝐿 + 1-DCA2L2MC), which is a new technique to mitigate 
the state space explosion in model checking. As shown by the name, 𝐿	 + 	1 -
DCA2L2MC is dedicated to leads-to properties. This thesis describes a parallel 
version of 𝐿	 + 	1-DCA2L2MC and a tool that supports it. In a temporal logic called 
UNITY designed by Chandy and Misra, the leads-to temporal connective plays an 
important role and many case studies have been conducted in UNITY, 
demonstrating that many systems requirements can be expressed as leads-to 
properties. Hence, it is worth dedicating to the properties. This thesis also reports 
on some experiments that demonstrate that the tool can increase the running 
performance of model checking. Counterexample generation is one of the main tasks 
in the tool that can be optimized to improve the running performance of the tool to 
some extent. This thesis then proposes a technique to generate all counterexamples 



at once that is based on the Tarjan algorithm, implemented in C++, and integrated 
into Maude, a programming/specification language based on rewriting logic, so that 
users can use it easily. Some experiments are conducted to demonstrate the power 
of the technique that can improve the running performance of the tool. Furthermore, 
layer configuration selection affects the running performance of the tool. Therefore, 
this thesis then proposes an approach to finding good layer configurations for the 
tool with an analysis tool that supports the approach. Some experiments are 
conducted to demonstrate the usefulness of the analysis tool as well as the approach 
for layer configuration selection. 

With the emergence of the Internet and network-based services, many 
cryptographic protocols, also called security protocols, have been developed over 
decades to provide information security in an insecure network, such as 
confidentiality and authentication. The design of cryptographic protocols, such as 
authentication protocols, is difficult, error-prone, and hard to detect bugs. Therefore, 
it is important to have automated tools to verify some desired properties of 
cryptographic protocols. Maude-NPA is a formal verification tool for analyzing 
cryptographic protocols in the Dolev-Yao strand space model modulo an equational 
theory defining the cryptographic primitives. It starts from an attack state to find 
counterexamples or conclude that the attack concerned cannot be conducted by 
performing a backward narrowing reachability analysis. Although Maude-NPA is a 
powerful analyzer, its running performance can be improved by taking advantage 
of parallel and/or distributed computing when dealing with non-trivial protocols 
whose state space is huge. This thesis describes a parallel version of Maude-NPA in 
which the backward narrowing and the transition subsumption are parallelized at 
each layer. The tool supporting the parallel version has been implemented in Maude 
with a master-worker model. We report on some experiments of various kinds of 
protocols that demonstrate that the tool can increase the running performance of 
Maude-NPA by 44% on average for all non-trivial case studies experimented in 
which the number of states located at each layer is considerably large. 

Keywords: testing concurrent programs, LTL model checking, cryptographic 
protocol analysis, state space explosion, parallelization. 


