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Abstract

Model checking is one of the most successful computer science achievements in the last few
decades. This is why Edmund M. Clarke, E. Allen Emerson and Joseph Sifakis were honored
with 2007 A.M. Turing Award for their role in developing model checking into a highly effective
verification technology. Model checking has been widely adopted in industries, especially in
hardware ones. There are still some issues to tackle in model checking, one of which is the
notorious state explosion. Many techniques to mitigate the state explosion, such as partial
order reduction and abstraction, have been devised. Because these existing techniques are not
too enough to deal with the state explosion, however, it is still worth tackling it.

To mitigate the state space explosion problem to some extent, we propose a divide &
conquer approach to model checking (DCA2MC) leads-to properties and conditional stable
properties, where leads-to properties are expressed in ϕ1 � ϕ2 and conditional stable properties
are expressed in ϕ1 � �ϕ2, where ϕ1 and ϕ2 are state propositions or classical propositional
formulas. Chandy and Misra designed a temporal logic called UNITY in which the leads-to
temporal connective plays an important role and demonstrated that many important systems
requirements can be expressed as leads-to properties. Moreover, Dwyer et al. showed some
statistics on the usage distribution of the various patterns in property specifications in which
the leads-to property (or the response pattern) had the highest proportion. Conditional stable
properties can be used to express core requirements in self-stabilizing systems, which were first
introduced by Dijkstra and became a very important concept in fault tolerance to design robust
systems. Thus, it is worth focusing on leads-to and conditional stable properties. DCA2MC
divides an original leads-to (or conditional stable) model checking problem into multiple smaller
model checking problems and tackles each smaller one. We prove a theorem that the multiple
smaller model checking problems are equivalent to the original leads-to (or conditional stable)
model checking problem. An algorithm is constructed based on the theorem to support model
checking leads-to (or conditional stable) properties by DCA2MC. A support tool is developed in
Maude, a rewriting logic-based specification/programming language and system, to support the
technique based on the algorithm for each of leads-to and conditional stable properties. Some
experiments are then conducted with the support tools to demonstrate that our tools/techniques
can mitigate the state space explosion to some extent.

Both leads-to and conditional stable properties can be expressed as linear temporal logic
(LTL) formulas that are very similar. However, how to deal with the two classes of properties
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with DCA2MC is so different that we need to prove the correctness of DCA2MC for the two
classes of properties in two different ways and come up with two different algorithms for the
two classes of properties, from which the two support tools are built. Note that because the
architecture of the tools is well designed, many components (data structures and functions) are
shared by the two tools. This is because it suffices to take a look at the top state of an infinite
sequence π of states so as to check if a state proposition ϕ2 holds for π, while it is necessary
to take a look at all states in π in order to check if an LTL formula �ϕ2, where ϕ2 is a state
proposition, holds for π. One piece of our future work is to extend DCA2MC for the other
classes of LTL properties and then come up with a unified DCA2MC for all LTL properties.

Keywords: LTL model checking; leads-to properties; conditional stable properties; state space
explosion; divide & conquer; Maude; meta-programming; Full Maude.
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Chapter 1

Introduction

Because many systems/protocols have been used for various roles in our daily lives, it is very
important to make sure that such systems/protocols are trustworthy. To this end, formal
verification is promising. As a formal verification technique, model checking is popular. Model
checking has been used in hardware industries. To make it possible to use model checking
as a daily life technique in software industries, there is a big challenge to conquer: the state
space explosion problem. Many techniques have been proposed to mitigate the problem, but the
problem still degrades model checking running performance or even makes it impossible to carry
out model checking experiments when tackling large-state systems/protocols. We came up with
two new techniques to alleviate the problem for two important classes of properties (leads-to
and conditional stable properties), developed two tools that support the two techniques, and
conducted case studies that demonstrate that the techniques/tools can reasonably alleviate the
state space explosion problem. In this chapter, we briefly introduce model checking, state our
main contributions, and describe our thesis structure.

1.1 Model Checking

Model checking is one of the most successful computer science achievements in the last few
decades. This is why Edmund M. Clarke, together with E. Allen Emerson and Joseph Sifakis,
was honored with 2007 A. M. Turing Award1 for their role in developing model checking into
a highly effective verification technology. To verify systems by model checking, we need to
prepare two specifications: one is a system specification and the other one is a property specifi-
cation. A system specification describes the behaviors of a system, which can be formalized as
a state machine or a Kripke structure, an extension of a state machine. Meanwhile, a property
specification describes a desired requirement/property that the system should satisfy, which can
be often formalized in a temporal logic, such as linear temporal logic (LTL) and computational
tree logic (CTL). A model checker automates to formally verify that a system (formalized as

1https://amturing.acm.org/award_winners/clarke_1167964.cfm
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a Kripke structure K) satisfies a property (formalized as a temporal logic formula ϕ), which
is expressed as K |= ϕ. If K does not satisfy ϕ, expressed as K �|= ϕ, then a model checker
returns a counterexample, an infinite sequence of states, that can be expressed as a pair of
a finite sequence of states from an initial state and a finite cycle of states. The automata-
theoretic approach [1, 2] to model checking is often used to implement model checkers. In this
approach, a system (or a system specification) is transformed to a Kripke structure Ksys, the
negation of a property (or a property specification) is also transformed to a Kripke structure
K¬prop, the product Ksys ⊗ K¬prop is constructed from the two Kripke structures, and it is
checked whether the infinite languages accepted by Ksys ⊗ K¬prop is empty. If it is empty,
the system satisfies the property; otherwise, it does not, and an infinite language accepted by
Ksys ⊗ K¬prop is a counterexample. Another approach to model checking that is also often
used is bounded model checking (BMC) based on Boolean satisfiability solvers or such solvers
modulo theories (SAT/SMT-based BMC) [3, 4, 5]. In this approach, BMC is transformed into
a Boolean formula and such a formula is solved by a SAT/SMT solver. If there is a solution, it
is a counterexample; otherwise, the system satisfies the property up to some specific depth from
each initial state of the system. Several optimization techniques for model checking have been
proposed. Among them are binary decision diagrams (BDDs) [6, 7], symmetry reduction [8]
and partial order reduction [9]. Many model checkers have been developed, such as Spin [10],
NuSMV [11], Symbolic Analysis Laboratory (SAL) [12], Process Analysis Toolkit (PAT) [13],
TLA+ model checker (TLC) [14] and Maude LTL model checker [15, 16]. These model checkers
may be called design model checkers because their main targets are systems designs. There
are model checkers whose main targets are programs written in programming languages, such
as Java, C and C++. Such model checkers may be called software model checkers. Among
software model checkers are Java Pathfinder (JPF) [17], BLAST [18] and DiVinE [19].

It has been proven to be a tremendously successful technique to verify requirements for a
variety of hardware and software systems. However, there are still some challenges to tackle
in model checking, one of which is the state space explosion that occurs when the number of
states becomes exponential in the number of processes. Many techniques have been devised
to mitigate the state explosion, such as abstraction (and abstraction refinement) [20, 21, 22,
23, 24, 25, 26, 27], SAT/SMT-based BMC (and its extension) [28, 29, 30, 31, 32, 33] and
non-exhaustive model checking [34, 35, 36] as well as those above-mentioned. Because those
existing techniques are not enough to deal with the state explosion, however, it is still worth
tackling it.

To address the problem to some extent, we propose a technique called a divide & conquer
approach to leads-to model checking (L + 1-DCA2L2MC). As indicated by the name, the
technique is dedicated to leads-to properties. An informal description of leads-to properties is
that whenever something occurs, something else will eventually occur. For example, one desired
property mutual exclusion protocols should enjoy can be expressed as a leads-to property:
whenever a process wants to enter a critical section, it will eventually be there. Chandy and
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Misra [37] designed a temporal logic called UNITY in which the leads-to temporal connective
plays an important role and demonstrated that many important systems requirements can be
expressed as leads-to properties. Moreover, Dwyer et al. [38] showed some statistics on the usage
distribution of the various patterns in property specifications in which the leads-to property
(or the response pattern) had the highest proportion. Thus, it is worth focusing on leads-to
properties.

We have extended our approach to model checking to another important class of properties,
conditional stable properties. The extended approach is called a divide & conquer approach to
conditional stable model checking (L+1-DCA2CSMC). As indicated by the name, the technique
is dedicated to conditional stable properties that informally say that whenever something is
true, it will eventually happen that something else will be always true (or will be stable). The
properties can be used to express desired properties that self-stabilizing systems [39] should
satisfy. As known, the term of self-stabilization in distributed systems was first introduced
by Dijkstra [40] and became a very important concept in fault tolerance to design a robust
system because the system is subject to transient errors at any time, such as process crashes.
A system is self-stabilizing with respect to a set of legitimate states if starting from an arbitrary
initial state, the system guarantees to converge to a legitimate state in a finite number of state
transitions and remains in the legitimate states thereafter. A state is legitimate if starting from
this state the system satisfies its desired properties. Designing self-stabilizing systems needs
much more efforts than non-stabilizing ones because transient errors can occur at any time
in a system, which often drives the system into an arbitrary state after each transient error.
Therefore, it is worth dedicating to formal verification of the conditional stable properties in
order to guarantee that self-stabilizing systems can reach a legitimate state from an arbitrary
state after a finite number of state transitions.

Although leads-to properties and conditional stable properties can be expressed in LTL, it is
necessary to individually prove the correctness of each of the two divide & conquer approaches
to leads-to and conditional stable model checking, come up with each algorithm, and develop
each tool supporting each approach. This is because it is not straightforward to uniformly deal
with the two different properties so as to mitigate the state space explosion. Moreover, each
of the two properties can be used to express many systems requirements/properties. Thus, it
is worth focusing on the two approaches to model checking the two classes of properties, the
correctness of the two approaches, their algorithms as well as their support tools. We also
report on some experiments showing that our tools/techniques can mitigate the state space
explosion to some extent.
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1.2 Contributions

In summary, we concentrate on mitigating the state space explosion in model checking with
leads-to and conditional stable properties that many systems should satisfy. The following are
our contributions:

Leads-to Model Checking

• We propose a new technique to mitigate the state space explosion in model checking that
is dedicated to leads-to properties. The technique is called L+ 1-layer divide & conquer
approach to leads-to model checking (L+ 1-DCA2L2MC).

• We prove a theorem that the original leads-to model checking problem is equivalent to the
smaller model checking problems tackled by our technique. An algorithm is constructed
based on the theorem so as to conduct model checking.

• We develop a tool in Maude to support the technique and conduct some experiments
showing that the tool/technique can mitigate the state space explosion to some extent.

• The tool and case studies are publicly available at the webpage.2

Conditional Stable Model Checking

• We propose the L+1-layer divide & conquer approach to conditional stable model check-
ing (L+ 1-DCA2CSMC) that is an extension of L+ 1-DCA2L2MC to handle the condi-
tional stable properties that can be used to formalize desired properties in self-stabilizing
systems.

• We prove a theorem that the original conditional stable model checking problem is equiv-
alent to the smaller model checking problems tackled by our technique. An algorithm is
constructed based on the theorem so as to conduct model checking.

• We develop a tool in Maude to support the technique and conduct some experiments
showing that the tool/technique can mitigate the state space explosion to some extent.
The tool and case studies are publicly available in Footnote 2 as well.

1.3 Thesis Structure

We organize the structure of this thesis into eight chapters. We summarize each chapter as
follows:

2https://github.com/yatiphyo/DCA2MC
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• Chapter 1 introduces model checking and the notorious state space explosion in model
checking. Some techniques to mitigate the problem are mentioned along with our tech-
niques that can mitigate state space explosion to some extent. Lastly, our contributions
and the thesis structure are described.

• Chapter 2 provides some preliminaries needed for this thesis. They are Kripke structure,
Linear temporal logic (LTL), and Maude. A simple mutual exclusion protocol (Qlock) is
used as an example to explain how to formally specify the protocol in Maude and how
to model check the protocol enjoys a desired property. Meta-programming in Maude is
described with the example. The state space explosion problem is presented at the end.

• Chapter 3 investigates some classical techniques as well as other techniques used to
mitigate the state space explosion problem in model checking. We also compare our
techniques with some existing techniques as well.

• Chapter 4 proposes L + 1-DCA2L2MC so as to mitigate the state space explosion in
model checking. This chapter sketches out the technique with an example (TAS) and
proves a theorem that the original leads-to model checking problem is equivalent to the
smaller model checking problems tackled by L+1-DCA2L2MC. This chapter also describes
an algorithm that is constructed from the theorem to conduct model checking with the
technique.

• Chapter 5 proposes L + 1-DCA2CSMC so as to mitigate the state space explosion
in model checking. This chapter sketches out the technique with an example (KM) and
proves a theorem that the original conditional stable model checking problem is equivalent
to the smaller model checking problems tackled by L + 1-DCACSMC. This chapter also
describes an algorithm that is constructed from the theorem to conduct model checking
with the technique.

• Chapter 6 describes how to implement a support tool in Maude for L+ 1-DCA2L2MC.
Some experiments are conducted to demonstrate that the tool/technique can mitigate the
state space explosion to some extent.

• Chapter 7 describes how to implement a support tool in Maude for L+1-DCA2CSMC.
Some experiments are conducted to demonstrate that the tool/technique can mitigate the
state space explosion to some extent.

• Chapter 8 summarizes the main contributions of the thesis and mentions several lines
of our future work.
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Chapter 2

Preliminaries

Some preliminaries needed to read the remaining part of the thesis are written. They are
basically Kripke structures, linear temporal logic, and Maude. Qlock, an abstract version of
Dijkstra binary semaphore, is used as an example to describe how to formally specify sys-
tems/protocol in Maude and how to model check that a system/protocol satisfies a desired
property. Tools are implemented in Maude with its meta-programming facilities. Therefore,
meta-programming in Maude is described, in which Qlock is used as an example. The state
space explosion problem is mentioned by using a model checking experiment with Maude in
which Qlock is also used.

2.1 Kripke Structures

We use the symbol � as “if and only if” or “be defined as.”

Definition 2.1 (Kripke structures) A Kripke structure K � 〈S, I,T ,A,L〉 consists of a
set S of states, a set I ⊆ S of initial states, a left-total binary relation T ⊆ S×S over states,
a set A of atomic propositions and a labeling function L whose type is S → 2A. An element
(s, s′) ∈ T is called a (state) transition from s to s′ and may be written as s →K s′.

S does not need to be finite. The set R of reachable states is inductively defined as follows:
I ⊆ R and if s ∈ R and (s, s′) ∈ T , then s′ ∈ R. We suppose that R is finite. K in s →K s′

may be omitted if it is clear from the context.
An infinite sequence s0, s1, . . . , si, si+1, . . . of states is called a path of K if and only if for

any natural number i, (si, si+1) ∈ T . Let π be s0, s1, . . . , si, si+1, . . . and some path notations
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are defined as follows:

π(i) � si

πi � si, si+1, . . .

πi � s0, s1, . . . , si, si, . . .

π∞ � π

π(i,j) �
{

si, si+1, . . . , sj, sj, . . . if i ≤ j

si, si, . . . otherwise
π(i,∞) � πi

πi
j � π(i,j)

where i and j are any natural numbers. Note that π(0,j) = πj. Note that πi(k) = π(k) if
k = 0, . . . , i and πi(k) = π(i) if k > i. Note that π(i,j)(k) = π(i + k) if i ≤ j & k = 0, . . . ,m,
where j = i+m, π(i,j)(k) = π(j) if i ≤ j & k > j and π(i,j)(k) = π(i) if i > j & k is a natural
number. A path π of K is called a computation of K if and only if π(0) ∈ I.

Let PK be the set of all paths of K. Let P (K,s) be {π | π ∈ PK , π(0) = s}, where s ∈ S.
Let P b

(K,s) be {πb | π ∈ P (K,s)}, where s ∈ S and b is a natural number. Note that P∞
(K,s) is

P (K,s). If R is finite and s ∈ R, then Rb
(K,s) is finite because the bound b is used. Even if R is

finite and s ∈ R, P (K,s) may not be finite. Because there are a finite number of different states
in each path in R(K,s), it is possible to check K, π |= ϕ for all π ∈ P(K,s) in a finite amount of
time.

2.2 Linear Temporal Logic (LTL)

Definition 2.2 (Syntax of LTL) The syntax of linear temporal logic (LTL) is as follows:

ϕ ::= a | 
 | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ

where a ∈ A.

Definition 2.3 (Semantics of LTL) For any Kripke structure K, any path π of K and any
LTL formulas ϕ, K, π |= ϕ is inductively defined as follows:

• K, π |= a if and only if a ∈ L(π(0))

• K, π |= 


• K, π |= ¬ϕ1 if and only if K, π �|= ϕ1

• K, π |= ϕ1 ∨ ϕ2 if and only if K, π |= ϕ1 and/or K, π |= ϕ2

• K, π |= ©ϕ1 if and only if K, π1 |= ϕ1

7



• K, π |= ϕ1 U ϕ2 if and only if there exists a natural number i such that K, πi |= ϕ2 and
for each natural number j < i, K, πj |= ϕ1

where ϕ1 and ϕ2 are LTL formulas. Then, K |= ϕ if and only if K, π |= ϕ for all computations
π of K.

Some other connectives are defined as follows:

• ⊥ � ¬
,

• ϕ1 ∧ ϕ2 � ¬((¬ϕ1) ∨ (¬ϕ2)),

• ϕ1 ⇒ ϕ2 � (¬ϕ1) ∨ ϕ2,

• ϕ1 ⇔ ϕ2 � (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1),

• ♦ϕ1 � 
 U ϕ1,

• �ϕ1 � ¬(♦¬ϕ1), and

• ϕ1 � ϕ2 � �(ϕ1 ⇒ ♦ϕ2).

where ©, U , ♦, � and � are called next, until, eventually, always, and leads-to temporal
connectives, respectively.

The thesis focuses on the LTL formula ϕ1 � ϕ2 such that ϕ1 is an LTL formula in which
no temporal connective is used (called a state proposition) and ϕ2 is an LTL formula that
is in the form �ϕ3 where ϕ3 is a state proposition. The properties expressed as the former
LTL formulas are called leads-to properties, while the properties expressed as the latter LTL
formulas are called conditional stable properties in the thesis. This is because the two classes
of temporal properties are often used to express important properties of systems and how to
treat the two forms of formulas in the proposed technique (a divide & conquer approach to
model checking) is different, implying that how to treat ϕ1 � ϕ2 depends on the forms of ϕ1

and ϕ2. Thus, we define state propositions, which is as follows:

Definition 2.4 (State propositions) State propositions are LTL formulas such that they do
not have any temporal connectives.

Proposition 2.1 Let K be any Kripke structure. If ϕ is any state proposition, then (K, π |=
ϕ) ⇔ (K, π′ |= ϕ) for any paths π & π′ of K such that π(0) = π′(0).

Proof 2.1 The first state π(0) decides if K, π |= ϕ holds. �

Let K, s |= ϕ, where s ∈ S, be K, π |= ϕ for all π ∈ P (K,s). Note that K, s |= ϕ for all s ∈ I

is equivalent to K |= ϕ. Let K, s, b |= ϕ, where s ∈ S and b is a natural number or ∞, be
K, π |= ϕ for all π ∈ P b

(K,s). Note that K, s,∞ |= ϕ is K, s |= ϕ.
Some logical connectives are used as meta-logical connectives for K, π |= ϕ as follows:

8



• (K, π |= ϕ) ∧ (K′, π′ |= ϕ′) � K, π |= ϕ and K′, π′ |= ϕ′

• (K, π |= ϕ) ∨ (K′, π′ |= ϕ′) � K, π |= ϕ or K′, π′ |= ϕ′

• (K, π |= ϕ) ⇒ (K′, π′ |= ϕ′) � if K, π |= ϕ, then K′, π′ |= ϕ′

• (K, π |= ϕ) ⇔ (K′, π′ |= ϕ′) � K, π |= ϕ if and only if K′, π′ |= ϕ′

Leads-to Properties and Conditional Stable Properties

We rephrased the semantics of ϕ1 � ϕ2 and ϕ1 � �ϕ2 as follows so that readers can more
intuitively comprehend it:

• K, π |= ϕ1 � ϕ2 if and only if for each natural number i such that K, πi |= ϕ1, there
exists a natural number j ≥ i such that K, πj |= ϕ2.

• K, π |= ϕ1 � �ϕ2 if and only if for each natural number i such that K, πi |= ϕ1, there
exists a natural number j ≥ i such that K, πj |= �ϕ2.

2.3 Maude

We use Maude [41], a specification/programming language based on rewriting logic, as a spec-
ification language and an LTL model checker. The reason why we use Maude is that Maude
makes it possible to concisely specify complex systems because it is possible to use inductively
defined data structures including associative-commutative binary operators in systems specifi-
cations model checked. It is also possible to use what are called matching equations as part
of the condition of a conditional rewrite rule, which makes it possible to specify complex state
transitions in a reasonably concise way. Its accompanying LTL model checker is reasonably
fast, comparable to Spin in terms of both running time and memory consumption.

2.3.1 Formal Specification and Model Checking

Formal Specification

There are multiple possible ways to specify state transitions. We use rewrite rules specified in
Maude to formalize the state transitions. Besides, we can use Maude LTL model checker to
conduct model checking experiments.

A soup is a collection of elements such that the order of elements is irrelevant, such as
multi-sets. Soups are constructed with a constant that represents the empty soup and a binary
operator that is associative and commutative, where the constant is an identity of the binary
operator. A pair of name and value, such as (pc[p] : cs), is called an observable component.
Observable components are used to characterize states. For example, (pc[p] : cs) means that
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process p is located at cs (critical-section). A state is formalized as a braced soup of observable
components. For example, if a state can be characterized by three observable components
oc1, oc2, oc3 for some specific purpose, a state is formalized as {oc1 oc2 oc3}, where the empty
syntax (or the juxtaposition operator) is used as the binary operator with which soups are
constructed. Transitions can be described in terms of rewrite rules.

In this section, we use a simple mutual exclusion protocol as an example to sketch out the
approach. The protocol is called Qlock, which can also be regarded as an abstract version of
the Dijkstra binary semaphore in which an atomic queue is employed. Qlock for each process
p can be described as:

“Start Section”
ss : enq(queue, p);

ws : while until top(queue) = p;

“Critical Section”
cs : deq(queue);

“Final Section”
fs : . . .

We suppose that each process wants to enter the critical section once and is located at one
of the four labels ss (Start Section), ws (Waiting Section), cs (Critical Section) and fs (Final
Section). Each process p is initially located at ss. We are not interested in what p does in Start
Section and then what p does at ss is to move to ws from ss. We are also not interested in what
p does in Critial Section and then what p does at cs is to move to fs from cs. Furthermore,
we are not interested in what p does in Final Section and then what p does at fs stays there
forever.

queue is an atomic queue of process IDs shared by all processes. enq, top, and deq are the
atomic operators of atomic queues. queue is initially empty. When p would like to come into
cs, it puts its ID into queue and goes to ws. It waits at ws while the top of queue is not p.
Whenever the top of queue is p, p comes into cs. When it exits cs, it gets rid of the top from
queue and goes to fs. We suppose that each process goes to cs at most once.

When n processes taking part in Qlock, each state in SQlock is formalized as:

{(queue: q) (pc[p1]: l1) . . . (pc[pn]: ln) (cnt:x)}

The value of the atomic queue is saved in the value q of the queue observable component. q

is initially an empty queue denoted empq. The place of each process pi is saved in the label li
of the pc[pi] observable component. li is initially ss. The number of processes that have not
reached fs yet is saved in the number x of the cnt observable component. x is initially n.

Let us suppose that two processes p1 and p2 take part in Qlock. The initial state denoted
init is as:
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{(queue: empq) (pc[p1]: ss) (pc[p2]: ss) (cnt: 2)}

IQlock has one state init.
TQlock is described in rewrite rules in what follows:

rl [start] : {(queue: Q) (pc[I]: ss) OCs} => {(queue: (Q | I)) (pc[I]: ws) OCs} .

rl [wait] : {(queue: (I | Q)) (pc[I]: ws) OCs} => {(queue: (I | Q)) (pc[I]: cs) OCs} .

rl [exit] : {(queue: Q) (pc[I]: cs) (cnt: N) OCs}

=> {(queue: deq(Q)) (pc[I]: fs) (cnt: dec(N)) OCs} .

rl [fin] : {(cnt: 0) OCs} => {(cnt: 0) OCs} .

The four rewrite rules are named start, wait, exit, and fin. Q, I, N, and OCs are Maude
variables whose sorts are queues of process IDs, process IDs, natural numbers, and observ-
able component soups, respectively. dec is used to decrease a non-zero natural number by
one, especially if dec takes 0, it returns 0. _|_ is the constructor of non-empty queues of
processes IDs. Given a state formalized as {(queue: p1 | p2) (pc[p1]: ws) (pc[p2]: ws)

(cnt: 2)}, rule wait can be applied to change it as: {(queue: p1 | p2) (pc[p1]: cs) (pc

[p2]: ws) (cnt: 2)}. Fig. 2.1 depicts the reachable state space made from SQlock, IQlock, and
TQlock. The total number of states is 16 in the reachable state space.

Model Checking

Maude is equipped with an LTL model checker so that we can verify that a system satisfies a
desired property by model checking. Let us consider the lockout freedom property for Qlock
that informally states that whenever a process wants to enter its critical section, that process
will eventually enter the critical section.

We consider an atomic proposition denoted inWs1 and inCs1. Therefore, PQlock has inWs1
and inCs1. LQlock is defined as follows:

eq {(pc[p1]: ws) OCs} |= inWs1 = true .

eq {(pc[p1]: cs) OCs} |= inCs1 = true .

eq {OCs} |= PROP = false [owise] .

OCs and PROP are Maude variables of observable component soups and atomic propositions.
The definitions indicate that LQlock(s) consists of inWs1 if a state s has process p1 located at
ws and LQlock(s) consists of inCs1 if a state s has process p1 located at cs otherwise, LQlock(s)

is empty.
We can check the lockout freedom property for Qlock denoted KQlock |= inWs1 � inCs1 by

reducing the following command:

modelCheck(init, inWs1 |-> inCs1)

|-> is the Maude operator that expresses �. Because no counterexample is found, it concludes
that Qlock satisfies the property when two processes are used.
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Figure 2.1: The reachable state space of Qlock

2.3.2 Meta-programming

Maude is a high-level language and a high-performance system [41] that supports both equa-
tional and rewriting logic computation. Rewriting logic is the logic of concurrent change,
therefore a concurrent/distributed system can be specified in Maude. Moreover, rewriting logic
is a reflective logic that can be faithfully interpreted in itself, making it possible to develop
many advanced meta-programming and meta-language applications. We borrow some descrip-
tions on them from [41]. Informally, a reflective logic is a logic in which important aspects of
its metatheory can be represented at the object level in a consistent way so that the object-
level representation correctly simulates the relevant metatheoretical aspect. Rewriting logic is
reflective in a precise mathematical way, namely, there is a finitely presented rewrite theory U
that is universal in the sense that we can represent in U any finitely presented rewrite theory
R (including U itself) as a term R, any terms t, t′ in R as terms t, t′, and any pair (R, t) as
a term 〈R, t〉. Because U is representable in itself, we can achieve a reflective tower with an
arbitrary number of levels of reflection:
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R � t → t′ ⇔ U � 〈R, t〉 → 〈R, t′〉 ⇔ U � 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉 . . .

In this chain of equivalences, we say that the first rewriting computation takes place at level
0, the second at level 1, and so on. In Maude, key functionality of the universal theory U has
been efficiently implemented in the functional module META−LEVEL. This module includes the
modules META−VIEW, META−MODULE, META−STRATEGY, and META−TERM. As an overview,

• in the module META−TERM, Maude terms are meta-represented as elements of a data type
Term of terms.

• in the module META−STRATEGY, the Maude strategy language is meta-represented as terms
in a data type Strategy of strategy expressions.

• in the module META−MODULE, Maude modules are meta-represented as terms in a data
type Module of modules.

• in the module META−LEVEL,

– operations upModule, upTerm, downTerm and others allow moving between reflection
levels;

– the process of reducing a term to canonical form using Maude’s reduce command
is meta-represented by a built-in function metaReduce;

– the processes of rewriting a term in a system module using Maude’s rewrite and
frewrite commands are meta-represented by built-in functions metaRewrite and
metaFrewrite;

– the process of applying (without extension) a rule of a system module at the top of
a term is meta-represented by a built-in function metaApply;

– the process of applying (with extension) a rule of a system module at any position
of a term is meta-represented by a built-in function metaXapply;

– the process of matching (without extension) two terms at the top is reified by a
built-in function metaMatch;

– the process of matching (with extension) a pattern to any subterm of a term is reified
by a built-in function metaXmatch;

– the process of searching for a term satisfying some conditions starting in an initial
term is reified by built-in functions metaSearch and metaSearchPath;

– the processes of rewriting a term using Maude’s srewrite and dsrewrite commands
are meta-represented by built-in functions metaSrewrite and metaDsrewrite; and

– parsing and pretty-printing of a term in a module, as well as key sort operations such
as comparing sorts in the subsort ordering of a signature, are also meta-represented
by corresponding built-in functions.
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Meta-programing is a programming technique in which programs have the ability to treat
other programs as their data. A meta-program is a program that takes programs as inputs
and performs some useful computations, such as it may transform one program into another,
or it may analyze a program with respect to some properties. Hence, it is very useful and
very powerful. In Maude, meta-programming has a logical reflective semantic. A term can
be represented at the object-level or meta-level. The object-level representation can correctly
simulate the relevant meta-level representation and vice versa. We can write Maude meta-
programs by simply importing META−LEVEL module in our programs in which we can use the
built-in functions supported, such as metaReduce and metaSearch.

In the module META-TERM, terms are meta-represented as elements of data type Term of
terms. For the base cases, constants and variables in the meta-representation of terms are
given by subsorts Constant and Variable of the sort Qid.

sorts Constant Variable Term .

subsorts Constant Variable < Qid Term .

op <Qids> : -> Constant [special (...)] .

op <Qids> : -> Variable [special (...)] .

where some attributed are omitted where ... is written. Constants are quoted identifiers
consisting of the constant’s name and its type separated by a period (e.g. ’0.Nat). Likewise,
Variables consist of their name and type separated by a colon (e.g. ’N:Nat).

A term different from a constant or a variable is meta-represented by using the following
symbols:

sorts NeTermList TermList .

subsorts Term < NeTermList < TermList .

op _,_ : TermList TermList -> TermList

[ctor assoc id: empty gather (e E) prec 121] .

op _,_ : NeTermList TermList -> NeTermList [ctor ditto] .

op _,_ : TermList NeTermList -> NeTermList [ctor ditto] .

op _[_] : Qid NeTermList -> Term [ctor] .

where _,_ is the constructor of non-empty term lists whose sort is TermList, _[_] is the
constructor of terms. A term list may contain only a term or a non-empty term list. Given a
term at object-level, the function upTerm can change it to a meta-representation at meta-level.
For example, the initial state init used in Qlock can be meta-represented at meta-level by
calling the function upTerm and the result is as follows (denoted init’):

’‘{_‘}[’__[’queue:_[’empq.Queue‘{Pid‘}],’cnt:_[’s_^2[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’ss.Loc],’pc‘[_‘]:_[’p2.Pid,’ss.Loc]]]
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where ‘{_‘}, ’__ are quoted identifiers for the braces and the soup of observable compo-
nents. ’queue:_, ’cnt:_, and pc‘[_]‘ are quoted identifiers for observable components.
’empq.Queue‘{Pid‘}, ’s_^2[’0.Zero], ’p1.Pid, ’ss.Loc, ’p2.Pid, and ’ss.Loc are con-
stants specifying the values of observable components. Similarly, the meta-representation of
the formula inWs1 |-> inCs1 expressing the lockout freedom property is as follows:

’|->[’inWs1.Prop,’inCs1.Prop]

Let lofree denote the whole term and e-prop denote the term ’inCs1.Prop.
In the module META-MODULE, a module is meta-represented as a term whose type is Module.

We assume that the formal specification of Qlock contains one module QLOCK-CHECK in which
Qlock and the lockout freedom property are described. We can obtain the meta-representation
of the module by using the following function:

upModule(’QLOCK-CHECK, true) .

where ’QLOCK-CHECK is a quoted identifier of the module QLOCK-CHECK so that Maude can find
the module in its module database, true indicates that the meta-representation of the module
includes the corresponding statements that are imported from its submodules. The result of
the function is as follows:

mod ’QLOCK-CHECK is

...

rl ’‘{_‘}[’__[’OCs:Soup‘{OComp‘},’cnt:_[’0.Zero]]] =>

’‘{_‘}[’__[’OCs:Soup‘{OComp‘},’cnt:_[’0.Zero]]] [label(’fin)] .

rl ’‘{_‘}[’__[’OCs:Soup‘{OComp‘},’cnt:_[’N:Nat],’pc‘[_‘]:_[’I:Pid,’cs.Loc]]]

=> ’‘{_‘}[’__[’cnt:_[’dec[’N:Nat]],’__[’OCs:Soup‘{OComp‘},

’pc‘[_‘]:_[’I:Pid,’ws.Loc]]]] [label(’flaw)] .

rl ’‘{_‘}[’__[’OCs:Soup‘{OComp‘},’queue:_[’Q:Queue‘{Pid‘}],

’pc‘[_‘]:_[’I:Pid,’ss.Loc]]]

=> ’‘{_‘}[’__[’queue:_[’_|_[’Q:Queue‘{Pid‘},’I:Pid]],’__[’OCs:Soup‘{OComp‘},

’pc‘[_‘]:_[’I:Pid,’ws.Loc]]]] [label(’start)] .

rl ’‘{_‘}[’__[’OCs:Soup‘{OComp‘},’queue:_[’_|_[’I:Pid,’Q:Queue‘{Pid‘}]],

’pc‘[_‘]:_[’I:Pid,’ws.Loc]]]

=> ’‘{_‘}[’__[’queue:_[’_|_[’I:Pid,’Q:Queue‘{Pid‘}]],’__[’OCs:Soup‘{OComp‘},

’pc‘[_‘]:_[’I:Pid,’cs.Loc]]]] [label(’wait)] .

endm

where ... denotes some parts omitted. The rewrite rules used in Qlock are meta-represented
as terms at meta-level. Let M’ denote the meta-representation of the module QLOCK-CHECK.
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All Counterexample State Generation in Meta-programming

As a concrete example, we describe a meta-program in Maude that finds all counterexamples
for a Kripke structure K and a property ϕ. Some constraints are given to K and ϕ. Each
computation π of K is in the form s0, ..., si−1, si, si, ..., namely that it is composed of a finite
state sequence s0, ..., si−1 and a singleton loop si, si, ... in which a single state si repeats forever.
ϕ is either a leads-to property ϕ1 � ϕ2 or a conditional stable property ϕ1 � �ϕ2, where ϕ1

and ϕ2 are state propositions. If K, π �|= ϕ, then si is called a counterexample state in this
thesis. It is necessary to prevent π from being found as a counterexample again so as to find
all counterexamples. To this end, we add the following equation:

eq si |= ϕ2 = true .
Let K ′ be the Kripke structure obtained from K by adding the equation. Note that the labeling
function of K ′ is different from the one of K. If so, ϕ is satisfied by K ′ and π, namely K ′,
π |= ϕ. Then, if there is any other counterexample s′0, ..., s

′
j−1, s

′
j, s

′
j, ... such that s′j is different

from si, then it can be found, and if there is no more counterexample, no counterexample is
found.

We intend to insert the following rule (a flaw) into the formal specification of Qlock so that
the lockout freedom property does not hold and some counterexamples are discovered:

rl [flaw] : {(queue: (I | Q)) (pc[I]: ws) (cnt: N) OCs}

=> {(queue: Q) (pc[I]: flaw) (cnt: dec(N)) OCs} .

A new location, namely flaw, is introduced to which a process can move. The rule named flaw
means that when the top of queue is I whose location is ws, process I moves to flaw instead
of cs; I is removed from queue; and N is decremented. Not that a process reached flaw is
supposed to stay there forever.

We can see that KQlock does not contain any lasso loops in its specification and any path π

of KQlock contains a self-transition at the end where all processes are located at either fs or flaw.
In order to generate all counterexample states for QLOCK with the lockout freedom property at
meta-level, we first model check whether KQlock |= inWs1 � inCs1 by the following command:

metaReduce(M’, ’modelCheck[init’, lofree])

The function metaReduce takes two parameters: (1) the meta-representation of a module and
(2) a meta-representation of a term to be reduced with respect to (1). ’modelCheck[_,_] is the
term expressing for the model checking experiment that we want to conduct under M’, where
underscores denote the positions of the meta-representation init’ of the initial state and the
meta-representation F of the formula. The function metaReduce conducts the model checking
experiment and returns a term representing a counterexample as follows:

{’counterexample[’__[
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’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’empq.Queue‘{Pid‘}],’cnt:_[’s_^2[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’ss.Loc],’pc‘[_‘]:_[’p2.Pid,’ss.Loc]]],’’start.Sort],

’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’p1.Pid],’cnt:_[’s_^2[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’ws.Loc],’pc‘[_‘]:_[’p2.Pid,’ss.Loc]]],’’start.Sort],

’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’_|_[’p1.Pid,’p2.Pid]],’cnt:_[’s_^2[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’ws.Loc],’pc‘[_‘]:_[’p2.Pid,’ws.Loc]]],’’flaw.Sort],

’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’p2.Pid],’cnt:_[’s_[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’flaw.Loc],’pc‘[_‘]:_[’p2.Pid,’ws.Loc]]],’’wait.Sort],

’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’p2.Pid],’cnt:_[’s_[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’flaw.Loc],’pc‘[_‘]:_[’p2.Pid,’cs.Loc]]],’’exit.Sort]

],

’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’empq.Queue‘{Pid‘}],’cnt:_[’0.Zero],

’pc‘[_‘]:_[’p1.Pid,’flaw.Loc],’pc‘[_‘]:_[’p2.Pid,’fs.Loc]]],’’fin.Sort]

], ’ModelCheckResult}

The counterexample consists of one term representing a finite state sequence that starts with
the initial state and the other one representing a finite state sequence as a loop. The loop
consists of only one state because there is a self-transition that is taken infinitely many times.
The state is called a counterexample state and extracted from the counterexample as follows:

’‘{_‘}[’__[’queue:_[’empq.Queue‘{Pid‘}],’cnt:_[’0.Zero],

’pc‘[_‘]:_[’p1.Pid,’flaw.Loc],’pc‘[_‘]:_[’p2.Pid,’fs.Loc]]]

Let cx1 denote the first counterexample state. There may be more counterexample states. In
order to collect the next one, we need to construct the following term whose sort is Equation:

eq ’_|=_[cx1, e-prop] = ’true.Bool [none] .

and add it to M’ so as to ignore cx1. We conduct the model checking again and obtain the
following counterexample:

{’counterexample[’__[

’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’empq.Queue‘{Pid‘}],’cnt:_[’s_^2[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’ss.Loc],’pc‘[_‘]:_[’p2.Pid,’ss.Loc]]],’’start.Sort],

’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’p1.Pid],’cnt:_[’s_^2[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’ws.Loc],’pc‘[_‘]:_[’p2.Pid,’ss.Loc]]],’’start.Sort],

’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’_|_[’p1.Pid,’p2.Pid]],’cnt:_[’s_^2[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’ws.Loc],’pc‘[_‘]:_[’p2.Pid,’ws.Loc]]],’’flaw.Sort],

’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’p2.Pid],’cnt:_[’s_[’0.Zero]],

’pc‘[_‘]:_[’p1.Pid,’flaw.Loc],’pc‘[_‘]:_[’p2.Pid,’ws.Loc]]],’’flaw.Sort]

],
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’‘{_‘,_‘}[’‘{_‘}[’__[’queue:_[’empq.Queue‘{Pid‘}],’cnt:_[’0.Zero],

’pc‘[_‘]:_[’p1.Pid,’flaw.Loc],’pc‘[_‘]:_[’p2.Pid,’flaw.Loc]]],’’fin.Sort]

],’ModelCheckResult}

Similarly, we extract the second counterexample state denoted cx2 from the counterexample
as follows:

’‘{_‘}[’__[’queue:_[’empq.Queue‘{Pid‘}],’cnt:_[’0.Zero],

’pc‘[_‘]:_[’p1.Pid,’flaw.Loc],’pc‘[_‘]:_[’p2.Pid,’flaw.Loc]]]

We then construct a term whose sort is Equation, add it to M’, and keep on conducting the
model checking experiment again. However, the function metaReduce returns as follows:

{’true.Bool,’Bool}

It means that there are no more counterexamples found. In summary, we can collect two
counterexample states cx1 and cx2 by using meta-programming facilities in Maude. Note that
all counterexample states are meta-represented as terms at meta-level.

What we described above can be automated by the following function in meta-programming:

ceq gen-cx-states(M, T, F, P)

= if (CX :: Constant)

then empty-term-set

else get-cx-state(CX) |

gen-cx-states(add-eqs(build-eqs(get-cx-state(CX), P), M), T, F, P)

fi

if CX := get-counter-example(M, ’modelCheck[T, F]) .

where M is a Maude variable whose sort is Module and CX, T, F, and P are Maude variables
whose sorts are Term. The function returns a set of terms, whose sort is TermSet, presenting all
counterexample states. We use the function get-counter-example to obtain a counterexample
CX by carrying out the model checking experiment ’modelCheck[T, F]. If CX is a constant,
there is no more counterexample state; otherwise, we obtain the state in the loop of CX as a
counterexample state by calling function get-cx-state, construct an equation and add it to the
formal specification M to ignore CX by calling functions build-eqs and add-eqs, respectively,
and continue calling function gen-cx-states to collect the next one. For Qlock example,
the function gen-cx-states takes M’, init’, lofree, and e-prop as parameters to automate
generating all counterexample states.
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2.4 State Space Explosion

The number of states in the reachable state space of a system can be enormous. For example, a
system has n processes and each process has m states. Then, the combination of these processes
may produce mn states, meaning that the number of states is exponential in the number of
processes. In model checking, we call this problem the state space explosion. All model checkers
suffers from this problem because they need to explore the entire (reachable) state space to
verify that a system satisfies its desired properties.

For Qlock, when two processes are used, the Maude LTL model checker can quickly complete
the model checking experiment and concludes that Qlock satisfies the lockout freedom property.
However, if we increase the number of processes participating in Qlock, the number of states
in the reachable state space grows dramatically. For example, when we increase the number
of processes participating in Qlock to 9 processes and conduct the model checking experiment
with 2GB memory restricted, the Maude LTL model checker could not complete the model
checking experiment and ran out of memory because of the state space explosion problem. In
other words, 2GB of memory was not enough for the model checking experiment. We could
solve the problem for Qlock by using the L + 1 divide & conquer approach to leads-to model
checking that is described in Chapters 4 and 6.
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Chapter 3

Related Work

The state space explosion is one of the most notorious problems in model checking. Many re-
searchers have tackled the problem and come up with several techniques to mitigate it. In this
chapter, we mention some classical techniques, such as partial order reduction, binary decision
diagrams (BDDs), and symmetry reduction. Moreover, we describe some other techniques,
such as bounded model checking based on satisfiability solvers or satisfiability modulo theory
solvers (SAT/SMT-based BMC) and its extensions, abstraction and abstraction refinement,
and non-exhaustive model checking. We also compare some existing techniques with our di-
vide & conquer approach to model checking (L+ 1-DCA2MC) leads-to and conditional stable
properties.

3.1 Some Classical Techniques

Binary decision diagrams (BDDs) are a data structure for representing Boolean formulas in a
canonical and symbolic way. Many efficient algorithms as well as libraries have been developed
to support manipulating Boolean operators with BDDs (e.g. AND, OR, and XOR operations).
A binary decision diagram represents a Boolean formula as a rooted acyclic graph in which
each node except for leaves represents a variable and has two branches denoting 0 (true) and
1 (false) assigned to the variable, respectively. There are two kinds of leaves with labels 0
and 1, respectively. A path from the root node to a leaf represents an evaluation of the
Boolean formula in which the values of variables are their branches selected in the path and the
evaluation is the label in the leaf. Note that the graph can be reduced into a compact graph
and the order of variables affects the size of the graph [42]. In model checking, BDDs are one
approach to encoding sets of states and the state transition relation from which a compressed
representation of a state transition graph is constructed. Model checking that uses BDDs may
be called symbolic model checking. By using an original model checking algorithm with the
new representation of a state transition graph, it is possible to handle a system with more than
1020 states [6].
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Symmetric reduction [8] is a technique to reduce the state space of finite state systems by
identifying sub-state spaces that have replicated structures from which redundant structures are
removed because of their symmetry. For example, the state space of Qlock with two processes
depicted in Fig. 2.1 contains two replicated structures derived from the initial state because at
the beginning each process has an equal chance to move from ss to ws. Hence, it is enough
to investigate one structure because of its symmetry. A finite state system is formalized as
a Kripke Structure denoted K = (S, I, T, A, L). Let G be a group of permutations in which
each permutation is a bijective mapping on S. For example, a permutation σ on a set of states
{s0, s1, s2} is defined as σ(s0) = s2, σ(s2) = s3, and σ(s3) = s1. A permutation σ ∈ G is called
a symmetry of K if and only if ∀s1, s2 ∈ S, (s1, s2) ∈ T ⇒ (σ(s1), σ(s2)) ∈ T . G is a symmetric

group if and only if every permutation σ is a symmetry of K. Let θ(s) be the orbit of s denoting
a set of states by applying each of the permutations in G on s. For each orbit θ(s), we select
only one state from θ(s) denoted rep(θ(s)) as a representative of θ(s). If G is a symmetric group
on K, a quotient model KG = (SG, IG, TG, A, LG) is constructed, where SG is the set of orbits of
the states in S, IG is the set of orbits of the initial states in I, TG is the state transition relation
such that (θ(s1), θ(s2)) ∈ TG if and only if there exists s3 ∈ θ(s1) and s4 ∈ θ(s1) and (s3, s4) ∈ T ,
LG is the labeling function such that LG(θ(s)) = L(rep(θ(s)). G is an invariant group of K
for an atomic proposition p if and only if ∀σ ∈ G, ∀s ∈ S, p ∈ L(s) ⇔ p ∈ (L(σ(s))). They
have proved that if a formula f is expressed in the temporal logic CTL* and G is an invariant
group for all atomic propositions in f , then f holds in K if and only if f holds in KG. Because
the quotient model KG selects only one element from each orbit, then the state space of KG is
smaller than that of K, by which the state space explosion is mitigated. Symmetric reduction
can work well on systems that have replicated structures while L + 1-DCA2MC can work
well on systems that have less symmetric structures. Hence, our technique can be used as a
complementary technique to reduce the state space explosion further after symmetric reduction
has been applied.

A sequential system can be modeled as a sequence of states such that the pair (s, s′) of each
adjacent states is a transition. An asynchronous concurrent system consists of multiple active
entities, such as processes, threads and tasks. A concurrent system can be basically modeled
as the set of all interleavings of such sequences generated by the active entities in the system.
The set may be represented as a graph constructed from a Kripke structure formalizing the
system. The set could be huge and so could the graph. A Kripke structure is written in a
language, such as a formal specification language. We suppose that transitions are classified
into a finite number of classes such that each class is given a name, such as α. Such a name,
such as α, is referred to as a transition function. Given a state s, let α(s) be the successor state
of s with respect to α. In general, however, α has a condition called an enabled condition. If
the enabled condition of α holds in s, then (s, α(s)) is a transition. For a state s, let enabled(s)
be the set of all transition functions whose enabled conditions hold in s. If we could use
another set of transitions that is smaller than enabled(s) or a proper subset of enabled(s) so
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as to model check properties in interest, we would reduce the graph constructed from a Kripke
structure, which may alleviate the state space explosion problem. One such set is an ample set
denoted ample(s) for a state s [9]. It is necessary to define two concepts of transition functions
(dependency and invisibility) in order to find out ample(s). Independency of two transition
functions α, β is as follows: the execution of α (or β) never disables β (or α) and α and β are
commutative, namely that α(β(s)) = β(α(s)) for a state s in which both α and β are enabled.
If α and β are not independent, they are dependent. Let L and A be the labeling function
and the set of atomic propositions of a Kripke structure in interest. A transition function α is
invisible with respect to a subset A′ of A if and only if for each pair s, s′ of states such that
s′ = α(s), L(s) ∩ A′ = L(s′) ∩ A′. There are four conditions so as to find out ample(s). C0:
ample(s) = ∅ if and only if enabled(s) = ∅ for each state s. C1: along each path in the original
graph (constructed by using enabled(s)) that starts at s, a transition that is dependent on a
transition function in ample(s) cannot be executed without one in ample(s) being executed
first. C2: each transition function in ample(s) for each s is invisible. C3: a cycle is prohibited if
it has a state in which there exists a transition that is enabled but not included in ample(s) for
any state s on the cycle. The original graph constructed by using enabled(s) and the reduced
graph constructed by using amble(s) are stuttering equivalence. Properties written in LTL
from which the next temporal connective is deleted are preserved between the original graph
and the reduced graph.

3.2 SAT/SMT-based Bounded Model Checking and its Ex-

tensions

One effective technique to ease the problem and is related to L+1-DCA2MC is bounded model
checking (BMC) [28] based on solvers of satisfiability (SAT) or satisfiability modulo theories
(SMT), or SAT/SMT-based BMC. SAT/SMT-based BMC converts a BMC problem into a
SAT/SMT problem and tackles the former problem by solving the latter one with a SAT/SMT
solver, where a BMC problem is to model check a property for a bounded reachable state space
up to a finite depth from each initial state. L+1-DCA2MC generates multiple sub-state spaces
from the reachable state space from each initial state, where sub-state spaces obtained from
non-final layers are bounded state spaces, although each state placed at the bottom of the sub-
state spaces has a self-transition. Therefore, L + 1-DCA2MC can be considered an extension
of SAT/SMT-based BMC, but never uses any SAT/SMT solvers.

Another extension of SAT/SMT-based BMC is k-induction [29, 30]. k-induction first carries
out BMC for the bounded state space from each initial state up to a finite depth k, which
corresponds to the base case of the standard induction. It then supposes that a property under
verification is satisfied for each state sequence from an arbitrary state s such that its depth is
k or it consists of k + 1 states, which corresponds to the induction hypothesis of the standard
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induction. It finally checks if the property remains true in any successor states of the state
sequence, where the successor states are placed at depth k + 1 from s, which corresponds to
the induction case (or step) of the standard induction. Properties that can be handled by
k-induction are invariant properties. L+1-DCA2MC does not use any inductions but uses case
splittings that can be regarded as a specific instance of induction. L+1-DCA2MC exhaustively
splits the reachable state space from each initial state into multiple sub-state spaces.

Yet another extension of SAT-based BMC is model checking with Craig interpolants [31].
The formula tackled by SAT-BMC with depth k is divided into two sub-formulas A and B,
where A expresses each initial state and one-step transition from each initial state and B

expresses the other one-step transitions up to depth k and what is related to a property under
model checking. If A ∧ B is unsatisfiable, there exists an interpolant P such that P ∧ B is
unsatisfiable and each variable in P is included in A and B. Such P is constructed by SAT-
BMC. A∧P over-approximates the set of states that are reachable from each initial state up to
one transition. A is replaced with A ∧ P , and then it is checked that A ∧B is unsatisfiable. If
so, A∧P , where P is the next interpolant obtained, over-approximates the set of states that are
reachable from each initial state up to two transitions. This process is repeated at most k − 1

times until A∧B becomes satisfiable or A∧P is equivalent to A. If A∧B becomes satisfiable
meanwhile, it means that a counterexample is found. If A∧ P is equivalent to A, the property
is satisfied. Otherwise, k is increased and then the whole process is repeated. Model checking
with Craig interpolants is unbounded model checking in that unboundedly many transitions
are taken into account instead of boundedly many transitions, and so is L+ 1-DCA2MC.

Another extension of SAT/SMT-based BMC to model check concurrent programs is Lazy
Sequentialization (Lazy-CSeq) [32, 33]. Given a concurrent program P together with two
parameters u and r that are the loop unwinding bound and the number of round-robin schedules,
respectively, they first generate an intermediate bounded program Pu by unwinding all loops
and inlining all function calls in P with u as a bound except for those used for creating threads.
Pu then is transformed into a sequential program Qu,r that simulates all behaviors of Pu within
r round-robin schedules. Qu,r is then transformed into a propositional formula that can be
analyzed by a SAT/SMT solver. Lazy-CSeq seems to check safety properties only, while L+1-
DCA2MC focuses on liveness properties.

3.3 Abstraction and Abstraction Refinement

Abstraction [20] is one of the most widely used in practice to mitigate the state space explosion.
It starts from a concrete model M and produces an abstract model M̂ in which only certain
information is retained while the other information in M is abstracted away. The state space
of M̂ is usually smaller than that of M , making it easier to model check desired properties on
M̂ . However, it is non-trivial to construct directly M̂ from M , which often requires a series
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of refinement steps. For example, when an invariant property holds in M̂ , we can conclude
that it also holds in M . However, if the invariant property does not hold in M̂ , we cannot
conclude anything yet because the counterexample may come from M̂ but not M . In that case,
abstraction refinement is required to eliminate the counterexample from M̂ . One approach to
the construction is counterexample-guided abstraction refinement (CEGAR) [21]. For a system
model whose (reachable) state space is enormous, CEGAR starts with one abstract model whose
(reachable) state space is reasonably small such that it can be tractable by a model checker.
If a counterexample is found, CEGAR checks if the counterexample is real. If no, CEGAR
refines the abstract model based on the counterexample and repeats the experiment for the
refined model until a real counterexample is found or no counterexample is found for some
refined model (including the initial abstract model). It may be the case that the (reachable)
state space of some refined model becomes enormous and then it will be infeasible to do model
checking for the model.

It has been demonstrated that BMC is a useful technique to detect errors lurking in concur-
rent programs, such as multi-threaded ones because most errors reside in small loop unwinding
depths. Although BMC is a technique to alleviate the state space explosion problem in model
checking, a huge formula that is supposed to be tackled by a SAT/SMT solver is derived from a
concurrent program in which function calls (except for those creating threads) are inlined and
loops are boundedly unwound. This is mainly because of the scheduling constraint caused by
the complex inter-thread communication. Let the original program refer to a multi-threaded
program in which non-thread creating function calls are inlined and loops are boundedly un-
wound. The scheduling constraint is that for any pair < w, r > of operations such that r reads
the value stored in a variable v that has been written by w, any other write operations to the
variable v should not be carried out between w and r. Such a formula should be made smaller so
as to make BMC more practical. To address the challenge, Yin, et al. propose a scheduling con-
straint based abstraction refinement (SCAR) [22, 23]. SCAR initially neglects the scheduling
constraint and gets an over-approximation abstraction of the original program. If the property
being interested holds for the abstraction, so does for the original program. Otherwise, SCAR
confirms that a counterexample found is real. If not, it refines the abstraction by taking the
scheduling constraint into account to some extent, obtaining a refined version of the abstraction
that is another over-approximation abstraction of the original program. This process repeats
until the property holds for an abstraction or a real counterexample is found. To make both
the number of the process iterations and the size of each refinement added moderately small,
Yin, et al. came up with two graph-based algorithms over event order graph, where events
are read and write events, so as to efficiently confirm that a counterexample is real and ob-
tain a reasonably small refinement in each refinement iteration. They conducted experiments,
demonstrating their tool outperforms Lazy-CSeq-Abs [24], a leading tool for model checking
concurrent programs in the concurrency track of SV-COMP 2017.

Meseguer, Palomino and Martí-Oliet [25] came up with equational abstraction that is an
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abstraction technique that can be used for model checking problems based on rewrite-theory
formal systems specifications. In rewrite-theory formal systems specification, rewrite rules
are used to describe state transitions and equations are used to define functions over data
structures. Equations can also be used to make two different data values, such as two different
states, equal, being able to make an infinite or huge number of different reachable states in a
rewrite-theory formal systems specification a reasonably small finite number. This is a basic
idea of equational abstraction. It is necessary to prove that whenever a property in interest holds
for the abstraction obtained from a rewrite-theory formal systems specification by equational
abstraction, the property also holds for the original rewrite-theory formal systems specification.
Therefore, equational abstraction is regarded as an integration of theorem proving and model
checking.

A logical model checking [26] based on rewrite-theory formal systems specification has been
proposed by Bae, Escobar and Meseguer. In the logical model checking, equational abstraction
can/should be used. States that can be handled by the standard model checking should be
very concrete and should not contain any logical variables. The logical model checking makes
it possible for state expressions or terms to have logical variables. State terms that have logical
variables denote an infinite number of states. The logical model checking uses narrowing that
denotes state transitions instead of reduction of rewriting. One-step rewriting from a concrete
state term to another concrete state term represents one-step concrete state transition, while
one-step narrowing from a state term in which variables are used to another state term in
which variables are used represents a possibly infinite multiple one-step state transitions. In
this sense, the logical model checking may make it possible to tackle rewrite-theory formal
systems specifications that may have an infinite number of reachable states. To make such
model checking practically usable, equational abstraction may have to be first used before the
utilization of the logical model checking.

Predicate abstraction is one of the most widely used abstraction techniques because of its
simplicity. Let S be a system and AP be a set of state predicates of S. The abstract system
S/AP of S is defined as follows: (1) the set of the abstract system states (called abstract states)
is 2AP , the power set of AP , and (2) there exists a transition (called an abstract transition)
s → s′ of A/AP , where s, s′ ∈ 2AP , if and only if there exists a concrete transition t → t′

of S such that t satisfies all state predicates in s and t′ satisfies all state predicates in s′. It
is non-trivial to make sure that (2) holds. Bae and Meseguer [27] have proposed a technique
to automatically build a predicate abstraction of S when S is formalized as a rewrite-theory
formal systems specification and AP is a set of state propositions defined in terms of equations.
For each concrete transition t → t′ of S, there exists a rewrite rule l → r if C and a substitution
σ such that t =E σ(l), t′ =E σ(r), and σ(u) =E σ(v) for all conjunctions u = v of C, where =E

is equality modulo theory E (called E-equality), such as associativity and/or commutativity.
The three E-equality conditions may be checked by E-unification, unification modulo theory
E. s is {p ∈ AP | (t |= p) =E true}, the set of state predicates satisfied by t, and s′ is
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{p ∈ AP | (t′ |= p) =E true}, the set of state predicates satisfied by t′. Then, s → s′ is
an abstract transition of S/AP . This is how S/AP may be automatically obtained from S
and AP . There may be a case such that the three E-equality conditions cannot be checked
by E-unification. If that is the case, an over-approximation α(S/AP ) is obtained by adding
s → s′ to S/AP . Bae and Meseguer have proposed some procedures to confirm that if an LTL
property ϕ holds for α(S/AP ), so does for S/AP .

3.4 Non-exhaustive Model Checking

SPIN [34] is one popular model checker used for verifying a variety of systems. Many techniques
have been devised to deal with the state space explosion in SPIN, such as bit-state hashing
and swarm verification. To tackle a large system that cannot be handled by an exhaustive
verification mode, SPIN has a bit-state hashing verification mode [35] that may not exhaustively
search the entire reachable state space of a large system but can achieve a higher coverage of
large state spaces by using a few bits of memory per state stored. The idea of bit-state hashing
derives from the standard hashing technique with linked lists used. Let us assume that there
are R reachable states in a system under verification, S bytes are used to store a state, and M

bytes of memory available are allowed to use. Regarding the standard hashing with linked lists,
there are H slots in a hash table and each slot refers to a linked list where states can be stored
as a chain. If R is much greater than H denoted R � H, then each slot will refer to a linked
list that may contain R/H states on average. The total memory needed is at least R × S. If
R is very large and M is insufficient, it is impossible to conduct a model checking experiment.
Regarding bit-state hashing, if R � H, each slot will refer to at most one state, so it is enough
to use only one bit to record the existence of the state. From this observation, SPIN uses a
large bit-state array to avoid state duplication. Initially, all values in the array are zero. Each
state will be hashed by one or more hash functions depending on the number of hash functions
selected from users and each hash value is associated with an index in the array. Let k be the
number of hash functions. The state collision happens when k bit-positions in the bit-state
array are one. The use of multiple hash functions is likely to avoid the hash collision. However,
the state collision is still inevitable and in that case SPIN just ignores them. When using
bit-state hashing, the order of states visited also affects the order of states stored in the bit-
state array. Therefore, there are three essential parameters that impact the bit-state hashing:
the size of the bit-state array, the number of hashing functions, and the search strategy. The
advantage of the technique is that even with a small amount of memory it can achieve a higher
coverage of large state spaces. However, the larger a system under verification becomes the
higher chances the SPIN bit-state verification mode may overlook flaws lurking in the system.

Conducting bit-state verification, we can start with a small bit-state array size to try to find
out a counterexample. If there is no counterexample, we can increase the bit-state array size
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and conduct the verification again until the number of states that are explored stops increasing,
meaning that all states are explored, or a counterexample is found. If we find a counterexample
in the last run, the iterative process is very time-consuming compared with running the final
run only. To overcome this situation, Swarm Verification [36] has been proposed. The key
ideas of Swam Verification are parallelism and search diversity. For each of multiple different
search strategies in which different seeds are used for search randomization, one instance of
bit-state verification is conducted in which different hash-polynomials and numbers of hash
functions are also used for diversification options. Each instance is supposed to use a small
bit-state array size so that its verification can be completed in a reasonable amount of time.
These instances are totally independent and can be conducted in parallel. Different search
strategies with diversification options traverse different portions of the entire reachable state
space, making it more likely to achieve higher coverage of the entire reachable state space and
quickly find flaws lurking in a large system if any. L + 1-DCA2MC splits the reachable state
space from each initial state into multiple layers, generating multiple sub-state spaces. It then
exhaustively searches each sub-state space with the Maude LTL model checker instead of using
the idea of bit-state hashing used in each instance of Swarm Verification. However, it may be
worth adopting the Swarm Verification idea into our technique such that Swarm Verification is
conducted for each sub-state space instead of an exhaustive search, which may make it possible
to quickly find a flaw lurking in a large system. L+ 1-DCA2MC can be naturally parallelized
because multiple model checking experiments for multiple sub-state spaces in the final layer
are totally independent. However, parallelization of L+ 1-DCA2MC is out of the scope of this
thesis.
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Chapter 4

A Divide & Conquer Approach to
Leads-to Model Checking

This chapter proposes a new technique to mitigate the state explosion in model checking. The
technique is called a divide & conquer approach to leads-to model checking (L+1-DCA2L2MC).
As indicated by the name, the technique is dedicated to leads-to properties. It is known that
many important systems requirements can be expressed as leads-to properties and then it
is worth focusing on leads-to properties. The technique divides an original leads-to model
checking problem into multiple smaller model checking problems and tackles each smaller one.
We prove a theorem that the multiple smaller model checking problems are equivalent to the
original leads-to model checking problem. An algorithm is constructed based on the theorem
to support model checking leads-to properties by our technique.

4.1 Outline of the Technique

L+1-DCA2L2MC splits each infinite state sequence s10, . . . , s1n1
, . . . , si0, . . . , s

i
ni
, . . . , sm0 , . . . (gen-

erated from a Kripke structure) into multiple (say m) sub-sequences, for each si0, . . . , s
i
ni

(for
i = 1, . . . ,m − 1) of all the sub-sequences except for the final one we add the final state sini

infinitely many times to the end, generating the infinite sequence si0, . . . , s
i
ni
, sini

, . . . and con-
duct a model checking experiment for each infinite sequence. Note that the number of different
states in the original infinite state sequence (and also each sub-sequence including the final
one) is bounded if there is a bounded number of reachable states. If the number of different
states in each sub-sequence is much smaller than the one in the original infinite state sequence,
it would be feasible to conduct the model checking experiment for the infinite sequence gener-
ated from each sub-sequence (including the final one) even though it is impossible to conduct
the model checking experiment for the original infinite state sequence due to the state explo-
sion. The proposed technique makes it possible to use any existing linear temporal logic (LTL)
model checking algorithm and then any existing LTL model checker. We prove a theorem that
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the original leads-to model checking problem for the original infinite sequence is equivalent to
the multiple model checking problems for the multiple infinite sequences. We design an algo-
rithm based on the theorem from which a support tool is developed and some experiments are
conducted to demonstrate the power of the technique in Chapter 6.

We use a test&set mutual exclusion protocol (TAS) as an example to outline the technique.
TAS uses a Boolean global variable locked shared with all processes. locked is initially false.
TAS uses the atomic instruction test&set that takes a Boolean variable x and atomically con-
ducts the following: x is set to true and the old value stored in x is returned. TAS can be
described in Algol-like pseudo-code as follows:

“Start Section”
ss : . . .
ws : repeat while test&set(locked);

“Critical Section”
cs : . . .

locked := false;

“Final Section”
fs : . . .

We suppose that each process wants to enter the critical section once and is located at one
of the four labels ss (Start Section), ws (Waiting Section), cs (Critical Section) and fs (Final
Section). Each process p is initially located at ss. We are not interested in what p does in Start
Section and then what p does at ss is to move to ws from ss. p waits at ws until test&set(locked)

returns false. If test&set(locked) returns false, p goes to cs, entering Critical Section. We are
not interested in what p actually does in Critical Section. p located at cs sets locked to false

and moves to fs. We are not interested in what p does in Final Section and just suppose that
p stays there.

When there are n processes participating in TAS, each state in STAS is expressed as follows:

{(locked: b) (pc[p1]: l1) . . . (pc[pn]: ln) (cnt:x)}

The locked observable component stores the value b stored in locked, the pc[pi] observable
component stores the label li at which process pi is located and the cnt observable component
stores the number x of processes that have not yet reached fs. Initially, b is false, each li is
ss and x is n.

In this example, we suppose that there are two processes p1 and p2 participating in TAS.
The initial state (referred as init) is as follows:

{(locked: false) (pc[p1]: ss) (pc[p2]: ss) (cnt: 2)}

ITAS consists of one state denoted init.
TTAS is specified in rewrite rules as follows:
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rl [start] : {(pc[I]: ss) OCs} => {(pc[I]: ws) OCs} .

rl [wait] : {(locked: false) (pc[I]: ws) OCs} => {(locked: true) (pc[I]: cs) OCs} .

rl [exit] : {(locked: B) (pc[I]: cs) (cnt: N) OCs}

=> {(locked: false) (pc[I]: fs) (cnt: dec(N)) OCs} .

rl [fin] : {(cnt: 0) OCs} => {(cnt: 0) OCs} .

The four rewrite rules are given the names start, wait, exit and fin, respectively. I is a
Maude variable of process IDs, B is a Maude variable of Boolean values, N is a Maude variable
of natural numbers and OCs is a Maude variable of observable component soups. If dec takes a
non-zero natural number x+1, it returns x; if dec takes 0, it returns 0. Given a state expressed
as {(locked: true) (pc[p1]: cs) (pc[p2]: ss) (cnt: 2)}, rewrite rule exit can change
it to the following: {(locked: false) (pc[p1]: fs) (pc [p2]: ss) (cnt: 1)}. Fig. 4.1
shows the reachable state space made from STAS, ITAS and TTAS. There are 15 states in the
reachable state space.

We take two atomic propositions denoted inWs1 and inCs1 into account in this example.
So, PTAS consists of inWs1 and inCs1. LTAS is defined by the following equations:

eq {(pc[p1]: ws) OCs} |= inWs1 = true .

eq {(pc[p1]: cs) OCs} |= inCs1 = true .

eq {OCs} |= PROP = false [owise] .

where OCs is a Maude variable of observable component soups and PROP is a Maude variables
of atomic propositions. The first equations says that for all states s, LTAS(s) has inWs1 if s
has (pc[p1]: ws); the second equation says that for all states s, LTAS(s) has inCs1 if s has
(pc[p1]: cs); the third equation says that for all states s, LTAS(s) has neither inWs1 nor
inCs1 otherwise.

We can check KTAS |= inWs1 � inCs1, namely that TAS enjoys the lockout freedom
property with the Maude LTL model checker by reducing the following term:

modelCheck(init,inWs1 |-> inCs1)

where _|->_ is the Maude operator that expresses �. The Maude LTL model checker concludes
that TAS enjoys the lockout freedom property when there are two processes.

Although we do not need to use the proposed technique to tackle the model checking ex-
periment, we use it to outline the L + 1-layer divide & conquer approach to leads-to model
checking. We split the reachable state space as shown in Fig. 4.1 to three layers such that the
first layer depth is 2 and the second layer depth is 2 as shown in Fig. 4.2. Note that we do
not need to specify the final layer depth (the third layer depth for the example used). Fig. 4.2
(a) shows the first layer, Fig. 4.2 (b) shows the second layer and Fig. 4.2 (c) shows the third
layer. We have the six sub-state spaces made from the whole reachable state space. The first
layer has one sub-state space, the second layer has three sub-state spaces and the third layer

30



Figure 4.1: The reachable state space of TAS

has two sub-state spaces. Among the six sub-state spaces, one sub-state space consists of six
states, one sub-state space consists of five states, two sub-state spaces consist of four states and
two sub-state spaces consist of three states, while the whole reachable state space consists of
15 states. That is, the number of the states in each sub-state space is less than the one in the
whole reachable state space, which is the key to alleviate the state space explosion problem.

For model checking experiments for the first layer and the second layer, we need to revise
the Maude specification of TAS. Each state expression is revised as follows:

{(locked: b) (pc[p1]: l1) . . . (pc[pn]: ln) (cnt:x) (depth: d)}

The depth observable component has been added and is used to maintain the depth information
d. The rewrite rules are revised as follows:

crl [start] : {(pc[I]: ss) (depth: D) OCs}

=> {(pc[I]: ws) (depth: (D + 1)) OCs} if D < Bound .

crl [wait] : {(locked: false) (pc[I]: ws) (depth: D) OCs}
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Figure 4.2: Three layers of TAS reachable state space
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=> {(locked: true) (pc[I]: cs) (depth: (D + 1)) OCs} if D < Bound .

crl [exit] : {(locked: B) (pc[I]: cs) (cnt: N) (depth: D) OCs}

=> {(locked: false) (pc[I]: fs) (cnt: dec(N)) (depth: (D + 1)) OCs} if D < Bound .

crl [fin] : {(cnt: 0) (depth: D) OCs}

=> {(cnt: 0) (depth: (D + 1)) OCs} if D < Bound .

crl [stutter] : {(depth: D) OCs} => {(depth: D) OCs} if D >= Bound .

where D is a Maude variable of natural numbers and Bound is a natural number. Bound is 2 for
the TAS case.

Let init be {(locked: false) (pc[p1]: ss) (pc[p2]: ss) (cnt: 2) (depth: 0)}.
We are supposed to gather all states located at depth 2 from init and all states located at
depth 2 to which there are counterexamples for the leads-to property concerned. The latter
states are called counterexample states. We first check if inWs1 � inCs1 holds for the first
layer to find counterexample states by reducing the following term:

modelCheck(init, inWs1 |-> inCs1)

The Maude LTL model checker finds a counterexample. The counterexample state found is as
follows:

{(locked: false) (cnt: 2) (depth: 2) (pc[p1]: ws) (pc[p2]: ws)}

There may be two or more counterexamples. To find them, we add the following equation so
as to ignore the first counterexample:

eq {(locked: false) (cnt: 2) (depth: 2) (pc[p1]: ws) (pc[p2]: ws)} |= inCs1 = true .

We then conduct the model checking experiment again to find the second counterexample. The
Maude LTL model checker, however, does not find any more counterexamples. Therefore, we
gather all states located at depth 2. There are three such states that are as follows:

{(locked: false) (cnt: 2) (depth: 2) (pc[p1]: ws) (pc[p2]: ws)}

{(locked: true) (cnt: 2) (depth: 2) (pc[p1]: cs) (pc[p2]: ss)}

{(locked: true) (cnt: 2) (depth: 2) (pc[p1]: ss) (pc[p2]: cs)}

The three states are referred as init3, init4 and init5, respectively. init3 is the counterex-
ample state.

For the first layer, we find three states init3, init4 and init5 located at depth 2 among
which there is one counterexample state init3. Those states are used as initial states for the
second layer. We need to update Bound to 4 for the second layer. For the three initial states
init3, init4 and init5, we check inWs1 � inCs1 for the second layer. Moreover, for the one
initial state init3 that is the counterexample state for the first layer, we check ♦ inCs1 for
the second layer as well. The following four model checking experiments are conducted for the
second layer:
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modelCheck(init3, inWs1 |-> inCs1)

modelCheck(init4, inWs1 |-> inCs1)

modelCheck(init5, inWs1 |-> inCs1)

modelCheck(init3, <> inCs1)

where <>_ is the Maude operator that expresses ♦. The first , third and fourth model checking
experiments find one counterexample, respectively. There are two states located at depth 4
reachable from init3. There is one state located at depth 4 reachable from init4. There is
one state located at depth 4 reachable from init5. The four states are referred as init10,
init10’, init11, init11’, respectively, although init10 is the same as init10’ and init11

is the same as init11’. Hence, there are actually two different states located at depth 4. Each
of the three counterexample states is init11 and then there is actually one counterexample
state located at depth 4. The two states init10 and init11 are as follows:

{(locked: false) (cnt: 1) (depth: 4) (pc[p1]: fs) (pc[p2]: ws)}

{(locked: false) (cnt: 1) (depth: 4) (pc[p1]: ws) (pc[p2]: fs)}

We use the two states init10 and init11 from which (depth: 4) is deleted as the initial
states in the third layer. The two initial states in the third layer are also referred as init10

and init11, respectively. We use the original Maude specification of TAS for the third layer.
We conduct the following model checking experiments for the third layer with the Maude LTL
model checker:

modelCheck(init10, inWs1 |-> inCs1)

modelCheck(init11, inWs1 |-> inCs1)

modelCheck(init11, <> inCs1)

The Maude LTL model checker does not find any counterexamples for the three model checking
experiments. Hence, we conclude that TAS enjoys the lockout freedom property when there
are two processes by using our technique.

4.2 Multiple Layer Division of Leads-to Model Checking

We first prove in Theorem 4.1 that a leads-to model checking problem for a Kripke structure
K and a path π of K is equivalent to a model checking problem that is composed of three
sub-model checking problems for K and two paths of K, where the two paths are obtained
by splitting π into two parts. We then prove in Theorem 4.1 that a leads-to model checking
problem is equivalent to a model checking problem that is composed of 2L + 1 sub-model
checking problems for K and L+1 paths of K, where L ≥ 1 and the L+1 paths are obtained
by splitting π into L+ 1 parts.
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Figure 4.3: 2 layer division of the reachable state space

Let K be any Kripke structure, π be any path of K and ϕ1 & ϕ2 be any LTL formulas of
K in this section unless otherwise stated. π is an arbitrarily chosen path (or computation) of
K and then can be regarded as the whole reachable state space (see Fig. 4.3). Let π be split
into two paths πk and πk, where πk can be regarded as the first layer of the reachable state
space and πk can be regarded as the second layer of the reachable state space (see Fig. 4.3).
We prove four lemmas from which Theorem 4.1 is derived.

The first lemma says that if ϕ1 � ϕ2 holds for the whole reachable state space, then it also
holds for the second layer.

Lemma 4.1 For any natural number k, (K, π |= ϕ1 � ϕ2) ⇒ (K, πk |= ϕ1 � ϕ2).

Proof 4.1 Let us suppose K, π |= ϕ1 � ϕ2. From the definition of �, for each i ≥ k such
that K, πi |= ϕ1, there exists j ≥ i such that K, πj |= ϕ2. Thus, K, πk |= ϕ1 � ϕ2.

Note that (K, πk |= ϕ1 � ϕ2) �⇒ (K, π |= ϕ1 � ϕ2) because of the following. If there exists
i < k such that K, πi |= ϕ1, there does not exist any j ≥ i such that K, πj |= ϕ2 and there
does not exist any i′ ≥ k such that K, πi′ |= ϕ1, then K, πk |= ϕ1 � ϕ2 and K, π �|= ϕ1 � ϕ2.

The second lemma says that if ϕ1 � ϕ2 holds for the whole reachable state space and it
does not hold for the first layer, then ♦ϕ2 holds for the second layer, where ϕ1and ϕ2 are state
propositions.

Lemma 4.2 Let ϕ1 & ϕ2 be any state propositions of K. For any natural number k, (K, π |=
ϕ1 � ϕ2) ∧ (K, πk �|= ϕ1 � ϕ2) ⇒ (K, πk |= ♦ϕ2).

Proof 4.2 From the assumption K, πk �|= ϕ1 � ϕ2, there exists i ≤ k such that K, πi
k |= ϕ1

but does not exist any j ≥ i such that K, πj
k |= ϕ2. Because ϕ1 is a state proposition, K, πi |=

ϕ1 from Proposition 2.1. Because ϕ2 is a state proposition, K, πj �|= ϕ2 for any j such that

35



i ≤ j ≤ k from Proposition 2.1. From the assumption K, π |= ϕ1 � ϕ2 as well, however, there
must exist j′ > k such that K, πj′ |= ϕ2. Thus, K, πk |= ♦ϕ2.

The third lemma says that if ♦ϕ2 holds for the second layer and ϕ1 � ϕ2 holds for the
second layer, then ϕ1 � ϕ2 holds for the whole reachable state space.

Lemma 4.3 For any natural number k, (K, πk |= ♦ϕ2) ∧ (K, πk |= ϕ1 � ϕ2) ⇒ (K, π |=
ϕ1 � ϕ2).

Proof 4.3 We suppose that there exists i such that K, πi |= ϕ1 holds. If i ≥ k, because of the
assumption K, πk |= ϕ1 � ϕ2, there exists j > i (> k) such that K, πj |= ϕ2 holds. If i < k,
because of the assumption K, πk |= ♦ϕ2, there exists j ≥ k (> i) such that K, πj |= ϕ2 holds.

The fourth lemma says that if ϕ1 � ϕ2 holds for the first layer and ϕ1 � ϕ2 holds for the
second layer, then ϕ1 � ϕ2 holds for the whole reachable state space, where ϕ1 and ϕ2 are
state propositions.

Lemma 4.4 Let ϕ1 & ϕ2 be any state propositions of K. For any natural number k, (K, πk |=
ϕ1 � ϕ2) ∧ (K, πk |= ϕ1 � ϕ2) ⇒ (K, π |= ϕ1 � ϕ2).

Proof 4.4 We suppose that there exists i such that K, πi |= ϕ1 holds. If i ≥ k, because of the
assumption K, πk |= ϕ1 � ϕ2, there exists j > i (> k) such that K, πj |= ϕ2 holds. If i < k,
because ϕ1 is a state proposition, K, (πk)

i |= ϕ1 holds from Proposition 2.1. Thus, if i < k,
because of the assumption K, πk |= ϕ1 � ϕ2, there exists j ≥ i such that K, (πk)

j |= ϕ2 holds.
Because ϕ2 is a state proposition, if j ≤ k,K, πj |= ϕ2 holds, and if j > k (> i),K, πk |= ϕ2

holds from Proposition 2.1.

We are ready to prove that a leads-to model checking problem K, π |= ϕ1 � ϕ2 for a
Kripke structure K and a path π of K is equivalent to a model checking problem that is
composed of three sub-model checking problems K, πk |= ϕ1 � ϕ2, K, πk |= ϕ1 � ϕ2 and
K, πk |= (♦ϕ2) ∧ (ϕ1 � ϕ2) for K and the two paths πk and πk of K, where k is a natural
number.

Theorem 4.1 (Two layer division of �) Let ϕ1 & ϕ2 be any state propositions of K. For
any natural number k, (K, π |= ϕ1 � ϕ2) ⇔ ((K, πk |= ϕ1 � ϕ2) ⇒ (K, πk |= ϕ1 �
ϕ2)) ∧ ((K, πk �|= ϕ1 � ϕ2) ⇒ (K, πk |= (♦ϕ2) ∧ (ϕ1 � ϕ2))).

Proof 4.5 (1) Case “only if ” (⇒): It follows from Lemma4.1 and Lemma4.2. (2) Case
“if ” (⇐): If K, πk |= ϕ1 � ϕ2, then it follows from Lemma4.4. Otherwise, namely that if
K, πk �|= ϕ1 � ϕ2, then it follows from Lemma4.3.
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Theorem 4.1 makes it possible to divide the original model checking problem K, π |= ϕ1 � ϕ2

into the three sub-model checking problems K, πk |= ϕ1 � ϕ2, K, πk |= ϕ1 � ϕ2 and K, πk |=
(♦ϕ2) ∧ (ϕ1 � ϕ2).

We need to have two more lemmas to prove Theorem 4.2 whose description uses two abbre-
viations of statements on ternary satisfaction relations among Kripke structures, their paths
and LTL formulas. The first one of the two lemmas says that an eventual model checking
problem for a Kripke structure K and a path π of K is equivalent to a model checking problem
that is composed of two sub-model checking problems for K and two paths of K, where the
two paths are obtained by splitting π into two parts.

Lemma 4.5 Let ϕ1 be any state proposition of K. For any natural number k, (K, π |= ♦ϕ1) ⇔
((K, πk |= ♦ϕ1) ∨ ((K, πk �|= ♦ϕ1) ⇒ (K, πk |= ♦ϕ1))).

Proof 4.6 (1) Case “only if ” (⇒): There must be i such that K, πi |= ϕ1. If i ≤ k, K, πi
k |=

ϕ1 from Proposition 2.1 because ϕ1 is a state proposition. Thus, K, πk |= ♦ϕ1. Otherwise,
K, πk �|= ♦ϕ1. However, i > k and K, πi |= ϕ1. Hence, K, πk |= ♦ϕ1. (2) Case “if ” (⇐):
If K, πk |= ♦ϕ1, there must be i such that i ≤ k and K, πi

k |= ϕ1. Because ϕ1 is a state
proposition, K, πi |= ϕ1 from Proposition 2.1 and then K, π |= ♦ϕ1. If K, πk �|= ♦ϕ1, then
there must be j such that j > k and K, πj |= ϕ1. Thus, K, π |= ♦ϕ1.

The second one of the two lemmas is on a model checking problem that tackles an eventual
property and a leads-to property. Let us call such a model checking problem an eventual &
leads-to model checking problem. The lemma says that an eventual & leads-to model checking
problem for a Kripke structure K and a path π of K is equivalent to a model checking problem
that is composed of three sub-model checking problems for K and two paths of K, where the
two paths are obtained by splitting π into two parts.

Lemma 4.6 Let ϕ1 & ϕ2 be any state propositions of K. For any natural number k, (K, π |=
(♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇔ ((K, πk |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ (K, πk |= ϕ1 � ϕ2)) ∧ ((K, πk �|=
(♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ (K, πk |= (♦ϕ2) ∧ (ϕ1 � ϕ2))).

Proof 4.7 It follows from Theorem4.1 and Lemma 4.5.

We define Leads2L and E&Leads2L that are abbreviations of statements on ternary satis-
faction relations among Kripke structures, their paths and LTL formulas. To this end, let π

be split into L + 1 paths π(d(0),d(1)) (= πd(1)), . . . , π(d(l),d(l+1)), . . . , π(d(L),d(L+1)) (= πd(L)),
where L ≥ 1, d(0) = 0, d(L + 1) = ∞ and d(l) is a non-zero natural number for l = 1, . . . , L

(see Fig. 4.4). π(d(l),d(l+1)) can be regarded as the l + 1st layer of the reachable state space for
l = 0, 1, . . . , L.

Definition 4.1 (Leads2L and E&Leads2L) Let L be any non-zero natural number, k be any
natural number and d be any function such that d(0) is 0, d(x) is a non-zero natural number
for x = 1, . . . , L and d(L+ 1) is ∞.
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Figure 4.4: L+ 1 layer division of the reachable state space

1. 0 ≤ k < L− 1

Leads2L(K, π, ϕ1, ϕ2, k)

� ((K, π(d(k),d(k+1)) |= ϕ1 � ϕ2) ⇒ Leads2L(K, π, ϕ1, ϕ2, k + 1)) ∧
((K, π(d(k),d(k+1)) �|= ϕ1 � ϕ2) ⇒ E&Leads2L(K, π, ϕ1, ϕ2, k + 1))

E&Leads2L(K, π, ϕ1, ϕ2, k)

� ((K, π(d(k),d(k+1)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ Leads2L(K, π, ϕ1, ϕ2, k + 1)) ∧
((K, π(d(k),d(k+1)) �|= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ E&Leads2L(K, π, ϕ1, ϕ2, k + 1))

2. k = L− 1

Leads2L(K, π, ϕ1, ϕ2, k)

� ((K, π(d(k),d(k+1)) |= ϕ1 � ϕ2) ⇒ (K, π(d(k+1),d(k+2)) |= ϕ1 � ϕ2)) ∧
((K, π(d(k),d(k+1)) �|= ϕ1 � ϕ2) ⇒ (K, π(d(k+1),d(k+2)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)))

E&Leads2L(K, π, ϕ1, ϕ2, k)

� ((K, π(d(k),d(k+1)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ (K, π(d(k+1),d(k+2)) |= ϕ1 � ϕ2)) ∧
((K, π(d(k),d(k+1)) �|= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ (K, π(d(k+1),d(k+2)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)))

We are ready to prove that a leads-to model checking problem K, π |= ϕ1 � ϕ2 for a Kripke
structure K and a path π of K is equivalent to a model checking problem that is composed
of 2L + 1 sub-model checking problems K, πd(1) |= ϕ1 � ϕ2, . . . , K, π(d(l),d(l+1)) |= ϕ1 � ϕ2,
K, π(d(l),d(l+1)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2) . . . , K, πd(L) |= ϕ1 � ϕ2, K, πd(L) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)

for K and the L+ 1 paths π(d(0),d(1)) (= πd(1)), . . . , π(d(l),d(l+1)), . . . , π(d(L),d(L+1)) (= πd(L)).
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Theorem 4.2 (L+ 1 layer division of �) Let L be any non-zero natural number. Let d(0)
be 0, d(x) be any non-zero natural number for x = 1, . . . , L and d(L+1) be ∞. Let ϕ1 & ϕ2 be
any state propositions of K. Then,

1. (K, π |= ϕ1 � ϕ2) ⇔ Leads2L(K, π, ϕ1, ϕ2, 0)

2. (K, π |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇔ E&Leads2L(K, π, ϕ1, ϕ2, 0)

Proof 4.8 (1) and (2) are proved by simultaneous induction [43] on L.

• Base case (L = 1): It follows from Theorem4.1 and Lemma 4.6.

• Induction case (L = l + 1): We prove the following:

– (K, π |= ϕ1 � ϕ2) ⇔ Leads2l+1(K, π, ϕ1, ϕ2, 0)

– (K, π |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇔ E&Leads2l+1(K, π, ϕ1, ϕ2, 0)

Let dl+1 be d used in Leads2l+1(K, π, ϕ1, ϕ2, 0) and E&Leads2l+1(K, π, ϕ1, ϕ2, 0) such that
dl+1(0) = 0, dl+1(i) is an arbitrary natural number for i = 1, . . . , l+1, and dl+1(l+2) = ∞.
The induction hypotheses1 are as follows:

– (K, π |= ϕ1 � ϕ2) ⇔ Leads2l(K, π, ϕ1, ϕ2, 0)

– (K, π |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇔ E&Leads2l(K, π, ϕ1, ϕ2, 0)

Let dl be d used in Leads2l(K, π, ϕ1, ϕ2, 0) and E&Leads2l(K, π, ϕ1, ϕ2, 0) such that
dl(0) = 0, dl(i) is arbitrary natural number for i = 1, . . . , l, and dl(l + 1) = ∞. Because
dl+1(i) is arbitrary natural number for i = 1, . . . , l + 1, we suppose that dl+1(1) = dl(1)

and dl+1(i+ 1) = dl(i) for i = 1, . . . , l. Because π is any path of K, π can be replaced by
πdl(1). If so, we have the following as instances of the induction hypothesis:

– (K, πdl(1) |= ϕ1 � ϕ2) ⇔ Leads2l(K, πdl(1), ϕ1, ϕ2, 0)

– (K, πdl(1) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇔ E&Leads2l(K, πdl(1), ϕ1, ϕ2, 0)

From the definition of Leads2L and E&Leads2L,

– Leads2l(K, πdl(1), ϕ1, ϕ2, 0) is Leads2l+1(K, π, ϕ1, ϕ2, 1);

– E&Leads2l(K, πdl(1), ϕ1, ϕ2, 0) is E&Leads2l+1(K, π, ϕ1, ϕ2, 1).
1Precisely, the induction hypotheses are (K, π |= ϕ1 � ϕ2) ⇔ Leads2l(K, π, ϕ1, ϕ2, 0) and (K, π |= (♦ϕ2)∧

(ϕ1 � ϕ2)) ⇔ E&Leads2l(K, π, ϕ1, ϕ2, 0) for all Kripke structure K, all paths π of K and all LTL state
propositions ϕ1 & ϕ2 of K. What are used in the proof are the instances of the hypotheses obtained by
replacing π with πdl(1).
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Because dl(0) = dl+1(0) = 0, dl(1) = dl+1(1), and dl(i) = dl+1(i + 1) for i = 1, . . . , l,
and dl(l+ 1) = dl+1(l+ 2) = ∞. Therefore, the induction hypotheses can be rephrased as
follows:

– (K, πdl+1(1) |= ϕ1 � ϕ2) ⇔ Leads2l+1(K, π, ϕ1, ϕ2, 1)

– (K, πdl+1(1) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇔ E&Leads2l+1(K, π, ϕ1, ϕ2, 1)

From the definition of Leads2L,
Leads2l+1(K, π, ϕ1, ϕ2, 0) is

((K, π(dl+1(0),dl+1(1)) |= ϕ1 � ϕ2) ⇒ Leads2l+1(K, π, ϕ1, ϕ2, 1)) ∧
((K, π(dl+1(0),dl+1(1)) �|= ϕ1 � ϕ2) ⇒ E&Leads2l+1(K, π, ϕ1, ϕ2, 1))

which is

((K, π(dl+1(0),dl+1(1)) |= ϕ1 � ϕ2) ⇒ (K, πdl+1(1) |= ϕ1 � ϕ2)) ∧
((K, π(dl+1(0),dl+1(1)) �|= ϕ1 � ϕ2) ⇒ (K, πdl+1(1) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)))

because of the induction hypothesis instances. From Theorem4.1, this is equivalent to
K, π |= ϕ1 � ϕ2.

From the definition of E&Leads2L,
E&Leads2l+1(K, π, ϕ1, ϕ2, 0) is

((K, π(dl+1(0),dl+1(1)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ Leads2l+1(K, π, ϕ1, ϕ2, 1)) ∧
((K, π(dl+1(0),dl+1(1)) �|= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ E&Leads2L(K, π, ϕ1, ϕ2, 1))

which is

((K, π(dl+1(0),dl+1(1)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ (K, πdl+1(1) |= ϕ1 � ϕ2)) ∧
((K, π(dl+1(0),dl+1(1)) �|= (♦ϕ2) ∧ (ϕ1 � ϕ2)) ⇒ (K, πdl+1(1) |= (♦ϕ2) ∧ (ϕ1 � ϕ2)))

because of the induction hypothesis instances. From Lemma4.6, this is equivalent to
K, π |= (♦ϕ2) ∧ (ϕ1 � ϕ2).

Theorem 4.2 makes it possible to divide the original model checking problem K, π |= ϕ1 �
ϕ2 into the 2L + 1 sub-model checking problems K, πd(1) |= ϕ1 � ϕ2, . . . , K, π(d(l),d(l+1)) |=
ϕ1 � ϕ2, K, π(d(l),d(l+1)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2) . . . , K, πd(L) |= ϕ1 � ϕ2, K, πd(L) |= (♦ϕ2) ∧
(ϕ1 � ϕ2), where πd(1) = π(d(0),d(1)) and πd(L) = π(d(L),d(L+1)).

4.3 A Divide & Conquer Approach to Leads-to Model Check-

ing Algorithm

An algorithm can be constructed based on Theorem 4.1, which is shown as Algorithm 1. For
each initial state s0 ∈ K, unfolding s0 by using T without sharing any nodes that are states,
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Algorithm 1: A divide & conquer approach to leads-to model checking
input : K – a Kripke structure

ϕ1, ϕ2 – State propositions
L – a non-zero natural number
d – a function such that d(x) is a non-zero natural number for x = 1, . . . , L

output: Success (K |= ϕ1 � ϕ2) or Failure (K �|= ϕ1 � ϕ2)
1 LS ← I

2 ELS ← ∅
3 forall l ∈ {1, . . . , L} do
4 LS′ ← {π(d(l)) | s ∈ LS ∪ELS, π ∈ P

d(l)
(K,s)}

5 ELS′ ← ∅
6 forall s ∈ LS do
7 forall π ∈ P

d(l)
(K,s) do

8 if K, π �|= ϕ1 � ϕ2 then
9 LS′ ← LS′ − {π(d(l))}

10 ELS′ ← ELS′ ∪ {π(d(l))}

11 forall s ∈ ELS do
12 forall π ∈ P

d(l)
(K,s) do

13 if K, π �|= (♦ϕ2) ∧ (ϕ1 � ϕ2) then
14 LS′ ← LS′ − {π(d(l))}
15 ELS′ ← ELS′ ∪ {π(d(l))}

16 LS ← LS′

17 ELS ← ELS′

18 forall s ∈ LS do
19 forall π ∈ P (K,s) do
20 if K, π �|= ϕ1 � ϕ2 then
21 return Failure

22 forall s ∈ ELS do
23 forall π ∈ P (K,s) do
24 if K, π �|= (♦ϕ2) ∧ (ϕ1 � ϕ2) then
25 return Failure

26 return Success

an infinite tree whose root is s0 is made. Such an infinite tree can be divided into L+ 1 layers
as shown in Fig. 4.5, where L is a non-zero natural number. Because R is finite, the number of
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Figure 4.5: An infinite tree of states made from an initial state with L+ 1 layers

different states in each layer is finite. Theorem 4.1 makes it possible to check K |= ϕ1 � ϕ2 in
a stratified way in that for each layer l ∈ {1, . . . , L+1} we can check K, s, d(l) |= ϕ for each s ∈
{π(d(l− 1)) | π ∈ P

d(l−1)
(K,s0)

}, where d(0) is 0, d(x) is a non-zero natural number for x = 1, . . . , L,
d(L+1) is ∞ and ϕ is ϕ1 � ϕ2 or (♦ϕ2)∧ (ϕ1 � ϕ2). The code fragment at lines 6 – 10 checks
K, π(d(l−1),d(l)) |= ϕ1 � ϕ2 for some paths π(d(l−1),d(l)) in the lth layer of R for l = 1, . . . , L. The
code fragment at lines 11 – 15 checks K, π(d(l−1),d(l)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2) for the remaining
paths π(d(l−1),d(l)) in the lth layer of R for l = 1, . . . , L. When l is 1, LS consists of all initial
states and ELS is ∅. The code fragment at lines 18 – 21 checks K, π(d(L),d(L+1)) |= ϕ1 � ϕ2 for
some paths π(d(L),d(L+1)) in the L + 1st layer of R, where d(L + 1) is ∞ and then π(d(L),d(L+1))

is πd(L). The code fragment at lines 22 – 25 checks K, π(d(L),d(L+1)) |= (♦ϕ2) ∧ (ϕ1 � ϕ2) for
the remaining paths π(d(L),d(L+1)) in the L + 1st layer of R, where d(L + 1) is ∞ and then
π(d(L),d(L+1)) is πd(L).

The two assignments at lines 9 & 10 (and those at lines 14 & 15 as well) could be replaced
with ELS′ ← ELS′ ∪ {π(d(l))} and the condition at line 13 (and that at line 24) could be
replaced with K, π �|= ♦ϕ2.

The proposed technique can be interpreted as follows. For each initial state, the reachable
state space from the initial state is split into multiple layers (L + 1 layers) and generates
multiple smaller sub-state spaces as shown in Fig. 4.6. For each smaller sub-state space, we
check if ϕ1 � ϕ2 and/or ♦ϕ2 holds. If the number of different states in each sub-state space
is much less than the one in the entire reachable state space, then model checking for each
sub-state space is feasible even though model checking for the entire reachable state space is
not.

Although Algorithm 1 does not construct a counterexample when Failure is returned, it
could be constructed. For each l ∈ {0, 1, . . . , L}, LSl and ELSl are prepared. As elements of
LSl and ELSl, pairs (s, s′) are used, where s is a state in S or a dummy state denoted δ-stt
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Figure 4.6: Multiple sub-state spaces obtained by splitting the reachable state space into L+1

layers

that is different from any state in S, s′ is a state in S and s′ is reachable from s if s ∈ S. The
assignment at line 4 should be revised as follows:

LS′ ← {(s, π(d(l))) | (s1, s) ∈ LSl−1 ∪ELSl−1, π ∈ P
d(l)
(K,s)}

the condition at line 6 should be revised as (s1, s) ∈ LSl−1, the condition at line 11 should be
revised as (s1, s) ∈ ELSl−1, the condition at line 18 should be revised as (s1, s) ∈ LSL, the
condition at line 22 should be revised as (s1, s) ∈ ELSL, the two assignments at lines 9 & 10
(and lines 14 & 15 as well) should be revised as follows:

LS′ ← LS′ − {(s, π(d(l)))}
ELS′ ← ELS′ ∪ {(s, π(d(l)))}

and the two assignments at lines 16 & 17 should be revised as follows:

LSl ← LS′

ELSl ← ELS′

LS0 and ELS0 are set to {(δ-stt, s) | s ∈ I} and ∅, respectively. We could then construct
a counterexample, when Failure is returned, by searching through LSL, ELSL, . . . , LS1,
ELS1, LS0 and ELS0.

The number of different states in each layer shown in Fig. 4.5 should be much smaller than
the one of different states in all layers in order to make the proposed technique effective. The
number of different states in the xth one of the first L layers depends on d(x) and can be much
smaller than the one of different states in all layers but the number of different states in the
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Figure 4.7: A long backward transition

L+1st layer may not be much smaller than that. This could happen if there is a long backward
transition from a state sm+n to another state sm as shown in Fig. 4.7 such that n � 0 or sm+n

is far from sm. Thus, we should write a systems specification such that there is no such a
backward transition in it in order to effectively use the proposed technique.

4.4 Summary

We have proposed a new technique to mitigate the state explosion in model checking. The
technique is dedicated to leads-to properties. It divides a leads-to model checking problem
into multiple smaller model checking problems and tackles each smaller one. We have proved
that the multiple smaller model checking problems are equivalent to the original leads-to model
checking problem and designed the algorithm based on the theorem.
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Chapter 5

A Divide & Conquer Approach to
Conditional Stable Model Checking

In this chapter, we describe an extension work of leads-to properties to deal with conditional
stable properties expressed as ϕ1 � �ϕ2, where ϕ1, ϕ2 are state propositions. Conditional
stable properties informally say that whenever something is true, it will eventually happen that
something else will be always true (or will be stable). The properties can be used to express
desired properties that self-stabilizing systems [39] should satisfy. The properties can be used to
formalize desired properties in self-stabilizing systems, which were first introduced by Dijkstra
and became a very important concept in fault tolerance to design robust systems. Hence, it
is worth focusing on conditional stable properties. The technique is called a divide & conquer
approach to conditional stable model checking. It divides an original conditional stable model
checking problem into multiple smaller model checking problems and tackles each smaller one.
We prove a theorem that the multiple smaller model checking problems are equivalent to the
original conditional stable model checking problem. An algorithm is constructed based on the
theorem to support model checking conditional stable properties by our technique.

5.1 Outline of the Technique

We use the first self-stabilizing, unidirectional token ring that was proposed by Dijkstra, which
is called K-state Machines (KM) [40] as an example to outline the technique. The ring system
KM consists of N machines, numbered from 0 to N − 1 and a parameter K, which is a natural
number, such that K > N . Each machine status is represented by a natural number S,
satisfying 0 ≤ S < K. The following notations are used for the ith machine:

• L refers to the status of its lefthand neighbor, machine (i− 1) mod N .

• S refers to the status of itself, machine i.

• R refers to the status of its righthand neighbor, machine (i+ 1) mod N .
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In the ring system KM, machine 0 is called the bottom machine. For each machine, one
privilege (token) is defined in form of a Boolean function of its own status and the statuses
of its neighbors. When the Boolean function is true, we say that the privilege is present at
the machine and the machine can take its move by changing its status if the machine whose
privilege is true is selected, or the privilege is selected. The privilege and its corresponding
move at each machine use the format as follows:

if privilege then corresponding move fi
The privilege and its corresponding move for the bottom machine are as follows:

if L = S then S := (S + 1) mod K fi
and for the other machines as follows:

if L �= S then S := L fi
The legitimate state is that it contains exactly one privilege circulating in KM. Regardless of
the initial state and the privilege selected each time for the next move of a machine, the ring
system is guaranteed to find itself in a legitimate state after a finite number of moves. Note that
the number of available privileges in a given state is the number of possible state transitions
derived from the state.

Let us specify the ring system KM in Maude. In the case that there are n machines in KM,
each state in SKM is formalized as:

{(k-states: k) (pc[0]: s0) . . . (pc[n− 1]: sn−1) (#pc:n)}

The #pc observable component stores the number of machines in KM, and the pc[pi] observable
component stores the status si of the machine i, which is a natural number such that si < k.
The k-states observable component stores the natural number k. Initially, si is an arbitrary
natural number less than k.

In this example, let us assume that there are four machines participating in KM, k is 5,
and the statuses of four machines are 0, 2, 2, and 0, respectively. Note that p[0] is the bottom
machine. The initial state is denoted init as:

{(k-states: 5) (pc[0]: 0) (pc[1]: 2) (pc[2]: 2) (pc[3]: 0) (#pc: 4)}

IKM has one state init.
TKM is described in rewrite rules in what follows:

crl [bottom] : {(pc[J]: L) (pc[I]: S) (#pc: N) (k-states: K) OCs}

=> {(pc[J]: L) (pc[I]: ((S + 1) rem K )) (#pc: N) (k-states: K) OCs}

if #enable({(pc[J]: L) (pc[I]: S) (#pc: N) (k-states: K) OCs}) > 1

/\ I == 0 /\ J := sd(N,1) /\ L == S .

crl [other] : {(pc[J]: L) (pc[I]: S) (#pc: N) OCs}

=> {(pc[J]: L) (pc[I]: L) (#pc: N) OCs}

if #enable({(pc[J]: L) (pc[I]: S) (#pc: N) OCs}) > 1
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/\ I =/= 0 /\ J := ((sd(I,1)) rem N) /\ L =/= S .

crl [fin] : {OCs} => {OCs} if #enabled({OCs}) == 1 .

The three rules are named bottom, other, and fin. The first two rules say how to change the
statuses of the bottom machine and the other machines if their privileges are true, respectively,
while the last rule says that when the system reaches a legitimate state, it just stays there and
does nothing. We use fin to avoid a long lasso loop in the specification so that the proposed
technique can work effectively. The proposed technique cannot handle long lasso loops. It is
one piece of our future work to come up with how to handle long lasso loops in the proposed
technique. The function #enable returns the number of available privileges in a given state.
Note that a legitimate state has exactly one privilege. I, J, S, L, N, and K are Maude variables
whose types (or sorts) are natural numbers and OCs is a Maude variable whose sort is observable
component soups. sd, which stands for symmetric difference, takes two natural numbers x and
y and returns |x− y|. Given a state formalized as:

{(k-states: 5) (pc[0]: 0) (pc[p1]: 2) (pc[p2]: 2) (pc[p3]: 0) (#pc: 4)}

Each of the two rules bottom and other can be applied to the term expressing the state. Rule
bottom can be applied to the term at one position and rule other can be applied to the term
at two positions. Rule bottom can change it as:

{(k-states: 5) (pc[0]: 1) (pc[p1]: 2) (pc[p2]: 2) pc[p2]: 0) (#pc: 4)}

Fig. 5.1 shows the reachable state space made from SKM, IKM, and TKM in which (#pc: 4) is
not included for simplicity. The total number of states is 17.

We consider illegal and legal as atomic propositions in this example. Therefore, PKM

has illegal and legal. LKM is defined as follows:

eq {OCs} |= illegal = #enabled({OCs}) > 1 .

eq {OCs} |= legal = #enabled({OCs}) == 1 .

eq {OCs} |= PROP = false [owise] .

OCs and PROP are Maude variables whose sorts are observable component soups and atomic
propositions. The definition says that LKM(s) consists of illegal if a state has more than one
privilege; LKM(s) consists of legal if a state s has one privilege; and LKM is empty otherwise.

KKM |= illegal � � legal can be checked by reducing the following:

modelCheck(init, illegal |-> []legal)

_|->_ and []_ are Maude operators that denote � and �, respectively. It concludes that KM

enjoys the conditional stable property in the case that there are four machines with our initial
configuration.
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Figure 5.1: Reachable state space of KM with 4 machines

It is unnecessary to rely on the technique in order to model-check the stable conditional
property, but we employ it to rough out the technique. The reachable state space depicted in
Fig. 5.1 is divided into three layers as depicted in Fig. 5.2. Fig. 5.2 (a), (b), and (c) exhibit the
first, second, and third layers. 15 sub-state spaces are made. There are some lasso loops, but
none of them is long. The greatest number of states that belong to each sub-state space is nine,
while 17 is the number of states in the entire reachable state one. In summary, the number of
states in each sub-state space is less than the one in the entire reachable state space; this is the
core idea the state space explosion can be eased.

For layers 1 and 2, it is necessary to change the Maude specification of KM. We change the
state as:

{(k- states: k) (pc[0]: s0) . . . (pc[n− 1]: sn−1) (#pc:n)(depth: d )}

We have added one observable component called depth to manage the information of depth.
The rules are changed as:

crl [bottom] :

{(pc[J]: L) (pc[I]: S) (#pc: N) (k-states: K) (depth: D) OCs}
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Figure 5.2: Three layers of KM reachable state space

=> {(pc[J]: L) (pc[I]: ((S + 1) rem K )) (#pc: N) (k-states: K)

(depth: (D + 1)) OCs}

if #enable({(pc[J]: L) (pc[I]: S) (#pc: N) (k-states: K) OCs}) > 1

/\ D < Bound /\ I == 0 /\ J := sd(N,1) /\ L == S .

crl [other] :

{(pc[J]: L) (pc[I]: S) (#pc: N) (depth: D) OCs}

=> {(pc[J]: L) (pc[I]: L) (#pc: N) (depth: (D + 1)) OCs}

if #enable({(pc[J]: L) (pc[I]: S) (#pc: N) OCs}) > 1

/\ I =/= 0 /\ D < Bound /\ J := ((sd(I,1)) rem N) /\ L =/= S .

crl [fin] : {(depth: D) OCs} => {(depth: (D + 1)) OCs}

if #enabled({OCs}) == 1 /\ D < Bound.

crl [stutter] : {(depth: D) OCs} => {(depth: D) OCs} if D >= Bound .

D is a Maude variable whose sort is natural numbers. Bound is a Maude constant whose sort is
natural numbers. We use 2 as Bound for the example used.
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Let init denote the following:

{(k-states: 5) (pc[0]: 0) (pc[1]: 2) (pc[2]: 2) (pc[3]: 0) (#pc: 4) (depth: 0)}

We are supposed to first gather all non-cx states and all cx ones placed at depth 2 from
init. The union of non-cx and cx states is all states placed at depth 2 reachable from init.
How to gather such states is described in the next section. We follow Algorithm 2; if a path
satisfies �¬illegal, the last state (that has the self-transition) of the path is regarded as a
non-cx state; otherwise, the last state is a cx state. A non-cx state can become a cx state if it
is found later as a cx state. There are only six cx states in the first layer (see Fig. 5.2 (a)):

{(pc[0]: 1) (pc[1]: 1) (pc[2]: 2) (pc[3]: 0) (#pc: 4) (depth: 2) (k-states: 5)}

{(pc[0]: 1) (pc[1]: 2) (pc[2]: 2) (pc[3]: 2) (#pc: 4) (depth: 2) (k-states: 5)}

{(pc[0]: 1) (pc[1]: 0) (pc[2]: 2) (pc[3]: 0) (#pc: 4) (depth: 2) (k-states: 5)}

{(pc[0]: 0) (pc[1]: 0) (pc[2]: 0) (pc[3]: 0) (#pc: 4) (depth: 2) (k-states: 5)}

{(pc[0]: 0) (pc[1]: 0) (pc[2]: 2) (pc[3]: 2) (#pc: 4) (depth: 2) (k-states: 5)}

{(pc[0]: 0) (pc[1]: 2) (pc[2]: 2) (pc[3]: 2) (#pc: 4) (depth: 2) (k-states: 5)}

These states are denoted init4, init5, init6, init7, init8, and init9 that are utilized as
the initial states for the second layer. Bound should be 4 for layer 2. For the six initial states,
we generate all states positioned at depth 4 reachable from those states for the second layer
because they are cx states. How to generate such states is described in the next section.

Fig. 5.2 (b) shows eight states positioned at depth 4 (from init) in the second layer. Two
states are positioned at depth 4 reachable from init4. Four states are positioned at depth 4
reachable from init6, where two states of them are also reachable from init4. One state is
positioned at depth 4 reachable from each init5, init7, init8, and init9. The eight states
are denoted init12, init13, init18, init19, init5’, init7’, init8’, and init9’. Note that
init5’, init7’, init8’, and init9’ are the same as init5, init7, init8, and init9 except
the depth observable component. Hence, there are actually four new states init12, init13,
init18, and init19 as follows:

{(pc[0]: 1) (pc[1]: 1) (pc[2]: 1) (pc[3]: 0) (#pc: 4) (depth: 4) (k-states: 5)}

{(pc[0]: 1) (pc[1]: 1) (pc[2]: 2) (pc[3]: 2) (#pc: 4) (depth: 4) (k-states: 5)}

{(pc[0]: 1) (pc[1]: 0) (pc[2]: 0) (pc[3]: 0) (#pc: 4) (depth: 4) (k-states: 5)}

{(pc[0]: 1) (pc[1]: 0) (pc[2]: 0) (pc[3]: 2) (#pc: 4) (depth: 4) (k-states: 5)}

We use the eight states init12, init13, init18, init19, init5’, init7’, init8’, and
init9’ from which (depth: 4) is removed as the initial states in the final layer. The initial
Maude specification is used for the final layer. The eight model-checking experiments are carried
out as:
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modelCheck(init12, <>[] legal)

modelCheck(init13, <>[] legal)

modelCheck(init18, <>[] legal)

modelCheck(init19, <>[] legal)

modelCheck(init5’, <>[] legal)

modelCheck(init7’, <>[] legal)

modelCheck(init8’, <>[] legal)

modelCheck(init9’, <>[] legal)

Because no cx is found, KM satisfies the conditional stable property in the case there are four
machines with our initial configuration by using our technique.

5.2 Multiple Layer Division of Conditional Stable Model

Checking

Firstly, we prove the Theorem 5.1 that a conditional stable model checking problem for a Kripke
structure K and a path π of K is equivalent to a model checking problem that is composed
of three sub-model checking problems for K and two paths of K, where the two paths are
obtained by splitting π into two parts. We then prove in Theorem 5.1 that a leads-to model
checking problem is equivalent to a model checking problem that is composed of 2L + 1 sub-
model checking problems for K and L + 1 paths of K, where L ≥ 1 and the L + 1 paths are
obtained by splitting π into L+ 1 parts.

Let K be any Kripke structure, π be any path of K and ϕ1 & ϕ2 be any LTL formulas of
K in this section unless otherwise stated. π is an arbitrarily chosen path (or computation) of
K and then can be regarded as the whole reachable state space (see Fig. 4.3). Let π be split
into two paths πk and πk, where πk can be regarded as the first layer of the reachable state
space and πk can be regarded as the second layer of the reachable state space (see Fig. 4.3).
We prove four lemmas from which Theorem 5.1 is derived.

The first lemma says that if �ϕ holds for the whole reachable state space, then the first
and second layer also hold �ϕ, where ϕ is a state proposition and it is vice versa.

Lemma 5.1 Let ϕ be any state proposition of K. Let k be any natural number. Then, (K, π |=
�ϕ) ⇔ (K, πk |= �ϕ) ∧ (K, πk |= �ϕ).

Proof 5.1 Because ϕ is a state proposition, whether it holds only depends on the first state of
a given path. If (K, π |= �ϕ), then ϕ holds for π(i) for all i, and vice versa. If K, πk |= �ϕ

and K, πk |= �ϕ, then ϕ holds for π(i) for i = 0, . . . , k and ϕ holds for π(i) for i = k, . . .,
respectively, and therefore ϕ holds for π(i) for all i, and vice versa.

The second lemma says that if ♦�ϕ2 holds for the second layer, then the whole reachable
state space holds ϕ1 � �ϕ2, where ϕ1 and ϕ2 are state propositions.

51



Lemma 5.2 Let ϕ1, ϕ2 be any state propositions of K. Let k be any natural number. Then,
(K, πk |= ♦�ϕ2) ⇒ (K, π |= ϕ1 � �ϕ2).

Proof 5.2 From the assumption, there exists i (≥ k) such that K, πi |= �ϕ2. Thus, K, π |=
ϕ1 � �ϕ2. �

The third lemma says that if �¬ϕ1 holds for the first layer and ϕ1 � �ϕ2 holds for the
second layer, then the whole reachable state space holds ϕ1 � �ϕ2, where ϕ1 and ϕ2 are state
propositions.

Lemma 5.3 Let ϕ1, ϕ2 be any state propositions of K. Let k be any natural number. Then,
(K, πk |= �¬ϕ1) ∧ (K, πk |= ϕ1 � �ϕ2) ⇒ (K, π |= ϕ1 � �ϕ2).

Proof 5.3 The case is split into two cases: (1) K, πk |= �¬ϕ1 and (2) K, πk �|= �¬ϕ1. In
(1), K, π |= �¬ϕ1 from the first conjunct of the assumption and Lemma 5.1. Hence, K, π |=
ϕ1 � �ϕ2. In (2), from the second conjunct of the assumption, there exists i (≥ k) such that
K, πi |= �ϕ2. Thus, K, π |= ϕ1 � �ϕ2. �

The fourth lemma says that if ϕ1 � �ϕ2 holds for the whole reachable state space, then
ϕ1 � �ϕ2 holds for the first layer and ϕ1 � �ϕ2 holds for the second layer, where ϕ1 and ϕ2

are state propositions and it is vice versa.

Lemma 5.4 (Two layer division of ϕ1 � �ϕ2) Let ϕ1, ϕ2 be any state propositions of K.
Let k be any natural number. Then,

(K, π |= ϕ1 � �ϕ2)

⇔ [(K, πk |= �¬ϕ1) ⇒ (K, πk |= ϕ1 � �ϕ2)] ∧
[(K, πk �|= �¬ϕ1) ⇒ (K, πk |= ♦�ϕ2)]

Proof 5.4 (1) Case “only if ” (⇒): The case is split into two cases: (1.1) K, π |= �¬ϕ1 and
(1.2) K, π �|= �¬ϕ1. In (1.1), K, πk |= �¬ϕ1 from Lemma5.1. Therefore, K, πk |= ϕ1 �
�ϕ2. In (1.2), there exists i such that K, πi |= ϕ1. Thus, from the assumption, there exists
j (≥ i) such that K, πj |= �ϕ2. Hence, K, πk |= ϕ1 � �ϕ2 and K, πk |= ♦�ϕ2.

(2) Case “if ” (⇐): The case is split into two cases: (2.1) K, πk |= �¬ϕ1 and (2.2)K, πk �|=
�¬ϕ1. In (2.1), K, π |= ϕ1 � �ϕ2 from Lemma5.3. In (2.2), K, π |= ϕ1 � �ϕ2 from
Lemma5.2. �

We define CStableL that is abbreviations of statements on ternary satisfaction relations
among Kripke structures, their paths and LTL formulas. To this end, let π be split into L+ 1

paths π(d(0),d(1)) (= πd(1)), . . . , π(d(l),d(l+1)), . . . , π(d(L),d(L+1)) (= πd(L)), where L ≥ 1, d(0) = 0,
d(L+ 1) = ∞ and d(l) is a non-zero natural number for l = 1, . . . , L (see Fig. 4.4). π(d(l),d(l+1))

can be regarded as the l + 1st layer of the reachable state space for l = 0, 1, . . . , L.
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Definition 5.1 (CStableL) Let L be any non-zero natural number, k be any natural number
and d be any function such that d(0) is 0, d(x) is a natural number for x = 1, . . . , L and d(L+1)

is ∞.

1. 0 ≤ k < L− 1

CStableL(K, π, ϕ1, ϕ2, k)

� [(K, π(d(k),d(k+1)) |= �¬ϕ1) ⇒ CStableL(K, π, ϕ1, ϕ2, k + 1)] ∧
[(K, π(d(k),d(k+1)) �|= �¬ϕ1) ⇒ (K, π(d(L),d(L+1)) |= ♦�ϕ2)]

2. k = L− 1

CStableL(K, π, ϕ1, ϕ2, k)

� [(K, π(d(k),d(k+1)) |= �¬ϕ1) ⇒ (K, π(d(k+1),d(k+2)) |= ϕ1 � �ϕ2)] ∧
[(K, π(d(k),d(k+1)) �|= �¬ϕ1) ⇒ (K, π(d(k+1),d(k+2)) |= ♦�ϕ2)]

We are ready to prove that a conditional stable model checking problem K, π |= ϕ1 � �ϕ2

for a Kripke structure K and a path π of K is equivalent to a model checking problem that
is composed of three sub-model checking problems K, πk |= �¬ϕ1, K, πk |= ϕ1 � �ϕ2 and
K, πk |= ♦�ϕ2 for K and the two paths πk and πk of K, where k is a natural number.

Theorem 5.1 (L+ 1 layer division of ϕ1 � �ϕ2) Let L be any non-zero natural number.
Let d(0) be 0, d(x) be any natural number for x = 1, . . . , L and d(L + 1) be ∞. Let ϕ1, ϕ2 be
any state propositions of K. Then,

(K, π |= ϕ1 � �ϕ2) ⇔ CStableL(K, π, ϕ1, ϕ2, 0)

Proof 5.5 By induction on L.

• Base case (L = 1): It follows from Lemma5.4.

• Induction case (L = l + 1): We prove the following:

(K, π |= ϕ1 � �ϕ2) ⇔ CStablel+1(K, π, ϕ1, ϕ2, 0)

Let dl+1 be d used in CStablel+1(K, π, ϕ1, ϕ2, 0) such that dl+1(0) = 0, dl+1(i) is an
arbitrary natural number for i = 1, . . . , l+1 and dl+1(l+2) = ∞. The induction hypothesis
is as follows:

(K, π |= ϕ1 � �ϕ2) ⇔ CStablel(K, π, ϕ1, ϕ2, 0)

Let dl be d used in CStablel(K, π, ϕ1, ϕ2, 0) such that dl(0) = 0, dl(i) is an arbitrary
natural number for i = 1, . . . , l and dl(l+1) = ∞. Because dl+1(i) is an arbitrary natural
number for i = 1, . . . , l + 1, we suppose that dl+1(1) = dl(1) and dl+1(i + 1) = dl(i) for
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Algorithm 2: A divide & conquer approach to conditional stable model checking
input : K – a Kripke structure

ϕ1, ϕ2 – State propositions
L – a non-zero natural number
d – a function such that d(x) is a non-zero natural number for x = 1, . . . , L

output: Success (K |= ϕ1 � �ϕ2) or Failure (K �|= ϕ1 � �ϕ2)
1 NCxS ← I

2 CxS ← ∅
3 forall l ∈ {1, . . . , L} do
4 NCxS′ ← {π(d(l)) | s ∈ NCxS, π ∈ P

d(l)
(K,s)}

5 CxS′ ← {π(d(l)) | s ∈ CxS, π ∈ P
d(l)
(K,s)}

6 forall s ∈ NCxS do
7 forall π ∈ P

d(l)
(K,s) do

8 if K, π �|= �¬ϕ1 then
9 NCxS′ ← NCxS′ − {π(d(l))}

10 CxS′ ← CxS′ ∪ {π(d(l))}

11 NCxS ← NCxS′

12 CxS ← CxS′

13 forall s ∈ NCxS do
14 forall π ∈ P (K,s) do
15 if K, π �|= ϕ1 � �ϕ2 then
16 return Failure

17 forall s ∈ CxS do
18 forall π ∈ P (K,s) do
19 if K, π �|= ♦�ϕ2 then
20 return Failure

21 return Success

i = 1, . . . , l. Because π is any path of K, π can be replaced with πdl(1). If so, we have the
following as an instance of the induction hypothesis:

(K, πdl(1) |= ϕ1 � �ϕ2) ⇔ CStablel(K, πdl(1), ϕ1, ϕ2, 0)

From Definition 5.1, CStablel(K, πdl(1), ϕ1, ϕ2, 0) is CStablel+1(K, π, ϕ1, ϕ2, 1) because
dl(0) = dl+1(0) = 0, dl(1) = dl+1(1) and dl(i) = dl+1(i + 1) for i = 1, . . . , l and
dl(l+1) = dl+1(l+2) = ∞. Therefore, the induction hypothesis instance can be rephrased
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as follows:
(K, πdl+1(1) |= ϕ1 � �ϕ2) ⇔ CStablel+1(K, π, ϕ1, ϕ2, 1)

From Definition 5.1, CStablel+1(K, π, ϕ1, ϕ2, 0) is

[(K, π(dl+1(0),dl+1(1)) |= �¬ϕ1) ⇒ CStableL(K, π, ϕ1, ϕ2, 1)] ∧
[(K, π(dl+1(0),dl+1(1)) �|= �¬ϕ1) ⇒ (K, π(dl+1(L),dl+1(L+1)) |= ♦�ϕ2)]

which is

[(K, π(dl+1(0),dl+1(1)) |= �¬ϕ1) ⇒ (K, πdl+1(1) |= ϕ1 � �ϕ2)] ∧
[(K, π(dl+1(0),dl+1(1)) �|= �¬ϕ1) ⇒ (K, π(dl+1(L),dl+1(L+1)) |= ♦�ϕ2)]

because of the induction hypothesis instance. From Lemma4.5, this is equivalent to
K, π |= ϕ1 � �ϕ2. �

5.3 A Divide & Conquer Approach to Conditional Stable

Model Checking Algorithm

An algorithm can be constructed based on Theorem 5.1, which is shown as Algorithm 2. CxS

consists of all cx states located at the bottom of the Lth layer while NCxS consists of all the
non-cx states located at the bottom of the Lth layer. NCxS ∪ CxS is the set of all states
located at the bottom of the Lth layer (or the top of the L + 1st layer). Initially, NCxS

consists of only the initial states in I at line 1 and CxS is an empty set. For the first forall
loop in the code fragment at lines 3–12, we need to collect non-cx and cx states located at each
layer of intermediate layers stored in NCxS and CxS for the next layer, respectively.

We use NCxS′ and CxS′ to temporarily store non-cx and cx states while collecting states.
For each layer l of intermediate layers, NCxS′ and CxS′ first store all states located at depth
d(l) reachable from each state in NCxS and CxS at lines 4 and 5, respectively. For each
non-cx state in NCxS, we check whether each path π that starts with the state up to depth
d(l) satisfies �¬ϕ1 at lines 6–9. If not, the last state of π is removed from NCxS′ and added
to CxS′ at lines 9 and 10, respectively. Lastly, NCxS′ and CxS′ are assigned to NCxS

and CxS at lines 11 and 12 for the next layer.
The code fragment at lines 13 – 16 checks ϕ1 � �ϕ2 for each path that starts with each

state in NCxS. The code fragment at lines 17 – 20 checks ♦�ϕ2 for each path that starts
with each state in CxS. If there are any counterexamples found at the final layer, Failure is
returned.

Although Algorithm 2 does not construct a counterexample when Failure is returned, it
could be constructed. For each l ∈ {0, 1, . . . , L}, NCxSl and CxSl are arranged. As elements
of NCxSl and CxSl, pairs (s, s′) are used, where s is a state in S or a dummy state denoted
δ-stt that is different from any state in S, s′ is a state in S, and s′ is reachable from s if s ∈ S.
The two assignments at lines 4 and 5 are to be revised as follows:
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NCxS′ ← {(s, π(d(l)))| (s1, s) ∈ NCxSl−1, π ∈ P
d(l)
(K,s)}

CxS′ ← {(s, π(d(l)))| (s1, s) ∈ CxSl−1, π ∈ P
d(l)
(K,s)}

The condition at line 6 is to be revised as (s1, s) ∈ NCxSl−1, the condition at line 13 is to be
revised as (s1, s) ∈ NCxSL, and the condition at line 17 is to be revised as (s1, s) ∈ CxSL.
The two assignments at lines 9 and 10 are to be revised as follows:

NCxS′ ← NCxS′ − {(s, π(d(l)))}
CxS′ ← CxS′ ∪ {(s, π(d(l)))}

and the two assignments at lines 11 and 12 are to be revised as follows:

NCxSl ← NCxS′

CxSl ← CxS′

NCxS0 and CxS0 are initially {(δ-stt, s) | s ∈ I} and ∅. A cx could be made, when Failure is
returned, by searching through NCxSL, CxSL, . . . , NCxS1, CxS1, NCxS0, and CxS0.

5.4 Summary

We have described how to model check conditional stable properties expressed as ϕ1 � �ϕ2,
where ϕ1, ϕ2 are state propositions, in a stratified way. The technique aims at mitigating the
state space explosion in model checking. We have proved a theorem that the proposed technique
is correct and designed an algorithm based on the theorem. The technique is an extension of
the technique used for leads-to and eventual model checking [4, 2] in order to deal with desired
properties of self-stabilizing systems that can be expressed as conditional stable properties. The
support tool with some experiments showing the power of the technique is described in detail
in Chapter 7.
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Chapter 6

A Support Tool for the Divide & Conquer
Approach to Leads-to Model Checking

The chapter describes a support tool for the L+1-layer divide & conquer approach to leads-to
model checking and conducts some experiments with the tool showing that the tool/technique
can alleviate the state space explosion problem to some extent.

6.1 How the Tool Works in a Nutshell

Given the original specification of TAS including the leads-to property concerned, the number
of layers and each layer depth, the model checking experiment used to outline the L + 1-layer
divide & conquer approach to leads-to model checking in Sect. 4.1 is conducted with the support
tool as follows:

Maude> in specs/tas

...

Maude> in full-maude

...

Full Maude 2.7.1 June 30th 2016

Maude> in solver

...

L+1 Layers Divide & Conquer Approach to Leads-To Model Checking Available Now

Done reading in file: "solver-loop.maude"

Maude> (initialize[TAS-CHECK, init, l2-prop, e-prop, OComp, Soup{OComp}])

Initialization: success

57



originModule: TAS-CHECK

reviseModule: TAS-CHECK-REVISE

initialState: init

leadsToFormula: l2-prop

eventuallyFormula: e-prop

eleSort: OComp

soupSort: Soup‘{OComp‘}

Maude> (check 2 2)

Analyzer:

currentDepth: 4

depthList: 2 2

numberOfNodeSet: 4

numberOfStates: 2

numberOfCxStates: 1

Check: success

Maude>

where some outputs emitted by Maude are omitted, where ... is written.
First the module in which TAS is specified, Full Maude and the support tool are loaded

into Maude in this order. Then, the tool is initialized with the command of the tool:

(initialize[TAS-CHECK, init, l2-prop, e-prop, OComp, Soup{OComp}])

where TAS-CHECK is the module in which TAS and its properties to be checked are specified,
init is an initial state of TAS, l2-prop is the leads-to property (or formula) inWs1 |-> inCs1,
e-prop is the eventually property (or formula) <> inCs1, OComp is the sort of observable com-
ponents and Soup{OComp} is the sort of observable component soups. In the initialization of
the tool, a revised specification of TAS is made by adding the depth observable component
to the original specification as described in Sect. 4.1. The revised specification is referred as
TAS-CHECK-REVISE.

Next we conduct the 3-layer divide & conquer approach to leads-to model checking for
TAS by using the command check 2 2, where each of the first two layer depths is 2 and the
final layer is ∞. The tool returns success, meaning TAS satisfies the leads-to property under
verification.

6.2 Tool Implementation in Maude

The support tool is developed in Maude by using meta-programming on top of Full Maude [46].
Full Maude maintains a database of modules that we call DB. Our tool maintains an extended
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database that contains our configurations (our way to express states) and data gathered at
each layer. The extended database is called DB-EXT. DB-EXT stores the original specification
under model checking, such as TAS-CHECK, the revised version of the specification, such as
TAS-CHECK-REVISE, the initial state, the leads-to property, the eventually property, the sort of
observable components, and the sort of observable component soups. We also save in DB-EXT
the current depth that is initially 0, the list of depth information fed by users that is initially
nil, the result that is initially nil and the node set (denoted NodeSet, one of the most crucial
data structure used in the tool) that initially contains the initial state only.

The result stored in DB-EXT is nil, success or in the following form:

formula: formula, term: state, trace: log, cx: cx

where formula is either the leads-to property or the eventually property, state is a state that
is the initial state of a sub-state space under model checking, log is the log to state from the
actual initial state and cx is a (local) counterexample found while doing the model checking
experiment for the sub-state space. While tackling a sub-state space in intermediate layers,
the result stored in DB-EXT is nil. The result stored in DB-EXT is success if and only if
all sub-state spaces have been tackled and no counterexample has been found. When the tool
tackles a sub-state space whose start state is s0 in the final layer for a formula f and finds a
(local) counterexample cx, the result stored in DB-EXT becomes as follows:

formula: f, term: s0, trace: log, cx: cx

where log is a sequence of states from the actual initial state to s0. We can construct a (global)
counterexample from log and cx.

NodeSet is constructed from empty and _,_, where empty denotes the empty NodeSet and
is an identity of _,_ that is associative and commutative. If NodeSet is not empty, it is in the
following form:

node1 , . . . , nodei , nodei+1 , . . . , noden

Each nodei is in the following form:

< < states : cxstates > : list >

where states is a set of states located at some depth, cxstates is a set of counterexample states
located at the same depth such that cxstates ⊆ states and list is a list of state & natural
number-pairs. Initially, NodeSet only consists of one element, where states only consists of the
initial state to which the depth observable component is added, where 0 is stored, cxstates is
the empty set and list is the empty list. In general, if we consider a sub-state space (as shown in
Fig. 6.1) that starts with sl+1

1 located at depth d1+. . .+dl and is in the l+1st layer whose depth
is dl+1, where sl+1

n1
, . . . , sl+1

nk
, sl+1

nk+1
, . . . , sl+1

nm
are all states located at depth d1 + . . . + dl + dl+1

reachable from sl+1
1 and among them sl+1

nk+1
, . . . , sl+1

nm
are counterexample states, then the node

is as follows:
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Figure 6.1: Some information maintained by the tool

< < sl+1
n1

| . . .| sl+1
nk

| sl+1
nk+1

| . . .| sl+1
nm

: sl+1
nk+1

| . . .| sl+1
nm

>

: < sl+1
1 : dl+1 > < sl1 : dl > . . . < s11 : d1 > >

where the operator _|_ is used as the constructor of non-empty sets and the juxtaposition
operator _ _ is used as the constructor of non-empty lists. In the node, list is as follows:

< sl+1
1 : dl+1 > < sl1 : dl > . . . < s11 : d1 >

Each < si1 : di > is the pair of si1 and di, where si1 is a state located at the top of the ith layer
and di is the depth of the ith layer for i = 1, . . . , l, l + 1. Each si+1

1 is reachable from si1 for
i = 1, . . . , l.

The command (check 2 2) conducts the 3-layer divide & conquer approach to leads-to
model checking, where each of the first two layer depths is 2. One primary function used by
the command is layerCheck that is defined as follows:

eq layerCheck(M, NS, N, Cs)

= $layerCheck(M, NS, N, empty, < emptyTermSet : emptyTermSet >, Cs) .

where M is the revised specification, NS is the node set that are treated as the initial states
of a layer (say the lth layer), N is the depth of the layer from the original initial state (say
d0 + . . . + dl if it is the lth layer), and Cs is the sort of our configuration (ConfigExtSet).
layerCheck handles each layer (say the lth layer) except for the last one and returns the node
set of the next layer (say the l + 1st layer).

The function $layerCheck is defined as follows:

eq $layerCheck(M,empty,N,NS,CACHE,Cs) = NS .

ceq $layerCheck(M,(ND , NS1),N,NS2,CACHE,Cs)

= $layerCheck(M,NS1,N,union(NS2,ns(NS&CACHE)),cache(NS&CACHE),Cs)

if NS&CACHE := $$layerCheck(M,ND,N,empty,CACHE,Cs) .
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The first three parameters and the sixth one are the same as the four parameters of layerCheck,
respectively. The fourth parameter maintains the result (the node set) and the fifth parameter
maintains a cache that is used to avoid duplicate nodes in the result. $layerCheck returns a
node set.

The function $$layerCheck is defined as follows:

eq $$layerCheck(M,< < emptyTermSet : emptyTermSet > : LL >,N,NS,CACHE,Cs)

= < NS : CACHE > .

ceq $$layerCheck(M,< < T | TS1 : TS2 > : LL >,N,NS,CACHE,Cs)

= $$layerCheck(M,< < TS1 : TS2 > : LL >,N,

union(NS,filterValidNode(

< < (STATES except states(CACHE)) : (CxSTATES except cxStates(CACHE)) >

: (< T : N > LL) >)),

< (STATES | states(CACHE)) : (CxSTATES | cxStates(CACHE)) >,Cs)

if STATES := genTermSet(M, T, N, Cs) /\

CxSTATES := allCounterExample(M,T,leadsToFormula(Cs),eventuallyProp(Cs)) .

ceq $$layerCheck(M,< < emptyTermSet : T | TS2 > : LL >,N,NS,CACHE,Cs)

= $$layerCheck(M,< < emptyTermSet : TS2 > : LL >,N,

union(NS,filterValidNode(

< < emptyTermSet : (CxSTATES except cxStates(CACHE)) > : (< T : N > LL) >)),

< states(CACHE) : (CxSTATES | cxStates(CACHE)) >,Cs)

if CxSTATES := allCounterExample(M,T,eventuallyFormula(Cs),eventuallyProp(Cs)) .

When all states and all counterexample states have been handled, the first equation is used, re-
turning the pair < NS : CACHE > of a node set NS and a cache CACHE. The second equation deals
with states in < < states : cxstates > : list > used as the second parameter of $$layerCheck,
while the third equation deals with cxstates. The function genTermSet collects all states (say
sl+1
n1

, . . . , sl+1
nk

, sl+1
nk+1

, . . . , sl+1
nm

as shown in Fig. 6.1) reachable from the state T (say sl+1
1 ) in the

specification M, while the function allCounterExample collects all counterexample states (say
sl+1
nk+1

, . . . , sl+1
nm

as shown in Fig. 6.1) reachable from the state T (say sl+1
1 ) in the specification M.

The function genTermSet is defined as follows:

eq genTermSet(M,empty,D,Cs) = emptyTermSet .

eq genTermSet(M,T,0,Cs) = emptyTermSet .

eq genTermSet(M,T,D,Cs)

= $genTermSet(metaSearch(M,T,’‘{_‘}[’__[getVarTerm(soupSort(Cs)),

’depth:_[upTerm(D)]]],nil,’*,unbounded,0),M,T,D,0,Cs) .

eq $genTermSet(failure,M,T,D,N,Cs) = emptyTermSet .

eq $genTermSet(RT,M,T,D,N,Cs)

= getTerm(RT) | $genTermSet(metaSearch(M,T,’‘{_‘}[’__[getVarTerm(soupSort(Cs)),

’depth:_[upTerm(D)]]],nil,’*,unbounded, N + 1),M,T,D,N + 1,Cs) .
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The function metaSearch is used to collect all states located at the depth D reachable from the
state T in the specification M.

The function allCounterExample is defined as follows:

eq allCounterExample(M,T,F,P) = $allCounterExample(M,T,F,P) .

ceq $allCounterExample(M,T,F,P)

= if (Cx :: Constant)

then emptyTermSet

else getCounterExampleState(Cx) |

$allCounterExample(addEqs(buildEqs(getCounterExampleState(Cx),P),M),T,F,P) fi

if Cx := getCounterExample(M,’modelCheck[T,F]) .

eq $allCounterExample(M,T,F,P) = emptyTermSet [owise] .

The function getCounterExample extracts a counterexample state by conducting the model
checking experiment ’modelCheck[T,F]. The function $allCounterExample finds all coun-
terexamples one by one by adding equations, such as the one

eq {(locked: false) (cnt: 2) (depth: 2) (pc[p1]: ws) (pc[p2]: ws)} |= inCs1 = true .

we did in Sect. 4.1 with addEqs(. . . ).
To show what is displayed by the tool when a model checking experiment finds a counterex-

ample, we intentionally add the following rewrite rule to the TAS specification:

rl [flaw] : {(cnt: 0) (locked: false) (pc[I]: fs) OCs}

=> {(cnt: 0) (locked: true) (pc[I]: ws) OCs} .

For the flawed version of TAS, our tool displays the following:

Check: failure

Formula: l2-prop.Formula

Cx: counterexample(

{{cnt: 2 locked: false (pc[p1]: ss)pc[p2]: ss},’start}

{{cnt: 2 locked: false(pc[p1]: ws)pc[p2]: ss},’start}

{{cnt: 2 locked: false(pc[p1]: ws)pc[p2]: ws},’wait}

{{cnt: 2 locked: true(pc[p1]: cs)pc[p2]: ws},’exit}

{{cnt: 1 locked: false(pc[p1]: fs)pc[p2]: ws},’wait}

{{cnt: 1 locked: true(pc[p1]: fs)pc[p2]: cs},’exit}

{{cnt: 0 locked: false(pc[p1]: fs)pc[p2]: fs},’flaw},

{{cnt: 0 locked: true(pc[p1]: ws)pc[p2]: fs},’fin})

The tool displays a counterexample as the Maude LTL model checker does. Once the flawed
version of TAS reaches the state

{(cnt: 0) (locked: true) (pc[p1]: ws) (pc[p2]: fs)}

the state never changes because only the self transition can be taken in the state. Hence, the
process p1 located at ws never goes to cs.
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6.3 Case Studies

We conducted some model checking experiments with our support tool. The experiments were
conducted with a docker container running Ubuntu 20.04.3 LTS as a virtual machine that had
2 GB memory and ran on a host machine (an iMac) with 4 GHz processor and 32 GB memory.
Four mutual exclusion protocols were employed as examples: (1) Qlock, (2) Anderson, (3)
MCS, and (4) TAS. Qlock is an abstract version of the Dijkstra binary semaphore. Anderson is
an array-based mutual exclusion protocol invented by Anderson [47]. MCS invented by Mellor-
Crummey & Scott is a list-based queueing mutual exclusion protocol whose variants have been
used in Java virtual machines [48].

Qlock

Qlock in Algol-like pseudo-code for each process p is as follows:

“Start Section”
ss : enqueue(queue, p);

ws : repeat until top(queue) = p;

“Critical Section”
cs : dequeue(queue);

“Final Section”
fs : . . .

queue is a queue of process IDs that is shared by all processes. enqueue, top and dequeue are
the standard operators of queues. Initially, queue is empty and each process p is located at ss.
If p wants to enter the critical section, it puts its ID into queue at the end and moves to ws

where it waits until the top of queue becomes p. If so, it moves to cs. When it leaves cs, it
deletes the top element from queue and moves to fs.

Anderson

Anderson in Algol-like pseudo-code for each process i is as follows:

“Start Section”
ss : place[i] := fetch&incmod(next,N);

ws : repeat until array[place[i]];

“Critical Section”
cs : array[place[i]], array[(place[i] + 1)%N ]

:= false, true;

“Final Section”
fs : . . .
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where N is the number of processes participating in Anderson. next is a natural number
variable and array is a Boolean array whose size is N . Both next and array are shared with
all processes. place[i] is a natural number variable that is local to process i. fetch&incmod is
an atomic instruction that takes a natural number variable x and a non-zero natural number
n and atomically does the following: x is set to (x + 1)%n and the old value of x is returned.
For two variables x, y and two expressions e1, e2, x, y := e1, e2; is a concurrent assignment that
computes e1 and e2 and sets x and y to their values, respectively. Initially, each process i

is located at ss, next is 0, array[0] is true, each array[j] for j = 1, . . . , N − 1 is false and
each place[i] is 0. If process i wants to enter the critical section, it atomically sets place[i] to
next and increments next modulo N with fetch&incmod, moving to ws where it waits until
array[place[i]] becomes true. When so, it moves to cs. When it leaves cs, it sets array[place[i]]
and array[(place[i] + 1)%N ] to false and true, respectively, moving to fs.

MCS

MCS [48] is also a shared-memory mutual exclusion protocol for multiple processes. Its variants
have been used in Java virtual machines and therefore the inventors (John M. Mellor-Crummery
and Michael L. Scott) were honored with 2006 Edsger W. Dijkstra Prize in Distributed Com-
puting1. MCS [48] for each process p can be described as:

“Start Section”
ss : . . .

l1 : nxt[p] := nop;

l2 : prd[p] := fetch−store(glock, p);

l3 : if prd[p] �= nop {
l4 : lock[p] := true;

l5 : nxt[prd[p]] := p;

l6 : repeat while lock[p]; }
“Critical Section”

cs : . . .

l7 : if nxt[p] = nop {
l8 : if comp−swap(glock, p, nop)

l9 : goto fs;

l10 : repeat while nxt[p] = nop; }
l11 : lock[nxt[p]] := false;

“Final Section”
fs : . . .

glock is a global variable whose type is Bool and initially assigned nop that means no process.
nxt[p], prd[p], and lock[p] are local variables of each process p whose types are process IDs

1https://www.podc.org/dijkstra/2006-dijkstra-prize
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Table 6.1: Model checking running performance by Maude and the tool with 2GB memory
restriction

Protocol #Processes Maude LTL Model Checker Layers L+ 1-DCA2L2MC

Qlock
8 processes 25s

2 2
35s

9 processes NA 6m 57s

Anderson
7 processes 11s

2 2
16s

8 processes NA 2m 23s

MCS
4 processes 1s

4 4 4 4
16s

5 processes NA 23m 35s

TAS
11 processes 54s

3 3
1h 40m 30s

12 processes NA 15h 36m 11s

(including nop), process IDs (including nop), and Bool, respectively. Their initial values are
nop, nop, and false. Although they are local to p, they can be used by any other processes
because a shared-memory machine is used. MCS uses the two atomic operators fetch−store

and comp−swap. fetch−store(glock, p) assigns glock p and returns the old value of glock, while
comp−swap(glock, p, nop) assigns glock nop and returns true if glock equals p; it just returns
false otherwise. Whenever p would like to go to cs, it moves to l1 from ss. It carries out the two
assignments at l1 and l2. It then checks if prd[p] �= nop. If so, it goes to l4 from l3; otherwise,
it directly goes to cs from l3. It then carries out the two assignments at l4 and l5. It waits at l6
while lock[p] is true. Whenever lock[p] becomes false, it goes to cs from l6. Whenever it would
like to exit cs, it goes to l7 from cs. It checks if nxt[p] = nop. If so, it goes to l8; otherwise, it
goes to l11 from l7. It carries out comp−swap(glock, p, nop) at l8. If comp−swap(glock, p, nop)

returns true, it goes to l9 and then fs; otherwise, it goes to l10 from l8. It waits at l10 while
nxt[p] = nop. Whenever next[p] �= nop, it goes to l11. It carries out the assignment at l11,
going to fs. We suppose that each process goes to cs at most once.

We suppose that each process enters the critical section once for all case studies. Let us
also consider two atomic propositions inWs1 and inCs1. For Qlock, Anderson, and TAS, inWs1
and inCs1 hold in a state if and only if the state matches {(pc[p1]: ws) OCs}, namely that
process p1 is at ws, and {(pc[p1]: cs) OCs}, namely that process p1 is at cs, respectively. For
MCS, inWs1 holds in a state if and only if the state matches {(pc[p1]: l6) OCs}, namely that
process p1 is at l6. inCs1 holds in a state if and only if the state matches {(pc[p1]: cs) OCs},
namely that process p1 is at cs.

We model checked inWs1 � inCs1 for Qlock with 8 and 9 processes, for Anderson with 7
and 8 processes, for MCS with 4 and 5 processes, and for TAS with 11 and 12 processes with our
support tool and the Maude LTL model checker. The experimental data are shown in Table 6.1.
In the third column, NA stands for Non-Available meaning that the model checking experiment
was not able to be conducted in that 2GB memory was not enough for the experiment. When
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Table 6.2: Model checking running performance by the tool with different layers

Protocol #Processes Maude LTL Model Checker Layers L+ 1-DCA2L2MC

Qlock 10 processes NA

3 45h 37m
2 2 6h 31m

2 2 1 6h 43m
2 2 2 13h 10m

Anderson 9 processes NA

3 12h 0m
2 2 1h 44m

2 2 1 1h 48m
2 2 2 3h 28m

there are a few processes participating in each of the four mutual exclusion protocols, it is
possible to do a model checking experiment on an ordinary computer that carries a few, 2 GB
memory, but when the number of the processes increases, it becomes infeasible to do so with
such a computer because of the state space explosion. For example, when there are 8, 7, 4,
and 11 processes participating in Qlock, Anderson, MCS, and TAS, respectively, both Maude
LTL model checker and the sequential version of L + 1-DCA2L2MC can complete the model
checking experiments for the four protocols with a computer that carries 2 GB memory (see
Table 6.1). When there are 9, 8, 5, and 12 processes in Qlock, Anderson, MCS, and TAS,
respectively, however, Maude LTL model checker cannot do so with the computer, while the
sequential version can do so with the computer (see Table 6.1). Thus, Our tool as well as our
technique mitigate the state space explosion problem in model checking to some extent.

We conducted some more model checking experiments in which a computer that had a
2.9GHz processor and 32GB memory. In the experiments, we model checked inWs1 � inCs1

for Qlock with 10 processes and for Anderson with 9 processes. The experimental results are
shown in Table 6.2. d1 d2 . . . dL in the layers column means that we use L + 1 layers and
the depth of the ith layer is di. nil in the layers column means that we used the Maude LTL
model checker and did not use our support tool. NA stands for Non-Available meaning that
the model checking experiment was not able to be conducted in that 32GB memory was not
enough for the experiment. Therefore, our tool alleviates the notorious state space explosion
problem to some extent if not perfectly conquering the problem.

6.4 Comparison of the Tool and Maude Model Checker

The model checking experiments were conducted for TAS and MCS with our tool and the
Maude LTL model checker. The number of processes was changed from 2 to 12 for TAS, while
it was changed from 2 to 5 for MCS. The experimental data are shown in Table 6.3. The
experimental data for TAS are plotted as a graph shown in Figure 6.2, while MCS are plotted
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as a graph shown in Figure 6.3. The experiments were conducted with a docker container
running Ubuntu 20.04.3 LTS as a virtual machine that had 2 GB memory and ran on a host
machine (MacBook Air) with 1.6 GHz processor and 16 GB memory.

Table 6.3: Model checking running performance by Maude and the tool with different processes
(2GB memory)

Proto #Procs Maude Layers
#Sub-state

Spaces
Time (1) Time (2)

L+ 1-
DCA2L2MC

TAS

2 0.001s

3 3

5 0.11s 0.71s 0.817s
3 0.001s 11 0.46s 0.35s 0.81s
4 0.004s 21 0.90s 1.62s 2.52s
5 0.022s 36 1.43s 4.81s 6.14s
6 0.070s 57 2.59s 8.73s 11.32s
7 0.220s 85 13.47s 13.63s 26.73s
8 0.798s 121 31.67s 1m 11s 1m 43s
9 3.249s 166 1m 12s 4m 32s 5m 44s
10 19.769s 221 2m 42s 43m 45s 46m 27s
11 2m 28s 287 9m 04s 3h 32m 29s 3h 41m 33s
12 NA 365 15m 19s 1d 3h 59m 44s 1d 4h 15m03s

MCS

2 0.003s

4 4 4 4

28 0.55s 0.333s 0.883s
3 0.098s 232 1.38s 2.58s 3.96s
4 2.042s 1273 36.60s 14.15s 50.75s
5 NA 5126 7m 39s 1h 12m 43s 1h 20m 21s

Time (1) - Time-taken for generating all sub-state spaces for non-final layers
Time (2) - Time-taken for model checking experiments of all sub-state spaces in the final layer

Based on the graph shown in Figure 6.2 for TAS, when the number of processes is between
2 and 9, the time taken with our tool is not very different from the time take with the Maude
LTL model checker; when the number of processes is each of 10 and 11, the former time is
greater than the latter time; when when the number of processes is 12, our tool successfully
completed the model checking experiment, while the Maude LTL model checker does not due
to the state space explosion problem.

For each sub-state space in each non-final layer, we update the formal systems specification
on the fly so that we can generate all counterexamples for ϕ1 � ϕ2 or ♦ϕ2. This is one overhead
introduced by our tool. We thought that the overhead would largely affect the model checking
running performance. Looking at the time taken for tackling all sub-state spaces in all non-final
layers shown in Table 6.3, when the number of processes is each of 10, 11 and 12, the time
taken for tackling the final layer is much greater than the time taken for tackling all non-final
layer. This means that the overhead introduced by updating the formal systems specification
on the fly is not that large. The reason why it took much time to tackle the final layer would
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Figure 6.2: Graph plotted for running performance by Maude and the tool for TAS with
different processes

Figure 6.3: Graph plotted for running performance by Maude and the tool for MCS with
different processes

be that there are many states duplicated and shared by many sub-state spaces in the final layer
for TAS when the number of processes is each of 10, 11 and 12. Each of the processes waiting
at ws in TAS has an equal opportunity to enter cs, meaning that TAS has many symmetries
from a process point of view. This is why there are many states duplicated and shared by many
sub-state spaces in the final layer for TAS.

Based on the graph shown in Figure 6.3 for MCS, when the number of processes is between
2 and 4, the time taken with our tool is not very different from the time take with the Maude
LTL model checker; when the number of processes is 5, our tool successfully completed the
model checking experiment, while the Maude LTL model checker does not due to the state
space explosion problem.

When the number of processes is between 2 and 4, the overhead introduced by our tool does
not affect very much the model checking running performance based on the graph shown in
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Figure 6.3. Because MCS has a virtual queue to control the order in which the processes waiting
at ws will enter cs, MCS does not have many symmetries from a process point of view unlike
TAS. This is why we would suppose that there are not so many states duplicated and shared
by many sub-state spaces in the final layer for MCS. Although the time taken for tackling the
final layer is much greater than the time taken for tackling all non-final layer when there are 5
processes, therefore, we do not think that this is because there are many states duplicated and
shared by many sub-state spaces in the final layer.

The technique proposed splits the reachable state space from each initial state into multiple
layers, generating multiple sub-state spaces and tackling each sub-state space, and uses an
existing model checker, concretely the Maude LTL model checker. Thus, it does not change
the computation complexity of the algorithms used by the Maude LTL model checker. At
least, it does not essentially improve the computation complexity. If each sub-state space is
much smaller than the original reachable state space, the technique/tool may alleviate the
state space explosion problem, even though the Maude LTL model checker cannot complete
the model checking experiment for the original model checking problem. The tool updates a
formal systems specification under model checking on the fly so as to find all counterexamples
for each sub-state space in each non-final layer, which would be the biggest overhead introduced
by the tool. However, based on the experimental data, the overhead does not affect the model
checking running performance very much. For most experiments, especially when the number
of processes is large, the time taken for tackling the final layer is (much) greater than the time
taken for tackling all non-final layers. For TAS, this would be because there are many states
duplicated and shared by many sub-state spaces in the final layer, while for MCS, we do not
know the main reason, which should be investigated furthermore and one piece of our future
work.

6.5 Summary

This chapter has described the support tool for the L + 1-layer divide & conquer approach to
leads-to model checking and comparison of the tool and Maude model checker.

The tool has been implemented in Maude with its meta-programming facilities on the top
of Full Maude. This chapter has also reported on the case studies in which it is demonstrated
that the tool can alleviate the notorious state space explosion problem in model checking to
some extent.

Looking at the experimental data as shown in Table 6.2, we find that the number of layers
and each layer depth greatly affect the model checking performance. We are supposed to
make formal systems specifications so that each of the multiple sub-state spaces to which the
original reachable state space is divided has a much smaller number of states than the number
of states in the original reachable state space so that we can effectively use the support tool.
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For example, we should avoid any long backward state transitions that may hinder some sub-
state spaces located at the last layer from having a much smaller number of states than the
number of states in the original reachable state space. The formal systems specifications of
the four mutual exclusion protocols used in this chapter do not have any long backward state
transitions. As one piece of our future work, we need to come up with a way to find a good
layer configuration with the tool for a system under verification.
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Chapter 7

A Support Tool for the Divide & Conquer
Approach to Conditional Stable Model
Checking

This chapter describes a support tool for the L + 1-layer divide & conquer approach to con-
ditional stable model checking (L + 1-DCA2CSMC) and conducts some experiments with the
tool showing that the support tool/technique can alleviate the state space explosion to some
extent.

7.1 How the Tool Works in Nutshell

Given the initial KM specification in which the conditional stable property and the layer con-
figuration (a positive natural number list) are written, the model checking experiment outlined
in Sect. 5.1 can be be carried out with the support tool as:

Maude> in specs/self-stabilization/k-states

...

Maude> in full-maude

...

Full Maude 3.1 Oct 12 2020

Maude> in solver

...

L+1 Layers Divide & Conquer Approach to

Conditional Stable Model Checking

Maude> (initialize[KM-CHECK, init, cstable, OComp, Soup{OComp}])

Initialization: success

origin-module: KM-CHECK
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revise-module: KM-CHECK-REVISE

initial-state: init

formula-to-check: cstable

element-sort: OComp

soup-sort: Soup‘{OComp‘}

Maude> (check 2 2)

Analyzer:

current-depth: 4

depth-list: 2 2

#node-set: 3

#states: 0

#cx-states: 3

Checker: success

Maude>

Note that all outputs made by Maude are not written and ... is shown instead.
We first load the formal specification of KM, Full Maude, and our tool in this order into

the Maude system. The formal specification has one module called KM-CHECK in which KM and
the conditional stable property are described. Our tool is then initialized as follows:

(initialize[KM-CHECK, init, cstable, OComp, Soup{OComp}])

The initial state of KM is denoted init. illegal |-> [] inCs1, the conditional stable prop-
erty concerned, is denoted cstable. OComp and Soup{OComp} are the sorts of observable com-
ponents and their soups, respectively. The revised specification (denoted KM-CHECK-REVISE) of
KM is made when initializing the tool.

Next we conduct the 3-layer divide & conquer approach to leads-to model checking for KM
by using the command check 2 2, where each of the first two layer depths is 2 and the final
layer is ∞. The tool returns success, meaning KM satisfies the conditional stable property
under verification.

7.2 Tool Implementation in Maude

The support tool is developed in Maude by using meta-programming on top of Full Maude [46].
A database (called DB) of modules is managed by Full Maude. We manage an extended
database called DB−EX. DB−EX saves our way to formalize states (our configurations), data
collected at each layer, the initial specification, such as KM-CHECK, the revised specification, such
as KM-CHECK-REVISE, the initial state, the conditional stable property, the eventual property
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obtained against the conditional stable property, OComp, and Soup{OComp}. DB−EX stores the
following as well: the current depth whose initial value is 0, a layer configuration (a list of
natural numbers, the depths of layers) whose initial value is nil, the result whose initial value
is nil, and the node set (denoted NodeSet) that initially has the initial state alone. NodeSet

is one of the most important data structures utilized by the tool.
The result saved in DB−EX is nil, success, or in the form as follows:

formula: fm, term: stt, trace: log, cx: cx

fm is a conditional stable property or an eventual one, stt is a state, the initial one of a sub-
state space being tackled for model checking, log is the log that starts with the real initial state
and ends with stt, and cx is a local cx discovered while tackling the sub-state space. When
conducting a model checking experiment for a sub-state space in middle layers, nil is the result
saved in DB−EX. The result is success iff all model checking experiments are done for all
sub-state spaces and no cx states were discovered. If a model checking experiment is conducted
for a sub-state space in the final layer whose initial state is s0 and a local cx cx is discovered,
then the result saved in DB−EX is the following:

formula: f, term: s0, trace: log, cx: cx

A global cx can be built from log and cx.
empty and _,_ are the constructors of NodeSet. empty is the empty NodeSet. _,_ is given

assoc, comm, and id: empty as its operator attributes. A non-empty NodeSet is expressed as
node1 , . . . , nodei , nodei+1 , . . . , noden. Each nodei is in the form as < < stts : cx−stts > :

lst >, where stts is a set of non-cx states placed at depth d, cx−stts is a set of cx ones placed
at d such that stts ∪ cx−stts is the set of all states placed at d, and lst is a list of pairs of
states and natural numbers. NodeSet initially has one element. In the element, stts only has
the initial state to which (depth: 0) is added, cx−stts is empty, and lst is nil. When we
generally think about a sub-state space (as depicted in Fig. 6.1) that starts with sl+1

1 placed at
depth d1+. . .+dl and is in layer l+1 whose depth is dl+1, where sl+1

n1
, . . . , sl+1

nk
, sl+1

nk+1
, . . . , sl+1

nm
are

all states placed at depth d1+ . . .+dl+dl+1 reachable from sl+1
1 and among them sl+1

nk+1
, . . . , sl+1

nm

are cx ones, node is as:

< < sl+1
n1

| . . .| sl+1
nk

| : sl+1
nk+1

| . . .| sl+1
nm

> : < sl+1
1 : dl+1 > < sl1 : dl > . . . < s11 : d1 > >

_|_ is the constructor of non-empty sets and _ _ is the constructor of non-empty lists. lst in
the node is as < sl+1

1 : dl+1 > < sl1 : dl > . . . < s11 : d1 >, where < si1 : di > is the pair of si1 and
di, si1 is a state placed at the top of layer i and di is the depth of layer i for i = 1, . . . , l, l + 1.
si+1
1 is reachable from si1 for i = 1, . . . , l.
(check 2 2) is the command that carries out a conditional stable model checking experi-

ment where three layers are used and each depth of the first two layers is two. A key function
utilized by (check ...) is layer-check defined as:
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eq layer-check(M, NS, D, N, Cs) = $layer-check(M, NS, D, N, empty,

< empty-term-set : empty-term-set >, Cs) .

M is the specification revised, NS is the node set that is dealt with as the initial states of a layer
(e.g. layer l), D is the depth of the layer from the real initial state (e.g. d0 + . . .+ dl when it is
layer l), N is the depth of layer l (dl), and Cs is the sort of our configuration (Config-Ex-Set).
layer-check deals with each layer (e.g. layer l) except the final layer and returns the node set
of the next layer (e.g. layer l + 1).

We define $layer-check as:

eq $layer-check(M,empty,D,N,NS,CACHE,Cs)

= filter-valid-node(filter-by-cx-states(NS,cx-states(CACHE))) .

ceq $layer-check(M,(ND,NS1),D,N,NS2,CACHE,Cs)

= $layer-Check(M,NS1,D,N, union(NS2,ns(NS&CACHE)),cache(NS&CACHE),Cs)

if NS&CACHE := layer-check-for-stable(M,ND,D,N,empty,CACHE,Cs).

The first four and seventh parameters are the same as the five ones of layer-check. The fifth
and sixth ones manage the result (the node set) and a cache utilized to evade the same states,
respectively, while building nodes in the result. A node set is returned by $layer-check.

We define layer-check-for-stable as:

eq layer-check-for-stable(M,< < empty-term-set : empty-term-set > : LL >,

D,N,NS,CACHE,Cs) = < NS : CACHE > .

ceq layer-check-for-stable(M,< < T | TS1 : TS2 > : LL >,D,N,NS,CACHE,Cs)

= layer-check-for-stable(M, < < TS1 : TS2 > : LL >,D,N,

union(NS,filter-valid-node(< < (STATES except states(CACHE))

: (CxSTATES except cx-states(CACHE)) > : (< T : D > LL) >)),

< (STATES | states(CACHE)) : (CxSTATES | cx-states(CACHE)) >,Cs)

if < STATES : CxSTATES > := gen-states-for-stable(M,T,D,N,Cs) .

ceq layer-check-for-stable(M, < < empty-term-set : T | TS2 > : LL >,

D,N,NS,CACHE,Cs)

= layer-check-for-stable(M, < < empty-term-set : TS2 > : LL >,D,N,

union(NS,filter-valid-node(

< < empty-term-set : (CxSTATES except cx-states(CACHE)) >

: (< T : D > LL) >)),

< states(CACHE) : (CxSTATES | cx-states(CACHE)) >,Cs)

if CxSTATES := gen-term-set(M, T, D, Cs) .

If all non-cx states and all cx ones have been tackled, the first equation is employed to return the
pair < NS : CACHE > of a node set NS and a cache CACHE. The second one handles stts in < <

stts : cx−stts > : lst > utilized as the second parameter of layer-check-for-stable, while
the third one treats cx−stts. Function gen-term-set gathers all states (e.g. sl+1

n1
, . . . , sl+1

nk
, sl+1

nk+1
,
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. . . , sl+1
nm

as depicted in Fig. 6.1) reachable from state T (e.g. sl+1
1 ) in the formal specification

M, while function gen-states-for-stable gathers non-cx states (e.g. sl+1
n1

, . . . , sl+1
nk

) and cx
ones (e.g. sl+1

nk+1
, . . . , sl+1

nm
as depicted in Fig. 6.1) reachable from state T (e.g. sl+1

1 ) in the formal
specification M.

We define gen-term-set as:

eq gen-term-set(M,empty,D,Cs) = empty-term-set .

eq gen-term-set(M,T,0,Cs) = empty-term-set .

eq gen-term-set(M,T,D,Cs) = $gen-term-set(metaSearch(M,T,

’‘{_‘}[’__[get-var-term(soup-sort(Cs)),

’depth:_[upTerm(D)]]],nil,’*,unbounded,0),M,T,D,0,Cs) .

eq $gen-term-set(failure,M,T,D,N,Cs) = empty-term-set .

eq $gen-term-set(RT,M,T,D,N,Cs) = getTerm(RT) |

$gen-term-set(metaSearch(M,T,

’‘{_‘}[’__[get-var-term(soup-sort(Cs)),

’depth:_[upTerm(D)]]],nil,’*, unbounded, N + 1),M,T,D,N + 1,Cs) .

We employ metaSearch to gather all states placed at depth D reachable from state T in the
formal specification M.

We define gen-states-for-stable as:

eq gen-states-for-stable(M,T,D,N,Cs) = gen-states-for-stable*(M,Cs,

gen-state-seqs(M,T,N), < empty-term-set : empty-term-set >) .

eq gen-states-for-stable*(M,Cs,emp, < TS1 : TS2 >) = < TS1 : TS2 > .

eq gen-states-for-stable*(M,Cs, (TL || STL), < TS1 : TS2 >)

= gen-states-for-stable*(M,Cs,STL,

gen-states-for-stable**(M,Cs,TL,< TS1 : TS2 >)) .

eq gen-states-for-stable**(M,Cs,empty, < TS1 : TS2 >) = < TS1 : TS2 > .

eq gen-states-for-stable**(M,Cs,(T,TL), < TS1 : TS2 >)

= if check-state-seq(M, Cs, (T, TL)) then

else < TS1 except T : TS2 | T >

(if T in TS2 then < TS1 : TS2 > else < T | TS1 : TS2 > fi) fi .

eq check-state-seq(M,Cs,empty) = false .

ceq check-state-seq(M,Cs,(T,TL))

= if B then true else check-state-seq(M,Cs,TL) fi

if B := downTerm(getTerm(metaReduce(M,’_|=_[T, mid-formula(Cs)])),b-error) .

Function gen-state-seqs used in the first equation is employed to gather all state sequences
starting with state T (in the formal specification M) whose depth is N. Function gen-states-for

-stable* used in the second equation discovers non-cx states and cx ones by inspecting each in
those state sequences. If illegal, which is derived from mid-formula(Cs), holds in a state in a
given state sequence, then the last one (that has the self-transition) in the sequence is considered
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as a cx one, added to the set TS2 of states and deleted from the set TS1 of states in function
gen-states-for-stable** in the fifth equation. Otherwise, the last state is considered as a
non-cx one and added to TS1 if TS2 does not consist of it. Function check-state-seq in the two
last equations examines each state sequence by using function metaReduce. If illegal holds
at any state T in the state sequence in the formal specification M, true is returned; otherwise
false.

We intend to insert the following rule to the formal specification of KM in order to demon-
strate what is shown by our tool when a cx is discovered:

rl [flaw] : {(pc[0]: 1) (pc[1]: 1) (pc[2]: 0) (pc[3]: 2) OCs}

=> {(pc[0]: 1) (pc[1]: 1) (pc[2]: 0) (pc[3]: 2) OCs} .

The following is shown:

Check: failure

Cx: counterexample(

{{#pc: 4 k-states: 5 (pc[0]: 0)(pc[1]: 2)(pc[2]: 2)pc[3]: 0},’other}

{{#pc: 4 k-states: 5(pc[0]: 0)(pc[1]: 0)(pc[2]: 2)pc[3]: 0},’bottom}

{{#pc: 4 k-states: 5(pc[0]: 1)(pc[1]: 0)(pc[2]: 2)pc[3]: 0},’other}

{{#pc: 4 k-states: 5 (pc[0]: 1)(pc[1]: 0)(pc[2]: 2)pc[3]: 2},’other}

{{#pc: 4 k-states: 5 (pc[0]: 1)(pc[1]: 0)(pc[2]: 0)pc[3]: 2},’other},

{{#pc: 4 k-states: 5(pc[0]: 1)(pc[1]: 1)(pc[2]: 0)pc[3]: 2},’flaw})

Once we get to the following state:

{(k-states: 5) (pc[0]: 1) (pc[1]: 1) (pc[2]: 0) (pc[3]: 2) (#pc: 4)}

we will stay there forever because the self-transition can be taken infinitely many times. We
cannot, therefore, get to a legitimate state from this one.

7.3 Case Studies

The case studies were conducted with a docker container running Ubuntu 20.04.3 LTS as a
virtual machine that had 2 GB memory and ran on a host machine (an iMac) with 4 GHz
processor and 32 GB memory. Two mutual exclusion protocols were employed as examples: (1)
Qlock and (2) Anderson. Let us assume that each process comes into the critical section for
each protocol at most once. Both protocols are revised so that they can be self-stabilizing. We
add an observable component abnorm that stores a Boolean value which denotes whether the
current state is abnormal. abnorm is set to true whenever we detect that at least two processes
locate at the critical section. abnorm can be set back to false if the state has been recovered in
which no process locates at the critical section detected.
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Table 7.1: Conditional stable model checking running performance by Maude and the tool with
2GB memory restriction

Protocol #Processes Maude LTL Model Checker Layers L+ 1-DCA2CSMC

Qlock
10 processes 23s

2 2
1m 3s

11 processes NA 15m 31s

Anderson
5 processes 10s

2 2
44s

6 processes NA 38m 8s

For Qlock case study, if abnorm is false, p works as described above. If abnorm is true, when
p would like to exist cs, it gets rid of all elements from q and goes to fs. The initial state of
Qlock is set to an illegitimate state in which processes p2, p3, and p5 are placed at cs, q only
consists of p3, the other processes are placed at ss and abnorm is set to false.

For Anderson case study, if abnorm is false, p works as described above. If abnorm is true,
when p would like to exist cs, it gets rid of all elements from q and goes to fs. The initial state
of Anderson is set to an illegitimate state in which processes p2, p3, and p5 are placed at cs, q
only consists of p3, the other processes are placed at ss and abnorm is set to false.

We take three atomic propositions inCs1, inCs5, and inAbnorm that mean whether pro-
cesses p1 and p5 are placed at cs or not, and whether the current state is an abnormal
state or not, respectively. Model-checking experiments were conducted for inAbnorm � �¬
(inCs1 /\ inCs5) wrt Qlock with 10 and 11 processes, and wrt Anderson with 5 and 6 pro-
cesses by our tool and Maude LTL model checker. The experimental data are exhibited in
Table 7.1. d1 d2 . . . dL in the layer column says that L+ 1 layers are employed and ith layer
depth is di. nil in the layer column says that Maude LTL model checker is employed. N/A

means that the model checking experiment made it impossible to be carried out in that it did
not suffice to employ 2 GB memory for the model checking. Thus, the state space explosion
can be eased by the tool to a certain scope.

We conduct experiments for KM with the virtual machine above, but only 1GB memory is
used. The experimental data are shown in Table 7.2. For KM with 10 processes, 11 processes
and 12 processes, both our tool and LTL Maude model checker could complete the model
checking experiments. For KM with 13 processes, both our tool and LTL Maude model checker
could not complete the model checking experiments because 1GB memory was not sufficient
for model checking experiments, leading to the state space explosion. We can see that the
verification time of Maude LTL model checker is much smaller than that of our tool. That is
because many states are likely to be shared by the sub-state spaces at the final layer. Therefore,
our tool may need to explore again many sub-state spaces in those sub-state spaces at the
final layer, making the running performance of our tool degrade. For KM with 13 processes,
our tool also could not mitigate the state space explosion because our tool needs to store
extra information in DB−EX and the size of each sub-state space at the final layer is likely
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Table 7.2: Conditional stable model checking running performance by Maude and the tool for
KM with different processes (2GB memory)

Protocol #Processes Maude LTL Model Checker Layers L+ 1-DCA2CSMC

KM

10 processes 36m

2 2

1d 4h 58m
11 processes 1h 9m 2d 23h 54m
12 processes 7h 58m 22d 14h 1m
13 processes NA NA

to be still big, making the memory consumption high. We need to optimize how to store
information in DB−EX from which less memory is required. Besides, we need to find a better
layer configuration for KM with 13 processes in which the size of each sub-state space at the
final layer is small enough. These are two pieces of our future work.

7.4 Summary

We have described our tool for model checking conditional stable properties in a layered way.
We have implemented it in Maude with its meta-programming equipment on Full Maude. We
have also reported on the experimental data demonstrating that our tool eases the ill-famed
state space explosion to a certain scope.

Our technique [6] is an extension of the related techniques leads-to and eventual model
checking [4, 2] in order to deal with desired properties of self-stabilizing systems that can be
expressed as conditional stable properties. We are going to implement a parallel version of
our tool to utilize the best use of parallel computing because model checking experiments for
multiple sub-state spaces are basically independent in the technique. Hence, it is one future
direction of ours to build a parallel version of our tool. Moreover, we should carry out more
experiments to demonstrate the benefits obtained from our tool.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis focuses on mitigating the state space explosion in model checking, which is the
most annoying problem. We have proposed two techniques as well as their support tools. Some
experiments have been conducted to demonstrate the usefulness of our techniques/tools.

We have described a divide & conquer approach to leads-to model checking (L+1-DCA2L2
MC) so as to mitigate the state space explosion, which is dedicated to leads-to properties. Many
systems requirements can be expressed as the properties, such as the lockout freedom property.
Hence, it is worth focusing on the properties. The technique divides the original reachable state
space into multiple layers, generating multiple sub-state spaces, and checking multiple model
checking experiments. We have proved that the multiple smaller model checking problems are
equivalent to the original leads-to model checking problem and designed an algorithm based
on the theorem from which we can conduct model checking experiments with the technique.
Manually conducting model checking experiments with L + 1-DCA2L2MC is time-consuming
and error-prone because many states are considered at each layer. We have then developed a
tool that supports the technique. The support tool is implemented in Maude by using meta-
programming facilities on the top of Full Maude. We have conducted experiments with the
support tool for four mutual exclusions: Qlock, Anderson, MCS, and TAS. The experimental
data says that our technique/tool could complete the model checking experiments with a limited
memory used, namely 2GB memory, while Maude LTL model checker could not do so because of
the state space explosion problem. Moreover, when 32GB memory was used to conduct model
checking experiments for Qlock and Anderson, our technique/tool could complete the model
checking experiments, while Maude LTL model checker could not complete the model checking
experiments once again. That has demonstrated that our tool/technique could mitigate the
state space explosion in model checking to some extent.

We have extended the technique used in L+ 1-DCA2L2MC in order to handle conditional
stable properties. We then have proposed a divide & conquer approach to conditional stable

79



model checking (L + 1-DCA2CS2MC) so as to mitigate the state space explosion in model
checking, which is dedicated to the conditional stable properties. The properties can be used to
express desired properties that self-stabilizing systems should satisfy. Hence, it is meaningful to
concentrate on the properties. The original reachable state space made from each initial state
is divided into multiple layers, generating multiple sub-state spaces, by the technique. Multiple
smaller model checking experiments are then carried out. We have proved a theorem that says
that the original conditional stable model checking problem is equivalent to the smaller model
checking problems tackled by the technique. An algorithm has been constructed so as to support
conducting model checking experiments with the technique. It is inevitable to develop a tool
that supports the technique in order to facilitate conducting experiments. The support tool has
been implemented in Maude by using meta-programming facilities on the top of Full Maude. We
have conducted experiments for three self-stabilization protocols: Qlock, Anderson, and KM.
Note that Qlock and Anderson are revised to become self-stabilizing. With a limited amount
of memory, namely 2GB memory, our tool could complete the model checking experiments for
Qlock and Anderson, while Maude LTL model checker could not complete the model checking
experiments because of the state space explosion. For KM, we used only 1GB memory and both
our tool and Maude LTL model checker could not complete the model checking experiments
in which 13 processes participated in KM. However, our technique/tool still could mitigate the
state explosion in model checking to some extent for Qlock and Anderson.

We have conducted model checking experiments with our techniques/tools and compared
them with Maude LTL model checker because of the following reason. Maude LTL model
checker employs the same model checking algorithm as SPIN [34], one of the most popular
model checkers for software systems. There is a report saying that SPIN and Maude LTL model
checker are comparable in terms of both running time and memory consumption [16]. This
means that whenever Maude LTL model checker encounters the state space explosion problem,
making it impossible to carry out model checking experiments, so do SPIN and almost all
other model checkers. Therefore, it is meaningful to compare our tool with Maude LTL model
checker.

It is very important to verify the correctness of hardware and software systems so as to make
them reliable. Model checking is one of the most advanced techniques to verify that a finite-
state system satisfies its desired properties. However, the most challenge in model checking is
the state space explosion. This thesis has given an effort to mitigate the state space explosion
problem to some extent by describing two techniques L+1-DCA2L2MC and L+1-DCA2CSMC
as well as their support tools for leads-to and conditional stable model checking, which are two
important properties. We expect that the thesis is beneficial to researchers as well as engineers
who are interested in using model checking to verify hardware and software systems.

Because LTL formulae for what are called leads-to properties and conditional stable prop-
erties in this thesis are quite similar, it seems possible to integrate the two techniques proposed
in the thesis. But, it is not that straightforward to do so. For ϕ1 � ϕ2, we make two sets of
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states AllSL and CxSL for layer L+ 1, where AllSL is the set of all states located at depth
dL and CxSL is the set of all counterexample states (of ϕ1 � ϕ2) located at depth dL, and
check ϕ1 � ϕ2 for all states in AllSL and ♦ϕ2 for all states in CxSL. This cannot be used
for ϕ1 � �ϕ2. To show it, let us try to use this for ϕ1 � �ϕ2. Let s be in AllSL except
for CxSL. Let us suppose that there exists a state in which ϕ1 is true in a computation up
to s, which implies that ϕ2 is true in s. It does not suffice to check K, s |= ϕ1 � �ϕ2. Let
us suppose that there is no state in any paths that start with s such that ϕ1 is true and ϕ2

is true. If so, K, s |= ϕ1 � �ϕ2. From the assumption, however, there exists an earlier state
leading to s such that ϕ1 is true. Thus, ϕ2 needs to keep being true from a state on, but ϕ2

does not from the assumption. For ϕ1 � �ϕ2, we make two sets of states NcxSL and CxSL

for layer L + 1, where CxSL is the set of all counterexamples (of �ϕ1) located at depth dL

and NcxSL is the set of all states (except for those in CxSL) located at depth dL, and check
ϕ1 � �ϕ2 for all states in NcxSL and ♦�ϕ2 for all states in CxSL. This cannot be used for
ϕ1 � ϕ2. To show it, let us try to use this for ϕ1 � ϕ2. Let s be in CxSL. By definition,
s is not in NcxSL. Based on the approach, if K, s |= ♦ϕ2 does not hold, we conclude that
K, s |= ϕ1 � ϕ2 does not either. But, there may be a state such that ϕ2 is true later than a
state such that ϕ1 is true in each path leading to s, which does not be checked by the approach.
So, the algorithm used for ϕ1 � ϕ2 cannot be used for ϕ1 � �ϕ2, and the algorithm used for
ϕ1 � �ϕ2 cannot be used for ϕ1 � ϕ2.

8.2 Future Work

Although L + 1-DCA2L2MC and L + 1-DCA2CSMC have been demonstrated as one promis-
ing way to mitigate the state space explosion in model checking for leads-to and conditional
stable properties, as usual, there are several lines of our future work that we should take into
consideration.

The technique used in L+ 1-DCA2L2MC and L+ 1-DCA2CSMC can be used not only for
leads-to and conditional stable properties but also for other classes of LTL properties. Thus,
one piece of our future work is to extend the technique in order to handle other classes of
LTL properties by which many systems requirements can be expressed. For example, we have
proposed a divide & conquer approach to until and until stable properties in model checking [50]
so as to verify some desired properties that real-time and hybrid systems should satisfy. We
plan to build a support tool for until and until stable properties with the technique and conduct
some experiments to demonstrate the usefulness of the technique as well as the support tool
being built.

Layer configuration affects the running performance of our tools when conducting model
checking experiments. Therefore, we need to come up with a way to find a good layer config-
uration for our tools/techniques. One possible way is the following. We may need to consider
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the number of states located at each layer and the verification time to conduct model checking
experiments for some sub-state spaces at the final layer. The more layers are used, the more
model checking experiments at the final layer need to be conducted and the smaller the size
of each sub-state space at the final layer is. Note that when the number of states at each
layer is considerably large, then the time taken to generate states is also time-consuming. Our
tools currently support displaying the number of states at each layer and the progress of model
checking experiments at the final layer (e.g. how many sub-state spaces have been tackled
and not tackled yet). If the verification time to conduct model checking experiments for some
sub-state spaces at the final layer is too much, it is not likely to be a good layer configuration
because the sub-state space is not smaller enough, which may lead to the state space explosion.
We should find a layer configuration such that the verification time to conduct model checking
for each sub-state space at the final layer is not too much and the number of states at the
final layer is not too large. In our techniques, if we use three layers in which each layer depth
of the first two layers is d, it is equivalent to using two layers in which the first layer depth
is 2 × d. Note that the depth of the final layer is unbounded. Hence, one strategy is to use
a small depth for each layer and then stack up more layers one by one, which may avoid the
state space explosion while generating states at intermediate layers, and carefully check which
layer configuration is good with a small deviation. Let us suppose that we use 2 as each layer
depth. We may start conducting model checking experiments with our tools with the layer
configuration 2. The depth of states located at the beginning of the final layer is currently 2.
If the verification time to conduct model checking experiments for some sub-state spaces is too
much and the number of states located at the beginning of the final layer is still small, we can
use one more layer and the layer configuration is currently 2 2. We can iterative that process
until we find a layer configuration such that the verification time to conduct model checking
experiments for some sub-state spaces at the final layer is not too much and the number of
states located at the beginning of the final layer is not too large. However, we do not need
to carry out the process in an iterative way. We can run several experiments independently
with different layer configurations at the same time, such as 2, 2 2, 2 2 2, etc. Observing such
experiments over a period of time may allow us to find a good layer configuration to conduct
model checking experiments with our techniques/tools.

For KM experiments, our tools for L+1-DCA2L2MC and L+1-DCA2CSMC, respectively,
need to spend much amount of time to complete the model checking experiments compared
with Maude LTL model checker. Because many states may be likely to be shared by many
sub-state spaces at the final layer. Our tools may need to explore again many shared sub-state
spaces from sub-state spaces at the final layer, making the running performance of our tools
degrade. Processes and machines used in KM, respectively, seem to have a symmetry in which
we may change the context between processes/machines and do not affect the behavior of KM.
Such a symmetry may make sub-state spaces in the final layer have many shared states, which
should be avoided to improve the running performance. Symmetric reduction is one possible
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technique to remove replicated structures produced in such symmetric systems by which the
state space is reduced and many replicated sub-state spaces are removed. We are going to
integrate symmetric reduction and our techniques from which many states are less likely to be
shared by many sub-state spaces at the final layer. We expect that can improve the running
performance of our tools for KM case studies.

Recently, high-performance computing technologies, such as multicore processors and clus-
ters have emerged. Hence, speeding up model checking with parallelization is one promising
approach. L+1-DCA2L2MC and L+1-DCA2CSMC divide the reachable state space into mul-
tiple layers, generating multiple sub-state spaces, and checking multiple smaller model checking
experiments. Checking each smaller model checking experiment is independent. Especially, it is
completely independent in the final layer, which opens an opportunity to parallelize the tools.
Hence, we would improve the running performance of our tools for L + 1-DCA2L2MC and
L+ 1-DCA2CSMC by parallelization as one piece of our future work.
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