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Abstract

Today, software systems are used in various applications where failure is unacceptable.
Among them are airplanes, utilities, telephones, banking & financial systems, commerce, lo-
gistics, appliances, houses, and securities. Very important systems, such as operating systems
and the Internet that have been used as infrastructures, are typically in the form of concurren-
t/distributed programs. We are undeniable that the quality of software systems will affect the
quality of our life more and more considerably. Therefore, the need for reliable software systems
is critical. Model checking is one of the most successful achievements in computer science for
hardware and software verification. However, there are still some challenges to tackle. One
of them is the state space explosion problem, which can make it impossible to conduct model
checking experiments. Many techniques have been proposed to alleviate the problem to some
extent, but the problem still remains when dealing with large systems and often prevents model
checking experiments from being carried out. Another challenge is to increase the running per-
formance of model checking. One promising approach to this challenge is to parallelize model
checking, which can make the best use of multicore architectures. In this thesis, we propose
some techniques to mitigate the state space explosion problem (space challenge) and improve
the running performance of model checking (time challenge) by parallelization for some formal
verification tools. In summary, the thesis describes three non-trivial cases to demonstrate the
proposed techniques: (1) parallelization of Java Pathfinder, a software model checker, for test-
ing concurrent programs, (2) parallelization of Maude LTL model checker for checking leads-to
properties, and (3) parallelization of Maude-NPA, a logical model checker, for cryptographic
protocol analysis. Besides, we describe some shared techniques used for parallelization in this
thesis and a generic approach to parallelizing tools used for formal methods.

Studies on testing concurrent programs have been conducted for nearly 40 years or even
more. Compared to testing techniques for sequential programs, however, any testing techniques
for concurrent programs do not seem mature enough. Moreover, many important software
systems, such as operating systems, are in the form of concurrent programs. Therefore, testing
techniques for concurrent programs must be worth studying so that they can be matured
enough. We propose a specification-based testing technique for concurrent programs. For a
formal specification S and a concurrent program P , state sequences are generated from P and
checked to be accepted by S. We suppose that S is specified in Maude and P is implemented in
Java. Java Pathfinder (JPF) and Maude are then used to generate state sequences from P and
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to check if such state sequences are accepted by S, respectively. Even without checking any
property violations with JPF, JPF often encounters the notorious state space explosion while
only generating state sequences. Thus, we propose a technique to generate state sequences from
P and check if such state sequences are accepted by S in a stratified way. A tool is developed to
support the proposed technique that can be processed naturally in parallel. Some experiments
demonstrate that the proposed technique mitigates the state space explosion and improves the
verification time, which cannot be achieved with the straightforward use of JPF.

Our research group has proposed the L+1-layer divide & conquer approach to leads-to model
checking (L+1-DCA2L2MC), which is a new technique to mitigate the state space explosion in
model checking. As shown by the name, L+1-DCA2L2MC is dedicated to leads-to properties.
This thesis describes a parallel version of L+ 1-DCA2L2MC and a tool that supports it. In a
temporal logic called UNITY designed by Chandy and Misra, the leads-to temporal connective
plays an important role and many case studies have been conducted in UNITY, demonstrating
that many systems requirements can be expressed as leads-to properties. Hence, it is worth
dedicating to the properties. This thesis also reports on some experiments that demonstrate
that the tool can increase the running performance of model checking. Counterexample gen-
eration is one of the main tasks in the tool that can be optimized to improve the running
performance of the tool to some extent. This thesis then proposes a technique to generate all
counterexamples at once that is based on the Tarjan algorithm, implemented in C++, and
integrated into Maude, a programming/specification language based on rewriting logic, so that
users can use it easily. Some experiments are conducted to demonstrate the power of the tech-
nique that can improve the running performance of the tool. Furthermore, layer configuration
selection affects the running performance of the tool. Therefore, this thesis then proposes an
approach to finding good layer configurations for the tool with an analysis tool that supports
the approach. Some experiments are conducted to demonstrate the usefulness of the analysis
tool as well as the approach for layer configuration selection.

With the emergence of the Internet and network-based services, many cryptographic pro-
tocols, also called security protocols, have been developed over decades to provide information
security in an insecure network, such as confidentiality and authentication. The design of
cryptographic protocols, such as authentication protocols, is difficult, error-prone, and hard
to detect bugs. Therefore, it is important to have automated tools to verify some desired
properties of cryptographic protocols. Maude-NPA is a formal verification tool for analyzing
cryptographic protocols in the Dolev-Yao strand space model modulo an equational theory
defining the cryptographic primitives. It starts from an attack state to find counterexamples or
conclude that the attack concerned cannot be conducted by performing a backward narrowing
reachability analysis. Although Maude-NPA is a powerful analyzer, its running performance
can be improved by taking advantage of parallel and/or distributed computing when dealing
with non-trivial protocols whose state space is huge. This thesis describes a parallel version of
Maude-NPA in which the backward narrowing and the transition subsumption are parallelized
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at each layer. The tool supporting the parallel version has been implemented in Maude with
a master-worker model. We report on some experiments of various kinds of protocols that
demonstrate that the tool can increase the running performance of Maude-NPA by 44% on
average for all non-trivial case studies experimented in which the number of states located at
each layer is considerably large.

Keywords: testing concurrent programs; LTL model checking; cryptographic protocol anal-
ysis; Java Pathfinder(JPF); Maude; Maude-NPA; state space explosion; divide & conquer;
master-worker; parallelization.
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Chapter 1

Introduction

Today, software systems are used in various applications where failure is unacceptable. Among
them are airplanes, utilities, telephones, banking & financial systems, commerce, logistics,
appliances, houses, and securities. We are undeniable that the quality of software systems will
affect the quality of our life more and more considerably. With rapidly expanding software
systems as well as their complexity nowadays, the likelihood of subtle bugs lurking in software
systems is much greater. Some of these bugs may cause tragic loss of money, time, or even
human life. Software testing has been the standard technique for identifying software bugs
for decades. However, the purpose of software testing is not to prove that there are no bugs
in software systems but rather to find them. As E.W. Dijkstra has remarked [1] “Program
testing can be used to show the presence of bugs, but never to show their absence.” Although
software testing is very useful to detect bugs in software systems, it is insufficient to make
software systems reliable, especially, for testing concurrent/distributed systems where non-
nondeterminism is naturally presented. To complement testing techniques, formal methods are
one promising way to make software systems more trustworthy by using mathematically based
languages, techniques, and tools for specifying and verifying systems.

Specification is the process of describing a system and its desired properties, which uses a
language with a mathematically defined syntax and semantics. Based on the formal specifica-
tion, formal verification is conducted to verify that the system satisfies its desired properties.
One of the most successful approaches to formal verification in the past few decades is model
checking [2]. That is why Edmund M. Clarke, together with E. Allen Emerson and Joseph
Sifakis, was honored with the 2007 A. M. Turing Award1 for their role in developing model
checking into a highly effective verification technology. Model checking is an automatic veri-
fication technique for verifying that a finite-state system satisfies some desired properties by
exploring the entire reachable state space and checking whether there are any violated states. If
so, it produces counterexamples, which usually represent subtle bugs in the system. However,
there are still some challenges to tackle. One of them is the state space explosion problem,

1https://amturing.acm.org/award_winners/clarke_1167964.cfm
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the most annoying one, which can make it impossible to conduct model checking experiments.
Many techniques have been proposed to alleviate the problem. Among them are partial order
reduction [3], abstraction [4, 5, 6], ordered binary decision diagrams (OBDD) [7], and composi-
tional reasoning [8, 9]. Such techniques alleviate the problem to some extent, but the problem
still remains when dealing with large systems and often prevents some model checking exper-
iments from being carried out. Another challenge is to increase the running performance of
model checking. Because computer systems continue to scale, e.g., individual machines have
more memory, more core, and larger disk capacity, one promising approach to this challenge is
to parallelize model checking [10], which can make the best use of multi-core architectures.

This thesis proposes some techniques to mitigate the state space explosion problem (space
challenge) and improve the running performance of model checking (time challenge) to some ex-
tent by parallelization. The thesis describes three non-trivial cases to demonstrate the proposed
techniques: (1) parallelization of Java Pathfinder, a software model checker, for testing concur-
rent programs, (2) parallelization of Maude LTL model checker for checking leads-to properties,
and (3) parallelization of Maude-NPA, a logical model checker [11], for cryptographic proto-
col analysis. We select three formal verification tools because of the following reasons: Java
Pathfinder (JPF) [12] is one of the most popular software model checkers for Java programs,
which is developed by NASA; Maude LTL model checker [13] is comparable to Spin [14] in
terms of both running performance and memory consumption [15]; and Maude-NPA [16] is
one formal verification tool dedicated to security protocol analysis that is very crucial for our
current and future open network world, such as the Internet.

1.1 Testing for Concurrent Programs

Studies on testing concurrent programs [17] have been conducted for nearly 40 years or even
more. Compared to testing techniques for sequential programs, however, any testing techniques
for concurrent programs do not seem mature enough. Moreover, many important software
systems, such as operating systems, are in the form of concurrent programs. Therefore, testing
techniques for concurrent programs must be worth studying so that they can be matured
enough.

For a formal specification S and a (concurrent) program P , to test P based on S, we can
basically take each of the following two approaches: (1) P is tested with test cases generated
from S and (2) it is checked that state sequences generated from P can be accepted by S. The
two approaches would be complementary to each other. Approach (1) checks if P implements
the functionalities specified in S, while approach (2) checks if P never implements what is not
specified in S. In terms of simulation, approach (1) checks if P can simulate S, while approach
(2) checks if S can simulate P . Approaches (1) and (2) are often used in the program testing
community and the refinement-based formal methods community, respectively, while both (1)
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and (2), namely bi-simulation, are often used in process calculi. The thesis focuses on approach
(2) mainly because P is a concurrent program and then could produce many different executions
due to the inherent nondeterminacy of P , which often leads to subtle bugs in the program.

In the correct-by-construction system or software development, a system is initially specified
in a very abstract formal specification and then incrementally developed to a concrete formal
specification through a sequence of refinement steps. In each refinement step, we add details
about data structures and algorithms so that the final formal specification is closer to the imple-
mentation or program from which the program can be implemented by human programmers or
generated by automatic code generators [18, 19, 20]. Among formal methods in which stepwise
refinement plays a crucial role are Vienna Development Method (VDM) (or VDM++) [21], Z
method [22], Abstract State Machine (ASM) [23], B method [24], and Event-B [25]. The final
specification can be verified by verifying each individual refinement step, while the program
generated needs to be verified by proving the very final refinement step from the final formal
specification to the program implemented or generated based on the final formal specification
or the automatic code generator, respectively. It is very hard to verify the correctness of au-
tomatic code generators [26] and it is also hard to verify the very final refinement step partly
because we need to have full precise formal semantics of programming languages. However,
we need to have a reasonably good technique that can be used to check the program imple-
mented or generated against the final formal specification. We propose a specification-based
testing technique in this thesis that can be regarded as a complement to the very last step in
correct-by-construction software development to guarantee the correctness of the program with
the specification.

We suppose that a formal specification S is specified in Maude [13] while a program P

developed based on the formal specification is implemented in Java. Java Pathfinder (JPF) [12]
is an extensible model checker for Java programs so that we can interact with JPF while
model checking a program. Hence, we use JPF to generate state sequences from P . Maude
is equipped with reflective programming (meta-programming) facilities, making it possible to
check whether a state sequence can be accepted by a formal specification [27], and so we use
Maude to check if such state sequences are accepted by S. Most model checkers suffer from
the notorious state space explosion problem and JPF is no exception. JPF often encounters
the notorious state space explosion while generating state sequences even without checking any
property violations. Because there could be a huge number of different states reachable from
an initial state, which could make a huge number of different state sequences generated due
to the inherent nondeterminacy of concurrent programs. In addition, a whole big heap mainly
constitutes one state in a program under test by JPF. Thus, we propose a technique to generate
state sequences from P and check if such state sequences are accepted by S in a stratified way,
which can be processed naturally in parallel, to mitigate the state space explosion as well as
increase the running performance of model checking.

3



1.2 Linear Temporal Logic Model Checking

To verify (concurrent) systems by model checking, formal specification involves two specifica-
tion languages: one is system specifications and the other one is property specifications. In
linear temporal logic (LTL) model checking, a system specification formalizes the behavior of
the system as a state transition graph also known as a Kripke structure K, and a property
specification is expressed as a temporal formula ϕ. An LTL model checker decides whether the
Kripke structure K is a model of the formula ϕ, which is actually a linear temporal formula.
If so, we denote K |= ϕ. Otherwise, we denote K �|= ϕ and a counterexample that witnesses
the violation of ϕ by K is returned. There are several approaches to the LTL model checking
problem, such as the automata-theoretic approach [28, 29], BDD-based approach [30, 31], and
SAT/SMT-based approach [32, 33, 34]. Many model checkers are implemented based on such
approaches, such as SPIN [14], NuSMV [35], TCBMC [36], and Lazy-CSeq [37, 38].

In hardware and software verification, model checking [2] is one of the most advanced
methods for automatic formal verification. However, the most challenge in model checking is
the state space explosion problem, which can make it impossible to conduct model checking
experiments. Another challenge is to increase the running performance of model checking. One
promising approach to this challenge is to parallelize model checking, which can make the best
use of multicore architectures. Any LTL model checker suffers from the state space explosion,
making the running performance of model checking degrade. Hence, in this thesis, we focus on
improving the running performance of an LTL model checker by parallelization.

Our research group has proposed the L + 1-layer divide & conquer approach to leads-to
model checking (L+1-DCA2L2MC) [39] that is a new technique to mitigate the state explosion
problem in model checking. As shown by the name, L + 1-DCA2L2MC is dedicated to leads-
to properties whose informal description is that whenever something becomes true, something
else will eventually become true. Chandy and Misra [40] designed a temporal logic called
UNITY in which the leads-to temporal connective plays an important role and demonstrated
that many important systems requirements can be expressed as leads-to properties. Besides,
Dwyer et al. [41] showed some statistics on the usage distribution of the various patterns in
property specifications in which the leads-to property (or the response pattern) had the highest
proportion. Therefore, it is worth focusing on leads-to properties.

L+1-DCA2L2MC has been demonstrated as one promising approach to mitigating the state
space explosion in model checking for leads-to properties. However, the running performance
of L + 1-DCA2L2MC can be improved by taking advantage of parallel and/or distributed
computing from which we can mitigate the state space explosion problem (space challenge) and
improve the running performance of model checking (time challenge) as well. In this thesis,
we demonstrate that L + 1-DCA2L2MC can be naturally parallelized by describing a parallel
version of L + 1-DCA2L2MC and a tool that supports it. Counterexample generation is one
main task in the tool that can be optimized to improve the running performance of the tool.
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We propose a technique to generate all counterexamples at once in model checking with a new
model checker. Furthermore, layer configuration selection affects the running performance of
the tool. Therefore, we propose an approach to finding good layer configurations for the tool
with an analysis tool.

1.3 Cryptographic Protocol Analysis

Cryptographic protocols (or security protocols), such as Transport Layer Security (TLS) [42,
43], are extremely important so as to implement secure, safe, and reliable communication over
an open network, such as the Internet. It is also extremely hard to design such protocols and
detect flaws lurking in them [44]. Some protocols designed by security experts had flaws and it
took time to discover flaws in such protocols after their publication. For example, Lowe found
a flaw [45] in the Needham-Schroeder public key (NSPK) authentication protocol 17 years later
since NSPK was designed and published by Needham and Schroeder [46], security experts. TLS
is an improved version of SSL, which is commonly used in securing HTTPS connections. Since
SSL version 1.0 was first introduced in 1994, many attacks were quickly discovered, and so
SSL versions 2.0 and 3.0 were then proposed in 1995 and 1996, respectively. By 2015, SSL 3.0
became deprecated and TLS was then used as an upgrade version because of some attacks [47],
such as the POODLE attack [48]. Therefore, techniques and tools that help researchers and
engineers find out flaws lurking in cryptographic protocols and/or formally verify that such
protocols enjoy some desired properties are indispensable. Tools dedicated to formal verifi-
cation of such protocols have been developed. Among them are Athena [49], ProVerif [50],
Avispa [51], Scyther [52], Tamarin [53], DEEPSEC [54], Verifpal [55], and CPSA [56]. Because
the running performance is crucial, such tools adopt several optimization techniques (e.g., the
partial order reduction [57]) like those used by general-purpose model checkers, such as Spin [14]
and NuSMV [35]. Except for DEEPSEC, which supports protocols with a bounded number of
sessions, none of the dedicated formal verification tools for cryptographic protocols have been
parallelized.

Maude-NPA is a formal verification tool for analyzing cryptographic protocols. It uses
a backward narrowing reachability analysis modulo an equational theory and the Dolev-Yao
strand space model [58, 59], which gives intruders capable of intercepting, modifying, and in-
jecting messages to impersonate other protocol principals. Narrowing is a generalization of
term rewriting that allows logical variables in terms and replaces pattern matching by unifi-
cation. Hence, it supports symbolic execution. The backward narrowing reachability analysis
starts from a final insecure state, an attack state, to determine whether it is reachable from
an initial state, which has no further backward steps. If so, the attack concerned from the
attack state can be conducted for the protocol under verification; otherwise, the attack cannot.
The advantage of Maude-NPA is that it supports protocols with an unbounded session model
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thanks to symbolic execution, and different equational theories; as a counterpart, these theo-
ries often lead to a bigger state space that requires more time to conduct formal verification.
Although some techniques were devised to reduce the state space and improve the running
performance, such as grammar-based techniques, giving priority to input messages in strands,
early detection of inconsistent states (never reaching an initial state), a relation of transition
subsumption (to discard transitions and states already being processed in another part of the
search space), and the super lazy intruder (to delay the generation of substitution instances
as much as possible) [60, 61], the state space explosion problem is inevitable in some cases,
degrading the running performance. Therefore, it is worth improving the running performance
of Maude-NPA. In this thesis, we describe a parallel version of Maude-NPA that can largely
improve the running performance of Maude-NPA.

1.4 Contributions

In summary, we focus on the parallelization of three formal verification tools: (1) parallelization
of Java Pathfinder for testing concurrent programs, (2) parallelization of Maude LTL model
checker for checking leads-to properties, and (3) parallelization of Maude-NPA for cryptographic
protocol analysis. Besides, we describe some shared techniques used for parallelization in (1),
(2), and (3), and a generic approach to parallelizing tools used for formal methods.

For testing concurrent programs, we make the following contributions:

• A new testing technique for concurrent programs to check the correctness of a program
with a specification that can also be used to complement the very last step in correct-by-
constructions software development. For programmers who prefer developing a program
based on a specification from scratch, our technique is fruitful to be used to verify whether
the program conforms to the specification.

• A divide & conquer approach to testing concurrent programs that can mitigate the state
space explosion problem and be naturally parallelized to improve the running performance
of model checking. A tool is developed to support the technique that is written in Java
with a master-worker model.

• Some experiments are conducted to demonstrate the usefulness of the tool as well as the
approach. The tool and case studies are publicly available at the webpage.2

For LTL model checking, we make the following contributions:

• A parallel version of L + 1-DCA2L2MC and a support tool that is dedicated to leads-to
model checking. The tool is written in Maude with a master-worker model.

2https://github.com/canhminhdo/spec-based
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• Counterexample generation technique that can generate all counterexamples at once and a
new model checker to support the technique, which is implemented in C++ and integrated
into Maude, to improve the running performance of our tool. The source code of the new
model checker is publicly available at the webpage.3

• An approach to finding good layer configurations for L + 1-DCA2L2MC technique and
an analysis tool that supports the approach.

• Several experiments are conducted to demonstrate the usefulness of each proposed tech-
nique/approach. All source code files and case studies are publicly available at the web-
page.4

For cryptographic protocol analysis, we make the following contributions:

• A parallel version of Maude-NPA in which the backward narrowing and the transition
subsumption are conducted in parallel at each layer.

• A tool is developed to support the parallel version that is written in Maude using meta-
interpreters with a master-worker model.

• Some experiments on various kinds of protocols are reported to demonstrate that the tool
can increase the running performance of Maude-NPA by 44% on average for all non-trivial
case studies experimented. All source code files and case studies are publicly available at
the webpage.5

1.5 Thesis Structure

We organize the structure of this thesis into eight chapters. We summarize each chapter as
follows:

• Chapter 1 introduces model checking and summarizes the problems of model checking,
including the state space explosion problem and improving the running performance of
model checking. This chapter introduces and addresses the problems in testing concurrent
programs, LTL model checking, and cryptographic protocol analysis by parallelization
followed by our contributions and the thesis structure.

• Chapter 2 provides preliminaries to this thesis. This chapter introduces some back-
ground to help readers understand our work, including State Machine, Simulation Re-
lations, Kripke Structure, Büchi Automata, Rewriting Logic, and Meta-programming in
Maude.

3https://github.com/canhminhdo/Maude
4https://github.com/canhminhdo/parallel-dca2l2mc
5https://github.com/canhminhdo/parallel-maude-npa
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• Chapter 3 investigates some advancements in parallel model checking for testing con-
current programs, LTL model checking, and cryptographic protocol analysis. For testing
concurrent programs, bounded model checking, abstraction refinement, and some work
in correct-by-construction software development, such as High-Level Language (HLL) to
translate Event-B model checks to C code, EventB2Java to generate JML-annotate Java
programs from Even-B models, are mentioned. For LTL model checking, DiVinE, Garak-
abu2, a multicore extension of SPIN, assume-guarantee verification, and parallel CTL
model checking are mentioned. For cryptographic protocol analysis, other analysis tools
than Maude-NPA are mentioned, such as Scyther, Tamarin, Proverif, and DEEPSEC.

• Chapter 4 describes techniques that are used to parallelize three formal verification tools
in this thesis. Besides, we describe a generic approach to parallelizing tools used for formal
methods.

• Chapter 5 proposes a new testing technique for testing concurrent programs that is a
specification-based testing. For a formal specification S and a concurrent program P ,
state sequences are generated from P and checked to be accepted by S. In the proposed
technique, S is specified in Maude and P is implemented in Java. JPF and Maude are
then used to generate state sequences of P and check if such state sequences are accepted
by S, respectively. This chapter then proposes a divide & conquer approach to generating
state sequences from P and checking if such state sequences are accepted by S on the fly
in a stratified way to avoid the state space explosion while generating state sequences. A
tool is implemented in Java to support the proposed technique that is also described in
detail. Some case studies are given to demonstrate the usefulness of the tool as well as
the proposed technique. This chapter also describes how to extend the technique to test
concurrent programs with JPF without checking whether execution sequences generated
from Java programs can be accepted by Maude specifications.

• Chapter 6 introduces L + 1-DCA2L2MC that is a new technique to mitigate the state
space explosion in model checking and then proposes a parallel version of the L + 1-
DCA2L2MC and its support tool. Counterexamples generation is one of the main tasks
in the tool that can be optimized to improve the running performance of the tool. This
chapter then proposes a technique to generate all counterexamples at once and a new
model checker that supports the technique. Furthermore, layer configuration selection
affects the running performance of the tool, this chapter then proposes an approach to
finding good layer configurations for the tool and an analysis tool that supports the ap-
proach. Several experiments are conducted to demonstrate the usefulness of each proposed
technique/approach.

• Chapter 7 introduces Maude-NPA for cryptographic protocol analysis and describes how
Maude-NPA works in detail from which we propose a parallel version of Maude-NPA and
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its support tool. Several experiments on various kinds of protocols are conducted to
demonstrate the usefulness of the tool for cryptographic protocol analysis.

• Chapter 8 summarizes the main contributions of the thesis and mentions several lines
of our future work.
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Chapter 2

Preliminaries

This chapter presents some backgrounds to help readers understand our work, including State
Machine, Simulation Relations, Kripke Structure, Büchi Automata, Rewriting Logic, and Meta-
programming in Maude.

2.1 State Machine

A state machine M � 〈S, I, T 〉 consists of a set S of states, the set I ⊆ S of initial states and
a binary relation T ⊆ S × S over states. (s, s′) ∈ T is called a state transition and may be
written as s →M s′. Let →∗

M be the reflexive and transitive closure of →M . The set RM ⊆ S

of reachable states w.r.t. M is inductively defined as follows: (1) for each s ∈ I, s ∈ R and
(2) if s ∈ R and (s, s′) ∈ T , then s′ ∈ R. A state predicate p is called invariant w.r.t. M iff
p(s) holds for all s ∈ RM . A finite sequence s0, . . . , si, si+1, . . . , sn of states is called a finite
semi-computation of M if s0 ∈ I and si →∗

M si+1 for each i = 0, . . . , n− 1. If that is the case,
it is said that M can accept s0, . . . , si, si+1, . . . , sn.

2.2 Simulation Relations

Given two state machines MC and MA, a relation r over RC and RA is called a simulation
relation from MC to MA if r satisfies the following two conditions: (1) for each sC ∈ IC , there
exists sA ∈ IA such that r(sC , sA) and (2) for each sC , s

′
C ∈ RC and sA ∈ RA such that r(sC , sA)

and sC →MC
s′C , there exists s′A ∈ RA such that r(s′C , s′A) and sA →∗

MA
s′A [62] (see Fig. 2.1). If

that is the case, we may write that MA simulates MC with r. There is a theorem on simulation
relations from MC to MA and invariants w.r.t MC and MA: for any state machines MC and MA

such that there exists a simulation relation r from MC to MA, any state predicates pC for MC

and pA for MA such that pA(sA) ⇒ pC(sC) for any reachable states sA ∈ RMA
and sC ∈ RMC

with r(sC , sA), if pA(sA) holds for all sA ∈ RMA
, then pC(sC) holds for all sC ∈ RMC

[62].
The theorem makes it possible to verify that pC is invariant w.r.t. MC by proving that pA is
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Figure 2.1: A simulation relation from MC to MA

invariant w.r.t. MA, MA simulates MC with r and pA(sA) implies pC(sC) for all sA ∈ RMA
and

sC ∈ RMC
with r(sC , sA).

States are expressed as braced soups of observable components, where soups are associative-
commutative collections and observable components are name-value pairs in this work. The
state that consists of observable components oc1, oc2 and oc3 is expressed as {oc1 oc2 oc3},
which equals {oc3 oc1 oc2} and some others because of associativity and commutativity. We
use Maude [13], a rewriting logic-based computer language, as a specification language because
Maude makes it possible to use associative-commutative collections. State transitions are spec-
ified in Maude rewrite rules.

Let us consider as an example a mutual exclusion protocol (the test&set protocol) in which
the atomic instruction test&set is used. The protocol written in an Algol-like pseudo-code is
as follows:

Loop : ”RemainderSection(RS)”

rs : repeat while test&set(lock) = true;

”CriticalSection(CS)”

cs : lock := false;

lock is a Boolean variable shared by all processes (or threads) participating in the protocol.
test&set(lock) does the following atomically: it sets lock false and returns the old value stored
in lock. Each process is located at either rs (remainder section) or cs (critical section). Ini-
tially, each process is located at rs and lock is false. When a process is located at rs, it does
something (which is abstracted away in the pseudo-code) that never requires any shared re-
sources; if it wants to use some shared resources that must be used in the critical section, then
it performs the repeat while loop. It waits there while test&set(lock) returns true. When
test&set(lock) returns false, the process is allowed to enter the critical section. The process
then does something (which is also abstracted away in the pseudo-code) that requires to use
some shared resources in the critical section. When the process finishes its task in the critical
section, it leaves there, sets lock false, and goes back to the remainder section.
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When there are three processes p1, p2 and p3, each state of the protocol is formalized as
a term {(lock : b) (pc[p1] : l1) (pc[p2] : l2) (pc[p3] : l3)}, where b is a Boolean value and each
li is either rs or cs. Initially, b is false and each li is rs. The state transitions are formalized
as two rewrite rules. One rewrite rule says that if b is false and li is rs, then b becomes true,
li becomes cs and any other lj (such that j �= i) does not change. The other rewrite rule says
that if li is cs, then b becomes false, li becomes rs and any other lj (such that j �= i) does not
change. The two rules are specified in Maude as follows:

rl [enter] : {(lock: false) (pc[I]: rs) OCs}

=> {(lock: true) (pc[I]: cs) OCs} .

rl [leave] : {(lock: B) (pc[I]: cs) OCs}

=> {(lock: false) (pc[I]: rs) OCs} .

where enter and leave are the labels (or names) given to the two rewrite rules, I is a Maude
variable of process IDs, B is a Maude variable of Boolean values, and OCs is a Maude variable
of observable component soups. OCs represents the remaining part (the other processes but
process I) of the system. Both rules never change OCs. Let St&s refer to the specification of
the test&set protocol in Maude.

2.3 Kripke Structure

A Kripke structure K is a tuple 〈S, I, T, A, L〉 [2], where S is a set of states, I ⊆ S is the set of
initial states, T ⊆ S × S is a left-total binary relation over S, A is a set of atomic propositions
and L is a labeling function whose type is S → 2A. Each element (s, s′) ∈ T is called a state
transition from s to s′ and may be denoted s →K s′ or s → s′. For a state s ∈ S, L(s) is the
set of atomic propositions that hold in s. A path π is an infinite sequence s0, . . . , si, si+1, . . .

such that si →K si+1 for each i. We use the following notations for paths: πi � si, si+1, . . .;
πi � s0, . . . , si, si, si, . . .; and π(i) � si. πi is a postfix of π. πi is a path obtained by adding
π(i), the ith state of π, to a prefix of π at the end infinitely many times. Let P be the set of
all paths. π is called a computation if π(0) ∈ I. Let C be the set of all computations.

The syntax of a formula ϕ in LTL for K is as follows:

ϕ ::= 	 | p | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 U ϕ2

where p ∈ A. Let F be the set of all formulas in LTL for K. For an arbitrary path π ∈ P of
K and an arbitrary LTL formula ϕ ∈ F of K, K, π |= ϕ is inductively defined as follows:

• K, π |= 	,

• K, π |= p if and only if p ∈ L(π(0)),

• K, π |= ¬ϕ1 if and only if K, π �|= ϕ1,
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• K, π |= ϕ1 ∧ ϕ2 if and only if K, π |= ϕ1 and K, π |= ϕ2,

• K, π |=©ϕ1 if and only if K, π1 |= ϕ1,

• K, π |= ϕ1 U ϕ2 if and only if there exists a natural number i such that K, πi |= ϕ2 and
for all natural numbers j < i, K, πj |= ϕ1,

where ϕ1 and ϕ2 are LTL formulas. Then, K |= ϕ if and only if K, π |= ϕ for each computation
π ∈ C of K. © and U are called the next temporal connective and the until temporal connective,
respectively. The other logical and temporal connectives are defined as usual as follows: ⊥ �
¬	, ϕ1 ∨ ϕ2 � ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ⇒ ϕ2 � ¬ϕ1 ∨ ϕ2, ♦ϕ � 	 U ϕ, �ϕ � ¬(♦¬ϕ), and
ϕ1 � ϕ2 � � (ϕ1 ⇒ ♦ϕ2). ♦, �, and � are called the eventually temporal connective, the
always temporal connective, and the leads-to temporal connective, respectively. LTL formulas
that do not have any temporal connectives at all are called state propositions in this thesis.

There are multiple possible ways to express states. In this work, a state is expressed as
a braced associative-commutative (AC) collection of name-value pairs, where a name may
have parameters. The order of elements is irrelevant in AC collections, such as sets. AC
collections are called soups and name-value pairs are called observable components. That is,
a state is expressed as a braced soup of observable components. The juxtaposition binary
operator that is associative and commutative is used as the constructor of soups. There are
multiple possible ways to specify state transitions. In this thesis, rewrite rules are used to
specify them. Concretely, we use Maude [13], a programming/specification language based on
rewriting logic to specify Kripke structures or systems formalized as Kripke structures. Maude
makes it possible to specify complex systems flexibly and is also equipped with an LTL model
checker.

2.4 Büchi Automata

A finite automaton A over finite words is a tuple 〈Σ, Q,Δ, Q0, F 〉, where Σ is a finite alphabet
that is a finite set of letters, Q is a finite set of states, Δ ⊆ Q× Σ×Q is a transition relation,
Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of final (accepting) states. Let Σ∗ be the
set of finite words over Σ, including an empty word. A run of A over a word v ∈ Σ∗ of length
|v| is a function p : {0, 1, . . . , |v|} → Q such that the first state is the initial state p(0) ∈ Q0 and
states are related by transition relation ∀0 ≤ i ≤ |v| · (p(i), v(i), p(i+1)) ∈ Δ, where v(i) is the
ith letter of v. A run can be interpreted as a finite state sequence in A from p(0) to the state
p(|v|) such that if the sequence is regarded as a graph, the edges are labeled with the letters in
v. A run is accepting if it ends in an accepting state: p(|v|) ∈ F . An accepting run is also called
a computation in A. We say that A accepts v if and only if there exists an accepting run of A
on v. The language L(A) ⊆ Σ∗ is the set of all words in Σ∗ accepted (or recognized) by A. A
set of words is regular if it is the language of a finite automaton. An automaton is deterministic
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if the transition relation is deterministic for every letter in the alphabet: ∀q, q′, q′′ ∈ Q, ∀a ∈ Σ

such that if (q, a, q′) ∈ Δ ∧ (q, a, q′′) ∈ Δ, then q′ = q′′. Otherwise, it is non-deterministic.
Büchi automata are finite automata over infinite words that have the same structure as

automata on finite words, but the notion of acceptance is different. Let Σω be the set of infinite
words over Σ such that each infinite word contains some characters that appear infinitely often.
Büchi automata recognize words from Σω (not Σ∗). A run p of a Büchi automaton A is over
an infinite word v ∈ Σω. The domain of the run is the set of all natural numbers. Let inf (p)

be the set of states that appear infinitely often in p: inf (p) = {q | ∀i ∈ N, ∃j ≥ i, p(j) = q}. p

must have a cycle because of a finite alphabet and q must appear in such a cycle. A run p is
accepting (Büchi accepting) if and only if inf (p) ∩ F �= ∅. A set of infinite words is ω-regular
if and only if it is recognizable by a Büchi automaton.

Büchi automata are closed under projection, union, intersection, and complement [63]. For
example, given two Büchi automata B1 = 〈Σ, Q1,Δ1, Q

0
1, F1〉 and B2 = 〈Σ, Q2,Δ2, Q

0
2, F2〉

such that all states of B1 are accepting, which is the special case of the intersection of two
automata concerned in this thesis. We define B∩ = 〈Σ, Q1 ×Q2,Δ

′, Q0
1 ×Q0

2, Q1 × F2〉, where
((s1, s2), a, (s

′
1, s

′
2) ∈ Δ′ if and only if (si, a, s′i) ∈ Δi, i = 1, 2. Then, L(B∩) = L(B1) ∩ L(B2).

Given a system in form of a Kripke structure K that is 〈S, I, T, A, L〉, we can transform
the Kripke structure 〈S, I, T, A, L〉 into the Büchi automaton A = 〈Σ, S ∪ {l},Δ, {l}, S ∪ {l}〉,
where

• l is a dummy state regarded as the sole initial state,

• Σ = 2A,

• (l, α, s) ∈ Δ if and only if s ∈ I and α = L(s),

• (s, α, s′) ∈ Δ if and only if (s, s′) ∈ T and α = L(s′).

Every state is accepting in the Büchi automaton. Therefore, we only consider the special case
of the intersection of the two automata described above. Given an LTL formula ϕ, we can build
a corresponding Büchi automaton [64] S = 〈Σ, Q,Δ, Q0, F 〉, where

• Σ = 2Prop, where Prop is a set of atomic propositions from which ϕ is built,

• |Q| ≤ 2O(|ϕ|), where |ϕ| is the length of the formula,

such that L(S) is exactly the set of computations satisfying the formula ϕ. The system A
satisfies the specification S when L(A) ⊆ L(S), meaning that each computation of the system
A is among the allowed computations of the specification S. Alternatively, let L(S) be the
language Σω −L(S), then L(A) ⊆ L(S) if and only if L(A)∩L(S) = ∅, meaning that no com-
putation of A is prohibited by S. Verifying the system A satisfies the specification S becomes
the emptiness problem in the product automaton of the system automaton and the complement
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of the specification automaton. If the product automaton is not empty, any computation in it
corresponds to a counterexample. Counterexamples are always of the form uvω, where u and v

are finite words.

2.5 Rewriting Logic

We follow the classical notation and terminology from [65] for term rewriting and from [66, 67]
for rewriting logic and order-sorted notions. We assume an order-sorted signature Σ with a
finite poset of sorts (S,≤) and a finite number of function symbols. We furthermore assume
that: (i) each connected component in the poset ordering has a top sort, and for each s ∈ S
we denote by [s] the top sort in the component of s; and (ii) for each operator declaration
f : s1 × . . .× sn → s in Σ , there is also a declaration f : [s1]× . . .× [sn]→ [s]. We assume an
S-sorted family X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite. TΣ (X )s

is the set of terms of sort s, and TΣ ,s is the set of ground terms of sort s. We write TΣ (X ) and
TΣ for the corresponding term algebras. The set of positions of a term t is written Pos(t), and
the set of non-variable positions PosΣ (t). The root of a term is Λ. The subterm of t at position
p is t|p and t[u]p is the subterm t|p in t replaced by u. A substitution σ is a sorted mapping
from a finite subset of X , written Dom(σ), to TΣ (X ). The set of variables introduced by σ is
Ran(σ). The identity function substitution is id. Substitutions are homomorphically extended
to TΣ (X ). The restriction of σ to a set of variables V is σ|V .

A Σ -equation is an unoriented pair t = t′, where t, t′ ∈ TΣ (X )s for some sort s ∈ S. Given
Σ and a set E of Σ -equations such that TΣ ,s �= ∅ for every sort s, order-sorted equational logic
induces a congruence relation =E on terms t, t′ ∈ TΣ (X ) (see [67]). We assume that TΣ ,s �= ∅
for every sort s. The Esubsumption order on terms TΣ (X )s, written t �E t′ (meaning that t′

is more general than t), holds if ∃σ : t =E σ(t′). The E-renaming equivalence on term TΣ (X )s,
written t ≈E t′, holds if t �E t′ and t′ �E t. We extend =E, ≈E, and �E to substitutions in an
expected way. An E-unifier for a Σ -equation t = t′ is a substitution σ s.t. σ(t) =E σ(t′). A
complete set of of E-unifiers of an equation t = t′ is written CSUE(t = t′). We say CSUE(t = t′)

is finitary if it contains a finite number of E-unifiers. This notion can be extended to several
equations, written CSUE(t1 = t′1 ∧ . . . ∧ tn = t′n).

A rewrite rule is an oriented pair l → r, where l /∈ X and l, r ∈ TΣ (X )s for some sorts
s ∈ S. An (unconditional) order-sorted rewrite theory is a triple R = (Σ ,E ,R) with Σ an
order-sorted signature, E a set of Σ -equations, and R a set of rewrite rules. A topmost rewrite
theory is a rewrite theory s.t. for each l → r ∈ R, l, r ∈ TΣ (X )State for a top sort State, r /∈ X ,
and no operator in Σ has State as an argument sort. The rewriting relation →R on TΣ (X )

is t
p→R t′ (or →R) if p ∈ PosΣ (t), l → r ∈ R, t|p = σ(l), and t′ = t[σ(r)]p for some σ. The

relation →R/E on TΣ (X ) is =E;→R; =E. Note that →R/E on TΣ (X ) induces a relation →R/E

on TΣ/E (X ) by [t]E →R/E [t′]E iff t→R/E t′. When R = (Σ ,E ,R) is a topmost rewrite theory
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we can safely restrict ourselves [68] to the rewriting relation →R,E on TΣ (X ), where t
Λ−→R,E t′

(or →R,E) if l → r ∈ R, t =E σ(l), and t′ = σ(r). Note that →R,E on TΣ (X ) induces a relation
→R,E on TΣ/E (X ) by [t]E →R,E [t′]E iff ∃w ∈ TΣ (X ) s.t. t→R,E w and w =E t′.

The narrowing relation �R on TΣ (X ) is t
p,σ�R t′ (or σ�R,�R) if p ∈ PosΣ (t), l → r ∈

R, σ ∈ CSU∅(t|p = l), and t′ = σ(t[r]p). Assuming that E has a finitary and complete uni-
fication algorithm, the narrowing relation �R,E on TΣ (X ) is t

p,σ�R,E t′ (or σ�R,E,�R,E) if
p ∈ PosΣ (t), l → r ∈ R, σ ∈ CSUE(t|p = l), and t′ = σ(t[r]p). Note that �R,E on TΣ (X )

induces a relation �R,E on TΣ/E (X ) by [t]E
σ�R,E [t′]E iff ∃w ∈ TΣ (X ) : t

σ�R,E w and w =E t′.

2.6 Meta-programming in Maude

Maude is a high-level language and a high-performance system [13] that supports both equa-
tional and rewriting logic computation. Rewriting logic is the logic of concurrent change,
therefore a concurrent/distributed system can be specified in Maude. Moreover, rewriting
logic is a reflective logic that can be faithfully interpreted in itself, making it possible to de-
velop many advanced meta-programming and meta-language applications. Some descriptions
on meta-programming from [13] are borrowed in this section. Informally, a reflective logic is a
logic in which important aspects of its metatheory can be represented at the object level in a
consistent way so that the object-level representation correctly simulates the relevant metathe-
oretical aspect. Rewriting logic is reflective in a precise mathematical way, namely, there is a
finitely presented rewrite theory U that is universal in the sense that we can represent in U
any finitely presented rewrite theory R (including U itself) as a term R, any terms t, t′ in R
as terms t, t′, and any pair (R, t) as a term 〈R, t〉. Because U is representable in itself, we can
achieve a reflective tower with an arbitrary number of levels of reflection:

R � t→ t′ ⇔ U � 〈R, t〉 → 〈R, t′〉 ⇔ U � 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉 . . .

In this chain of equivalences, we say that the first rewriting computation takes place at level 0,
the second at level 1, and so on. In Maude, the key functionality of the universal theory U has
been efficiently implemented in the functional module META−LEVEL. This module includes the
modules META−VIEW, META−MODULE, META−STRATEGY, and META−TERM. As an overview,

• in the module META−TERM, Maude terms are metarepresented as elements of a data type
Term of terms.

• in the module META−STRATEGY, the Maude strategy language is metarepresented as terms
in a data type Strategy of strategy expressions.

• in the module META−MODULE, Maude modules are metarepresented as terms in a data
type Module of modules.

16



• in the module META−LEVEL,

– operations upModule, upTerm, downTerm and others allow moving between reflection
levels;

– the process of reducing a term to a canonical form using Maude’s reduce command
is metarepresented by a built-in function metaReduce;

– the processes of rewriting a term in a system module using Maude’s rewrite and
frewrite commands are metarepresented by built-in functions metaRewrite and
metaFrewrite;

– the process of applying (without extension) a rule of a system module at the top of
a term is metarepresented by a built-in function metaApply;

– the process of applying (with extension) a rule of a system module at any position
of a term is metarepresented by a built-in function metaXapply;

– the process of matching (without extension) two terms at the top is reified by a
built-in function metaMatch;

– the process of matching (with extension) a pattern to any subterm of a term is reified
by a built-in function metaXmatch;

– the process of searching for a term satisfying some conditions starting in an initial
term is reified by built-in functions metaSearch and metaSearchPath;

– the processes of rewriting a term using Maude’s srewrite and dsrewrite commands
are metarepresented by built-in functions metaSrewrite and metaDsrewrite; and

– parsing and pretty-printing of a term in a module, as well as key sort operations such
as comparing sorts in the subsort ordering of a signature, are also metarepresented
by corresponding built-in functions.

Meta-programing is a programming technique in which programs have the ability to treat
other programs as their data. A meta-program is a program that takes programs as inputs
and performs some useful computations, such as it may transform one program into another,
or it may analyze a program with respect to some properties. Hence, it is very useful and
very powerful. In Maude, meta-programming has a logical reflective semantic. A term can
be represented in the object-level or meta-level. The object-level representation can correctly
simulate the relevant meta-level representation and vice versa. We can write Maude meta-
programs by simply importing META−LEVEL module in our programs in which we can use the
built-in functions supported, such as metaReduce and metaSearch.

17



Chapter 3

Related Work

This chapter investigates some advancements in parallel model checking for testing concur-
rent programs, LTL model checking, and cryptographic protocol analysis. For testing concur-
rent programs, bounded model checking, abstraction refinement, and some work in correct-by-
construction software development, such as High-Level Language (HLL) to translate Event-B
model checks to C code, EventB2Java to generate JML-annotate Java programs from Even-B
models, are mentioned. For LTL model checking, DiVinE, Garakabu2, a multicore extension
of SPIN, assume-guarantee verification, and parallel CTL model checking are mentioned. For
cryptographic protocol analysis, other analysis tools than Maude-NPA are mentioned, such as
Scyther, Tamarin, Proverif, and DEEPSEC.

3.1 Testing Concurrent Programs

The state space explosion is the main challenge to concurrent program verification due to
inherent thread interleavings. Several techniques have recently been studied to overcome this
problem, such as bounded model checking and abstraction refinement. Nevertheless, these
existing techniques cannot overcome the problem reasonably well, especially for large concurrent
program verification. To take full advantage of multiprocessor architectures, parallel processing
is one mainstream to deal with this problem.

Bounded model checking (BMC) is an efficient technique for sequential program analysis
that uses a symbolic representation to formalize the program verification problem into an equi-
satisfiable CNF formula that can be analyzed by a SAT/SMT solver. Among existing studies for
BMC, CBMC is a famous bounded model checker to verify sequential C programs [69]. Based
on CBMC, a SAT-based bounded verification technique is then proposed to support multi-
threaded C programs, called TCBMC [36]. For Java programs, JBMC is a bounded model
checking tool for verifying Java bytecode [70], which is also based on CBMC. However, JBMC
only supports sequential Java programs. The developers of JBMC are currently extending
JBMC to support multi-threaded Java programs. Another extension of SAT/SMT-based BMC
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to model check concurrent programs is Lazy Sequentialization (Lazy-CSeq) [37, 38]. Given
a concurrent program P together with two parameters u and r that are the loop unwinding
bound and the number of round-robin schedules, respectively, they first generate an interme-
diate bounded program Pu by unwinding all loops and inlining all function calls in P with u

as a bound except for those used for creating threads. Pu then is transformed into a sequential
program Qu,r that simulates all behaviors of Pu within r round-robin schedules. Qu,r is then
transformed into a propositional formula that can be analyzed by a SAT/SMT solver. To take
advantage of parallelization, they then propose a method [71] to decompose the set of execution
traces of concurrent programs into symbolic subsets that can be separately explored by multiple
instances of a SAT solver in parallel. Given a number of threads and a number of execution
contexts, their approach needs to calculate symbolic partitioning in which a single formula is
divided into multiple propositional sub-formulas. After that threads are spawned to check such
sub-formulas by using SAT in parallel. They build a prototype tool that can be deployed on a
single machine as well as in a distributed environment. To use much larger compute and mem-
ory resources than those of one single ordinary computer, distributed bounded model checking
is one promising way to make verification scalable. Prantik Chatterjee et al. [72] then propose
an algorithm that dynamically unfolds the call graph of a program and frequently splits it into
sub-tasks that can be solved by many instances of an SMT solver in parallel. In detail, the
technique splits the set of program paths into disjoins subsets that are searched independently.
The splitting is done by picking a control node (splitting node) and considering (1) the set of
paths that go through the node, and (2) the set of paths that do not. They create multiple
processes, each of which has access to the input program, and are deployed in a distributed
environment. One process is designated as the server while the rest are called clients. The
search starts sequentially on one of the clients. A client chooses a splitting node from which
two partitions are created. The client continues verification on one of the partitions and sends
the other partition to the server. The server is in charge of collecting, prioritizing partitions
from the clients, and distributing them to the clients subsequently. Note that clients can split
multiple times. This process continues until a client reports a counterexample or there is no
partition left in the server and all clients are idle. Their architecture is basically a master-worker
model that is similar to the architecture used in our tool. However, the way they partition the
reachable state space is different from our approach, which splits the reachable state space into
multiple smaller sub-state spaces based on depth information. In recent years, exploiting the
power of GPU in parallel computation with a huge number of cores, some researchers have
used GPU to speed up the model checking verification [73, 74, 75], which may be one of our
interesting future directions to improve our approach.

Regarding abstraction refinement, the scheduling constraint based abstraction refinement
(SCAR) is an effective method for concurrent program verification [76]. SCAR is built on
top of CBMC that is a bounded model checker for C and C++ programs. However, instead
of using the scheduling constraint [77], SCAR ignores the scheduling constraint and uses a
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scheduling constraint based abstraction refinement method that makes the constraints in the
initial abstraction to be reduced significantly. From the initial abstraction, they use graph-
based algorithms over an event order graph (EOG) for counterexample validation. Given that
abstraction, a counterexample π is produced, which is a set of assignments to the variables in
the abstraction. To validate the feasibility of π, they validate its corresponding EOG, which
captures all the order requirements among the events of π. Some order requirements deducible
from the EOG are called derived orders of the EOG. The derived orders are produced based
on three rules by looping and they try to apply each rule to the EOG in sequence until this
process reaches a fixpoint where no derived order can be produced anymore. From obtained
derived orders, if there exists a cycle, then the EOG is infeasible. Otherwise, it is not sure
whether the EOG is feasible or not. If the EOG is feasible, it is truly a counterexample.
Whenever counterexample validation is determined to be infeasible, the abstraction is refined
by a refinement generation method that obtains a set of constraints and then can be encoded
into simple constraints and reduce a large amount of space. To take advantage of the SCAR
method, a parallel refinement is proposed in which multiple engines are used to refine the
abstraction simultaneously [78]. Their parallel technique performs on the whole abstraction
search space instead of dividing the search space into small ones. Each engine does three steps
that iteratively select a counterexample from the abstraction, validate the counterexample (CE),
and analyze the refinement constraint (RC). Because they perform on the whole reachable search
space, to select a counterexample and avoid duplication, they use a random search strategy.
Besides, all engines share the learned clause lib that can be updated and checked whether a
counterexample is verified or not by engines. All engines also use the same RC lib, whenever
an engine generates a refinement constraint. The constraint is added to the RC lib that is
simplified to avoid redundant constraints. By sharing RC lib, each engine can obtain multiple
refinement constraints in each iteration, making the number of required iterations for each
engine reduce. For each iteration, if one engine returns UNSAT, then the property is proven
safe and we finish the verification. Otherwise, in the case of SAT, a counterexample is returned
to validate the feasibility. If the counterexample is feasible, all engines will terminate and
Unsafe is returned. Otherwise, the engine keeps on doing to analyze RC. Their approach is
similar to our approach when they use the shared RC lib to avoid redundant constraints, while
we use a shared cache to avoid redundant states and state sequences. However, our approach
does not deal with the whole search space by each worker and so we do not need to consider
the random search strategy and each worker conducts its sub-state spaces independently.

The existing parallel techniques mentioned above, where SAT/SMT solvers play the main
role, are different from our approach. The advantage of their approach is that it is fully
automatic to verify concurrent programs, while our approach starts from a specification and
then implements a concurrent program based on the specification. Our technique can be used
to verify not only a concurrent Java program [79], but also check whether the concurrent
program conforms to the specification, which can be used to complement the very last step
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in correct-by-constructions software development. We do not compare our tool with existing
tools based on BMC and SCAR mentioned above because they are dedicated to verifying C
and C++ programs. Besides, JBMC is used to model check sequential Java programs, but not
concurrent Java programs. JPF is one of the most mature model checkers for Java programs.
That is why it is used to evaluate and compare with JBMC [70] in terms of correctness and
running performance. Therefore, it is worth comparing our tool with JPF as well as improving
the running performance of JPF.

In correct-by-construction system or software development, Ning Ge et al. [26] propose a
High-Level Language (HLL) for Event-B that can be used between Event-B models and C code.
Event-B models are translated to respective HLL models, where Event-B invariants are proved
using a SAT-based model checker, from which C code is automatically generated. Although
the authors claim that they propose a technique that makes it possible to conduct conformance
proofs between HLL models and the C code generated from the models, they do not describe
how they do so in detail. This thesis describes how to check the conformance of programs
with specifications in detail that can be regarded as a complement to the very last step in the
correct-by-construction technique.

Dalvandi et al. [18] propose a way to generate executable code in Dafny [80] from scheduled
Event-B models. Scheduled Event-B is an augmented version of Even-B such that a schedul-
ing language is used to make the control flow in an Event-B model explicit and facilitate the
derivation of algorithmic structure in Event-B refinement. Generated executable code can be
verified with a static program verifier, such as Z3, because code is written in Dafny. Gener-
ated executable code is dedicated to sequential programs, while our tool can test concurrent
programs.

Rivera et al. [19] propose a way to generate JML-annotated Java programs from Even-B
models. They build a tool called EventB2Java to support the proposed program generation
technique. Two case studies are conducted with EventB2Java to demonstrate the usefulness
of the proposed technique and the support tool. Both sequential and concurrent programs can
be generated with EventB2Java. Note that there is a sentence ". . . JML [. . . ] is designed to
specify arbitrary sequential Java programs . . . ," though, in the paper [20]. Because generated
programs are annotated with JML [81], Java programs generated by EventB2Java can be
verified. However, the paper [19] does not describe how to formally verify generated Java
programs. To the best of our knowledge, JML focuses on the sequential behavior of Java
programs, while extending JML to support concurrency is in progress [82]. Hence, checking,
verifying, or testing JML-annotated Java concurrent programs is still not matured.

Tran-Jørgensen et al. [20] propose a way to automatically generate JML-annotated Java
programs from VDM models. They address the semantic differences between the contract-
based elements of VDM-SL and JML and describe how to use dynamic JML assertion checks
to ensure the consistency of VDM’s subtypes. It looks like that JML-annotated Java programs
generated from VDM models are only sequential.
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3.2 Linear Temporal Logic Model Checking

Barnat et al. [10] survey some recent advancements in parallel model checking algorithms for
LTL. Graph search algorithms need to be redesigned to make the best use of multi-core and/or
multi-processor architectures. Parallel model checkers based on such parallel model checking
algorithms have been developed, among which are DiVinE 3.0 [83], Garakabu2 [84, 85], and
a multicore extension of SPIN [86]. A parallel version of L + 1-DCA2L2MC does not need to
redesign graph search algorithms and can essentially use any existing model checkers that can
handle leads-to properties. This is one big difference from any existing parallel model checkers.

SAT/SMT-based BMC has been extended to model check concurrent programs [37]. Given
a concurrent program P together with two parameters u and r that are the loop unwinding
bound and the number of round-robin schedules, respectively, an intermediate bounded pro-
gram Pu is first generated by unwinding all loops and inlining all function calls in P with u as
a bound except for those used for creating threads and then Pu is transformed into a sequential
program Qu,r that simulates all behaviors of Pu within r round-robin schedules. Qu,r is then
transformed into a propositional formula that can be analyzed by a SAT/SMT solver. This
way to model check concurrent programs can be parallelized by decomposing the set of execu-
tion traces of a concurrent program into symbolic subsets and analyzing the set of execution
traces in parallel [71]. The approaches to BMC of concurrent programs seem able to deal with
safety properties only, while our tool is able to deal with leads-to properties, a class of liveness
properties. Note that ϕ � ⊥ is equivalent to �¬ϕ and then our tool can deal with invariant
properties (safety properties) as well.

Distributed-memory model checking with SPIN has been proposed [87]. Its purpose is
shared by the technique proposed in this thesis. When the size of a system model (or specifica-
tion) under model checking by SPIN is greater than the physical memory, the model checking
performance is degraded or the model checking may become infeasible. To make it possible
to conduct model checking experiments for a large-state system model with SPIN, Lerda and
Sisto [87] came up with a way to partition the reachable state space of a large-state system
model into multiple nodes (computers) connected with networks, where some techniques are
used by SPIN, such as partial order reduction and bit state hashing, can be used. Some exper-
imental data demonstrate the usefulness of the proposal. Their distributed-memory SPIN is
able to deal with safety properties only, while our tool is able to deal with leads-to properties,
a class of liveness properties.

To tackle a large system that cannot be handled by an exhaustive verification mode, SPIN
has a bit-state verification mode that may not exhaustively search the entire reachable state
space. The larger a system under verification becomes, the higher chances the SPIN bit-state
verification mode may overlook flaws lurking in the system. To overcome such situations,
Swarm Verification [88] has been proposed. The key ideas of Swam Verification are parallelism
and search diversity. For each of multiple different search strategies, one instance of bit-state
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verification is conducted. These instances are totally independent and can be conducted in
parallel. Different search strategies traverse different portions of the entire reachable state
space, making it more likely to achieve higher coverage of the entire reachable state space and
find flaws lurking in a large system if any. An implementation of Swarm Verification on GPUs,
called Grapple [75], has also been developed. Although the technique proposed in this thesis
splits the reachable state space from each initial state into multiple layers, generating multiple
sub-state spaces, it exhaustively searches each sub-state space with Maude LTL model checker
or its revision that can find all counterexamples at once in parallel. It may be worth adopting
the Swarm Verification idea into our technique such that Swarm Verification is conducted for
each sub-state space instead of an exhaustive search, which may make it possible to quickly
find a flaw lurking in a large system.

Assume-guarantee verification is a technique to mitigate the state space explosion in model
checking by decomposing a single analysis of the global state space into a number of local anal-
yses. Each local analysis is in charge of checking whether a single component M guarantees a
property g under assumption a denoted {a}M{g}, where a abstracts away the rest of a program.
For example, we can verify each thread in a shared-memory program as a component separately
by using an assumption that models interleaved steps of the other threads [89]. A compositional
proof rule is used to reason about components separately along with their assumptions from
which the global property is concluded without having to reason about the composed program
directly. There are several proof rules that have been proposed in the work [90, 91, 92, 93]
and most of them are based on two principles: transitivity and mutual induction. The former
states that if component M satisfies {a}M{g} and component N satisfies {true}N{a}, then
the composition N ||M satisfies {true}N ||M{g}. The latter states that if component M sat-
isfies {a}M{g} and component N satisfies {g}N{a}, meaning that component M guarantees
property g under assumption a that is guaranteed by component N under assumption g, then
the composition N ||M satisfies {true}N ||M{a ∧ g}. The proof rules based on the latter are
called circular rules that are sound for safety properties but potentially unsound for liveness
properties. Because each component can be analyzed separately, then we can take advantage
of parallelization to improve the verification time to some extent. However, the most challenge
in assume-guarantee verification is to create right assumptions for components from which such
a proof rule can be applied correctly [94]. Although some techniques have been devised to
generate automatically the assumptions in [95, 96], the challenge still remains. Moreover, the
number of components usually correlates with the number of threads/processes in a concurren-
t/distributed program under verification. Hence, not many components are involved and then
the gain that can be obtained by parallelization may not be significant for the assume-guarantee
verification technique.

Besides LTL model checking, there are several studies on improving the running performance
of CTL model checking by taking advantage of high computing systems [97, 98, 99]. One of
them is distributed CTL model checking by using MapReduce with the Hadoop framework [97].
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They focus on three kinds of formulas in the forms of EXϕ, EGϕ, and E[ϕUφ], where ϕ and φ

are CTL formulas, because every CTL formula can be expressed over them. For each kind of the
formula, they design a dedicated algorithm based on a fixed-point algorithm where MAP and
REDUCE functions for mappers and reducers in Hadoop are specified, respectively. For EXϕ

formulae, a single MapReduce job is used where the predecessor states of states that satisfy
ϕ are processed in parallel, while for EGϕ, and E[ϕUφ], an iterative MapReduce algorithm is
used where the output of a previous iteration is the input of the next iteration until a fixed
point is reached based on the fixed-point algorithm, where the input and the output are the
same. MapReduce is basically a master-worker model as what is used in our thesis and our
tool can also be deployed in a distributed environment because we use sockets to communicate
between the master and workers.

3.3 Cryptographic Protocol Analysis

The way to parallelize the backward narrowing in step (1) in our work is close to parallel
breadth-first search (BFS) algorithms. Various parallel BFS algorithms have been intensively
studied [100, 101, 102, 103, 104]. Some of these algorithms work efficiently compared to the
classical serial BFS algorithm [105, Section 22.2]. PBFS [103] uses a multiset data structure
called a bag instead of a queue (FIFO). The bag supports insertion essentially as fast as FIFO
and can be split and combined efficiently. In addition, for efficient implementation, PBFS
contains a benign race condition in their algorithm and uses a bag reducer that allows updating
concurrently to a shared variable or data structure at the same time. A bag is a collection of
pennants in which each pennant is a tree of 2k nodes, where k is a non-negative integer. Each
node in this tree contains two pointers referring to its left and right children. The bag is a crucial
data structure in PBFS that is implemented efficiently in C++, while we mostly use a set data
structure that can be defined in Maude. Both Maude-NPA and Par-Maude-NPA-2 are written
in Maude, a specification language, which is impossible to implement PBFS in a high-level
language like Maude. However, our way to parallelize Maude-NPA would be what we could do
as much as possible by using the currently available parallelization techniques. If Maude-NPA
is drastically re-implemented in C++ to improve its efficiency, applying PBFS to the parallel
version of Maude-NPA is one piece of our future work. Note that the idea to parallelize BFS is
shared between our tool and PBFS and we have demonstrated that the breadth-first search in
Maude-NPA can be reasonably parallelized. Besides, we parallelize the transition subsumption
in Maude-NPA based on the concept of the divide and conquer approach in [105, Section 4].

In addition to Maude-NPA, there are several cryptographic analysis tools for security proto-
cols, such as Athena [49], ProVerif [50], Avispa [51], Scyther [52], Tamarin [53], DEEPSEC [54],
Verifpal [55], and CPSA [56]. Among them, some symbolic tools are described and compared
with Maude-NPA as follows. Scyther [52] is an automatic analyzer that supports both an
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unbounded number of sessions and a bounded number of sessions, and always terminates.
However, it only considers a fixed set of cryptographic primitives consisting of symmetric and
asymmetric encryption. Security properties verified in Scyther are mostly trace properties that
hold for any execution trace, where secrecy and authentication properties can be expressed.
Maude-NPA supports rich cryptographic primitives that are user-definable and it can verify not
only trace properties as its natural reachability analysis but also equivalence properties [106],
which state that two processes in a security protocol are equivalent when an adversary cannot
distinguish the difference between interactions with two processes. Verifying equivalence prop-
erties is harder than verifying trace properties because we need to consider the relation between
traces instead of a single trace.

Tamarin [53] is a prover that generalizes the backward search used by the Scyther tool
and supports an unbounded session model, reasoning modulo equational theories, modeling
complex control flow (e.g., loops), and mutable global state. It provides both automatic and
interactive modes to construct proofs. However, it often needs some lemmas provided by users
to complete its proofs. In Tamarin, a protocol specification is specified by means of multiset
rewriting rules, while a property specification is written as a guarded fragment of first-order
logic. Each protocol trace corresponds to a multiset rewriting derivation that is the sequences
of the labels of the applied rules. Tamarin performs an exhaustive backward search to look
for a trace that does not satisfy the property and returns a counterexample as an attack. If
no rule can be applied anymore and no counterexample is found, then the protocol satisfies
the property. Tamarin can verify trace properties and observational equivalence properties.
To make the problem of security protocol verification decidable, Tamarin also uses the finite
variant property [107] to reduce reasoning modulo an equational theory with respect to a rewrite
theory as in Maude-NPA. Basically, Tamarin can support at the same level as Maude-NPA in
cryptographic protocol analysis. However, Maude-NPA does not require lemmas from users
and it is fully automatic.

ProVerif [55] is an abstraction-based approach to symbolically analyzing cryptographic pro-
tocols. The protocol specifications that are specified in an extension of the pi calculus are
translated into Horn clauses and the security properties being proved are translated into deriv-
ability queries on the Horn clauses. ProVerif uses a resolution algorithm to check whether a
fact is derivable from the clauses. If there is no derivation, the property is proved. Otherwise,
the derivation found is reconstructed at the pi calculus level as an attack. However, the attack
may be spurious because some abstractions are used in Horn clauses. In the case of a false
attack, ProVerif cannot conclude anything. ProVerif can verify secrecy, authentication, and
some observational equivalence properties. Besides, cryptographic primitives can be defined by
equations or rewrite rules that also need to satisfy the finite variant property to make the anal-
ysis terminate as in Maude-NPA. However, it does not support associativity and homomorphic
properties as in Maude-NPA.

DEEPSEC [54] focuses on deciding trace equivalence properties in security protocols, which
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are specified in a dialect of the applied pi calculus [108]. However, it only supports a bounded
number of sessions and cryptographic primitives are specified by a set of subterm convergent
rewrite rules, where the right-hand side of each rule must be a subterm of the left-hand side or a
ground term. To guide the decision of equivalence of two processes in cryptographic protocols,
DEEPSEC constructs a so-called partition tree, where each node consists of a set of symbolic
processes and constraints. Initially, the root node only consists of the two symbolic processes
and empty constraints. Given a node, sibling nodes can be constructed based on some rules in
DEEPSEC. The partition tree is then constructed in a top-down style. While constructing the
partition tree, if there is some node that does not contain both two processes originated from
the two beginning processes, DEEPSEC returns an attack; otherwise, there are no attacks.
Because sibling nodes are independent, the construction of the subtree from each sibling node
can be processed in parallel as follows. DEEPSEC maintains a queue of jobs with a fixed size.
It first starts with a breadth-first search from the root node to generate all successor nodes and
put them into the queue until reaching the size. Each idle worker can fetch a job to handle
and checks if the queue is full. If so the worker starts constructing the entire subtree from the
node included in the job; otherwise, it keeps on producing jobs to put into the queue. The way
to parallelize DEEPSEC is different from ours because we never generate the entire subtree
from a node. It also seems that DEEPSEC does concern visited nodes while constructing the
partition tree. To the best of our knowledge, Maude-NPA is the first cryptographic security
tool parallelized for an unbounded number of sessions. Although there are many parallel model
checking algorithms for LTL [10], such as DiVinE 3.0 [83], Garakabu2 [84, 85], a multicore
extension of SPIN [86], and Parallel L+ 1-DCA2L2MC [109], where DCA2L2MC stands for a
divide & conquer approach to leads-to model checking.

Parallel L + 1-DCA2L2MC [109] is a new technique to mitigate the state space explosion
as well as increase the running performance in model checking for leads-to properties. L + 1-
DCA2L2MC splits the reachable state space from each initial state of a system into multiple
layers, generating multiple sub-state spaces, and conducting model checking experiments for
each sub-state space. If the size of each sub-state space is much smaller than the one of the
original reachable state space, it is feasible to conduct model checking experiments with the
approach even though it is infeasible to do so for the original reachable state space due to
the state space explosion. Model checking experiment for each sub-state space is basically
independent, especially, the model checking experiments for the sub-state spaces in the final
layer are completely independent. Parallel L+1-DCA2L2MC is then proposed to conduct such
model checking experiments in parallel. The way to parallelize L + 1-DCA2L2MC is close to
our work where they also use a master-worker model with a support tool, which is implemented
in Maude. Each model checking experiment can be regarded as a job assigned to a worker
by the master to conduct the model checking experiment in parallel. In their work, they use
Maude sockets instead of meta-interpreters to communicate between the master and workers.
As described above, the use of meta-interpreters is faster than the use of Maude sockets.
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Chapter 4

Techniques to Parallelize Formal
Verification Tools

We parallelize three formal verification tools: (1) parallelization of JPF for testing concurrent
programs, (2) parallelization of Maude LTL model checker for checking leads-to properties,
and (3) parallelization of Maude-NPA for cryptographic protocol analysis. Some techniques
are shared between three parallel versions of these formal verification tools. This chapter then
describes the shared techniques and a generic approach to parallelizing tools used for formal
methods.

4.1 A Master-Worker Model

A master-worker model is not a brand-new algorithm for parallelization but is widely used
in practice. There is an option to use an existing collection of open-source software facilities
that make the best use of parallel/distributed environments, such as Apache Hadoop6 that
uses the MapReduce programming model [110] to implement a parallel version of a formal
verification tool. However, we did not take the option. This is because we do not use a large
number of computers, making it unnecessary to consider computer failure and/or stragglers.
Note that MapReduce is basically a master-worker model. For (1), we use RabbitMQ, a robust
message queue library, as a message broker, while we develop our message broker for (2) and
(3) from scratch because (2) and (3) are developed in Maude and there is no such message
broker developed in Maude before. The master uses the message broker to distribute jobs to
workers in a well-balanced way. For (1) and (2), we use sockets to communicate between the
master and workers while we use Unix domain sockets to obtain better performance for (3).

6https://hadoop.apache.org/
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4.2 Dividing the Reachable State Space into Multiple Lay-

ers

To make the best use of the parallelization, we need to come up with a way/technique to divide
the reachable state space into multiple sub-state spaces such that tackling the problem for those
sub-state spaces is equivalent to the problem for the original reachable state space. For (1),
(2), and (3), we divide the reachable state space from each initial state of the system under
test/verification into multiple layers, generating multiple sub-state spaces. If each sub-state
space is much smaller than the original reachable state space, then it is feasible to tackle each
sub-state space even though it is infeasible to tackle the original reachable state space due
to the state space explosion problem. This is the key to alleviating the state space explosion
problem in our techniques. Regarding layer configuration, the depth of each layer is different
for each tool. For (1), we describe a preliminary way to decide the depth of each layer. For
(2), we come up with an approach to finding a good layer configuration with an analysis tool
that supports the approach. For (3), we parallelize the breadth-first search in Maude-NPA, and
then the depth of each layer is merely one.

4.3 Tackling Multiple Sub-State Spaces in Parallel

As described above, the reachable state space is divided into multiple layers, generating multiple
sub-state spaces at each layer. Those sub-state spaces at each layer can be tackled independently
in parallel, although we may need to do some synchronized tasks after each layer before moving
to the next layer. If the number of sub-state spaces at each layer is considerably large, we can
take advantage of parallelization by using the master-worker model as mentioned above. In
addition, we should consider the size of each sub-state space. If the size is too small, tackling
the sub-state space (a job) can be completed quickly by a worker and so the communication
cost may be larger than the benefit able to be gained from parallelization. However, if the size is
too large, each worker may tackle some shared sub-state spaces and we may not take advantage
of the use of cache effectively, which is described in the next section, making the running
performance degrade. The size of each sub-state space is decided by the layer configuration.
In general, a job assigned to each worker by the master should not be a light job. Tackling
multiple sub-state spaces in parallel is the key to improving the running performance of formal
verification tools.

4.4 Caching to Avoid State Duplications

The use of cache is essential in software development. In our tools, we use cache to avoid making
unnecessary duplications of jobs and reduce the communication cost between the master and
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workers. In the master-worker model, we can use a cache at the master as well as at each worker.
The master is in charge of distributing and collecting jobs to/from workers, and so the use of
cache is to avoid making unnecessary duplications of jobs because workers only communicate
with the master. Each worker is in charge of handling each job assigned by the master. The
worker often produces new jobs to send back to the master, and so the use of a cache at each
worker can avoid sending unnecessary jobs that have been sent to the master by the worker
before. To see the effectiveness of the use of a cache at the master as well as at each worker,
we investigate it for (2) in Chapter 6. In general, the use of a cache in the master is mandatory
while the use of a cache at each worker is optional.

4.5 A Generic Approach to Parallelizing Tools Used for

Formal Methods

The advantage of our three parallel versions is that we do not need to alter the core algorithm
used in each model checker for (1), (2), and (3). Especially, we would like to improve the running
performance for (2), and so we develop a new model checker; otherwise, we do not need to do
so. We think that not every tool used for formal methods deserves parallelization. From our
experiences, the following two criteria can be used to decide whether we should parallelize a
tool used for formal methods:

• We need to come up with a way/technique to divide the original reachable state space from
each initial state of the system under test/verification into multiple sub-state spaces such
that each sub-state space is preferable to be conducted mostly in parallel and tackling the
problem for such sub-state spaces is equivalent to the problem for the original reachable
state space. For (1), we divide the reachable state space from each initial state of the
system under test into multiple layers by each layer depth. For (2), we use L + 1-
DAC2L2MC technique to divide the reachable state space into L + 1 layers. For (3), we
transform the breadth-first search in Maude-NPA into a parallel breadth-first search. All
of them generate multiple sub-state spaces at each layer that basically can be checked in
parallel and the correctness is preserved.

• For each sub-state space, the job that a worker needs to handle should not be a light job.
Besides, the number of jobs in total assigned to workers should be considerably large as
well. Because we need to pay an extra cost for parallelization, such as the communication
cost between the master and each worker, and checking duplicated jobs. If the job is a
light job and the number of jobs is small, the extra cost may be larger than the benefit
able to be gained from parallelization. For (1), we set each layer depth to a moderately
large value so that a worker needs to spend considerable time completing the job for
each sub-state space in a layer. For (2), the sub-state spaces at the final layer are not
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light jobs also. For (3), generating all successor states from a given state and conducting
the transition subsumption at each layer is time-consuming because of its complexity
implemented in Maude-NPA. For (1) and (2), the number of jobs is often considerably
large, while (3) works really effectively when the number of states (jobs) located at each
layer is considerably large.

To take advantage of parallelization for tools used for formal methods, we should consider
the two criteria above to decide whether we should parallelize the tools. For example, we have
attempted to parallelize the search command in Maude by using metaSearch and metaMatch.
Although the search command uses the breadth-first search to explore the reachable state
space of a system in Maude and there may be many states located at each layer, we could
not take advantage of parallelization compared to the original search command in Maude by
parallelizing the breadth-first search. In this case, it looks similar to the parallel version of
Maude-NPA when we attempt to parallelize it in the sense of the parallel breadth-first search,
meaning that the first criterion holds. However, the second criterion does not hold. In the
search command, the time taken to complete a job, generating all successor states from a
given state, is so fast that the extra cost of parallelization makes the running performance of
the parallel version of the search command degrade. In addition, we use the reflective facilities
in Maude that are slower than the use of the search command, which is implemented in C++,
in terms of running performance. Therefore, we could not take advantage of parallelization
for the search command in Maude in which the breadth-first search is parallelized. This case
can be regarded as an example that does not deserve parallelization from our point of view.
However, if we come up with a better way to divide the reachable state space into multiple
sub-state spaces for the Maude search command in the future, the techniques proposed in this
thesis could be effectively used to parallelize the Maude search command.

Note that the techniques proposed in this thesis are not for parallelization of any funda-
mental algorithms, such as those for SAT/SMT, but for parallelization of some tools for formal
verification. Thus, they cannot be used to parallelize algorithms used for SAT/SMT, but could
be used to parallelize SAT/SMT solvers (tools). It is necessary to decide what should be par-
allelized or divided. One possible candidate for a SAT/SMT solver is to divide a SAT/SMT
problem or a formula into multiple sub-problems/sub-formulas. If we come up with a good
way to do so, the techniques proposed could be effectively used to parallelize a SAT/SMT
solver. Actually, there are some existing studies that have parallelized a SAT/SMT solver in
this approach [71, 72, 78].

30



Chapter 5

Parallel Specification-based Testing for
Concurrent Programs

This chapter proposes a specification-based testing technique for concurrent programs. For a
formal specification S and a concurrent program P , state sequences are generated from P and
checked to be accepted by S. We suppose that S is specified in Maude and P is implemented in
Java. Java Pathfinder (JPF) and Maude are then used to generate state sequences from P and
to check if such state sequences are accepted by S, respectively. Even without checking any
property violations with JPF, JPF often encounters the notorious state space explosion while
only generating state sequences. Thus, we propose a technique to generate state sequences
from P and check if such state sequences are accepted by S in a stratified way. A tool is
developed to support the proposed technique that can be processed naturally in parallel. Some
experiments demonstrate that the proposed technique mitigates the state space explosion and
improves the verification time, which cannot be achieved with the straightforward use of JPF.
This chapter also describes how to extend the technique to test concurrent programs with JPF
without checking if execution sequences generated from Java programs can be accepted by
Maude specifications.

5.1 Specification-based Concurrent Program Testing with

a Simulation Relation

We have proposed a specification-based testing technique for concurrent programs that uses a
simulation relation candidate from a concurrent program to a formal specification [27]. The
technique is depicted in Fig. 5.1. Let S be a formal specification of a state machine and P be
a concurrent program. Let us suppose that we know a simulation relation candidate r from
P to S. The proposed technique does the following: (1) finite state sequences s1, s2, . . . , sn

are generated from P , (2) each si of P is converted to a state s′i of S with r, (3) one of each
two consecutive states s′i and s′i+1 such that s′i = s′i+1 is deleted, (4) finite state sequences
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Figure 5.1: Specification-based concurrent program testing with a simulation relation

s′′1, s
′′
2, . . . , s

′′
m are then obtained, where s′′i �= s′′i+1 for each i = 1, . . . ,m−1, and (5) it is checked

that s′′1, s
′′
2, . . . , s

′′
m can be accepted by S.

We suppose that programmers write concurrent programs based on formal specifications,
although it may be possible to generate concurrent programs (semi-)automatically from formal
specifications in some cases. The FeliCa team has demonstrated that programmers can write
programs based on formal specifications and moreover use of formal specifications can make
programs high-quality [111]. Therefore, our assumption is meaningful as well as feasible. If
so, programmers must have profound enough understandings of both formal specifications and
concurrent programs so that they can come up with simulation relation candidates from the
latter to the former. Even though consecutive equal states except for one are deleted, generating
s′′1, s

′′
2, . . . , s

′′
m such that s′′i �= s′′i+1 for each i = 1, . . . ,m − 1, there may not be exactly one

transition step but zero or more transition steps so that s′′i can reach s′′i+1 w.r.t. P . Programmers
are able to know the maximum number of atomic code fragments in programs for one atomic
state transitions in formal specifications if programs are implemented/generated from formal
specifications based on some reasonable techniques. EventB2Java [19] can generate concurrent
Java programs from Event-B models in which actions of each event are translated to one atomic
fragment and a shared lock is used to guarantee that at most one atomic fragment (or an event)
can be executed at the same time by multiple threads in programs. Hence, one possible way
to implement programs from formal specifications is to use a shared lock by multiple threads
and translate each state transition in specifications to one atomic fragment in programs. If
so, the maximum number of such transition steps in specifications is one. However, we can
use more than one lock to implement programs. For ABP protocol implementation, we use
two locks shared by multiple threads in the program as shown in Algorithm 2. One atomic
fragment protected by one lock and another atomic fragment protected by the other lock can
be executed in parallel. Hence, at most two atomic code fragments may be executed by multiple
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threads in parallel (or simultaneously), although each atomic action (or state transition) in the
formal specification is implemented by one atomic code fragment in the program. In general,
the number of locks used is the maximum steps in programs for one atomic state transition in
formal specifications. We suppose that P is written in Java and Java Pathfinder (JPF) is used
to generate state sequences from P [112].

5.2 State Sequence Generation from Concurrent Programs

5.2.1 Java Pathfinder (JPF)

JPF is an extensible software model checking framework for Java bytecode programs that are
generated by a standard Java compiler from programs written in Java. JPF has a special Virtual
Machine (VM) in it to support model checking of concurrent Java programs, being able to detect
some flaws lurking in concurrent Java programs, such as race conditions and deadlocks. When
a flaw is detected, it reports a whole execution leading to the flaw. JPF explores all potential
executions of a program under test, while an ordinary Java VM executes the code in only
one possible way. Because JPF is able to identify points that represent execution choices in a
program under test from which the execution could proceed differently.

Although JPF is a powerful model checker for concurrent Java programs, its straightforward
use does not scale well and often encounters the notorious state space explosion. We anticipated
previously [27] that we might mitigate the state space explosion if we do not check anything
while JPF explores a program under test to generate state sequences. It is, however, revealed
that we could not escape the state space explosion just without checking anything during the
exploration conducted by JPF. This is because a whole big heap mainly constitutes one state
in a program under test by JPF, while one state is typically expressed as a small term in formal
specifications. The present work then proposes a divide & conquer approach to generating state
sequences from a concurrent program in a stratified way.

5.2.2 Generating State Sequences by JPF

JPF consists of two main components: (1) a VM and (2) a search component. The VM is a
state generator. It generates state representations by interpreting Java bytecode instructions. A
state is mainly constituted of a heap and threads plus an execution history (or path) that leads
to the state. Each state is given a unique ID number. The VM implements a state management
that makes it possible to do state matching, state storing, and execution backtracking when
exploring a state space. Three key methods of the VM are employed by the search component:

• forward - it generates the next state and reports if the generated state has a successor;
if so, it stores the successor on a backtrack stack for efficient restoration;

• backtrack - it restores the last state on the backtrack stack;
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• restoreState - it restores an arbitrary state.

At any state, the search component is responsible for selecting the next state on which the
VM should work, either by directing the VM to generate the next state (forward) or by telling
it to backtrack to a previously generated one (backtrack). The search component works as a
driver for the VM. There are some strategies that can be used to traverse the state space. By
default, the search component uses a depth-first search (DFS), although we can configure JPF
to use different strategies, such as a breadth-first search.

The most important extension mechanism of JPF is listeners which provide a way to observe,
interact with, and extend JPF execution. We can configure JPF with many of our own listener
classes provided that our own listener classes need to extend the ListenerAdapter class. The
ListenerAdapter class consists of all event notifications from the VMListener and SearchListener
classes. It allows us to subscribe to VMListener and SearchListener event notifications by
overriding some methods, such as:

• searchStarted - it is invoked when JPF has just entered the search loop but before the
first forward;

• stateAdvanced - it is invoked when JPF has just got the next state;

• stateBacktracked - it is invoked when JPF has just backtracked one step;

• searchFinished - it is invoked when JPF is just done.

A SequenceState class that extends ListenerAdapter class is made to observe and inter-
act with JPF execution. In SequenceState class, we override the two important methods:
stateAdvanced and stateBacktracked. Whenever the stateAdvanced method is invoked, we
need to retrieve all necessary information about the next state at this step. We use an instance
Path of ArrayList class to maintain the path from the beginning state to the current state being
visited by the DFS. Each element of Path corresponds to a state in JPF and is encapsulated
as an instance of a Configuration class prepared by us. Each element of Path only stores the
information for our testing purpose, which is mainly the values of observable components. For
example, the information for the test&set mutual exclusion protocol is as follows:

• stateId - the unique id of a state;

• depth - the current depth of search path;

• lock - a Lock object that contains the lock observable component value, which is either
true or false;

• threads - an ArrayList object of threads, each of which consists of the current location
information that is either rs or cs.
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Figure 5.2: A way to generate state sequences with JPF

We need to keep up with the change of observable components in each state stored in Path.
Observable components are implemented as object data in JPF. To obtain that information, we
need to look inside the heap of JPF. The heap contains a dynamic array of ElementInfo objects
where the array indices are used as object reference values. An ElementInfo object contains a
Fields object that actually stores the values of observable components. Thereby, we can gather
the values of observable components, create a new Configuration object, and append it to Path

whenever the stateAdvanced method is invoked.
Whenever JPF hits an end state, a state that has already been visited or a depth bound, a

path (or a state sequence) is made, all but one are deleted from each of consecutive same states
in the path. A cache is used to store all paths that have been explored. If the path does not
exist in the cache, we save the path to the cache and then send it to another part of our system
to check whether the path conforms to the specification with Maude on the fly subsequently.
Otherwise, we just discard the path.

Because the reachable state space could be huge, we manage a parameter in order to prevent
JPF from diverging as follows:

• DEPTH - the maximum depth from the initial state; once JPF reaches any state whose
depth from the initial state is DEPTH, a backtrack message is sent to the search compo-
nent for backtracking.

DEPTH could be set to unbounded, meaning that we ask JPF to generate as deep state
sequences as possible. Every time JPF performs backtracking because of no more successor
state, the last state is deleted from Path in the stateBacktracked method to keep up with the
change of the current path in the DFS.

The way to generate state sequences from concurrent programs with JPF is depicted in
Fig. 5.2. White nodes with a thick border in red indicate that those nodes have been visited
by JPF. Blue nodes cause backtracking because the node (or state) does not have any more
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successor nodes and such a node has been seen (or visited) before or the depth of the node
reaches DEPTH.

5.3 A Divide & Conquer Approach to Generating State

Sequences

JPF often encounters the notorious state space explosion even without checking any property
violation while exploring the reachable state space of a system under test. When we do not set
DEPTH to a moderately small number and ask JPF to exhaustively (or almost exhaustively)
explore all (or a huge number of) possible states, JPF may not finish the exploration and may
lead to out of memory. To mitigate the situation, we propose a technique to generate state
sequences from concurrent programs in a stratified way, which is called a divide & conquer
approach to generating state sequences. Given a concurrent program P , our approach splits
the reachable state space from each initial state sd0 into multiple layers, for example, L layers
(where L is a non-zero natural number) as shown in Fig. 5.3. Let d(i) be the depth of layer
i for i = 0, 1, . . . , L. We suppose that there virtually exists layer 0 such that d(0) = 0. d(i) is
a non-zero natural number if i = 1, . . . , L. Let di be d(0) + . . . + d(i) for i = 0, . . . , L, namely
that di is the depth of the bottom of layer i (or the depth of the top of layer i + 1) from the
initial state. States located at the depth di are called beginning states of layer i+ 1 (or ending
states of layer i). The depth of a state is the depth from the initial state where the state is
located. In Fig. 5.3, sdi denotes a beginning state of layer i+1 for i = 0, . . . , L, and sjidi denotes
an ending state of layer i for i = 0, . . . , L, although we do not use sj0d0 (which is an ending state
of layer 0, a beginning state of layer 1, and the same as sd0) in the figure. sjidi is also a beginning
state of layer i+ 1, such as sdl that equals sjldl in Fig. 5.3.

Intuitively, we first generate state sequences from each initial state, where the length of each
sequence is d(1) (see Fig. 5.3). If d(1) is small enough, it is possible to do so. We then generate
state sequences from each of the states at depth d(1), where the length of each sequence is d(2).
If d(2) is small enough, it is also possible to do so. Given one initial state, there is one sub-state
space in the first layer explored by JPF, while there are as many sub-state spaces in the second
layer as the number of states at depth d(1) reachable from the initial state. Combining each
state sequence seq1 in layer 1 and each state sequence seq2 in layer 2 such that the last state
of seq1 equals the first state of seq2 and either the last state of seq1 or the first state of seq2 is
removed, we are to generate state sequences, where the length of each sequence is d(1) + d(2),
which can be done even though d(1)+d(2) is large. Similarly, we could generate state sequences
up to depth d(1) + . . .+ d(L) for L layers (see Fig. 5.3).

Let Πi for i = 0, . . . , L be the set of all state sequences generated in layer i reachable from
initial states. Initially, Π0 is the set of initial states whose depth is 0. For a state sequence
π ∈ Πi for i = 0, . . . , L, let last(π) be the last state in π. For a state sdi at the bottom of
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Figure 5.3: A divide & conquer approach to generating state sequences

the ith layer or the beginning of the i + 1st layer (see in Fig. 5.3), let gen(sdi , d(i + 1)) for
i = 0, . . . , L− 1 be the set of state sequences in the i+ 1st layer reachable from sdi , where the
length of each state sequence is d(i + 1). For two state sequences π and π′ such that the last
state of π is equal to the first state of π′, let combine(π, π′) be the combined state sequence of
π and π′, where either the last state of π or the first state of π′ is removed. Algorithm 1 shows a
divide & conquer approach to generating state sequences for L layers reachable from the set of
initial states Π0. For each layer l ∈ 1 . . . L, Πl is initially set to empty at line 2. Suppose that
we have the set of state sequences Πl−1 of the l− 1st layer, which is obvious for layer 1 because
Π0 has initialized. For each state sequence π in the preceding layer, whose length is dl−1, we
get the last state of π to generate a set of state sequences reachable from last(π), where the
length of each state sequence is d(l), and assign to Seq at line 4. If d(l) is small enough, it is
possible to do so. For each state sequence π′ in Seq, we can combine the state sequence π and
π′ to get a state sequence of the lth layer, whose length is dl, because the last state of π is equal
to the first state of π′, and add it to Πl at line 6. By generating state sequences at each layer
and combining them with state sequences at the preceding layer, we are able to generate state
sequences for L layers even though dL is large. ΠL is returned as the final result of Algorithm 1
at line 7.

When generating state sequences for L or unbounded layers, DEPTH can be regarded as
d(1) + . . . + d(L) or unbounded, respectively. When the entire reachable state space is huge,
DEPTH parameter is also shared by many bounding techniques, which systematically explore
a part of the entire reachable state space, such as bounded model checking (BMC) [113, 69, 70]
and context bounding [114, 115]. In those existing studies, the depth parameter is iteratively
increased until a bug or counterexample is found. In our environment, selecting DEPTH, or in
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Algorithm 1: A divide & conquer approach to generating state sequences for L layers
input : P – a concurrent program

Π0 – the set of initial states of P
d(1) . . . d(L) – a list of non-zero natural numbers, where L is a non-zero
natural number

output: a set of state sequences

1 forall l ∈ 1 . . . L do
2 Πl ← ∅;
3 forall π ∈ Πl−1 do
4 Seq ← gen(last(π), d(l));
5 forall π′ ∈ Seq do
6 Πl ← Πl ∪ combine(π, π′);

7 return ΠL;

other words, the depth of each layer is essential. We can select each layer depth as follows. We
start with a small depth, namely 10, as the layer depth and increment it by one small number,
namely 5, until JPF is not able to explore the entire sub-state space up to the depth reachable
from an initial state in a reasonable amount of time. The depth in which JPF is able to do so
at the last should be used as each layer depth. In addition, the number of states located at the
first layer for each depth option is also considered. However, finding good depth information
for layers is one piece of our future work.

Let us consider the test&set protocol and suppose that we write a concurrent program
(denoted Pt&s) in Java based on the specification St&s of the protocol. We suppose that there
are three processes participating in the protocol. St&s has one initial state and so does Pt&s. Let
each of d(1) and d(2) be 50 and let us use the proposed technique to generate state sequences
from Pt&s. One of the state sequences (denoted seq1) generated in layer 1 is as follows:

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} |

{(pc[p1]: rs) (pc[p2]: cs) (pc[p3]: rs) (lock: true)} |

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} | nil

where _|_ is the constructor for non-empty state sequences and nil denotes the empty state
sequence. Note that atomic execution units used in Pt&s are totally different from those used
in St&s. Therefore, the depth of layer 1 is 50, but the length of the state sequence generated is
3. One of the state sequences (denoted seq2) generated in layer 2 is as follows:

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} |

{(pc[p1]: cs) (pc[p2]: rs) (pc[p3]: rs) (lock: true)} |

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} | nil
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Note that the last state in the first state sequence is the same as the first state in the second
state sequence. Combining the two state sequences such that consecutive equal states are
removed to withhold one, we get the combined state sequence (denoted seq3) as follows:

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} |

{(pc[p1]: rs) (pc[p2]: cs) (pc[p3]: rs) (lock: true)} |

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} |

{(pc[p1]: cs) (pc[p2]: rs) (pc[p3]: rs) (lock: true)} |

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (lock: false)} | nil

This is one state sequence generated from Pt&s, where DEPTH is 100.
If each sub-state space is much smaller than the original reachable state space, then it

is feasible to generate its sub-state sequences even though it is infeasible to generate state
sequences for the original reachable state space due to the state space explosion problem.
Therefore, using the divide & conquer approach to generating state sequences, we are able to
generate longer or deeper state sequences that are unfeasible by using JPF only without our
approach. In addition, generating state sequences for each sub-state space is independent from
that for any other sub-state spaces. Especially for sub-state spaces in one layer, generating
state sequences for each sub-state space is totally independent from that for each other. This
characteristic of the proposed technique makes it possible to generate state sequences from
concurrent programs in parallel. For example, once we have generated state sequences in layer
l, we can generate state sequences for all sub-state spaces in layer l+1 simultaneously. This is
an advantage of the divide & conquer approach to generating state sequences from concurrent
programs.

5.4 A Divide & Conquer Approach to Testing Concurrent

Programs and Its Support Tool

Once state sequences are generated from a concurrent program P , we check if a formal spec-
ification S can accept the state sequences with Maude on the fly and show the result. For
example, we can check if seq3 can be accepted by St&s with Maude. Instead of checking if seq3
can be accepted by St&s, however, it suffices to check if each of seq1 and seq2 can be accepted
by St&s.

For each layer l, we generate state sequences that start from each state located at depth
d(1) + . . . + d(l − 1) from a concurrent program P with JPF and check if each state sequence
generated in layer l can be accepted by a formal specification S with Maude. We could first
generate all (sub-)state sequences from P in a stratified way and then could check if each state
sequence can be accepted by S as shown in Algorithm 1. But, we do not combine multiple
(sub-)state sequences to generate a whole state sequence of P because we do not need to do
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Figure 5.4: The architecture of a tool supporting the proposed technique

so and it suffices to check if each (sub-)state sequence can be accepted by S in order to check
if a whole state sequence can be accepted by S. This way to generate (sub-)state sequences
from P and to check if each (sub-)state sequence is accepted by S is called a divide & conquer
approach to testing concurrent programs.

Our tool that supports the divide & conquer approach to testing concurrent programs has
been implemented in Java. The tool architecture is depicted in Fig. 5.4. As shown in Fig. 5.4, the
architecture is a master-worker model (or pattern), where there are two main groups. The first
left half group uses one RabbitMQ master (1) and four JPF workers to generate state sequences
while the second right half group also uses one RabbitMQ master (2) and four Maude workers
to check whether or not state sequences can be accepted by specifications on the fly. Note
that we can use as many workers as possible in each group. Both state sequence generation
and conformance checking to specifications are conducted in parallel. We use Redis [116] and
RabbitMQ [117] to develop our tool.

• Redis is an advanced key-value store and supports many different kinds of data structures,
such as strings, lists, maps, sets, and sorted sets. It could hold its database entirely in
memory as a big hash table. Redis is used as an efficient cache to avoid duplicating states
and state sequences while generating state sequences.

• RabbitMQ is used as a message broker. The RabbitMQ master maintains a message
queue to store and dispatch messages from/to RabbitMQ (RMQ) clients. In the first
group, each JPF worker consists of a RabbitMQ client to fetch messages (states) from the
RabbitMQ master (1). For a fetched message (a state), a JPF instance that is internally
started by the worker starts generating state sequences from the state up to a depth. For
each state sequence generated, we obtain the last state in the state sequence and check
if the state exists in a cache of states. If not, the state is sent back to the RabbitMQ
master (1). We jointly check if the state sequence exists in a cache of state sequences. If
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not, the state sequence is sent to the RabbitMQ master (2). In the second group, each
Maude worker consists of a RabbitMQ client to fetch messages (state sequences) from
the RabbitMQ master (2). For a fetched message (a state sequence), a Maude instance
that is internally started by the worker checks if the state sequence can be accepted by a
formal specification.

Initially, we run a starter program to send an initial message to the RabbitMQ master (1)
for JPF to kick off the tool, where an initial message is regarded as an initial state specified in
a specification. The starter program is just specialized in sending an initial message. First of
all, we flush all keys and values from the Redis cache to clean up data in memory. Secondly, we
make a connection to RabbitMQ master for JPF with a designated configuration. After making
sure that it is connected, we prepare an initial message to send to the message queue maintained
by RabbitMQ master (1). The data is encapsulated into a Configuration object, namely config.
Before sending the initial message to the RabbitMQ master, we use SerializationUtils class
supported by the Apache Commons Lang [118] to serialize the config object that makes it easy
to deserialize to the original object at the receiver side without doing any extra thing.

As soon as the RabbitMQ master has received a message from a worker, the message is stored
in a message queue. By default, the RabbitMQ master will pop a message from the message
queue and then dispatch it to a worker, in sequence. RabbitMQ has a noticeable parameter
that needs to be configured, namely, prefetch. It indicates a maximum of unacknowledged
messages that each worker may receive at once. If prefetch is not configured, the default value
is unlimited. From our experience, it takes much more time for JPF workers to generate
state sequences than for Maude workers to check if state sequences are accepted by formal
specifications. Hence, to improve the stability and efficiency of our environment, prefetch value
is assigned to 1 and 10 for JPF workers and Maude workers, respectively.

Let us consider the first left half group in the environment architecture. Firstly, JPF workers
make a connection to the RabbitMQ master (1). After connected, workers are willing to receive
messages from RabbitMQ master (1). Whenever a worker receives a message from RabbitMQ
master (1), the worker deserializes the message into its original object, namely config, which is
an object of Configuration class, by invoking the deserialize method of SerializationUtils class.
Given the config object, we create an instance of RunJPF class. Then the instance invokes
the run method to initialize a JPF instance with some configuration that is built from the
config object. We need to let the JPF instance know which message arguments are passed to
the system under test and also need to register our listener class to the JPF instance so that
we can interact with the JPF instance. Consequently, the worker can internally start a JPF
instance to generate state sequences from the given message.

Note that all workers, as well as JPF instances, are running in parallel and using one shared
Redis instance. A JPF instance traverses the (sub-)state space reachable from the state derived
from a given message. Whenever a JPF instance reaches the designated depth or finds that the
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current state being visited has no more successor states, our listener class does the following:

1. Removing all consecutive same states except for one from the state sequence;

2. Converting the state sequence to a string representation, then using the SHA256 algorithm
to hash the string representation to a unique signature;

3. Asking the Redis cache whether the state sequence exists or not; If yes, skipping what
follows; Otherwise, saving the signature as the key and the string representation as the
value into the Redis cache, making a connection to the RabbitMQ master for Maude
(2), and then sending the state sequence as a message to the RabbitMQ master (2) for
conformance checking to formal specifications in the second group subsequently;

4. Obtaining the last state from the state sequence, converting it to a string representation,
and using the SHA256 algorithm to hash the string to a unique signature;

5. Asking the Redis cache whether the state exists or not; If yes, skipping what follows;
Otherwise, asking the Redis cache to save the signature as the key and the string rep-
resentation for the last state as the value into the Redis cache and sending a message
that contains the last state’s information to RabbitMQ master (1), which then prepares a
message that asks a worker to generate state sequences from the state unless the current
layer is the final one.

Let us consider the second right half group where the tool has been integrated with Maude so
that a Maude instance can check if state sequences are accepted by formal specifications on the
fly. The RabbitMQ master (2) is used to gather all state sequences emitted from the workers in
the first group. We have known that once JPF instances have generated state sequences, they
send the state sequences to the RabbitMQ master (2) where a message queue is maintained
to store such state sequences. The RabbitMQ master (2) then gradually dispatches state
sequences as messages to Maude workers. Initially, each Maude worker makes a connection
to the RabbitMQ master (2) with a designated configuration. After connected, the worker
launches internally a Maude instance and feeds to the Maude instance some Maude files that
are a specification of a concurrent program being tackled and a meta-programming script to
check the correctness of state sequences. Whenever the worker receives a message, the worker
deserializes the message into the original object that represents a state sequence. Then it
calls to the Maude instance to check whether or not the state sequence is accepted by the
specification loaded into the Maude instance before. Given a command line with a designated
module name, a state sequence, and a depth, an instruction that can be fed into the Maude
instance is constructed. Let M be a module name, Seq is a state sequence being checked, and D

is a depth that is the possible number of transition steps (see Sect. 5.1). The instruction looks
as follows:
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Maude> reduce checkConform(M, Seq, D) .

Whenever the Maude instance receives the instruction, the Maude instance executes it and
checks whether Seq is accepted by M with depth D. A result will be returned in the form of
either a success or failure message. As the worker that calls the Maude instance to check the
state sequence receives the message result from the Maude instance, it parses the message to
know what it is, and then displays the result to the console output. All state sequences and
their results can be stored in MySQL [119] to easily monitor and diagnose problems if needed.
Note that all workers are running in parallel and use different Maude instances but load the
same specification and the meta-programming script.

5.5 Case Studies

We conducted case studies in which Alternating Bit Protocol (ABP), a cloud synchroniza-
tion protocol (CloudSync) and Needham-Schroeder-Lowe Public-Key authentication protocol
(NSLPK) were tackled. We experimented on two versions of CloudSync protocol, including Re-
vised CloudSync and Original CloudSync, which are described in detail in this section. Hence,
we conducted four case studies in total. Our experiments were carried out by an Apple iMac
Late 2015 that had a Processor 4GHz Intel Core i7 and a Memory of 32GB 1867 MHz DDR3.

5.5.1 Alternating Bit Protocol (ABP)

Introduction

Alternating Bit Protocol (ABP) is a communication protocol and can be regarded as a simplified
version of TCP. ABP makes it possible to reliably deliver data from a sender to a receiver even
though two channels between the sender and receiver are unreliable in that elements in the
channels may be dropped and/or duplicated. The sender maintains two pieces of information:
sb that stores a Boolean value and data that stores the data to be delivered next. The receiver
maintains two pieces of information: rb that stores a Boolean value and buf that stores the
data received. One channel dc from the sender to the receiver carries pairs of data and Boolean
values, while the other one ac from the receiver to the sender carries Boolean values. There
are two actions done by the sender: (sa1) the sender puts the pair (data, sb) into dc and (sa2)
if ac is not empty, the sender extracts the top Boolean value b from ac and compares b with
sb; if b �= sb, data becomes the next data and sb is complemented; otherwise, nothing changes.
Actions (sa1) and (sa2) done by the sender are denoted d-snd and a-rec, respectively. There
are two actions done by the receiver: (ra1) the receiver puts rb into ac and (ra2) if dc is not
empty, the sender extracts the top pair (d, b) from dc and compares b with rb; if b = sb, d is
stored in buf and rb is complemented; otherwise, nothing changes. Actions (ra1) and (ra2)
done by the receiver are denoted a-snd and d-rec, respectively. There are four more actions to
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Figure 5.5: A state of ABP

dc and ac because the channels are unreliable. If dc is not empty, the top element is dropped
(d-drp) or duplicated (d-dup), and if ac is not empty, the top element is dropped (a-drp) or
duplicated (a-dup). Fig. 5.5 shows a graphical representation of a state of ABP.

Each state of ABP is formalized as a term {(sb : b1)

(data : d(n)) (rb : b2) (buf : dl) (dc : q1) (ac : q2)}, where b1 and b2 are Boolean values, n is a
natural number, dl is a data list, q1 is a queue of pairs of data and Boolean values and q2 is
a queue of Boolean values. d(n) denotes data to be delivered from the sender to the receiver.
Initially, b1 is true, b2 is true, n is 0, dl is the empty list, q1 is the empty queue, and q2 is the
empty queue. The state transitions that formalize the actions are specified in rewrite rules as
follows:

rl [d-snd] : {(sb: B)(data: D)(dc: Ps) OCs}

=> {(sb: B)(data: D)(dc:(Ps | < D,B >)) OCs}.

crl [a-rec1] : {(sb: B)(data: d(N)) (ac: (B’ | Bs)) OCs}

=> {(sb:(not B))(data: d(N + 1))(ac: Bs) OCs} if B =/= B’ .

crl [a-rec2] : {(sb: B)(data: D) (ac: (B’ | Bs)) OCs}

=> {(sb: B)(data: D)(ac: Bs) OCs} if B = B’.

rl [a-snd] : {(rb: B)(ac: Bs) OCs}

=> {(rb: B) (ac: (Bs | B)) OCs} .

crl [d-rec1] : {(rb: B)(buf: Ds) (dc: (< D,B’ > | Ps)) OCs}

=> {(rb: (not B))(buf: (Ds | D))(dc: Ps) OCs} if B = B’ .

crl [d-rec2] : {(rb: B)(buf: Ds) (dc: (< D,B’ > | Ps)) OCs}

=> {(rb: B)(buf: Ds)(dc: Ps) OCs} if B =/= B’ .

rl [d-drp] : {(dc: (Ps1 | P | Ps2)) OCs}

=> {(dc: (Ps1 | Ps2)) OCs} .

rl [d-dup] : {(dc: (Ps1 | P | Ps2)) OCs}

=> {(dc: (Ps1 | P | P | Ps2)) OCs} .

rl [a-drp] : {(ac: (Bs1 | B | Bs2)) OCs}

=> {(ac: (Bs1 | Bs2)) OCs} .

rl [a-dup] : {(ac: (Bs1 | B | Bs2)) OCs}
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=> {(ac: (Bs1 | B | B | Bs2)) OCs} .

Words that start with a capital letter, such as B, D, Ps, and OCs, are Maude variables. B, D,
Ps, and OCs are variables of Boolean values, data, queues of (Data,Bool)-pairs, and observable
component soups, respectively. The types (or sorts) of the other variables can be understood
from what have been described. The two rewrite rules a-rec1 and a-rec2 formalize action
a-rec. What rewrite rules formalize what actions can be understood from what have been
described. Let SABP refer to the specification of ABP in Maude. A concurrent program PABP

is written in Java based on SABP, where one thread performs two actions d-snd and a-rec, one
thread performs two actions a-snd and d-rec, one thread performs two actions d-drp and a-drp,
and one thread performs two actions d-dup and a-dup. We intentionally insert one flaw in PABP

such that when the receiver gets the third data, it does not put the third data into buf but
puts the fourth data into buf .

Experiments

Algorithm 2 shows the pseudo-code for sender, receiver, dropper, and duplicator actions that
are executed simultaneously by multiple threads in the program. Actions d-send and a-rec are
implemented by the code fragments at line 6 and lines 9 - 13, respectively. Actions a-send and
d-rec are implemented by the code fragments at line 20 and lines 23 - 27, respectively. Actions
a-drp and d-drp are implemented by the code fragments at lines 32 and 35, respectively. Actions
a-dup and d-dup are implemented by the code fragments at lines 40 and 43, respectively. lockdc
and lockac are two locks that are used to protect those atomic code fragments. Note that
lockdc may be the same as lockac when one lock is actually used. We can see that one atomic
fragment protected by lockdc and another atomic fragment protected by lockac can be executed
in parallel. Hence, at most two atomic code fragments may be executed by multiple threads
in parallel (or simultaneously), although each atomic action (or state transition) in the formal
specification is implemented by one atomic code fragment in the program.

We suppose that the sender is to deliver four data to the receiver, the depth of each layer
is 100, and DEPTH is unbounded. The simulation relation candidate from PABP to SABP is
essentially the identity function. We change each channel size as follows: 1, 2, and 3. We do
not need to fix the number of layers in advance, but the number of layers can be determined
by the tool on the fly. For each experiment, however, the number of layers is larger than 2.
Table 5.1 shows experimental data in which one lock is used in the program, meaning that the
maximum number of transition steps is 1, while table 5.2 shows experimental data in which two
locks are used in the program, meaning that the maximum number of transition steps is 2. We
can change algorithm 2 to make the program using only one lock easily by replacing two locks
lockdc and lockac with the same lock as mentioned.

When each channel size was 1, one lock experiment took about 5 hours 47 minutes, while
two locks experiment took about 8 hours 39 minutes to generate all state sequences with four
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Algorithm 2: Sender, Receiver, Dropper, and Duplicator in ABP program
input : ABP – a concurrent program

lockdc – a lock on the data channel
lockack – a lock on the ack channel

1 dc← empty; ac← empty;
2 function Sender is
3 data← 0; sb← true;
4 while true do
5 request(lockdc);
6 dc.put(< data, sb >);
7 release(lockdc);
8 request(lockac);
9 if ac.size() > 0 then

10 b← ac.get();
11 if b �= sb then
12 sb← ¬sb;
13 data← data+ 1;

14 release(lockac);

15 function Receiver is
16 buf ← 0;
17 rb← true;
18 while true do
19 request(lockac);
20 ac.put(rb);
21 release(lockac);
22 request(lockdc);
23 if dc.size() > 0 then
24 < d, b >← dc.get();
25 if b = rb then
26 buf.put(d);
27 rb← ¬rb;

28 release(lockdc);

workers and check them with Maude on the fly. The number of the state sequences generated
is 47,505 and 64,854, respectively. Note that the number of state sequences is the total number
of sub-state sequences at each layer without combining sub-state sequences. Maude detected
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Algorithm 2: Sender, Receiver, Dropper, and Duplicator in ABP program (continu-
ously)

29 function Dropper is
30 while true do
31 request(lockac);
32 ac.get();
33 release(lockac);
34 request(lockdc);
35 dc.get();
36 release(lockdc);

37 function Duplicator is
38 while true do
39 request(lockac);
40 ac.duptop();
41 release(lockac);
42 request(lockdc);
43 dc.duptop();
44 release(lockdc);

that some state sequences have adjacent states s and s′ such that s cannot reach s′ by SABP

in both experiments with one and two state transitions, respectively. If that is the case, a tool
component [27] implemented in Maude shows us some information as follows:

Result4Driver?: {seq: 31,msg: "Failure",

from: {sb: true data: d(2) rb: true buf: (d(0) | d(1)) dc: < d(2),true > ac: nil},

to:{sb: true data: d(2) rb: false buf: (d(0) | d(1) | d(3)) dc: nil ac: nil},

index: 3, bound: 2}

This is because although the receiver must put the third data d(2) into buf when d(2) is
delivered to the receiver, the receiver instead puts the fourth data d(3) into buf , which is the
flaw intentionally inserted into PABP. This demonstrates that our tool can detect the flaw.

When each channel size was 2, one lock experiment took about 6 days, while two locks
experiment took about 7 days 13 hours 21 minutes to generate all state sequences with four
workers and check them with Maude on the fly. The number of state sequences generated is
4,606,719 and 6,611,839, respectively. As is the case in which each channel is 1, Maude detected
that some state sequences have adjacent states s and s′ such that s cannot reach s′ by SABP in
both experiments with one and two state transitions, respectively, due to the flaw intentionally
inserted in PABP.
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Table 5.1: Experimental data for ABP program in which one lock is used

Channel size Worker Time (d:h:m) #seqs

1

Worker 1 0:5:33

47,505
Worker 2 0:5:31
Worker 3 0:5:47
Worker 4 0:5:47

2

Worker 1 5:23:27

4,606,719
Worker 2 6:0:32
Worker 3 5:23:55
Worker 4 5:23:26

3

Worker 1 33:17:26

37,403,548
Worker 2 33:12:11
Worker 3 33:15:24
Worker 4 33:15:06

• Time – time taken to generate state sequences with JPF.

• #seqs – the total of state sequences generated.

Table 5.2: Experimental data for ABP program in which two locks are used

Channel size Worker Time (d:h:m) #seqs

1

Worker 1 0:8:14

64,854
Worker 2 0:8:31
Worker 3 0:8:14
Worker 4 0:8:39

2

Worker 1 7:13:21

6,611,839
Worker 2 7:12:30
Worker 3 7:11:58
Worker 4 7:12:15

3

Worker 1 38:16:12

54,429,058
Worker 2 38:16:41
Worker 3 38:14:11
Worker 4 38:21:34

• Time – time taken to generate state sequences with JPF.

• #seqs – the total of state sequences generated.
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Table 5.3: Experimental data for ABP program with various numbers of workers

Channel size #locks #seqs #workers Time (d:h:m)

1

1 47,505

1 0:16:40
4 0:5:4
8 0:2:50
12 0:2:7

2 64,854

1 1:0:24
4 0:7:37
8 0:4:27
12 0:3:13

• Time – time taken to generate state sequences with JPF.

• #seqs – the total of state sequences generated.

When each channel size was 3, one lock experiment took about 33 days 17 hours 26 minutes,
while two locks experiment took about 38 days 21 hours 34 minutes to generate all state
sequences with four workers and check them with Maude on the fly. The number of the state
sequences generated is 37,403,548 and 54,429,058, respectively. As is the case in which each
channel is 1 and 2, Maude detected that some state sequences have adjacent states s and s′

such that s cannot reach s′ by SABP in both experiments with one and two state transitions,
respectively, due to the flaw intentionally inserted in PABP.

The experimental data in tables 5.1–5.2 show that the more locks are used, the more time it
takes to do testing programs. It is reasonable because the more locks used will introduce more
synchronized points in programs from which more state sequences are generated. In addition,
our experiments also demonstrate that programmers are able to know the maximum steps in
programs for one atomic state transition in formal specifications based on the number of locks
used in programs.

If we did not use the proposed approach and simply used JPF to generate state sequences
with the same computer, we encountered an out-of-memory error even when each channel size
was 1 [112]. It was reported [120] that when each channel was 3 and the number of data
delivered was 3 (but not 4), a straightforward use of JPF did not complete a model checking
experiment for ABP into which no flaw was intentionally inserted, leading to an out-of-memory
error after it took about four days with almost the same computer used in the experiments
reported in this thesis. Therefore, the proposed technique can alleviate the out-of-memory
situation due to the state space explosion.

We would like to demonstrate further the effectiveness of our parallel specification-based
testing for testing concurrent programs by conducting more experiments for ABP case study
with our divide & conquer approach to testing concurrent programs with different numbers
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Figure 5.6: Verification time for ABP programs with various numbers of workers

of workers shown in Table. 5.3. Even when the number of workers is 1, our tool success-
fully completes the experiment, meaning that it alleviates the state space explosion, while the
straightforward use of JPF did not as above-mentioned. We use a MacPro computer that car-
ries a 2.5 GHz microprocessor with 28 cores and 1.5 TB memory to conduct the experiments
because we need to use many workers. For ABP whose number of locks used is 1, it takes 16
hours 40 minutes, 5 hours 4 minutes, 2 hours 50 minutes, and 2 hours 7 minutes to complete
generating state sequences and checking them with Maude when the number of workers is 1, 4,
8, and 12, respectively. Meanwhile, for ABP whose number of locks used is 2, it takes 1 day 24
minutes, 7 hours 37 minutes, 4 hours 27 minutes, and 3 hours 13 minutes to complete generat-
ing state sequences and checking them with Maude when the number of workers is 1, 4, 8, and
12, respectively. We plot the experimental data in Table. 5.3 on the graph shown in Fig. 5.6.
We can see that the verification time improves quickly for ABP programs when we increase
the number of workers from 1 to 4, which demonstrates that parallelization is effective for our
proposed technique. The improvement for ABP with one and two locks used is about 69.9%
and 68.8%, respectively. When we increase the number of workers from 4 to 8 and 8 to 12,
the verification time improves as well, although the improvement is slower. This is because the
more workers used, the busier the master and the Redis cache need to handle and communicate
with workers. Therefore, depending on the power of the machine used to conduct experiments,
we may choose a reasonable number of workers when using our tool. In conclusion, we have
demonstrated the power of our parallel specification-based testing for concurrent programs.

5.5.2 Revised CloudSync

Introduction

Revised CloudSync is a simplified cloud synchronization protocol in which many PCs would
like to exchange messages with a Cloud in order. For simplicity, we use natural numbers as
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messages. A PC may connect to the Cloud if and only if both the PC and Cloud are in an
idle state. After connected, the PC can fetch the value from the Cloud and then update either
the value of Cloud or the value of the PC depending on which value is larger. The following
shows how the Revised CloudSync protocol works in detail.

The Cloud maintains two pieces of information: statusc and valc that are the status and
value of the Cloud, respectively. statusc is set to one of idlec and busy that are labels and valc

is set to a natural number. statusc and valc are initially set to idlec and a natural number n,
respectively. Meanwhile, each PC maintains three pieces of information: statusp, valp, and
tmp that are the status, value, and temporary value of the PC, respectively. statusp is set
to one of idlep, gotval, and updated that are also labels, and valp and tmp are set to natural
numbers. statusp, val, and tmp are initially set to idlep, a natural number, such as new, l,
and m, and the natural number 0. Note that n, new, l, and m are arbitrary natural numbers
used. The protocol uses three transition rules.

The first transition rule is gotval depicted in Fig. 5.7. A PC wants to connect to the Cloud

if and only if the statusc of the Cloud is idlec and the statusp of the PC is idlep. If that is
the case, the PC fetches the current valc of the Cloud and updates the tmp of the PC to the
value fetched; the statusp of the PC is also updated to gotval, while the statusc of the Cloud

is changed to busy.

Figure 5.7: gotval transition

The second transition rule is updated. If the tmp of the PC involved is equal or greater
than the valp of the PC, updated conducts update1 depicted in Fig. 5.8. Otherwise, it conducts
update2 depicted in Fig. 5.9. Both update1 and update2 change the statusp of the PC to
updated. update1 changes the valp of the PC to n, which is the same as the tmp of the PC

and the valc of the Cloud, and leaves the other values unchanged, while update2 changes both
the valc of the Cloud and the tmp of the PC to new and leaves the other values unchanged.
Basically, the updated rule guarantees that the valp of the PC and the valc of the Cloud

maintain the same largest number between two of them after the rule has been applied.
The last transition rule is gotoidle depicted in Fig. 5.10. After the updated rule has been

just carried out by a PC and the Cloud, the statusc of the Cloud is busy, the statusp of the
PC is updated and the valc of the Cloud and the valp and tmp of the PC have a same value,
say new. If so, the gotoidle rule updates the statusc of the Cloud back to idlec, the statusp
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Figure 5.8: updated1 transition

Figure 5.9: updated2 transition

of the PC back to idlep and the tmp of the PC back to 0. The last transition rule makes
the Cloud as well as the PC free. From now on, the Cloud can freely connect to any PC for
exchanging messages subsequently.

Figure 5.10: gotoidle transition

The three transition rules are specified in rewrite rules as follows:

rl [getval] : {(cloud: < idlec,CVal >) (pc[P]: < idlep,PVal,OldCVal >) OCs}

=> {(cloud: < busy,CVal >) (pc[P]: < gotval,PVal,CVal >) OCs} .

crl [update1] : {(cloud: < busy,CVal >) (pc[P]: < gotval,PVal,GotCVal >) OCs}

=> {(cloud: < busy,CVal >) (pc[P]: < updated,GotCVal,GotCVal >) OCs}

if GotCVal >= PVal .

crl [update2] : {(cloud: < busy,CVal >) (pc[P]: < gotval,PVal,GotCVal >) OCs}

=> {(cloud: < busy,PVal >) (pc[P]: < updated,PVal,PVal >) OCs}

if GotCVal < PVal .

rl [gotoidle] : {(cloud: < busy,CVal >) (pc[P]: < updated,PVal,OldCVal >) OCs}

=> {(cloud: < idlec,CVal >) (pc[P]: < idlep,PVal,0 >) OCs} .
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Table 5.4: Experimental data for Revised CloudSync

Depth Worker Time (d:h:m) #seqs
400 One Worker 1:23:22 4,449

400

Worker 1 0:1:36

3,118
Worker 2 0:1:36
Worker 3 0:1:36
Worker 4 0:1:33

• Time – time taken to generate state sequences with JPF.

• #seqs – the total of state sequences generated.

• One Worker – we did not use our environment but just used JPF and Maude in a straight-
forward way.

Words starting with a capital letter, such as P, PVal, GotCVal, CVal, OldCVal, RandVal, and
OCs are Maude variables. P and OCs are variables of Pid sort and observable component soups,
respectively. PVal, GotCVal, CVal, OldCVal, and RandVal are variables of Nat sort. idlec

and busy are the constants of LabelC sort that denote the possible status values of the Cloud.
idlep, gotval, and updated are the constants of LabelP sort that denote the possible status
values of a PC. How to implement CloudSync in Java is described in a document publicly
available at Footnote 2, which resides under the documents folder.

Experiments

In the Revised CloudSync protocol experiment, three PCs and one Cloud are involved. Because
the reachable state space is huge, we need to specify a depth bound to make sure that the
experiments terminate. We conducted two experiments: (1) only one worker was used, DEPTH
was 400 and the reachable state was not divided, and (2) four workers were used, the reachable
state space was divided into two layers and each layer depth was 200 (namely that the global
DEPTH was 400). The experimental data are shown in Table 5.4.

In these experiments, we did not intend to insert any bugs into the program. All state
sequences generated by JPF workers were checked with Maude on the fly when the maximum
number of transition steps was 1 and no bug was detected. For experiment (1), it took 1 day 23
hours and 22 minutes to generate all state sequences and check them with Maude. The number
of the state sequences generated is 4,449. For experiment (2), it took 1 hour 36 minutes to
generate all state sequences and check them with Maude. The number of the state sequences
generated is 3,118. The experimental results show that (2) outperforms (1) and is 29 times
faster than (1).
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5.5.3 NSLPK

Introduction

Needham-Schroeder Public-Key authentication protocol (NSPK) can be described as three
message exchanges:

Challenge: A → B : {Na, A}Kb

Response: B → A : {Na, Nb}Ka

Confirmation: A → B : {Nb}Kb

where A and B are principals called an initiator and a responder, respectively, Kp is the public
key owned by a principal p, Np is a nonce generated by p, and mKp is the ciphertext obtained
by encrypting a message m with Kp. Note that mKp can only be decrypted by a principal who
owns the private key that corresponds to Kp. Lowe found an attack to NSPK and corrected
it [45]. The corrected version is called NSLPK that can be described as follows:

Challenge: A → B : {Na, A}Kb

Response: B → A : {Na, Nb, B}Ka

Confirmation: A → B : {Nb}Kb

The difference between NSPK and NSLPK is that the sender principal ID B is used to
construct the Response message. The ciphertext is obtained by encrypting Na, Nb and B with
the A’s public key Ka. Let us describe the formal specification of NSLPK in Maude. We use
the following operators as the constructors of observable components:

op nw:_ : Soup{Msg} -> OCom [ctor] .

op rands:_ : Soup{Rand} -> OCom [ctor] .

op nonces:_ : Soup{Nonce} -> OCom [ctor] .

op prins:_ : Soup{Prin} -> OCom [ctor] .

where Soup{Msg}, Soup{Rand}, Soup{Nonce}, and Soup{Prin} are the sorts for soups of mes-
sages, random numbers, nonces, and principals, respectively. The nw observable component
stores all messages sent by principals. The rands observable component stores the random
numbers available. The nonces observable component stores the nonces gleaned by the in-
truder. The prins observable component stores the principals participating in the protocol.
The nw observable component formalizes the network. We suppose that the network is initially
empty and then the nw observable component is initially the empty soup denoted emp. We also
suppose that there are two random numbers initially available, three principals (two trustable
ones and one intruder), the rands observable component is initially r1 r2, and the prins ob-
servable component is initially p q intrdr, where p and q denote the two trustable principals
and intrdr denotes the intruder. Because nothing has been initially gleaned by the intruder,
the nonces observable component is initially emp. The initial state denoted init is as follows:
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op init : -> Config .

eq init = {(nw: emp) (rands: (r1 r2)) (nonces: emp) (prins: (p q intrdr))} .

The message exchanges exactly obeying the protocol are specified in rewrite rules as follows:

rl [Challenge] : {(nw: NW) (nonces: Ns) (rands: (R Rs)) (prins: (P Q Ps))}

=> {(nw: (m1(P,P,Q,c1(Q,n(P,Q,R),P)) NW))

(nonces: (if Q == intrdr then (n(P,Q,R) Ns) else Ns fi)) (rands: Rs)

(prins: (P Q Ps))} .

rl [Response] : {(nw: (m1(P’,P,Q,c1(Q,N,P)) NW)) (rands: (R Rs)) (nonces: Ns) OCs}

=> {(nw: (m2(Q,Q,P,c2(P,N,n(Q,P,R),Q)) m1(P’,P,Q,c1(Q,N,P)) NW)) (rands: Rs)

(nonces: (if P == intrdr then (N n(Q,P,R) Ns) else Ns fi)) OCs} .

rl [Confirmation] : {(nw: (m2(Q’,Q,P,c2(P,N,N’,Q)) m1(P,P,Q,c1(Q,N,P)) NW))

(nonces: Ns) OCs}

=> {(nw: (m3(P,P,Q,c3(Q,N’)) m2(Q’,Q,P,c2(P,N,N’,Q)) m1(P,P,Q,c1(Q,N,P)) NW))

(nonces: (if Q == intrdr then (N’ Ns) else Ns fi)) OCs} .

Messages are formalized in the form mi(P′,P,Q,C) for i = 1, 2, 3, where P ′ is the actual
sender, P is the seeming sender, Q is the receiver, and C is a ciphertext. P ′ cannot be seen by
principals. If P ′ is different from P , then P ′ must be intrdr and the message has been forged by
the intruder. For example, rewrite rule Response says that if there exists a Challenge message
m1(P ′, P,Q, c1(Q,N, P )) in the network, where c(Q,N, P ) denotes the ciphertext obtained by
encrypting N and P with the Q’s public key, and a random number R is available, then Q

replies to the message by putting m2(Q,Q, P, c2(P,N, n(Q,P,R), Q)) into the network and the
nonce n(Q,P,R) made by Q is gleaned by the intruder if P is the intruder. Note that messages
are never deleted from the network. Faking messages by the intruder based on the nonces
gleaned and the messages in the network are specified in rewrite rules as follows:

rl [fake11] : {(nw: NW) (nonces: (N Ns)) (prins: (P Q Ps)) OCs}

=> {(nw: (m1(intrdr,P,Q,c1(Q,N,P)) NW)) (nonces: (N Ns)) (prins: (P Q Ps)) OCs} .

rl [fake12] : {(nw: (m1(P’,P’’,Q’’,C1) NW)) (prins: (P Q Ps)) OCs}

=> {(nw: (m1(intrdr,P,Q,C1) m1(P’,P’’,Q’’,C1) NW)) (prins: (P Q Ps)) OCs} .

rl [fake21] : {(nw: NW) (nonces: (N N’ Ns)) (prins: (P Q Ps)) OCs}

=> {(nw: (m2(intrdr,Q,P,c2(P,N,N’,Q)) NW)) (nonces: (N N’ Ns)) (prins: (P Q Ps))

OCs} .

rl [fake22] : {(nw: (m2(Q’,Q’’,P’’,C2) NW)) (prins: (P Q Ps)) OCs}

=> {(nw: (m2(intrdr,Q,P,C2) m2(Q’,Q’’,P’’,C2) NW)) (prins: (P Q Ps)) OCs} .

rl [fake31] : {(nw: NW) (nonces: (N Ns)) (prins: (P Q Ps)) OCs}

=> {(nw: (m3(intrdr,P,Q,c3(Q,N)) NW)) (nonces: (N Ns)) (prins: (P Q Ps)) OCs} .

rl [fake32] : {(nw: (m3(P’,P’’,Q’’,C3) NW)) (prins: (P Q Ps)) OCs}

=> {(nw: (m3(intrdr,P,Q,C3) m3(P’,P’’,Q’’,C3) NW)) (prins: (P Q Ps)) OCs} .
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For example, rewrite rule fake21 says that if there are two nonces N and N ′ gleaned by the
intruder, the intruder fakes m2(intrdr,Q, P, c2(P,N,N ′, Q)); rewrite rule fake22 says that if
there is m2(Q′, Q′′, P ′′, C2) in the network, the intruder fakes m2(intrdr,Q, P, C2), where P

and Q are principals chosen randomly. How to implement NSLPK in Java is described in a
document publicly available at Footnote 2, which resides under the documents folder.

Experiments

In the experiments, we suppose that there are two non-intruder principals, one intruder, and
two random numbers. Because the state space is huge, a bounded depth is used to generate
state sequences to make sure that the experiments terminate. We conduct two experiments:
(1) only one worker was used, DEPTH was 200 and the reachable state was not divided, and
(2) four workers were used, the reachable state space was divided into two layers and each layer
depth was 100 (namely that the global DEPTH was 200). The experimental data are shown in
Table 5.5.

In these experiments, we did not intend to insert any bugs into the program. All state
sequences generated by JPF were checked with Maude on the fly when the maximum number
of transition steps was 1 and no bug was detected. For experiment (1), it took over 8 days to
generate all state sequences and check them with Maude. The number of the state sequences
generated is 1,117,537. For experiment (2), it took about 14 hours to generate all state sequences
and check them with Maude. The number of the state sequences generated is 109,933. The
experimental results show that (2) outperforms (1) and is about 14 times faster than (1).

We conduct one more experiment for NSLPK with the same configuration as the experi-
ment (2) above, however, a bug is intentionally inserted into the program in which the sender
information is not included in the Response messages from principals. Our tool can quickly
detect the bug just in some seconds and show a warning message as follows:

warning ({nw: emp rand: (r1 r2) nonces: emp prins: (p q intrdr)} |

{nw: (m1(p,p,q,c1(q,n(p,q,r1),p))) rand: (r2) nonces: emp prins: (p q intrdr)} |

{nw: (m1(p,p,q,c1(q,n(p,q,r1),p)) m2(q,q,p,c2(p,n(p,q,r1),n(q,p,r2))))

rand: emp nonces: emp prins: (p q intrdr)} | nil)

This is because the message m2, a Response message, in the network nw does not consist of
the sender information in the ciphertext c2. Hence, Maude cannot parse the message and show
the warning message. This demonstrates that our tool can detect the flaw.

5.5.4 Original CloudSync

Introduction

Original CloudSync is the original version of CloudSync protocol that is the same as Revised
CloudSync except for some points, which then are described in this sub-section. For conve-
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Table 5.5: Experimental data for NSLPK

Depth Worker Time (d:h:m) #seqs
200 One Worker 8:18:09 1,117,537

200

Worker 1 0:14:23

109,933
Worker 2 0:14:21
Worker 3 0:14:35
Worker 4 0:14:32

• Time – time taken to generate state sequences with JPF.

• #seqs – the total of state sequences generated.

• One Worker – we did not use our environment but just used JPF and Maude in a straight-
forward way.

nience, Original CloudSync is called as CloudSync. As described above, Revised CloudSync uses
three transition rules that are gotval, updated, and gotoidle. CloudSync uses the same three
transition rules described above and one more transition rule: modval depicted in Fig. 5.11.

l

Figure 5.11: modval transition

The modval transition rule does not care about the initial valp of PCs. Before exchanging
messages between the Cloud and a PC, the statusc of the Cloud is idlec and the statusp of
the PC is idlep. The modval rule updates the valp of the PC to a random natural number,
say new, meaning that the PC is willing to be connected to the Cloud. For simplicity, the new

value is the current value of valp plus one in our specification. The modval transition rule is
specified in the following rewrite rule:

rl [modvalue] : {(pc[P]: <idlep,PVal,OldCVal>) OCs}

=> {(pc[P]: < idlep,s(PVal),OldCVal >) OCs} .

where s(PVal) denotes PVal + 1. How to implement Original CloudSync in Java is described
in a document publicly available at Footnote 2, which resides under the documents folder.
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Table 5.6: Experimental data for Original CloudSync

Depth Worker Time (d:h:m) #seqs
400 One Worker 1:18:49 16,185

400

Worker 1 8:19:11

433,611
Worker 2 8:18:24
Worker 3 8:17:41
Worker 4 8:17:34

• Time – time taken to generate state sequences with JPF.

• #seqs – the total of state sequences generated.

• One Worker – we did not use our environment but just used JPF and Maude in a straight-
forward way.

Experiments

In the CloudSync case study, three PCs and one Cloud are involved. A depth bound is used
to make sure that the experiments terminate while generating state sequences due to the huge
state space. We conduct two experiments: (1) only one worker was used, DEPTH was 400 and
the reachable state was not divided, and (2) four workers were used, the reachable state space
was divided into two layers and each layer depth was 200 (namely that the global DEPTH was
400). The experimental data are shown in Table 5.6.

In these experiments, we did not intend to insert any bugs into the program. All state
sequences generated by JPF were checked with Maude on the fly when the maximum number
of transition steps was 1 and no bug was detected. our approach. For experiment (1), it took
1 day 18 hours and 49 minutes to generate all state sequences and check such state sequences
with Maude. The number of the state sequences was 16,185. For experiment (2), it took
more than 8 days 17 hours to generate all state sequences and check the state sequences with
Maude. The number of the state sequences was 433,611. The experimental results show that
(1) outperforms (2), meaning that the straightforward use of JPF works more effectively than
our tool in this case study.

In CloudSync, whenever modval is used, the valp of a PC being to be connected with the
Cloud is increased by one before the PC and the Cloud are connected. Therefore, the reachable
state space of CloundSync becomes bigger than that of Revised CloudSync because the modval

rule produces many different states. It implies that there may be many states located at the
bottom of each layer. Furthermore, each PC has an equal chance to connect with the Cloud

and only one PC can connect with the Cloud at one time. Therefore, the increment of valp
makes the values of PCs turnover and so there may be some cross transitions between states
in different sub-state spaces in a layer or even some backward transitions from some states in
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Figure 5.12: Backward and cross transitions

sub-state spaces in a layer to some states in sub-state spaces in previous layers (see Fig. 5.12).
We suppose that there are two states located in two different sub-state spaces in a layer such
that there is a cross transition between them as shown in Fig. 5.12. The two sets ((a) and (b)
shown in Fig. 5.12) of states located at the bottom of the layer reachable from the two states
are different because the depths of the states are different. We only store states located at
each layer in a big cache to remove duplicate states, but do not store all states in the reachable
state space due to the state space explosion problem. Therefore, there are many states being
collected at the layer although there are many states shared by many sub-state spaces that
start from those collected states. Because of this situation, it makes our environment inefficient
when the workers need to explore many states shared by many sub-state spaces.

5.5.5 Threats to Bug Detection

As described, we divide the reachable state space from each initial state to multiple layers,
generating multiple sub-state spaces. For each layer l, given a state s0, JPF instance needs to
explore the sub-state space reachable from s0 up to the layer depth d(l) to generate its sub-state
sequences. We suppose that there is a state sequence represented in JPF in the layer l that
starts from s0 as shown in Fig. 5.13. As described above, whenever JPF visits a state, we need
to extract the values of observable components from the program under test by looking inside
the heap of JPF, and then construct a state representative in the form of state expressions used
in a specification. Because the execution units in a program are much finer than those in a
specification, and therefore there are some consecutive states in a state sequence represented
in JPF that have the same observable component values and so we construct the same state
represented in a specification. For example, from s0 to si, they have the same observable
component values, and so s

′
0 is constructed (see Fig. 5.13). Similarly, from sm to sm+j, they

have the same observable component values and so s
′
n is constructed. We finally obtain the

state sequence s
′
0 . . . s

′
n such that two consecutive states are different. The state sequence is
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Figure 5.13: A state sequence in a layer l

much shorter than the state sequence s0 . . . sm+j represented in JPF and can be checked with
Maude. If the last state s

′
n does not exist in a cache of states, it is sent to RabbitMQ master

(1) to distribute to a worker subsequently. Given s
′
n, we may generate sm+j, . . . , sm+j+k or

sm, . . . , sm+j, . . . , sm+j+l or something else represented in JPF, where l < k, and then this may
affect the size of state sequences to be checked by our tool, where the size may be less than
DEPTH. Therefore, if a bug locates nearly at the boundary of the bounded depth, there may
be a case in which our tool may overlook the bug. One possible way to mitigate this problem is
that we can increase the depth of the final layer so that the bug can be covered and detected.

5.6 Extending Our Technique to Test Concurrent Programs

with JPF

Our divide & conquer approach to testing concurrent programs is used to test concurrent
programs with formal specifications. However, we can extend the technique to test concurrent
Java programs without checking if execution sequences generated from Java programs can be
accepted by Maude specifications. We then propose a divide & conquer approach to testing
concurrent programs with JPF [79] that splits the entire reachable state space of a system
under test from each initial state into multiple layers, generating multiple sub-state spaces. For
each layer, we generate all states located at the bottom of the layer reachable from each state
located at the beginning of the layer. If there is one initial state in the system, there is only
one sub-state space in the first layer. Meanwhile, there are as many sub-state spaces in the
second layer as the number of states located at the bottom of the first layer. Checking each
sub-state space in a layer with JPF is basically independent, making it possible to check each
sub-state space in parallel. Some experiments are conducted to demonstrate that the proposed
technique can mitigate the state space explosion in model checking that cannot be achieved
with the straightforward use of JPF. In this work, we can quickly detect a state of a Java
implementation of the NSPK authentication protocol [46] where the nonce secrecy property
is broken. However, we were not able to detect a state in which the one-to-many agreement
(authentication) property is broken. This is because a state in which the latter property is
broken is located at a much deeper position than a state in which the former property is
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broken.
To aim at making it possible to detect a state in which the one-to-many agreement property

is broken, we propose a parallel stratified random testing for concurrent programs [121] in
which random state selection at each layer is used. We suppose that a system (or a protocol) is
formally specified in Maude and a concurrent program is written in Java based on the formal
specification. To test such a concurrent program, we divide the reachable state space of the
concurrent program into L layers such that each layer depth is Dl for l = 1, . . . , L. If there is
one initial state in the concurrent program, there is one sub-state space in layer 1. If there are
m states located at depth D1 + . . . + Dl, there are m sub-state spaces in layer l + 1 if we do
not use any random state selection. We use a percentage δl for l = 1, . . . , L − 1 to randomly
select some states located at D1 + . . . +Dl. If nl states are generated at depth D1 + . . . +Dl,
approximately 0.01 × δl × nl states are randomly selected among the nl states and then we
have approximately 0.01 × δl × nl sub-state spaces in layer l + 1. For a Java implementation
of the NSPK authentication protocol, even though we used two layers and each layer depth
was 100, it was not complete in three weeks to exhaustively test the concurrent program. On
the other hand, when we used three layers, each layer depth was 100 and the percentages for
layer 1 & layer 2 were 0.05% (or 0.1%) & 0.05% (or 0.1%), respectively, it was complete in 19h
to randomly test the concurrent program. Although we still did not find a state in which the
one-to-many agreement property is broken, we made some progress toward making it possible
to detect such a violated state.

5.7 Limitations

As shown in the Original CloudSync case study, the running performance of our tool can-
not outperform the straightforward use of JPF because there may have some long backward
transitions and cross transitions between sub-state spaces. Indeed, the main drawback of our
technique/tool is that it cannot handle long backward transitions in programs under test be-
cause if a program has such long backward transitions, some sub-state spaces at the very last
layer may not be small enough compared with the original reachable state space. Moreover,
if there are some cross transitions between sub-state spaces, our tool needs to verify many
states again, making the running performance of our tool degrade. Therefore, we should avoid
long backward transitions in programs to make the best use of our tool/technique. The cross
transitions may arise from a symmetry of threads/processes, making some states likely to be
shared by some sub-state spaces in our tool/technique. One possible way to mitigate it is to
use the symmetric reduction technique [122] to remove replicated structures produced by such
symmetry in programs under test.
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5.8 Summary

We have proposed a specification-based testing technique for concurrent programs in a stratified
way. The proposed technique could be processed naturally in parallel, which has been utilized
by the tool supporting the technique. The experiments reported in this chapter demonstrate
that the proposed technique can mitigate the state space explosion problem and largely improve
the timing performance for testing for all cases except for one, which cannot be achieved with
the straightforward use of only one JPF instance. Besides, we have described how to extend the
technique to test concurrent Java programs without checking if execution sequences generated
from Java programs can be accepted by Maude specifications. We have made some progress
toward making it possible to detect a violated state located at a deep depth. The tool supporting
the technique is dedicated to Java programs. However, our technique can be applied to other
programming languages provided that we have a model checker for the language concerned and
can interact with the model checker as we have done with JPF.

The experiments reported in this chapter demonstrate that concurrent programs in which
there are no long lasso loops can be effectively tackled with the proposed technique, while those
in which there exist long lasso loops cannot. We reported on totally four case studies. The
three programs can be tackled well with our tool, while one cannot. Accordingly, a non-small
number of concurrent programs would be likely to belong to the first group if not all. However,
we need to conduct some more case studies in which some other concurrent programs will be
tackled with our tool in order to make sure that the proposed technique and our tool supporting
it can mitigate the state space explosion reasonably well.

Regarding bugs that can be found by our technique/tool, only invariant properties [62] that
hold in the whole reachable state spaces of programs are taken into account. Because it is enough
to check each reachable state, then splitting the reachable state spaces into multiple layers and
generating multiple sub-state spaces never lose any reachable states. Therefore, checking states
on the sub-state spaces is equivalent to checking states on the original reachable state space that
guarantees the correctness of our approach. Currently, we only consider finite state sequences
generated from programs, so we cannot detect any liveness property flaws. As one piece of our
future work, we will use some semantics of temporal logics defined over finite state sequences
[123, 124] and extend the technique/tool so that some liveness properties can be tested.
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Chapter 6

A Parallel Version of a Support Tool for
the Divide & Conquer Approach to
Leads-to Model Checking

The L+1-layer divide & conquer approach to leads-to model checking (L+1-DCA2L2MC) [39]
is a new technique to mitigate the state space explosion in model checking. As shown by the
name, L+ 1-DCA2L2MC is dedicated to leads-to properties. This chapter describes a parallel
version of L + 1-DCA2L2MC and a tool that supports it. In a temporal logic called UNITY
designed by Chandy and Misra, the leads-to temporal connective plays an important role and
many case studies have been conducted in UNITY, demonstrating that many systems require-
ments can be expressed as leads-to properties. Besides, Dwyer et al. [41] showed some statistics
on the usage distribution of the various patterns in property specifications in which the leads-to
property (or the response pattern) had the highest proportion. Therefore, it is worth focusing
on leads-to properties. This chapter also reports on some experiments that demonstrate that
the tool can increase the running performance of model checking. Counterexample generation
is one of the main tasks in the tool that can be optimized to improve the running performance
of the tool to some extent. This chapter then proposes a technique to generate all counterex-
amples at once that is based on the Tarjan algorithm, implemented in C++, and integrated
into Maude, a language and system based on rewriting logic, so that users can use it easily.
Some experiments are conducted to demonstrate the power of the technique that can improve
the running performance of the tool. Furthermore, layer configuration selection affects the
running performance of the tool. Therefore, this chapter then proposes an approach to finding
a good layer configuration for the tool with an analysis tool that supports the approach. Some
experiments are conducted to demonstrate the usefulness of the analysis tool as well as the
approach for layer configuration selection.
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6.1 Introduction

L + 1-DCA2L2MC splits the reachable state space from each initial state into L + 1 layers,
where L is a positive natural number, generating multiple sub-state spaces. Model checking
experiments are then carried out for each sub-state space instead of the original reachable state
space. If each sub-state space is much smaller than the original reachable state space, then it
is feasible to conduct a leads-to model checking even though it is infeasible to directly conduct
it for the original reachable state space due to the state space explosion problem. We have also
developed a support tool written in Maude for a sequential version of L+1-DCA2L2MC [125].
Because model checking experiments for multiple sub-state spaces are basically independent,
it is possible to parallelize L + 1-DCA2L2MC from which we can mitigate the state space
explosion problem (space challenge) and improve the running performance of model checking
(time challenge) as well.

This chapter demonstrates that L+1-DCA2L2MC can be naturally parallelized by describ-
ing a parallel version of L + 1-DCA2L2MC and a tool that supports it. The tool has been
built in Maude [13] as an implementing language. Maude is one direct successor language
of OBJ3 [126], an algebraic specification language, and based on rewriting logic [127] as its
theoretical foundation. Maude is equipped with reflective programming (meta-programming)
facilities, making it possible to develop tools, such as Real-Time Maude [128] in which real-time
systems can be formally specified and verified. The main reason why we have selected Maude
for the tool development is that many tools have been developed in Maude, we use Maude as
a formal specification language and an LTL model checker, and Maude LTL model checker is
comparable to Spin in terms of model checking running performance [15]. The architecture of
the tool is a master-worker model where one master and multiple workers are involved. The
tool uses shared caches maintained by the master and local caches maintained by each worker
so as to avoid making unnecessary duplications of jobs and reduce the communication cost
between the master and workers. The tool uses two queues of jobs and worker identifiers so as
to distribute (or assign) jobs to workers in a well-balanced way. It is an option to use an exist-
ing collection of open-source software facilities that make the best use of parallel/distributed
environments, such as Apache Hadoop that uses the MapReduce programming model [110] to
implement a parallel version of the support tool for L + 1-DCA2L2MC. However, we did not
take the option. This is because we do not use a large number of computers, making it unneces-
sary to consider computer failure and/or stragglers, Maude is equipped with facilities that can
be used to build parallel systems, it is necessary to convert data formats from Maude to Apache
Hadoop and vice versa, etc. Note that MapReduce is basically a master-worker model. The
chapter also reports on some case studies that demonstrate that the parallel L+1-DCA2L2MC
tool increases the running performance of model checking for all examples used except one that
is a simple mutual exclusion protocol, namely test&set. We compare our tool with the straight-
forward use of Maude LTL model checker when we use enough amount of memory for the model

64



checker. Note that the parallel L + 1-DCA2L2MC tool outperforms its sequential version for
all examples used and both versions of our tools can conduct model checking experiments even
though Maude LTL model checker cannot due to the state space explosion. The support tool
is publicly available at Footnote 4.

Counterexample generation is one of the main tasks in our tool that can be optimized
to improve the running performance of our tool. In our previous work [125], we need to
generate counterexamples one by one at each layer, which makes our tool slower because we
need to ask Maude to conduct model checking experiments as many times as the number of
counterexamples. Maude LTL model checker uses a nested depth-first search algorithm to
search for an accepting cycle in a product automaton [15], which terminates and returns a
counterexample as soon as it is found. We would like to generate all counterexamples at once
to improve the running performance of our tool. The Tarjan algorithm [129] is well-known
as an effective algorithm to find all strongly connected components (SCCs) in a graph while
each SCC can be regarded as a counterexample. Therefore, we propose a technique to generate
all counterexamples at once based on the Tarjan algorithm. We develop a new model checker
to support the technique by using facilities existing in Maude LTL model checker, such as
building the property automaton of the negation of a correctness property. The new model
checker is implemented in C++ and integrated into Maude so that users can use it easily.
Some experiments are conducted to demonstrate the power of the technique that can improve
the running performance of our tool. The implementation is publicly available Footnote 3.

As described L+1-DCA2L2MC splits the reachable state space from each initial state into
L + 1 layers, where L is a positive natural number, generating multiple sub-state spaces (see
Fig. 6.1). For each sub-state space reachable from a state in a non-final layer, we need to
generate states reachable from the state up to the layer depth, a positive natural number, and
located at the bottom of the layer for the next layer, while for each sub-state in the final layer
whose depth is unbounded, a model checking experiment is carried out. The number of layers
and each layer depth for non-final layers affect the running performance of our tool. Therefore,
we propose an approach to finding good layer configurations for the tool as follows. We start
with a two-layer configuration d1, where d1 is the depth of layer 1, such that d1 is small, which
can avoid the state space explosion while generating states and keep the product automaton
reasonably small so as to take advantage of our new model checker above. We generate states
in layer 1 and measure the time taken to do so. We would like to know how much time it
takes to conduct model checking experiments for the final layer (layer 2 this time). Even in
layer 1 whose depth is small, there may be many states. Thus, it is not reasonable to tackle
all states. Hence, we randomly select some states to conduct model checking for the final layer
and roughly estimate the time taken to conduct model checking experiments for the final layer.
We should increase the coverage of states for better estimation. If we tackle a large number
of states in sequence, it may take an unreasonable amount of time. Therefore, we can take
advantage of parallelization by running multiple instances of a model checker. Each instance
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is in charge of a small number of randomly selected states to estimate the verification time for
the final layer. If multiple instances are used and each instance selects some states randomly
and independently, it is possible to increase the coverage of states in a reasonable amount of
time. Indeed, the more states are selected and the more instances are used, the more confident
we are in the estimated verification time. If the estimated verification time for the final layer
is too large, we add one more layer with a small depth d2, the depth of layer 2. The next
layer configuration is d1 d2, a three-layer configuration. From states generated in layer 1, we
generate states in layer 2 and measure the time taken to do so. We estimate the verification
time for the final layer (layer 3 this time). If the estimated verification is not too large, the
current layer configuration d1 d2 is a good layer configuration candidate. If the time taken
to generate states in the first two layers is not small enough, we stop the layer configuration
selection and select d1 d2 as a good layer configuration. Otherwise, we can keep on finding a
better layer configuration by adding one more layer with a small depth d3, when the next layer
configuration is d1 d2 d3, a four-layer configuration. We generate states in layer 3 and measure
the time taken to do so. We estimate the verification time for the final layer (layer 4 this time).
We compare the (estimated) total verification time (the time taken to generate states plus the
estimated verification time for the final layer) for d1 d2 and the total verification time for d1

d2 d3. If the former is smaller than the latter, we stop layer configuration selection and select
d1 d2 as a good layer configuration. Otherwise, we keep on doing what has been described.
We develop an analysis tool to support the approach that uses a server as the central place to
handle commands that are sent by a commander. The tool is developed in Maude and uses
sockets to communicate between the server and the commander. Especially, for the server, we
use two new features in Maude: timer and meta-interpreter. Some experiments are conducted
to demonstrate the usefulness of our analysis tool as well as our approach. The analysis tool is
publicly available at Footnote 4, which resides under the analysis folder.

6.2 The L+1-Layer Divide & Conquer Approach to Leads-

to Model Checking

Our research group has proposed the L+ 1-layer divide & conquer approach to leads-to model
checking (or L+ 1-DCA2L2MC) [39] that aims to mitigate the state space explosion in model
checking. In this section, let us briefly summarize L+1-DCA2L2MC. Given a Kripke structure
K, L+1-DCA2L2MC splits the reachable state space from each initial state sd0 ∈ I into L+1

layers (where L is a non-zero natural number) as shown in Fig. 6.1. Let d(i) be the depth of layer
i for i = 0, 1, . . . , L, L + 1. We suppose that there virtually exists layer 0 such that d(0) = 0.
d(i) is a non-zero natural number if i = 1, . . . , L. d(L + 1) = ∞. Let di be d(0) + . . . + d(i)

for i = 0, . . . , L, namely that di is the depth of the bottom of layer i (or the depth of the top
of layer i+ 1) from the initial state. di is also referred to as the depth of layer i+ 1 (from the
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Figure 6.1: Split of the reachable state space into L+ 1 layers

initial state). States located at the depth di are called beginning states of layer i+1 (or ending
states of layer i) and also states (located) at layer i+1. Beginning states of layer i+1 are also
called states (located) at layer i + 1. The depth of a state is the depth from the initial state
where the state is located. The depth of a beginning state of layer i + 1 (or an ending state
of layer i) is di. Let us suppose that the depth of a state is di, which implies that the state is
a beginning state of layer i + 1, and then the next depth of the state is di+1. In Fig. 6.1, sdi
denotes a beginning state of layer i+1 for i = 0, . . . , L, and sjidi denotes an ending state of layer
i for i = 0, . . . , L, although we do not use sj0d0 (which is an ending state of layer 0, a beginning
state of layer 1, and the same as sd0) in the figure. sjidi is also a beginning state of layer i + 1,
such as sdl that equals sjldl in Fig. 6.1. For each ending state of each non-final layer, such as sj1d1 ,
sjldl , and s

jl+1

dl+1
, a self-transition s → s is added so that we can have paths in the layer because

we need to have them to conduct model checking experiments. It is unnecessary to add any
self-transitions to the final layer because the depth d(L+ 1) of the final layer is ∞.

Let Πi for i = 1, . . . , L be the set of all paths constructed as described in layer i. Let ΠL+1

be the set of all paths in the final layer L + 1. For a path π ∈ Πi for i = 1, . . . , L, let last(π)

be the state in π that repeats forever that is an ending state of layer i. For an ending state
s of layer i (or a beginning state s of layer i + 1), let take(Πi+1, s) for i = 1, . . . , L be the
set of all paths that start from s. For state propositions ϕ1, ϕ2, K, sd0 |= ϕ1 � ϕ2 can be
checked in a stratified way as shown in Algorithm 3. When K, sd0 �|= ϕ1 � ϕ2, Algorithm 3 just
returns Failure. A small modification, however, makes it possible to construct and return a
counterexample [125]. For π ∈ Π1, if K, π �|= ϕ1 � ϕ2, then last(π) is called a counterexample
state (of layer 1). Let CxΠ2 be the set of all π ∈ Π2 such that K, π′ �|= ϕ1 � ϕ2 for some
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Algorithm 3: L+ 1-DCA2L2MC
input : K – a Kripke structure

sd0 ∈ I – an initial state of K
ϕ1, ϕ2 – state propositions
d(1) . . . d(L) – a list of non-zero natural numbers, where L is a non-zero
natural number

output: Success (K, sd0 |= ϕ1 � ϕ2) or Failure (K, sd0 �|= ϕ1 � ϕ2)
1 CxΠ1 ← ∅
2 forall l ∈ {1, . . . , L} do
3 CxΠl+1 ← ∅
4 forall π ∈ Πl do
5 if K, π �|= ϕ1 � ϕ2 then
6 CxΠl+1 ← CxΠl+1 ∪ take(Πl+1, last(π))

7 forall π ∈ CxΠl do
8 if K, π �|= ♦ϕ2 then
9 CxΠl+1 ← CxΠl+1 ∪ take(Πl+1, last(π))

10 forall π ∈ ΠL+1 do
11 if K, π �|= ϕ1 � ϕ2 then
12 return Failure

13 forall π ∈ CxΠL+1 do
14 if K, π �|= ♦ϕ2 then
15 return Failure

16 return Success

π′ ∈ Π1 and π(0) = last(π′). For π ∈ Πi for i = 2, . . . , L, if K, π �|= ϕ1 � ϕ2, then last(π) is
called a counterexample state (of layer i); for π ∈ CxΠi for i = 2, . . . , L, if K, π �|= ♦ϕ2, then
last(π) is also called a counterexample state (of layer i), where CxΠi+1 is the union of (a) and
(b): (a) the set of all π ∈ Πi+1 such that K, π′ �|= ϕ1 � ϕ2 and π(0) = last(π′) for some π′ ∈ Πi

and (b) the set of all π ∈ Πi+1 such that K, π′ �|= ♦ϕ2 and π(0) = last(π′) for some π′ ∈ CxΠi.
For each layer l ∈ {1, . . . , L+1} we check K, π �|= ϕ1 � ϕ2 and K, π �|= ♦ϕ2 for each π ∈ Πl

and π ∈ CxΠl, respectively. Note that CxΠl ⊆ Πl because Πl is the set of all ending states of
layer l. States in Πl are called all-states (in layer l), while those in CxΠl are called cx-states
(in layer l). At the beginning of each layer l ∈ {1, . . . , L}, CxΠl+1 is initially set to ∅ at line 3.
The code fragment at lines 4–6 checks K, π �|= ϕ1 � ϕ2 for each path π ∈ Πl in the lth layer. If
that is the case, CxΠl+1 is updated with all paths reachable from the state last(π) in the l+1st
layer. The code fragment at lines 7–9 checks K, π �|= ♦ϕ2 for each path π ∈ CxΠl of the lth
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layer such that last(π) is a counterexample state. If that is the case, CxΠl+1 is updated with
all paths reachable from the state last(π) in the l+1st layer. The code fragment at lines 10–15
checks K, �|= ϕ1 � ϕ2 and K, π �|= ♦ϕ2 for each path π ∈ ΠL+1 and π ∈ CxΠL+1 in the L+ 1st
layer where d(L + 1) is ∞, respectively. If that is the case, Failure is returned. Otherwise,
Success is returned.

We mean conducting a model checking experiment for the sub-state space from the beginning
state of layer l by "model checking a state at layer l", where a state is a beginning state of
layer l, or just "model checking a state" if layer l can be understood from the context or it
is unnecessary to think a specific layer l. Model checking a state at an intermediate layer
is to generate all counterexample and non-counterexample states located at the next depth
reachable from the state, while model checking a state at the final layer is to judge if there is
a counterexample or not.

6.3 Parallel L + 1-DCA2L2MC and Its Tool Support

The support tool is implemented in Core Maude and a part of Full Maude. Full Maude is
an extension of (Core) Maude written in Maude itself that provides support for new types
of systems, such as object-based systems. We use object-based programming powered by Full
Maude that can model an object-based system, where objects can communicate with each other
via message passing. In addition, Maude also supports communicating with external objects by
using sockets so that objects inside an object-based system can interact with different objects
inside another object-based system. We adopt such functionalities to make a parallel version
of L+ 1-DCA2L2MC based on a master-worker model, which is elaborated in this section.

L + 1-DCA2L2MC can check K |= ϕ1 � ϕ2 in a stratified way [39]. The reachable state
space from each initial state is split into multiple layers (L + 1 layers) and multiple smaller
sub-state spaces are generated. For each smaller sub-state space, we check if ϕ1 � ϕ2 and/or
♦ϕ2 holds. Such multiple model checking problems for sub-state spaces are almost independent.
Those for sub-state spaces located in one layer, such as the final layer, are totally independent.
This is one of the most important advantages of the technique, making it possible to conduct
a leads-to model checking experiment in parallel. We use a master-worker model to make a
parallel version of L + 1-DCA2L2MC, which needs to consider the two issues: well-balanced
job distribution and low communication overhead between a master and workers. In our tool, a
master maintains shared caches for all workers, while each worker also maintains local caches.
The use of the shared caches substantially prevents jobs that have been processed from being
assigned to workers, while the use of the local caches prevents jobs that have been processed from
being made by workers. The use of both shared and local caches reduces the communication
cost between the master and workers. The very initial job is made by the master, while all the
other jobs are made by workers and sent to the master unless the jobs have been processed by
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the workers themselves, which can be checked by using the local caches. Jobs are assigned to
workers by the master unless the jobs have been tackled, which can be checked by using the
shared caches.

For the sub-state space that starts from a counterexample state, it is necessary to check
♦ϕ2 as well as ϕ1 � ϕ2, while for the sub-state space that starts from a non-counterexample
state, it is enough to check ϕ1 � ϕ2. Based on what has been just described, jobs are classified
into two types: cx and all. Given a beginning state sdl of layer l + 1, a log list of the state is
a list < sdl−1

: dl > ... < sd1 : d2 >< sd0 : d1 > of state & natural number pairs, where sdi is a
beginning state of layer i+1 and di+1 is the next depth of the state sdi for i = 0, . . . , l− 1; the
list denotes how to get to sdl from the initial state sd0 . The log list of each initial state is nil.

There are three kinds of messages exchanged by the master and workers: job, getJob, and
stop. A job message is in the form of a 5-tuple that consists of a beginning state of a layer,
the type of the job, the depth of the state, the next depth of the state, and a log list of the
state. The type of the job is either all or cx. Let l + 1 be the layer concerned. For each state
in CxΠl, one job whose type is cx is made. For each state in Πl, one job whose type is all is
made. Note that for each state in CxΠl, two jobs whose types are cx and all, respectively, are
made because CxΠl ⊆ Πl. A job message is sent by the master to a worker, distributing (or
assigning) a job to the worker. Meanwhile, a job message is sent by a worker to the master,
delivering a job made by the worker to the master. A getJob message is sent by a worker to the
master, asking the master to assign a job to the worker. A stop message is sent by a worker to
the master, notifying the master that the worker has found a counterexample in the final layer,
and so the tool then terminates. Both getJob and stop messages do not have any parameters.

The master is in charge of collecting jobs from workers, checking whether each of the jobs
has been processed, and distributing (or assigning) unprocessed jobs to workers. Besides, the
master can stop the tool when a worker has found a counterexample in the final layer or there is
no unprocessed job left. Meanwhile, each worker is responsible for processing a job assigned to it
by the master. If a state encapsulated in a job is a beginning state of a non-final layer, a worker
generates all beginning states of the next layer reachable from the state and all counterexample
states among them by checking ϕ1 � ϕ2 in case of an all-state. In case of a cx-state, a worker
only generates all counterexample states by checking ♦ϕ2. The worker may then construct new
jobs and send them to the master as job messages. If such a state is a beginning state of the
final layer, a worker checks ϕ1 � ϕ2 or ♦ϕ2 based on the type of the state that is either all or
cx. If the worker finds a counterexample, the worker sends a stop message to the master. At
last, when a worker has completed a job, the worker requests a new job by sending a getJob

message to the master. The master uses a queue data structure to distribute jobs to workers so
that job distribution can be well-balanced, which means that all workers are mostly processing
jobs all the time except the beginning and ending of a model checking experiment. For both
master and workers to check whether jobs have been already processed, they use map data
structures as caches, where the depth of a state, a natural number, is used as a key and a set
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Algorithm 4: Job Scheduling by a Master
input : K – a Kripke structure

sd0 ∈ I – an initial state of K
ϕ1, ϕ2 – state propositions
d1...dL – a list of non-zero natural numbers,
where L is a non-zero natural number, d0 = 0, dL+1 =∞
N – a number of workers

output: Success (K, sd0 |= ϕ1 � ϕ2) or Failure (K, sd0 �|= ϕ1 � ϕ2)

1 AllStates← empty; CxStates← empty;
2 jobs← empty; workers← empty;
3 JOB ← (sd0 , all, d0, d1, nil);
4 if sd0 /∈ AllStates[d0] then
5 enqueue(jobs, JOB);
6 AllStates[d0]← AllStates[d0] ∪ sd0 ;

7 while True do
8 for k ← 1 to N do
9 if DATA ← recv(workerk) then

10 if DATA = getJob then
11 enqueue(workers, workerk)

12 else if DATA = stop then
13 closeConnection();
14 return Failure;

15 else
16 (sdl , type, dl, dl+1, log)← DATA;
17 if type = all and sdl /∈ AllStates[dl] then
18 enqueue(jobs,DATA);
19 AllStates[dl]← AllStates[dl] ∪ sdl ;

20 if type = cx and sdl /∈ CxStates[dl] then
21 enqueue(jobs,DATA);
22 CxStates[dl]← CxStates[dl] ∪ sdl ;

23 while not isEmpty(workers) and not isEmpty(jobs) do
24 worker ← dequeue(workers);
25 job← dequeue(jobs);
26 send(worker, job);

27 if isEmpty(jobs) and size(workers) = N then
28 closeConnection();
29 return Success;
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of states located at the depth is used as a value.

Algorithm 4 shows the pseudo-code for job scheduling conducted by the master. jobs and
workers are queue data structures. jobs contains jobs that are distributed to workers, while
workers contains worker identifiers that are requesting jobs. AllStates and CxStates are
map data structures used by the master as shared caches for all workers and are used to check
whether all and cx types of jobs have been processed, respectively. Initially, AllStates and
CxStates are set to the empty map at line 1, while jobs and workers are set to the empty
queue at line 2. The master starts the job scheduling by building an initial job, namely JOB at
line 3, a 5-tuple of the initial state sd0 , the type all, the depth d0, the next depth d1, and the
log list nil for the first layer exploration. Given the key d0 and the state sd0 , it is checked if
AllStates has a set of states whose key is d0 such that the set contains sd0 . It is not the case
because AllStates is initially empty. JOB is enqueued to jobs and the state sd0 , together with
the key d0, is added to the shared cache AllStates. For each workerk, whenever the master
receives DATA from workerk, which is one of the three kinds of messages described above, it
checks if DATA is getJob, meaning that the worker is requesting a job. If so, workerk is enqueued
to workers so that a job can be assigned to workerk. If DATA is stop, meaning that workerk

has found a counterexample in the final layer, the master closes all connections from all workers
and Failure is returned as the result of Algorithm 4. When DATA is neither getJob nor stop,
meaning that a job has been made and sent from workerk, the master deconstructs DATA into
a 5-tuple at line 16. The code fragment at lines 17 - 22 checks if the state in the 5-tuple does
not exist in either AllStates or CxStates based on the type of the job. If no, the job received
from workerk is enqueued to jobs and the state, together with its key, the depth of the state,
is added to the corresponding shared cache. Otherwise, the job is discarded because it has
been already processed. The code fragment at lines 23 - 26 checks if workers and jobs are
not empty. If that is the case, the master dequeues workers and jobs to obtain a job and a
worker identifier and assigns the job to the worker by sending a job message to the worker.
Termination detection can be done by checking if jobs is empty and the size of workers is
equal to the number of workers at line 27, meaning that there are neither unprocessed jobs left
nor jobs being processed by workers. If so, the master stops Algorithm 4, meaning that the tool
terminates, and returns Success as the result of Algorithm 4.

Algorithm 5 shows the pseudo-code for job handling conducted by workers. Each worker
maintains AllStates and CxStates as its local caches, which are map data structures and
initially set to empty. Note that the shared caches AllStates and CxStates maintained by
the master are almost the same as the union of all local caches AllStates and the one of all
local caches CxStates, respectively. A worker may make a job that has been processed by the
worker. Local caches are used to prevent such jobs from being sent to the master by workers.
Multiple different workers may make the same job. Local caches cannot prevent such a job from
being sent to the master by multiple workers. The master uses the shared caches to prevent
such a job from being distributed (or sent) to workers. This is why we use both shared and local
caches. Workers start the job handling by sending a getJob message to the master to request a
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Algorithm 5: Job Handling by Workers
input : K – a Kripke structure, ϕ1, ϕ2 – state propositions

d1...dL – a list of non-zero natural numbers, where L is a non-zero natural number
d0 = 0, dL+1 =∞

output: a counterexample if exists

1 AllStates← empty; CxStates← empty;
2 send(server, getJob);
3 while isOpen() do
4 if DATA ← recv(server) then
5 (sdl , type, dl, dl+1, log)← DATA;
6 if type = all then
7 if dl+1 �=∞ then
8 forall π ∈ take(Πl+1, sdl) do
9 sdl+1

← last(π);
10 if sdl+1

/∈ AllStates[dl+1] then
11 JOB ← (sdl+1

, all, dl+1, dl+2, < sdl : dl+1 > log);
12 send(server, JOB);
13 AllStates[dl+1]← AllStates[dl+1] ∪ sdl+1

;

14 if K,π �|= ϕ1 � ϕ2 and sdl+1
/∈ CxStates[dl+1] then

15 JOB ← (sdl+1
, cx, dl+1, dl+2, < sdl : dl+1 > log);

16 send(server, JOB);
17 CxStates[dl+1]← CxStates[dl+1] ∪ sdl+1

;

18 else
19 forall π ∈ take(Πl+1, sdl) do
20 if K,π �|= ϕ1 � ϕ2 then
21 send(server, stop);
22 return buildCx();

23 if type = cx then
24 if dl+1 �=∞ then
25 forall π ∈ take(Πl+1, sdl) do
26 sdl+1

← last(π);
27 if K,π �|= ♦ϕ2 and sdl+1

/∈ CxStates[dl+1] then
28 JOB ← (sdl+1

, cx, dl+1, dl+2, < sdl : dl+1 > log);
29 send(server, JOB);
30 CxStates[dl+1]← CxStates[dl+1] ∪ sdl+1

;

31 else
32 forall π ∈ take(Πl+1, sdl) do
33 if K,π �|= ♦ϕ2 then
34 send(server, stop);
35 return buildCx();

36 send(server, getJob);

73



job at line 2. While the connection is open, whenever a worker receives DATA from the master,
which must be a job, the worker deconstructs it into a 5-tuple at line 5. The code fragment at
lines 6 - 22 handles the state in the 5-tuple such that the type of the job is all. If the state
is a beginning state of a non-final layer, the worker firstly generates all states located at the
next depth of the state and reachable from the state. For each generated state, together with
its key, the next depth, if it does not exist in the local cache AllStates, the worker constructs
a new job and sends it to the master; the generated state, together with its key, is added to
the local cache at line 13. Secondly, the worker generates all counterexample states located at
the next depth of the state and reachable from the state such that ϕ1 � ϕ2 does not hold
for the sub-state space that starts from the state in the layer concerned. For each generated
counterexample state, together with its key, if it does not exist in the local cache CxStates, the
worker also constructs a new job, sends it to the master, and updates the local cache. If the
next depth is unbounded (∞), meaning that the state is a beginning state of the final layer,
the worker checks if there exists a path in the sub-state space that starts from the state in the
final layer such that ϕ1 � ϕ2 does not hold at line 20. If that is the case, then the worker sends
a stop message to the master for termination and returns a counterexample as the result of
Algorithm 5.

Similarly, the code fragment at lines 23 - 35 checks for the state in the 5-tuple such that
the type of the job is cx. However, the worker only generates all counterexample states such
that ♦ϕ2 does not hold in case of a beginning state of a non-final layer. For the final layer, the
worker checks ♦ϕ2 instead of ϕ1 � ϕ2.

The tool returns Success if K, sd0 |= ϕ1 � ϕ2 holds. When K, sd0 �|= ϕ1 � ϕ2 , the tool
returns Failure together with a counterexample.

6.4 Outline of Parallel L + 1-DCA2L2MC

We use a test&set mutual exclusion protocol (TAS) as an example to outline the parallel L+1-
DCA2L2MC. TAS uses a Boolean global variable locked shared with all processes. locked is
initially false. TAS uses the atomic instruction test&set that takes a Boolean variable x and
atomically conducts the following: x is set to true and the old value stored in x is returned.
TAS can be described in Algol-like pseudo-code as follows:

“Start Section”
ss : . . .
ws : repeat while test&set(locked);

“Critical Section”
cs : locked := false;

“Final Section”
fs : . . .

We suppose that each process wants to enter the critical section once and is located at one
of the four labels ss (Start Section), ws (Waiting Section), cs (Critical Section), and fs (Final
Section). Each process p is initially located at ss. We are not interested in what p does in Start



Section and then what p does at ss is to move to ws from ss. p waits at ws until test&set(locked)

returns false. If test&set(locked) returns false, p goes to cs, entering Critical Section. We are
not interested in what p actually does in Critical Section. p located at cs sets locked to false

and moves to fs. We are not interested in what p does in Final Section and just suppose that
p stays there.

When there are n processes participating in TAS, each state in STAS is expressed as follows:

{(locked: b) (pc[p1]: l1) . . . (pc[pn]: ln) (cnt:x)}

The locked observable component stores the value b stored in locked, the pc[pi] observable
component stores the label li at which process pi is located, and the cnt observable component
stores the number x of processes that have not reached fs yet. Initially, b is false, each li is
ss and x is n.

In this section, we suppose that there are two processes p1 and p2 participating in TAS.
The initial state (referred to as init) is as follows:

{(locked: false) (pc[p1]: ss) (pc[p2]: ss) (cnt: 2)}

ITAS consists of one state denoted init.
TTAS is specified in rewrite rules as follows:

rl [start] : {(pc[I]: ss) OCs} => {(pc[I]: ws) OCs} .

rl [wait] : {(locked: false) (pc[I]: ws) OCs} => {(locked: true) (pc[I]: cs) OCs} .

rl [exit] : {(locked: B) (pc[I]: cs) (cnt: N) OCs}

=> {(locked: false) (pc[I]: fs) (cnt: dec(N)) OCs} .

rl [fin] : {(cnt: 0) OCs} => {(cnt: 0) OCs} .

The four rewrite rules are given the names start, wait, exit, and fin, respectively. I is a
Maude variable of process ids, B is a Maude variable of Boolean values, N is a Maude variable
of natural numbers, and OCs is a Maude variable of observable component soups. If dec takes
a non-zero natural number x + 1, it returns x; if dec takes 0, it returns 0. Given a state
expressed as {(locked: true) (pc[p1]: cs) (pc[p2]: ss) (cnt: 2)}, rewrite rule exit

can change it to the following: {(locked: false) (pc[p1]: fs) (pc[p2]: ss) (cnt: 1)}.
Fig. 6.2 shows the reachable state space made from STAS, ITAS, and TTAS. There are 15 states
in the reachable state space.

We take two atomic propositions denoted inWs1 and inCs1 into account in this chapter.
So, PTAS consists of inWs1 and inCs1. LTAS is defined by the following equations:

eq {(pc[p1]: ws) OCs} |= inWs1 = true .

eq {(pc[p1]: cs) OCs} |= inCs1 = true .

eq {OCs} |= PROP = false [owise] .
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Figure 6.2: The reachable state space of TAS

where OCs is a Maude variable of observable component soups and PROP is a Maude variable
of atomic propositions. The first equation says that for all states s, LTAS(s) has inWs1 if s

has (pc[p1]: ws); the second equation says that for all states s, LTAS(s) has inCs1 if s has
(pc[p1]: cs); the third equation says that for all states s, LTAS(s) has neither inWs1 nor
inCs1 otherwise.

We can check KTAS |= inWs1 � inCs1, namely that TAS enjoys the lockout freedom
property with Maude LTL model checker by reducing the following command:

Maude> modelCheck(init,inWs1 |-> inCs1)

where _|->_ is the Maude operator that expresses �. Maude LTL model checker concludes
that TAS enjoys the lockout freedom property when there are two processes.

Although we do not need to use our tool to tackle the model checking experiment, we use it
to outline the parallel L+ 1-DCA2L2MC. We split the reachable state space shown in Fig. 6.2
into three layers such that the first layer depth is 2 and the second layer depth is 2. Note that
we do not need to specify the final layer depth (the third layer depth for the example used).
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Figure 6.3: Three layers of TAS reachable state space

Fig. 6.3 (a) shows the first layer, Fig. 6.3 (b) shows the second layer, and Fig. 6.3 (c) shows the
third layer. We have six sub-state spaces made from the whole reachable state space. The first
layer has one sub-state space, the second layer has three sub-state spaces, and the third layer
has two sub-state spaces. Among the six sub-state spaces, one sub-state space consists of six
states, one sub-state space consists of five states, two sub-state spaces consist of four states,
and two sub-state spaces consist of three states, while the whole reachable state space consists
of 15 states. Even though it is impossible to conduct a model checking experiment for 15 states,
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if it is possible to do so for six states, then L+1-DCA2L2MC makes it possible to conduct the
model checking experiment. This is the core idea of L+ 1-DCA2L2MC.

In Algorithms 4 and 5, AllStates, CxStates, workers, and jobs are initially set to empty.
Note that each state is added a depth observable component as (depth: d), where d is the
depth of the state, a natural number. However, the depth observable component is eliminated
from each beginning state of the final layer right before conducting model checking for its sub-
state spaces [39]. Such revisions of formal systems specifications can be automatically made by
the tool and the tool can be used as an ordinary model checker in that all human users need
to do is basically to feed a formal systems specification and a formal property specification.
Let us use only one worker to outline the parallel L+ 1-DCA2L2MC, although in our tool the
number of workers is not limited. The master starts the job scheduling by building an initial
job, the 5-tuple (init0, all, 0, 2, empty), referred to as job0, where init0 is the initial
state init to which the depth observable component is added. job0 is enqueued to jobs and
init0, together with the key 0, is added to the shared cache AllStates because the type of
the initial job is all. Some values maintained by the master look as follows:

AllStates = 0 |-> {init0}

CxStates = empty

workers = empty

jobs = job0

The worker starts the job handling by sending a getJob message to the master to request a
job. When the master receives the getJob message, the worker identifier is enqueued to workers.
After that, jobs and workers are not empty. The master dequeues jobs and workers to get
job0 and the worker identifier so that the master sends the job to the worker. When the worker
receives job0, it starts handling init0 for the first layer. What to do is to generate all states
and counterexample states located at depth 2 for the leads-to property concerned. There are
three states located at depth 2 as follows:

{(locked: true) (cnt: 2) (depth: 2) (pc[p1]: cs) (pc[p2]: ss)}

{(locked: false) (cnt: 2) (depth: 2) (pc[p1]: ws) (pc[p2]: ws)}

{(locked: true) (cnt: 2) (depth: 2) (pc[p1]: ss) (pc[p2]: cs)}

The three states are referred to as init1, init2, and init3, respectively. Among them,
there is one counterexample state init2. The worker constructs the job (init1, all, 2, 4,

<init0 : 2>), referred to as job1, sends it to the master, and updates the local cache
AllStates from empty to 2 -> {init1} because init1, together with the key 2, does not
exist in the local cache. When the master receives the job message, namely job1, it checks
if init1, together with the key 2, does not exist in the shared cache AllStates. If that is
the case, job1 is enqueued to jobs and the shared cache is updated with a new entry as
2 |-> {init1}. Similar things are done when the worker generates init2 and init3. Then
the values maintained by the master are updated as follows:
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AllStates = 0 |-> {init0}, 2 |-> {init1, init2, init3}

CxStates = empty

workers = empty

jobs = job1 | job2 | job3

where job2 and job3 are (init2, all, 2, 4, <init0 : 2>) and (init3, all, 2, 4,

<init0 : 2>), respectively. Meanwhile, some values maintained by the worker are updated as
follows:

AllStates = 2 |-> {init1, init2, init3}

CxStates = empty

Once the worker finishes handling the jobs for all all-states, it handles the jobs of all cx-
states. init2 is one counterexample state, together with the key 2, which does not exist in
the local cache CxStates. The worker constructs the job (init2, cx, 2, 4, <init0 : 2>),
referred to as job2’, sends it to the master, and updates the local cache from empty to
2 |-> {init2}. When the master receives the job message, namely job2’, it checks if init2,
together with the key 2, does not exist in the shared cache CxStates because the type of the
job is cx. If that is the case, job2’ is enqueued to jobs and the shared cache is updated
from empty to 2 |-> {init2}. The worker completes job0 and sends a getJob message to the
master to request a job.

job1 is the top element in jobs, which is sent to the worker. When the worker receives
job1, it starts handling init1 for the second layer, which is similar to what the worker has
done for init0. There is only one state located at depth 4 reachable from init1 as follows:

{(locked: false) (cnt: 1) (depth: 4) (pc[p1]: fs) (pc[p2]: ws)}

The state is referred to as init4, which together with the key 4, does not exist in the local
cache AllStates. The worker constructs the job (init4, all, 4, unbounded, <init1 : 4>

<init0 : 2>), referred to as job4, sends it to the master, and updates the local cache with a
new entry as 4 -> {init4}. When the master receives job4, it checks if init4, together with
the key 4, does not exist in the shared cache AllStates. If that is the case, job4 is enqueued
to jobs and the shared cache is updated with a new entry as 4 |-> {init4}. There is no
counterexample state. The worker completes job1 and sends a getJob message to the master
to request a job.

job2 is the top element of jobs, which is sent to the worker. When the worker receives
job2, it starts handling init2 for the second layer. There are two states located at depth 4
reachable from init2, which are init4 and the other state as follows:

{(locked: false) (cnt: 1) (depth: 4) (pc[p1]: ws) (pc[p2]: fs)}

The state is referred to as init5, which is also one counterexample state. Once the worker
completes job2, some values maintained by the master are updated as follows:
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AllStates = 0 |-> {init0}, 2 |-> {init1, init2, init3}, 4 |-> {init4, init5}

CxStates = 2 |-> {init2}, 4 |-> {init5}

jobs = job3 | job2’ | job4 | job5 | job5’

where job5 and job5’ are (init5, all, 4, unbounded, log) and (init5, cx, 4,

unbounded, log), where log is <init2 : 4> <init0 : 2>. The values maintained by the
worker are also updated as follows:

AllStates = 2 |-> {init1, init2, init3}, 4 |-> {init4, init5}

CxStates = 2 |-> {init2}, 4 |-> {init5}

The worker then sends a getJob message to the master to request a job. job3 is the top
element of jobs, which is sent to the worker. When the worker receives job3, it starts handling
init3 for the second layer. There is one state located at depth 4 reachable from init3, which
is init5, and it is also one counterexample state. init5, together with the key 4, has existed
in both local caches AllStates and CxStates, and so the worker does nothing and sends a
getJob message to the master to request a job.

job2’ is the top element of jobs, which is sent to the worker. When the worker receives
job2’, it starts handling init2 by generating all counterexample states for the eventual prop-
erty concerned because the type of the job is cx and the state is a beginning state of a non-final
layer. There is one counterexample state located at depth 4 reachable from init2, which is
init5. However, init5, together with the key 4, has existed in the local cache CxStates, and
so the worker does nothing and sends a getJob message to the master to request a job.

jobs currently has three jobs left for the final layer: job4, job5, and job5’. job4 is the
top element of jobs, which is sent to the worker. When the worker receives job4, it starts
handling init4 for the third layer (the final layer) by conducting model checking with the
leads-to property for the sub-state space that starts from init4 because the type of the job is
all. There is no counterexample. The worker completes job4 and sends a getJob message to
the master to request a job. The master sends job5 to the worker. When the worker receives
job5, it starts handling init5 for the third layer as what the worker has done for init4. There
is also no counterexample. The worker completes job5 and sends a getJob message to the
master to request a job.

Lastly, job5’ is the last job left in jobs, which is sent to the worker. When the worker
receives job5’, the worker starts handling init5 for the final layer by model checking with the
eventual property for the sub-state space that starts from init5 because the type of the job is
cx. There is no counterexample. The worker completes job5’ and sends a getJob message to
the master to request a job. However, there is no unprocessed job left. The tool detects it for
termination and returns Success at the end. Hence, we conclude that TAS enjoys the lockout
freedom property when there are two processes.
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Table 6.1: Experimental data with 2GB memory restriction

Protocol #Processes Maude LTL Model Checker Layers L+ 1-DCA2L2MC

Qlock
8 processes 25s

2 2
35s

9 processes NA 6m 57s

Anderson
7 processes 11s

2 2
16s

8 processes NA 2m 23s

MCS
4 processes 1s

4 4 4 4
16s

5 processes NA 23m 35s

TAS
11 processes 54s

3 3
1h 40m 30s

12 processes NA 15h 36m 11s

6.5 Experiments

We have mainly used a MacPro computer that carries a 2.5 GHz microprocessor with 28
cores and 1.5 TB memory to conduct experiments. Multiple experiments were performed
simultaneously on the same computer so as to save time because there was only one MacPro
computer available. We use Maude LTL model checker, a sequential version [125], and our
parallel version of L+1-DCA2L2MC in our case studies. We use four mutual exclusion protocols:
Qlock, Anderson, MCS, and TAS. Qlock is an abstract version of the Dijkstra binary semaphore.
Anderson is an array-based mutual exclusion protocol invented by Anderson [130]. MCS is a
list-based queuing mutual exclusion protocol (invented by Mellor-Crummey & Scott) whose
variants have been used in Java virtual machines [131]. We suppose that each process enters
the critical section once. For case studies, the property to be checked is the same as we used
for TAS in Sect. 6.4: inWs1 � inCs1. Mutual exclusion protocols are still one of the core
mechanisms/components used in concurrent/parallel/distributed systems [132]. Although the
first mutual exclusion protocol was invented in the 60’s by Dijkstra [133], research on them is
still active, for example [134, 135]. As written, one of the four mutual exclusion protocols is not
simply a laboratory protocol but its variants have been used in real practice. When there are
a few processes participating in each of the four mutual exclusion protocols, it is possible to do
a model checking experiment on an ordinary computer that carries a few, 2 GB memory, but
when the number of the processes increases, it becomes infeasible to do so with such a computer
because of the state space explosion. For example, when there are 8, 7, 4, and 11 processes
participating in Qlock, Anderson, MCS, and TAS, respectively, both Maude LTL model checker
and the sequential version of L+1-DCA2L2MC can complete the model checking experiments
for the four protocols with a computer that carries 2 GB memory (see Table 6.1). When there
are 9, 8, 5, and 12 processes in Qlock, Anderson, MCS, and TAS, respectively, however, Maude
LTL model checker cannot do so with the computer, while the sequential version can do so with
the computer (see Table 6.1). This is why we used the four mutual exclusion protocols for our
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Table 6.2: The use of the shared and local caches

Qlock with 10 processes (8 workers - layers 2 2)
shared caches local caches time (1) time (2)

yes yes 1h 14m 2h 9m
yes no 1h 26m 2h 22m
no yes 2h 52m 3h 42m
no no 3h 3m 3h 45m

Anderson with 9 processes (8 workers - layers 2 2)
shared caches local caches time (1) time (2)

yes yes 21m 39m
yes no 22m 39m
no yes 35m 1h 1m
no no 39m 1h 1m

MCS with 6 processes (8 workers - layers 8 8)
shared caches local caches time (1) time (2)

yes yes 6d 16h 46m N/A
yes no 5d 6h 34m N/A
no yes 35d 8h 7m N/A
no no 82d 4h 40m N/A

TAS with 13 processes (8 workers - layers 3 3)
shared caches local caches time (1) time (2)

yes yes 3d 21h 25m N/A
yes no 3d 8h 36m N/A
no yes 20d 3h 54m N/A
no no 28d 16h 15m N/A

experiments.
Our tool uses the shared caches maintained by the master and the local caches maintained

by each worker to prevent processed jobs from being made and assigned and reduce the com-
munication cost between the master and workers. We have conducted some experiments to
confirm the usefulness of the caches, although some experiments have not been finished due
to the time limitation. The experimental data are shown in Table 6.2. Column time (1) shows
the time taken when experiments were conducted on the MacPro. Column time (2) shows the
time taken when experiments were conducted in a distributed environment, where the master
ran on a basic AWS server that carries 1 core and 1 GB memory, while all workers ran on an
iMac computer that carries 4 cores and 32 GB memory. The tool uses sockets to communicate
between the master and workers. Hence, it can be deployed in a distributed environment as
well as on a shared-memory machine. This is one advantage of the tool so that we can flexibly
choose a shared-memory machine or a distributed environment. For MCS and TAS experi-
ments, N/A showed in column time (2) says that the basic AWS server is so weak that we could
not conduct experiments because of lack of memory, namely that the state space explosion.
The experimental data say that the use of the shared and local caches is effective for Qlock
and Anderson experiments, while only the use of the shared cache is more effective for MCS
and TAS experiments. The effectiveness of the shared caches is larger than that of the local
caches. This is likely to be because of the following: (a) duplicated states are likely to appear
at shallower places from each initial state more often than at deeper places and (b) jobs includ-
ing duplicated states may be made by different workers because of the dynamic nature of job
distribution. Because of (b), the tendency of time (1) seems different from that of time (2). The
experimental data, however, show that the use of shared caches is mandatory, while the use
of local caches together is optional, which needs to be investigated furthermore with different
case studies as well as configurations as one piece of our future work. To this end, we use both
shared and local caches for Qlock and Anderson experiments, while we disable local caches and

82



Table 6.3: Experimental data for Maude LTL model checker, L+ 1-DCA2L2MC, and Parallel
L+ 1-DCA2L2MC

Protocol Maude
LTL Model
Checker

Layers L+ 1-DCA2L2MC Parallel L + 1-
DCA2L2MC
(8 workers)

Qlock (10 processes) 37d 1h 23m 2 2 6h 31m 1h 14m
Anderson (9 processes) 12d 16h 42m 2 2 1h 44m 21m
MCS (6 processes) 25d 15h 46m 8 8 23d 19h 7m 5d 6h 34m
TAS (13 processes) 20h 18m 3 3 23d 5h 15m 3d 8h 36m

only use shared caches for MCS and TAS experiments.
We model checked inWs1 � inCs1 for Qlock in which there are 10 process participants,

for Anderson in which there are 9 process participants, for MCS in which there are 6 process
participants, and for TAS in which there are 13 process participants with (1) Maude LTL model
checker, (2) a sequential version [125], and (3) our parallel version of L + 1-DCA2L2MC. The
experimental results are shown in Table 6.3. d1 d2 ... dL in column Layers means that we use
L+ 1 layers for (2) and (3), and the depth of the lth layer is dl. Maude LTL model checker is
the default model checker powered by Maude, which did not use the tools (2) and (3) at all. For
Qlock, Anderson, and MCS, the sequential version outperforms Maude LTL Model Checker.
Our parallel version of L + 1-DCA2L2MC could speed up about 4.5 times on average to the
sequential version when 8 workers are used. The speedup is understandable because there are
extra costs when using our parallel version, such as socket communication between the master
and workers. Although we can flexibly increase the number of workers if we would like to use
more computing resources given by the computer, we only used 8 workers for the case studies
reported in this work just due to the time available for the experiments. Note that for Qlock,
Anderson, MCS, and TAS, Maude LTL model checker could not finish the model checking with
an ordinary computer, for example, the one that carries 2 GB memory because of the state
space explosion problem, while the sequential version could complete the model checking even
with such a computer (see Table 6.1). For TAS, Maude LTL model checker outperforms (2)
and (3). TAS is the simplest mutual exclusion protocol among the four protocols used. The
difference between TAS and the other three protocols is that all processes waiting for the critical
section have an equal chance to enter there next in TAS, while there exists at most one such
process that can enter the critical section next in the other three protocols. In other words,
TAS has a symmetry from each of the processes that wait for entering the critical section, while
the other three protocols do not. Many states are then likely to be shared by many sub-state
spaces in the final layer in TAS, which cannot make the best use of the shared and local caches
effective. This would be probably why both (2) and (3) do not outperform (1), although (3)
speeds up about 6 times to (2). (3) does not deal with all examples well but can handle three
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Table 6.4: Experimental data for parallelizing the model checking in the final layer only

Protocol Layers Parallel L + 1-
DCA2L2MC

Parallel L + 1-
DCA2L2MC
(Only Final
Layer)

Percentage
Improvement
(%)

Qlock (10 processes) 2 2 56m 55s 42m 36s 25.15
Anderson (9 processes) 2 2 17m 30s 12m 58s 25.9
MCS (6 processes) 8 8 5d 3h 26m 22h 30m 81.77
TAS (13 processes) 3 3 2d 11h 31m 2d 5h 21m 10.36

non-trivial mutual exclusion protocols, one of which is a practical one meaning that its variants
have been used in Java virtual machines. In conclusion, our parallel version can speed up the
sequential version for all four protocols and outperform Maude LTL model checker for the three
protocols that do not have a symmetry from each of the processes that wait for entering the
critical section. It is a good common practice [136] to get rid of symmetries when designing
concurrent/parallel/distributed protocols as Qlock, Anderson, and MCS that can be handled
well by both sequential and parallel versions of L+ 1-DCA2L2MC.

We realize that the use of parallelization for the final layer only can gain better performance
for our tool. Therefore, we support an option in our tool so that users can choose to parallelize
only the model checking for the final layer while generating states up to the final layer is
proceeded in sequence. The architecture of our tool is kept the same as before. Table 6.4
shows the experimental results between the parallel version in which all layers are proceeded
in parallel (the third column) and another parallel version in which only the model checking in
the final layer is proceeded in parallel (the fourth column). Note that both parallel versions use
the new model checker in Sect. 6.6 for all counterexample generation and run on the MacPro
machine above. We can see that parallelization for the final layer only can improve the running
performance of our tool. Especially, it can improve 81.77% for MCS protocol.

6.6 All Counterexample Generation

Our previous work [125] (in Sect. IV with addEqs(...)) shows how to generate all counterexam-
ples one by one. For each counterexample, we obtain the last state in the counterexample that
repeats forever at the end (self-loop) and add an equation to the specification being checked to
ignore the counterexample so that the next counterexample can be found. This way to generate
all counterexamples makes our tool slower because we need to ask Maude to handle as many
times as the number of counterexamples. Maude LTL model checker uses an on-the-fly LTL
model checking algorithm that consists of two major steps [137]: the first for constructing a
Büchi automaton, which is called the property automaton in this chapter, that represents the
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negation of a correctness property and the second for lazily building the synchronous product of
the system automaton and the property automaton for searching an accepting cycle reachable
from an initial state.

Regarding how to construct the property automaton, there are two possible ways as follows:
(1) a given property is first negated and then the negated property is converted into a Büchi
automaton, and (2) a given property is first converted into a Büchi automaton and then the
automaton is complemented. (1) is commonly used as a standard way [138, 139, 140, 141], while
(2) is not used because negating the given property in (1) is more effective than complementing
the automaton in (2). To complement a Büchi automaton, it gives rise to an exponential
number of states, where the exponent is nonlinear [142], while to negate a given property, it
uses a set of rules to simplify the negation of the property that is a cheap, simple, and effective
way [140]. Hence, (2) requires much more memory and may take more time than (1).

Büchi automata are closed under intersections [143]. Therefore, verifying the system satisfies
the correctness property becomes the emptiness problem in the product automaton. Maude
LTL model checker uses a nested depth-first search algorithm to search for an accepting cycle
in the product automaton [15], which terminates and returns a counterexample as soon as it
is found. To generate many counterexamples at once, we need to use different algorithms so
that all accepting cycles in the product automaton can be found. One approach is to detect all
strongly connected components (SCCs) of the product automaton such that each SCC contains
at least one accepting state. An SCC is a maximal set C of states such that for all s1, s2 ∈ C

there is a path from s1 to s2. The Tarjan algorithm [129] is well-known as an effective algorithm
to find all strongly connected components in a graph and to make on-the-fly LTL verification
more efficient [144]. Therefore, we develop a new model checker to generate all counterexamples
based on the Tarjan algorithm by using facilities existing in Maude LTL model checker, such
as building the property automaton of the negation of the correctness property. The new
model checker is implemented in C++ and integrated into Maude that is publicly available in
Footnote 3.

The basic idea of the Tarjan algorithm is that it uses a depth-first search (DFS) to visit
each node in the graph exactly once. The algorithm maintains a stack of nodes while visiting
nodes by the DFS. A node has been visited by the DFS if and only if a (recursive) call to the
DFS for the node has been completed. There is an invariant property for the use of the stack:
a node remains on the stack after it has been visited by the DFS if and only if there exists a
path in the graph from it to some nodes earlier on the stack. In other words, it means that
in the DFS a node would be only removed from the stack after all its connected paths have
been traversed. Each node consists of two numbers and a Boolean value: the first number is
called index that can be regarded as the id of the node, which is a unique number in the order
in which nodes are visited by the DFS, the second number is called lowLink that is the lowest
node id in the same SCC reachable from the node, and the Boolean value is called onStack that
denotes whether the node is on the stack. When we first visit a node v, we assign an increment
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unique id to the index , make (temporally) the lowLink become the index , push the node id
(index ) to the stack, and set the onStack to true, meaning that the state is on the stack. We
then call the DFS recursively on w for each edge (v, w) if w has not been visited yet. The DFS
computes the lowLink for the node w. Once the DFS completes for w, we update lowLink of
v as follows: v.lowLink ← min(v.lowLink, w.lowLink). If w has been visited and it is still on
the stack, we update lowLink of v as follows: v.lowLink ← min(v.lowLink, w.index). When
completing the DFS for node v, we check if v.lowLink is equal to v.index. If so, v is a base
node, which has the same value for the index and lowLink , and so we pop nodes off the stack
until v is popped off. Each such group of popped nodes is an SCC.

Given a system automaton S and a property automaton P , the synchronous product of S
and P is built on the fly while searching SCCs at the same time. Once the product automaton is
completely built, all counterexamples are also constructed and returned based on SCCs found,
meaning that we use only one DFS traverse to build the product automaton and generate
all counterexamples, demonstrating our practical approach. Note that every state in S is an
accepting state, and therefore an accepting state in the product automaton must be an accepting
state in P . For each state of the production automaton we keep the following information:

• parentId is the parent state id of the current state. The root state has NONE whose
value is -1 as its parent state id.

• systemStateId is the system state id in the system automaton.

• propertyStateId is the property state id in the property automaton.

• stateId is the product state id in the product automaton, which is the DFS traversal
number used in the Tarjan algorithm for SCC analysis.

• nextStates contains all successor state ids.

• acceptingState is a Boolean value that denotes whether the state is an accepting state.

• lowLink denotes the lowest link of the state in the same SCC as in the Tarjan algorithm
for SCC analysis.

• onStack denotes whether the state is on the stack as in the Tarjan algorithm for SCC
analysis.

Algorithm 6 shows the pseudo-code for building the product automaton of system and prop-
erty automata and generating all counterexamples at once. We suppose that systemAutomaton

and propertyAutomaton are given as input. Each automaton can be regarded as a graph in
which each node has its own unique id. We first initialize productAutomaton, path, stateStack,
and counterexamples as the empty automaton, the empty list, the empty stack, and the empty
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list, respectively. productAutomaton contains all states of the product of the system and prop-
erty automata that is built while running the algorithm. path is used to trace the current path
from the beginning state to the current state by the DFS. stateStack is the stack used in the
Tarjan algorithm described above. counterexamples contains all counterexamples found by the
algorithm. To generate all counterexamples, we call the findCounterExamples function at line
6. We first insert a dummy state that is used as the root state (referred to as variable root)
into the product automaton at line 7 by calling the productAutomaton.insertState function
with three parameters: the system state id, the property state id, and the parent state id of
the current product state being inserted. NONE is used for the three parameters, meaning a
dummy id. The function will return the id of the product state just inserted in an incremental
way, which starts from zero. We then get all initial state ids from the property automaton at
line 8 because it may contain many initial states, not only one initial state as in the system
automaton.7 For each initial state id from the property automaton, we create a new product
state at line 10 in which its system state id is NONE, its property state id is the initial state
id, and its parent state is the root state id. We then call the sccAnalysis function at line 11
with three parameters: the product state id just inserted, the system state id that is NONE,
and the initial property state id concerned. At the end of the findCounterExamples function,
counterexamples are returned as all counterexamples found.

The code fragment at lines 14–33 shows how the sccAnalysis function works. The sccAnalysis
function is to build the product of the system and property automata together with SCC anal-
ysis. The first parameter is the state product id, which is passed exactly once to the function
marked as visited. We first get the corresponding state of the state id from productAutomaton,
set the lowLink of the state to the state id, push the state id to the stateStack, and set the
onStack of the state to true by calling the pushState function at line 15. The pushState func-
tion is defined in the code fragment at lines 34–48. We then push the state id to the path to
keep track of the current path from the beginning state to the current state at line 16. Given the
propertyStateId as a source state id, we get all possible transitions from propertyAutomaton

at line 17. Each transition consists of two elements: the formula that makes the transition
happen and the next property state id that is the target state id of the transition. Given the
systemStateId, we get all successor state ids from systemAutomaton at line 19. For each
transition and each successor state id, we check if the successor state satisfies the formula at
line 22, where the successor state and the formula are derived from the successor state id and
the transition, respectively. If that is the case, this is truly a product state that we need to

7Maude LTL model checker basically handles one initial state of a system automaton and so do the sequential
and parallel versions of L+1-DCA2L2MC. Thus, we suppose that a system automaton has one initial state. It
is possible to write a program in Maude so that multiple initial states of a system automaton can be handled
by Maude LTL model checker and then it is also possible to revise the sequential and parallel versions of L+1-
DCA2L2MC to do so. The algorithm for generating all counterexamples at once can also be slightly revised to
handle multiple initial states of a system automaton.
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Algorithm 6: Building the product automaton of the system and property automata
and generating all counterexamples at once

input : systemAutomaton – a system automaton
propertyAutomaton – a property automaton

output: all counterexamples if exists or empty list

1 productAutomaton← empty automaton;
2 path← empty list;
3 stateStack ← empty stack;
4 counterexamples← empty list;
5

6 function findCounterexamples() is
7 root← productAutomaton.insertState(NONE ,NONE ,NONE );
8 initialStates← propertyAutomaton.getInitialStates();
9 forall i ∈ initialStates do

10 stateId← productAutomaton.insertState(NONE , i, root);
11 sccAnalysis(stateId,NONE , i);

12 return counterexamples ;

13

14 function sccAnalysis(stateId, systemStateId, propertyStateId) is
15 pushState(stateId);
16 path.push_back(stateId);
17 propertyTransitions← propertyAutomaton.getTransitions(propertyStateId);
18 forall trans ∈ propertyTransitions do
19 nextSystemStates← systemAutomaton.getNextSystemStates(systemStateId);
20 forall nextSystemStateId ∈ nextSystemStates do
21 formula← trans.getFormula();
22 if statisfiesPropositionalFormula(nextSystemStateId, formula) then
23 nextPropertyStateId← trans.getStateId();
24 nextStateId←

productAutomaton.insertState(nextSystemStateId, nextPropertyStateId, stateId);

25 if isNewState(nextStateId) then
26 if propertyAutomaton.isAccepting(nextPropertyStateId) then
27 productAutomaton.getState(nextStateId).acceptingState← true;

28 sccAnalysis(nextStateId, nextSystemStateId, nextPropertyStateId);
29 updateLowLink(stateId, nextStateId, true);

30 else
31 updateLowLink(stateId, nextStateId, false);

32 generateSCC(stateId, path);
33 path.pop_back();
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Algorithm 6: Building the product automaton of the system and property automata
and generating all counterexamples at once (continuously)

34 function pushState(v) is
35 s← productAutomaton.getState(v);
36 s.lowLink ← v;
37 stateStack.push(v);
38 s.onStack = true;

39

40 function updateLowLink(v, w, isNewState) is
41 s← productAutomaton.getState(v);
42 t← productAutomaton.getState(w);
43 if isNewState then
44 s.lowLink ← min(s.lowLink, t.lowLink)

45 else if t.onStack then
46 s.lowLink ← min(s.lowLink, t.stateId);

47

48 function generateSCC(v, path) is
49 s← productAutomaton.getState(v);
50 if s.stateId == s.lowLink then
51 circle← empty list;
52 hasAcceptingState← false;
53 do
54 w ← stateStack.pop();
55 productAutomaton.getState(w).onStack ← false;
56 circle.push_front(w);
57 if productAutomaton.getState(w).acceptingState then
58 hasAcceptingState← true;

59 while w = / = v;
60 if hasAcceptingState then
61 isAcceptedSCC ← false;
62 if circle.size() == 1 then
63 forall i ∈ productAutomaton.getState(v).nextStates do
64 if v == i then
65 isAcceptedSCC ← true;

66 else
67 isAcceptedSCC ← true;

68 if isAcceptedSCC then
69 counterexamples.push_back(newCounterExample(path, circle));
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build and insert into productAutomaton. We then get the nextPropertyStateId derived from
the transition at line 23 and build a product state by calling the productAutomata.insertState

function at line 24 with three parameters: the system state id is nextSystemStateId, the prop-
erty state id is nextPropertyStateId, and the parent state id is the stateId. The nextStateId

is assigned the result of the function, which is the product state id just inserted. We then
check if the product state id just inserted is a new state at line 25. If that is the case, then we
check if the next property state, whose id is nextPropertyStateId, is accepting. If so, we set
the acceptingState of the state, whose id is nextStateId, to true at line 27, meaning that this
product state is an accepting state. We then recursively call the sccAnalysis function at line 28
with three parameters: nextStateId, nextSystemStateId, and nextPropertyStateId, mean-
ing that we are considering the next product state in the DFS. Once the sccAnalysis finishes,
the lowLink of the product state, whose id is nextStateId, has been calculated. We update
the lowLink of the product state, whose state id is stateId, by calling the updateLowLink

function at line 29 with three parameters: stateId, nextStateId, and true (which means that
the product state is new). If the product state just inserted is not a new state, we simply call
the updateLowLink function at line 31 with three parameters: stateId, nextStateId, and false

(which means that the product state is not new).
The updateLowLink is defined in the code fragment at lines 40–46 with three parameters

v, w, and isNewState. The product states s and t correspond to the product state ids v and
w derived from the productAutomaton at lines 41 and 42, respectively, meaning that we want
to update the lowLink of the state s based on the state t. If t is a new state, meaning that
isNewState is true, s.lowLink ← min(s.lowLink, t.lowLink). Otherwise, if t is on the stack,
s.lowlink ← min(s.lowLink, t.stateId). How to update the lowLink of a state is exactly the
same as what is described in the Tarjan algorithm above. After building all product states and
calculating their lowLink at the state, whose id is stateId, we call the generateSCC function
at line 32 to search for an SCC with two parameters: the current state id stateId and the
current path path. The code fragment at lines 48–69 defines the generateSCC function with
two parameters: v and path. We first get the state s corresponding to the state id v derived
from productAutomaton at line 49. We check if the stateId of the state is equal to the lowLink
of the state at line 50. If that is the case, we then start building a new SCC. We pop state ids
off the stack stateStack and store them into circle until v is popped off in the code fragment
at lines 51–59. Whenever a state id is removed from the stack, we set the onStack of the
corresponding state to false. While popping state ids off the stack, if there is an accepting
state, we then set hasAcceptingState to true. We check if hasAcceptingState is true at line
60, meaning that the circle contains at least one accepting state. We need to consider two cases
if the size of the circle is one or greater than one. In the former case, we need to check if there
is a self-loop at the state in the code fragment at lines 62–65. If that is the case, the circle is
an accepting SCC. In the latter case, it is of course an accepting SCC. At the end, if the circle

is an accepting SCC (or equivalently isAcceptedSCC is true), we build a new counterexample
from the path and circle at lines 68–69. For each circle in the counterexample, we consider
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Table 6.5: Experimental data for generating all counterexamples at once in Parallel L + 1-
DCA2L2MC

Protocol Layers Parallel L + 1-
DCA2L2MC

Parallel L + 1-
DCA2L2MC
(New)

Percentage
Improvement
(%)

Qlock (10 processes) 2 2 1h 14m 56m 24%
Anderson (9 processes) 2 2 21m 17m 19%
MCS (6 processes) 8 8 5d 6h 34m 5d 3h 26m 2.5 %
TAS (13 processes) 3 3 3d 8h 36m 2d 11h 31m 26 %

Table 6.6: Experimental data for only generating states up to the final layer in L + 1-
DCA2L2MC with all counterexample generation

Protocol Layers L+1-DCA2L2MC L+1-DCA2L2MC
(New)

Percentage
Improve-
ment (%)

Qlock (10 processes) 2 2 50.35s 2.26s 95.5%
Anderson (9 processes) 2 2 20.99s 2.26s 89.2%
MCS (6 processes) 8 8 17h 11m 65m 93.7 %
TAS (13 processes) 3 3 25m 11s 30.64s 97.95 %

only one path that leads to the circle, although there may be multiple paths leading to the
circle in the product automaton. Our parallel tool only requires obtaining all accepting circles
in the product automaton, and therefore our algorithm is tailored for that purpose. Once the
generateSCC function completes, we update the path by removing the current state id from
the list at line 33.

We have described how to build the product of system and property automata and generate
all counterexamples at once. We have developed it as a new model checker and integrated it
into Maude. For users to use our new model checker, we make a modelCheckAll function that
has the same parameters as the built-in modelCheck function in Maude. For TAS case study,
we can run the following command to generate all counterexamples at once:

Maude> modelCheckAll(init,inWs1 |-> inCs1)

We conduct some experiments to demonstrate the power of generating all counterexamples at
once. The MacPro computer above is used to conduct the experiments. The experimental
data in Table 6.5 show the verification time with the old parallel L + 1-DCA2LMC (the third
column), which uses the default model checker, and the new parallel L + 1-DCA2L2MC (the
fourth column), which uses the new model checker. The fifth column shows the percentage
of improvement of the new version to the old version. We can improve the verification time
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of Qlock, Anderson, and TAS protocols by around 20%, while the improvement is only 2.5%
for MCS protocol. We would like to demonstrate how all counterexample generation improves
state generation in our tools effectively. Therefore, we conduct some more experiments for
the sequential version of L + 1-DCA2LMC with and without the use of all counterexample
generation to generate states up to the final layer, but we do not conduct model checking
experiments for sub-state spaces in the final layer because we only consider state generation
in these experiments. The experimental data are shown in Table 6.6. The third and fourth
columns denote the time taken for generating states up to the same final layer of the old and
new versions, respectively. We can see that the percentage of improvement is over 89% for all
case studies. We can reduce the time taken to generate states up to the final layer of MCS and
TAS protocols from 17h 11m and 25m 11s to 65m and 30.64s, respectively. This result is good
for us to speed up how to find out a good layer configuration for L + 1-DCA2LMC technique
because generating states at each layer is crucial, which will be described in the next section.

In summary, we have described a technique to generate all counterexamples at once and
developed a new model checker based on the Tarjan algorithm by using facilities existing in
Maude LTL model checker. The new model checker is implemented in C++ and integrated into
Maude from which users can use the new model checker by the modelCheckAll function. Our
experimental data have shown the power of our technique for all counterexample generation
from which the running performance of our tool can be improved to some extent.

6.7 Layer Configuration Selection

We can learn from the experimental data in Sect. 6.5 that layer configuration affects the run-
ning performance of our tool. In this section, we describe an approach to finding good layer
configurations with an analysis tool. We have some observations when conducting experiments
with our tool as follows:

• We can divide the reachable state space into as many layers as possible with a different
depth for each layer. However, we should use a small depth in a specific range (e.g.,
1–4) for each layer because if so we are more likely to avoid the state space explosion
while generating states and keep the product automaton reasonably small so as to take
advantage of our new model checker to generate all counterexamples at once. In addition,
a large layer depth can be constructed by combining multiple small layer depths. We
would like to make each sub-state space small enough as well. Thus, we may rely on
the numbers of all-states and cx-states reachable from an initial state at a given depth
to decide the depth of each layer that should be used. In the specific range, we use the
largest layer depth such that the numbers of all-states and cx-states are smaller than or
equal to specific numbers n1 and n2, respectively. In our case studies, we use 500 and 250
for n1 and n2, respectively. For example, for MCS with 6 process participants, there are
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126 all-states and 0 state located at the depth 4 reachable from an initial state, and so
we use at most 4 as the largest depth of each layer. States tend to drastically increase
when positions from each initial state get deeper. We may need to use a smaller number
as the depth of each layer when the layer is located at a deeper position. For example,
we use 2 as the depth of each deep layer for MCS subsequently.

• We should divide the reachable state space into a reasonable number of layers because if
the depth of states located at the final layer is shallow, there are some sub-state spaces
in the final layer whose size is still big, which may lead to the state space explosion and
degrade the verification time. Meanwhile, if the depth is too deep, the number of the
beginning states of the final layer is very large because the number of states dramatically
increases after each layer while the time taken to generate states up to the final layer
also dramatically increases when many states need to be considered for state generation
after each layer. In addition, we realize that the use of parallelization for model checking
states located at the final layer only obtains a better performance with our tool, which
was described in detail in Sect. 6.5. Therefore, if the time taken to generate states is very
large, we cannot take advantage of the parallelization, while if the time taken to model
checking all-states and cx-states at the final layer is very large, we can take advantage of
the parallelization to reduce the verification time. Therefore, we may stop using one more
layer when the time taken to generate the beginning states of the final layer becomes very
large.

Based on the observations, our approach to finding a good layer configuration is as follows.
We start with a two-layer configuration d1 such that d1 is small in a specific range (e.g., 1–4).
Note that we analyze the numbers of all-states and cx-states reachable from an initial state at
each layer depth in the range to decide d1. We generate all cx-states and all-states in layer
1 and measure the time taken to do so. We would like to know how much time it takes to
conduct model checking experiments for the final layer (layer 2 this time). Even in layer 1
whose depth is small enough, however, there may be many cx-states and all-states. Thus, it is
not reasonable to tackle all of many cx-states and all-states. Hence, we randomly select some
cx-states and some all-states to conduct model checking for the final layer and roughly estimate
the time taken to conduct model checking experiments for the final layer. We should increase
the coverage of cx-states and all-states for better estimation. If we tackle a large number of
cx-states and all-states in sequence, it may take an unreasonable amount of time. We then take
advantage of parallelization by running multiple instances of a model checker. Each instance
is in charge of a small number of cx-states and all-states. If multiple instances are used and
each instance selects some cx-states and all-states randomly and independently, it is possible to
increase the coverage of cx-states and all-states in a reasonable amount of time. Depending on
the power of a machine used, we can decide the number of instances that can run in parallel.
The more states are selected and the more instances are used, the more confident we are in the
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estimated verification time.
If the estimated verification time for the final layer (layer 2 this time) is too large, we

add one more layer with a small depth d2. The next layer configuration is d1 d2. Let us
suppose that we keep the cx-states and all-states in layer 1. We then generate all cx-states and
all-states in layer 2 and measure the time taken to do so. We estimate the verification time
for the final layer (layer 3 this time). If the estimated verification time is not too large, the
current layer configuration d1 d2 is a good layer configuration candidate. If the time taken to
generate cx-states and all-states in the first two layers is not small enough, we stop the layer
configuration selection and select d1 d2 as a good layer configuration. Otherwise, we can keep
on finding a better layer configuration by adding one more layer with a small depth d3, when
the next layer configuration is d1 d2 d3. We generate all cx-states and all-states in layer 3 and
measure the time taken to do so. We estimate the verification time for the final layer (layer
4 this time). We compare the (estimated) total verification time (the time taken to generate
cx-states and all-states plus the estimated verification time for the final layer) for d1 d2 and the
total verification time for d1 d2 d3. If the former is smaller than the latter, we stop the layer
configuration selection and select d1 d2 as a good layer configuration. Otherwise, we add one
more layer with a small depth and keep on doing what has been described.

We have developed an analysis tool to support the approach to layer configuration selection
described above to find a good layer configuration. We use a server as the central place to handle
commands that are sent by a commander. The tool is developed in Maude and uses sockets to
communicate between the server and the commander. For the server, we use two new features
in Maude: timers and meta-interpreters. Meta-interpreters allow us to run a separate process
to handle any jobs, and so we use them to run many model checking instances in parallel.
Timers allow us to set up a timeout and listen to the timeout event from which we can analyze
the current progress of each meta-interpreter instance on the fly. Maude does not support a
convenient way to get the current time in their built-in functions. Therefore, we develop the
getTimeSinceEpochAt function to get the time elapsed in nanoseconds since the Unix Epoch,
which is implemented in C++ and integrated into Maude, which is also publicly available in
Footnote 3. The implementation of our analysis tool is publicly available in Footnote 4, which
resides under the analysis folder.

Our analysis tool supports the following commands that are sent by the commander to the
server:

• seed_ requests to change the seed used to randomly select states at each layer. The default
seed is set to 37. State selection is subject to the pseudorandom number generator, whose
initial value is the seed.

• threshold_ requests to change the threshold, the time in which we would like to complete
our verification. It is set to unbounded as default. When it is not unbounded, each time
model checking a state completes or a timeout event happens, we check the estimated
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verification time at that moment. If it exceeds the threshold, we stop all running instances.
Otherwise, the instances keep on doing until they accomplish.

• timeout_ requests to change the timeout time for our analysis tool. It is set to 1 minute
by default.

• maxStates(_,_) requests to change the numbers of all-states and cx-states reachable
from an initial state located at a layer depth, namely n1 and n2, respectively, that are
used to decide the depth of each layer. n1 and n2 are set to 500 and 250 as default,
respectively.

• analyzeDepth requests the server to analyze the numbers of all-states and cx-states reach-
able from an initial state at each layer depth in a specific range (e.g., 1–4) and recommend
a depth of each layer such that the depth is the largest layer depth in the specific range
and the numbers of all-states and cx-states reachable from the initial state at the depth
are smaller than n1 and n2, respectively. If there is no such depth in the range, 1 is used
as the depth.

• layerCheck_ requests the server to use one more layer with the layer depth information
given by the parameter in the command. The very initial use of the command, say
layerCheck d1, makes the layer configuration d1, which means that two layers are used
and the first layer depth is d1.

• select(_,_) requests to select some all-states and cx-states at each layer instead of
considering all states. We use this command if we would like to quickly reach some states
located at the final layer and conduct some model checking experiments in the final layer
to know how much time needs to be approximately spent to model check a state on
average at the final layer.

• show requests to show the current status of the server, such as the depth to the current
final layer, the layer configuration with its time taken to generate states accordingly, the
seed, and the threshold.

• analyze(_,_,_) requests to run some trial model checking experiments in the current
final layer. The first parameter is the number of instances we want to run, and the second
and third parameters are the number of all-states and cx-states that are randomly selected
from the all-states and cx-states located at the current final layer, respectively.

• kill requests to kill all running instances in case we want to do so, for example, if the
time taken to model check a state at the current final layer is so long that we cannot wait.

• close requests to close the connection between the server and the commander. The
commander will stop, while the server still works so that another commander can com-
municate.

95



• stop requests to stop both the server and the commander.

The _ symbol is used as a placeholder for a parameter in each command above. Let us demon-
strate how to use the analysis tool to find a good layer configuration for Qlock in which 10
processes participate. Note that we use the default seed, the default threshold, the default
numbers of all-states and cx-states (n1 and n2), and the default timeout in our analysis. We
first need to start our server with the following command:

Maude> in analyzer.maude

Note that the server needs to pre-load many modules and configurations as in the server in our
parallel tool and more to be able to handle the commands sent by the commander. We then
start the commander to connect to the server by the following command:

Maude> in commander.maude

We start with two layers for Qlock such that the first layer depth is small in the range 1–4. To
decide the first layer depth candidate (or the depth of each layer), we send the analyzeDepth

command from the commander to the server. Once the server completes the depth analysis, it
outputs the following:

[AnalyzeDepth]

[Layer depth 1] #all-states = 10, #cx-states = 1, time = "17210000ns

OR 0d:0h:0m:0s"

[Layer depth 2] #all-states = 100, #cx-states = 18, time = "32654000ns

OR 0d:0h:0m:0s"

[Layer depth 3] #all-states = 820, #cx-states = 225, time = "108791000ns

OR 0d:0h:0m:0s"

[Layer depth 4] #all-states = 5850, #cx-states = 2169, time = "783230000ns

OR 0d:0h:0m:0s"

-----------------------

Layer depth recommendation: 2

Based on the result from the server, it recommends using 2 as the first layer depth because the
numbers of all-states and cx-states are 100 and 18 at the bottom of the first layer, respectively.
We then send the layerCheck 2 command from the commander to the server. Once the server
completes generating states up to depth 2, it outputs the following:

[HandleLayerCheck]

Depth = 2

Depth List = 2

#all-states = 100

#cx-states = 18

Time to generate states at this layer = "26018000ns OR 0d:0h:0m:0s"

Time to generate states in total = "26018000ns OR 0d:0h:0m:0s"
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The numbers of all-states and cx-states are 100 and 18, respectively. The time to generate
states at this layer is so small, namely 26018000ns, that it shows 0 seconds. We next send the
analyze(10, 5, 2) command from the commander to the server. The server then starts to
prepare 10 meta-interpreter instances in which the original module, which specifies the behavior
of Qlock protocol, is loaded. We randomly select 5 all-states and 2 cx-states from 100 all-states
and 18 cx-states for each meta-interpreter instance, respectively. In total, we check about 50
all-states and 20 cx-states by random. Note that each meta-interpreter instance conducts model
checking experiments for the sub-state spaces from its randomly selected 7 states in the final
layer, namely layer 2, independently, and a same state may be handled by multiple instances.
We then request the meta-interpreter instances to conduct such model checking experiments.
Because the current depth is shallow, namely 2, we find it uncompleted to conduct the model
checking experiments for almost all the sub-state spaces in several minutes. We can see the
current progress of each instance whenever a timeout event is raised. The following information
is the progress of the meta-interpreter instance whose id is 2.

[interpreter(2)] status = (working).StatusRun

All-States = 0/5, timeAllStates = (nil).NatList

Cx-States = 2/2, timeCxStates = 2025625000 4820393000

Being checking a state, isCxState = false, taking time = "713338363000ns

OR 0d:0h:11m:53s"

-----------------------

Average time to check an all-state = "713338363000ns OR 0d:0h:11m:53s"

Average time to check a cx-state = "3423009000ns OR 0d:0h:0m:3s"

Total time to check all-states = "71333836300000ns OR 0d:19h:48m:53s"

Total time to check cx-states = "61614162000ns OR 0d:0h:1m:1s"

-----------------------

Total time to check all states = "71395450462000ns OR 0d:19h:49m:55s"

Total time to generate states = "26018000ns OR 0d:0h:0m:0s"

Total time = "71395476480000ns OR 0d:19h:49m:55s"

For each meta-interpreter instance, we show the number of completed states per the number of
selected states, the time taken (in nanoseconds) for completion of model checking the all-states
and cx-states selected at the moment in a form of natural number lists, the current state being
checked, and its elapsed time so far. From the results, we estimate the average time taken to
model check each of one all-state and one cx-state by summing the natural numbers in the
corresponding natural number list and the elapsed time of the current state being checked if
any and dividing the sum by the number of the corresponding states. Based on the numbers
of all-states and cx-states at the current final layer, we calculate the total time taken to model
check all-states (1) and cx-states (2) by simply multiplying the average time taken for one
all-state and one cx-state with the numbers of all-states and cx-states, respectively. The total
time taken to model check all states in the final layer is the sum of (1) and (2). We have the
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time taken to generate all states including those at the final layer and the time taken to model
check all states at the final layer, we sum them up to estimate the verification time in total.
We decide to quit the current attempt because the time elapsed so far to model check the state
being tacked by the meta-interpreter instance whose id is 2 is about 11 minutes and the time
taken to complete it would be (much) longer. To stop the running instances, we send the kill

command from the commander to the server. The server stops all running instances and waits
for the next command. We then use one more layer with depth 2 by sending the layerCheck 2

command from the commander to the server. Once the server finishes, it outputs the following:

[HandleLayerCheck]

Depth = 4

Depth List = 2 2

#all-states = 5850

#cx-states = 2169

Time to generate states at this layer = "910727000ns OR 0d:0h:0m:0s"

Time to generate states in total = "936745000ns OR 0d:0h:0m:0s"

We can see that the time taken to generate states is still very small, while the number of
the states located at layer 2 increases dramatically because there are 100 non-counterexample
states and 18 counterexample states located at layer 1 instead of only one (non-counterexample)
initial state located at layer 0. We next send the analyze(10, 10, 10) command from the
commander to the server. The server then prepares 10 meta-interpreter instances and randomly
selects 10 all-states and 10 cx-states to be model checked by each meta-interpreter instance.
This time we increase the number of selected states because we want to cover more states in
this layer. In this attempt, each meta-interpreter instance has completed its 20 model checking
experiments in a short time. There may be multiple possible ways to use the results obtained
from multiple meta-interpreter instances. One possible way to do so is to calculate the average
estimated time taken to model check all-states and cx-states. Another possible way to do so
is to consider the worst (largest) estimated time among multiple results. We take the latter
option in this work because this option treats the estimated time carefully. The output of one
meta-interpreter instance whose estimated verification time in total is the largest is as follows:

[interpreter(9)] status = completed

All-States = 10/10, timeAllStates = 618985000 670995000 630488000 598721000

649327000 597325000 492742000 5592072000 6228200000 2681010000

Cx-States = 10/10, timeCxStates = 298284000 201136000 232159000 242414000

239203000 193797000 232721000 277390000 108865000 8953974000

-----------------------

Average time to check an all-state = "1875986500ns OR 0d:0h:0m:1s"

Average time to check a cx-state = "1097994300ns OR 0d:0h:0m:1s"

Total time to check all-states = "10974521025000ns OR 0d:3h:2m:54s"
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Total time to check cx-states = "2381549636700ns OR 0d:0h:39m:41s"

-----------------------

Total time to check all states = "13356070661700ns OR 0d:3h:42m:36s"

Total time to generate states = "936745000ns OR 0d:0h:0m:0s"

Total time = "13357007406700ns OR 0d:3h:42m:37s"

We can see that the time taken to model check each state is very small and each model checking
experiment has been completed quickly. Therefore, we can take this layer configuration into
account as one candidate. Because the time taken to model check each state is about 1 second,
we may not need to use one more layer. However, we suppose that there may be a better
layer configuration. We then use one more layer with depth 2 by sending the layerCheck 2

command from the commander to the server. Once the server finishes, it outputs the following:

[HandleLayerCheck]

Depth = 6

Depth List = 2 2 2

#all-states = 187245

#cx-states = 104400

Time to generate states at this layer = "1053136606000ns OR 0d:0h:17m:33s"

Time to generate states in total = "1054073351000ns OR 0d:0h:17m:34s"

We can see that the time taken to generate states and the number of states at this layer increase
dramatically. We next send the analyze(10, 10, 10) command from the commander to the
server. Each model checking experiment has been completed quickly and the output of one
meta-interpreter instance whose estimated verification time is the largest is as follows:

[interpreter(9)] status = completed

All-States = 10/10, timeAllStates = 1870298000 18879451000 817523000 820570000

823072000 823560000 823654000 812557000 814786000 813653000

Cx-States = 10/10, timeCxStates = 813367000 815817000 811394000 812360000

823490000 818020000 812860000 817541000 826695000 2886698000

-----------------------

Average time to check an all-state = "2729912400ns OR 0d:0h:0m:2s"

Average time to check a cx-state = "1023824200ns OR 0d:0h:0m:1s"

Total time to check all-states = "511162447338000ns OR 5d:21h:59m:22s"

Total time to check cx-states = "106887246480000ns OR 1d:5h:41m:27s"

-----------------------

Total time to check all states = "618049693818000ns OR 7d:3h:40m:49s"

Total time to generate states = "1054073351000ns OR 0d:0h:17m:34s"

Total time = "619103767169000ns OR 7d:3h:58m:23s"

The estimated verification time in total is not better than the previous layer configuration.
Therefore, we stop here and do not need to use any more layers. This layer configuration
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Table 6.7: Parallel L+ 1-DCA2L2MC with different layer configurations

Protocol Layers Parallel L+ 1-DCA2L2MC (8 workers)

Qlock (10 processes)
2 2 42m 36s
2 2 2 2d 11h 31m

Anderson (9 processes)
2 2 12m 58s
2 2 2 1h 36m 13s

MCS (6 processes)
4 4 4 4 2 22h 13m 45s
4 4 4 4 2 2 2d 12h 47m

TAS (13 processes)
3 3 3 1d 12h 33m
3 3 3 3 1d 13h 53m

Table 6.8: Analysis time to find good layer configurations

Protocol Layers Time to gener-
ate states

Time to model
check states

Analysis time

Qlock (10 processes) 2 2 50s 13m 13m 50s
Anderson (9 processes) 2 2 21s 8m 8m 21s
MCS (6 processes) 4 4 4 4 2 8h 1m 15s 1h 20m 9h 21m 15s
TAS (13 processes) 3 3 3 38m 26s 30m 1h 8m 26s

should not be used. So far we have only one layer configuration candidate that is 2 2. However,
we conduct experiments for Qlock protocol with two layer configurations 2 2 and 2 2 2 to
demonstrate the usefulness of our approach. We use the MacPro machine above to conduct
the experiments. The experimental data are shown in Table 6.7. We can see that the layer
configuration 2 2 is better than 2 2 2 for Qlock protocol, which demonstrates the usefulness
of our approach to finding a good layer configuration for our tool. We conduct the same layer
configuration analyses for Anderson, MCS, and TAS protocols. Their good layer configurations
found are 2 2, 4 4 4 4 2, and 3 3 3, respectively, while the layer configurations that make their
verification time degrade are 2 2 2, 4 4 4 4 2 2, and 3 3 3 3, respectively. We conduct both two
layer configurations for each case study to demonstrate the usefulness of our approach. The
experimental data are shown in Table 6.7. We can see that the layer configurations 2 2, 4 4 4 4 2,
and 3 3 3 are better than 2 2 2, 4 4 4 4 2, and 3 3 3 3 in verification time for Anderson, MCS, and
TAS protocols, respectively. Using our approach, we can find the better layer configurations
for Qlock and Anderson protocols that are the same as the layer configurations used before
in Table 6.3, while we can find better layer configurations for MCS and TAS protocols than
the layer configurations used before in Table 6.3. Especially, we can reduce about 16 hours in
verification time from 2 days 5 hours 21 minutes to 1 day 12 hours 31 minutes with the new
layer configuration for TAS protocol.

Table 6.8 shows the time we spent selecting good layer configurations for the protocols used
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with our approach. The last three columns denote the time taken to generate states, the time
taken to model check states selected by meta-interpreter instances, and the analysis time in
total, respectively. The analysis time in total mainly depends on the time taken to generate
states at each layer. Because at each current final layer concerned, we only randomly select
some states for each meta-interpreter instance to conduct model checking experiments that do
not take much time. For Qlock and Anderson protocols, the time to generate states is small,
and therefore the total analysis time is also small. For MCS and TAS protocols, the time to
generate states is large, and therefore the total analysis time is also large. However, including
the analysis time, the total time taken to conduct model checking experiments with our tools
for Qlock, Anderson, and MCS protocols is still much better than Maude LTL model checker.
For TAS protocol, even with the good layer configuration found, our tool cannot outperform
Maude LTL model checker as described above. For TAS and MCS protocols, we need to spend
more time to model check states selected at layers 4 4 4 4 and 3 3, respectively, because these
layer configurations also can be regarded as our candidates. However, we can find better layer
configurations for them subsequently.

In summary, we have proposed an approach to finding good layer configurations with an
analysis tool that starts with two layers such that the first layer depth is small in a specific
range (e.g., 1–4), and then gradually stacks up layer by layer with a small depth. The small
depth can be recommended by our analysis tool based on the numbers of all-states and cx-
states reachable from an initial state at each layer depth in the specific range. At each current
final layer, we randomly select some all-states and cx-states to conduct model checking with
multiple meta-interpreter instances that run in parallel. For each meta-interpreter instance, we
estimate the verification time in total and the average time taken to model check a cx-state
and an all-state at the current final layer from which we can decide whether we should use one
more layer or not. Based on the output, we may select a good layer configuration. Note that
we estimate roughly the verification time based on the number of randomly selected states and
the number of meta-interpreter instances used. If the machine used in the analysis is powerful,
we can increase the number of instances so that even with the small number of states selected
for each instance, the coverage is increased. In conclusion, we should consider the number of
states selected, the number of meta-interpreter instances used, and the depth used for each
layer, to find a good layer configuration. Besides, we should use a different seed number to
select different states for each analysis. Some experiments were conducted to demonstrate the
usefulness of our analysis tool as well as our approach for layer configuration selection.

6.8 Scalability Testing

Scalability testing is used to measure how well an application performs with various problem
sizes and numbers of processors in terms of strong scaling and weak scaling.
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Table 6.9: Strong scaling data for our tool with TAS

Protocol Maude
LTL
Model
Checker

Layers L+ 1-
DCA2L2MC

#workers Parallel L+1-
DCA2L2MC

TAS (13 processes) 20h 18m 3 3 3 6d 13h 44m

8 3d 8h 36m
16 15h 30m
16 12h 2m
32 10h 11m

• Strong scaling: the number of processors is increased, while the problem size does not
change, making the workload for each processor reduce. An application scales perfectly
strongly if the time to complete the problem is reduced in proportion to the number of
processors increased.

• Weak scaling: both the number of processors and the problem size are increased such
that the workload for each processor does not change. An application scales perfectly
weakly if the time to complete the problem does not change when both the number of
processors and the problem size are increased.

In practice, both strong scaling and weak scaling cannot be achieved perfectly because the
communication overhead for algorithms in parallelization is often proportional to the number
of processors used. In this section, we measure strong scaling for our tool with TAS case study
only. Meanwhile, we ignore weak scaling at this moment because of the followings: it is non-
trivial to calculate the problem size of TAS properly from which we can increase the problem
size as well as the corresponding number of workers (processors) in our tool; even if we can
calculate the problem size properly, the MacPro does not have enough the number of cores to
make the workload for each processor unchanged.

For TAS case study, when eight workers were used, our tool could not outperform Maude
LTL model checker. Therefore, we would like to use the good layer configuration for TAS found
by our analysis tool in the previous section and to increase the number of workers to check
whether our tool can outperform Maude LTL model checker. Besides, we measure strong scaling
for our tool with TAS. The experimental data is shown in Table 6.9. Because the MacPro has
only 28 cores, we use only up to 32 workers. When the number of workers is 16, 24, and 32,
our tool can outperform Maude LTL model checker. The strong scaling speedup achieved by
increasing the number of workers is plotted in Fig. 6.4. The ideal speedup is the straight line
with rectangle marks, while the real speedup is the other line with square marks. The speedup
is calculated based on the ratio of the time taken for the parallel version and the sequential
version. Note that we use our new model checker integrated into our tool and conduct model
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Figure 6.4: Strong scaling speedup for TAS

checking at the final layer in parallel only in these experiments. The goal of strong scaling
is to find a sweet spot from which the time to complete the problem degrades subsequently.
Because of the limitation of our MacPro, we could not make a test with a large number of
workers. However, the speedup by increasing the number of workers tends to go up more or
less continuously and reach the sweet spot at the end. After that, if we keep on increasing
the number of workers, the speedup will go down because the communication overhead is high
while the workload for each worker becomes small. Model checking at the final layer in our
technique/tool is completely independent and the number of states and counterexample states
at the final layer is large. Hence, we conjecture that the sweet spot for TAS may require
thousands of workers. One piece of our future work is to use a high-performance system to
conduct experiments with our tool in which thousands of workers can be used.

6.9 Limitations

It is necessary to make each sub-state space, especially in the final layer, much smaller than the
original reachable state space of a system under model checking so as to use L+1-DCA2L2MC
and its parallel version effectively. If a system under model checking has some long lasso loops,
some sub-state spaces in the final layer may not be small enough. Thus, we should avoid any
long lasso loops in a system under model checking. In general, it would not be straightforward
to get rid of all long lasso loops from a system under model checking. Thus, we need to
come up with a technique that can handle such long loops. One possible approach to it is as
follows: each long lasso loop is divided into multiple short finite sequences of states, model
checking experiments for these finite sequences are conducted and their model checking results
are combined to conclude the model checking experiment for the long lasso loop.
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There are some systems, such as TAS, such that many states are shared by many sub-state
spaces in the final layer. If so, it is a non-trivial burden to tackle the final layer because it is
necessary to visit the same states multiple times by multiple workers. Neither L+1-DCA2L2MC
nor its parallel version can deal with such systems well.

Layer configuration selection needs efforts even though the analysis tool can make such
efforts moderate. It would be almost impossible to conduct layer configuration selection if
we do not have such an analysis tool. Thus, our analysis tool is very useful, which has been
demonstrated by describing how to find a good layer configuration for Qlock. However, it
would be preferable to make layer configuration selection fully automatic. We have almost all
technical components to this end, among which the analysis tool is the most crucial. We need
to conduct more case studies to find good parameter values, such as threshold and timeout,
although we should make it possible for human users to set those parameters. This is one
possible piece of our future work.

6.10 Summary

We have described a parallel version of L + 1-DCA2L2MC and a tool that supports it. The
tool has been implemented in Maude. We have also reported on some case studies in which
it is demonstrated that the tool can increase the running performance of model checking. We
have also described a technique to generate all counterexamples at once and developed a new
model checker to support the technique. Some experiments were conducted to demonstrate the
power of the technique that can improve the running performance of our tool. Furthermore,
layer configuration selection was addressed with an approach to finding a good layer configura-
tion for L + 1-DCA2L2MC technique and an analysis tool that supports the approach. Some
experiments were conducted to demonstrate the usefulness of the analysis tool as well as the
approach for layer configuration selection. Besides, our research group has proved a theorem to
guarantee the correctness of L+ 1-DCA2L2MC [39]. Therefore, the correctness of our parallel
version of L+ 1-DCA2L2MC is also preserved.

Although the technique presents a good performance and improves the sequential ver-
sion [125], we consider several lines of future work. We should conduct more case studies
with the tool. We have used several mutual exclusion protocols but need to use different kinds
of protocols, such as communication protocols.

Although we did not use any fairness assumptions in the case studies, it is often necessary
to use some fairness assumptions to model check liveness properties, such as leads-to ones.
An extension of Maude LTL model checker, Maude LTLRuLF model checker [145, 146], has
been developed, which makes it possible to conduct model checking experiments under fairness,
where LTLRuLF stands for linear temporal logic of rewriting under localized fairness. We could
use Maude LTLRuLF model checker instead of Maude LTL model checker.
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Chapter 7

Parallel Maude-NPA for Cryptographic
Protocol Analysis

Maude-NPA is a formal verification tool for analyzing cryptographic protocols in the Dolev-Yao
strand space model modulo an equational theory defining cryptographic primitives. It starts
from an attack state to find counterexamples or conclude that the attack concerned cannot be
conducted by performing a backward narrowing reachability analysis. Although Maude-NPA is
a powerful analyzer, its running performance can be improved by taking advantage of parallel
and/or distributed computing when dealing with non-trivial protocols whose state space is huge.
This chapter describes a parallel version of Maude-NPA in which the backward narrowing and
the transition subsumption at each layer in Maude-NPA are conducted in parallel. A tool
supporting the parallel version has been implemented in Maude with a master-worker model.
We report on some experiments of various kinds of protocols that demonstrate that the tool
can increase the running performance of Maude-NPA by 44% on average for all non-trivial case
studies experimented in which the number of states located at each layer is considerably large.

7.1 Introduction

Maude-NPA uses a breadth-first search (BFS) to explore the reachable state space. Given
a set of states in layer l (or depth l from an attack state, where the attack state is located
at layer 0), for each state in the set, Maude-NPA performs the backward narrowing just by
one step to obtain its successor states in layer l + 1, which is referred to as step (1). The
backward narrowing for each given state from the set of states can be conducted independently,
which opens an opportunity for parallelization so as to improve the running performance of
Maude-NPA. In addition, as soon as the successor states at each layer are obtained from step
(1), Maude-NPA conducts the transition subsumption, which is referred to as step (2). The
transition subsumption can be regarded as the partial order reduction for narrowing-based state
exploration, to remove states that are implied by either other states in the successor states or
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visited states (history states) from the set of successor states.
We have parallelized step (1) in our previous work [147]. In this chapter, we describe how

to parallelize steps (1) and (2) as well to improve the running performance of Maude-NPA
furthermore. Our parallel version of Maude-NPA is called Par-Maude-NPA. To distinguish
Par-Maude-NPA from the version described in [147], it may be called Par-Maude-NPA-2, while
the version described in [147] may be called Par-Maude-NPA-1. Maude-NPA is implemented
in Maude [13] and so are Par-Maude-NPA-1 and Par-Maude-NPA-2, where Maude is one direct
successor language of OBJ3 [126], an algebraic specification language, and based on rewriting
logic [127] as its theoretical foundation. Both Par-Maude-NPA-1 and Par-Maude-NPA-2 use
a master-worker model. Par-Maude-NPA-1 uses Maude sockets to transmit data between the
master and a worker. Maude sockets work well for Par-Maude-NPA-1 because only small data
are transmitted between the master and a worker in step (1). It is necessary to transmit
large data between the master and a worker in step (2). Thus, Par-Maude-NPA-2 uses Maude
meta-interpreters, a new feature of Maude, instead of Maude sockets.

Meta-interpreters can be run in a separate process to handle jobs independently and pro-
cesses can communicate with each other by using Unix domain sockets, which create filesystem
objects to communicate between processes on the same host with no IP address required.
Meanwhile, Maude sockets use TCP/IP sockets that require a unique IP address and a port
to communicate between two parties in the same host or different hosts. In the paper [148],
they demonstrate that Unix domain sockets are about two times faster than TCP/IP sockets.
Besides, it is mandatory to convert data to a string representation before sending them over
the network with Maude sockets, while it is not with meta-interpreters. Therefore, the use of
meta-interpreters is effective in Par-Maude-NPA-2.

7.2 Maude

Maude is a declarative language and high-performance tool that focuses on simplicity, ex-
pressiveness, and performance to support the formal specification and analysis of concurrent
programs/systems in rewriting logic. The language can directly specify membership equational
logic [67], which extends many-sorted and order-sorted equational logics with extra membership
predicates, and rewriting logic [127], and the tool provides several formal analysis methods, such
as reachability analysis and LTL model checking. This section gives the syntax of the Maude
language in a nutshell (see [13] for more detail).

Functional Modules

In Maude, a membership equational theory (Σ ,E ) is specified by a functional model M , declared
with the syntax: fmod M is (Σ ,E ) endfm, where (Σ ,E ) may contain a set of declarations as
follows:
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• importations of previously defined modules (protecting . . . or extending . . . or including
. . .)

• declarations of sorts (sort s . or sorts s s′ .)

• subsort declarations (subsort s < s′ .)

• declarations of function symbols (op f : s1 . . . sn → s . )

• declarations of variables (vars v v′ .)

• unconditional equations (eq t = t′ .)

• conditional equations (ceq t = t′ if cond .)

• membership axioms (mb t : s . or cmb t : t′ if cond .)

where s, s1, . . . , sn are sort names, v, v′ are variable names, t, t′ are terms, and cond is a
conjunction of equations (e.g., t = t′) and/or memberships (e.g., t : s). protecting requires
to use an imported module such that the model denoted by it should be preserved. extending
allows using an imported module such that new entities can be added to the model denoted by
it. including allows using an imported module such that a relation, such as equality, between
two different entities of the model denoted by it that can be introduced as well.

The following functional module defines natural number addition in Peano notation.

fmod PNAT is

sorts Zero NzNat Nat .

subsort Zero NzNat < Nat .

op 0 : -> Zero [ctor] .

op s : Nat -> NzNat [ctor] .

op _+_ : NzNat Nat -> NzNat [assoc comm] .

op _+_ : Nat Nat -> Nat [ditto] .

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

endfm

The module name is PNAT. There are some sorts: Zero for zero domain, NzNat for non-zero
natural number domain, Nat for natural number domain. The sorts Zero and NzNat are sub-
sorts of sort Nat. 0 is a constant of sort Zero. There are two function symbols: s and _+_,
where underbars indicate argument positions. The function symbol _+_ has two operators with
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different sorts of arguments, which is called subsort overloading. The ctor attribute is declared
for 0 and s as data constructor to distinguish them from the defined function _+_, which is
defined by two equations. We declare _+_ with the assoc and comm attributes as an associa-
tive and commutative operator. The second operator for the function symbol _+_ contains the
ditto attribute, meaning that it also has the assoc and comm attributes as the first operator.
The two equations are used as equational rules to perform the simplification in which instances
of the lefthand side pattern are replaced by the corresponding instances of the righthand side.
The process is called term rewriting, and the result of simplifying a term is called its normal
form. We can use the red command in Maude to reduce a term to its normal form with respect
to the equations in the specification. For example, we can reduce the term s(s(s(0))) + s(0)

and get its normal form as follows:

Maude> red in PNAT : s(s(s(0))) + s(0) .

result NzNat: s(s(s(s(0))))

System Modules

A rewrite theory R = (Σ ,E ,R) is specified by a system module, declared with the syntax:
mod R is (Σ ,E ,R) endm, where (Σ ,E ,R) may contain all possible declarations in (Σ ,E ) and
rewrite rules in R as follows:

• unconditional rewrite rules (rl [label] : u => v .)

• conditional rewrite rules (crl [label] : u => v if cond .)

where label is the name of a rewrite rule, u, v are terms, and cond is a conjunction of equations,
memberships, and/or rewrites (e.g., t => t′). Rewrite rules are also computed by rewriting from
left to right modulo the equations in the system module and regarded as local transition rules
in a possibly concurrent system. Furthermore, we can formally specify concurrent systems in
an object-oriented style. Concurrent object systems are modeled by a set of objects that can
interact with each other by sending and receiving messages.

The module CONFIGURATION in the prelude.maude file in Maude provides basic sorts and
constructors for modeling object-based systems as follows:

mod CONFIGURATION is

sorts Object Msg Configuration .

subsorts Object Msg < Configuration .

op none : -> Configuration [ctor].

op __ : Configuration Configuration -> Configuration [assoc comm config id: none] .

sorts Oid Cid .

sorts Attribute AttributeSet .
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subsort Attribute < AttributeSet .

op none : -> AttributeSet [ctor] .

op _,_ : AttributeSet AttributeSet -> AttributeSet [ctor assoc comm id: none] .

op <_:_|_> : Oid Cid AttributeSet -> Object [ctor object] .

endm

In Maude, each state of a system is called a configuration that is modeled as a term of
sort Configuration, which has the structure of a multiset made up of objects and messages.
Objects and messages are modeled as terms of sorts Object and Msg, respectively. Multiset
union for configurations is denoted by empty syntax (none) and a juxtaposition operator (__),
which is declared associative and commutative and has none as its identity. For object syntax,
there are four sorts introduced: Oid (object identifiers), Cid (class identifiers), Attribute (an
attribute of an object), and AttributeSet (multisets of attributes). In this syntax, an object
is a term of sort Object that has the following form:

< O : C | att1, . . ., attn >

where O is the object’s identifier of sort Oid, C is the object’s class identifier of sort Cid, and
att1, . . . , attn are the object’s attributes of sort AttributeSet. A message is a term of sort Msg,
where the declaration defines the syntax of the message m(v1 , . . . , vn) and the sorts s1, . . . , sn

of its parameters v1, . . . , vn as follows:

op m : s1 . . . sn -> Msg [ctor] .

Although messages do not have a fixed syntactic form, we follow a convention that the first and
second arguments of a message are the identifier of its destination object and the identifier of its
source object, respectively. For example, let us suppose to specify a client-server communication
in which there are several clients and servers, and the status of each server or client is either
idle or busy. Each server can have many clients but each client can communicate with only
one server. If a client C is idle, the client sends a request N, a natural number, to a server S

and becomes busy. If the server S is idle, then S receives the request (message), becomes busy,
and returns N + 1 to C as a message, meaning that the server increments N. Suppose that only
the server knows how to increment a natural number. A busy client can receive an answer and
become idle, and a busy server can become idle at any time. The system can be specified by
the following system module:

mod CLIENT-SERVER is

protecting NAT .

including CONFIGURATION .

sorts Status .

ops Client Server : -> Cid [ctor] . ops idle busy : -> Status [ctor] .

op status :_ : Status -> Attribute [ctor] . op val :_ : Nat -> Attribute [ctor] .
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op to :_ : Oid -> Attribute [ctor] . op m : Oid Oid Nat -> Msg [ctor] .

vars N N’ : Nat .

vars C S : Oid .

rl [req]: < C : Client | status : idle, val : N, to : S >

=> < C : Client | status : busy, val : N, to : S > m(S, C, N) .

rl [repl]: < S : Server | status : idle > m(S, C, N)

=> < S : Server | status : busy > m(C, S, (N + 1)) .

rl [recv]: < C : Client | status : busy, val : N, to : S > m(C, S, N’)

=> < C : Client | status : idle, val : N’, to : S > .

rl [idle]: < C : Server | status : busy >

=> < C : Server | status : idle > .

endm

where the four rewrite rules are given by the names req, repl, recv, and idle, respectively.
We can freely define the syntax of attributes. However, we follow the standard Maude notation.
For example, the attribute status with syntax status :_ we are able to write server objects
as < S : Server | status : idle >.

Let us suppose that there is a sever s communicating with two clients c1 and c2 in the client-
server system. Initially, the status of each s, c1, and c2 is idle, the values of val attributes of
c1 and c2 are 3 and 4, respectively, and the value of the to attribute of each c1 and c2 is s.
The initial state (referred to as init) and the object identifiers (s, c1, and c2) are defined in
the following module:

mod CLIENT-SERVER-TEST is

extending CLIENT-SERVER .

ops s c1 c2 : -> Oid .

op init : -> Configuration .

eq init = < s : Server | status : idle >

< c1 : Client | status : idle, val : 3, to : s >

< c2 : Client | status : idle, val : 4, to : s > .

endm

Given init, the rewrite rule req can be applied to the term expressing it at two positions,
meaning that there are at least two execution traces that start with init. Let us show a
fragment of one possible execution trace of the system in Fig. 7.1. Note that we ignore the to

attribute for simplicity because only one server is used. The first state transition from init
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(including the equational 
implification 3 + 1 = 4)

Figure 7.1: A fragment of one possible execution trace of the client-server system

to another state says that c1 sends the message m(s, c1, 3) to s and changes its status to
busy by applying the rewrite rule req. Likewise, the second state transition indicates that
s receives the message, replies to c1 with the message m(c1,s,4), and changes its status to
busy by applying the rewrite rule repl, where 4 is obtained from the equational simplification
of 3 + 1. The third state transition says that the status of s changes from busy to idle by
applying the rewrite rule idle. The fourth state transition indicates that c2 sends the message
m(s, c2, 4) to s and changes its status to busy by applying the rewrite rule req. The last
transition says that c1 receives the replied message from s and changes its status and the value
of the val attribute to idle and 4, respectively, by applying the rewrite rule recv.

Meta-interpreters

A meta-interpreter is an external object with an independent Maude interpreter, which has
its own module and view databases. Each meta-interpreter is run in a separate process that
can send and receive messages to/from other objects. We can work with meta-interpreters via
the module META-INTERPRETER in the meta-interpreter.maude file in Maude, which contains
several sorts, constructors, a built-in object identifier interpreterManager, and a collection of
command and response messages as follows:

mod META-INTERPRETER is

protecting META-LEVEL .

including CONFIGURATION .

sort RewriteCount .

subsort Nat < RewriteCount .

sorts InterpreterOption InterpreterOptionSet .

subsort InterpreterOption < InterpreterOptionSet .

op none : -> InterpreterOptionSet [ctor] .

op interpreter : Nat -> Oid [ctor] .
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op createInterpreter : Oid Oid InterpreterOptionSet -> Msg [ctor msg ...] .

op createdInterpreter : Oid Oid Oid -> Msg [ctor msg ...] .

op insertModule : Oid Oid Module -> Msg [ctor msg ...] .

op insertedModule : Oid Oid -> Msg [ctor msg ...] .

...

op reduceTerm : Oid Oid Qid Term -> Msg [ctor msg ...] .

op reducedTerm : Oid Oid RewriteCount Term Type -> Msg [ctor msg ...] .

...

op quit : Oid Oid -> Msg [ctor msg ...] .

op bye : Oid Oid -> Msg [ctor msg ...] .

op interpreterManager : -> Oid [special (...)].

endm

where some attributes and operators are omitted, where ... is written. The module imports
two modules META-LEVEL and CONFIGURATION so that we can use reflective programming (meta-
programming) facilities, such as moving up and down between reflective levels, and object-based
programming facilities, such as communicating with external objects, respectively.

Let us suppose to specify a system that has a server and the server is requested to increment
a natural number. However, the increment of the natural number is not carried out by the server
but by a meta-interpreter independently. The system can be specified by the following module:

mod SERVER is

extending META-INTERPRETER .

op Server : -> Cid .

op aServer : -> Oid .

op val :_ : Nat -> Attribute .

vars O O’ MI : Oid .

var AS : AttributeSet .

var T : Term .

var RT : Type .

vars N C : Nat .

rl [loadMod]: < O : Server | AS > createdInterpreter(O, O’, MI)

=> < O : Server | AS > insertModule(MI, O, upModule(’NAT, true)) .

crl [redTerm]: < O : Server | val : N, AS > insertedModule(O, MI)

=> < O : Server | val : N, AS > reduceTerm(MI, O, ’NAT, T)

if T := ’_+_[upTerm(N), upTerm(1)] .
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Figure 7.2: The execution trace of the system with a server and a meta-interpreter for incre-
menting a natural number.

rl [quit]: < O : Server | val : N, AS > reducedTerm(O, MI, C, T, RT)

=> < O : Server | val : downTerm(T, 0), AS > quit(MI, O) .

rl [bye]: < O : Server | AS > bye(O, MI)

=> < O : Server | AS > .

endm

where the four rewrite rules are given by the names loadMod, redTerm, quit, and bye, re-
spectively. A server has the val attribute that stores a natural number. Some messages are
exchanged by a server and a meta-interpreter to increment the natural number stored in the
val attribute. We can request the system to increment a natural number, namely 3, stored in
the val attribute of a server and get its result by the following command:

Maude> erewrite in SERVER :

<> < aServer : Server | val : 3 >

createInterpreter(interpreterManager, aServer, none) .

result Configuration: <> < aServer : Server | val : 4 >

where <> symbol means communicating with external objects, namely meta-interpreters, aServer
is an object identifier of class Server, and none is an empty set of options. Rewriting with
external objects is conducted by the external rewrite command erewrite in Maude.

Fig. 7.2 shows the execution trace for the rewrite above. Initially, the (command) message
createInterpreter is sent by aServer to the built-in object whose identifier is interpreterMa-
nager in order to create a meta-interpreter that increments the natural number stored in the val
attribute of aServer. The first state transition says that interpreterManager creates success-
fully a meta-interpreter whose id is interpreter(0) and answers using the (response) message
createdInterpreter to aServer. The second state transition indicates that aServer receives
the message, where the third parameter of the message is interpreter(0), and sends the

113



message insertModule to interpreter(0) so as to load the module NAT into the interpreter,
where the third parameter of the message is the meta-representation of module NAT. The second
state transition is carried out by applying the rewrite rule loadMod. The third state transition
says that interpreter(0) loads the module NAT into its own module database successfully
and sends the message insertedModule to aServer. The fourth state transition indicates that
aServer receives the message; the term 3 + 1 is meta-represented as ’_+_[’s_^3[’0.Zero],

’s_[’0.Zero]]; and the message reduceTerm in which the term is used as the third parameter
is sent to interpreter(0) by aServer. The fourth state transition is carried out by applying
the rewrite rule redTerm. The fifth state transition says that interpreter(0) reduces the term
successfully and sends the message reducedTerm to aServer, where the number of rewrites, the
reduced term, and the type of the reduced term are in the third, fourth, and fifth parameters,
respectively. The reduced term is currently meta-represented as ’s_^4[’0.Zero]. The sixth
state transition indicates that aServer receives the message, downs the reduced term to a nat-
ural number, namely 4, sets it to the value of the val attribute, and sends the message quit to
interpreter(0) to delete the meta-interpreter because we do not need it anymore. The sixth
state transition is carried out by applying the rewrite rule quit. The seventh state transition
says that at the same time when interpreter(0) is deleted successfully, the message bye is
sent to aServer by interpreter(0). The last state transition indicates that aServer just
ignores the message by applying the rewrite rule bye. The system terminates subsequently and
the incremented natural number, namely 4, can be observed as shown in the output of Maude.
Note that we do not take any error into account to make the example concise.

7.3 Maude-NPA

Maude-NPA [16] is a verification tool for analyzing cryptographic protocols modulo an equa-
tional theory, which is written in Maude and so its specifications follow the Maude syntax. This
section gives an overview of Maude-NPA in a nutshell (see [16] for more detail).

7.3.1 A Protocol Specification in Maude-NPA

A protocol specification specified in Maude-NPA consists of three modules as follows:

• PROTOCOL-EXAMPLE-SYMBOLS defines the syntax of the protocol, which consists of sorts,
subsorts, and operators.

• PROTOCOL-EXAMPLE-ALGEBRAIC defines the algebraic properties of the operators, consist-
ing of equational rules (equations) and equational axioms (axioms).

• PROTOCOL-SPECIFICATION defines the actual behaviors of the protocol using the Dolev-
Yao strand space model [58, 59] and attack states, consisting of at least three equations
by which three pre-defined operators in the module are defined as follows:
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– STRANDS-DOLVEYAO describes the capabilities of the intruder.

– STRANDS-PROTOCOL describes the strands of the honest principals. Note that the
intruder also can do anything that honest principals can do.

– ATTACK-STATE(N), where N is a natural number representing the attack state id,
allows us to specify an attack for which we would like to prove the protocol secure
or insecure.

Let us illustrate how to specify the Needham-Schroeder Public Key (NSPK) Protocol [46]
in Maude-NPA as an example. The NSPK protocol uses the standard Alice-and-Bob notation
with three messages exchanged as follows:

1. A→ B : pk(B,A;NA)

2. B → A : pk(A,NA;NB)

3. A→ B : pk(B,NB)

where A and B denote Alice and Bob principal identifiers (names), NA and NB denote the
nonces generated by A and B, and pk(A, ...) and pk(B, ...) are the encrypted data of names
and/or nonces, where ... is written, with the public keys of A and B, respectively. A → B

denotes that the data is sent from A to B.
The following modules are a Maude-NPA specification of the NSPK protocol, where three

dashes (---) denote comments in Maude.

fmod PROTOCOL-EXAMPLE-SYMBOLS is

protecting DEFINITION-PROTOCOL-RULES .

sorts Name Nonce Key .

subsort Name Nonce Key < Msg .

subsort Name < Key .

subsort Name < Public .

op pk : Key Msg -> Msg [frozen] .

op sk : Key Msg -> Msg [frozen] .

op n : Name Fresh -> Nonce [frozen] .

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

endfm
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The module PROTOCOL-EXAMPLE-SYMBOLS imports in protecting mode the module DEFINITION-
PROTOCOL-RULES that is a module in Maude-NPA and provides some sorts, such as the sort Msg
that represents the messages in the protocol, the sort Fresh that is used to identify terms that
must be unique, and the sort Public that is used to identify terms that are publicly available.
The NSPK protocol uses public-key cryptography and its principals exchange encrypted data
that are made from names and/or nonces. Hence, we define sorts Name, Key, and Nonce to
represent names, keys, and nonces, respectively. All three sorts are subsorts of sort Msg. Prin-
cipal names are publicly available and used as keys to encrypt data, and so the sort Name is a
subsort of both sorts Public and Key. The following operators are defined: pk for public key
encryption, sk for private key encryption, n for nonces that are unguessable values for princi-
pals, and _;_ for message concatenation. The frozen attribute tells Maude not to attempt to
apply rewrites at arguments of those symbols. The gather (e E) attribute indicates that the
operator _;_ should be parsed as right-associativity. We use some constants a, b, and i, denot-
ing an initiator, a responder, and an intruder, respectively. Although there are some specific
constants, the number of principals is unbounded, which is achieved by using variables in terms
representing states by Maude-NPA. Those specific constants are used to define our attacks so
that we can avoid unnecessary cases, for example, that the initiator and the responder are the
same principal.

fmod PROTOCOL-EXAMPLE-ALGEBRAIC is

protecting PROTOCOL-EXAMPLE-SYMBOLS .

var Z : Msg .

var Ke : Key .

eq pk(Ke,sk(Ke,Z)) = Z [variant] .

eq sk(Ke,pk(Ke,Z)) = Z [variant] .

endfm

The module PROTOCOL-EXAMPLE-ALGEBRAIC imports in protecting mode the module PROTOCOL-
EXAMPLE-SYMBOLS defined above. We declare two equations describing the relationship between
the public and private key encryption, which is called encryption/decryption cancellation. The
variant attribute denotes that the two equations are not regular Maude equations used for
simplification, but are equations used for variant-based equational unification [149] available in
Maude.

fmod PROTOCOL-SPECIFICATION is

protecting PROTOCOL-EXAMPLE-SYMBOLS .

protecting DEFINITION-PROTOCOL-RULES .

protecting DEFINITION-CONSTRAINTS-INPUT .

var Ke : Key .

vars X Y Z : Msg .
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vars r r’ : Fresh .

vars A B : Name .

vars N N1 N2 : Nonce .

eq STRANDS-DOLEVYAO

= :: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

:: nil :: [ nil | -(X), +(pk(Ke,X)), nil ] &

:: nil :: [ nil | +(A), nil ]

[nonexec] .

eq STRANDS-PROTOCOL

= :: r ::

[ nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil ] &

:: r ::

[ nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil ]

[nonexec] .

eq ATTACK-STATE(0)

= :: r ::

[ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))), -(pk(b,n(b,r))) | nil ]

|| n(b,r) inI, empty

|| nil

|| nil

|| nil

[nonexec] .

endfm

The module PROTOCOL-SPECIFICATION imports in protecting mode the module PROTOCOL-
EXAMPLE-SYMBOLS defined above and two more modules in Maude-NPA. We declare some vari-
ables that are used for specifying intruder strands, principal strands, and attack states. Each
strand is a sequence of positive and negative messages describing each principal’s executing a
protocol or the intruder’s performing actions as follows:

:: r1, . . . , rj :: [ m±
1 , . . . ,m±

i | m±
i+1, . . . ,m±

k ]

where r1, . . . , rj are the variables of sort Fresh uniquely generated in the strand, a positive
message m+ describes sending the message m, and a negative message m− describes receiving
the message m. The vertical bar is used to distinguish between present and future when the
strand appears in a state. Messages before the bar were sent or received in the past, while
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messages after the bar will be sent or received in the future. Strands are also used in a protocol
specification to build rewrite rules for the backward narrowing. The vertical bar in such a
strand is not significant. By convention, the vertical bar is assumed to be put right after the
initial nil in each strand in a protocol specification.

For specifying the intruder capabilities, all intruder strands follow a convention: a sequence
of negative variables followed by at least one positive message combining all previous variables
under a function symbol. For example, the intruder can concatenate two arbitrary messages
represented by the following strand:

:: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ]

The full intruder capabilities of the NSPK protocol are specified in STRANDS-DOLEVYAO. For
specifying the honest protocol principals, we represent each role of an initiator and a responder
as a strand containing received messages and sent messages as the behavior of the NSPK
protocol that is specified in STRANDS-PROTOCOL. For specifying attack states, each attack state
contains several components separated by the symbol ||. In this example, we specify only the
first two components of the attack state: (i) a set of strands and (ii) some positive intruder
knowledge expected to appear in the attack. The other three components are set to nil. In
general, we should specify only the first two components and the last component that is used
for authentication attacks. The attack state in the NSPK protocol specification is specified in
ATTACK-STATE(0) meaning that the intruder can glean the nonce generated by Bob. Hence,
we include Bob’s strand in the attack and describe specific nonce n(b, r) in the intruder
knowledge. To conduct the attack, we can use the following command in Maude-NPA:

Maude> reduce in MAUDE-NPA : run(0, unbounded) .

result ShortIdSystem: < 1 . 5 . 2 . 7 . 2 . 4 . 2 . 1 > (

:: nil ::

[ nil |

-(pk(i, n(b, #0:Fresh))),

+(n(b, #0:Fresh)), nil] &

:: nil ::

[ nil |

-(pk(i, a ; n(a, #1:Fresh))),

+(a ; n(a, #1:Fresh)), nil] &

:: nil ::

[ nil |

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))), nil] &

:: nil ::

[ nil |

-(a ; n(a, #1:Fresh)),
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+(pk(b, a ; n(a, #1:Fresh))), nil] &

:: #1:Fresh ::

[ nil |

+(pk(i, a ; n(a, #1:Fresh))),

-(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh))), nil] &

:: #0:Fresh ::

[ nil |

-(pk(b, a ; n(a, #1:Fresh))),

+(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh))), nil] )

|

pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh)) !inI,

pk(b, n(b, #0:Fresh)) !inI,

pk(b, a ; n(a, #1:Fresh)) !inI,

pk(i, n(b, #0:Fresh)) !inI,

pk(i, a ; n(a, #1:Fresh)) !inI,

n(b, #0:Fresh) !inI,

(a ; n(a, #1:Fresh)) !inI

|

+(pk(i, a ; n(a, #1:Fresh))),

-(pk(i, a ; n(a, #1:Fresh))),

+(a ; n(a, #1:Fresh)),

-(a ; n(a, #1:Fresh)),

+(pk(b, a ; n(a, #1:Fresh))),

-(pk(b, a ; n(a, #1:Fresh))),

+(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

-(pk(a, n(a, #1:Fresh) ; n(b, #0:Fresh))),

+(pk(i, n(b, #0:Fresh))),

-(pk(i, n(b, #0:Fresh))),

+(n(b, #0:Fresh)),

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh)))

|

nil

where 0 is the attack state id and unbounded is unbounded depth used in the attack. The
result of the command returns an initial state as a counterexample. It means that the NSPK
protocol does not satisfy the nonce secrecy property (NSP) as the flaw found by Lowe [45].
The initial state is represented by a unique state id followed by four sections separated by
the symbol | in the following order: a set of current protocol and intruder strands, intruder
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knowledge, a sequence of actual messages exchanged, and never pattern. Note that the initial
state is simplified before it is returned. For example, the ghost list section is eliminated from
the initial state that is explained in detail below.

7.3.2 How Maude-NPA Works

Maude-NPA starts from an attack state, a final insecure state, to perform a backward reacha-
bility analysis that determines whether or not it is reachable from an initial state, which has no
further backward steps. If that is the case, the initial state is a counterexample. The backward
search is performed by backward narrowing with symbolic execution because the attack state
is a term with logical variables. Each backward narrowing step can be regarded as the reverse
direction of state transitions, such as sending or receiving a message by principals, or manipu-
lating a message by intruders. Given a symbolic state, a backward narrowing step is performed
to return a previous symbolic state in the protocol. Thereby, we can obtain all successor states
(in the backward sense) from the state. In Maude-NPA, each state found during the backward
analysis is represented by a unique state id followed by five sections separated by the symbol
|| in the following order: a set of current protocol and intruder strands, intruder knowledge, a
sequence of messages, a ghost list, and never pattern.

For each state, the state id is a unique id assigned to each state during the backward
analysis. The set of current strands represents the messages that were sent or received in the
past (those messages before the symbol |) and the messages that will be sent or received in the
future (those messages after the symbol |) in each strand. The strand set also indicates how to
advance each strand in the execution process by partial substitutions for the messages in each
strand. The intruder knowledge represents what messages the intruder knows (symbol _inI) or
does not know yet (symbol _!inI) at each state. The sequence of messages denotes the actual
sequence of messages communicated to reach the state. The ghost list is extra information for
optimization in the super lazy intruder technique to reduce the state space. The never pattern
is used for authentication attacks.

We can divide the whole process of Maude-NPA into two main stages. In the first stage,
given a protocol specification P and an equational theory EP , Maude-NPA needs to do as
follows:

• Extracting the attack state St from the protocol given an attack state id file.

• Building rewrite rules RP based on the behavior of the protocol specified in the form of
intruder and regular strands along with some pre-defined rewrite rules in the Maude-NPA
specification.

• Generating grammars that represent infinite sets of states unreachable for the intruder to
reduce the state space.
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In the second stage, Maude-NPA performs the backward narrowing reachability analysis from
the attack state St using the relation �R−1

P ,EP where R−1
P is the set of rewrite rules derived

from RP by inverting its rewrite rules. Maude-NPA basically uses the breadth-first search to
explore the state space. There are three main steps needed to do for each layer exploration as
follows:

• The first step is to generate all successor states for the next layer given a set of states in
the current layer. The initial layer is layer 0, the attack state is located at layer 0, and
all successor states of the attack state with respect to the relation �R−1

P ,EP are located at
layer 1. This step also consists of almost all techniques to reduce the state space except
for the transition subsumption technique, which is used in the second step below.

• The second step is to simplify the successor states by the transition subsumption technique
for removing states that are subsumed by either other states in the successor states or
visited states (history states).

• Lastly, the third step filters states from the previous step by using the history states to
avoid state duplications and rules out initial states as counterexamples. The successor
states without duplication are then stored in the history states as visited states and the
depth bound is decreased by one.

The cycle repeats until any initial states (counterexamples) are found, a depth bound is reached,
or no states are found for the next layer.

The first step in the second stage actually performs the backward narrowing just by one
step to obtain all successor states from a given set of states in a layer. The successor states
then go through a series of optimization steps, such as giving priority to input messages in
strands, early detection of inconsistent states, the super lazy intruder, and filtering states by
the grammars. Given a set of states in layer l, for each state in the set, Maude-NPA performs
the backward narrowing to obtain its successor states in layer l+1, which is referred to as step
(1) in this chapter. We are aware that the backward narrowing for each given state from the
set of states can be executed independently, which opens an opportunity for parallelization. In
the next section, we will describe how to parallelize step (1) at each layer in which the successor
states are generated in parallel. Note that many reduction techniques are also included in this
step and the parallel version does not alter the number or form of the states in the state space.

The second step in the second stage plays an important role to reduce the state space in
Maude-NPA, which is referred to as step (2), which may transform an infinite-state system into
a finite one [150] and is also time-consuming because of its complexity. Basically, it performs
two sub-steps for the transition subsumption as follows:

• First, for each state in the successor states obtained from step (1), we check whether the
state is implied by other states in the successor states, which is referred to as step (2.1)
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in this chapter. If so, the state is discarded. Otherwise, we keep the state. Once step
(2.1) is complete, we obtain a new set of successor states such that no state is implied by
other states.

• Second, for each state in the successor states obtained from step (2.1), we check whether
the state is implied by some states in the history states, which is referred to as step (2.2)
in this chapter. If so, the state is discarded. Otherwise, we keep the state. Once step
(2.2) is complete, we obtain a new set of successor states such that no state is implied by
any state in the history states. The successor states are used as the input for the third
step of the second stage, which is referred to as step (3).

The transition subsumption is complex and a heavy task in Maude-NPA when the number
of successor states and history states is considerably large. Therefore, we can improve the
transition subsumption in Maude-NPA by parallelizing step (2.1) and step (2.2) at each layer,
which are described in detail in the next section. Meanwhile, we do not conduct step (3) in
parallel because the task in step (3) is not complex and can be completed quickly in sequence
even the number of history states is considerably large.

7.4 Parallel Maude-NPA and Its Tool Support

The support tool is implemented in Maude to conveniently extend the implementation of what
has been developed in Maude-NPA. We use object-based programming that can model an
object-based system and meta-interpreters that can handle jobs independently to build a par-
allel version of Maude-NPA with a master-worker model.

7.4.1 How to Parallelize Maude-NPA

As mentioned above, we parallelize the backward narrowing and the transition subsumption
at each layer in Maude-NPA. In our tool, a master maintains a shared cache that is a set
of visited states (history states), while each worker maintains some shared information, such
as the module used to conduct the backward narrowing, the grammars generated from the
protocol under verification for optimization, and the filter information specified by users. The
use of the shared cache prevents jobs that have been processed from being assigned to workers.
The use of the shared information prevents loading them again from each worker whenever it is
requested to handle a job. We maintain the status of the master whose value is one of narrowing ,
implication, implicationH , filter , and stop to distinguish that the master is processing step (1),
step (2.1), step (2.2), step (3), and checking for termination, respectively. Note that those
steps are performed in this order at each layer in the tool. There are four kinds of jobs that
are sent from the master to workers: narrowing , implication, combination, and implicationH

when we use different kinds of jobs to parallelize each step. narrowing jobs are used in step
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Figure 7.3: Conducting the backward narrowing in step (1) from the states at layer l in parallel.

(1), implication and combination jobs are used in step (2.1), and implicationH jobs are used in
step (2.2). Depending on the kind of the job, a worker is requested to handle a different task
as follows:

• narrowing requests a worker to conduct the backward narrowing given a state in step (1).
The result is a set of successor states reachable from the state.

• implication requests a worker to conduct the implication for a given set of states in step
(2.1). The result is a new set of states such that no state can be implied by other states
in the set.

• combination requests a worker to combine two given sets of states in step (2.1) by a
slightly different implication, which is explained in detail later. Note that each set of
states has been simplified by the implication before. The result is a set of states such
that no state can be implied by other states in the set.

• implicationH requests a worker to conduct the implication for a set of states with history
states given in step (2.2). The result is a set of states such that no state in the set can
be implied by any state in the history states.

There is only one kind of job that is sent from workers to the master. As soon as a worker
completes a job assigned to it by the master, the worker sends its result in the form of a set
of states to the master, delivering a job or a bunch of jobs made by the worker to the master.
Depending on the status of the master, the jobs are stored accordingly. The very initial job
is made by the master, while all the other jobs are made by workers and basically sent to the
master. Jobs are assigned to workers by the master unless the jobs have been tackled.

Fig. 7.3 shows an overview of how to conduct step (1) in parallel for states located at layer l.
The status of the master is currently narrowing . Given a set of states sl1, . . . , sln stored in jobs

at layer l as input, for each state, the master constructs a job whose type is narrowing and
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Figure 7.4: Conducting the transition subsumption in step (2.1) for the states at layer l+ 1 in
parallel.

Figure 7.5: Conducting the transition subsumption in step (2.1) for the states at layer l+ 1 in
parallel (continuously).

sends it to a worker. As soon as a worker receives the job, it conducts the backward narrowing
just by one step from the state encapsulated in the job independently to obtain its successor
states at layer l + 1. The worker then sends the successor states to the master and waits for a
new job. The master will store the successor states into next as output, all possible next jobs
(successor states) of the next layer, namely layer l + 1. If there are neither unprocessed jobs
left nor jobs being processed by workers, step (1) is complete. The master changes its status
to implication to move to conduct step (2.1).

Fig. 7.4 and Fig. 7.5 show an overview of how to conduct step (2.1) in parallel for those suc-
cessor states in next obtained from step (1). The status of the master is currently implication.
Firstly, the master divides the successor states in next into multiple partitions in which each
partition is a set of states (see Fig. 7.4). The number of partitions is calculated based on the
number of workers and the minimum number of states that should be assigned to a worker,
such that the number of partitions is smaller than or equal to the number of workers, which will
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Figure 7.6: Conducting the transition subsumption in step (2.2) for states with history states
at layer l + 1 in parallel.

be described in detail later. If the number of partitions is one, we do not conduct it in parallel
but in sequence. For each partition, the master constructs a job whose type is implication

and sends it to a worker. As soon as a worker receives the job, it conducts the implication
inside the set of states encapsulated in the job to obtain a set of simplified states such that
no state is implied by other states in the set. The worker then sends the simplified states to
the master that will be stored in simJobs, a queue of simplified jobs in which each job is a
set of simplified states. If there are no jobs being processed by workers, the master moves to
combine the simplified jobs in simJobs (see Fig. 7.5). For every two simplified jobs in simJobs,
the master constructs a job whose type is combination and sends it to a worker. As soon as
a worker receives the job, it combines the two sets of simplified states encapsulated in the job
by a slightly different implication, which will be described in detail later. The result is a set of
simplified states such that no state is implied by other states in the set. The worker then sends
the set of simplified states to the master and waits for a new job. The master will store the set
of simplified states into simJobs as a simplified job so that it can be combined with another
set of simplified states subsequently. If there is only one simplified job left in simJobs and no
jobs are being processed by workers, step (2.1) is complete. The master changes its status to
implicationH to move to conduct step (2.2).

Fig. 7.6 shows an overview of how to conduct step (2.2) in parallel from a set of simplified
successors states obtained from step (2.1). The status of the master is currently implicationH

and there is only one simplified job in simJobs that is the set of successor states. The master
dequeues simJobs to obtain the set of successor states and divides it into multiple partitions
in which each partition is a set of states. The number of partitions is calculated based on
the number of workers, the number of history states, and the minimum number of states that
should be assigned to a worker, such that the number of partitions is smaller than or equal to
the number of workers, which will be described in detail later. If the number of partitions is
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one, we do not conduct it in parallel but in sequence. For each partition with history states,
the master constructs a job whose type is implicationH and sends it to a worker. As soon
as a worker receives the job, it conducts the implication for the set of states with the history
states encapsulated in the job as described in step (2.2). The result is a set of simplified states
such that no state in the set is implied by any state in the history states. The worker then
sends it to the master to store in next. If there are no jobs being processed by workers, step
(2.2) is complete. The master changes its status to filter to conduct step (3). The master then
conducts step (3) in sequence and changes its status to narrowing for the next layer. The cycle
repeats until any initial states (counterexamples) are found, a depth bound is reached, or no
states are found for the next layer. If so, the master changes its status to stop to terminate the
tool subsequently.

7.4.2 Job Scheduling by the Master

In summary, the master is in charge of the following tasks. For step (1), the master is in charge
of collecting all successor states (jobs) from workers. For step (2.1), if it is necessary to conduct
step (2.1) in parallel, the master is in charge of collecting (simplified) jobs from workers in which
each job is a set of simplified states. Otherwise, the master is in charge of conducting step (2.1)
in sequence. For step (2.2), if it is necessary to conduct step (2.2) in parallel, the master is in
charge of collecting all states (jobs) from workers such that no state is implied by any state in
history states. Otherwise, the master is in charge of conducting step (2.2) in sequence. For step
(3), the master is in charge of conducting step (3) in sequence as Maude-NPA does. In addition,
the master is in charge of distributing (or assigning) unprocessed jobs to workers. The master
can stop the tool whenever counterexamples are found, there are no unprocessed jobs left for
the next layer, or the tool reaches a depth bound. Meanwhile, each worker is responsible for
processing a job assigned to it by the master. Depending on the kind of the job, the worker
needs to handle its corresponding task as described above. The worker then constructs a job
or a bunch of jobs and then sends them to the master. The master uses a set of states to store
jobs in step (1), a queue of sets of states to store (simplified) jobs in step (2.1), and a queue
of worker identifiers to distribute jobs to workers so that job distribution can be well-balanced.
Note that the number of jobs in step (2.2) is always smaller than or equal to the number of
available workers. Hence, we simply distribute each job to a worker and do not need to store
such jobs.

Algorithm 7 shows the pseudo-code for job scheduling by the master. workers is a queue
data structure that contains worker identifiers so that the master can assign jobs to workers.
jobs, next, and history are set data structures. jobs contains jobs (states) that are dis-
tributed to workers in step (1), while next contains all possible next jobs (successor states) of
the next layer. history contains all states explored at the moment. simJobs is a queue of sets
of states that contains (simplified) jobs that are distributed to workers in step (2.1). Initially,
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Algorithm 7: Job scheduling by the master.
input : P – a protocol specification

Id – an attack state id in the protocol specification
F – a filter
BStep – the maximum number of backward steps
N – a number of workers

output: empty or counterexamples

1 (jobs , simJobs , next , history)← (empty , empty , empty , empty);
2 (M ,GS , IS )← initialize(P , Id ,BStep,F );
3 workers ← initializeInterpreters(M ,GS ,F ,N );
4 jobs ← {IS}; history ← {IS}; initStates ← empty;
5 status ← narrowing;
6 while True do
7 narrowingStep() /* conduct step (1) in parallel */

8 implicationStep() /* conduct step (2.1) in parallel */

9 implicationWithHistoryStep() /* conduct step (2.2) in parallel */

10 filterStep() /* conduct step (3) in sequence */

11 if status = stop then
12 closeAllConnections();
13 return initStates ;

14 function receivingData() is
15 for k ← 1 to N do
16 if DATA← recv(workerk) then
17 enqueue(workers ,workerk);
18 (IST )← DATA;
19 if status = narrowing or status = implicationH then
20 next ← next ∪ IST ;
21 if status = implication then
22 enqueue(simJobs , {IST});

simJobs is set to the empty queue, while jobs, next, and history are set to the empty set
at line 1. In the first stage, Maude-NPA needs to build rewrite rules R−1

P in the form of a
module, an attack state, and grammars from a protocol specification P . The module is used
to perform the backward reachability analysis, the attack state is used as the beginning state,
and the grammars are used to remove unreachable states for intruders. This stage is proceeded
by the initialize function at line 2 with P , Id , BStep, and F parameters that are a protocol
specification, the id of an attack state in the specification, the maximum number of backward
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steps, and a filter that is +parallel as default denoting the parallelization mode, respectively.
The result of the function is deconstructed and stored in M, GS, and IS, which stand for the
module, the grammars, and the attack state, respectively. Once the first stage is completed, we
then prepare N workers by calling the initializeInterpreters function at line 3 in which
some shared information, such as M, GS, and F, are loaded. Note that we also need to load
many other modules into each interpreter from Maude as well as Maude-NPA in order to be
able to handle jobs assigned to workers by the master. The function returns a set of worker
identifiers, which is assigned to workers so that the master can request each worker to handle a
job in parallel subsequently. jobs and history are updated to contain only the attack state at
line 4. We use initialStates to store initial states (counterexamples) found by the tool that
also is initially set to the empty set at line 4. We maintain status as the status of the master
whose value is one of narrowing , implication, implicationH , filter , and stop as described above.
The status of the master is initially set to narrowing , meaning that the master is ready for
processing the backward narrowing at the first layer. The first while loop in the code fragment
at lines 6–13 conducts the backward narrowing analysis for the protocol under verification.
The master calls the narrowingStep, impliationStep, implicationWithHistoryStep, and
filterStep functions in order to conduct step (1), step (2.1), and step (2.2) in parallel, and
step (3) in sequence at each layer, respectively. Those functions are described in detail below.
At the end of the while loop, the master checks whether status is stop for termination. If
so, the master closes all connections and returns initialStates as the result. Otherwise, the
master keeps on doing for the next layer.

In Algorithm 7, the code fragment at lines 14–22 defines the receivingData function that
will be used in the narrowingStep, impliationStep, and implicationWithHistoryStep func-
tions to receive data from workers for parallelization. Whenever the master receives DATA from
each workerk, the worker identifier workerk is enqueued to workers at line 17 so that a job can
be assigned to workerk subsequently. Because DATA is only in the form of a set of states, the
master deconstructs DATA into a set of states IST at line 18. The master then checks whether
status is either narrowing or implicationH . If that is the case, the master inserts all states in
IST (a bunch of jobs) to the set of possible successor states next at line 20. Otherwise, status
is implication and so the master adds IST as an element (a simplified job) to simJobs at line
22. next is used to collect all possible successor states in step (1) and step (2.2), while simJobs
is used to collect (simplified) jobs to distribute to workers in step (2.1).

Algorithm 8 shows the pseudo-code of the narrowingStep function in which we conduct the
backward narrowing in step (1) in parallel for a given set of states at the layer being concerned
(see Fig. 7.3 as well). At first, the master checks whether status is not narrowing at line 2.
If so, it is not the case that we need to conduct step (1) here. The master exits the function
immediately. Otherwise, the status of the master is currently narrowing and the jobs needed to
be processed are currently stored in jobs. We start conducting step (1) in parallel in the code
fragment at lines 4–15. In the first while loop, the master calls the receivingData function
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Algorithm 8: Conducting the backward narrowing in step (1) at each layer in parallel.

1 function narrowingStep() is
2 if status != narrowing then
3 return;

4 while True do
5 receivingData();
6 while not isEmpty(workers) and not isEmpty(jobs) do
7 worker ← dequeue(workers);
8 IS ← getOne(jobs);
9 send(worker , narrowing, IS );

10 if isEmpty(jobs) and size(workers) = N then
11 if not isEmpty(next) then
12 status ← implication;

13 else
14 status ← stop;

15 return;

to collect jobs sent from workers at line 5. The code fragment at lines 6–9 checks continuously
whether workers and jobs are not empty. If that is the case, the master dequeues workers to
obtain a worker identifier, gets one job from jobs, constructs a job whose type is narrowing ,
and sends it to the worker at line 9. The code fragment at lines 10–15 checks whether there
are neither unprocessed jobs left nor jobs being processed by workers. If so, the master checks
whether next is not empty. If so, the master changes its status to implication at line 12 to move
to conduct step (2.1). Otherwise, the master changes its status to stop at line 14 to terminate
the tool because there is no state for the next layer. Lastly, the master exits the function at line
15. At this point, we have completed step (1) in parallel and the successor states are currently
stored in next.

Algorithm 9 shows the pseudo-code of the implicationStep function in which we conduct
the implication in step (2.1) in parallel for the successor states obtained from step (1) (see
Fig. 7.4 and Fig. 7.5 as well). The master first checks whether status is not implication at
line 2. If so, it is not the case that we need to conduct step (2.1) here. The master exits
the function immediately. Otherwise, the status of the master is currently implication and the
successor states are currently stored in next. As described above with Fig. 7.4, to conduct
step (2.1) in parallel, we first divide the successor states into multiple partitions so that each
partition can be simplified independently as described in step (2.1) in Maude-NPA. The size
of each partition may affect the running performance of the tool. Because if each partition
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Algorithm 9: Conducting the implication in step (2.1) for states at each layer in
parallel.

1 function implicationStep() is
2 if status != implication then
3 return;

4 nW ← neededWorkersForSim(size(next),N , simBatch);
5 if nW = 1 then

/* step (2.1) is conducted in sequence */

6 status ← implicationH;
7 next ← simplifyByImplicationL(next);
8 return;

/* step (2.1) is conducted in parallel */

9 (unusedW , usedW )← getWorkers(workers , nW );
10 workers ← unusedW ;
11 sendJobs(usedW , implication, next);
12 next ← empty ;
13 while True do
14 receivingData();
15 while not isEmpty(workers) and size(simJobs) > 1 do
16 worker ← dequeue(workers);
17 IST1 ← dequeue(simJobs);
18 IST2 ← dequeue(simJobs);
19 send(worker , combination, IST1 , IST2 );

20 if size(simJobs) = 1 and size(workers) = N then
21 status ← implicationH;
22 next ← dequeue(simJobs);
23 return;

contains a small number of states (a light job), a worker may finish its task quickly and so
the communication cost may be larger than the benefit able to be gained from parallelization.
Hence, we use simBatch denoting the minimum number of states in each partition that should
be assigned to a worker. Based on the number of successor states in next, the number of
workers N , and simBatch, we calculate the number of needed workers for parallelization as
follows: each selected worker has a job such that the number of states is at least simBatch

states. Note that simBatch is set to 20 as default and the number of needed workers is a
positive natural number and less than or equal to N because we only have N workers available.
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We then call the neededWorkersForSim function at line 4 to calculate the number of needed
workers to conduct step (2.1) in parallel. The master checks whether the number of needed
workers is equal to one at line 5. If so, we do not need to parallelize step (2.1) and conduct it in
sequence in the code fragment at lines 6–8. We first set status to implicationH at line 6 and
call the simplifyByImplicationL function with next as its parameter at line 7. The function
is defined in Maude-NPA to conduct step (2.1) in sequence. next is then updated to the result
of the function. Lastly, we exit the function at line 8 to move to conduct step (2.2). If the
number of needed workers is greater than one, we conduct step (2.1) in parallel in the code
fragment at lines 9–22. We first pick up nW workers from workers by calling the getWorkers

function at line 9. unusedW and usedW are assigned the workers that are not used and the ones
that are used for parallelization, respectively. Note that there may be some workers that are
not used depending on the number of successor states because of the use of simBatch. We then
assign unusedW to workers at line 10, while we use usedW and next to start parallelizing step
(2.1) by calling the sendJobs function at line 11. The function divides the successor states in
next evenly to each worker in usedW. Each divided partition is assigned to a worker as a job
whose type is implication. We then set next to the empty set at line 12. As soon as a worker
completes a job assigned to it by the master, it returns a set of simplified states as a result and
sends the result to the master. In the code fragment at lines 13–23, we call the receivingData
function at line 14 to receive such results as (simplified) jobs and store them in simJobs.

As described above with Fig. 7.5, for every two jobs in simJob, we combine the two sets
of states into one set of states such that no state is implied by other states in the set. The
code fragment at lines 15–19 checks continuously whether workers is not empty and simJobs

contains more than one job. If that is the case, the master dequeues workers and simJobs

to obtain a worker identifier and two jobs, constructs a job whose type is combination, and
sends it to the worker at line 19. As soon as the worker receives the job, it combines the two
sets of states into one set and sends it to the master. The master will store it into simJob

as a (simplified) job so that it can be combined with another job subsequently. The code
fragment at lines 20–23 checks whether simJobs contains only one job and no jobs are being
processed by workers. If that is the case, the master changes its status to implicationH and
dequeues simJobs to obtain the set of successor states and assign it to next at lines 21 and
22, respectively. Lastly, the master exits the function at line 23 to move to conduct step (2.2).
At this point, we have completed step (2.1) in parallel and the successor states are currently
stored in next.

Algorithm 10 shows the pseudo-code of the implicationWithHistoryStep function in
which we conduct the implication with history states in step (2.2) in parallel for the suc-
cessor states obtained from step (2.1) (see Fig. 7.6 as well). The master first checks whether
status is not implicationH at line 2. If so, it is not the case that we need to conduct step
(2.2) here. The master exits the function immediately. Otherwise, the status of the master
is currently implicationH and the successor states are currently stored in next. As described
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Algorithm 10: Conducting the implication in step (2.2) for states with history states
at each layer in parallel.

1 function implicationWithHistoryStep() is
2 if status != implicationH then
3 return;

4 nW ← neededWorkersForSimH (size(history), size(next),N , simBatchH );
5 if nW = 1 then

/* step (2.2) is conducted in sequence */

6 next ← simplifyByImplicationH (history , next);
7 status ← filter;
8 return;

/* step (2.2) is conducted in parallel */

9 (unusedW , usedW )← getWorkers(workers , nW );
10 workers ← unusedW ;
11 sendJobs(usedW , implicationH , history , next);
12 next ← empty ;
13 while True do
14 receivingData();
15 if size(workers) = N then
16 status ← filter;
17 return;

above with Fig. 7.6, we divide the successor states into multiple partitions so that the impli-
cation for each partition with history states can be conducted independently as described in
step (2.2) in Maude-NPA. Note that in Fig. 7.6 we divide the set of successor states in the last
job in simJobs on the fly instead of assigning it to next and then dividing the set of successor
states in next for simplicity. The size of each partition and the number of history states may
affect the running performance of the tool. Because if each partition and history states contain
a small number of states (a light job), a worker may finish its task quickly and so the com-
munication cost may be larger than the benefit able to be gained from parallelization. Hence,
we use simBatchH that denotes the minimum number of the multiplication of the number of
history states and the number of states in each partition that should be assigned to a worker.
Based on the number of successor states in next, the number of history states in history, the
number of workers N , and simBatchH, we calculate the number of needed workers to conduct
step (2.2) in parallel as follows: each selected worker has a job such that the multiplication of
the number of states in its partition and the number of history states is at least simBatchH.

132



Note that simBatchH is set to 50 as default and the number of needed workers is a positive
natural number and less than or equal to N because we only have N workers available.

We then call the neededWorkersForSimH function to calculate the number of needed workers
to conduct step (2.2) in parallel at line 4. The master checks whether the number of needed
workers is equal to one at line 5. If that is the case, we do not need to parallelize step (2.2) and
conduct it in sequence by calling the simplifyByImplicationH function with two parameters:
history and next at line 6. The function is defined in Maude-NPA to conduct step (2.2) in
sequence. The result of the function is assigned to next. The master then changes its status
to filter and exits the function to move to conduct step (3) at lines 7 and 8, respectively. If
the number of needed workers is greater than one, we conduct step (2.2) in parallel in the code
fragment at lines 9–17. We first pick up nW workers from workers by calling the getWorkers

function at line 9. Note that there may be some unused workers depending on the number
of successors and the number of history states because of the use of simBatchH. unusedW and
usedW are assigned the workers that are not used and the ones that are used for parallelization,
respectively. We then assign unusedW to workers at line 10, while we use usedW, next, and
history to conduct step (2.2) in parallel by calling the sendJobs function at line 11. The
function divides the successor states in next evenly to each worker in usedW. Each divided
partition and history states are assigned to a worker as a job whose type is implicationH . We
then set next to the empty set at line 12. As soon as a worker completes a job assigned to it by
the master, it returns a set of simplified states as a result and sends the result to the master.
In the code fragment at lines 13–17, we call the receivingData function at line 14 to receive
such results and store them in next. The code fragment at lines 15–17 checks whether no jobs
are being processed by workers. If that is the case, the master changes its status to filter and
exits the function to move to conduct step (3) at lines 16 and 17, respectively. At this point,
we have completed step (2.2) and the successor states are currently stored in next.

Algorithm 11 shows the pseudo-code of the filterStep function in which we conduct step
(3) in sequence at the master. The master first checks whether status is not filter at line
2. If so, it is not the case that we need to conduct step (3) here. The master exits the
function immediately. Otherwise, the status of the master is currently filter and the succes-
sor states are currently stored in next. The master first filters state duplications from next

with history states and rules out initial states from next as counterexamples by calling the
filterWithHistoryAndInit function at line 4. The initial states and the final successor states
of the layer being concerned are assigned to INIT and IST, respectively. The master then
updates jobs, next, and BStep to IST, empty, and BStep−1 at line 5 for the next layer, re-
spectively. Note that if BStep is unbounded, then BStep−1 is still unbounded. IST is then
added to history to mark as visited states at line 6. The master changes its status to narrowing

at line 7 to ready for the next layer. Lastly, the master checks if INIT is not empty, BStep is
equal to 0, or jobs is empty. If that is the case, the master assigns INIT to initialStates and
changes its status to stop for termination. If there are any counterexamples, they will be stored
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Algorithm 11: Filtering state duplications and ruling out initial states at each layer
in step (3) in sequence.

1 function filterStep() is
2 if status != filter then
3 return;

4 (INIT , IST )← filterWithHistoryAndInit(M , history , next);
5 (jobs , next ,BStep)← (IST , empty ,BStep − 1 );
6 history ← history ∪ IST ;
7 status ← narrowing;
8 if not isEmpty(INIT ) or BStep = 0 or isEmpty(jobs) then
9 initStates ← INIT;

10 status ← stop;

in initialState. At this point, we have completed step (3) and move to check for termination
at lines 11–13 in Algorithm 7.

7.4.3 Job Handing by Workers

Algorithm 12 shows the pseudo-code for job handling by workers. Each worker maintains some
shared information, such as M, GS, and F. Whenever a worker is requested to handle a job,
the worker receives DATA from the master. The kind of the job is narrowing , implication,
combination, or implicationH . The code fragment at lines 3–5 checks whether the kind of the
job is narrowing . If that is the case, the worker deconstructs DATA to obtain the state IS at line
3. Given M, GS, F, and IS, the nextBackNarrowForParallel function performs the backward
narrowing just by one step to obtain its successor states IST reachable from IS at line 4. IST

is then sent to the master as a bunch of jobs at line 5. The code fragment at lines 6–8 checks
whether the kind of the job is implication. If that is the case, the worker deconstructs DATA

to obtain the set of states IST at line 6. Given IST, the simplifyByImplicationL function
performs the implication in step (2.1) for the set of states IST at line 7. The function returns a
set of simplified states, which is assigned to IST’, such that no state is implied by other states
in the set. IST’ is then sent to the master as a simplified job at line 8. The code fragment at
lines 9–11 checks whether the kind of the job is combination. If that is the case, the worker
deconstructs DATA to obtain two sets of states IST1 and IST2 at line 9. Note that each set of
states has been simplified before. Given IST1 and IST2, the combineSimplifyByImplicationL
function combines the two sets in step (2.1) with a slightly different implication. Basically, we
do not need to check the implication for the states in each set. For each state in the set IST1, if
the state is implied by a state in the set IST2, then the state is removed from the set IST1. For
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Algorithm 12: Job handling by workers.
input : M – the module used to conduct the backward narrowing

GS – the grammars generated from the protocol under verification
F – a filter specified from users

1 while isOpen() do
2 if DATA ← recv(master) then
3 if (narrowing, IS )← DATA) then
4 IST ← nextBackNarrowForParallel(M ,GS ,F , IS );
5 send(master , IST );

6 else if (implication, IST )← DATA then
7 IST ′ ← simplifyByImplicationL(IST );
8 send(master , IST ′);

9 else if (combination, IST1 , IST2 )← DATA then
10 IST ← combineSimplifyByImplicationL(IST1 , IST2 );
11 send(master , IST );

12 else if (implicationH,History , IST )← DATA then
13 IST ′ ← simplifyByImplicationH (History , IST );
14 send(master , IST ′);

each state in the set IST2, if the state is implied by a state in the set IST1 that has been checked,
then the state is removed from the set IST2. Thereby, we can obtain a set of states such that
no state can be implied by other states in the set. The result of the function is assigned to IST,
which is then sent to the master as a simplified job at line 11. The code fragment at lines 12–14
checks whether the kind of the job is implicationH . If that is the case, the worker deconstructs
DATA to obtain the history states history and the set of states IST at line 12. Given history

and IST, the simplifyByImplicationH function performs the implication in step (2.2) at line
13. The result of the function is a set of simplified states, which is assigned to IST’, such that
no state is implied by any state in the history states. IST’ is then sent to the master as a
bunch of jobs at line 14. Note that workers terminate if and only if the master closes all con-
nections. The nextBackNarrowForParallel and combineSimplifyByImplicationL functions
are built based on existing functions in Maude-NPA, while the simplifyByImplicationL and
simplifyByImplicationH functions are defined in Maude-NPA to conduct step (2.1) and step
(2.2) in sequence, respectively.
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7.5 Experiments

We have used a MacPro computer that carries a 2.5 GHz microprocessor with 28 cores and
1.5 TB memory to conduct experiments. We use Maude-NPA and multiple parallel versions
of Maude-NPA including Par-Maude-NPA-1 and Par-Maude-NPA-2 in our case studies. The
tool and the case studies for the experiments are publicly available at the webpage in Foot-
note 5. Besides, the original source code of the case studies and more protocols are listed at
the webpage.8

We have conducted experiments on various kinds of protocols to confirm the usefulness of
Par-Maude-NPA-2 such as Symmetric Key Protocols, Homomorphism Protocols, Exclusive OR
Protocols, API Protocols, PKCS Protocols, Choice Protocols, and Distance-Bounding Proto-
cols. The experimental data are shown in Tables 7.1–7.2. The first, second, and third columns
denote the name of the protocols, the attack state id used in protocol specifications, and the
depth bound, respectively. The fourth and fifth columns denote the verification time excluding
the time taken to generate the grammars for protocols when conducting formal verification/-
analysis with Maude-NPA and Par-Maude-NPA-2, respectively. In a row, the bold value is
either in the fourth column or the fifth column denoting the corresponding winning tool. The
sixth column denotes the percentage of improvement when using Par-Maude-NPA-2. If the
value is a positive number, namely X, it means that the Par-Maude-NPA-2 is X% faster than
Maude-NPA. Conversely, if the value is a negative number, namely −X, it means that Maude-
NPA is X% faster than Par-Maude-NPA-2. The last column denotes the average number of
states at each layer for each worker to handle, respectively. Furthermore, we inspect the num-
ber of states located at each layer for each protocol shown in a document publicly available at
Footnote 5, which resides under the documents folder. Formal verification experiments termi-
nate as soon as initial states (counterexamples) are found, the depth bound is reached, or no
states are found for the next layer.

Our previous tool, Par-Maude-NPA-1, supports a parallel version of Maude-NPA [147] that
uses Maude sockets to communicate the master and workers and so we can flexibly choose to
use a shared-memory machine or a distributed environment. Meanwhile, the tool in this work,
Par-Maude-NPA-2, supports a new parallel version of Maude-NPA that uses meta-interpreters
and so we can use only a shared-memory machine. For all experiments in Tables 7.1–7.2,
we use a master and eight workers with a shared-memory machine, the MacPro computer.
Notice that we conduct the experiments with Par-Maude-NPA-2 that are the same as what
we have done with Par-Maude-NPA-1 in [147]. The experimental data say that for simple
case studies (25 experiments) whose verification time is less than 40 seconds, Maude-NPA is
faster than Par-Maude-NPA-2 because the number of states located at each layer is very small
and the verification time is so short that the communication cost between the master and
workers as well as the cost to prepare workers and load many modules into each worker become

8http://personales.upv.es/sanesro/Maude-NPA_Protocols/index.html
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Table 7.1: Experimental results of Maude-NPA and Par-Maude-NPA-2.

Protocol Attack
State

Bound Maude-
NPA
(seconds)

Par-Maude-
NPA-2
(seconds)

P(%) States/
Layer/
Worker

1. Symmetric Key Protocols
Amended Needham Schroeder 0 7 4588.61 1967.806 57 11.11
Carlsen Secret Key Initiator 0 5 224.175 115.507 48 3.73
Denning Sacco 0 11 35.243 30.269 14 0.43

Diffie Hellman
0 11 284.211 113.55 60 1.56
1 12 286.663 104.365 64 1.45
2 13 35.371 23.073 35 0.32

ISO-5 Pass Authentication 0 5 101.649 54.764 46 2.1
Kao-Chow RA 0 4 52.235 28.643 45 2
Kao-Chow RAHK 0 4 4.027 14.42 -72 0.19
Kao-Chow RAT 0 4 114.414 67.203 41 1.94
Otway-Rees 0 4 72.516 42.553 41 2.16
Secret 06 0 2 1.732 6.887 -75 0.38
Secret 07 0 4 2.589 9.154 -72 0.28
Wide Mouthed Frog 0 3 16.11 15.009 7 1.92
Woo and Lam Authentication 0 4 1.371 8.3 -83 0.28
Yahalom 0 4 45.216 27.557 39 1.91
2. Homomorphism Protocols
Needham Schroeder Lowe ECB 0 7 73.869 44.835 39 1.11
3. Exclusive OR Protocols
Needham Schroeder Lowe XOR 0 8 10.22 13.856 -26 0.31
SK3 0 3 4.162 12.037 -65 0.17
TMN ltv-F-tmn-asy 0 5 157.442 37.72 76 0.88
WIRED ltv-C-wep-asy 0 5 14.392 20.574 -30 0.15
WIRED ltv-C-wep-variant 0 5 15.571 23.035 -32 0.15
4. API Protocols

YubiKey

0 9 3.487 12.657 -72 0.17
1 7 93824.875 28988.722 69 5.13
21 8 341.529 134.66 61 0.8
3 7 13092.864 4225.64 68 3

YubiHSM attack(d) 0 9 843.388 404.978 52 2.38

burdensome. However, Par-Maude-NPA-2 still can finish in a reasonably short amount of time.
As described above we use simBatch and simBatchH to decide whether we should conduct step
(2.1) and step (2.2) in parallel, respectively. For simple case studies, we do not need to conduct
step (2.1) and step (2.2) in parallel because the number of successor states and history states
at each layer is small. For non-trivial case studies (34 experiments) in which the number of

137



Table 7.2: Experimental results of Maude-NPA and Par-Maude-NPA-2.

Protocol Attack
State

Bound Maude-
NPA
(seconds)

Par-Maude-
NPA-2
(seconds)

P(%) States/
Layer/
Worker

5. PKCS Protocols
PKCS11 a1-noComp 0 4 24.815 23.551 5 0.81
PKCS11 a2-noComp 0 6 69.532 44.621 36 0.75
PKCS11 a3-noComp 0 6 296.424 164.974 44 1.6
PKCS11 a4-noComp 0 7 62.886 39.183 38 0.88
PKCS11 a5-noComp 0 9 382.498 225.497 41 1.82
6. Choice Protocols

encryption mode

0 4 3.164 10.715 -70 0.28
1 4 8.587 11.811 -27 0.78
2 10 67.941 39.871 41 1.1
3 11 136.958 56.155 59 1.61

rock paper scissors
0 9 125.615 52.584 58 1.81
1 1 0.389 5.305 -93 0.13
2 2 1.003 6.574 -85 0.38

TLS regular 0 3 6.727 13.827 -51 0.17
TLS attack 0 11 8695.211 3150.536 64 3.15
7. Distance-Bounding Protocols

brands chaum
1 4 6.236 11.817 -47 0.25
2 6 16.186 17.121 -5 0.29

CRCS
1 9 766.746 291.909 62 0.75
2 8 121.77 83.297 32 0.42

H&K
1 5 16.792 15.401 8 0.35
2 2 1.174 7.136 -84 0.13

MAD
1 9 175.382 96.522 45 0.67
2 6 967.156 396.371 59 2.42

Meadows v1-DH
1 4 1.646 9.092 -82 0.13
2 8 32.153 32.836 -2 0.28

Meadows v2-DH
1 4 1.694 9.08 -81 0.13
2 3 2.464 8.884 -72 0.17

Munilla
1 7 186.24 66.813 64 1.45
2 4 6.279 12.942 -51 0.19

Swiss Knife
1 4 6.69 12.201 -45 0.25
2 4 26.862 25.465 5 0.38

TREAD
1 4 6.444 12.205 -47 0.25
2 4 5.166 11.785 -56 0.25
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Table 7.3: The effectiveness of the use of meta-interpreters and the parallelization of step (2.1)
and step (2.2).

Protocol Attack
State

Bound Maude-
NPA
(seconds)

Par-
Maude-
NPA-1
(seconds)

P1(%) Par-
Maude-
NPA-1’
(seconds)

P1’(%) Par-
Maude-
NPA-2
(seconds)

P2(%)

Amended NS 0 7 4588.61 2821.933 39 2615.698 43 1967.806 57
YubiKey 1 7 93824.875 65294.633 30 59173.668 37 28988.722 69
TLS attack 0 11 8695.211 6997.392 20 4366.156 50 3150.536 64

states located at each layer is larger, Par-Maude-NPA-2 has a very good performance that is
44% faster than Maude-NPA on average, demonstrating its potential. Among the non-trivial
case studies, there are some case studies for which we may not need to conduct step (2.1) and
step (2.2) in parallel at some layers, where the number of states and history states at each layer
is small, because of the use of simBatch and simBatchH. For the three protocols Amended
Needham Schroeder, YubiKey, and TLS Attack whose verification time is the largest among all
protocols, Par-Maude-NPA-2 can largely improve the running performance of Maude-NPA by
57%, 69%, and 65%, respectively. Meanwhile, Par-Maude-NPA-1 can only improve the running
performance of Maude-NPA by 39%, 30%, and 20%, respectively [147], which demonstrates that
Par-Maude-NPA-2 can largely improve the running performance of Par-Maude-NPA-1 as well
as Maude-NPA. This is because the tool uses meta-interpreters instead of Maude sockets and
parallelizes not only the backward narrowing in step (1) but also the transition subsumption in
step (2.1) and step (2.2) in Maude-NPA. For step (1), the average number of states at each layer
for a worker is measured to let us know how busy each worker is, which reflects the number of
states located at each layer. The busier workers are and the deeper the depth bound is, the
more benefit we may gain from the use of parallelization for step (1). For step (2.1) and step
(2.2), the more successor states and history states at each layer, the more benefit we may gain
from the use of parallelization also.

In addition, we would like to demonstrate the effectiveness of the use of meta-interpreters
and the parallelization of the transition subsumption in step (2.1) and step (2.2). We use
another version of Par-Maude-NPA-2, called Par-Maude-NPA-1’, in which only the backward
narrowing in step (1) is parallelized while the transition subsumption in step (2.1) and step
(2.2) are performed in sequence by setting simBatch and simBatchH to unbounded. Par-Maude-
NPA-1’ can be regarded as another version of Par-Maude-NPA-1 in which meta-interpreters
are used instead of Maude sockets. We conduct experiments for the three protocols whose
verification time is the largest among all protocols because the number of states at each layer
of the three protocols is large and so we can see the difference between Par-Maude-NPA-1,
Par-Maude-NPA-1’, and Par-Maude-NPA-2 in the running performance. We use one master
and eight workers with the MacPro machine to conduct experiments. The experimental results
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Table 7.4: Par-Maude-NPA-1 and Par-Maude-NPA-2 with various numbers of workers.

Protocol Attack
State

Bound Maude-
NPA
(seconds)

#Workers Par-
Maude-
NPA-1
(seconds)

P1(%) Par-
Maude-
NPA-2
(seconds)

P2(%) States/
Layer/
Worker

Amended NS 0 7 4588.61
8 2821.933 39 1967.806 57 11.11
16 2651.974 42 1787.24 61 5.55
24 2646.479 42 1790.715 61 3.7

YubiKey 1 7 93824.875
8 65294.633 30 28988.722 69 5.13
16 61365.349 35 24756.166 74 2.56
24 60937.287 35 22088.416 76 1.71

TLS attack 0 11 8695.211
8 6997.392 20 3150.536 64 3.15
16 6960.781 20 2393.488 72 1.57
24 7193.625 17 2392.824 72 1.05

are shown in Table 7.3. Note that Amended NS denotes the Amended Needham Schroeder
protocol. The sixth, eighth, and tenth columns denote the percentage of improvement for
Par-Maude-NPA-1, Par-Maude-NPA-1’, and Par-Maude-NPA-2 compared to Maude-NPA, re-
spectively. For the three protocols, Par-Maude-NPA-1’ can improve the running performance
of Maude-NPA from 39% to 43% (4% increased), 30% to 37% (7% increased), 20% to 50% (30%
increased) compared to Par-Maude-NPA-1, respectively, demonstrating that the use of meta-
interpreters instead of Maude sockets is effective. Meanwhile, Par-Maude-NPA-2 can improve
the running performance of Maude-NPA from 43% to 57% (14% increased), 37% to 69% (32%
increased), 50% to 64% (14% increased) for the three protocols compared to Par-Maude-NPA-
1’, respectively, demonstrating that the parallelization of the transition subsumption in step
(2.1) and step (2.2) is effective. Therefore, Par-Maude-NPA-2 can largely improve the running
performance of Maude-NPA for the three protocols because of the use of meta-interpreters and
parallelization of step (1), step (2.1), and step (2.2).

Furthermore, we would like to demonstrate the power of Par-Maude-NPA-2 further by
conducting more experiments with various numbers of workers for the three protocols whose
verification time is the largest among all protocols. The experimental data are shown in Table
7.4. The fifth column denotes the number of workers used in the experiments. The sixth
and eighth columns denote the verification time for Par-Maude-NPA-1 and Par-Maude-NPA-
2, respectively. The seventh and ninth columns denote the percentage of improvement for
Par-Maude-NPA-1 and Par-Maude-NPA-2 compared to Maude-NPA, respectively. We can see
that Par-Maude-NPA-2 can largely improve the running performance of Maude-NPA from 39%
to 57% (18% increased), 30% to 69% (39% increased), and 20% to 64% (44% increased) for
the three protocols compared to Par-Maude-NPA-1, respectively, when eight workers are used.
When we increase the number of workers, the tool improves the running performance of Maude-
NPA further, such as 61%, 76%, and 72% for the three protocols, respectively, when the number
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of workers is 24. We can see that the average number of states at each layer for a worker is
subject to the number of workers used in the experiments. When the average number of states
at each layer for a worker is high, we may increase the number of workers to improve the running
performance of the tool. However, up to a certain point, the more workers used, the less busy
workers are and the more burden the master needs to handle and communicate with workers,
making the running performance not improve. For example, when the number of workers is
increased from 16 to 24, the running performance does not improve and even becomes a bit
worse for the first and third case studies. In addition, we use simBatch and simBatchH to
calculate the number of needed workers to conduct step (2.1) and step (2.2) in parallel at each
layer, respectively. At the very first layers, the number of successor states and history states is
small. Therefore, we may not need to conduct step (2.1) and step (2.2) in parallel. For deeper
layers, when the number of successor states and history states is larger, step (2.1) and step
(2.2) may be conducted in parallel. When we use simBatch and simBatchH, there is a case
in which the number of needed workers is less than the number of workers available. Hence,
even if we increase the number of workers, it does not contribute to the running performance.
Furthermore, when we parallelize step (2.1), we need to generate (simplified) jobs and then
combine every two jobs into one job until there is only one job left. Whenever we combine two
(simplified) jobs produced by two workers, we only need one worker to conduct the combination
while the other worker is free. Therefore, all workers do not always work at any time. Up to
a certain point, even if the number of workers is increased, the running performance does not
improve.

As described above we use simBatch and simBatchH to avoid assigning a light job to a
worker. In all experiments, we set simBatch and simBatchH to 20 and 50 as default. The use
of simBatch and simBatchH is applicable when the number of states and history states at a
layer is reasonably small. When the number of states and history states at a layer is large, the
states at a layer should be divided evenly into each worker to take advantage of parallelization
as much as possible. From our experiences when conducting experiments for those protocols
with the tool, we set simBatch and simBatchH to 20 and 50, respectively. For example,
we need to conduct the transition subsumption in step (2.1) for 20 states. In the worst case,
no state is implied by other states in 20 states, Maude-NPA needs to spend about 380 (i.g.
2× 19× 20÷ 2) computations in which each computation is to check the implication between
two states. Hence, 20 states may be the minimum number of states that should be assigned to a
worker. Likewise, simBatchH is used in the transition subsumption with history states in step
(2.2). There is a trade-off between increasing and decreasing those numbers because it affects
the number of jobs as well as the number of workers used at each layer. However, we should use
reasonably small values as our default values because we are concerning the minimum number of
states that should be assigned to a worker. Nevertheless, we need to conduct more experiments
with different values for simBatch and simBatchH from which we may select good values for
simBatch and simBatchH with our tool as one piece of our future work.
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In summary, Par-Maude-NPA-2 can improve the running performance of Maude-NPA ef-
fectively when dealing with all non-trivial case studies in which the number of states located
at each layer is considerably large. For the backward narrowing in step (1), the more states
located at each layer and the deeper the search space is, the more improvement may be ob-
tained by parallelization. For the transition subsumption in step (2.1) and step (2.2), the more
successor states and history states at each layer, the more improvement also may be obtained
by parallelization. For simple case studies, whose verification time is very small, for example,
less than 40 seconds in our case studies, we do not need to use Par-Maude-NPA-2, although
we still can use it to obtain a result in a reasonably short amount of time. We can see that the
verification time for simple case studies is very small and so the use of Par-Maude-NPA-2 is not
much different compared to Maude-NPA in terms of verification time. Hence, it is sufficient to
use solely Par-Maude-NPA-2 for analyzing any cryptographic protocols even though they are
simple.

7.6 Summary

We have described a parallel version of Maude-NPA in which the backward narrowing and
the transition subsumption are conducted in parallel. A tool has been developed in Maude to
support the parallel version with a master-worker model by using meta-interpreters instead of
Maude sockets as in our previous work. We have also reported on some experiments of various
kinds of protocols in which the tool can increase the running performance of both Maude-NPA
(about 44%) and our previous tool (about 23 %) on average for all non-trivial case studies where
one master and eight workers are used. Especially, the tool can largely improve the running
performance of Maude-NPA by 57%, 69%, and 65% for the three case studies whose verification
time is the largest among all protocols, respectively, demonstrating its potential to deal with
case studies whose state space is large. As one piece of our future work, we should conduct more
case studies and use various numbers of workers with the tool to demonstrate its usefulness.
Last but not least, the basic techniques used to parallelize Maude-NPA are not necessarily
specific to Maude-NPA, but could be used to parallelize other tools dedicated to cryptographic
protocol analysis, especially Tamarin, because Tamarin is the closest to Maude-NPA.

Regarding the correctness of our parallel version of Maude-NPA, we only parallelize what
to do at each layer that consists of (1) backward narrowing by only one step and (2) some
optimization. For (1), because there are multiple symbolic states, we can conduct backward
narrowing by only one step in parallel. For (2), what to do is basically to reduce the number
of states. States concerned are divided into multiple collections that can be tackled in parallel.
Hence, parallelization used for Maude-NPA is conservative, respecting what is done by the
sequential version of Maude-NPA.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has proposed some techniques to mitigate the state space explosion problem and
improve the running performance of model checking to some extent by parallelization to make
the best use of multi-core architectures. We have demonstrated the proposed techniques with
three non-trivial cases: (1) parallelization of Java Pathfinder with the specification-based testing
technique for concurrent programs, (2) parallelization of Maude LTL model checker with the
L + 1-layer divide & conquer approach to leads-to model checking, and (3) parallelization of
Maude-NPA for cryptographic protocol analysis.

For testing concurrent programs in (1), we have proposed the specification-based testing
technique for concurrent programs in a stratified way. The proposed technique could be pro-
cessed naturally in parallel, which has been utilized by the tool supporting the technique. The
tool has been implemented in Java with a master-worker model, where JPF and Maude are
used as backends to generate state sequences from a program and check such state sequences
with a specification, respectively. We have conducted some experiments to demonstrate that
the proposed technique can mitigate the state space explosion problem and largely improve the
timing performance for testing for all cases except for one case, which cannot be achieved with
the straightforward use of only one JPF instance. Besides, we have described how to extend the
technique to test concurrent Java programs without checking if execution sequences generated
from Java programs can be accepted by Maude specifications. We have made some progress
toward making it possible to detect a violated state located at a deep depth. Last but not
least, the specification-based testing technique can be used to complement the very last step in
correct-by-construction software development.

For LTL model checking in (2), we have described a parallel version of L+ 1-DCA2L2MC,
which is dedicated to leads-to model checking. Leads-to properties are often used to express
systems requirements in model checking and can also express safety properties (invariant prop-
erties). Hence, it is worth focusing on leads-to model checking. A tool supporting the parallel
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version has been implemented in Maude with a master-worker model by using Maude sockets.
We have conducted experiments to demonstrate that the tool can mitigate the state space
explosion problem and largely improve the running performance of model checking for all case
studies except for one simple mutual exclusion protocol, namely test&set. Counterexample gen-
eration is one main task in the tool that can be optimized to improve the running performance
of the tool. We have proposed a technique to generate all counterexamples at once in model
checking based on the Tarjan algorithm with a new model checker to support the technique.
The new model checker is implemented in C++ and is mostly based on facilities existing in the
Maude LTL model checker. We have conducted some experiments to demonstrate the power of
the technique. Furthermore, layer configuration selection has been addressed with an approach
to finding good layer configurations for L+1-DCA2L2MC technique, and an analysis tool that
supports the approach. The analysis tool has been implemented in Maude with a client-server
model by using meta-interpreters. We have conducted some experiments to demonstrate the
usefulness of the analysis tool as well as the approach for layer configuration selection.

For cryptographic protocol analysis, it is extremely important to make cryptographic proto-
cols secure, safe, and reliable over an open network, such as the Internet. We have described a
parallel version of Maude-NPA in which the backward narrowing and the transition subsump-
tion are conducted in parallel at each layer. A tool supporting the technique has been developed
in Maude with a master-worker model by using meta-interpreters instead of Maude sockets.
We have reported on some experiments of various kinds of protocols in which the tool could
increase the running performance of Maude-NPA by 44% on average for all non-trivial case
studies experimented where one master and eight workers are used. Especially, the tool can
largely improve the running performance of Maude-NPA by 57%, 69%, and 65% for the three
case studies whose verification time is the largest among all protocols used for the experiments,
demonstrating its potential to deal with case studies whose state space is huge.

In summary, with rapidly expanding software systems as well as their complexity nowadays,
verifying software systems for their desired properties is indispensable to make them secure and
reliable. Model checking has been proven to be a tremendously successful technique to verify
requirements for a variety of systems. However, the most challenge in model checking is the state
space explosion problem. Another fundamental challenge is to improve the running performance
of model checking because it needs to verify the entire reachable state space. Recently, high-
performance computing technologies, such as multicore processors and clusters have emerged.
Hence, speeding up model checking with parallelization is one promising approach. This thesis
has given an effort to parallelize the three cases: (1), (2), and (3) to mitigate the two challenges
to some extent. We expect that this thesis will benefit researchers as well as engineers in both
academia and industry when they use model checking to verify software systems. They can
speed up their process of designing and verifying software systems by using parallel model
checking techniques presented in this thesis.
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8.2 Future Work

Although three parallel versions (1), (2), and (3) present a good performance and improve the
running performance of model checking, we consider several lines of future work beside some
pieces of future work mentioned in each chapter. As described in Chapter 4, some techniques
are shared between (1), (2), and (3), meaning that the techniques are generic enough and we
can apply our techniques to parallelization of other formal verification tools. Hence, we would
parallelize some other tools used for formal methods, which are described in this section.

Real-Time Maude (RT-Maude) [151] is a language and tool supporting the formal specifica-
tion and analysis of real-time and hybrid systems where time information is taken into account.
RT-Maude is implemented in Maude [13] as an extension of Full Maude [152]. RT-Maude speci-
fications are executable and simulate the progress in systems under analysis by timed rewriting.
Tick rules are used to formalize the time advance in systems in which the time increment is
given in the form of either a concrete value or a variable. The former is called time-deterministic
and is used in discrete time domains, while the latter is called time-nondeterministic because
the time increment is an arbitrary number that will be decided based on the time sampling
strategy (time mode) specified by users among some time sampling strategies supported by RT-
Maude, and is used in dense time domains. RT-Maude supports time-bounded linear temporal
logic model checking that can analyze all behaviors of a system from a given initial state up
to a certain duration. By restricting model checking up to a certain duration, the set of reach-
able states is a finite set so that model checking experiments can be carried out. RT-Maude
usually uses some properties specified in LTL to express systems requirements among which
until and until stable properties are used [151, 153]. Besides, RT-Maude supports dedicated
commands to check for until and until stable properties, meaning that until and until stable
properties are interesting properties in real-time systems. Furthermore, the reachable state
space of a real-time system is often huge because the behavior of the system changes over time.
Therefore, it is worth focusing on mitigating the state space explosion in until and until stable
model checking. We describe a divide & conquer approach to “Until” and “Until-stable” model
checking in [154]. One piece of our future work is that we will implement a tool to support the
approach in Maude both in sequential and parallel versions. Besides, we would integrate the
parallel version of L + 1-DCA2L2MC to RT-Maude so that we can check leads-to properties
with RT-Maude in parallel.

CafeOBJ [155] is a language for writing formal specifications for a variety of software and
hardware systems and for verifying their properties. One possible way to verify properties
in CafeOBJ is by writing proof scores [156] that consist of reduction by means of equations,
of goal-oriented terms in user-defined modules (the so-called open-close environments, which
allow extension of previous theories by adding new operators and equations) and checking
whether they are reduced to the expected value (usually true). Writing proof scores is flexible
when we can write proofs by induction and case splittings. However, it is error-prone because
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users may overlook some missing cases in their proofs. CafeInMaude, a CafeOBJ interpreter
implemented in Maude, with the CafeInMaude Proof Assistant (CiMPA) and the CafeInMaude
Proof Generator (CiMPG) [157] have been proposed to infer formal proof scripts from CafeOBJ
proof scores to ensure that the proof scores written to verify properties are correct. CiMPG
can generate proof scripts from proof scores while CiMPA can execute the proof scripts to
build a proof tree, which is proven when each Boolean value of all leaves of the proof tree
is true. If the proof tree has been proven, we can conclude that the proof scores written to
verify properties are correct. Generating proof scripts from proof scores is time-consuming
when the size of proof scores is moderately large because CiMPA needs to take into account
many cases as well as many open-close code fragments from proof scores. For the base case,
a proof script fragment is generated, and from each induction case, a proof script fragment is
generated. Generating those fragments is completely independent of each other and so they
have reimplemented CafeInMaude in order to support parallel execution [158] in which those
fragments are generated in parallel, where each fragment generation can be regarded as a task.
However, some tasks take much more time than others, and then it is necessary to come up
with a technique to identify and divide a heavy task into smaller sub-tasks so that many tasks
can be handled in parallel. As a weak point, CiMPG was only able to find the complete
CiMPA script when the proof score was correct; otherwise, CiMPG just pointed out where
the error was and left it to users to handle. The CafeInMaude Proof Generator & Fixer-
upper (CiMPG+F) has been proposed [159] and then extended [158] to mitigate the problem.
CiMPG+F uses a bounded depth-first algorithm where it tries to check whether the current
subgoal can be reduced to true by using induction hypotheses as premises or case splittings
that are extracted from the current subgoal. They are applied and, for each one, recursion is
used to try to discharge the subgoal in the new context up to a depth bound. If CiMPG+F
could discharge the subgoal up to the bound, it returns a corresponding sequence of proof
scripts; otherwise, a :postpone command is returned, meaning that it ignores the subgoal and
leaves it to users. Because backtracking algorithms are very expensive, they have presented
some heuristics as well as decision procedures for lists for improving the generation of case
splittings. However, we can improve the running performance of CiMPG+F to some extent
by parallelization because trying to use each case splitting to discharge the subgoal in the new
context is completely independent. To this end, we would improve the current parallel version
of CiMPG and parallelize CiMPG+F to improve the running performance for generating proof
scripts from proof scores as one direction of our future work.

Manually writing proof scores is somewhat tedious. Hence, Invariant Proof Score Generation
(IPSG) [160] has been proposed to generate proof scores for one invariant candidate. Given a
collection of lemma candidates and one invariant candidate, IPSG tries to generate proof scores
for the invariant candidate based on the lemma candidates by induction and case splittings.
For the base case, a proof score fragment is generated, for each induction case, a proof score
fragment is generated. Generating those fragments is independent of each other, which opens an
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opportunity for parallelization. For the base case and each induction case, IPSG may consider
case splittings to generate multiple proof score fragments from one proof core fragment being
concerned. For example, in the beginning, fragment M represents a proof score fragment for an
induction case. IPSG tries to reduce the invariant candidate in M and check whether the result
of the reduction is either true or false. If it is true, IPSG takes M as a proof score fragment
generated. If it is false, IPSG tries to select some lemmas from the collection of lemmas as
premises for the invariant candidate and keeps on reducing until the reduction returns true or
there are no more lemmas concerned. If so, the last fragment is used as a proof score fragment
generated. If it is neither true nor false, IPSG tries to analyze it to obtain one equation for
case splittings. Let us suppose that M is split into two fragments M1 and M2 by one equation
in which the equation and the negation of the equation are added to M1 and M2, respectively.
IPSG treats each M1 and M2 as M from the beginning. The cycle is repeated until all proof
score fragments are generated. For each case splitting, IPSG splits the current proof score
fragment into two fragments and each new fragment can be conducted independently. Trying
to select and use some lemmas from the collection of lemmas as premies for the invariant
candidate is independent as well. Case splittings and trying to select and use some lemmas
while generating proof scores are time-consuming and can be conducted in parallel. Hence, we
would parallelize IPSG to speed up the proof score generation as one piece of our future work.
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