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Abstract
Hydrogen is an interesting candidate for an environmentally-friendly energy carrier, due to its low weight, ability to be

produced from water through electrolysis, and carbon-less combustion by-product. Storing hydrogen however, is known
to be notoriously difficult, requiring very high pressure or ultra low temperature to satisfy certain industrial requirements.
This remains one of the most important bottleneck to its more widespread adoption.

In a separate development, nanotechnologies have enabled high performance materials beyond what is conventionally
possible. Relevant to the problem is the development of nanostructures allowing increased surface area and optimized
shape, with examples such as carbon nanotubes (CNTs) and silicon carbide nanotubes (SiCNTs). To further enhance their
performance, surface modifications by doping or defect formation is being continuously investigated, although the sheer
amount of possible combination of materials and structures means experimental researches have seen limited progress.

Material informatics is a promising emerging field, offering faster iteration at lowered cost. With the help of massive
computational facilities and multiscale modelling, from fundamental ab initio physics to coarse grained models with
observable physical quantities, material properties can be estimated without the need for expensive experimentation.
Unfortunately, the hydrogen interaction with the nanostructures is dominated by van der Waals (vdW) force, which has
its origin in quantum fluctuation thus causing the popular density functional theory (DFT) to fail. Ideas for incorporating
vdW into DFT have been explored in recent years, however these corrections can fail in different manner for different
materials, making it difficult to judge their accuracy. If reference experimental data are widely available, it becomes
a simple problem of finding which one best matches the reference, however this severely limits the reach of material
informatics in handling novel materials.

Quantum Monte Carlo (QMC), in particular the diffusion Monte Carlo (DMC) is a separate approach that completely
avoids the problem by solving the true many body wavefunction, therefore treating vdW by default without any
corrections. In the past, its application is limited to small systems due to the lack of computational power, but with the
development of supercomputers it is increasingly applied to larger problems. Moreover, the algorithm is fundamentally
more amenable to parallelization than the conventional DFT, allowing it to run at a higher scale. Its accuracy means that
it can be used for generating reference values in lieu of experimentation, accelerating the search for hydrogen storage
material while also helping the development of the vdW corrections into DFT.

The present work demonstrates the utility and benefit of having DMC as a reliable benchmark, using the H2 on
SiCNT as the model system. SiCNT is one of the more promising candidate materials, having suitable bond length with
better adsorbance than CNT. It is also often used for benchmark given the variability of its binding energy with regard
to the chosen exchange-correlation functional. The plain local density approximation and generalized gradient model
was found to (predictably) be insufficient, with significant over-/under-estimation of the binding energy and inaccurate
geometry. Tkatchenko-Scheffler pairwise correction and vdW-DF2 nonlocal functional were found to best approximate
DMC energetics, within 0.25 kcal/mol of the predicted 1.370(106) kcal/mol binding energy, while the geometry were
found to be best predicted by exchange-dipole model and DFT+D3. Charge density analysis revealed some nonlocal
functionals to produce unphysical densities, but with seemingly no bearing on the optimized geometry. It is concluded
that combinations of corrections should be used at different stages (geometry and energy) for the most accurate result.

Keywords: Hydrogen storage, SiCNT, van der Waals, ab initio, Diffusion Monte Carlo
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Chapter 1

Introduction

1.1 Background

1.1.1 Hydrogen storage

The word energy in colloquial use refers to a subset of its form which are immediately
usable or are easily convertible into those that can be used for supporting human activ-
ities. In this age, it has become a foundation of the modern life, where artificial energy
generation and usage is common typically in the form of electricity or hydrocarbons
fuels. The importance of energy has spurred continuous research and development,
with problems spanning from its generation, transport, and storage.

The increasing demand for clean, non-polluting, low emission energy sources has
stimulated renewed interest in the problem of energy storage [1, 2]. Many of the
renewable energy sources have fluctuating output, meaning that given the also variable
demand, a form of energy storage mechanism is necessary, to store the excess and fill
in the deficits. Additionally, in the transportation sector, it was found to be difficult to
find an alternative to the fossil fuel with comparable energy density and convenience.
Hydrogen energy is one of the compelling alternatives, along with other competitive
technologies such as batteries. In general, the choice between battery and hydrogen
largely depends on the required amount of stored energy given a volume or weight
constraint, dictated by the mode of transport. Hydrogen is deemed more competitive on
longer distance or higher capacity [3].
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Figure 1.1: Comparison of volumetric and gravimetric energy density between known
energy carriers. The figure was produced from calorimetry measurements included in a
report by U.S. Department of Energy [4]

The problem with hydrogen is in its low volumetric energy density (Figure 1.1),
making compact storage difficult without using very high pressure or very low tempera-
ture. This is especially problematic for automotive application, where both option com-
promises either cost and/or safety. On the other hand, hydrogen has high gravimetric
energy density making it attractive for applications demanding minimized weight. To
improve upon conventional storage technologies, developments of materials-enchanced
hydrogen storages have been pursued, with alternatives including metal hydrides, ad-
sorbent nanostructures, and chemical-based storages. The US Department of Energy
has set target capacity at 7.5 %wt or 70 g/l for a viable commercial application [1].
Adsorbent nanostructures have lower energy lost in the adsorption cycle compared to
alternatives, but the currently available materials have too weak binding energy, [2].
This lowers the adsorption capacity, while also restricting the possible environmental
operating range, confining it to cryogenic use. In order to achieve higher-temperature
adsorbent storage with higher capacity, further research into the possible material
is necessary. This may include, among others, doping the structure with transition
metals [5, 6], or by trying other nanostructure [7].

Silicon carbide nanotubes (SiCNT) is one of the nanostructures investigated for this
purpose, with some theoretical and experimental studies predicted it to better adsorb H2

relative to other candidates such as carbon nanotubes [8–10]. First reported in 2001 by
Pham-Huu et al. [11] after a shape memory process using CNT as precursors combined
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with vaporized SiO, several research groups have since reported its fabrication using
various processes [12–21]. SiC in its bulk form is well known to have a high
temperature and chemical resistance, as well as medium band gap, which if retained
by the nanotube form, may allow for further application not possible using other nanos-
tructures. Charge analysis from DFT studies revealed some charge transfer from the Si
to C atom, creating surface dipoles even without transition metal doping [6, 8, 22–24].
The formation of surface dipoles has been ascribed to the increased hydrogen uptake of
transition-metal-doped CNT, explaining the higher adsorption capacity [6, 25, 26].

1.1.2 Materials informatics

Approaches to materials simulation can traditionally be divided into two categories:
model approaches, where empirical models are developed from macroscopic observa-
tions to directly solve practical problems, and ab initio simulations, where models are
built upon fundamental physics theory, constructing the target system from the smallest
unit. While the latter can be more accurate, particularly in edge or atypical cases, the
computational cost is also much higher. This limits its initial application into smaller
molecule and crystalline systems, or for tuning parameters of the model approaches.

In recent years, however, rapid development of massively parallel computing fa-
cilities and continuous improvements into the algorithm have allowed single point ab

initio calculations to be performed in large number. With their output consist mostly
of microscopic quantities, post-processing techniques have to be developed in order to
obtain desirable macroscopic quantities directly comparable with the experiments. The
fact that ab initio simulations is based on fundamental physics means, given appropriate
trade-off between accuracy and cost, they can allow the search for hypothetical materials
before their synthesis, guiding experimental efforts instead of just a confirmation and
analysis tool.

Importing techniques from data science, applied into existing information from both
simulations and experiments, material informatics is an emerging field with the aim
to provide high-throughput, comprehensive, and reliable database for every existing
and hypothetical materials. The diversity and flexibility of the available techniques
means ab initio data can also be used to train the model, resulted in novel efforts
such as separation of phases within powder XRD patterns by machine learning [27],
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cycle performance estimation of batteries [28], and high-throughput search of polymers
having high thermal conductivity [29]. Database of DFT data for many known materials
has also been available [30]. To build an accurate model, the data point needs to be
reliable, ideally accurate or at the very least have correctable systematic error. Thus,
reducing computational cost to make it practical is no longer the main focus, ab initio

simulations must also be increasingly accurate treating wide range of systems to support
these efforts.

1.2 Motivation

DFT is the most popular method for studying material properties as it is perceived
to have a balance between accuracy and cost. While perfectly adequate for bound
system, systems with strong correlations or non-covalent interactions may cause it to
fail. Pertinent to the studies of functional materials for hydrogen storage, particularly
those based on nanostructures, is that the adsorption is dominated by vdW forces that
has its origin on quantum fluctuation. Incorporating the effect coming of quantum
fluctuation into conventional DFT framework is a challenging problem, leading to the
development of correction schemes based on diverse physics. It is well known that
these corrections can have varying accuracy or even diverging results depending on the
system of study, therefore necessitating a reliable external calibration.

As a cutting-edge development, experimental data for these class of nanostructures
for hydrogen storage are still limited. Furthermore, the expectation to develop more
complex structures to achieve even better physical properties means increasing model
size, rendering traditional “gold-standard” wavefunction methods like CCSD(T) to
quickly become prohibitively expensive. Fixed-node diffusion Monte Carlo (FNDMC)
offers a compelling alternative, as the vdW force is handled automatically by its many-
body nature. It has also been proven to work well in treating dispersion, comparable to
or sometimes better than the expensive CCSD(T) and CCSDT(Q) [31]. Unlike the latter,
easy scaling and parallelization means FNDMC can be directly applied to larger system
given sufficiently large computational resource. Therefore, DMC is a good candidate
for supporting tuning of DFT even on novel system, reducing the need for experimental
data expanding the frontier of materials informatics.
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1.3 Problem Statement

The present work focuses on the origin and resolution of biases when using ab initio

methods, in particular DFT, to estimate molecular adsorption properties in hydrogen
storage materials, taking the advantage of FNDMC. Recent vdW correction schemes
into DFT are benchmarked, including those utilizing pairwise potential as well as the
non-local exchange-correlations. Adsorption curve and charge density are used as the
main measure of accuracy, while also considering geometry optimizations resulting
from the corrections. The present work also clarifies some aspects regarding the
workflow and best practices on applying DMC on real system, as the different approach
required relative to DFT means that the method still see limited use outside of QMC
communities.

1.4 Outline

This dissertation is organized into six chapters.

• Chapter 1 provides the background of this work, including the state and difficulties
of simulating hydrogen storage materials, with prospective outlook to material
informatics.
• Chapter 2 gives the basis of ab initio simulation of material properties, mainly

that of DFT and DMC.
• Chapter 3 details the target system and technical details on how to operate and

process data from the simulations.
• Chapter 4 presents the results of the simulations including the binding energy

estimations from both DMC and DFT as well as the charge densities.
• Chapter 5 elaborates the previous chapter by examining the discrepancy between

DMC and DFT results, quantifying the biases to the DMC data, and the effect of
exchange-correlation functionals into optimized geometries.
• Chapter 6 concludes the main result of the research including recommendations

for future studies.
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Chapter 2

Theoretical Framework

2.1 Many-body Schrödinger equation

Behavior of physical objects in the atomistic scale is subject to the law of quantum
mechanics. Coming from the Greek word quanta, also related to the word quantity

in English, it comprised a meaning of discrete steps, in opposition to continuous
models common around the time of its early discovery. Its beginning was triggered
by the observations of discrepancy in the ultraviolet region of black body emission, so-
called ultraviolet catastrophe. The solution to this problem was to limit the allowed
electromagnetic energy in the packet of E = nhv, n being some integer, introduced
by Max Planck, for which the h constant itself was then subsequently known by his
name. His theory was not widely approved before the later independent discovery of
photoelectric effects.

The field of many-body physics often deal with the problem of obtaining collective
value from the given system state. Classical system often has their states directly
storable in a form of scalar, vector, or tensors, of which such conceptions are no longer
unfamiliar in the modern age due to ubiquity of computers. Quantum states, however,
are often defined as complex function, although the detail can depend on the specific
formulation. The norm or square magnitude of these functions is typically interpreted
as probability density, in contrast to the definitive classical states. Observable quantities
are defined with operators applied upon these states, with sometimes rather unintuitive
consequences. For example, position and momentum in quantum mechanics are not
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commutative [x̂, p̂] = iℏ, consequently their eigenfunctions are not compatible. In
practice, this means a state with definite position will not have a definite momentum,
and vice versa, this being known as the uncertainty principle.

Narrowing down into atomistic simulation, the quantum operator one most likely
encounter is the Hamiltonian Ĥ, with its eigenvalue E interpreted as the system’s total
energy. The Hamiltonian describes a quantum system’s time evolution:

−iℏ
∂ |Ψ (t)⟩
∂t

= Ĥ |Ψ (t)⟩ (2.1)

Written in the above form, it is known as the Schrödinger equation. Here it is said
to be written in a general form, as the basis has not been specified. Most commonly,
position basis is used, resulting in ⟨⃗r|Ψ⟩ = Ψ (⃗r, t) with the pure states can be written
as wavefunctions of time and space. The exact form of the Hamiltonian is defined by
the physical system, but for most purpose it is a combination of kinetic and some other
potential:

Ĥ = − ℏ
2

2m
∇2 + V (2.2)

here ℏ is the reduced Planck constant, related to h by ℏ = h/2π, and m being the mass of
some particle that is part of the system. For many-body systems, often the Hamiltonian
will form into a summation, either of one-body terms or two and more-body interaction
terms.

With the quantum states one typically found in atomistic simulation, it is reasonable
to assume that it is separable into a product of time and spatial function, such as
Ψ (⃗r, t) = ψ(⃗r)φ(t), allowing the equation to also be separable into the time-only and
time-independent equation:

iℏ
1
φ(t)

dφ(t)
dt
= E (2.3)

− ℏ
2

2m
∇2ψ(⃗r) + Vψ(⃗r) = Eψ(⃗r) (2.4)

The latter is the well-known time-independent Schrödinger equation. Since the left side
of the equation is analogous to the original Hamiltonian, it is also possible to rewrite it
into:

Ĥψ(⃗r) = Eψ(⃗r) (2.5)
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thus making it clear that the separation constant E is the eigenvalue of the Hamiltonian.
In many cases, it is sufficient to solve this reduced equation to obtain the total energy of
a system, as long as there are only weak coupling between the temporal and spatial part.
Many properties of interest in an atomistic system can be derived accurately enough
from this total energy. Since it is an eigenvalue problem, the solution space for E is
not a singular value, but rather a set of possible {En} and their associated eigenfunctions
{ψn(⃗r)}. This fact will be important in the next discussion on the variational theorem.

Physical system described in an atomistic simulation typically consisted of electrons
in the field of atomic nuclei. The atomic nuclei, which is formed by several protons and
neutrons, is often assumed as a single mass M with the charge Z depending on how
many protons there are. Electrons and the nuclei interacts through Coulomb interaction,
with each has their own kinetic energies. Therefore, the full Hamiltonian for the atomic
system is:

Ĥ = −1
2

∑
I

1
mI
∇2

I −
1
2

∑
i

∇2
i +

∑
I,J

ZIZJ∣∣∣⃗rIJ

∣∣∣ −∑
I,i

ZI∣∣∣⃗rIi

∣∣∣+∑
i, j>i

1∣∣∣⃗ri j

∣∣∣ (2.6)

where here the reduced form using atomic units such that me, ℏ, e = 1 was used to
simplify writing. I and i as indices for the nuclei and electrons.

2.2 Born-Oppenheimer Approximation

In Born-Oppenheimer approximation [32], the nucleus are treated as stationary objects,
effectively reducing them to potential field from the viewpoint of the electrons. This ap-
proximation is reasonable due to the fact that a nucleus is more than 1000 times heavier
than electrons (depends on atomic species), resulting in its much slower dynamics. The
motivation for developing the approximation is to reduce computational cost, which
can already be prohibitively expensive even for a tiny system. Akin to the previous
separation, here the total wavefunction is assumed to be again separable into a product
of electronic and nuclear wavefunction:

Ψ (R⃗, r⃗) = ϕN(R⃗)ψe(⃗r; R⃗) (2.7)
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The electronic wavefunction is still dependent on the nuclear coordinate, thus written as
R⃗, the dependency itself entered through the potential

∑
I ZI/|⃗rIi|. Applying the Hamil-

tonian resulted in two equations separated for the electronic and nuclear wavefunctions:−1
2

∑
i

∇2
i −

∑
I,i

ZI∣∣∣⃗rIi

∣∣∣ +∑
i, j>i

1∣∣∣⃗ri j

∣∣∣
ψ (⃗

r; R⃗
)
= Ee

(
R⃗
)
ψ

(⃗
r; R⃗

)
(2.8)

−1
2

∑
I

1
mI
∇2

I + Ee

(
R⃗
)
+

∑
I,J>I

1∣∣∣⃗rIJ

∣∣∣
 ϕ (

R⃗
)
= Etotϕ

(
R⃗
)

(2.9)

where in the latter the solution (total energy) from the first equation entered statically
for every term in the electronic summation. Both equation can now be independently
solved to obtain the total energy, resulting in much lower computational costs due to
the reduced number of matrix elements. This is only possible by ignoring nuclear
coordinate dependence of the kinetic term when solving the electronic wavefunction,
solving it at fixed R. Applying chain rule (∇2( fg) = ∇2 f +∇2g+2∇ f∇g) on the nuclear
kinetic term resulted in:

−1
2

∑
I

1
mI
∇2

I

(
ϕ
(
R⃗
)
ψ

(⃗
r; R⃗

))
= −1

2

∑
I

1
mI
ψ

(⃗
r; R⃗

)
∇2

Iϕ
(
R⃗
)

− 1
2

∑
I

1
mI

(
2∇Iϕ

(
R⃗
)
∇Iψ

(⃗
r; R⃗

)
+ ϕ

(
R⃗
)
∇2

Iψ
(⃗
r; R⃗

))
(2.10)

While the first term is always evaluated as a part of the total wavefunction equation,
the terms containing a gradient and second-order gradient of the electronic wavefunction
with regard to the nuclei coordinates are ignored in the Born-Oppenheimer approxi-
mation. In general, it is a reasonable simplification since changes in the electronic
wavefunction caused by the nuclei movement are generally small, unless when the
nuclei are moving in a speed comparable to the electrons such as can be found in plasma
physics.
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2.3 Variational Method

A variational method have a property such that the expectation value of an operator,
given any approximate solution, is always on the upper bound of the value given by
exact solution. For example, when applied to the Hamiltonian, a variational method
will have the property of:

⟨ΨT (α)| Ĥ |ΨT (α)⟩
⟨ΨT (α)|ΨT (α)⟩ ≥

⟨Ψ | Ĥ |Ψ⟩
⟨Ψ |Ψ⟩ = E0 (2.11)

for some trial |ΨT (α)⟩ state/wavefunction, which was made to depend on some parame-
ters α. By updating the parameter α, the exact wave function |Ψ⟩ is approximated. Any
methods such that this inequality does not apply is not variational. For methods that
do, the problem of finding the ground state (and its energy) becomes a minimization
problem:

min
α

⟨ΨT (α)| Ĥ |ΨT (α)⟩
⟨ΨT (α)|ΨT (α)⟩ (2.12)

As an example, suppose that the time-independent Schrödinger equation is used.
Since it is an eigenvalue equation, for every Ĥ |Ψa⟩ = Ea |Ψa⟩, there will be a set
of eigenvector/state/wave function |Ψa⟩, where a = 0, 1, 2, · · · , with eigenvalue of
E0 ≤ E1 ≤ · · · . There is no specific importance as to which state number has the
lowest energy, just that they can be ordered. The lowest eigenvalue E0 and its associated
eigenfunction |Ψ0⟩ is called the ground state of the system. Since Hamiltonian operator
is Hermitian, its eigenfunctions are orthonormal:

⟨Ψa|Ψa⟩ = 1

⟨Ψa|Ψb⟩ = δab

(2.13)

and due to the properties of Hilbert space on which quantum states are defined, these
states can be expanded by a set of orthonormal basis vectors:

|ΨT ⟩ =
∑

a

cT
a |Ψa⟩ (2.14)

The coefficients to this expansion can be found from cT
a = ⟨Ψa|ΨT ⟩, any may be
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interpreted as a “component” of the state in that basis. If the original state is normalized,
i.e., ⟨ΨT ⟩ = ⟨ΨT |ΨT ⟩ = 1, then

1 =
∑
a,b

cT†
a cT

b ⟨Ψa|Ψb⟩

=
∑

a

|cT
a |2

(2.15)

Applying the Hamiltonian to this normalized state:

ET = ⟨ΨT | Ĥ |ΨT ⟩ =
∑

a

⟨Ψa| cT†
a Ĥ

∑
b

cT
b |Ψb⟩

=
∑
a,b

EbcT†
a cT

b ⟨Ψa|Ψb⟩

=
∑

a

Ea|cT
a |2

(2.16)

If the lowest energy component is written separately, the below inequality is satis-
fied:

ET = E0

∑
a

|cT
a |2 +

∑
a

(Ea − E0) |cT
a |2 ≥ E0

∑
a

|cT
a |2 = E0 (2.17)

Put in other words, the energy (eigenvalue) of a trial, approximate, wavefunction
always contains higher energy components, putting it in the upper bound of the exact
ground state. The applicability of variational theorem forms the basis of many common
approaches in solving the Schrödinger equation, including HF, DFT, VMC, and DMC.
In methods where variationality is not guaranteed, for example when perturbation
is considered, lower energy does not guarantee correctness, thus method other than
minimization should be used.

2.4 Hartree-Fock equations

The Hartree-Fock approximation is a set of procedures including the Born-Oppenheimer
approximation, a single Slater determinant to introduce antisymmetry into the wave-
function, and electron-electron interaction in an effective mean-field. To explain the use
of determinant, first suppose that the wavefunction can be written as a product state of

11



single-particle states:
Ψ (⃗r1, r⃗2, . . . , r⃗n) =

∏
n

ϕn(⃗rn) (2.18)

where the r⃗n are single electron coordinate (3-dimension). Electrons are fermions,
which should be indistinguishable and antisymmetric. This form achieves the indistin-
guishability as exchanging two positions resulted in the same wavefunction, but not the
antisymmetry, as the sign of the wavefunction is not changed. By using a determinant
(here flatly written using ε(i), which assumes the value of 1 or −1 depending on the
parity of permutation operator P):

Ψ (⃗r1, r⃗2, . . . , r⃗n) =
1
√

N!

∑
P

ε(i1, i2, . . . , in)P̂
∏

n

ϕn(⃗rin) (2.19)

it is assured that the sign is inverted by a single exchange, hence consistent with the
fermion behaviour. The normalization factor 1/

√
N! came from the fact that there are

N! amounts of possible permutations.

Applying Lagrange multipliers to the original problem with the previous wave-
function form, the problem is reduced into what is being known as the Hartree-Fock
equations:−1

2
∇i

2 −
∑

I

ZI∣∣∣∣⃗r − R⃗I

∣∣∣∣
 ϕi

(⃗
r
)
+

∑
j

∫
dr⃗′

∣∣∣∣ϕ j

(
r⃗′
)∣∣∣∣2 1∣∣∣⃗r − r⃗′

∣∣∣ϕi(⃗r)

−
∑

j

∫
dr⃗′ ϕ∗j

(⃗
r′
) 1∣∣∣⃗r − r⃗′

∣∣∣ϕi
(⃗
r′
)
ϕ j(⃗r) = εiϕi

(⃗
r
) (2.20)

This equation is analogous to the Schrödinger equation, but applies to the individual
single-particle orbitals instead on the whole wavefunction. If written as a single
operator, the left-hand side is called the Fock operator F̂. The i index sums over all
static potentials (nuclei), while the j sums over all orbitals, thus all electrons. The
last integral is the exchange term, which does not appear if the symmetrical product
(Hartree) was used instead. Upon solving the equation, ε is obtained as the value of the
Lagrange multipliers. It is related to the total energy of the system by summing all of
the multipliers, plus the value of one-body part within the Fock operator, i.e., excluding
the Coulomb (first integral term) and the exchange integral. As a single orbital is solved
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at a time, with others held constant, each effectively interact only through their mean
field. In practice, the equation is iteratively solved until self-consistency is achieved,
i.e., when the multipliers converged to a value.

2.4.1 Basis sets

A common configuration for the single-particle orbitals is the sum of basis functions:

ψn(⃗r) =
∑

m

cmnφm(⃗r) (2.21)

where φm(⃗r) is the basis function multiplied by some scalar cmn. Different to the
expansion of Hilbert space states, here the basis are not necessarily orthogonal with each
other. Common choices are plane waves, gaussians, slater functions (atomic orbitals),
and particularly for QMC use, b-splines (blip). Each of these choices have their own
merits.

Gaussian basis sets are mathematically elegant with analytic products, derivatives,
and several other operations. Therefore, in general it requires fewer terms for a similar
accuracy. Periodicity is not inherent, unlike with plane waves, eliminating the need
for adding vacuum. With gaussians, however, there are many possible sets for every
element, without systematic improvement to accuracy in general. In relevance to the
QMC, it also failed to produce cusp at the core without explicit corrections. On the
other hand, slater functions do not have the last problem, but also the computational
benefits of gaussians.

For periodic system, plane wave is often chosen as the solution of Schrödinger equa-
tion for electron in vacuum is sum of plane waves, plus modulation by periodic potential
(Bloch theorem) in the presence of a periodic potential such as in crystalline/periodic
system:

ψk (⃗r) = ei⃗k·⃗r · u(⃗k, r⃗) (2.22)

Due to its inherent periodicity, it is somewhat less suitable for modelling molecules
(needs empty space to avoid image interaction). Compared to gaussian, it is more gen-
eral, meaning that there is no need for choosing a specific set, and can be systematically
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improved by adding more functions. The orbital expansion in plane waves is:

ψn(⃗r) =
∑

k

cnkei⃗k·⃗r (2.23)

summed over some wave vectors k⃗. If the reciprocal vector G⃗ is also considered, the
orbitals are then be expanded as:

ψnk (⃗r) = ei⃗k·⃗r
∑

G

cnkGeiG⃗·⃗r

=
∑

G

cnkGe(iG⃗+k⃗)·⃗r
(2.24)

The wave vector k⃗ can be chosen to reside within simulation cell’s Brillouin zone
by folding. The previously mentioned systematic improvement is then performed by
increasing the number of allowed plane-waves within an energy cutoff |⃗k + G⃗|2. In
general, however, pseudopotentials or effective core potentials are used together with
plane waves, as a lot of waves will be required for drawing the core region with their
larger localized fluctuations.

In QMC, particularly VMC and DMC, due to the need for evaluating local energy
and wavefunction ratio, delocalized basis sets like plane waves are not computationally
efficient. Therefore, it is customary to re-project plane waves into another, localized
basis prior to the calculation. One popular choice is the b-spline “blip” basis set first
introduced by Alfe et al. [33]. Blip functions are cubic polynomials that is zero outside
some specified bounding box. Each orbital will be in the form of

ψn(⃗r) =
∑

s

ansΘs(⃗r) (2.25)

with ans scalar and Θs in the form of

Θs(⃗r) =
∏

i=(x,y,z)

ϕ((ri − Ri)/a) (2.26)

for some spatial cubic grid spacing a and spline centre R, with each ϕ function defined
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piecewise as

ϕ(ε) =


1 − 3

2ε
2 + 3

4ε
3, 0 ≤ |ε| ≤ 1,

1
4 (2 − |ε|)3, 1 < |ε| ≤ 2,

0, |ε| > 2,

(2.27)

The coefficient of the splines itself can be obtained from the plane-wave coefficient by
the below relation

ans =
∑

k

cnkγkeik·R (2.28)

with c, γ being the plane-wave coefficients.

2.5 Density Functional Theory

A completely separate method, density functional theory (DFT) attempts to solve the
original problem by using density (of electron) as the basic variable. Compared to
the wavefunction, density is only 3-dimension, instead of 3N-dimension of the original
wavefunction, thus computationally beneficial. The present-day technique is based on
the work of Hohenberg and Kohn [34], in which it is postulated that: 1. The external
potential of Equation 2.30 is unique function of the density, and 2. the correct density
is the one that minimizes the energy functional E[n]. Similar to the Hartree-Fock
procedure, DFT involves iterative solution of a set of equations. In DFT, the wave
function (from orbital) is obtained from the given density, and vice versa, together
forming a self-consistent loop. Initial guess for the density can be obtained for example
from superposition of atomic orbitals. For a Slater determinant, the density can be
obtained from the orbitals through:

n
(⃗
r
)
=

∑
i

∣∣∣ϕi
(⃗
r
)∣∣∣2 (2.29)

which is then used to build the so-called Kohn-Sham (KS) potential:

VKS(⃗r) = Vext(⃗r) +
∂EXC[n]
∂n(⃗r)

+

∫
n(r⃗′)

1∣∣∣⃗r − r⃗′
∣∣∣ dr⃗′ (2.30)
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This KS potential is in turn used to obtain the orbitals by(
−1

2
∇2 + VKS(⃗r)

)
ϕi(⃗r) = εiϕi(⃗r) (2.31)

By optimizing the parameter in the orbitals to lower the energy, a solution is
obtained. Within the KS potential, EXC is the exchange-correlation energy, describing
all interactions between the electrons in the system. While the existence of a potential
exactly solving the original problem is mathematically guaranteed, the actual form is not
known, resulting in many different approximations existing today. Finally, total energy
of the system can be obtained from:

E =
∑

i

εi −
1
2

∫
n(⃗r)

1∣∣∣⃗r − r⃗′
∣∣∣n(r⃗′) dr⃗dr⃗′ + EXC[n] −

∫
VXC[n(⃗r)]n(⃗r) dr⃗ (2.32)

2.5.1 Exchange-correlation functionals

Fundamental in determining the accuracy of a DFT work, many approximations exist
for the XC potential, combining different physics and tuned to some fundamental or
specific target systems. The terms of the XC potential can generally be written as a
linear combination:

EXC = EX + EC + EGX + EGC + · · · (2.33)

Listed here are the exchange (EX), correlation (EC), their gradient-dependent parts
(EGX and EGC), among others. Some implementation either developed completely new
function for each term, or mixes in the previously developed term, calibrated to different
base material.

The categorization of XC potentials generally is based on their relationship to the
density: local density approximation (LDA), generalized gradient approximation (GGA,
includes gradient corrections), hybrids (added some fractions of exact exchange), etc.
For example, LDA is only a function of some density:

ELDA
XC [n] =

∫
f (n↑, n↓) dr⃗ (2.34)
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while GGA additionally dependent on the gradient of such density:

EGGA
XC

(
n↑, n↓

)
=

∫
f
(
n↑, n↓,∇n↑,∇n↓

)
dr⃗ (2.35)

Many reference data from experiments or more accurate theoretical method is used
to develop these potentials. For example, in the Perdew and Zunger LDA [35] that
is used in this work, the terms are derived from calculation on uniform electron gas
systems. The PBE [36] potential used to represent GGA in this work also similarly not
specifically tuned to any particular system.

2.5.2 DFT and vdW interaction

The van der Waals interaction arises from quantum fluctuation, resulting in a temporary
polarization of charge density correlating with another nearby charge density creating
the weak attraction/repulsion. Due to this nature, non-local terms are required to
describe the effect, which is not included by the conventional LDA- or GGA- DFT.
This resulted in poor accuracy of the estimated binding energies [31]. To address this,
diverse schemes from varying physics have been developed, among them two categories
can be recognized: 1. pairwise potential expanding r−6, r−8 and so forth, and 2. addition
of non-local terms into the exchange-correlation functional based on 2nd perturbation.
These approaches can prove to be accurate, however their empirical nature does not
guarantee systematic improvement in the general accuracy.

In the pairwise potential approach, ab initio quantities including orbitals, charge
density, and energies are left unchanged, thus the change to the potential energy surface
is achieved by geometric dependency of the correction. The total system energy
including the dispersion correction can be written in the form of:

EDFT = EDFT + Edisp (2.36)

with the vdW correction written as a power series expansion of 2-body interactions:

Edisp = −
1
2

∑
i j

∑
n=6,8,10,...

Cni j f6(ri j)
r6

i j

(2.37)
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The Ci term is often called the dispersion coefficient, which determine how strong is
the dispersion between to atoms i and j. A damping function f is also often added to
control the behaviour at close interatomic distance (i.e., for the binding atoms, as the
corrections are applied to all atoms). The expansion is typically from r−6 (D2, TS) to
r−10 (XDM) terms. How the dispersion coefficient and damping functions are defined is
what differentiate the various pairwise models.

In DFT+D2 approach by Grimme et al. [37], the dispersion energy is in the form of:

ED2 = −
1
2

∑
i j

Ci j f (ri j)
r6

i j

(2.38)

with the damping function f in the form of:

f (ri j) =
s

1 + e−d(ri j/Ri j−1) (2.39)

The parameter s is the global scaling parameter, with the value dependent on the
exchange-correlation functional the correction is applied on. The dispersion coefficient
Ci j is calculated pairwise from

√
CiiC j j where each value are fixed according to element

type. Likewise, distance parameter Ri j is also calculated from a fixed table by Ri + R j.
Therefore, the DFT+D2 correction is not sensitive to the local geometry nor the
chemical environment of the adsorption site.

A further development by the same research group, DFT+D3 [38] added 3-body
interaction term, higher order r−8 expansion to the 2-body term, and re-calculated the
dispersion coefficient from ab initio results, among others. Thus, the dispersion energy
can be written as:

ED3 = E(2) + E(3) (2.40)

The 2-body term with the added r−8 term is:

E(2) = −1
2

∑
i j

C6i j f6(ri j)
r6

i j

+
C8i j f8(ri j)

r8
i j

(2.41)
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with the damping term now in the form of:

f (ri j) =
sn

1 + 6(ri j/(sRnRi j))αn
(2.42)

The distance parameter is also computed differently, with Ri j =
√

C8i j/C6i j, and adding
a fixed/exchange-correlation dependent parameters sRn and αn. Unlike in DFT+D2,
the dispersion coefficient Ci j is now dependent on the local coordination number, thus
inserting a form of geometric dependency into the dispersion. The the 3-body term
follows Axilrod-Teller-Muto model [39] with the previous damping term:

E(3) =
∑
abc

f3(r̄abc)Eabc (2.43)

Eabc =
Cabc9(3 cos θa cos θb cos θc + 1)

(rabrbcrca)3 (2.44)

The Tkatchenko-Scheffler method (TS) [40] is another type of modification to the
DFT+D2, with the geometric dependence instead achieved through charge-density-
dependent parameters. To be precise, the dispersion parameter between two species
is combined by the way of:

Ci j =
2CiiC j j

α j

αi
Cii +

αi
α j

C j j
(2.45)

with a new atom-dependent parameter α. The charge-density-dependency is achieved
by scaling of α, C, and R by the effective volume vi:

αi = viα
free
i , (2.46)

Cii = v
2
i C

free
ii , (2.47)

Ri = (αi/α
free
i )(1/3)Rfree

i . (2.48)

where the “free” values are fixed for each species. The connection to the density
comes from the calculation of the effective volume, which comes from Hirshfeld
partitioning [41]

vi =

∫
r3wi(⃗r)n(⃗r)d3r⃗∫
r3nfree

i (⃗r)d3r⃗
(2.49)
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with the Hirshfeld weights wi(⃗r) also density-dependent by

wi(⃗r) =
nfree

i (⃗r)∑
j nfree

j (⃗r)
(2.50)

The combined distance parameter Ri j identical to DFT+D2’s definition.

Exchange-hole dipole moment (XDM) [42] is distinct from the other pairwise model
by the fact that its dispersion coefficient C is calculated from an exchange hole model
over the SCF density. This is in contrast to the pre-calculated coefficients in other model.
Therefore, the dispersion also has geometrical dependency through density, similar to
TS. The damping function contains an additional “van der Waals radii” RvdWi j term

f =
Rn

i j

Rn
i j + Rn

vdW,i j

(2.51)

defined as

RvdW,i j =
1
3

(C8i j

C6i j

)1/2

+

(
C10i j

C6i j

)1/4

+

(
C10i j

C8i j

)1/2 (2.52)

Note that here up to r−10 expansion is used, so the final form becomes

EXDM = −
1
2

Nat∑
i, j=1

C6i j f (ri j)
r6

i j

+
C8i j f (ri j)

r8
i j

+
C10i j f (ri j)

r10
i j

(2.53)

With the nonlocal vdW corrections, the dispersion energy is instead calculated as a
part of the SCF energy. The word “nonlocal” comes from the fact that their calculation
includes the evaluation of a two-center integral. This nonlocal term is introduced into
the correlation functional:

EC[n] = E0
C[n] + Enl

C [n] (2.54)

with the first term E0 being the local part of the correlation. The nonlocal correlation
has the general form of:

Enl
C =

1
2

∫
n
(⃗
r
)

K
(⃗
r, r⃗′

)
n
(⃗
r′
)
dr⃗ dr⃗′ (2.55)

which basically expresses the interaction between two density points in space, with the
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interaction detail described by the K integration kernel. The difference between different
kinds of nonlocal functional is in the form of this kernel.

For the vdW-DFx [43, 44] family, this kernel takes the form of

KvdW−DFx =
2me4

π2

" ∞

0
a2b2W (a, b) T

(
v (a) , v (b) , v′ (a) , v′ (b)

)
da db (2.56)

where a and b are two dummy variables, with the whole kernel ultimately dependent on
r⃗ and r⃗′ through the v and v′ quantities, with their detailed formula left at the original
reference. Ultimately, this kernel was developed from polarization model of plasma
oscillation. The difference between the original vdW-DF and vdW-DF2 is in the choice
of exchange functional: revPBE [45] instead of PW86 [46], thus accordingly changes
some parameters within the model. The argument was that revPBE can incur spurious
binding, as well as being too repulsive. It was developed to improve overestimation of
the binding geometries in some cases with the original vdW-DF.

The rVV10 [47] takes a different approach with the kernel in the form of:

KrVV10 = −
3e4

2m2

1(
qR2 + 1

) (
q′R2 + 1

) (
qR2 + q′R2 + 2

) (2.57)

Here, r⃗ and r⃗′ dependencies are inserted through R, which is defined as R = |r⃗′ − r⃗|.
The form is noticeably simpler than the vdW-DFx, and like vdW-DF2, it also utilized
PW86 for the exchange. The original paper reported it to improve geometry prediction
over vdW-DF2 which tend to overestimate binding distance in some molecules and
underestimate bulk modulus.

2.6 Quantum Monte Carlo methods

2.6.1 Variational Monte Carlo

Variational Monte Carlo employs variational theorem together with Monte Carlo inte-
gration (with random sampling) to obtain the expectation of some observable given an
operator:

⟨o⟩ = ⟨ΨT (α)| Ô |ΨT (α)⟩
⟨ΨT (α)⟩ (2.58)
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Here, ⟨o⟩ is the expected value for some quantum operator Ô applied to some trial state
|ΨT ⟩. The trial state is made to be dependent on some parameter α, so as to be able
to varied with the objective of minimizing o. This is because in a variational method
(Section 2.3), o will be in the upper bound of the exact eigenvalue. Theoretically, if the
state or wavefunction happened to match one of the eigenfunctions for the operator Ô,
the observable will assume a constant value (zero variance), with o coincides with the
operator’s eigenvalue. Otherwise, it should assume a variance of ⟨o2⟩ − ⟨o⟩2.

The Monte Carlo integration is used for evaluating the expectation values. It is based
on the principle that:

I =
∫

f (⃗r) dr⃗ ≈ 1
N

∑
n

f
(⃗
rn

)
(2.59)

as the sum (random sampling) gets larger (m) infinity. Each r⃗n is a single sampling
point. To see how this integral is connected with the original problem, note that f (⃗r)
can be multiplied by some ρ(⃗r)/ρ(⃗r) without changing its value:

I =
∫

ρ(⃗r)
f (⃗r)
ρ(⃗r)

dr⃗ (2.60)

Suppose that this ρ(⃗r) is a probability density with the property of
∫
ρ(⃗r)dr⃗ = 1. By also

inserting Ψ−1
T ΨT to the original problem (Equation 2.58),

⟨E⟩ =
∫ ∣∣∣ΨT (⃗r)

∣∣∣2 Ψ−1
T (⃗r)ĤΨT (⃗r) dr⃗∫ ∣∣∣ΨT (⃗r)

∣∣∣2 dr⃗
(2.61)

where the previously described probability density corresponds to the (|ΨT |2 /
∫
|ΨT |2).

The quantity (Ψ−1
T ĤΨT ) is also local energy, because it matches the expected energy

for its given local configuration. Efficient sampling is achieved when ρ(⃗r) was made to
somewhat approximates f (⃗r).

The present work is not concerned with the variety and merits of available random
number generators, but it suffices to say that generating a non-uniform distribution is not
trivial. Most QMC codes employs the so-called Metropolis algorithm. Based on Markov
chains, the random number is regarded as the state, with probabilistic accept-reject step
for generating the next random state / number. Metropolis algorithm can generate any
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kind of probabilistic distribution, but needs to be run first for a certain number of steps
(the equilibration or warm up period). The probabilistic transition needs to satisfy the
detailed balance condition:∑

r

ωrr′Arr′ρ
(⃗
r, t

)
=

∑
r′
ωr′rAr′rρ

(⃗
r′, t

)
(2.62)

One way to explain this condition is by considering before/after states (value of
random number before/after a transition). Here, it is given by the r⃗ and r⃗′, where
instead of a single random number, a set of electron coordinates is used to match
the implementations. Detailed balance means at equilibrium, the transition between
any two states are symmetric. It does not necessarily equal to symmetric transition
probability, however, as it is also affected by the equilibrium distribution. In Metropolis
algorithm, the transition probability is divided into two parts, ω and A, as step proba-
bility (probability for requesting r⃗ → r⃗′ transition) and acceptance probability (whether
the request is accepted or not). Transition probability is typically taken from some
normal distribution. Acceptance probability is set to 1 (always accept) when the target
probability density at the destination is larger, and to the ratio of the before/after density
otherwise. The combination of variational theorem, Monte Carlo integration, and the
Metropolis method, describes VMC.

2.6.2 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is conceptually distinct from VMC, although they are
related by the sampling of some trial function to obtain the expectation value of a
quantum operator. Unlike VMC, where the sampling distribution follows the magnitude
of given trial function, DMC distributes the sample by a propagator derived from the
imaginary time Schrödinger equation. This means that while VMC is as accurate as
the given wave function, DMC can effectively change the shape of the trial function
without being limited by the degree of freedom of the given basis set. If the propagator
is accurate, DMC can achieve higher accuracy than VMC. The evolution of the sampling
point is best described by a Green function:

G
(⃗
r ← r⃗′

)
= ⟨⃗r| e−τ(Ĥ−ET ) |⃗r′⟩ (2.63)
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derived initially from time-dependent Schrödinger equation. Imaginary time substitu-
tion (τ = it) allows the oscillating solution to instead turn into a decaying diffusion-like
equation. Thus DMC actually describes how the system evolve with imaginary time,
rather than real time of the original time-dependent Schrödinger equation:

(
Ĥ(⃗r) − ET

)
Ψ (⃗r, τ) = −∂Ψ (⃗r, τ)

∂τ
(2.64)

Lastly, trial energy ET is customarily added to an offset.

Solving the above equation resulted in (
∑

a caΨa exp−(Ea − ET )τ), highlighting the
connection with Green function. With regard to the offset ET , it has two functions.
Firstly, when ET is set to E0, only states corresponding to the E0 energy remains, with
the rest decays (higher En energy states decay faster). The second function is to control
“walker” population in the practical implementation. Walkers are a set of independently
evolving configuration, where in practice some thousands are used in a single run to
avoid sampling bias.

As the Hamiltonian Ĥ have both kinetic and potential terms, each being an operator
where e(a+b) = eaeb is not always true, the exact form of the Green function becomes
technically unknown. This is true for most system of interest as the external potential
exists in the form of ionic field. Practical implementation employed Trotter-Suzuki
approximation to solve the problem:

e−τ(T̂+V̂) ≈ e−τV̂/2e−τT̂ e−τV̂/2 (2.65)

This approximation has third degree error in the timestep variable, being only exact at
zero timestep. Since zero timestep equal no evolution, in most DMC calculation, the
total energy is either extrapolated from several DMC runs at different timestep sizes, or
approximated by using small enough timestep.

The discussion up to this point assumes a positive-definite wavefunction (thus
analogous to a probability density). For fermionic system where the wave function
is signed, however, the treatment becomes more complex. So far, there are no practical
implementation that can avoid sign problem without fixed node approximation. In fixed
node approximation, each walker are kept in their own nodal pockets, keeping note of
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their sign, crossing disallowed. This means that the accuracy of DMC can be affected
by the quality of the input nodal surface, although for system where the interaction is
dominated at the region with fewer nodes, such as vdW in this work, the error is often
insignificant.
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Chapter 3

Systems and Methods

3.1 Structural Optimization

3.1.1 Forms of SiC

The most studied form of silicon carbide is the bulk form [48], where it is well known
for having relatively large band gap (between 2.2–3.3 eV) as well as high temperature
and chemical stability. These properties make it desirable for use in high power or high
frequency electronic devices. Having either hexagonal or cubic symmetry, it is also
known to exhibit polytypism, a special case of polymorphism limited to the hexagonal
c-axis. One way to view this polytypism is by observing that there are two valid ways
to stack the SiC tetragonal layers in the c-direction, each of these configurations at 180◦

opposite of each other. There are no known limits to the periodicity of this stacking,
with some polytypes can have more than 20 layers of periodicity. The simplest of these
polytypes is the known as the 3C or β-SiC, where its layer all align in the same direction,
resulting in cubic symmetry similar to diamond.

Unlike carbon which were the first to be found forming various planar allotropes,
it was only relatively recently that SiC was also found to have the similar ability. One
possible explanation is that unlike C, which has relatively similar enthalpies between
its 2-dimensional sp2 and 3-dimensional sp3 configuration [49, 50], silicon is known
to prefer the 3-dimensional sp3 [22, 49], resulting in it energetically preferring the
bulk form. Regardless, experimental studies have confirmed the possibility for the
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formation of nanotube-shaped SiC, some were found to be distinct from its bulk phase
[11, 18], while others instead synthesized nanotube-shaped β-SiCs [51, 52]. Molecular
dynamics simulations predicted the nanotube shape to be more stable than nanowires at
larger diameter [53], with melting temperature predicted to be around 1700 K or higher,
comparable to that of bulk SiC [53–55] Inline with the enthalpy conjecture, it was indeed
found to be less energetically favorable than the bulk β-SiC, however its train was lower
than CNT, meaning given a SiC sheet was successfully synthesized, it is more likely to
morph into nanotubes than CNT is from graphites [50]. Possible synthesis of this SiC
sheet has been experimentally observed in as early as 2017 [24].

The most often used model of SiCNT in atomistic simulations is analogous
to the single-walled CNT, but with half of the carbon sites substituted by silicon
[6–8, 22, 23, 49, 50, 56–65]. A study on various SiC nanotubes at non-1:1 stoichiometry
suggested that structures with more than 50% Si is unstable, resulting in the collapse of
the nanotube structure and formation of nanowires or three-dimensional clusters [22].
DFT structural optimization suggested the structure exhibits some buckling, with the Si
and C atom residing at two different distances from the nanotube axis. This buckling
was found to be less than 0.5 Å, and decreases with increasing nanotube diameter
[57,58,65,66]. In general, the 1:1 SiCNT can be constructed with either (Si-C) or (Si-Si
+ C-C) configuration, these often referred to as type-1 or type-2 SiC sheet (Figure 3.1).
When folded into a nanotube, an additional type-3 SiCNT can also be constructed by
folding the type-2 sheet at 60◦ degree relative to the type-2 SiCNT [56,57]. The type-1
(Si-C) nanotube was found to be the most stable regardless of its diameter and chirality
[56–58], therefore only type-1 SiCNT is considered in the present study.

3.1.2 Structural optimization of β-SiC

The β-SiC with its cubic symmetry is the simplest of bulk SiCs, having only a single
crystal parameter and two fixed atomic positions. As a result, its geometry optimization
is relatively straightforward even when employing methods with no present force
implementation such as DMC, making it a good candidate to perform initial calibration
of the DFT method. In particular, it is important to first confirm whether it is possible to
obtain reliable geometries, even when the beta-SiC itself is constructed of the sp3 bonds
instead of sp2 of the planar SiC and SiCNT.
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(a) Type-1 SiC sheet (b) Type-2 SiC sheet

(c) Type-1 SiCNT (d) Type-2 SiCNT (e) Type-3 SiCNT

Figure 3.1: Various arrangements of sp2 planar SiCs and their associated (4, 4)
nanotubes. Blue and brown spheres represents Si and C atoms, respectively, with the
rectangles over the sheet SiCs indicating one of the possible primitive unit cells.
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An equation of state fit was performed to obtain three physical properties: the single
lattice parameter a, bulk modulus B, and cohesive energy Ecoh, where experimental data
for each of them are widely available. Vinet equation of state [67]:

E(V) = E0 −
4B0V0(
B′0 − 1

)2

1 − 3
2

(
B′0 − 1

) (
1 − V

V0

)1/3 exp
3
2

(
B′0 − 1

) (
1 − V

V0

)1/3 (3.1)

was fitted to the total energies of several unit cells between −10% and +10% of the
experimental volumes. The equation of state also includes the bulk modulus derivative
B′ acting as one additional free variable. Lattice parameter a is obtainable from simple
triple product relation (V0 = |(a⃗ × a⃗) · a⃗|). The cohesive energy by definition is

Ecoh = EV0 − nSiESi + nCEC (3.2)

with the total energy E(V0) obtained in the Vinet fit, of the β-SiC unit cell consisting
nX of X species each, relative to their energies EX at vacuum. The Vinet equation of
state was selected over other fit as it is more robust even at increased volume spacing.
This sparse data points allow us to work with less tight DMC variance, reducing the
sampling length required. PZ and PBE was considered for the optimization, as they
have a tendency to under and over-expand, respectively.

Table 3.1 summarizes the calculated structural properties of β-SiC. DMC was
found to better match experimental values at the tested quantities, including only 0.9%
deviation from the experimental bulk modulus, as well more accurate lattice parameter
to within 10−2 Å. In terms of cohesive energy, PBE prediction is comparable to the
DMC, and somewhat higher than the experimental values. The structural optimization
from PBE and PZ is inline with their well-known tendencies to over- and under-estimate
lattice parameters, respectively, with DMC in the middle. Both are still reasonably
accurate to within < 0.03 Å of the experimental lattice. The planar and nanotube SiC
has a different sp2 configuration over the sp3 of the bulk form, but they are also covalent
and well studied [57, 58], thus are unexpected to present significant difficulty for the
accurate structural optimization. Unless there are significant discrepancies between PZ
and PBE in the later planar and nanotube SiC, it is safe to conclude that full DMC
optimization is unnecessary for the base geometry of the adsorbent itself. In addition,
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there have not been any successful implementation of force estimator within DMC
framework, without which optimization with high degree of freedom is expensive. It
appears promising, if not unexpected, however, that DMC has managed to noticeably
improve upon conventional methods even for such a basic system.

Table 3.1: Calculated lattice parameter (a), bulk modulus (B), and cohesive energy
(Ecoh) of β-SiC.

Property LDA [68] GGA (PBE) DMC Exp. [69]

a (Å) 4.323 4.381 4.355 4.3596
B (GPa) 250 211 227 225

Ecoh(eV/ f .u.) — 12.92 12.91(15) 12.68

3.1.3 Structural optimization of SiCNT

In existing literatures, periodic model is clearly preferred for modelling β-SiC, both
cluster and periodic approximation were employed for modelling the SiCNTs [6–
8, 26, 61, 70]. The two approaches differ in the simulated length of the SiCNT and
their consequences. Periodic approximation models infinite length SiCNT, introducing
artificial periodicity which effect has to be removed by adding vacuums within the
simulation cell. On the other hand, cluster approximation model the nanotube in some
finite length, including their ends, which needs to be passivated to prevent dangling
bonds. In practice, the choice between periodic or cluster model is influenced by the
preferred implementation of DFT code and the actual physics of the system. With most
SiCNT synthesized so far in nanometer size, [11, 18, 51, 52], the periodic model is
expected to be more representative of the actual SiCNT given the currently available
information. Periodic model also has a benefit of being more symmetric, reducing the
number of atom within the simulation cell (Figure 3.2). In cluster model, bonds near to
the nanotube ends are often distorted, resulting in a more complex geometry [58].

30



Figure 3.3: Chiral vector for classifying different SiCNT models. The end of this vector
are rolled and joined together, forming the circumference of the nanotube. For example,
the black arrow is the circumference for a (2,2) armchair SiCNT, with the resulting (2,2)
SiCNT on the right.

Figure 3.2: Unit cell for periodic model of an armchair (5,5) SiCNT. Solid lines mark
the unit cell boundaries. The displayed atoms extend beyond the unit cell, in order to
clearly show the nanotube shape.

The different sizes and configuration of SiCNTs are labelled by a quantity often
referred to as “chirality”, which is a pair of integers (m, n) corresponding to the multiple
of unit translations which to be folded (Figure 3.3). Armchair nanotubes corresponds
to (n, n) chiralities, while zigzag corresponds to (n, 0) chiralities for some n. When
the chirality is (m, n) where m , n, the nanotubes are referred to as just “chiral”.
To see which chirality is preferred, a set of calculations with varying SiCNT size
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was performed. In general, PBE and PZ reaches the same conclusion: armchair is
more stable than zigzag (higher cohesive energy), especially at smaller diameter. The
cohesive energies are plotted on Figure 3.4. Line plots are least-square fitting to the
energies using:

f (d) =
a
d2 + E∞ (3.3)

with a and E∞ being the free variables, against some d diameter of the NT. This way,
the asymptotic behavior of the cohesive energy as the SiCNT diameter approaches
infinity (energy approaching E∞) can be understood. Parameter a controls the line
curvature but otherwise has no physical meaning. The function was found to be
well fit, with the calculated R2 values for all above 0.99. The final coefficients are
as follows: 1) PBE-armchair (−12.5773, 11.9148), zigzag (−17.4986, 11.9816); and
2) PZ-armchair (−12.1016, 13.1318), zigzag(−17.0930, 13.2000). From the figures and
fitted coefficients, it can be understood that the cohesive energy decreases rapidly for
smaller zigzag SiCNTs, thus making the armchair more energetically favorable. The
crossing point is at around 8.5 Å. At large sizes, both are almost equally stable. While
there are no strong tendencies either way, given its slight edge, use, and potentially
higher adsorption in existing literatures [6, 7, 61], the adsorption works on the next
sections utilizes the armchair (5,5) SiCNT.

(a) PBE (b) PZ

Figure 3.4: Cohesive energy vs. SiCNT diameter of armchair and zigzag SiCNT
for PBE (3.4a) and PZ (3.4b) calculations. Solid lines are fitted curves in the form
of Equation 3.3. The cohesive energy approaches that of sheet SiC (dashed lines) as
the diameter increases. In general, armchair SiCNT has higher cohesive energy (more
stable), but they are almost equal for larger diameters.
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A second correlation was found between the amount of buckling and the cohesive
energy (Figure 3.5). Using a slightly different fitting equation (inverse behavior w.r.t.
d):

f (d) = ad2 + E∞ (3.4)

a good fit was achieved indicated by R2 value of more than 0.99. An outlier was found
within the zigzag SiCNT, occurring at the smallest (3,0) SiCNT with the radius of just
1.73 Å. This radius is less than the Si-C bond lengths, partially explaining the unusually
large distortion. With both correlates to the cohesive energy but with inverse relation,
buckling radius and SiCNT diameter are inversely proportional to each other. In general,
the cohesive energy of SiCNT appeared to be related to the total strain coming from both
the curvature and buckling.

(a) PBE (b) PZ

Figure 3.5: Cohesive energy vs. buckling radius for armchair and zigzag SiCNT for
PBE (3.4a) and PZ (3.4b) calculations. The outlier is for (3,0) armchair where its shape
is highly distorted.

Structurally, there are no significant difference whether by using PBE or PZ to
optimize them. Table 3.2 (PBE) and Table 3.3 (PZ) summarizes the results. The
maximum radius difference between the two methods is 0.0056 Å for (8,8) SiCNT.
This difference seems to accumulate from the difference in Si-C bonds length, with
them diverging with larger NTs as they contain more Si-C bonds in the circumference.
The bond lengths for larger NTs approaches that of the planar SiC with 1.7880 Å
and 1.7895 Å for PBE and PZ, respectively. Smaller NTs deviate larger from these
values, and they buckle more. For both armchair and zigzag, the Si-C bond lengths
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including the curvature are slightly longer than those parallel to the NT axis. The
difference is, however, generally less than 0.01 Å. This trend were also observed by
prior LDA [66, 71] and hybrid functional [57, 58, 65] works.

Table 3.2: Optimized geometries of SiCNTs using PBE exchange-correlation func-
tional. d subscript indicates Si-C bonds with some component in the SiCNT curvature.

(n, m) RH2 β ⟨Si–C⟩ ⟨Si–Cp⟩ ⟨Si–Cd⟩
[Å] [Å] [Å] [Å] [Å]

Armchair
(2,2) 1.8760 0.2669 1.8117 1.8140 1.8093
(3,3) 2.6789 0.1809 1.7951 1.7915 1.7987
(4,4) 3.5024 0.1293 1.7914 1.7886 1.7941
(5,5) 4.3377 0.1007 1.7900 1.7880 1.7920
(6,6) 5.1794 0.0827 1.7893 1.7878 1.7908
(7,7) 6.0243 0.0701 1.7889 1.7877 1.7901
(8,8) 6.8718 0.0610 1.7887 1.7878 1.7897

Zigzag
(3,0) 1.7351 0.1704 1.8253 1.8070 1.8435
(4,0) 2.1837 0.2216 1.8069 1.7935 1.8204
(5,0) 2.6345 0.1757 1.7962 1.7872 1.8052
(6,0) 3.0920 0.1454 1.7932 1.7880 1.7985
(7,0) 3.5620 0.1240 1.7917 1.7882 1.7951
(8,0) 4.0389 0.1078 1.7908 1.7884 1.7932
(9,0) 4.5196 0.0952 1.7902 1.7884 1.7919

(10,0) 5.0035 0.0853 1.7898 1.7885 1.7911
(12,0) 5.9756 0.0706 1.7893 1.7886 1.7890

Table 3.3: Optimized geometries of SiCNTs using PZ exchange-correlation functional.
d subscript indicates Si-C bonds with some component in the SiCNT curvature.

(n, m) RH2 β ⟨Si–C⟩ ⟨Si–Cp⟩ ⟨Si–Cd⟩
[Å] [Å] [Å] [Å] [Å]

Armchair
(2,2) 1.8731 0.2601 1.8125 1.8148 1.8102
(3,3) 2.6799 0.1830 1.7963 1.7928 1.7998
(4,4) 3.5049 0.1316 1.7927 1.7900 1.7954
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(5,5) 4.3414 0.1026 1.7914 1.7895 1.7934
(6,6) 5.1837 0.0842 1.7908 1.7893 1.7922
(7,7) 6.0294 0.0715 1.7904 1.7893 1.7915
(8,8) 6.8774 0.0622 1.7902 1.7893 1.7911

Zigzag
(3,0) 1.7333 0.1593 1.8254 1.8080 1.8428
(4,0) 2.1844 0.2181 1.8062 1.7949 1.8174
(5,0) 2.6370 0.1769 1.7975 1.7890 1.8059
(6,0) 3.0949 0.1474 1.7946 1.7897 1.7995
(7,0) 3.5653 0.1258 1.7931 1.7899 1.7963
(8,0) 4.0424 0.1093 1.7922 1.7900 1.7944
(9,0) 4.5240 0.0967 1.7916 1.7900 1.7933

(10,0) 5.0078 0.0867 1.7912 1.7901 1.7924
(12,0) 5.9809 0.0718 1.7907 1.7901 1.7913

3.1.4 Structural optimization of H2 on SiCNT

The non-chemical nature of the adsorption means that any area on the nanotube surface
can be a potential host for adsorption. It is common practice to divide the surface into
sites, using such terminologies as top, hollow, and bind. These names are derived from
the closest item on the surface on which the hydrogen is attached to: top refers to area
immediately above of some surface atom, bond to nearby of some chemical bonds, and
hollow to an empty region surrounded by other atoms. All of these sites are listed on
Figure 3.6. Both outer and inner surface of the nanotube are able bind the hydrogen,
however the outer surface bind it more strongly [61].
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Figure 3.6: Possible hydrogen binding sites on the SiCNT surface. T = top, H = hollow,
and B = bind, respectively.

To find whether any sites are preferred for the adsorption, a set of DFT optimizations
were performed. Due to its buckling, silicon and carbon atom resides at slightly different
distance from the nanotube center, forming two shells that both can be referred to as its
surface. To ensure consistency, all reported surface-to-H2 distances are defined from
the outermost radius. Furthermore, the hydrogen conformation was defined in three
parameters, the surface-to-H2 distance (RH2), surface angle (θs), and rotational angle
(θr), as defined on Figure 3.7.

Figure 3.7: Parameters used to describe the H2 conformation on the SiCNT surface.
The center black dot is the nanotube axis projected perpendicularly to the paper plane.
Surface angle (θs) is defined as the angle between the hydrogen’s dipole axis and the
normal of the tangent surface on the SiCNT nearest to the hydrogen. Rotational angle
(θr) is defined as the angle between the same dipole axis and the center axis of the
nanotube. Position of the hydrogen is always referenced from its geometrical center.
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Adsorption energies and the previously defined conformational parameters from
DFT optimization is listed on Table 3.4. Initial distances to the SiCNT surface were set
at 3 Å. Consistent with the expected behavior from PZ and PBE, PZ-predicted optimized
hydrogen distance is much less compared to PBE, averaging around 1 Å closer to the
surface compared to the same optimization performed in PBE 3.4. The predicted
binding energies are also much larger, at up to 9 times higher than PBE. This result
further enforce prior observations that PZ and PBE tends to over- and under-bind on
vdW-dominant systems [72, 73]. There were no appreciable change to the bond lengths
compared to the isolated fragments both on the SiCNT and the hydrogen molecule,
meaning that there were no significant reconfiguration of the electronic structure within
those fragments.

Interestingly, (θr) tends to be constant throughout the optimization if started at 0◦

or 90◦, resulting in two stable configurations. When started from an oblique angle,
however, the initial 60◦ or 30◦ θr were found to be suboptimal, instead converging to
some intermediate angle depending on the site. For the surface angle (θr), its initial
value was found to have little influence on the final conformation, with structures
starting from different (θs) but the same (θr) ends up converging. The final angle seems
to be influenced by the fact that silicon has larger atomic radius than carbon. This
convergence is less tight when using PBE, but the energetic differences are still below
0.01 kcal/mol or less than 0.01 % of the adsorption energy. It is possible that this
variation was caused by the optimization tolerance, and both conformation was in fact
equal. In general, there are at least three stable conformations on each site, marked
by their initial (θr) of 0◦, 90◦, and oblique. The 90◦ conformation are always less
energetically favorable, with the hydrogen also situating at a longer distance regardless
of the chosen XC. Other conformations on the other hand are almost equally stable.
Carbon top (TC) sites are less stable than others, except when started at an oblique (θr).
This, however, is caused by the optimization, as will be discussed in the next paragraph.
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Table 3.4: Optimized conformation and adsorption energies of H2 on the SiCNT
surface. Influence from the selected exchange-correlation functional, adsorption site,
and initial orientation of the hydrogen is evaluated. Letter H, B, and T refers to hollow,
bottom, and top, respectively. Additional superscripts on the T sites denotes either
carbon- (C) or silicon- (Si) top sites. The initial orientation is reflected by the subscripts
of the “Site” column, letters (h and v) referring to the horizontal and vertical (θs at 0° or
90°) angle, while the number to their initial θr.

XC Site RH2 θs θr ⟨H–H⟩ ⟨Si–C⟩ Eads

[Å] [°] [°] [Å] [Å] [kcal/mol]

PBE

Hv 3.437 37.6 0.0 0.7423 1.7902 0.291
Hh0 3.388 48.1 0.0 0.7423 1.7901 0.297
Hh30 3.450 55.5 46.4 0.7427 1.7902 0.360
Hh60 3.460 55.2 49.1 0.7427 1.7902 0.360
Hh90 3.522 90.0 90.0 0.7420 1.7902 0.143

PBE
Bv 3.499 35.8 0.0 0.7425 1.7902 0.307
Bh0 3.472 42.8 0.0 0.7425 1.7902 0.307
Bh45 3.599 55.3 45.9 0.7426 1.7901 0.337
Bh90 3.611 90.0 90.0 0.7420 1.7902 0.182

PBE

TSi
v 3.421 53.4 0.0 0.7425 1.7902 0.309

TSi
h0 3.399 59.4 0.0 0.7424 1.7901 0.307

TSi
h60 3.484 78.5 40.6 0.7427 1.7901 0.351

TSi
h90 3.620 90.0 90.0 0.7420 1.7901 0.182

PBE

TC
v 3.624 3.1 0.0 0.7426 1.7901 0.284

TC
h0 3.686 10.0 0.0 0.7424 1.7902 0.284

TC
h60 3.672 37.5 83.9 0.7428 1.7901 0.341

TC
h90 4.224 90.0 90.0 0.7418 1.7902 0.092

PZ

Hv 2.573 51.3 0.0 0.7631 1.7915 2.375
Hh0 2.566 52.7 0.0 0.7632 1.7915 2.375
Hh30 2.564 56.2 43.3 0.7644 1.7915 2.463
Hh60 2.565 56.1 42.8 0.7644 1.7915 2.463
Hh90 2.585 90.0 90.0 0.7634 1.7915 2.168

PZ
Bv 2.560 76.8 0.0 0.7653 1.7915 2.530
Bh0 2.563 78.6 0.0 0.7653 1.7915 2.532
Bh45 2.569 80.1 12.8 0.7653 1.7915 2.534
Bh90 2.661 90.0 90.0 0.7642 1.7915 2.269

PZ

TSi
v 2.570 78.1 0.0 0.7652 1.7915 2.530
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TSi
h0 2.570 78.1 0.0 0.7652 1.7915 2.532

TSi
h60 2.591 85.9 32.2 0.7653 1.7915 2.539

TSi
h90 2.663 90.0 90.0 0.7641 1.7915 2.269

PZ

TC
v 3.076 3.4 0.0 0.7629 1.7915 1.642

TC
h0 3.104 7.7 0.0 0.7630 1.7915 1.644

TC
h60 2.587 86.7 31.9 0.7653 1.7915 2.539

TC
h90 3.380 90.0 90.0 0.7606 1.7915 1.017

In some cases, the optimization runs resulted in the hydrogen moving out of their initial
site (Figure 3.8). As the result, some conformations become identical: (TSi

v /T
Si
h0) to

(Bv/Bh0), Bh90 with TSi
h90, and TC

h60 being equivalent to TSi
h60 if using PZ and to B if using

PBE. The fact that starting from a different conformation allowed for stable optimization
indicates that the sites themselves is still able to host the hydrogen. However, the
potential energy barrier between these sites seems to be relatively low, allowing the
hydrogen to move between them.
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(a) TSi
h0/v (PBE) (b) Bh90 (PBE)

(c) TC
h60 (PBE) (d) TC

h60 + (PZ)

Figure 3.8: DFT optimizations where the final position of hydrogen is at a different site.
Red circles indicate the initial position of the hydrogen. In (a), putting the hydrogen in
vertical or horizontal position with 0◦ (θr) resulted in it being moved to an adjacent
bridge site. In (b), Bh90 is optimized to the TSi site. When using PBE to optimize caused
the TC

h60 (c) hydrogen to move to an adjacent bridge, however if PZ is instead used (d),
it is moved to the nearest TSi.

To inspect whether some sites are energetically preferred over another, the best cases
(highest binding energy) for each site are plotted in Figure 3.9. The TC site was found
to be the least favorable for hosting the H2, in both PBE and PZ XC, with binding
energy 21% (PBE) and 32% (PZ) less relative to the most favorable site, or around 0.07
kcal/mol for PBE and 0.82 kcal/mol for PZ. One possible explanation is the SiCNT
geometry: due to buckling, the carbon atoms are located further out about 0.1 Å relative
to the silicon, reducing the average interaction with another atom. The variation between
the other sites are much smaller, with PBE slightly favoring hollow site, and PZ the top
silicon site. Binding energies from PBE averages at 0.348(12) kcal/mol when excluding
TC, while in PZ this value is at 2.511(42) kcal/mol. Similarly, initial orientation of the
hydrogen only minimally affects the final binding energy, except for cases where the
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hydrogen is at 90° θr (parallel to the nanotube axis). It is possible that the interaction
with adjacent periodic image of the hydrogen created a local minimum high enough
for the optimizer to be unable to push it out to the optimal geometry. Except for these
two low energy cases, no sites are particularly preferable, thus the hollow orientation is
arbitrarily chosen as the focus for the next step with DMC.

Figure 3.9: Best-case binding energy comparison between possible adsorption sites on
(5,5) SiCNT. The vertical scales are adjusted for each plot due to the different magnitude
between the PZ and PBE binding energies.

3.2 Binding energy evaluation

Binding energy is evaluated using vertical hydrogen conformation over a hollow site on
the SiCNT surface, defined as:

Ebind(r) = ESiCNT+H2(r) − (ESiCNT + EH2) (3.5)

where the term inside the parenthesis are energies of separate fragments (SiCNT-only
and hydrogen-only) using the same simulation cell. Here r is a scalar, since only single
coordinate was varied (vertical distance over the hollow site). The binding energy is
evaluated over a simulation cell consisting of 20 atoms with 80 valence electrons. The
number of electrons comes from the use of pseudopotentials with He- and Ne-core for
the C and Si atoms, respectively, and all electrons for the H.
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Binding energy curves was obtained by fitting Morse potential over the energy
values at every distance r:

E(r) = De

(
e−2a(r−re) − 2e−a(r−re)2)

+ c (3.6)

where the free variables De, a, and re corresponds to the depth, width, and location of
the minimum within the energy well, respectively. The last free variable c is not part of
the typical Morse fit, and was introduced to fix size-consistency problem introduced by
some of the vdW corrections, resulting in the binding energy to not converge to zero at
infinity. The fitting was performed using non-linear least square Levenberg-Marquardt
algorithm [74]. In DMC, each of the energy points is going to include variance. The
variance is factored into the fit as an inverse weight to the residual. Then, standard error
propagation can be computed from the variance over the fitting variables and plotted as
a shade around the fit. The present work consider 1σ confidence interval around the
central value, which is typical for a DMC work.

3.3 DFT calculations

DFT calculations utilized PWSCF binary, part of the larger Quantum Espresso [75]
software library. The implementation is based on plane-wave basis set and pseu-
dopotential, modelling a system periodic by some unit cells. Burkatzki, Filippi, and
Dolg [76] energy-consistent pseudopotentials were exclusively employed in all level of
calculations. This pseudopotential was specifically designed to avoid singularity at the
nucleus, reducing time-step error in the DMC calculation. However, it is also perfectly
suitable for DFT calculation, although being a norm-conserving pseudopotential means
a larger kinetic energy cut-off is required, here 150 hartree was selected. Reciprocal
space integration were performed in regular Monkhorst-Pack grid [77] with 1×1×6 size.
Combined, these two parameter setting achieve convergence to within 1 mHa. Structural
optimization runs were performed using total force and energy thresholds of 10−10 and
10−4 a.u., respectively.

With the system expected to exhibit significant vdW interaction, leading vdW
corrections of DFT-D2, DFT-D3, Tkatchenko-Scheffler (TS), Exchange-Dipole Model
(XDM), vdW-DF2, and rVV10 was considered in this work [40, 42, 78–83]. Among
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them, two groups can be discerned: asymptotic 1/r6 energy correction (following
vdW’s long-range behavior) on the converged DFT energy, and 2nd order perturbation
inclusion into the self-consistent loop. While all are somewhat calibrated with each
respective vdW systems, those belonging to the second group have an additional side
effect of changing the final charge density. Plain PZ [35] (LDA) and PBE [36] (GGA)
calculations were also performed to provide a reference, vdW-less, DFT value.

3.4 VMC calculations

There are three purposes of VMC in this work: to initially check the DFT orbitals,
provide energy and variance to optimize the Jastrow factors, and to prepare the set of
walker configuration for the main DMC run. In all runs, a single walker is used, of which
the configuration space it traces is used as a sample for either optimization or DMC. This
was done to minimize the equilibration cost, as it has to be performed independently
for every walker. The measure used to check the orbital quality is the ratio between
the variance of local energy and its value. Without Jastrow factors added, this ratio
should not exceed 0.2 Ha, whereas with Jastrow a good value is between 0.01–0.03
Ha. Should the ratio is worse than expected, DFT calculation is performed again with
increased kinetic energy cut-off. The previously mentioned 150 hartree cutoffwas found
to be sufficient. Qualitative checks were also performed to ensure the run was stable.
VMC run for optimization is 80000 steps (excluding equilibration) per optimization
loop, generating those same number of samples. For DMC, the VMC was run in 4096
steps, each will become the starting point for the DMC walkers.

There are two system changes going to QMC from DFT: basis set and the boundary
condition. As already explained in Chapter 2, plane-wave basis set is not computation-
ally efficient for DMC.=@ Starting from plane-wave orbitals as calculated by PBE-DFT,
conversion to blip basis set [33] was performed using pw2qmcpack.x (custom patched
and compiled to PWSCF). Since it is also localized, some periodic boundaries can be
selectively removed, in all three-axis for the hydrogen molecule-only calculation, and
in the perpendicular axes in the case of nanotube system. This has possible implication
in the vacuum convergence behavior, which is to be discussed in the next chapter.
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3.5 Trial wavefunction optimization

Optimization here refer to the parametrization of the wavefunction and the subsequent
optimization of those parameters. There are many ways to do such, but in the present
work this was achieved by adding a Jastrow factor to the antisymmetrized (by determi-
nant) DFT orbitals, i.e.,

ΨT (p) = eJ(p)D↑D↓ (3.7)

with p representing the optimizable parameters, and D being the antisymmetrizing
determinants. Thus, all parameters are contained within the Jastrow factor. In QMC-
PACK, these factors are also in the form of B-splines. Current work employs one-body
(electron-nucleus; nuclei are static), and two-body (electron-electron) Jastrow factors.
Three-body (electron-electron-nucleus) Jastrow factor was not used the wavefunction
quality was found to be good enough as is (by the variance / energy ratio). Each
b-splines contains 10 optimizable terms. The one-body factors are different for each
species (silicon, carbon, and hydrogen), while the two-body factors comes in two sepa-
rate terms, of up-up and up-down interaction (referring to the two collinear spins). The
factors are optimized by minimizing the VMC energy. The optimization follows hybrid
scheme of Neuscamman and Otis [84], in which linear method [85] are interspersed
with accelerated descent method for a faster yet tight convergence. The same Jastrow
factors are shared for each respective geometry of the SiCNT and hydrogen adsorption.

3.6 DMC calculations

DMC is theoretically exact, however in practice several systematic biases coming from
numerical approximations needs to be accounted for:

• Localization bias due to the use of nonlocal pseudopotential. Non-locality here
refer to the orbital dependency of some terms within the pseudopotential itself. In
some cases, DMC evaluation of nonlocal pseudopotential may cause variational
principle to cease, resulting in energy bias requiring special techniques to correct.
Here, the “T-move” method by Casula et al. [86, 87] was employed. The specific
of the method is not the focus of this work, however it is achieved by modification
to the DMC’s branching term.
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• DMC timestep bias. The projector used to evolve the walker is only technically
exact at 0 a.u. (no walk). Instead, a set of finite timesteps were used, from which
the value at 0 a.u. is estimated from extrapolation. The present work uses 0.0025,
0.01, and 0.04 a.u. timesteps.
• Finite size error. The finite cell size introduces artificial periodicity not existing

in a true infinite system. This is more severe than in DFT, as DMC is able to
capture long-ranged interactions. To encounter this, the energy is extrapolated by
calculating in supercells 2, 6, and 8 times duplicates in size of the primitive unit
cell. With two direction as vacuum, the enlargement was done in the nanotube
axis direction. Furthermore, twists or shifts to the boundary condition of the
simulation cell was also used. The number of required twists is inverse to the
size of the supercell, with each energy of the 2, 6, and 8 supercells averaged from
8, 3, and 2 twists, respectively.
• Population bias. Too small walker size is known to introduce slight shift in the

DMC energy. In general, more than 1000 walkers is considered sufficient. Here
4096 walkers are set as the target, spread over 32 to 256 computational nodes.

The workflow of DMC then becomes a sequence of extrapolations, with the DMC
energy obtained by first eliminating the timestep bias, followed by the finite size error
elimination. In total, for every adsorption geometry, there are nine DMC runs, from
three supercell sizes at three timesteps each. In addition, each of these runs are averaged
from several twists, however the total number of required step is unchanged. Each run
is not equal in cost, however. DMC scales at N3 with the number of electrons, thus
while only consisting of a single twist, 8-supercell runs are more expensive than the
smaller sizes with more twists. Furthermore, runs with larger timesteps suffer less from
autocorrelation, meaning that less step is required.
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Chapter 4

Results

4.1 DMC binding energy estimation

4.1.1 Effect of vacuum size

Modelling non-periodic system with periodic boundary model inevitably requires en-
largement of the simulation cell to exclude unwanted interactions with the periodic
images. This additional size, often referred to as just the vacuum depth, is optimized
by gradually increasing it until the cell’s total energy converged. With DMC at its core
being a many-body electron theory, it is expected to better capture weak (non-covalent)
and possibly longer-ranged interactions. For that reason, converging the unit cell size in
DFT does not necessarily result in an optimal unit cell size for DMC.

The convergence is shown by Figure 4.1, with the total energies of the SiCNT
simulation cells plotted against the varying vacuum size. With DFT, 8 Å vacuum
is sufficient to remove the unwanted interaction between one SiCNT and its periodic
images. In DMC, however, this is not sufficient, with the total energy still deviates
from the optimal value by ≈3.5 kcal/mol. At least 14 Å is required for convergence.
Additionally, their behavior is different: in DFT the total energy increases for smaller
vacuum, suggesting some kind of repulsion between the periodic SiCNT images. Since
the DMC calculations were performed with some periodic boundaries removed, this
kind of spurious interaction does not exist, however some deviation can still be observed
due to insufficient length for the wavefunction to fully decay to vacuum, or as a result
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of distortion to the node locations caused by the artificial interaction when generating
them in DFT. Regardless of their physical origin, the vacuum was set to 15 Å for all
DFT, VMC, and QMC to fully remove their influence to the final results.

Figure 4.1: Total energy of the simulation cell relative to vacuum depth. All values are
relative to the total energy at 18 Å. Green and purple points refers to the total energies
from PBE-DFT and DMC calculation.

4.1.2 DMC binding energy

As explained in the Chapter 3, final DMC total energies is obtained after extrapolating
out the timestep bias and finite size error. Note that the DMC total energies listed on
Table 4.1 have varying scale of variance, this was caused by insufficient (lower than
planned) runs on some systems due to computational limitation. An automated system
was put in place, however, to keep the runs balanced, thus limiting the effect on the final
binding energy estimation (Figure 4.2) aside from the obviously increased variance.
With variance-weighted fitting performed on all extrapolation steps, the effect is further
minimized. The timestep-corrected energies are listed on Table 4.2, with the final total
energy of the system listed on Table 4.3.
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Table 4.1: DMC total energies for every system, geometry (of adsorption), supercell,
and timestep. All energies are twist-averaged, in the unit of Ha. Values in the parenthesis
are 1σ deviation from the mean value. The hydrogen calculation is not using supercell
as it was performed with an open boundary condition.

System H2 distance Supercell DMC Timestep Total energy
[Å] [times unit cell] [a.u.] [kcal/mol]

H2 - -
0.0025 -368.74(4)
0.01 -368.77(3)
0.04 -368.76(3)

SiCNT -

2
0.0025 -3015.350(4)
0.01 -3015.333(4)
0.04 -3015.489(6)

6
0.0025 -3014.669(5)
0.01 -3014.659(4)
0.04 -3014.826(5)

8
0.0025 -3014.582(6)
0.01 -3014.590(5)
0.04 -3014.747(6)

SiCNT+H2 2.2

2
0.0025 -2774.742(6)
0.01 -2774.729(4)
0.04 -2774.792(4)

6
0.0025 -2774.123(7)
0.01 -2774.114(4)
0.04 -2774.257(5)

8
0.0025 -2774.058(10)
0.01 -2774.046(5)
0.04 -2774.198(5)

SiCNT+H2 2.43

2
0.0025 -2774.771(6)
0.01 -2774.751(5)
0.04 -2774.828(5)

6
0.0025 -2774.151(7)
0.01 -2774.148(4)
0.04 -2774.294(4)

8
0.0025 -2774.095(9)
0.01 -2774.077(5)
0.04 -2774.214(5)

SiCNT+H2 2.83

2
0.0025 -2774.794(4)
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0.01 -2774.773(4)
0.04 -2774.861(5)

6
0.0025 -2774.165(5)
0.01 -2774.154(4)
0.04 -2774.297(5)

8
0.0025 -2774.091(5)
0.01 -2774.094(5)
0.04 -2774.237(5)

SiCNT+H2 3.23

2
0.0025 -2774.783(5)
0.01 -2774.760(4)
0.04 -2774.840(5)

6
0.0025 -2774.153(7)
0.01 -2774.154(4)
0.04 -2774.297(5)

8
0.0025 -2774.084(9)
0.01 -2774.084(5)
0.04 -2774.241(6)

SiCNT+H2 3.63

2
0.0025 -2774.772(6)
0.01 -2774.765(4)
0.04 -2774.834(5)

6
0.0025 -2774.140(6)
0.01 -2774.142(4)
0.04 -2774.286(4)

8
0.0025 -2774.088(8)
0.01 -2774.080(5)
0.04 -2774.217(6)

SiCNT+H2 5.0

2
0.0025 -2774.764(6)
0.01 -2774.761(4)
0.04 -2774.831(5)

6
0.0025 -2774.127(11)
0.01 -2774.125(4)
0.04 -2774.280(5)

8
0.0025 -2774.059(10)
0.01 -2774.065(7)
0.04 -2774.213(5)
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Table 4.2: Timestep-extrapolated DMC total energies for every system, geometry (of
adsorption), and supercell. Values in the parenthesis are 1σ deviation from the mean
value.

System H2 distance Supercell Total energy
[Å] [times unit cell] [kcal/mol]

H2 - - -368.75(2)

SiCNT -
2 -3015.319(3)
6 -3014.637(3)
8 -3014.554(5)

SiCNT+H2

2.2
2 -2774.723(4)
6 -2774.085(4)
8 -2774.009(5)

2.43
2 -2774.746(4)
6 -2774.115(4)
8 -2774.051(5)

2.83
2 -2774.772(3)
6 -2774.131(4)
8 -2774.068(4)

3.23
2 -2774.758(4)
6 -2774.120(4)
8 -2774.044(5)

3.63
2 -2774.755(4)
6 -2774.107(4)
8 -2774.051(5)

5.0
2 -2774.748(4)
6 -2774.082(5)
8 -2774.029(7)

Table 4.3: Final DMC energies for every system and geometry. Values in the
parenthesis are 1σ deviation from the mean value.

System H2 distance Total energy
[Å] [kcal/mol]
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H2 - -368.75(2)

SiCNT - -3014.298(5)

SiCNT+H2

2.2 -2773.768(5)
2.43 -2773.809(5)
2.83 -2773.823(4)
3.23 -2773.804(5)
3.63 -2773.799(5)
5.0 -2773.766(6)

The adsorption curve calculated from the DMC energies together with Morse fit is
shown in the Figure 4.2. The curve minimum is at 1.370(107) kcal/mol, located at 2.735
Å from the SiCNT surface. This is about one third of the estimated desirable binding
energy for hydrogen storage [88, 89], suggesting that pristine SiCNT may need further
modification for hydrogen storage use. The value fell around the average of previous
works using an assortment exchange-correlation functionals and basis sets [70,90–92],
with the only consistent trend being that this value is 0.1–0.6 kcal/mol higher than hybrid
works with B3LYP, and lower by about the same range from LDA or GGA works. It is
to be noted though that some of these works only evaluate the binding energy statically,
without considering the full adsorption curve [70, 92], or only partially so [7], leaving
the possibility for any size-inconsistency issues unchecked.
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Figure 4.2: Binding energy estimation from DMC.

4.2 DFT binding energy estimation

Figure 4.3 shows the adsorption curve generated from conventional DFT (PBE and
PZ). PZ estimates the binding energy to be 1.787 kcal/mol at 2.289 Å from the
SiCNT surface, much stronger than PBE prediction at 0.2 kcal/mol at 3.198 Å. That
PBE predicted weak binding is not surprising, since it does not contain the necessary
nonlocal terms for describing vdW interaction, although at least one work predicted
stronger binding [7], but with a different model (cluster vs. periodic here) and basis set
(numerical basis set vs. plane-wave). PZ is known to have problem with self-interaction,
due to its inexact exchange term. Similar observation was found on a work with atomic
orbital basis set [70], with it predicting the binding energy around 1.384–2.306 kcal/mol
depending on the chirality.
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Figure 4.3: Adsorption curve from conventional DFT. PBE (GGA) predicts a much
weaker interaction that PZ (LDA), almost non-binding.

Applying the pairwise correction over PBE significantly increases the predicted
binding energy, into the range of between 0.904 and 1.147 kcal/mol (Figure 4.4). While
all performed the correction after the SCF loop, with similar reliance on dispersion
coefficients and damping terms, how the coefficients are calculated is different. DFT-
D2 [37, 93] and Tkatchenko-Scheffler(TS) [40] are formally very similar, however the
coefficients in TS is affected by charge density, allowing it to consider the local chemical
environment. DFT-D3 [38] improves over DFT-D2 by adding r8 damping term with
geometry-dependent dispersion coefficients. In the previous methods, the coefficients
are empirical, however with exchange dipole model (XDM) [42], an exchange hole
model is used instead to calculate these parameters. From the figure, it can be seen that
DFT-D3 and TS performed similarly, while XDM energetics is closer to DFT-D2 albeit
with the hydrogen 0.24 Å further away.
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Figure 4.4: Binding energy estimation after applying pairwise correction over PBE
energies. The corrections significantly strengthen the prediction, up to 1.147 kcal/mol
by TS.

Comparable with the pairwise correction, the nonlocal exchange-correlations pre-
dicted the binding energy to be in the range of 1.037–1.107 kcal/mol. The vdW-DF2
puts the hydrogen 0.22 Å further away than rVV10, but are otherwise similar. Note
that none of the nonlocal corrections nor the pairwise corrections predicted the binding
energy at the same level as PZ, further strengthening the suspicion on spurious bonding
with PZ. Further analysis to elucidate this behavior is to be discussed on the next section,
which includes charge density into the picture.
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Figure 4.5: Binding energy estimation from nonlocal DFT. The predicted binding
energies are qualitatively similar to that of the energy-corrected DFT.

4.3 Charge density analysis

Charge density is used to infer some information regarding the local chemical environ-
ment surrounding the adsorption site [73,94]. In particular, the charge density difference
/ redistribution, defined as

∆ρ(r) = ρSiCNT+H2(r) − (ρSiCNT(r) + ρH2)(r) (4.1)

is particularly useful to analyze how the charge density are changed by the interaction
between the fragments, relative to their isolated behavior. The pairwise corrections (D2,
D3, TS, and XDM) does not affect the charge density, thus their densities are identical
to the PBE one shown in the figure. On the other hand, the non-local perturbations in
the correlation integral for rVV10 and vdW-DF2 produces deformation to the charge
density, as a side effect of the changes at the wavefunction level. The results for each
XCs are shown in Figure 4.6.

It is immediately noticeable that vdW-DF2’s charge density is unique: there is a
pronounced dip in the region between the hydrogen and SiCNT surface. This indicates
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no bonding is being formed, as is expected form the non-covalent nature of the vdW
interaction. In contrast, the non-corrected PZ predicted charge accumulation between
the H2 molecule and SiCNT, forming spurious covalent bonding. This feature is not
present in the PBE data, and is instead replaced by a much weaker redistribution of
charge toward the SiCNT surface. Both PZ and PBE does not treat vdW, as it does not
contain nonlocal terms necessary for its description. The formation of spurious bonding
in a supposedly vdW system is well known for PZ, as a result of its non-exact exchange,
which in general is too weak. As a result, self-interaction (interaction of an electron
with itself) is not fully cancelled out. In crystalline system, this problem often manifest
itself as underestimation of the structural parameter, whereas in a molecular system,
binding often formed in a region where there expected to be none. PBE is affected
by this problem to some extent, although noticeably weaker. Interestingly, the rVV10
charge density is more similar to that of PZ rather than vdW-DF2. There is a precedent
of this unusual behavior in a work on layered graphynes [73], where rVV10 produced
inaccurate density (compared to DMC), but without seemingly affecting its energy and
geometry prediction (the long range behavior was still correct).

(a) PZ (b) PBE (c) vdW-DF2 (d) rVV10

Figure 4.6: Charge density difference ∆ρ(r) in the region near hydrogen adsorption
site. The displayed plot are for each (a) PZ, (b) PBE, (c) vdW-DF2, and (d) rVV10
exchange-correlation functional. Blue and red denotes a positive/negative difference,
meaning that blue region has more electrons that it was if the fragments are isolated.
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Chapter 5

Discussion

5.1 DMC-DFT discrepancy

By design, the corrections should improve upon conventional XC when treating system
with significant vdW interaction. The magnitude of this improvement, however, can
be system-dependent, and may not be comprehensive: some corrections are better at
energy but bad at geometry, and vice versa [73, 95]. It is not entirely unsurprising due
to their nature as approximations, in contrast to a true many-body model as is the DMC.
What important is to understand their behavior for each family of system, thus allowing
one to decide which of the corrections is best for the given task.

The adsorption curves for each XCs and corrections relative to the DMC is shown on
Figure 5.1. It is clear that PZ (PBE) severely over (under)-binds the DMC target value
by 0.6 (1.2) kcal/mol. This result is consistent with the established behavior of LDA
and GGA in vdW-dominated systems. The newer D3, TS, and XDM pairwise potentials
better matches DMC values compared to D2, except for XDM where it is actually worse
in predicting the binding energy. These newer potentials improved upon D2 by adding
geometrical dependency into the dispersion coefficients. In PBE+TS, the dispersion
term is dependent on local density by Hirshfeld partitioning. PBE+D3 instead inserted
the dependency by coordination number, but it also added three-body term, for taking
into account the effect of non-additivity, as well as adding r−8 term into the power
expansion. XDM further expand up to r−10 term, and uses exchange-correlation hole
model over the density to replace some of the pre-calculated coefficients, however here
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it seems to only improve the geometry. Considering all started from PBE energies, this
is satisfactory. The non-empirical vdW-DF2 and rVV10 nonlocal functionals return
virtually identical binding energies, but their H2 separations differ by ∼0.2 Å.

In general, all vdW corrections underbind relative to DMC, but the location of
the minima itself is more reasonable. This suggests that while the geometries derived
from these functionals can generally be trusted, energetics needs to be more carefully
considered. Overall, PBE+TS produces the closest binding energy to the DMC, while
the H2 distance is best reproduced by PBE+D3 (Table 5.1).
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Figure 5.1: Binding energy vs. H2 distance plot for (a) conventional XCs and DMC,
compared to (b) PBE + D2 and PBE + D3, (c) PBE + TS and PBE + XDM, and (d)
vdW-DF2 and rVV10. Blue curves represent conventional XCs, while red and black
curves represent vdW-corrected XCs and DMC, respectively. Dashed lines indicate
each fitting curve’s minimum. While energetically similar, the minima from the vdW-
corrected XCs are at different positions, and they slightly underbind relative to DMC.
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With regard to the inaccuracy of conventional XCs, LDA is known to produce
spurious covalent bonding between noncovalent molecules due to the self-interaction
error [95, 96]. This gives rise to the ca. 0.6 kcal/mol overbinding. GGA improves the
self-interaction error, but at the cost of weak intermolecular interactions as the vdW
interaction is not inherently accounted for. Hence, it can be argued that the application
of the corrections into GGA instead of LDA is expected to give better results, although
it was not specifically examined.

Table 5.1: Binding energy estimation for vs. vertical-oriented H2 distance plot from
DFT of all XCs and DMC.

XC RH2 [Å] ∆E [kcal/mol]

PZ 2.289 1.787
PBE 3.198 0.202
PBE+D2 2.546 0.952
PBE+D3 2.750 1.060
PBE+TS 2.653 1.147
PBE+XDM 2.788 0.904
vdW-DF2 2.892 1.107
rVV10 2.670 1.037
DMC 2.735 1.370(106)

5.2 Finite size error and timestep bias

In interpreting the DMC results, it is important to discuss the extrapolations used to
remove the finite size error and timestep biases. This is especially important in a non-
covalent system, such as the system studied, where the magnitude of the interaction
energies are relatively small. Indeed, for the SiCNT+H2 complex, the absolute DMC
energy between the smallest 2 unit (of the primitive cell) and the largest 8 unit supercells
can differ by up to 15.82 kcal/mol, which translates to ∼0.72 kcal/mol for each atom
within the unit cell, or around 52% of the target interaction energy (Figure 5.2–5.3).
Despite this seemingly large size, the error was found to be reasonably well-behaved,
and such was easily controlled by performing adequate statistical accumulation and the
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linear extrapolation by 1/N of the system size. This resulted in the final uncertainties of
not more than ∼0.14 kcal/mol for each H2 distance. Due to the presence of open bound-
aries at the x and y plane (perpendicular to the SiCNT axis), Chiesa correction [97]
could not be used to further reduce the finite size error.
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Figure 5.2: DMC finite size correction for SiCNT-only fragment.

The timestep bias on the other hand, although relatively non-linear if compared to
the finite size bias, is relatively small, with the maximum of ∼0.25 kcal/mol an atom
for the largest 0.04 a.u.−1 timestep size (Figure 5.4–5.8). There is a trade-off between
choosing a smaller DMC timestep and largest simulation cell and the computational
cost.

5.3 Geometry variance with different functionals

Previously in Chapter 4 through Section 5.1, the H2 is fixed at vertical orientation
with only the distance varied for the purpose of evaluating vdW interactions. Here,
full geometry optimization was performed to obtain a more realistic adsorption energy.
Table 5.2 summarizes the structural and energetics information from all utilized DFT
methods. Similar to the previous findings in fixed vertical orientation, nonlocal vdW
functionals (vdW-DF2 and rVV10) are rather similar, with LDA and GGA over and
underbind, respectively, which is consistent with well-known behavior for noncovalent
systems. [95] The vdW-corrected results agree well with each other, both in terms of
structural parameters and adsorption energy. PBE gives relatively poor description
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Figure 5.3: DMC finite size correction for SiCNT+H2 complex, at (a) 2.20 Å, (b) 2.43
Å, (c) 2.83 Å, (d) 3.23 Å, (e) 3.63 Å, and (f) 5.00 Å distance.

0.0025 0.040.01
DMC timestep (a.u.)

368.82

368.80

368.78

368.76

368.74

368.72

368.70

DM
C 

E 
pe

r a
to

m
 (k

ca
l/m

ol)

H2

Figure 5.4: DMC timestep extrapolations for H2. Here isolated H2 is used, therefore
finite size extrapolation is not required.
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Figure 5.5: DMC timestep extrapolations for SiCNT-only fragment with (a) 2×1×1, (b)
6×1×1, and (c) 8×1×1 supercell.
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Figure 5.6: DMC timestep extrapolations for SiCNT+H2 complex, at 2.20 Å distance
with (a) 2×1×1, (b) 6×1×1, and (c) 8×1×1 supercell, and at 2.43 Å with (d) 2×1×1, (e)
6×1×1, and (f) 8×1×1 supercell.
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Figure 5.7: DMC timestep extrapolations for SiCNT+H2 complex, at 2.83 Å distance
with (a) 2×1×1, (b) 6×1×1, and (c) 8×1×1 supercell, and at 3.23 Å with (d) 2×1×1, (e)
6×1×1, and (f) 8×1×1 supercell.
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Figure 5.8: DMC timestep extrapolations for SiCNT+H2 complex, at 3.63 Å distance
with (a) 2×1×1, (b) 6×1×1, and (c) 8×1×1 supercell, and at 5.00 Å with (d) 2×1×1, (e)
6×1×1, and (f) 8×1×1 supercell.
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compared to the vdW-corrected functionals. In contrast, LDA(PZ) still reproduces
surface angle θs that is closer to the nonlocal vdW corrections (vdW-DF2 and rVV10),
although considering other quantities this might as well been accidental. These
structural properties somewhat correlate with the charge densities previously shown in
Chapter 4 (Figure 4.6). As the charge density at the (bonding) region between H2 and
SiCNT increases (LDA > rVV10 > vdW-DF2), RH2 and θs both decrease (LDA < rVV10
< vdW-DF2). As already mentioned in the previous chapter, LDA did not reproduce
the noncovalent bonding, but it produced a spurious result. It is clear from the charge
density and structure that the LDA overbinding correlates to the highest charge density
in the bonding region.

Herein, we compare the pairwise vdW corrections to the vdW-corrected function-
als. In particular, the surface angle θs obtained from empirical pairwise corrections
(PBE+D2/D3) is much improved over the PBE value (in a sense that they are close to
the vdW-XCs), but they are still much smaller. This can be attributed to the fact that
empirical corrections takes the charge densities (or wave functions through equivalence)
as-is, with the total energies subtracted by the empirical pair potentials. The charge
densities of the pairwise vdW corrections are the same as those of their underlying
XC (PBE). In contrast, other pairwise vdW corrections (PBE+TS/XDM), while still
keeping the charge density untouched, can take the local chemical environment into
account. The θs values is significantly improved, especially compared to the PBE value,
but some underestimation remains compared to the vdW-corrected functionals. With
regard to other properties, PBE+TS overestimates the adsorption energy (Eads) and
underestimates the bond length (RH2), while PBE+XDM give Eads and RH2 closer to
the vdW functionals. Considering the above findings, it may be concluded that the self-
consistent charge deformation is important, and pairwise vdW correction alone (without
structural dependency elsewhere) is insufficient for accurate structure determination.
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Table 5.2: H2 conformations and adsorption energies from full geometry optimization.

XC RH2 [Å] θs [deg.] Eads [kcal/mol]

PZ 2.573 51.3 2.375
PBE 3.437 37.6 0.291
PBE + D2 2.792 45.3 1.333
PBE + D3 3.000 45.7 1.421
PBE + TS 2.872 52.4 1.592
PBE + XDM 3.037 50.7 1.152
vdW-DF2 3.170 54.4 1.268
rVV10 2.930 53.9 1.298
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Chapter 6

Summary

Adsorption properties of H2 on SiCNT surface was evaluated as a representative exam-
ple of molecular adsorption system used to enhance physical properties of hydrogen
storages. These systems often pose a challenge to conventional ab initio methods,
particularly DFT, due to strong influence of vdW force. This resulted in inaccurate
estimation of the binding energies, structural parameters, and other related physical
properties. While the origin of the biases is inherent to DFT as a single particle
method, corrective schemes can and have been developed, utilizing various physics.
The accuracy of the various corrections can be dependent on the target material class,
necessitating external calibration. Fixed-node diffusion Monte Carlo is a compelling
method to fill this role as it does not require correction for vdW, while being highly
parallel, thus easily scaled given available computing power.

With regard to the adsorbent, evaluation on the stability of SiC phases, including
SiCNTs at various chirality was performed. DMC was found to better predict both the
bulk modulus and lattice parameters of β-SiC, although conventional PBE and PZ were
also reasonable at less than 0.03 Å from the DMC predictions. SiC nanotubes was found
to be statically stable, including the smaller sizes with less cohesive energy due to the
higher distortion. The cohesive energy was found to be between 10.50–11.84 eV per f.u.
when evaluated with PBE, or between 11.74–13.06 eV per f.u. evaluated with PZ, less
than that of the planar and β-SiC. Si–C bond lengths of larger nanotubes are comparable
to the planar SiC. Despite the considerable difference between PBE- and PZ-derived
cohesive energies, their optimized geometries are quite similar with only up to 0.0015 Å
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difference in the Si–C bond length. Armchair and zigzag chirality are almost equally
stable, however there was a slight preference towards armchair type for the smaller sizes.
The adsorption sites were found to be energetically similar for hosting the H2, except
for the TC site, regardless of the chosen XC. Optimization with unrestricted degree of
freedom on the hollow site initialized with vertical hydrogen revealed the preference for
an oblique orientation, possibly due to the imbalance between the Si and C diameter.

Recently developed XC functionals designed to reproduce vdW interactions (PBE +
D3, vdW-DF2, and rVV10) and conventional XC functionals (PZ, PBE) were compared
to DMC as a reference. Overall, all vdW-corrected XC functionals agree well with
DMC, whereas PZ (PBE) over (under)-binds. The self-consistent nonlocal correlation
functionals, vdW-DF2 and rVV10, give almost the same adsorption energies. Differ-
ences in the structural properties were found to closely correlate with differences in the
charge density distribution. A higher charge density in the bonding region leads to a
shorter distance between H2 and SiCNT and larger surface angle.

The magnitude of the vdW interaction was estimated to be ca. 1.2 kcal/mol, which
corresponds to 9–29% of the ideal adsorption energy for hydrogen storage. This
finding implies the importance of vdW corrections within the framework of DFT. We
thus conclude that protocols based on vdW-corrected XC functionals will advance the
computational investigation and exploration of storage materials in the near future. In
addition, our results support previous findings that pristine SiCNT alone is unlikely
to provide a sufficient binding for realizing ambient temperature hydrogen adsorption;
thus, further research studies into doping and other surface modifications should be
pursued to use it as the basis for a hydrogen storage system.
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[12] M.H. Rümmeli, E. Borowiak-Palen, T. Gemming, M. Knupfer, K. Biedermann,
R.J. Kalenczuk, and T. Pichler. On the formation process of silicon carbide
nanophases via hydrogenated thermally induced templated synthesis. Appl. Phys.

A, 80(8):1653–1656, May 2005.

[13] E. Borowiak-Palen, M. H. Ruemmeli, T. Gemming, M. Knupfer, K. Biedermann,
A. Leonhardt, T. Pichler, and R. J. Kalenczuk. Bulk synthesis of carbon-filled
silicon carbide nanotubes with a narrow diameter distribution. J. Appl. Phys.,
97(5):056102, March 2005.

[14] Nicolas Keller, Cuong Pham-Huu, Gabrielle Ehret, Valérie Keller, and Marc J.
Ledoux. Synthesis and characterisation of medium surface area silicon carbide
nanotubes. Carbon, 41(11):2131–2139, January 2003.

[15] Tomitsugu Taguchi, Naoki Igawa, Hiroyuki Yamamoto, Shin-ichi Shamoto, and
Shiro Jitsukawa. Preparation and characterization of single-phase SiC nanotubes
and C-SiC coaxial nanotubes. Phys. E: Low-Dimens. Syst. Nanostructures,
28(4):431–438, September 2005.

[16] T. Taguchi, N. Igawa, H. Yamamoto, and S. Jitsukawa. Synthesis of Silicon
Carbide Nanotubes. J. Am. Ceram. Soc., 88(2):459–461, February 2005.

[17] Tomitsugu Taguchi, Shunya Yamamoto, Katsuaki Kodama, and Hidehito Asaoka.
Synthesis of heterostructured SiC and C–SiC nanotubes by ion irradiation-induced
changes in crystallinity. Carbon, 95:279–285, December 2015.

69



[18] Xu-Hui Sun, Chi-Pui Li, Wing-Kwong Wong, Ning-Bew Wong, Chun-Sing
Lee, Shuit-Tong Lee, and Boon-Keng Teo. Formation of Silicon Carbide Nan-
otubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon
Monoxide) with Carbon Nanotubes. J. Am. Chem. Soc., 124(48):14464–14471,
December 2002.

[19] Jean-Mario Nhut, Ricardo Vieira, Laurie Pesant, Jean-Philippe Tessonnier, Nico-
las Keller, Gaby Ehret, Cuong Pham-Huu, and Marc J Ledoux. Synthesis and cat-
alytic uses of carbon and silicon carbide nanostructures. Catal. Today, 76(1):11–
32, November 2002.

[20] Yuewu Pan, Pinwen Zhu, Xin Wang, and Subei Li. Preparation and characteri-
zation of one-dimensional SiC–CNT composite nanotubes. Diam. Relat. Mater.,
20(3):310–313, March 2011.

[21] Hao Wang, Xiao-Dong Li, Taek-Soo Kim, and Dong-Pyo Kim. Inorganic
polymer-derived tubular SiC arrays from sacrificial alumina templates. Appl. Phys.

Lett., 86(17):173104, April 2005.

[22] A. Mavrandonakis, George E. Froudakis, M. Schnell, and Max Mühlhäuser. From
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[49] P. Mélinon, B. Masenelli, F. Tournus, and A. Perez. Playing with carbon and
silicon at the nanoscale. Nat. Mater., 6(7):479–490, July 2007.

[50] Yoshiyuki Miyamoto and Byung Deok Yu. Computational designing of graphitic
silicon carbide and its tubular forms. Appl. Phys. Lett., 80(4):586–588, January
2002.

[51] Zhengfang Xie, Deliang Tao, and Jiqing Wang. Synthesis of Silicon Carbide
Nanotubes by Chemical Vapor Deposition. J. Nanosci. Nanotechnol., 7(2):647–
652, February 2007.

[52] Andrzej Huczko, Michał Bystrzejewski, Hubert Lange, Agnieszka Fabianowska,
Stanisław Cudziło, Andrzej Panas, and Mateusz Szala. Combustion Synthesis as
a Novel Method for Production of 1-D SiC Nanostructures. J. Phys. Chem. B,
109(34):16244–16251, September 2005.

[53] Yongfeng Zhang and Hanchen Huang. Stability of single-wall silicon carbide
nanotubes – molecular dynamics simulations. Comput. Mater. Sci., 43(4):664–
669, October 2008.

[54] Wang Sheng-Jie, Zhang Chun-Lai, and Wang Zhi-Guo. Melting of Single-Walled
Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation.
Chin. Phys. Lett., 27(10):106101, October 2010.

[55] Haijun Shen. MD simulations on the melting and compression of C, SiC and Si
nanotubes. J. Mater. Sci., 42(15):6382–6387, June 2007.

[56] Madhu Menon, Ernst Richter, Andreas Mavrandonakis, George Froudakis, and
Antonis N. Andriotis. Structure and stability of SiC nanotubes. Phys. Rev. B,
69(11), March 2004.

73



[57] Kazi M. Alam and Asok K. Ray. Hybrid density functional study of armchair SiC
nanotubes. Phys. Rev. B, 77(3), January 2008.

[58] Kazi M Alam and Asok K Ray. A hybrid density functional study of zigzag SiC
nanotubes. Nanotechnology, 18(49):495706, December 2007.

[59] R. J. Baierle, P. Piquini, L. P. Neves, and R. H. Miwa. Ab initio study of native
defects in SiC nanotubes. Phys. Rev. B, 74(15), October 2006.

[60] Giannis Mpourmpakis, George E. Froudakis, George P. Lithoxoos, and Jannis
Samios. Effect of curvature and chirality for hydrogen storage in single-walled
carbon nanotubes: A Combined ab initio and Monte Carlo investigation. J. Chem.

Phys., 126(14):144704, April 2007.

[61] Xiao Wang and K. M. Liew. Hydrogen Storage in Silicon Carbide Nanotubes by
Lithium Doping. J. Phys. Chem. C, 115(8):3491–3496, March 2011.

[62] Tamsyn A. Hilder, Rui Yang, Dan Gordon, Alistair P. Rendell, and Shin-Ho
Chung. Silicon Carbide Nanotube as a Chloride-Selective Channel. J. Phys. Chem.

C, 116(7):4465–4470, February 2012.

[63] Bo Xiao, Hong Hu, Jing-xiang Zhao, and Yi-hong Ding. Functionalization of
silicon carbide nanotube by dichlorocarbene: A density functional theory study.
Phys. E: Low-Dimens. Syst. Nanostructures, 56:377–385, February 2014.

[64] Mehdi D. Esrafili, Roghaye Nurazar, and Vahideh Masumi. Adsorption and
decomposition of formamide over zigzag (n,0) silicon-carbide nanotubes (n =
5–7): Investigation of curvature effects. Surf. Sci., 637-638:69–76, July 2015.

[65] Yanli Wang, Chenhui Zhao, Kehe Su, Xin Wang, Xiulan Qin, and Zhanbing Yuan.
A Density Functional Theoretical Study on Ultra Long Armchair ( n,n ) Single
Walled Carbon Silicon Nanotubes. J. Nanosci. Nanotechnol., 17(6):3809–3815,
June 2017.
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