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Abstract

Procedural content generation (PCG) has arisen as one major research field
in games. PCG aims to provide content that meets specific criteria of quality,
such as playability, difficulty, and entertainment. In addition, the generated
game content should be different from those currently offered. Therefore,
achieving quality and diversity becomes one of PCG’s most important ob-
jectives.

Machine learning is a representative algorithm for PCG and is called pro-
cedural content generation via machine learning (PCGML). PCGML usually
requires data for learning. However, collecting sufficient and good data can
be costly. Another typical method is search-based PCG, where content is
generated by evolutionary and other metaheuristic search algorithms. The
search-based PCG does not require training data. Instead, it tries to optimize
the given evaluation functions. The optimization process is time-consuming,
making search-based PCG challenging to generate content immediately on
demand.

To solve these problems, we apply reinforcement learning (RL), which
does not require training data but learns from interactions with the envi-
ronment. Another advantage of RL is that once the training is done, it can
generate content quickly when required. In this dissertation, we target two
kinds of games with distinct characteristics, turn-based role playing games
(turn-based RPG) and Super Mario Bros. (Super Mario).

For turn-based RPG, we train RL agents to generate stages, where a stage
is a series of events such as battles and recovery. For Super Mario, we train
RL agents to generate levels, where a level consists of tiles such as walls and
enemies. The generation is a challenging task since components in the stages
and levels, such as the events and tiles, are highly correlated.

In order to address this challenge using RL, it is necessary to formulate
the problem by a Markov decision process (MDP). Thus, we formulate the
stage/level generation into MDPs, where the ideas can be generalized to other
PCG problems. For the rewards in MDP, hand-crafted evaluation functions
which reflect players’ enjoyment are used to evaluate generated content.
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For the stage generation problem, two classical RL algorithms are adopted.
One is a deep Q-network (DQN) for discrete action spaces, and the other is
a deep deterministic policy gradient (DDPG) for continuous action spaces.
Experiments show that both DQN and DDPG can generate good stages,
where those by DDPG generally receive higher scores from the evaluation
function.

Next, we try to apply similar approaches to the level generation for Su-
per Mario. However, Super Mario’s level generation has several distinct
challenges that do not exist in the stage generation. One is related to how to
represent the levels. Unlike events in turn-based RPG that can be straight-
forwardly represented by a small number of parameters, tiles in Super Mario
levels need to be represented by a large number of parameters. For this
challenge, we employ conditional generative adversarial networks (CGAN),
which have succeeded in generating images. Another challenge is related to
how to evaluate the levels’ difficulty. For this challenge, we employ a human-
like AI agent and have it play the generated levels. We use twin delayed
DDPG (TD3) for the level generation problem. As a result, the generated
levels receive high evaluation values indicating good quality.

Finally, virtual simulations that give rewards to intermediate actions are
employed to obtain content with even higher quality. In addition, we intro-
duce noise to avoid generating similar stages/levels while trying to keep the
quality high. The experimental results highlight that the proposed methods
successfully generate good and diverse stages/levels for turn-based RPG and
Super Mario.

Keywords: Reinforcement learning, Procedural content generation, Turn-
based RPG, Super Mario, Quality-Diversity.
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Chapter 1

Introduction

Procedural generation has received considerable research attention in many
application domains for cost-saving and quality assurance benefits. One cru-
cial area of procedural generation is to create computer game content, and
the technique is well known as procedural content generation (PCG). PCG
signifies to procedually generate game content with any kinds of algorithms.

One example of PCG usage is for generating various game elements such
as levels [1], dungeons [2], maps [3], characters [4], and items [5]. The pri-
mary goal of PCG is to enhance game replayability and reduce financial and
memory burdens. In addition to these purposes, PCG can be used for train-
ing AI players in diversely generated levels to increase their generality [6] so
that using the AI players to do auto playing test can produce more reliable
results. Previous works have applied PCG to many different games, each
with distinct characteristics and challenges. The majority of PCG studies
is on a subset of game genres such as platformer games [1][7], racing games
[8][9], and puzzle games [10].

To date, PCG has aimed to generate content that qualifies the standards
of game developers. In addition to quality requirements, PCG needs to ensure
content novelty since players expect new content in every launch. In this
dissertation, the generated content evaluated according to defined criteria is
called quality, and content that is different and novel from others is called
diversity.

This dissertation applies PCG to two kinds of games with distinct charac-
teristics, namely turn-based role playing games (turn-based RPG) and Super
Mario series. Turn-based RPG is a renowned game genre with minor recog-
nition in the PCG research field. 1

1The definition of turn-based RPG may vary from broad to narrow. In this dissertation,
turn-based RPG is considered as games like Wizardry, Darkest Dungeon, or Pokémon.
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Most RPGs share one typical flow. Players control characters according
to the storyline and defeat the final boss. During the storyline, players can
reinforce their characters from a series of events that occur after another, such
as rewards from battles, obtain items from treasure boxes, and trade with
merchants. Players experience this sequence of events several times during
gameplay, and this dissertation defines it as a stage of turn-based RPGs.
In well-designed and challenging RPGs like Darkest Dungeon [11] or the
Mysterious Dungeon series [12], if players attempt to defeat all consecutive
monsters using all of their resources, then they may fail to defeat the boss.
Alternatively, if players ignore all enemies, then the characters may not have
adequate strength to defeat the boss. Because of these unique features, under
many circumstances, players need to devise strategies, such as winning a
tough battle using all resources or saving items for more important battles
later. These lead to the entertainment of turn-based RPGs.

Stages of turn-based RPGs should be well designed so that players need
to consider their strategies carefully, which makes them feel challenging and
entertaining. It is crucial to make a balance between events in the stages,
such as the locations, frequencies, and statuses of enemies, the locations and
effectiveness of recovery points, and the effects of items. Game designers
have employed constructive PCG methods (usually hand-designed rules) to
generate stages in many commercial turn-based RPGs, which gives design-
ers a high level of control on the generated content. However, it requires
experts’ dedication to thoroughly create rules or decide parameters, which
still cannot guarantee adequate game balance. For example, Disgaea [13] is
one of the famous turn-based RPGs that have parameters in a wide range.
Despite that, many enemies in later phases of the game can be defeated by
only one attack as player characters get stronger rapidly compared to ene-
mies. Providing diverse stages to players is another aspect to consider for
entertainment. Players need to develop different strategies under different
circumstances, which usually makes play enjoyable, especially in turn-based
RPGs. Constructive PCG methods also have potential issues about lacking
diversity in that players may somehow find rules in the stages.

We further break down a level into several patterns. Thus, the level
generation is to place patterns one by another. The layouts and types of tiles
directly affects the players’ play styles, so players may enjoy the level or get
bored of the level. It is essential to place a proper pattern from the previous
pattern. Even if one pattern is enjoyable on its own, the difficulty can changes
drastically when it is concatenated with improper patterns. Well-designed
levels should look natural. Also, since players have a large variety of skills,
levels with the corresponding difficulty are desired.

Researchers have tried several approaches for PCG. One example is pro-
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cedural content generation via machine learning (PCGML) [14]. In most
PCGML studies, models learn how to generate content using existing con-
tent. When it is easy to obtain substantial content created by human design-
ers, it might be possible to generate game content based on the distribution
of prepared data using generative models such as variational autoencoders
(VAE) [15], PixelCNN [16], or generative adversarial networks (GAN) [17].
However, concerning actual game development, it is not easy to collect a
sufficient amount of content for training. Thus, it may result in generating
similar content to existing one and lacking diversity.

There is another approach called search-based PCG [18]. The optimiza-
tion systems in search-based PCG mainly consist of two parts, the generator
and the evaluator. Usually, game content is represented by parameters and
generated by repeating the following processes, 1) the evaluator grades con-
tent by one or a vector of real numbers instead of a simple acceptance or
rejection, and 2) the generator aims to find better parameters. Search-based
PCG does not require training data; instead, it requires evaluation func-
tions, usually designed by humans. Designers can tailor the evaluation func-
tions to their preference in games, or to some specific players’ skills or taste.
Typically, search-based PCG generates content by optimizing the evaluation
values, and in many cases, the optimization is based on genetic algorithms
(GA). Some efforts may be required to enable GA to generate diverse content
[19].

Studies about PCG has been conducted mainly by adopting PCGML and
search-based PCG. Both PCG methods, PCGML and search-based PCG,
have advantages and disadvantages and are used based on the different ap-
plication and restrictions. To date, there are no effective methods to handle
specific conditions, such as lack of training data and the need for a prompt
generation. Therefore, this dissertation addresses the following research ques-
tions by proposing a novel PCG method to obtain diverse and high-quality
content.

RQ1 What kind of method can handle the lack of training data and the need
for an online generation?

RQ2 Can the method obtain both diversity and good quality?

RQ3 Which games can the method be applied to?

We address the questions by proposing reinforcement learning (RL) to
generate high-quality and diverse game content for two game genres with
different characteristics. The work by us [20][21] and Khalifa et al. [22] was
undertaken independently, and to our best knowledge, ours is the first to train
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RL agents to generate game levels/stages from scratch. The main reason why
we introduce RL is that there is no need to collect data and it can do online
generation with the potential of getting diverse content. The general idea on
transforming levels/stages generation into an RL problem in both works are
the same. In more detail, both formulate the problem into Markov decision
processes, where states are generated levels/stages, actions are to modify
the levels/stages, and rewards are the degree of how good the generated
levels/stages are. Khalifa et al. [22] put more emphases on the generality
of the method and on generating playable games, while this dissertation
emphasizes more on the balance of events in stages, the non-monotony of
the layout with proper balance (i.e., quality) in levels, and the diversity of
stages/levels. In our design, each stage/level comprises n events/patterns,
and the generation of a stage/level means deciding the n events/patterns
in sequence. An evaluation function is designed to evaluate the completed
stages/levels and give rewards. In addition to generating good stages/levels,
we also introduce a noise selection that selects good but different actions
from the learned policy on purpose in order to generate diverse stages/levels.

This dissertation is written based on our journal article [23], with addi-
tional generation of levels for Super Mario (Section 3.2 and Chapter 6). The
structure of the rest of this dissertation is as follows. Chapter 2 describes the
background of our work. Chapter 3 introduces target games, turn-based RPG
and Super Mario. Chapter 4 presents general approaches to PCG problems
using RL. Chapters 5 and 6 explain approaches to generate stages and levels
including experimental results, respectively. Finally, Chapter 7 includes the
conclusions and discussions on future works.
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Chapter 2

Literature review

In this section, we first give an overview on PCG. Next, Section 2.2 and 2.3
introduce research on search-based PCG and PCGML, respectively, which are
representative PCG approaches. As a new approach, we adopt reinforcement
learning, where the general concepts of reinforcement learning are reviewed
in Section 2.4.

2.1 PCG overview

PCG [19] creates game content algorithmically. The generation process can
happen upon players’ demands (online) or during game development (offline),
where the time constraint usually makes the former more challenging. For
both online and offline generation, the content should have high quality. In
addition, diversity [24][25] is an important factor to keep players’ long-term
enjoyment in terms of freshness. Related to players’ enjoyment, some studies
considered perspectives such as difficulty [26] [27] [28] [29] and entertainment
[30].

In addition to the above, PCG can be categorized based on various per-
spectives [31]. When considering methodologies based on artificial intelli-
gence, two major groups are search-based PCG and PCG via machine learn-
ing (PCGML), which will be introduced more in the following sections.

2.2 Search-based PCG

Search-based PCG [18][8][9][31] is one special case of generate-and-test al-
gorithms that aims to generate good content efficiently, even for complex
games. Usually, generate-and-test algorithms involve the repeated processes
of generating content through the stochastic procedure and then filtering
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Figure 2.1: Generation of stages using GA. Each stage is represented as an
individual containing three discrete events. An evaluator assesses individuals
(A, B, C, D) in generation G, and good individuals (A, C) are selected.
Through crossover and mutation operations, better genes are passed to the
next generation G’.

by evaluation functions until good content is obtained. However, when the
target game is complex and some degree of quality is required, generating
good content is quite tough as the probability of finding good content with
random generation is relatively low whereas search-based PCG can generate
good content in complex games [32][8][9]. Search-based PCG mainly applies
genetic algorithms (GAs), which keep evolving existing content to obtain
content with better evaluation values. Fig. 2.1 shows an example of the gen-
eration of stages in a turn-based RPG using GA. By repeating the operations
of selection, crossover, and mutation, the GA aims to generate better stages
from previously generated ones. Search-based PCG can also achieve adap-
tive generation according to the design of evaluation functions. For example,
Togelius et al. [8] used entertainment features from player logs and optimize
fitness to specific players.

While search-based PCG is efficient compared to naive generate-and-test
algorithms, still, it has two potential issues, the diversity of content and
online generation. Since GAs tend to generate similar individuals, search-
based PCG may have issues about generating diverse content. Loiacono
et al. [9] tried to generate diverse content (tracks in racing games) based
on Togelius et al.’s work [8]. Gravina et al. [24] proposed a new concept,
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PCG through quality-diversity, as a subset of search-based PCG that aims to
maintain both the quality and diversity of generated content. For example,
Alvarez et al. [33] used the MAP-Elites algorithm to generate designer-
interactive dungeons. No matter whether diversity is required, search-based
PCG needs a large number of evaluations, in other words, trials and errors.
Thus, online generation may be difficult, especially when the evaluations are
slow.

2.3 PCG via machine learning

PCGML [14] is a framework for generating content using machine learning.
The generation models learn how to generate content using existing con-
tent as training data. Different from search-based PCG, PCGML generates
content directly from the trained models.

PCGML has been realized by many different approaches and applied to
generate various kinds of game content, mainly game levels. Summerville
and Mateas [1] generated Mario levels by a kind of neural network called long
short-term memory (LSTM), known to be good at predicting the next item
in a sequence. They represented the 2-dimension levels as strings, where each
character stood for a tile on the map. Given a seed sequence (i.e., several pre-
assigned tiles), the LSTM generated a level tile-by-tile until reaching an end-
of-level terminal symbol. Lee et al. [34] trained convolutional neural networks
to predict resource locations in StarCraft II maps, which was considered a
potentially useful tool for map designers. Summerville et al. [35] learned
the room-to-room structures of Zelda dungeons by Bayesian networks and
generated new levels that have similar statistical properties to given levels.
Generative adversarial networks (GAN) and variational autoencoder (VAE)
have become popular approaches in recent years, which successfully generated
similar but new images from input datasets. The former has been adopted
to PCG for generating Mario levels [7] [36], Zelda levels [37], Doom levels
[38], and an educational game for middle school students [39]. The latter has
been adopted to PCG for generating Mario levels [40] [41], lode runner levels
[42] and levels of six platformer games [43].

PCGML may have issues such as not having enough data for learning,
determining what features should the generated content use and what kind of
data should be collected. For example, if the turn-based RPG stages are the
target, it is difficult to say whether the collected stage data are associated
with appropriate difficulty, or whether the stages require specific strategy
behaviors. It means that gathering data involves grasping the characteristics
of the content, so it is difficult and expensive, and noise is likely to be in-
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cluded. In addition to this problem, it is hard for the content of other games
to be reused for the target games because the content of different games has
a different structure. These are some of the issues that should be considered
when applying PCGML.

2.4 Reinforcement learning

We adopt reinforcement learning (RL) as a new approach aiming to solve the
above difficulties. For RL problems, the environments are usually modeled by
Markov decision processes (MDP), a mathematical formulation widely em-
ployed when studying optimization problems. MDP is usually represented by
(S,A, P,R, γ) where S is state space, A is action space, Pa(s, s

′) = Pr(st+1 =
s′ | st = s, at = a) is the probability of transition from s to s′ by performing
action a at time t, Ra(s, s

′) is the immediate reward received from the tran-
sition, and γ ∈ [0, 1] is the discount factor which shows how much the future
cumulative rewards is considered compared to the immediate rewards. Every
next state s′ depends only on the current state s and the action a. The state
transition is independent of past states, which satisfies the Markov property.

Many RL algorithms employ MDP as mathematical formulation. Al-
though this makes RL can handle the decision-making process mathemat-
ically, one difficulty can arise. In many RL environments, the immediate
reward does not clearly reflect the goal of the environment. It is sparsely
happened or is delayed until the end of the episode. Therefore, it is challeng-
ing to grasp how each action among a sequence of actions influences the final
outcome. This challenge is called a credit assignment problem (CAP) [44].

To address the temporal credit assignment problem, various methods were
proposed, which can be roughly divided into two groups [45]: assigning cor-
rect credit based on gradients and based on extra values or targets. As an
example of the former, Ferret et al. [46] introduced a new transfer learning
approach that used a self-attentive architecture to assign credit in a back-
ward view. For the latter, the main idea is to use surrogate rewards for
the actions. For example, Arjona-Medina et al. [47] and Liu et al. [48]
decomposed the returns of episodes back to the actions. Harutyunyan et al.
[49] assigned credits according to the likelihood that the actions led to the
observed outcome. Yu et al. [50] applied a Monte-Carlo method to estimate
the rewards of intermediate actions in the work of SeqGAN, which aimed to
generate sequences of discrete tokens (e.g., sentences).

Different from supervised learning and unsupervised learning, RL does
not require training data but does self-learning by interacting with the en-
vironment. When all state-action pairs can be listed, whose Q-values can
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be stored in a table, it is guaranteed that the optimal policy can be learned
given sufficient time. However, this condition is difficult to satisfy in most of
the real-world problems. Thus, function approximators such as convolutional
neural networks (CNNs) are used to approximate the Q-values. Mnih et al.
[51] succeeded in creating AI that is stronger than humans in about half of
the 49 tested Atari2600 games by the proposed deep Q-network. Badia et
al. [45] succeeded in creating AI that is stronger than humans in all of the
57 tested Atari2600 games in Arcade Learning Environment [52] by solving
two issues, CAP and exploration.

Some important features of RL for solving problems are summarized as
follows.

• The problems should be able to be modeled by MDP.

• Reward functions should be carefully designed so that the desired poli-
cies can be obtained when the rewards are maximized.

• States can be represented in various ways, and the way of representation
is important since it influences the computational complexity of the
problem.

• Depending on the RL models, outputs can be stochastic or determin-
istic.

• Learning usually requires time. However, once the learning is done,
selecting actions is often fast.

Guzdial et al. [53] and Sheffield and Shah [2] formulized level generation
as MDP, though their methods were based on supervised learning. As an
independent work of our work, Khalifa et al. [22] used RL for generating game
levels. They designed three kinds of representations for two-dimensional
game levels and applied them to three games. Some more comparisons with
our design will be made in Section 4.4.
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Chapter 3

Target games and content to
generate

This dissertation proposes an effective method under conditions where train-
ing data is limited and online generation is required. In order to validate
our proposed method, a relatively simple turn-based RPG is employed as
the first target game. If the target game is too complex, it is challenging to
determine whether failures are from the method or complicated game set-
tings. After validating with the turn-based RPG, the method is applied to
the Super Mario, a more complicated game, to guarantee its effectiveness.
This chapter describes the detailed configuration and information of the two
target games. First, information on events, discussion of elements in desir-
able stages, and configuration of implemented turn-based RPG platform are
outlined in Section 3.1. Second, Section 3.2 provides information on the com-
ponents (e.g., Mario and tiles) of levels in Super Mario. It also outlines the
discussion of elements in desirable levels and the configuration of employed
two Super Mario platforms. Last, the differences between the two games and
their challenges for generations are compared in Section 3.3.

3.1 Stages of turn-based RPGs

Most turn-based RPGs have unique systems but have several common ele-
ments. For example, players need to grow their characters and finally defeat
the boss. A stage usually consists of several events, which can be roughly
divided into battle events and non-battle events. The arrangement of events
greatly influences the enjoyment of playing.
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Figure 3.1: An example turn-based RPG battle event and the flow of one
turn. The warrior with the highest speed first attacks the ghost. The next
fastest ghost performs a poison action on the warrior. Next, the dragon uses
a fire skill on the warrior. Finally, the priest heals the damaged warrior.

3.1.1 Events details

In a battle event, a player’s team and an enemy’s team fight with each other
until one team defeats the other team or flees from the battle. In most
turn-based RPGs, the status of the characters is preserved after battles. For
example, damage received during a battle is not recovered after the end of the
battle. Thus, selecting a short-term strategy like just winning the immediate
battle is usually not appropriate, and a long-term strategy considering future
battles is required. That is the most crucial factor in turn-based RPG.

Battles in turn-based RPG proceed based on turns. In each turn, each
character performs one action in order, which is typically decided by a pa-
rameter called speed. Fig. 3.1 shows an example of a sequence in one turn
in a two-versus-two battle, including characters’ status information. In the
figure, the square boxes next to the characters show the characters’ names,
health points (HP)/maximum HP, magic points (MP)/maximum MP, attack
(ATK), defense (DEF), speeds (SPD), and possible actions, from the top and
the left.

Non-battle events occur outside battles, such as inns where players can
recover their characters, blacksmiths who reinforce players’ weapons, item
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shops providing items for the next expedition, and treasure chests where
players can get weapons during the expedition. Settings of the non-battle
events can also significantly affect the difficulties or strategies of the bat-
tles. Therefore, it is not advisable to design battle and non-battle events
separately.

Players in turn-based RPGs advance the stories by repeating non-battle
events and battle events while determining their choices in each event. In
this sense, players may prefer stages requiring them to make various deci-
sions (e.g., focusing on weak enemies first or trying to defeat all encountered
enemies). Conversely, if all decisions from players produce similar results,
they may get bored with the game.

3.1.2 Desirable stages

Turn-based RPGs usually contain several separated scenes, such as the base
towns, the dungeons in which enemies appear, and the fields connecting
scenes to others. Fig. 3.2 shows an example of a simplified turn-based RPG.
At the base town, characters can buy items and heal their wounds. However,
in order to recover damages received in dungeons or fields, characters need
to consume medicine, use magic, or find a recovery point. The game flow
can be roughly grouped into four courses in general. The four courses, as
shown in Fig. 3.2, are (a) leveling up and collecting items, (b) exploring the
world, (c) going through dungeons and defeating mid-bosses, and (d) moving
to other base towns. Players play the game by repeating the four courses as
they like, with the goal of defeating the final boss.

Different designs are required for different courses. In this dissertation,
the designs of the stories, the videos, and the audio of turn-based RPGs are
skipped and target the relations between events for course (c). Usually, when
players want to defeat a mid-boss in a dungeon, their characters need to ex-
plore the whole dungeon from the beginning to the boss without withdrawing
or being defeated. Otherwise, they need to start from the very beginning of
the dungeon next time. Defeating enemies in the dungeon helps the player
characters to level up so that they may become strong enough to defeat the
mid-boss. However, in order to start the mid-boss battle with a good con-
dition, they also need to manage the medicine or magic available to recover
damage properly in intermediate battles. The following are factors that we
consider to make players feel satisfied with the course (c) stages.

• Which strategies are valid is a crucial issue in RPGs. We consider that
stages are not enjoyable when no strategy is effective or all of them
are. Also, for stages with different designs and settings, it is boring
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Figure 3.2: Four courses in an example turn-based RPG. (a) Base → Level
up, get items and gold in the field → Return to the base, (b) Base → Explore
the field or dungeon → Scout or pick up treasure, (c) Base → Explore the
dungeon preserving items → Defeat the mid-boss, (d) Base → Move to field
→ Move to a new base town.
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Table 3.1: Comparison of typical turn-based RPGs and our platform

Typical turn-based RPG Research platform

Stage
structure

diverse stage structures
one-way battle

and recovery events
Game

objective
defeating the boss
after a long journey

defeating the boss
after proceeding events

Number of
controllable members

≥1 1

Character
parameters

many parameters HP, ATK, SPD

Order of actions
in battles

by SPD
with unique rules

player character’s
SPD > enemies’

Actions in battles various skills attack, retreat
Reward of

winning a battle
leveling up,

gold, items, etc
increasing ATK

(10%)
Result of

retreating a battle
game over,

nothing happen, etc
losing HP
(15%)

if players can stick to a single strategy, or some specific strategies are
obviously too good or bad. Stages should be designed so that players
can enjoy thinking about their choices.

• Enemies should have proper strength according to the timing of their
appearance. Hard to defeat strong enemies in early stages or too-weak
enemies in late stages are unreasonable.

Game balancing has been known to be crucial but difficult, and turn-
based RPGs are such an example [54]. Even in simpler designs (e.g., our
platform described in the next section), satisfying the factors mentioned
above is not easy, not even to say more complex designs, e.g., skill-based
systems that players can try all available skills in the skill-spaces without
designer-imposed limitations [55].

3.1.3 Game platform

As mentioned in the previous section, we only focus on the relations between
events in this dissertation, particularly battle events and recovery in non-
battle events. As there was no proper environment for our research, we
designed an extensible platform that contains the most fundamental elements
in turn-based RPGs. Table 3.1 summarizes the comparison between typical
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turn-based RPGs and our platform. Depending on the settings, our platform
can be adapted to various types of turn-based RPGs. Section 5.1 formulates
the stage generation problem in our platform into a general MDP problem.
We implemented a simplified version for the experiments.

3.2 Levels of Super Mario

Super Mario Bros. (Super Mario) [56] is a game from Nintendo that with
sales of more than 40 million copies [57]. It has several core systems that
are the foundation for the later Super Mario games. Fig. 3.3 illustrates a
gameplay scene in Super Mario. During gameplay, a player controls Mario
to pass various obstacles and reach the goal on the right-most side within
the time limit. The player loses the game immediately once Mario without
power-up state gets damaged by enemies. If Mario is in a power-up state
from obtaining a mushroom, he can withstand one damage from enemies. In
the power-up state, Mario also can destroy some types of tiles by jumping
and bumping his head against them. However, if Mario falls into the hole or
gameplay exceeds the time limit, the player loses even when Mario is in the
power-up state. Regardless of the power-up state, Mario can defeat enemies
by stomping on them, as illustrated in Fig. 3.4.

A Super Mario level contains a two-dimensional structure and various
types of tiles. The level can be divided by a set of fixed-size tile patterns.

3.2.1 Level components

In a Super Mario level, there are various types of tiles, which are either
obstacles or useful items for players. Obstacles include enemies, holes, and
walls. Useful items are coins and mushrooms. Except for the pipe tiles,
each tile type works as designed in the original version of Super Mario Bros.
This dissertation also excludes some types of tiles, enemies, and complicated
gimmicks for research purposes. Table 3.2 summarizes the tiles and their
functions used in this dissertation.

Mario cannot pass through wall type of tiles. Only a destroyed brick tile
is passable. A brick tile can be destroyed when the power-up Mario jumps
and hits his head on it. Any objects that fall into a hole are destroyed,
including Mario. The layout of wall and hole tiles affects the gameplay. The
level is not playable if it contains too high stacks of wall tiles or too wide
hole that Mario cannot jump through them. Enemy tiles move to the left or
right, and Mario gets damaged when he physically contacts them. Overall,
enemies and holes are the main elements that affect the difficulty of levels.
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Figure 3.3: A example scene of the Super Mario. The objective is to reach
the goal placed in the right-most side in time. The time displayed in the
upper right shows the time remaining in the level. The coin score refers to
the coins that Mario has acquired during level play.

Figure 3.4: A series of processes in which Mario defeats an enemy by stomping
on them.
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Table 3.2: Description of Mario tiles used in this dissertation.

Tile Type Description Destructible

(brick)
wall it does not function

o
(power-up)

→
(coin brick)

wall
if Mario bumps head on it

Mario obtains a coin
and it becomes empty block

x

(coin)
item

if Mario touches it
Mario obtains a coin

o
(touch)

→
(coin box)

wall
if Mario bumps head on it

Mario obtains a coin
and it becomes empty block

x

→
(item box)

wall
if Mario bumps head on it
it generates a mushroom

and it becomes empty block
x

(empty block)
wall it does not function x

(block)
wall it does not function x

(block)
ground

it does not function
only place on the ground

x

(pipe)
wall it does not function x

(hole)
hole

if Mario falls into a hole
Game is over

x

(goomba)
enemy

if Mario touches it
Mario get damage.

Goomba move left or right side

o
(stomp)

(fall into a hole)

→
(koopa)

enemy

if Mario touches it
Mario get damage.

Koopa move left or right side
it becomes a shell when it is stomped

x

→
(shell)

enemy

if Mario touches or stomps it
shell is fired to the opposite way

fired shell remove destructible tiles
return to koopa after some time

o
(fall into a hole)

(goal)

etc
if Mario touches this goal

level is clear
x
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3.2.2 Desirable levels

The history of the Super Mario series has been ongoing since 1985 until
nowadays. As with other popular games, diverse groups of players enjoy the
Mario series. As much as the appropriate difficulty is a crucial factor in turn-
based RPGs, it is also essential in Super Mario. Different level difficulties
are required for entertaining various groups of players. An example can be
found in “Super Mario Maker 2” [58], one of the games in the Super Mario
series. The game employs a level creation system that players can enjoy
levels generated by other users. Players can choose level difficulty based on
their preferences, including Easy, Normal, Expert, and Super Expert. The
difficulties of levels are determined based on the users’ play logs.

Another crucial factor in designing levels is non-monotony. A pattern
requires a particular sequence of actions to pass through. Levels with redun-
dant patterns require repetitive series of actions. It is undesirable if players
need to input the same series of actions continuously because they will feel
monotonous. Therefore, in this research, we assume that locally similar pat-
terns are monotonous and deteriorate players’ enjoyments. This dissertation
summarizes the characteristics of desired levels in Super Mario as follows.

• The level should be appropriately difficult to suit each group of players.
Because enemy and hole tiles mainly affect the difficulty of levels, they
should be well-placed. The difficulty of the level can be measured using
play logs.

• Sequences of actions (i.e., how a level is played) affect the entertainment
of Super Mario. If similar patterns are locally placed, players have to
make repetitive sequences of actions in short times. Therefore, levels
should be designed so that players can try various sequences.

3.2.3 Game platform

This dissertation uses cloned versions of Super Mario with reduced features
(e.g., dash). The removed features are excluded because they either exist in a
few specific levels or are too complicated. Two clone platforms are employed,
python Mario [59] andMario AI Framework [60], and implemented in Python
and Java, respectively.

Python Mario is a modified clone based on the Super-Mario-Python [59].
An additional level creation system, machine learning-related components,
write/read levels, and experiment supporter functions are included. Mario AI
Framework supports many functions related to artificial intelligence research,
including AI agents and level generators. In this dissertation, only functions
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Table 3.3: Comparison of commercial Super Mario and two Clone Super
Mario configurations.

Super Mario Bros. Python Mario Mario AI Framework
Level

structure
A level consists of 15× n structure

The bottom 2 rows are only for ground or hole.
Level

objective
Reach the goal placed in the right-most side

Power-up
state

Mushroom and Fire flower
(can shoot fire ball) power-up

Only power-up from
mushroom is used

coin score 100 coins gives Mario an extra life
Obtain coin score

but does not give an extra life
Actions Jump, dash, move, fire Dash and fire are disabled

Usage for
research

-
Level generation,

machine learning related,
, write/read levels, and etc

Gameplay from AI agents

related to AI agents are used. Table 3.3 summarizes the comparison between
the commercial Super Mario and the two Super Mario clones.

3.3 Summary of unique features of the target

games

In this dissertation, two distinct game genres inheriting different characteris-
tics, including turn-based RPGs and Super Mario, are employed to generate
different types of content and stages/levels. This section clarifies the char-
acteristics of the two games and their differences. Table 3.4 summarizes the
comparison of core distinctions between two games. The most significant
difference is the time at which players decide on actions. In the turn-based
RPG, the action is decided every turn. While in Super Mario, the action is
input in each frame. Typically, the required time cost of the one level/stage’s
gameplay is t turn and f frame, usually t significantly lower than f . One
frame of Super Mario normally lasts around 0.017 seconds (60 frames per sec-
ond) [61]. One level requires roughly 30-60 seconds to clear; thus, f is around
1,800-3,600 frames. In most turn-based RPGs, one battle rarely takes more
than ten turns.

Another key difference is that the stage is one-dimensional composition,
while the level is two-dimensional. In the simplified turn-based RPG, one-
way events need to be generated, which is relatively simple. Whereas placing
tiles on a two-dimensional level is more complex.
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Table 3.4: Comparison of turn-based RPGs and Super Mario

Turn-based RPGs Super Mario
A stage/level composition One-dimensional series of events Two-dimensional layouts of tiles

Number of
controllable characters

>=1 1

Action decision
Turn-based

(discrete time)
Frame-based

(continuous time)

Possible action
Command action

(attack, magic, item, etc)
Move (right left),

jump, etc
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Chapter 4

PCG via RL considering
quality and diversity

Before discussing the stages/levels generation methods, Section 4.1 firstly
describes general concepts for applying RL to PCG. Second, Section 4.2
introduces a method called virtual simulation to help improve the quality
of generated stages/levels. Virtual simulated rewards are given to inter-
mediate actions during training. Third, Section 4.3 presents two methods
for increasing the diversity of generated stages/levels. One is the random-
ized initialization, which generates stages/levels from randomly initialized
events/patterns. The other is the diversity-aware greedy policy, which gener-
ates diverse stages/levels while maintaining quality. Last, a brief comparison
of Khalifa et al.’s work [22], and ours is made in Section 4.4.

4.1 Application of RL to PCG

As a novel AI-based approach for PCG, we proposed to apply reinforcement
learning (RL) [20][21][23]. Table 4.1 compares PCGML, search-based PCG,
and RL from different aspects. For example, PCGML requires training data,
while the other two require evaluation functions to tell how promising the
generated content looks. Both PCGML and RL need a relatively long learn-
ing time. However, once the learning is finished, the generation costs are
low. In contrast, search-based PCG does not require a learning process but
consumes time when generating content, which is more challenging for online
generation. To sum up, RL’s advantages include low generation costs and no
need to prepare training data.

To apply RL, we need to formulate PCG problems as MDP. The follow-
ing explains how MDP elements (i.e., state, action, transition probability
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Table 4.1: Comparison between three kinds of PCG methods

Training
data

Evaluation
function

Learning
cost

Generation
cost

PCGML necessary – high low
Search-based
PCG (GA)

– necessary – high

Reinforcement
Learning

– necessary high low

function, and reward function) may look like using an example shown in
Fig. 4.1, which tries to generate stages/levels consisting of three sequential
events/patterns. At the initial state, the first event/pattern has been deter-
mined while the rest two remain blank. An action is to add an event/pattern
to the next blank one. For simplicity of discussions, let the state transition
be deterministic. Namely, when adding an event/pattern, the next blank
event/pattern always becomes that one. Thus, states in this PCG problem
are stages/levels with different event/pattern combinations, including blank
events/patterns. After all three events/patterns are decided, we can use an
evaluation function to get the quality of the complete stage/level, which can
be used as the reward function in the MDP.

We believe that the ideas of formulating PCG into MDP and applying
RL are general and can handle many game genres. As long as the MDP
formulation of a PCG problem is finished, RL algorithms can be applied to
learn good policy (i.e., what actions to take for given states) based on the
provided reward function. After the learning, the policy serves as the content
generator at relatively low generation costs.

4.2 Method for improving quality

With the application of MDP, RL can be applied to learn to generate stages/levels.
However, simple RL algorithms are insufficient to obtain high-quality con-
tent. The evaluation function proposed in this dissertation has a small signal
with intermediate rewards, i.e., 0 in the turn-based RPG and 0 to 0.01 in
Super Mario. Its details will be discussed later in Sections 5.1.4 and 6.3.4.
One concern is that insufficient reward signals or credits are delivered to the
intermediate actions because of the zero or small signal. This is an instance
of the temporal credit assignment problem [44], a long-studied subfield of
RL. Conceptually speaking, the problem aims to figure out how each action
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(a)

(b)

Figure 4.1: Illustrations of the MDP for generating stages/levels consisting
of three sequential events/patterns as an example.
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among a sequence of actions influences the final outcome. When the reward
signal is sparse or delayed, RL may get stuck in local optima, especially for
deep neural networks.

In this dissertation, virtual simulation (VS) is proposed to provide inter-
mediate actions with rewards by a Monte-Carlo method, where the ideas are
similar to SeqGAN [50]. For each intermediate action, the algorithm applies
the current policy with an exploration policy, such as ε-greedy, to generate
several completed stages/levels. The average evaluation of these stages/levels
then serves as the immediate reward of the action. The experimental details
and settings are in Sections 5.2.1 and 6.6.1. By doing this, we do not need ex-
tra efforts to design immediate rewards for intermediate actions. The method
is expected to be more time-consuming for learning, but the offline cost is not
a significant problem in PCG. One of the major benefits of RL is that even
if learning takes a long time, it is possible to provide content immediately
once the learning is over, i.e., online generation.

4.3 Methods for increasing diversity

One primary goal of PCG is to automatically (or semi-automatically) provide
players with diverse content even for the same game. For example, after
clearing a stage/level, players may want to try different settings other than
the same one, or they may get bored soon. It is better that the method
can generate several diverse and good stages/levels instead of only the best
one. However, this goal is not considered in the proposed RL as long as
the diversity of stages is not included in the reward function. Our designed
evaluation function indicates how good one given stage/level is. To consider
diversity, several stages/levels should be compared at once, which is expected
to be complicated. Instead of revising the evaluation function, we propose
two ways to address the diversity issue.

4.3.1 Randomized initialization

We propose to give randomness to several beginning events/patterns for each
stage/level instead of an empty stage/level as the first method to address
diversity1 In other words, the matrices of an empty stage/level are assigned
with some random values as first elements and then used as the initial states
of stage/level generation. We consider this method to be able to balance
the quality and the diversity of stages/levels to some extent in the following

1The method was called random initial stage and randomized event initialization in
our previous work [21] [23].

24



senses. For an extreme end, assume that no events/patterns are randomly
initialized and a model has been well trained by RL. When the model is
used to generate stages/levels (for players to play), it is common to select
the best actions (i.e., event parameters or patterns). As a result, only one
good stage/level can be generated. For the other extreme end, when all event
parameters/patterns are randomly assigned, the stages/levels will have a high
diversity but are highly likely to have low quality.

A reasonable idea in between is to randomly initialize several events/patterns
and make the RL model finish the rest. During training, RL algorithms
are also provided with such randomly initialized stages/levels as the initial
states/levels. We expect that RL algorithms can learn how to generate good
stages/levels from random initialization. In this way, with diverse initial
stages/levels, we can generate diverse and good stages/levels. However, in
some cases, even if the initial stages/levels are different, the later parts may
end up being similar, especially when long stages/levels are generated. Lack
of diversity can be alleviated by randomly initializing more events/patterns,
while this may result in stages/levels with low evaluations. For this method,
the number of events/patterns to initialize determines the trade-off between
the quality and diversity of stages/levels, and detailed results will be shown
in Sections 5.2.3 and 6.6.2.

4.3.2 Diversity-aware greedy policy

Getting diversity from the initial stages/levels is not enough as the diversity
only depends on the initial states. As the second method to address diversity,
we propose to sample not-bad-but-distant actions based on Q-values, which
we call diversity-aware greedy policy (DAGP)2. Compared to the greedy
policy that always takes the best actions, the proposed method may take
worse actions where stochastic noise is introduced for increasing stage/level
diversity. In this way, even when the generation starts with the same initial
stage/level, we can still get quite different stages.

The most critical part of DAGP lies in how to select not-bad-but-distant
actions. If improper noise is introduced, stages/levels with low evaluations
are likely to be generated. The method has two prerequisites: (a) good
actions distant from the best-evaluated ones exist, and (b) the Q-values of
those good actions can be estimated with some accuracy. The experiments
in Section 5.2.2 will confirm that the two prerequisites are indeed satisfied.
From the results, we conclude that it is possible to generate diverse and
high-quality stages/levels based on Q-values and present a noise introduction

2The method was called stochastic noise policy in our previous work [21].
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Figure 4.2: Example of choosing an action that is not-bad-but-distant by
DAGP.

algorithm to select such not-bad-but-distant actions as follows.

i) Decide the stage structure /level length and train the model as usual.

ii) Determine where and how noise is introduced (noise event/pattern).
The place can be fixed in advance or randomly selected during genera-
tion. Also, determine the number of candidate events/patterns n and
the criteria for the difference between a candidate and the best (i.e.,
Euclidean distance d for event parameters and KL-divergence klpattern
for patterns).

iii) Except for the noise events/patterns, greedily decide actions (event
parameters/patterns) according to the learned policy. In the case of
noise events/patterns, an action is decided as shown in Fig. 4.2. First,
generate n random actions as candidates. Candidates in the gray zone
are rejected because it does not meet the criteria, as it means that they
are close to the best action (i.e., Euclidean distance is less than d or
KL-divergence is less than klpattern). If there is no candidate, then the
action is greedily decided. Among the remaining candidates, select the
one with the highest Q-value.

4.4 Comparison with Khalifa et al.’s work

Khalifa et al. [22] also applied RL to PCG to generate game levels and
formulated the problem into MDP. In the comparison, theirs are referred to
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as levels following their paper and ours as stages and levels. Their levels were
represented by 2D integer matrices, indicating the layouts of the maps where
different integers stand for different objects. The layouts were initialized
randomly, and the actions were to change the objects of tiles in the maps.
We also represent stages/levels by matrices while the meaning is different. In
both designs, the actions modify stages/levels, where their approach changes
existing values and ours assigns new values. They proposed three ways to
locate the value to change, and one of which following a predefined order is
similar to ours.

Their reward functions were manually designed to reflect whether the
levels got closer to the goals of the game. For example, since PacMan has
only one player, adding a player object when there is none receives positive
rewards. Their goal was to generate playable levels that obey the game rules,
while ours focuses on the difficulty with players’ engagements. They required
an additional function to determine whether the goals were reached so that
the generation process could be terminated.

To achieve the diversity of levels, they set a parameter called change per-
centage, which limited the numbers of tiles that could be changed from the
initial levels. Smaller change percentages were suggested since too-high val-
ues were expected to cause the generator to override most of the initial levels
aiming at few optimal solutions. We also set random initial values, though
our approaches differ in terms of theirs. In addition, we introduce noise to
choose not-bad-but-distant actions to make the generated stages/levels more
diverse.
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Chapter 5

Generation of turn-based RPG
stages

In this chapter, we present the MDP formulation of our platform in Sec-
tion 5.1, which is required when applying RL for stage generation. The
MDP formulation includes state and action representations, state transition
function, and reward function. For the reward function, we design an eval-
uation function to rate completed stages. Next, experimental results and
discussions are provided in Section 5.2. Finally, Section 5.3 concludes the
overall chapter.

5.1 Markov Decision Process

This section explains how to formulate stages generation in our turn-based
RPG into MDP.

5.1.1 State representation: incomplete stage

Each stage in our platform is represented by a real number matrix, indicating
a series of one-way battle events and recovery events, with a boss event at
the end. An empty stage is represented by a zero matrix filled with zeros. In
the matrices, each column contains three values, i.e., enemy’s HP, enemy’s
ATK, and player character’s recovery. In more detail, the former two form
a battle event, and the last one forms a recovery event. Fig. 5.1 is a simple
example consisting of five events: enemy-enemy-recovery-enemy-boss.

We represent enemies’ HP and ATK values by integers in some reasonable
ranges. In Fig. 5.1, the second enemy’s HP is 70, while the range is 20 to
120. Similarly, the ATK is 10, while the range is 5 to 30. For bosses, both
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Figure 5.1: Example of converting the battle-battle-recovery-battle-boss
stage to a 3×4 matrix.

lower bounds and upper bounds for HP and ATK are usually higher than
those of enemies. To make our representation generalize to any ranges, we
normalize the values into [0, 1] according to the given ranges. For example,
HP of 70 in the range of 20 to 120 is normalized to (70-20)/(120-20)=0.5.

As for the third element in a column, the recovery event, the value ranging
from 0 to 1 represents the player character’s recovery rate relative to max HP.
For example, assuming that the player character’s HP/max HP is 20/100, a
recovery rate of 0.7 makes the player character’s HP become 20+0.7×100=90.
The max HP bounds the recovery, i.e., even with a recovery rate of 1.0, the
player character’s HP becomes 100 instead of 120 after the recovery event.

It can be seen that even in the same range of [0, 1], the values mean quite
different things between battle events and recovery events. Also, battle events
require two values, while recovery events only require one. Considering the
topological structure of stage representation, we attach one recovery event
after every battle event. However, it is unusual that each battle event follows
a recovery event in turn-based RPG stages. For battles without recovery
events (the 1st and 3rd columns of the matrix in Fig. 5.1), the recovery values
are set to 0. In this way, a series of battle-recovery events, including battles
without immediate recovery events and the final boss, can be represented
by concatenating columns with three real number values ranged in [0, 1]. A
stage containing b battle events is represented by a 3 × (b + 1) matrix, the
+1 for boss.
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Figure 5.2: DQN for stage generation in this dissertation.

5.1.2 Action representation and RL

Actions in our platform are defined to fill in the stage matrices sequentially.
In other words, an action decides one or some real number values of the given
incomplete stage matrix. Many classical RL algorithms, including deep Q-
network (DQN) [51], assume discrete actions, i.e., action spaces being finite
sets. Meanwhile, algorithms coping with continuous actions, such as deep
deterministic policy gradient (DDPG) [62], are also proposed. We define
both discrete and continuous action representations so that our platform is
applicable to both kinds of RL algorithms.

For discrete actions, we divide the range of [0, 1] into k sections, and
thus, there are k + 1 actions. Each action stands for the lower bound of
the corresponding section, except that the (k + 1)st action stands for the
overall upper bound, i.e., 1. Assuming k = 100, the 101 actions are 0, 0.01,
0.02, 0.03, ..., and 1. DQN takes an incomplete stage matrix as the input
and outputs k + 1 action values (Q-values), as shown in Fig. 5.2. The k + 1
Q-values represent how the k + 1 possibilities of the next parameter look
promising for the given stage. The interpretation of the next may vary in
different implementation. In this dissertation, we fix the order to 1st enemy’s
HP → 1st enemy’s ATK → 1st recovery rate → ... → the boss’s ATK. In
this manner, one stage parameter is determined at a time by selecting the
one with the highest Q-value or by methods that introduce exploration such
as ε-greedy.

Considering that the three values in the same column may influence each
other, it is more natural to output them at a time. However, the case of
discrete actions falls into the curse of dimensionality. In the example, the
output increases to 1013 = 1030301, an extremely large value that may cause
problems during learning. Continuous action algorithms directly output nu-
merical values in the given ranges. Thus, it is easy to output three values at
once, representing one column. This is done by the actor of DDPG, while the
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Figure 5.3: DDPG for stage generation in this dissertation.

Q-value is evaluated by another model called the critic, as shown in Fig. 5.3.
More specifically, the actor takes an incomplete stage matrix as the input
and outputs three real number values. For example, (0.5, 0, 0.8) means a
50% of enemy’s HP in the given range, a minimum value of enemy’s ATK,
and a recovery rate of 0.8. The critic then takes the same stage matrix and
the actor’s action as the input and outputs the Q-value.

5.1.3 State transition

Given an incomplete stage matrix as a state and a real number value (or
a column) as an action, the matrix is always filled in by the given value(s)
exactly. For example, given a zero matrix and a value of 0.5, the first element
in the first column of the matrix becomes 0.5, meaning that the enemy in
the first battle event is assigned an HP of 50% in the given range. Stage
generation terminates when the matrices are fully filled.

5.1.4 Reward function

In this dissertation, our purpose is to create stage generators that can gen-
erate enjoyable stages. We define a stage evaluation function and use it as
the reward function of the MDP. The evaluation function focuses on player
engagement from seven perspectives, where the major one is the appropri-
ateness of difficulty.

Although there are various possibilities to define the quality of stages,
the difficulty is considered one of the most important factors that influences
player engagement [63] [64] [65]. Also, the difficulty assessment is different
from game to game. As a simple example, we define a strategy to be a
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sequence of action selections from the beginning to the end of a stage and
then use the ratio of winning strategies among all possible strategies as the
difficulty of our turn-based RPG stages. Generally speaking, good stages
should have moderate ratios of winning strategies to avoid situations like
players cannot win whatever they do or can win whatever they do.

In more detail, players have two available actions, attack and retreat,
for each battle event in our platform. When there are b + 1 battle events
including a boss event, the possible number of strategies is 2b as it is not
allowed to retreat in the boss battle. In this condition, it is evident and
deterministic whether a boss is beatable or not. We calculate the ratio of
defeating the boss among all strategies as the winning rate to represent the
difficulty of a stage.

Deciding the proper target winning rate on our game setting could be
an issue. However, the preferred Mario series until the present day varies
depending on the games, and it is difficult to say which values are the most
reasonable, which we leave out of the scope of this dissertation. In this
study, we assume 30% to be the most favorable winning rate and leave it
as a tunable parameter 1. In our evaluation function, as shown in Fig. 5.4,
the scores are 0 when the winning rates are higher than 60% and linearly
increase from 0 to 1 in the range of 0%-60% as the winning rates go closer
to 30%.

There are many other entertaining factors in addition to difficulty, and
those factors are different for each player [66]. Accurately predicting the
satisfaction of human players is not the subject of this dissertation, so we only
consider some common factors, such as dramatic surviving and tough wins.
The following paragraph describes the details of the evaluation function.
Although this specific evaluation function is applied in our method, it can
be replaced by any other calculable evaluation functions. Similar to search-
based PCG, adaptive generation can be achieved by adjusting the evaluation
function.

The employed evaluation function is weighted from seven sub-functions,
f(x) = Σ7

i=1wifi(x), with considering the following features of stage x: The
number of events (nevents), the number of winning strategies (nwin), the num-
ber of the strategies that retreat from the ith enemy (nretreati), the number of
strategies that have dramatic surviving moments (ndramatic), the number of
winning strategies that have monotonous actions (nmono), character recovery
rate at the ith recovery event, (crecoveri), the i

th enemy’s normalized ATK and

1Some readers may consider that a winning rate of 30% results in too difficult stages.
However, our definition of the winning rate implies that the player selects each action with
equal probabilities (i.e., a random player). Rational players usually do not play randomly,
which we expect to have higher chances to clear the stages.
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Figure 5.4: An evaluation based on a winning rate. (x-axis: winning rate,
y-axis: evaluation based on the winning rate)

HP within [0, 1] (eATKi
and eHP i

).

• f1: the winning rate soundness. The winning rate should not be too
low nor too high, as shown in Fig. 5.4, w1 = 0.4.

• f2: bonus for dramatic surviving. Players often feel pleasant when
surviving dramatically from a crisis (when reaching the ith recovery
event with an HP ≤ 0.3×(max HP) and crecoveri ≥ 0.5). ndramatic/nwin,
w2 = 0.1.

• f3: bonus for moderate parameter ranges. Enemies or recovery events
within moderate ranges (enemy parameters within [0.05, 0.95] and re-
covery rates within [0.2, 0.8]) seem more natural. (Σig(crecoveri , 0.2) +
Σi min(g(eATKi

, 0.05), g(eHP i
, 0.05)))/nevent, where g(x, y) = min(x/y, (1−

x)/y, 1), w3 = 0.2.

• f4: bonus for tough wins. If the character after defeating the boss has
a low HP (≤ 0.4×(max HP)), it means that the stage is challenging.
Average of min((1 − final HP(%))/0.6, 1) in winning strategies, w4 =
0.1.

• f5: penalty on early escapes. If the strategy of escaping in the early
battles are effective, the game flow may be considered unnatural. 1 −
(3nretreat1 + 2nretreat2 + nretreat3)/6nwin, w5 = 0.05.
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• f6: penalty on weak enemies in later phases. It is irrational that later
enemies are too weak. 1 − (0.7 − min(0.7, (Σi∈{last two enemies}(eATKi

+
eHP i

))/4))/0.7, w6 = 0.1.

• f7: penalty on monotonous strategies. Winning a stage with monotonous
strategies, i.e., only attacks or only retreats, can make players boring.
1− 0.5× nmono, w7 = 0.05.

5.2 Experiments and discussions

In this section, the results of generating stages with high quality are included
in Section 5.2.1. The learned Q-values are analyzed in Section 5.2.2. Finally,
the results of generating diverse stages are presented in Section 5.2.3.

5.2.1 High-quality stage generation

We employed two RL algorithms with different action spaces to generate
turn-based RPG stages by the proposed PCG approach. More specifically,
the two RL algorithms were DQN [51] for discrete actions and DDPG [62] for
continuous actions. We also included two non-RL methods for comparison,
though different kinds of methods have different assumptions and advantages,
as discussed in Section 4.1, and might not be directly comparable. The ran-
dom generation method decided event parameters by a uniform distribution
within [0, 1]. The supervised learning (SL) method took an incomplete stage
as the input and decided the parameters in the next column (i.e., enemy’s
HP, enemy’s ATK, player’s recovery rate), similar to the actor of DDPG.

As described in Section 5.1.1, we represented turn-based RPG stages by
matrices of three rows and b+1 columns, which contain b battle events and a
boss battle. For the third row, if there was no recovery event after the battle,
the value was fixed to 0. The number of battles b and the stage structure (i.e.,
the arrangement of battle and recovery events) were determined in advance
and then fixed.

Experimental setup

We conducted the experiments under the following settings.

• The codes were implemented in Python 3.6, and the used libraries and
the machines for experiments are listed in Table 5.1. The network
settings of DQN, DDPG, and VS-DDPG are listed in Table 5.2, where
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Conv x means a convolutional layer with x filters of size 1× 3 and FC
x means a fully-connected layer with x nodes.

• The composition of a stage was the one from Fig. 5.5a, and a longer
stage (Fig. 5.5b) was used to compare the effect of virtual simulation.
Each stage was represented by 3×7 and 3×9 matrices, respectively.
Among these, the event parameters in the first one or two columns
were determined randomly, which were initial states.

• As described in Section 5.1.2, the significant difference between DQN
and DDPG is the action space. DQN was for discrete actions, and
DDPG for continuous actions. In our setting, DQN had 101 actions2,
each representing a possible setting (0, 0.01, ..., 1) for the next event
parameter (enemy HP, enemy ATK, or player’s recovery rate). DDPG’s
actor output three real values in [0, 1] at once for the event parameters
in the same column. The designs led to a minor difference in how
many times of input/output were required to complete a stage. For
the example of Fig. 5.5a, assume that one column of the stage matrix
is initialized. DQN requires 3×6 because it decides event parameters
sequentially one at a time (even when there is no recovery event). In
contrast, DDPG only requires 6 because it decides one column at a
time.

• Virtual simulation presented in Section 4.2 was applied to DDPG (abbr.
VS-DDPG). The number of virtual simulating episodes was 5, and
virtual simulation was applied from the beginning of the training.

• SL had the same network structure as the actor of DDPG, except that
batch normalization layers were added to prevent overfitting. In prac-
tice, preparing training data with high quality is a critical issue for SL
methods. In this experiment, we simply employed the random gen-
eration method and only collected stages whose evaluations were over
0.7. It cost 10 hours to obtain 20000 nine-event stages (Fig. 5.5a). For
more complex games, we expected the preparation of training data to
be more costly.

2When doing discretization, proper settings of granularity (i.e., number of actions)
depend greatly on the ranges of event parameters. In some preliminary experiments, we
obtained poor results if the number of actions was too low (e.g., 11). Considering that
discretization is a general and challenging issue, detailed investigations are made out of
this dissertation, which we focus more on that the proposed approach is applicable to both
discrete and continuous actions.
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Table 5.1: Used tools and version

Tool Spec (version)

GPU NVDIA GeForce GTX 1070
CPU Intel Core i7-7700 3.60GHz
RAM 16GB tensorflow-gpu 1.10.0

CUDA and cuDNN 8.0 and 6.0.21 Keras 2.2.2

Table 5.2: DQN and DDPG setup

Value
Parameter DQN DDPG & VS-DDPG

Layers
Conv 36→64→

FC 128→256→256→256
Conv 256→256→256→
FC 128→128→128

Memory size 300000

Learning rate 0.25× 10−4 Actor: 1× 10−5

Critic: 1× 10−4

Target network hard update (3000) soft update (0.001)
Batch size 128 64

Discount factor 0.9

Exploration
ε-greedy
(1 → 0.1)

OU noise with
ε-greedy
(1 → 0.1)

(a)

(b)

Figure 5.5: Composition of the stage having (a) nine and (b) twelve events,
where each square represents battle (red), recovery (blue), and boss (black)
events.
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(a) (b)

(c) (d)

Figure 5.6: The average evaluations of 50 stages: (a) DDPG’s 10-trial train-
ing curve of the 9-event stage, (b) DQN, DDPG, VS-DDPG’s training curves
of the 9-event stage, converging around 0.65, 0.83, 0.87, (c) box plot of the
9-event stage after training, and (d) DDPG and VS-DDPG’s training curves
of the 12-event stage, converging around 0.65 and 0.75. For training curves,
the action selection involved exploration, such as ε-greedy.

Result

Since randomness was involved in the training, we investigated how training
curves were influenced and ran DDPG under the same setting for 10 trials.
DDPG was trained for 50×350=17500 episodes to generate 9-event stages.
Fig. 5.6a shows the mean evaluations and the standard deviations of the
10 trials. Each data point was the average evaluation from 50 episodes,
where one episode means generating one stage from an initial one. Note that
the evaluations were collected from stages generated during training, which
means that the exploration was also involved. The standard deviations before
50×100 episodes were relatively high, mainly because of higher exploration
(ε-greedy and OU-noise) in the early phases of training. In addition, we tried
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several network structures and hyperparameters, obtaining similar results. In
the following experiments, we only show the results of one trial under the
settings described in Section 5.2.1.

Fig. 5.6b shows the training curves of DQN, DDPG, and VS-DDPG on
generating 9-event stages. The results showed that both DDPG and VS-
DDPG were better than DQN (under our experiment settings). Especially,
VS-DDPG converged at the highest evaluation value of 0.87. Fig. 5.6c shows
the box plot of evaluation values of 50 stages after training, including two
baselines, random generation and SL. Stages made by the random generation
had a wide range of evaluation values, and most stages were lowly evaluted.
As for the remaining four, (VS-)DDPG generated stages with the highest
average evaluations, though some bad stages were also obtained. SL could
generate highly evaluated stages most consistently, but the average evalua-
tions were slightly worse than (VS-)DDPG. Assume that we only want to
collect stages whose evaluations were over 0.9. Taking DDPG and the ran-
dom generation as examples, the former could obtain one such stage every
3-4 trials (about 0.2 seconds), while the latter required about 2000 trials (80
seconds). DDPG’s speed was about 400 times faster than random generation.

We further conducted an experiment to compare DDPG and VS-DDPG
for generating longer stages. The results of the 12-event stages (Fig. 5.5b)
are shown in Fig. 5.6d. As expected, VS-DDPG performed obviously better
than DDPG as the problem of delayed rewards was considered more serious
for longer stages. About the training time of 9- and 12-event stages for 10000
episodes, VS-DDPG took 300 and 2500 minutes, while DDPG took 60 and
160 minutes. Even under the same training time, DDPG could not reach the
same evaluation values.

Fig. 5.7 shows two stages generated by random (top) and VS-DDPG
(bottom). The upper stage has strong enemies in the early phases with low
recovery and somewhat weak enemies in the later phases; hence, it has a
lower evaluation value. In contrast, the bottom one is generated from the
first two columns of the upper one, but it has a better evaluation value by
filling adequate values with implicitly considering the requested conditions
by the reward function.

As described above, if an evaluation function is given, the RL model can
learn a policy that can generate highly evaluated stages. We have shown
that our proposed approach for generating high-quality stages is promising.

5.2.2 The relation between Q-value and evaluation

In the previous section, generating good stages is the main goal. In this sec-
tion, we further shift the goal to generate diverse stages while maintaining
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Figure 5.7: Stage examples (top: random generation, bottom: VS-DDPG),
where each column represents event parameters of battle and recovery, i.e.,
HP, ATK, and recovery rate from the top.

quality. The policy of RL generally takes the best-evaluated actions, but
when considering diversity, it is better to choose other actions. For actions
other than the best-evaluated ones, two questions about evaluations arise:
(1) whether a distant action from the best-evaluated one gets an extremely
worse evaluation value and (2) whether the Q-values of distant actions are
inaccurate due to lack of learning. Therefore, we first compare the distribu-
tions of Q-values and evaluation values to confirm the distribution of good
actions and how trustworthy Q-values are.

Experimental setup

From Section 5.2.1, VS-DDPG was clearly better than others and was thus
used in the rest of the experiments. The stage composition was the same as
Fig. 5.5a, and the first one battle event was randomly initialized. The actor
of VS-DDPG then completed the stage. The Q-value distribution for each
battle event was collected from the critic.

Unlike the critic of VS-DDPG, which can also evaluate incompleted stages,
our evaluation function requires completed stages. Thus, we applied the actor
of VS-DDPG to finish the rest of the events by selecting the most promising
actions and then used the evaluations of such completed stages for incomplete
stages. The evaluations were the highest ones the actor could reach.
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Distribution of Q-values and Evaluation Values

For VS-DDPG, we obtained the Q-value distribution by sampling actions
and inputting them into the critic. An action was represented by a three-
dimensional vector of [0, 1] (HP, ATK, recovery rate). To make the results
easier to understand, we used the recovery rate from the actor and varied
HP and ATK.

Fig. 5.8a (left) shows the distribution of the second battle event’s Q-
values, with the first battle event randomly initialized. The Q-values are the
highest around (0.1, 0.55). When both go too high, which means the enemy
is too strong in early stages, the Q-values become lower. The scale of the Q-
values is 7.18 to 7.32, which shows the difference gap is small, and the value
is overestimated than the evaluation value. Lillicrap et al. [62] have pointed
out such overestimations of Q-value when the target problem is complicated.

Fig. 5.8a (right) shows the distribution of the evaluation values of the
second battle event. It can be seen that multiple good actions exist. Also, the
general trends between Figs. 5.8a left and right are similar. The distributions
of the Q-values and evaluation values for the 3rd-7th battle events are drawn
in Fig. 5.8b-5.8f in similar ways. The results also demonstrate that the critic
of VS-DDPG learns the general trends.

Fig. 5.9 shows the relations between the Q-values normalized to [0, 1]
and the evaluation values from Fig. 5.8. The Pearson correlation coefficients
were 0.742, 0.787, 0.806, 0.849, 0.383, and 0.884, respectively. Except for
Fig. 5.9e, all had highly positive correlations. In other words, the Q-values
by the critic were generally trustworthy.

5.2.3 Diverse stage generation

In this section, we first define two indicators to evaluate the diversity of the
generated stages and then demonstrate the effectiveness of our approaches
proposed in Section 4.3.

Diversity assessment

The first indicator calculates the average squared difference (ASD) between
the event parameters of two stages. Higher values of parameter ASD mean
that two stages have distant HP, ATK, and recovery rates.

The other is the number of winning strategies that are different in two
stages. As introduced in Section 5.1.4, winning strategies are those that can
beat the boss. In the experiments, the stages contained six enemy events and
a boss event, i.e., Fig. 5.5a. For each enemy event, two actions, attack and
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Relations between Q-values and evaluation values from Fig. 5.8
for the 2nd-7th battle events, where the Pearson correlation coefficients are
0.742, 0.787, 0.806, 0.849, 0.383, and 0.884. (x-axis: evaluation values, y-
axis: normalized Q-values)

42



Table 5.3: Average ASDs and average rewards from 200 stages (Fig. 5.5a)
generated when the first c columns were randomly initialized.

c 1 2 3
ASD 0.727 (±0.024 ) 1.040 (±0.030 ) 1.290 (±0.020 )

Reward 0.797 (±0.006 ) 0.766 (±0.006 ) 0.711 (±0.015 )

c 4 5 6
ASD 1.443 (±0.028 ) 1.552 (±0.027 ) 1.742 (±0.027 )

Reward 0.667 (±0.013 ) 0.598 (±0.006 ) 0.533 (±0.018 )

retreat, were available. Thus, the total number of possible strategies was 26.
A higher difference means that efficient strategies in one stage do not work in
the other, and thus players need to try different actions for different stages.

Result

Our approaches for diverse stage generation require a well-trained model. In
the experiments, we employed VS-DDPG for generating stages and evaluat-
ing actions. The stage composition was the one in Fig. 5.5a. During training,
we randomly selected an integer 1≤ c ≤5 and initialized the first c columns
to random values, where it was 1≤ c ≤2 in the previous experiments. This
modification aimed to explore more stages and learn Q-values better.

We first experimented on randomized initialization (RI) and generated
200 stages for each integer c ∈ [1, 6] where the first c columns were randomly
initialized. Table 5.3 shows the average ASDs and rewards for each c. Note
that the stages contained seven columns, so randomly initializing six meant
that almost all event parameters were randomly decided. As expected, with
more randomly-initialized columns, the average ASDs increased while the
average rewards decreased.

As discussed in Section 4.3 and shown in Table 5.3, the diversity was
limited by only employing RI, especially when high quality was also desired.
In the next experiment, our proposed DAGP (diversity-aware greedy policy)
was applied, where the first column was randomly initialized, and the rest
were set to noise events. We prepared 50 initial stages to see whether different
initial stages influence DAGP’s results. We tried several values for d (distance
threshold) and n (candidate stage number), and each setting generated 50
stages from each initial stage. The goal was to investigate how different stages
could be generated from the same initial one. High values of d prevented
actions from being too close to the actor’s action, and thus, we expected to
generate diverse stages. Also, we expected high values of n (many candidate
actions) to increase the chances of obtaining good stages.
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Fig. 5.10 shows the average reward, the parameter ASD, and the number
of different winning strategies of different d and n settings. Note that when
calculating the parameter ASD and the number of different winning strate-
gies, a stage was compared only to another that was generated from the same
initial stage, instead of calculating among all 50×50 stages. The results in
Fig. 5.10 were the averages over the 50 initial stages. As expected, higher
n indeed led to stages with higher average rewards, as shown in Fig. 5.10a,
and higher d led to higher parameter ASD and the number of different win-
ning strategies, as shown in Figs. 5.10b and 5.10c. The only exception for
diversity was the number of different winning strategies when d was 0.7. The
reason was related to the low quality of stages, either impossible to clear or
too easy to clear.

Except the case of d = 0.7 in Fig. 5.10c, we observed that the quality
(average reward) had an opposite trend to the diversity (parameter ASD and
number of different winning strategies). We suspected that the phenomenon
was related to the Q-values learned by the critic, as shown in Fig. 5.8. Even
though multiple actions had high evaluation values (Fig. 5.8a-5.8f (right)),
the critic tended to have Q-values centered at one of the actions (Fig. 5.8a-
5.8f (left)). Since DAGP selected actions with the highest Q-values from
far-enough actions, when d decreased or when n increased, it was more likely
to get an action closer to the actor’s action. Thus, increasing n was likely to
decrease the diversity, while decreasing d was likely to increase the average
rewards.

Fig. 5.11 shows example stages by VS-DDPG (top) and DAGP (bottom).
The former was evaluated as 0.889, and the later as 0.878. The stage pa-
rameter ASD between the two stages was 1.449, and the number of different
winning strategies was 11. Although the first event was the same, it could
be seen that different good stages were generated by introducing noise.

Although DAGP was shown to be able to generate diverse stages, one mi-
nor problem remained. Sometimes, DAPG generated stages with low evalu-
ations (e.g., 0.3), which should be discarded to keep high quality. We further
conducted an experiment to investigate the influence on quality and diversity
by filtering out bad stages. Since such removal was expected to increase the
cost of online generation, we also investigated the generation cost. In addi-
tion to DAGP with VS-DDPG (abbr. RL-DAGP), we included two other
algorithms for comparison, DAGP with SL (SL-DAGP) and random genera-
tion.

To apply DAGP in SL, we added a network similar to the critic of DDPG
that evaluated given stage-action pairs. The evaluator network was trained
by 10000 randomly generated stages regardless of their evaluations. Different
from the generator network that only required good stages, the evaluator net-
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(a)

(b)

(c)

Figure 5.10: Evaluation of DAGP results averaged from 50 initial stages
where each had 50 stages generated. (a) average reward, (b) parameter ASD,
(c) number of different winning strategies. Each blue, orange, and gray bar
is for n = 20, 10, and 5, respectively, and each group of bars represents the
result when d = 0, 0.2, 0.4, 0.7 from the left.

45



Figure 5.11: Stages generated by the actor policy (top) and DAGP with the
first event fixed and the rest set to noise events (bottom).

Figure 5.12: The Pareto frontier to average rewards and parameter ASD for
RL-DAGP, SL-DAGP, and random generation.
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work’s training data should also contain bad stages so that it could predict the
evaluations of state-action pairs better. For the three algorithms, we prepared
five initial stages and let each setting collect 50 stages from each initial stage.
DAGP parameters were n ∈ {5, 10, 20} and d ∈ {0, 0.2, 0.4, 0.7}, and stages
with evaluation values lower than v were discarded, v ∈ {0, 0.5, 0.7, 0.8, 0.85}.
Note that a v of 0 meant that no stages are discarded. We omitted the re-
sults of settings that could not obtain 50 stages within 500 trials since those
settings would require more than 3 seconds to get one stage, which we con-
sidered unsuitable for online generation.

Fig. 5.12 shows the Pareto frontier to the average rewards and param-
eter ASD. RL-DAGP dominated SL-DAGP in most cases. Random gen-
eration could generate diverse stages but the quality was much lower. As
discussed in Section 5.2.1 (the 2nd paragraph), when the random generation
was employed to collect good stages with evaluations over 0.9, it required
about 80 seconds to get one stage, which was time-consuming. From the ex-
periments, RL-DAGP was the most promising to generate high-quality and
diverse stages online.

5.3 Chapter conclusion

In this chapter, we proposed the use of reinforcement learning with the theme
of stage generation in turn-based RPG. The stage generation problem was
formulated into a Markov decision process, where states were incompleted or
completed stages represented by real-number matrices and actions were to fill
in the matrices. We defined an evaluation function to consider the difficulty
and several entertaining factors of stages. By using the evaluation function
to give rewards in reinforcement learning, our proposed method successfully
generated highly evaluated stages.

We applied DQN and DDPG for discrete and continuous actions, respec-
tively. For discrete actions, the range was divided into a fixed number of
sections, and one value in the stage matrix was decided at a time. In con-
trast, it was easier for continuous actions to decide several values (of related
events) at once, which was expected to handle related events more effectively.
DDPG indeed generated better stages than DQN under our experiment set-
tings. When our proposed method is used in other PCG problems, action
types may be a factor that affects the performance.

Under our reward design, the delayed rewards made the model hard to
efficiently learn to evaluate actions, especially when the event sequence was
long. To overcome the difficulty, we introduced virtual simulations to pro-
vide intermediate actions with rewards. Experiments showed that virtual
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simulations helped to improve the quality of stages.
Since the primary purpose of this research is to generate good and diverse

stages, we proposed randomized initialization that assigns random parame-
ters to several beginning events and a diversity-aware greedy policy that
chooses actions distant but not bad compared to the best actions from the
model’s view. The experiments demonstrated the effectiveness of the pro-
posed approaches in obtaining good and diverse stages for online generation.
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Chapter 6

Generation of Super Mario
levels

In this chapter, a level generation in Super Mario is described. First, the two
challenges not appearing in the turn-based RPG stage generation problem
are discussed in Section 6.1. A solution for each challenge, the function
approximator and the human-like AI agent, is explained in Sections 6.3.4
and 6.4, respectively. The overall process of the level generation and each
component including MDP formulation for the Super Mario level generation
are presented in Section 6.2-6.5. Next, experimental results and discussions
are provided in Section 6.6. Finally, Section 5.3 concludes the overall chapter.

6.1 New challenges

Super Mario’s level has a 15 × n two-dimensional structure. If a level is
gradually filled by a part of the matrix (e.g., 15×4 pattern) starting from the
left end, it can be considered the same manner as determining the parameter
values of turn-based RPG’s stages RPG as shown in Fig. 4.1. The general
concept of formulating a level generation problem into MDP is similar to the
stage generation problem. However, there are some differences in formulating
each problem into MDP. The differences in MDPs and the characteristics of
the games raise two different challenges.

In the turn-based RPG’s stage generation problem in this dissertation,
each vector in a stage matrix can be directly converted to parameter values
(e.g., HP, ATK) using the ratio of parameter ranges. It is a simple and
intuitive way to represent a stage.

In Super Mario, it seems to be reasonable to represent levels as states
of MDP. Then a 15×4 pattern of the level becomes the actions of RL.
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DDPG training was proven efficient in environments with less than 10 di-
mensions of action space (e.g., Hopper-v1 with 3 dimensions or Walker2d-v1
with 6 dimensions). However, the training becomes difficult for environments
with more than 10 dimensions (e.g., Humanoid-v1 with 17 dimensions) [67].
Therefore, we decided to use low-dimensional vectors as the output of RL,
and map them to the corresponding level pattern. In order to do so, GAN,
a function approximator that outputs the pattern from the vector, is em-
ployed. The detail descriptions of the function approximator and the MDP
formulation methodology are explained in Sections 6.2 and 6.4, separately.

The second challenge is the evaluation of the difficulty of generated con-
tent. In turn-based RPG, the difficulty appropriateness is assessed using the
winning rate as explained in Section 5.1.4. A strategy is a sequence of action
selections, and the stage is tested with all possible strategies. Then, the win-
ning ratio indicates how difficult the stage is. In Super Mario, the difficulty
is also an essential factor. The action choices in Super Mario are broader
and deeper than those in turn-based RPGs. Thus, finding every possible
action sequence in Super Mario is nearly impossible and pointless. We adopt
human-like AI agents and assume they represent human players. By letting
the AI agents play the levels, the degree of difficulty from human ability is
measured based on their play logs. Detailed configuration of the human-like
AI agents and the evaluation method are described in Section 6.3.4

6.2 Overall process of the level generation

The overall process of the level generation is shown in Fig. 6.1. (1) A level
in the generation process is transformed into a state (15 × n matrix with 3
channels, instead of image input). (2) Then RL outputs action, which is a
vector instead of a pattern itself. (3) It is converted to a pattern through
the function approximator. (4) The mapped pattern is repaired through
Matching. (5) The repaired pattern is added to the incomplete level as
the subsequent step. (61) Monotony is evaluated if the level is incomplete.
(62) Otherwise, the level’s difficulty is evaluated using human-like AI agents.
From Section 6.3-6.5, details of each component in a level generation are
described.

6.3 Markov Decision Process

In this section, we explain how to formulate State(incomplete level), Ac-
tion(vector), state transition, and reward function of MDP.
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Figure 6.1: The overall process of the level generation.
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6.3.1 State representation: incomplete level

In turn-based RPG, HP, ATK, and recovery are the components of a stage.
Our method represents the components in a matrix with 3 rows and n
columns, where n is the number of battle events. On the other hand, Super
Mario, walls, enemies, holes, and etc. are the components of a level. The
size of the level is 15 × n, where 15 is the height and n is the length of the
level.

There are various ideas for representing the incomplete level and deliv-
ering it to RL as a state (e.g., a raw image of the level or a 15×n matrix
consisting of 10 different tiles, or etc.). We semantically reduce the matrix
of 10 different tiles into three binary matrix channels: walls, enemies, and
holes. We considered this manner most suitable for RL’s CNN to grasp the
state and output actions properly. The goal information is excluded because
it is always located on the right-most.

A level example shown in Fig. 6.2(a) can be represented by Fig. 6.2(b).
Each color, red, green, and blue, represent a wall (c), an enemy (d), and a
hole (e), respectively.

The levels, including complete and incomplete ones, are in a matrix of
the same size, indicating a series of patterns. An empty level is represented
by a matrix filled with minus one.1

6.3.2 Action representation and RL

A 15×4 pattern is added to the incomplete level. However, the actual RL
model outputs three real values in [0, 1]. The RL action (vector) is converted
into the pattern through the function approximator. Then converted outputs
are filled in the sequential level matrices.

Since the RL methods needs to output a vector of real values, a variation
of DDPG [62], so-called the Twin Delayed DDPG (TD3) [68], is adopted for
level generation. The actor of TD3 outputs numerical values of vector in the
range of [0, 1], and the Q-value is evaluated by another model called critic as
shown in Fig. 6.3. The actor takes an incomplete level matrix as the input
and outputs three real number values. The critic takes the same level, and
the actor’s action as the input and outputs two Q-values and minimum value
are used for training.

1In turn-based RPG’s stage generation, the zero vector represents the minimum value
of event parameters. However, the zero vector in Super Mario’s level generation is an input
to the function approximator, which can map the zero vector to a pattern. Therefore, a
matrix is filled with minus ones instead of zeros to distinguish them in particular.
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(a)

(b) (c) (d) (e)

Figure 6.2: An example of level representations. (a) is the example level in
Super Mario Game. (b) is an integrated image of (c), (d), and (e). (c) is a
wall channel image, (d) is a enemy channel image, and (e) is a hole channel
image.

(a)

(b)

Figure 6.3: TD3 for level generation in this dissertation.
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6.3.3 State transition

Differ from the state transition in Section 5.1.3, given an incomplete level
matrix as a level and a real number vector as action, the matrix is not filled
in by the action vector. Instead, a vector is transformed into a pattern.
Then the pattern is represented as a pattern matrix which is explained in
Section 6.3.1. The pattern matrix is filled in the incomplete level matrix.
Level generation terminates when the level is entirely filled by patterns.

6.3.4 Reward function

A level evaluation function is defined and used as the reward function of
the MDP. The evaluation function highlights two aspects, difficulty and
monotony. The difficulty appropriateness is essential for player enjoyment.
The monotony is another important indicator. If the pattern is repetitive,
the player may feel bored.

We employ a computer test player to evaluate the difficulty of the gen-
erated Mario levels. The AI agent is not very strong and is designed to
make human-like mistakes. This is for estimating the difficulty perceived by
human players. Moreover, a new concept virtual damage is introduced for
evaluating how dangerous the level is and how fatal the mistakes are. The
detailed implementation of this agent is described in Section 6.5.

In summary, levels are evaluated in three manners. The first is to ensure
that the level is playable. Level difficulty or monotony is pointless if the level
is not playable. Playability is evaluated by simulation with a strong A* AI
agent implemented by R. Baumgarten described in [69]. If the base A* AI
agent cannot complete a level, the level is considered not playable.

The second evaluates difficulty. This dissertation focuses primarily on
virtual damage caused by human-like AI agents to express the level’s diffi-
culty which is described in Section 6.5. Virtual damage occurred by enemies
(enemydmg) and holes (holedmg) is treated with different weights. Then the
total damage totaldmg is calculated as the linear sum of them (Eq. (6.1)).
The linear sum of their counts is the total damage.

totaldmg = enemydmg · 1 + holedmg · 1.1 (6.1)

The behavior of our AI agent is stochastic. The value of totaldmg varies
each time. Therefore, we perform 10 trials and take the average value for ac-
curate difficulty estimation. A large totaldmg means that the level is difficult,
while a small totaldmg means that the level is easy. Finally, we compute the
appropriateness of the difficulty, rdiff , using the function shown in Fig. 6.4.

54



Figure 6.4: An evaluation based on the total score. (x-axis: total score, y-
axis: evaluation based on the total score)

The third evaluation is the monotony of the level. It corresponds to
the trajectory of the player’s gameplay. As mentioned in Section 3.2.1, the
decision of action sequences in a pattern is mostly affected by the layout
of wall and hole tiles. Similar patterns lead to repetitive action decisions
and monotony. Therefore, it is undesirable if the appearance of the newly
generated pattern is the same as that of the previous patterns. To evaluate
monotony, wall and hole tiles of nth pattern (pn) is compared with previous
four patterns (pn−1, pn−2, pn−3, pn−4). A higher penalty is given for the more
recently generated pattern. Let id(p, q) be a function that id(p, q) = 1 if and
only if two patterns p and q have the same wall tiles. Then, the monotony
evaluation value, rmono, is computed by Eq. (6.2).

rmono = 8/15 · id(pn, pn−1) + 4/15 · id(pn, pn−2)
+2/15 · id(pn, pn−3) + 1/15 · id(pn, pn−4)

(6.2)

Monotony is assessed after a pattern is generated. While the difficulty
evaluation is evaluated once the level is fully generated. The weight monotony
evaluation value (wmono) is specified 0.01.
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6.4 Function approximator: from a vector to

a pattern

The function approximator is employed to map a vector to the correspond-
ing pattern. The vector is the action output of the RL agent, and the corre-
sponding pattern is to be added to the current incomplete level, as mentioned
in Section Section 6.1. Candidates for the function approximator are a self-
organizing map (SOM) [70], GAN [17], CGAN [71], etc. We employed CGAN
because it can include previous patterns as input and improve the output’s
naturalness.

For a well-made level, subsequent patterns have similar features in appear-
ance to the previous ones. It is challenging to define naturalness. However,
we believe these characteristics contribute to naturalness from the player’s
viewpoint in Super Mario. Levels become unnatural when different features
of patterns are concatenated abruptly. Therefore, level generation also re-
quires consideration of connectivity between patterns.

6.4.1 Verification: importance of natural connectivity

A preliminary experiment was conducted to confirm this theory. In this
experiment, the human-designed level is compared with levels whose parts are
randomly replaced by other patterns. Through this experiment, we can see
how low connectivity affects the naturalness of appearance. The experiment
indicated that low connectivity affects the naturalness of appearance. The
preliminary experiment was conducted under the following setting and order.

Preparation of patterns

• 10 Levels in original Super Mario Bros were reproduced using Python
Mario.

• Additional 12 custom levels were collected from five volunteers.

• Each level is divided by patterns having a fixed size of 15× 4.

• 6,232 patterns (Patlegal) are extracted using a sliding window algorithm
with a sliding size of 4.

• For a level L whose length is n, we can obtain n − 3 patterns PL1

(x=1..4), PL2 (x=2..5), .., PLn−3.
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Level generation procedure

i) Choose any level (L) among 22 levels.

ii) Select any pattern (PLi) from the Super Mario level L and add it to
an empty level.

iii) Choose the next connected pattern PLi+4 with probability p or choose
other random pattern i and level L. Concatenate it in the level in the
process of generation until the level is completed.

Fig. 6.5 displays the generated levels when p are 0, 0.3, 0.9 in order. The
larger the value of p, the closer to the level at which the connection from
Patlegal is sustained. Several abrupt patterns emerge in levels generated by
using smaller values of p and the levels seem unnaturally connected in some
places.

Preliminary results indicated that the function approximator should han-
dle mappings between vectors to patterns and consider natural connectivity.
In order to reflect the natural connectivity in the function approximator, we
employed CGAN, which takes n of previous patterns as a condition. From
the assumption that the three patterns and the next pattern at the human-
designed level are naturally connected, three previous patterns are given to
CGAN as the condition to output a naturally connected pattern.

Fig. 6.6 outlines the procedure of a simplified version of CGAN employed
in this dissertation2. There are two neural network models, a generator and
a discriminator, which is trained by competing each other. After training
process is done, the generator is used for mapping a vector (noise) into a
pattern aiming for a natural connection. The detailed training processes are
as follow.

• The set of four patterns (Pi, Pi+4, Pi+8, Pi+12) (15×16) are given as
training data.

• The last pattern (Pi+12) is cut, and the first three patterns (Pi, Pi+4, Pi+8)
are given to the generator with a vector (noise).

• The generator outputs a pattern (Pout) and is concatenated to the set
of Pi, Pi+4, Pi+8.

• The discriminator receives the set of Pi, Pi+4, Pi+8, Pi+12 and the set of
Pi, Pi+4, Pi+8 followed by Pout.

2Data duplication is applied in an actual version of CGAN to improve performance.
The details are explained in the Appendix A.
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Figure 6.6: A structure of a simplified version of CGAN for Super Mario
pattern generation.

Table 6.1: CGAN setup

Parameter Value
Level data 10 original + 12 custom levels → 6232 patterns by sliding window (size 1)

Learning rate 0.00005
Noise (z) dimension 3

Batch size 16
Activation function Leaky ReLU

Dropout 0.4

• The discriminator is trained to distinguish them apart. The generator
is trained to deceive the discriminator by outputting a pattern that has
a natural connection.

6.4.2 Matching and verification

Machine learning techniques do not produce perfect results. In this sense,
mapping results from CGAN can contain some noise. T. shu et al.[72][73]
proposed CNet-assisted Evolutionary Repairer (CNet) that detects the de-
fects in the tile layout and fixes them. In this level generation problem,
only Patlegal are used. For this reason, this dissertation introduces a differ-
ent method called Matching. Matching is the algorithm to select the closest
pattern by comparing the noised pattern with all Patlegal. There are many
criteria for determining the distance between patterns. The best criteria in-
vestigated during preliminary experiments, Euclidean distance, is employed
We employed Euclidean distance because it is the best criteria investigated
during preliminary experiments. The detailed process of Matching is as fol-
lows.
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(a) Generator

(b) Discriminator

Figure 6.7: Network layers configurations of CGAN.

• Each tile has a unique integer value (e.g., Brick=0, Goomba=5). Thus,
the pattern can be represented as a 15×4 matrix in which each value
is an integer of tile value.

• Each element is normalized to [0, 1], then each pattern can be repre-
sented as a 60-dimensional vector ∈ [0, 1]60.

• Each matrix m ∈Patlegal and the matrix from the CGAN output are
compared using Euclidean distance.

• The output pattern is replaced by the pattern with the smallest value.

Verification of CGAN

We perform three evaluation experiments to investigate whether the proposed
CGAN and matching have the expected capabilities. The first is to verify
that close vectors are mapped to close patterns (and vice versa). The second
is to verify the continuity of the mapping from vectors to patterns. The third
is to verify the naturalness of the generated levels.

Vector spaces of the function approximator should map close values to
similar patterns and different results to distant values. Fig. 6.8 shows the
examples of three patterns (red square) followed by previous patterns after
applying Matching. The same previous patterns were given as input to the
CGAN, and each input vector is shown on the upper side in the red square.
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(a)

(b)

(c)

(d)

Figure 6.8: Comparison of patterns from different vectors.
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(a)

(b)

Figure 6.9: Distribution of patterns from CGAN (a-b left) and patterns from
Matching (a-b right). The closer the color is to red, the greater the value of
Euclidean distance from the empty pattern.(x-axis: 2nd vector value, y-axis:
3rd vector value).

The first pattern (p1) was from a random vector (v1), the second pattern
(p2) was mapped using a vector (v2) close to v1, and the third pattern (p3)
was a result from a vector (v3) distant from v1. The results exhibited that
patterns from close vectors, v1 and v2, produced similar results and patterns
from distant vectors, v1 and v3, were different.

The next step is to verify the continuity of the mapping from vectors
to patterns. However, it is difficult to visualize both 3-dimensional vectors
and 60-dimensional patterns. To comprehend the continuity of the mapping
between them, the first value of the vector was fixed as zero, and the second
and third values were varied for the entire 3-dimensional vectors. 101×101
vectors (by 0, 0.01, 0.02, ..., and 1) were investigated. Then, the Euclidean
distance between the pattern corresponding to the vector and the empty pat-
tern was plotted. Fig. 6.9 shows the plot results with and without Matching,
including the number of generated patterns from 10,201 vectors. Note that
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the different previous three patterns are used compared to the ones used in
Fig. 6.8. More red color signifies the greater distance between the pattern
and the empty pattern.

Results demonstrate that vector spaces have similar patterns at close
values and different patterns at distant values. The left figures had 3,190
and 6,923 distinct patterns, indicating many minor defects in raw output.
Figures (a) show similar distributions with the 3,190 patterns reducing to
45, and (b) also exhibit a similar trend.

Finally, Fig. 6.10 shows 100-length of levels generated from CGAN using
random vectors. A series of three consecutive patterns is chosen from Patlegal
and given as initial patterns. A raw pattern is generated by CGAN with three
previous patterns and random noise. Then, matching is applied to repair a
raw pattern into a pattern p ∈ Patlegal. Then it is added to the incomplete
level. When underground patterns are initially given at the beginning of
the levels, as shown in (b) and (d), generated levels also explicitly show the
underground patterns. The obtained levels have more natural connectivity
than randomly connected patterns shown in Fig. 6.5 (a). However, since the
evaluation function is not employed in this generation experiment, the levels
seem to be boring in many parts.
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6.5 Human-like AI agents for evaluation

The generated levels is judged to have appropriate difficulty and is used as a
reward for RL. A human-like AI agent is required for test play and assessing
difficulty, as described in Section 6.3.4.

This research focuses on two aspects of human nature. The first is failures
caused by inaccuracies of human nature. By nature, human players usually
try to take specific actions to avoid dangers in platformer games, including
Super Mario. However, processing decisions about when to execute actions
in a given situation may delay or hasten the action input because of the
inaccuracies of human nature. Fig. 6.11 shows examples of failures caused
by the inaccuracies of human nature. Mario needs to jump over the hole to
avoid falling (a). Due to the delay (b) or hasten (c) in the jump input, Mario
falls into the hole. These kinds of inaccuracies are prevalent in Super Mario.

While the first aspect is about the timing, the second is about the time
span of input. During gameplay, players sometimes press longer on the action
than they should because humans are not as accurate as machines.

From these human-like aspects, we can estimate the level’s difficulty for
human players. Since such human failures occur differently by players, the
behavior of our AI agents is stochastic. AI agents were implemented consid-
ering the above elements, and their details are as follows.

• An A* AI agent implemented by R. Baumgarten [69] is employed as a
base AI agent.

• Because the base AI agent emphasizes the performance in competition,
its goal is to complete as many levels as possible. To avoid failures,
Mario’s jumping frequency was minimized, and he did not try to jump
over the walls if it was not necessary. Minimizing jumping is not desir-
able for our purpose. Therefore, we added an extra reward to motivate
jumping. In particular, depending on Mario’s position (Y-axis), an
extra reward of 0 to 0.1 is given to the A* agent. This modification
sacrifices the performance to some extent. However, our goal is to em-
ploy a human-like AI agent whose behavior is similar to human players,
not a competent one.

• Some impaired movements (e.g., keeping stuck at a dead end) have
been modified by searching for deeper actions.

• As stated above, the timing of human players’ action decisions can be
delayed or hastened. If such human-like mistakes frequently lead to a
game over, then the level is considered difficult even if a strong A* can
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(a)

(b) (c)

Figure 6.11: Examples of ideal movements by humans (a) and failures due
to the inaccuracies of human nature (b-c).

clear it. Therefore, we perform a virtual A* simulation of the damage
(contacting an enemy, falling into a hole) caused by delayed or has-
tened timing of actions. Suppose an action a is taken at frame t, (1) a
is performed twice at frames t+ 1 and t+ 2, and A* search is done to
determine whether the delay is fatal (Fig. 6.11 (b)). Or, (2) a is per-
formed at frame t− 2, and A* search is done to determine whether the
haste is fatal (Fig. 6.11 (c)). If Mario takes damage by these simula-
tions, we call it virtual damage. This virtual damage simulation occurs
randomly (30%) and limitedly (once per pattern).

• Regarding the long press, AI agents often execute the same actions
twice that occurred in the previous frame instead of executing an out-
come from an A* search. Long presses also occur randomly (30%) and
limitedly (twice per pattern).

• Note that the inaccuracies of human nature occur virtually, not actu-
ally. On the other hand, the long press actually occurs.
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Table 6.2: Mean and standard distribution of the number of indicators of AI
agents’ human-like behaviors at each level.

Level 1-1 1-2 2-1 4-1 5-1
Jump count 33 (±7.2 ) 27.1 (±2.4 ) 23.4 (±10.8 ) 26.8 (±8.5 ) 19 (±2.6 )

Damage (enemy) 3.5 (±1.5 ) 4.3 (±1.0 ) 4.2 (±2.5 ) 0.2 (±0.4 ) 5.1 (±1.3 )
Damage (hole) 1.5 (±1.0 ) 1.6 (±0.5 ) 1.6 (±0.9 ) 2.1 (±0.7 ) 2 (±1 )
Long press 36.5 (±6.9 ) 30.3 (±1.7 ) 27.1 (±10.9 ) 32 (±9.6 ) 25.8 (±2.2 )

Level 6-1 6-2 8-1 8-2 8-3
Jump count 27.8 (±10.3 ) 20.3 (±6.1 ) 29.4 (±11.4 ) 27.9 (±4.0 ) 18.7 (±2.9 )

Damage (enemy) 0.5 (±0.5 ) 0.6 (±0.7 ) 3.3 (±1.6 ) 0.7 (±0.9 ) 0.6 (±0.7 )
Damage (hole) 2.1 (±1.3 ) 1 (±0.8 ) 4.5 (±2.5 ) 7.4 (±2.0 ) 3.3 (±1.3 )
Long press 29.6 (±10.0 ) 23.4 (±6.6 ) 35.9 (±14 ) 30.2 (±3.4 ) 14.8 (±1.6 )

The Table 6.2 shows the average count of AI agents’ human-like behav-
iors in 10 trials at 10 different Super Mario original levels. The number of
occurrences of each indicator for each trial is adequately different. Some
complicated gimmicks applied in some levels (e.g., Piranha Plant in level 4-
1, Spiny in level 6-1, water area in level 6-2, Hammer Bro in level 8-3) are
excluded. Therefore, those levels are relatively easy. The results indicated
that each trial behaves differently and can be considered a different player.
Fig. 6.12 shows some reproduced Super Mario original levels and the loca-
tions of virtual damages from 50 trials of AI agents. Note that some virtual
damages are overlapped and they are differently shown. The Locations of
virtual damages are positively correlated with the risky points in the levels.
Thus, virtual damages are generally reliable as difficulty indicators.
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(a) Level 1-1

(b) Level 8-2

Figure 6.12: The original levels and the locations of virtual damages (yello
square dmg >= 20, green diamond 10 <= dmg < 20, white circle dmg < 10)
from 50 trials of AI agents.
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6.6 Experiments and discussions

In this section, the results of generating high-quality levels are presented in
Section 6.6.1. Next, the result of generating diverse levels are described in
Section 6.6.2.

6.6.1 High-quality level generation

In order to generate Super Mario levels by the proposed PCG approach, the
RL algorithm, TD3 [68], is employed. The virtual simulation (VS) was ap-
plied to handle the credit assignment problem (CAP). TD3 and TD3 with VS
were compared to evaluate the quality improvement of the proposed method.

As we metioned in Section 6.3.4, there are two types of reward: monotony
reward (rmono) and difficulty reward (rdiff ). The two types of rewards are
weighted in RL, and the total reward for the episode (rtotal) is given by equa-
tion Eq. (6.3). Each reward assesses a different aspect. Thus, we investigate
all the rewards while analyzing the learning trends.

rtotal = rdiff + wmono

∑
rmono (6.3)

Experimental setup

The experiments were organized under the following settings.

• The codes were implemented in Python 3.6 and Java 11.0, and libraries
and machines listed in Table 5.1 were used for experiments. The net-
work settings of TD3 is noted in Table 6.3, where Conv x means a
convolutional layers with x filters of size 3× 3,Pool means a max pool-
ing with pool size 2× 2, and FC x means a fully-connected layers with
x nodes. The layer composition was set up according to the general
manner [74] of the CNN.

• The length of a level was set to 41 and each level was represented by
15× 40 matrix. 10 patterns needs to be generated. The last one tile is
for a goal.

• Among these, the first two patterns (Fig. 6.13 (2)) are generated by
inputting random noises to CGAN and applying matching, which were
initial states.

• In order to generate the first pattern, three imaginary previous patterns
(Fig. 6.13 (1)) are required to be given to CGAN. A series of three
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Figure 6.13: Imaginary patterns and generated patterns.

consecutive patterns are selected from Patlegal. These patterns are
only used for generating the first three patterns and not shown in the
results.

• Since two patterns were initialized in advance, 8 patterns (Fig. 6.13
(3)) needs to be generated by the actor of RL. The last one tile is for
a goal.

• Virtual simulation was applied from the beginning of the training. The
number of virtual simulating episodes was set to 5. This means that
5 stages are generated for each state transition. Since there were 7
state transitions per episodes, except for the last transition, it took
approximately 36 times longer per episode. Each evaluation involved
10 trials of AI agents. In total, 360 trials of simulation from AI agents
were conducted.

Result

TD3 was trained for 30,000 episodes, and VS-TD3 was trained for 1,000
episodes. One episode means generating one level from an initial one. For a
fair assessment, VS-TD3 was trained for the same amount of time as TD3.

Once training is done, RL can generate a level instantly. The level’s
playability was evaluated using the base A* agent within approximately 1-2
seconds. It took around 20 seconds to obtain a difficulty reward of 10 sim-
ulations from AI agents. Then an episode of TD3 including the assessment
process takes around 20 seconds. Meanwhile, VS-TD3 uses 700 seconds be-
cause it requires 36 times longer time per episode. Overall, 30,000 episodes
for TD3 took around 160 hours, and VS-TD3 took 190 hours.

The learning curves are shown in Fig. 6.14, in a 3×3 matrix style. Upper
three graphs are rewards in training phase of TD3. Middle three are rewards
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rtotal rdiff rmono

TD3
training

(a) rtotal=0.695 (b) rdiff=0.620 (c) rmono=0.075

TD3
test

(d) rtotal=0.766 (e) rdiff=0.691 (f) rmono=0.075

VS-TD3
test

(g) rtotal=0.800 (h) rdiff=0.732 (i) rmono=0.068

Figure 6.14: The average evaluations of levels: (top) TD3’s training curves
of the 10-pattern level. Each plot represented the average evaluation from
50 episodes. (middle) TD3’s 25-trial of the 10-pattern level in test phase.
(bottom) VS-TD3’s 5-trial of the 10-pattern level in test phase. Each value
indicates the average reward of last 20%.
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Table 6.3: TD3 setup

Parameter Value

Layers
Conv 32→32→Pool→

64→64→Pool→
FC 256→128→128

Memory size 40000

Learning rate
Actor:5× 10−6

Critic: 5× 10−5

Target network soft update (5× 10−5)
Batch size 32

Discount factor 0.99

Exploration
OU noise with ε-greedy

(ε 0.5 → 0.1 at 30% of episodes)

in test phase of TD3, and bottom three are those of VS-TD3. Red (left)
three show rdiff , Green (center) show rmono, and Blue (right) show rtotal.

Fig. 6.14 a, b, and c show the training curves of TD3 on generating levels.
The average rewards of last 20% of total episodes, difficulty, and monotony
were 0.695, 0.620, and 0.075. The trend of the learning curve indicates that
the RL model can learn how to generate levels.

In every 250 episodes, 25 levels were generated as a test phase of TD3.
The mean evaluations and the standard deviations of the levels are shown
in Fig. 6.14 b, e, and f. The average rewards of last 20% of total episodes,
difficulty, and monotony were 0.766, 0.691, and 0.075. This result is better
than that of the training phase because there is no exploration (e.g., ε-greedy)
applied.

For every 25 episodes, five levels were generated as a test phase of VS-
TD3. The mean evaluations and the standard deviations of the levels are
shown in Fig. 6.14 g, h, and i. The average rewards of last 20% of to-
tal episodes, difficulty, and monotony were 0.800, 0.732, and 0.068. Rela-
tively small numbers of episodes were trained using VS-TD3 because a single
episode requires a long time. However, VS-TD3 obtained a better reward
than TD3 in the very early training.

Some levels (2 out of 50 in TD3 and 3 out of 50 in VS-TD3) were un-
playable. Thus, it may be necessary to recreate those unplayable levels when
applied in practical.

We estimated how much time it takes to get a high-quality level by ran-
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dom generation and TD3. As mentioned above, VS-TD3 can produce a level
with an expected average of 0.8 evaluation value in 1-2 seconds, including
playability assessments. The generate-and-test process must be involved to
obtain a level with an 0.8 evaluation value by random generation. The evalu-
ation process takes 20 seconds. Thus, even if 1 out of 3 with 0.8 is obtained,
it will take 1 minute.

Generated levels

Fig. 6.15 shows typical examples of levels generated during training with
TD3. As shown in Fig. 6.14 (d-f), in the early phase of training, the obtained
level (a) had low difficulty (0.18) and monotony evaluation value (0.047). As
training progresses, the evaluation of monotony was learnt first. Level (b)
was relatively difficult (0.592) with high monotony evaluation value (0.075).
And then, TD3 generated a level (c) that was both appropriately difficult
(0.936) and non-monotonous (0.08).

Fig. 6.16 illustrates three levels generated by TD3 (a, b) and random
(c, d). Each level has the evaluation values of (0.992+0.08), (0.856+0.07),
(0.236+0.064), and (0.1+0.057), in order. The upper levels have several
patterns with holes and enemy tiles. Therefore, players are more likely to
make mistakes from the inaccuracies of human nature. In contrast, the level
(c) has fewer holes with fewer enemies and the level (d) has too many holes.
Thus they are evaluated low.

Levels generated from randomly selecting patterns can result in high eval-
uation values. However, it does not guarantee naturalness since it is ensured
by CGAN, not by the evaluation function. Fig. 6.17 shows two levels with
an evaluation value over 0.9 generated by TD3 (a) and by randomly se-
lecting patterns from Patlegal (b). Each level has the evaluation values of
(0.936+0.08) and (0.953+0.075), respectively. In level (a), patterns are well-
connected (e.g., patterns (5-6) have a brick connection, patterns (8-9) have
a block connection). In level (b), each pattern has no apparent connection
and is independent.

The capability of the proposed approach to generate high-quality stages
in Turn-based RPG is highlighted in Section 5.2.1. The above results also
indicate promising outcomes that the RL model can learn a policy to generate
highly evaluated levels in Super Mario. Thus, it is reasonable to conclude
that the proposed approach is promising to generate high-quality content.
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(a) rdiff=0.18, totaldmg=1.2, rmono=0.047

(b) rdiff=0.592, totaldmg=2.23, rmono=0.075

(c) rdiff=0.936, totaldmg=3.09, rmono=0.08

Figure 6.15: Examples of levels generated over the training.
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(a) rdiff=0.992, totaldmg=3.23, rmono=0.08

(b) rdiff=0.856, totaldmg=2.89, rmono=0.07

(c) rdiff=0.236, totaldmg=1.34, rmono=0.064

(d) rdiff=0.1, totaldmg=7.325, rmono=0.057

Figure 6.16: Examples of levels generated by TD3 (top two) and random
(bottom two).
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(a)

(b)

Figure 6.17: Examples of levels with an evaluation value over 0.9 generated
by TD3 (top) and random (bottom).
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6.6.2 Diverse level generation

Section 6.6.1 shows that high-quality levels can be obtained with the proposed
method. Next, we investigated whether the diversity of levels can be obtained
while maintaining sufficient quality.

Two indicators to evaluate the diversity of the generated levels are dis-
cussed. The proposed methods for improving diversity, RI and DAGP, are
applied and investigated. 3

Diversity assessment

The first indicator is the number of different tiles between the two levels.
It is an intuitive and easy-to-understand indicator to show the differences
between levels.

The other is the KL-divergence between two levels (KLlevel). Each wall
and enemy tile are converted to the value, 2, 3, respectively. Then, KL-
divergence of (40×15)-dimensional vectors of two patterns are calculated.
The value of KLlevel between two levels indicates a comparison of the distri-
bution of tiles arrangement of the two levels. If the value of KLlevel between
two levels is low, the levels have the similar placements of walls and enemies
even if the levels contain different tiles.

Fig. 6.18 shows four patterns with the same arrangement of three blocks.
Compared to the first pattern, the second to fourth patterns have 6 different
tiles. However, in terms of diversity, players may feel that the second pattern
is the most similar and the fourth pattern is the least similar. KLlevel can
reflect this diversity.

Result

A diverse generation generally requires a well-trained model. Therefore, VS-
TD3 was employed in this experiment. The VS-TD3 model is the same as
that used in 6.6.1.

First, an experiment was conducted on randomized initialization (RI).
500 levels were generated for each integer c ∈ [1, 8] where the first c patterns
were randomly generated. Table 6.4 shows the average KLlevel, numbers
of different tiles and rewards for each c. Note that the levels contained

3In our stage generation problem, preliminary experiment is conducted to apply the
Diversity-aware greedy policy (DAGP). We sampled the Q value and the evaluation values
and investigated their relationship in Section 5.2.2. The Super Mario’s evaluation function
from stochastic agents has stochastic value due to the stochastic behavior of the AI agents.
This raises a challenge in sampling the distribution of evaluation values. Therefore, the
investigation of the relation between Q-value and evaluation is omitted.
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Figure 6.18: Four patterns of comparison by KL-divergence.

Table 6.4: Average kllevel, the average number of different tiles between the
two levels, and average rewards from 500 levels generated when the first c
patterns were randomly initialized.

c 1 2 3 4
KLlevel 1.569 (±0.812 ) 1.817 (±0.734 ) 1.939 (±0.686 ) 1.911 (±0.644 )

Different tiles 89 (±48 ) 100 (±42 ) 107 (±42 ) 105 (±39 )
Reward 0.728 (±0.365 ) 0.687 (±0.392 ) 0.685 (±0.377 ) 0.670 (±0.394 )

c 5 6 7 8
KLlevel 1.979 (±0.644 ) 2.025 (±0.626 ) 2.000 (±0.626 ) 1.939 (±0.570 )

Different tiles 110 (±41 ) 111 (±39 ) 110 (±40 ) 107 (±37 )
Reward 0.680 (±0.377 ) 0.589 (±0.384 ) 0.547 (±0.346 ) 0.493 (±0.343 )

10 patterns in total. As expected, the result shows that the diversity has
an increasing trend while the average rewards decrease in patterns that are
more randomly initialized.

DAGP generated n candidates. Among them, those that are at least d
away from Actor’s action are gathered. Then, the method selects the one
with the highest Q-value. DAGP was also applied in the Super Mario levels
generation. The first two patterns were randomly initialized, and DAGP
were used in deciding 4th, 5th, and 6th patterns. The influence of DAGP
is investigated by generating levels from the same initial levels used in RI.
KL-divergence between patterns (KLpattern) is used as a distance threshold d.
Several configurations of d and n were tested, and 500 levels were generated
from each setting.

Fig. 6.19 compares the rewards from applying only RI (RL-RI), RI with
DAGP (RL-RI+DAGP), and random generation. d=0.05, 0.1, 0.2, and n=5,
10, 20, 40 are used as settings of DAGP. The results and their Pareto frontier
of the average rewards, KLlevel and different tiles are displayed. Based on the
result, random generation is inefficient in generating quality levels. Though
RI could generate quality content, better quality is achieved with sacrificed
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(a)

(b)

Figure 6.19: Comparison between applying only RI, RI with DAGP and
random generation when d=0.05, 0.1, 0.2, and n=5, 10, 20, 40.
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diversity. RL-RI2+DAGP showed better results RL-RI in terms of both
quality and diversity. It can generate diverse levels without substantial loss
of quality.

Generated levels

Fig. 6.20 shows example levels generated by VS-TD3 (top) and DAGP (mid-
dle and bottom). The former was evaluated as 0.991 (0.916+0.075), and the
latters as 0.899(0.824+0.075) and 0.913(0.840+0.073). The KLlevel from the
VS-TD3 level was 1.748 and 1.586, and the number of different tiles was 126
and 103, respectively. The generation initiated with the same three patterns.
However, by applying DAGP, diverse and good levels were generated.

6.7 Chapter conclusion

This chapter outlines the use of reinforcement learning with the theme of level
generation in Super Mario. The level generation problem was formulated into
a Markov decision process, where states were incompleted or completed levels
represented by three binary matrix channels of walls, enemies, and holes. 3-
dimensional vectors of actions from the RL model are converted to patterns
and filled in the matrices. We defined an evaluation function to consider the
difficulty based on human-like mistakes and monotony of levels. With the
defined reward function, our proposed method successfully generated high-
quality levels.

There were two new challenges in our generating levels for Super Mario.
First, the training becomes difficult for environments with a high dimen-
sion of action space. The function approximator is employed to map a low-
dimension vector to a pattern. Second, it is nearly impossible and meaning-
less to test every possible action sequence for difficulty assessment. Therefore,
human-like AI agents are employed to assess the difficulty of levels for human
players.

In order to simultaneously achieve high-quality and diverse levels, three
proposed methods, virtual simulation, randomized initialization, and diversity-
aware greedy policy, are applied. The experiments demonstrated the effec-
tiveness of the proposed approaches in obtaining good and diverse levels.
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(a)

(b)

(c)

Figure 6.20: Levels generated by the actor policy (top) and DAGP (middle
and bottom) with the first two patterns fixed and the fourth, fifth, sixth
patterns were set to noise patterns (bottom).
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Chapter 7

Conclusions and future
research directions

In this chapter, Section 7.1 concludes the research conducted in this dis-
sertation and answers the research questions raised in Chapter 1. Then,
Section 7.2 describes the possible research direction.

7.1 Conclusions

This dissertation is commenced in response to the three research questions
raised. The first question is, what kind of method can handle the lack of
training data and the need for an online generation? This dissertation ad-
dresses this question by proposing a method that functions under lacking
training data and can generate content online. The use of RL to generate
stages in turn-based RPG and levels in Super Mario is proposed. The ratio-
nale for employing RL is that it does not need training data and can generate
potentially diverse content online.

The stage and level generation problems were formulated into a Markov
decision process. States were incomplete or complete stages/levels repre-
sented by real-number matrices, and actions were to generate real-number
vectors. In turn-based RPG, vectors were embedded directly in the matrices.
Meanwhile, Super Mario has a challenge in converting vectors directly into
patterns. Therefore, CGAN was introduced as a function approximator that
maps vectors to patterns. Vectors were converted to the patterns through
the function approximator, and the patterns were filled in level matrices.

The preliminary experiment highlighted the importance of connectivity
between patterns. As a result, previous patterns are used as inputs for CGAN
to ensure natural connectivity between patterns. In order to resolve the noise
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of the CGAN output, Matching was adopted to select the closest pattern from
the generated pattern. Experimental results showed that raw and matched
CGAN outputs have similar distributions. The function approximator can
perform a mapping that considers the natural connectivity before and after
patterns.

Evaluation functions were defined regarding the difficulty and entertain-
ing factors of stages/levels. In turn-based RPG, every possible strategy was
tested. Then, the winning rate was used as a difficulty indicator and com-
bined with several entertaining factors. In Super Mario, however, human-
like AI agents are employed due to the game characteristics where actual
human play logs cannot be simply and economically acquired. AI agents
are coupled with the inaccuracies of human nature and the long press to
imitate human gameplay nature. The difficulty indicator is from its play
logs. The evaluation function was derived from the difficulty indicator and
the monotony evaluation. Using the evaluation function to reward the RL,
methods proposed in this dissertation successfully rendered highly evaluated
stages/levels.

DQN and DDPG for discrete and continuous actions were applied in
turn-based RPGs to investigate how action space affects the PCG problem.
The range was divided into a fixed number of sections for discrete actions,
and one value in the stage matrix was decided at a time. DDPG generated
better stages than DQN under the experiment settings used in this disser-
tation. In Super Mario, action decision is continuous. Therefore, several
values (of related events) were decided simultaneously, which was expected
to handle related events more effectively. A continuous action model named
TD3 was employed to generate Super Mario levels. The output of RL is then
transferred as the input of the function approximator.

The second research question is, can the method obtain both diversity and
good quality? Our reward design generates delayed or small signal rewards.
This results in challenges for the model to efficiently learn to evaluate actions,
especially for long event/pattern sequences. To overcome the difficulty, we
introduced virtual simulations to provide intermediate actions with rewards.
Experiments showed that virtual simulations helped improve the quality of
stages/levels.

The primary purpose of this dissertation is to generate good and diverse
stages/levels. We thus proposed randomized initialization that assigns sev-
eral random events/patterns to the beginning stages/levels. We then em-
ploy a diversity-aware greedy policy that determines actions distant but not
bad compared to the best actions from the model’s view. The experiments
demonstrated the effectiveness of the proposed approaches in obtaining good
and diverse stages/levels for an online generation.
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The final research question is, which games can the method be applied?
The proposed method is firstly applied to a relatively straightforward genre,
the turn-based RPGs. Then is it applied to the Super Mario, a more complex
genre. Each game is different in nature and has distinct challenges regarding
content generation problems. The method successfully generates high-quality
and diverse stages/levels for both games. We expect the proposed method
can handle any generation problem, even a relatively complicated one, given
that modifications are made according to the game’s nature. The method
is applicable for generation problems as long as it can be formulated and a
good evaluation function and distance measurements are given.

7.2 Future research directions

Future works include stabilizing the methods for increasing diversity in Super
Mario. Evaluation values in Super Mario were stochastic. Thus, the Q and
evaluation values may not have high positive correlations. That made it
challenging to apply a diversity-aware greedy policy directly. RL models
need to learn suitable Q-values under the stochastic reward environments. It
is possible to stabilize the average reward by employing many AIs. However,
the experiment is costly and thus unrealistic.

Another possible research direction is related to designing evaluation func-
tions. Our work highlighted the difficulty and monotony in Super Mario.
However, other elements, such as the placement of the coins and mushrooms,
are essential to the entertainment of Mario’s levels and, thus, should be taken
into account. The other direction is to reflect human players’ sentiments in
gameplays and verify the effectiveness. We expect our method to try to
maximize any given evaluation function as the current one is already consid-
erably complicated. For example, we can try to conduct subject experiments
for collecting human players’ evaluations and using supervised learning to
approximate those evaluations. By using the supervised learning model as
the evaluation function, the method should be able to generate stages that
fit the players’ preferences.
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Appendix A

The applied structure of CGAN

In many machine learning domains, data processing is often employed as it
can significantly impact the network’s training. In order to improve that the
generator can learn features of Patlegal well, one set of four connected patterns
from Patlegal is duplicated in four ways as illustrated in Fig. A.1. There are
four ways of cutting a pattern from four connected patterns. The first to
the fourth pattern is cut from the data. Then, it is given to the generator
with a vector and a one-hot position vector. The discriminator also receives
a series of connected patterns with position information. Network model
architectures are shown in Fig. 6.7, and the network settings of a generator
and a discriminator are listed in Table 6.1. CNN is adopted as a structure
of CGAN. Although, LSTM and RNN can also be considered.

Figure A.1: A structure of CGAN for Super Mario pattern generation used
in this dissertation. Training data is duplicated in four ways.
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