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Abstract

As a human activity with an ancient history, games not only serve for fun but also pro-

mote the development of entertainment technology. The vast majority of puzzle games are

known as single-agent games in the area of mental exercises, such as N-puzzle and Rubik’s

Cube. Solving puzzles helps to understand better information variation and stochastic

characteristics in the solving progress. Puzzles can be divided into two categories: puz-

zles without hidden information and puzzles with hidden information, representing the

certainty and uncertainty factors in the puzzle-solving process, respectively.Uncertainty

in a puzzle a↵ects the way players experience entertainment and a↵ects the solvability

of the puzzle. In general, the purpose of a puzzle is to allow the player to explore for

the optimal solution. Recent related work on applying search algorithms to the puzzle

domain can be divided into two directions. The first direction is using puzzles as experi-

mental platforms to verify the performance of the algorithm, while the other is using the

search algorithm to find the optimal solution to the puzzle. Few studies have focused on

hidden information in puzzles on solvability. However, observing the information in the

puzzle-solving process may lead to a link between the puzzle and the game.

In this thesis, the A* algorithm was used to solve N-puzzle and dynamic information

in the solving progress. It explores information by solving puzzles in an optimal way

and entertaining analysis way. In addition, a solving strategy based on Gauss–Jordan

Elimination and Constraint Satisfaction Problem was proposed to solve Minesweeper to

explore the link between puzzles and games. The winning rate based on this strategy

provides a new perspective on the definition of puzzles.

This thesis focuses on solving puzzles, and its entertaining analysis of information

progresses. (1) Solving an 8-puzzle with the randomly generated initial position using

the A* algorithm as the AI player. By adopting total steps to solve the game and the

success rate as the game progress model, the attractiveness and sophistication of this

puzzle have been discussed. Such findings could contribute to the evolutionary changes in
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sliding puzzle games. (2) To develop an AI solver of Minesweeper with the configuration of

9⇥9|10, 16⇥16|40, and 16⇥30|99, based on the obtained information on the board, called

the ‘PAFG’ strategy, which stands for the primary reasoning, the advanced reasoning, the

first action strategy, and the guessing strategy. The first two strategies take advantage

of knowledge-based rules and linear system transformation (Gauss-Jordan elimination

algorithms) to determine the probability of making a move independently. The last two

strategies explore the beginning and ways to determine hidden puzzle states to enhance

the winning rate of the AI solver. Such an AI solver could contribute to classifying

single-agent stochastic puzzles and establishing the boundary of the puzzle-solving and

game-playing paradigm. (3) To explore puzzle categories based on the perspective of

Minesweeper solvability and find the border between puzzles and games, as well as study

the motion in mind to the entertainment analysis of solving puzzle field. Moreover, to

discover significant characteristics from the perspective of information dynamics in the

solving process and reveal the internal laws behind players’ behavior. The experiment

demonstrates the link between solving puzzles and playing games from an entertaining

analysis view. Even more, it has become indispensable in the field of puzzle-solving and

entertainment analysis and influences the way of puzzle-solving and the solving experience.

Keyword: Puzzle Solver ; Information Dynamic; A* algorithm; Gauss–Jordan Elimina-

tion; Constraint Satisfaction Problem
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Chapter 1

Introduction

1.1 Chapter Introduction

In this chapter, we first introduce the history of solving algorithms and strategies using

the puzzle as test-beds and how it grows with the development of the puzzle. As the major

content of this thesis consists in analyzing the generated solvers and analyzing its results

to the entertaining analysis the information progresses based on the solving information.

Then, we overview the solving method of puzzles and its impact on entertaining analysis.

Finally, we outline the contents and summarize the contributions of this thesis.

1.2 Background

Games are an indispensable human activity for fun. Researchers have tried to de-

fined game as a fundamental part of human existence to analyze the art of game design,

and explore the reason why do people play games. [2] provided the relationship between

games and culture, Adrienne defined the video game culture which permeate areas such

as education, social business activities, mobile technology, and family interactions, and

people who play these games do not di↵erentiate between age, gender, sexual orientation,

race, religion and nationality. Video games use electronic devices as a medium for var-

ious gaming experiences, which could provide entertainment for a broad population. A
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study [3] proposed an iterative method to solve two-person game, which has been proofed

in mathematical way and has laid the promising theoretical foundation for the future of

solving games.

However, in the 21st century, the electronic game industry that targets “casual” game

players has emerged [4]. Puzzle game as a classical casual game is well known to help

logic-based brain stimulation that enjoys relaxation and entertainment during the game-

playing process. Unlike other games that aim to make the gameplay longer, such as flappy

bird, a puzzle game focuses on finding the optimal solution under specific rules [5]. In

some cases, the game and the puzzle can be interchangeable. Games can be composed of

small puzzles, and once the puzzles are solved, there is no uncertainty in game. Moreover,

researchers have studied the puzzle as a single decision maker and single-player game

in decades [6] [7], they defined a solution of the puzzle should be aesthetically pleasing

and gives the user satisfaction, where 24 puzzles were used as test-beds to explore the

complexity and methods to solve.

In general, solving a puzzle means finding a solution to a puzzle. Researchers have

explored many methods and algorithms for solving kinds of puzzles [8] [9]. A study

proposed the first application of a metaheuristic technique for solving the popular sudoku

puzzle. Notably, they pointed out that the relationship between logic-based and random

search algorithms is actually likely to be symbiotic; that is, they are likely to be able

to benefit from each other’s strengths: random search algorithms can help logic-based

algorithms solve a wider range of problem instances, while logic-based algorithms have

the potential to significantly reduce/adjust the search space to reduce the work of random

search algorithms. And, a hybrid algorithm for sudoku might be even further promise [10].

Similar to Sudoku, Nonogram is called logic puzzle, Japanese puzzle, number weave,

puzzle puzzle, number cross puzzle. In addition, an algorithm based on shape and image

merging was proposed to solve jigsaw puzzles by using images containing dozens of piece

[11].

Moreover, a puzzle often has more than one solution, advanced players seek the optimal

solution, which takes the least number of steps or has the highest chance of solving.

The optimal solution consists of a sequence of steps, the optimal solution at each step

determines the final optimal solution, which is related to the solving rate in the solving
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process. However, there is still no study explored well aboout the puzzle-solving process

in mind from the view of information dynamics during the solving process.

The motion in mind concept uncovers the motion changes of game’s and players’ in-

formation for various game uncertainty over time has been discussed by Iida et al [1]. As

quoted by Albert Einstein, “Most people see what is, and never see what can be.” In a

sense, a similar notion is induced in this thesis from the context of the puzzle. By under-

standing the information progress in puzzle-solving, we can have a better comprehension

of human life, including the interpretation of entertainment, training, and thinking. This

thesis investigates the dynamic uncertainty of problem-solving progression in di↵erent

puzzles and the interplays that a player experienced between solving puzzles and playing

games. Exploring the boundaries of games and puzzles while establishing the di↵erences

and connections between puzzles and games is also a promising research direction that

warrants further investigation. Nevertheless, further exploration in contemporary data

collection technology may provide fertile grounds for further justification of the thesis’s

findings.

Puzzle is an ancient single-agent game with the purpose of finding the optimal so-

lution to solve problems under specific rules [4]. With the artificial intelligence (AI)

developments, researchers focus on solving puzzles automatically by various algorithms

and strategies. Each puzzle has a unique characteristic that involves solving information

delivery and provides a solving experience for players. The relationship between mo-

tions for the player and the game, can reasonably correspond to the relationship between

physics for humans and nature, which has been verified to some extent in the fields of

sports games and board games through motion in mind measure. Combined with game

refinement theory, both are promising in studying the uncertainty characteristics of games

in the field of entertaining analysis. This thesis focusing on exploring the deterministic

and stochastic elements of puzzle mechanics based on developing AI solvers of target puz-

zles, as well as its impact of information dynamics during the puzzle-solving process on

engagement and entertainment analyses by using the game refinement theory and mo-

tion in mind concept. Moreover, finding the border between puzzles and games from the

solvability point of view, as well as the winning rate various on the puzzle configurations.
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1.3 Statement of Research Question

The main purpose of this thesis is to develop puzzle AI solvers to explore the internal

mechanism of puzzle based on the information during the solving progress, as well as to

do entertaining analysis together with game refinement theory and the motion in mind

concept. To this end, the main contributions of this thesis are as follows: (1) To develop

some AI solvers for solving some target puzzles (N-puzzle, Minesweeper, etc.). (2) To

establish puzzle categories from the perspective of their solvability and find the border

between puzzles and games. (3) To explore the entertainment analysis of solving puzzle

filed with the game refinement theory and motion in mind measure, discover the charac-

teristics of each puzzle from the perspective of information dynamic in solving process,

and reveal the internal laws behind player’s behavior.

This thesis focuses on dynamic information in puzzle-solving process as well as its

impact on engagement and entertainment analysis of puzzle development. The design

concept of AI solvers in this thesis is based on the solving logic of players, which is mod-

eled mathematically to facilitate future entertainment analysis of players with di↵erent

abilities. Furthermore, more strategies correspond to the increased player’s ability, which

implies a higher winning rate, verified by proposed knowledge-driven reasoning, strate-

gies, and simulation conducted in this thesis. Promising future work includes exploring

the current strategies in other related single-agent games, to expand further and verify

the definition established.

1.4 Structure of the Thesis

This thesis firstly introduced the background of the research field and stated the target

research questions. Then, related works for the evolutionary of puzzles and the complexity

of solving puzzles as well as measure of engagement and entertainment in Chapter 2. An

ancient single-agent puzzle N-puzzle as the test-bed to study the entertainment analysis

based on various puzzle configurations in Chapter 3. Besides, this research proposes a

strategy to solve single-agent stochastic puzzle by takes Minesweeper as a test-bed, where
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the comparison with di↵erent methods are in Chapter 4. This thesis digs into the single-

agent puzzles in 5, which shows the informational progression of solving puzzle process

from the searching and solvability points of view, the border between games and puzzles

has been defined as well. In general, this thesis tries to explore the solving di�culty in

deterministic and stochastic puzzles. It indicates the significant features relevant to figure

out the engagement and entertainment in our life.

This thesis comprises of 6 main chapters:

• Chapter 1: Introduction

The objective of this chapter is to introduce the frame of this research, such as

a brief evolutionary development in this domain, the outline of this research, the

definitions, as well as the relationship among keywords in the research considered.

The introduction chapter also includes a statement of the research problem, it ex-

plains the main problem that the research aims to solve, as well as the objective

and significance of this thesis. At the end of this chapter, the structure of the thesis

will be explained.

• Chapter 2: Related Works

Literature Review: The chapter serves as a review of the theoretical background

related to this research as well as presenting the state-of-the-art research in the

field. The content of this chapter will be the background of puzzle evolutionary,

the complexity of solving puzzles, a review of the solving algorithms, as well as the

motion in mind, a measure of entertainment in the game domain.

• Chapter 3: Solving Single-Agent Deterministic Puzzle

As a single-agent game, the sliding puzzle game had been rated as one of the Chi-

nese video programs that exceeded 10 million downloads in 2018. A sliding puzzle

is a combination puzzle that challenges a player to slide (frequently flat) pieces

along specific routes (usually on a board) to establish a specific end configuration.

It examines the player’s comprehensive ability to balance a whole range of dimen-

sions, including reasoning, computing, observation, memory, space, and creative

ability. As early as the 1970s, Doran collected the data through experiments for

solving 8-puzzle games using three heuristics algorithms and a weighted parame-

ter. Since then, many e↵orts have been directed towards research in sliding puzzle
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games, focusing on finding the optimal solution or using a sliding puzzle game as an

experimental platform to verify the time and space complexity of algorithms [12].

However, these studies are concerned with finding the optimal solution or improv-

ing the solving algorithms. Limited studies have been conducted on evaluating the

attractiveness of an 8-puzzle for players. Therefore, the A* algorithm is adopted in

this chapter as the AI player to randomly generate the 8-puzzle solution and explore

the reason why the game is challenging but accessible among some people.

• Chapter 4: Informational Dynamic of Single-Agent Stochastic Puzzle

Proposing an e�cient puzzle solver has been a significant research paradigm in

Artificial Intelligence (AI). E�cient solving mechanisms and algorithms had been

exclusively conducted on the domain of two-player zero-sum games since 1994 [13].

Based on such domain, various methodologies have been proposed which take advan-

tage of the deterministic nature of such games, which is associated with predicting

a game-theoretic value and determining optimal strategy. Nevertheless, a clear defi-

nition of puzzle categories is needed from the perspective of its solvability. For such

purpose, the Minesweeper puzzle was utilized as the benchmarking testbed. In such

a condition, what distinguishes a deterministic puzzle from other types of puzzles,

i.e., a stochastic puzzle? Therefore, this chapter proposed a definition of a stochastic

puzzle from its solvability, which formed the foundation for the proposed AI solver.

Moreover, the proposed AI solver takes advantage of both the deterministic and

stochastic elements of the puzzle, such strategies also combine mathematical mod-

els, knowledge-driven rules, and linear transformation to provide conducive moves

in solving the Minesweeper, comparable to previously proposed Minesweeper AI

solvers.

• Chapter 5: Finding the Border Between Games and Puzzles

Nowadays, researchers focus on studying and developing algorithms to analyze the

relationship between branching factors and di�culty in puzzle games. However, the

play experience would di↵er depending on the players’ ability, experience, to solve

the puzzle which causes some variant in their decision-making ability. Then, how

can this ability a↵ect players’ decision-making during the puzzle game process? This

chapter aims to analyze how the reduction of branching factor a↵ect the relation
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between game process and player experience from objective and subjective perspec-

tives among di↵erent puzzles. Also, the motion in mind concept is adopted to find

the border between playing games and solving puzzles.

• Chapter 6: Conclusion

Chapter 6 gives the general conclusion of this thesis and illustrates the significance

findings both in theoretical and practical sense. The deficiency of the current thesis

and promising future direction are given at the end of the chapter.
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Chapter 2

Literature Review

2.1 Chapter Introduction

In this chapter, we introduce the theoretical background related work to this research

as well as illustrate the uncertainty measurement in the field of entertainment of solving

puzzles field. The first section serves to review the history of puzzles evolution and

the relationship between the category of puzzles and their characteristics. Studies of

the complexity of solving puzzles from ancient times are covered in the second section.

Di↵erent scholars may have di↵erent views on the same problem, and their research is also

listed in this chapter. Then, the measurement of the uncertainty analysis and motions in

mind have been presented in this chapter, as well as the state-of-the-art research in the

field.

2.2 Evolution of Puzzles

Research on the e↵ects and benefits of playing games has been going on for decades.

Vygotsky argued for a strong theoretical link between games and factors that promote

social cognition, where the immediate and concrete feedback, such as dead ends in puzzles

serve to the reward continual e↵ort and keep players or solvers within the proximal devel-

opment zone [14]. Researcher Granic said the core of all kinds of video games is problem
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solving. As an ancient video games, puzzle game designers often o↵er little guidance on

how to solve problems, and instead provide a near-blank board for players to explore

a large number of possible solutions based on their own experience and intuition [15].

In addition, a research has shown that play puzzle games with characteristic of minimal,

short-term, and highly accessible, can helps to feel better, promote relaxation, and combat

feelings of anxiety, like Angry Birds, Bejeweled II [16].

The Tangram is a puzzle consisting of seven put-together pieces. It was invented

in China between 1796-1802, brought to England through the ”China Trade”, and soon

became popular in Europe and America. History has labeled it the world’s first puzzle

craze in the book [17]. Several kinds of arrangement puzzles had been invented before

the advent of the jigsaw puzzle, and many after that, but the jigsaw puzzle is by far

the most popular one. These seven pieces are all simple shapes: two small triangles,

a medium-sized triangle, two large triangles, a diamond, and a square. It is unique in

its ability to turn these simple geometric shapes into fascinating, elegant, complex, and

sometimes contradictory figures. Or you can create your own designs, limited only by

your imagination. This simple puzzle is most gripping: How do seven simple tans create

such extraordinary images and bewildering challenges?

Moreover, most puzzles we have ever played belonged to NP-complete puzzles [7].

Researcher Kendall analyzed 24 puzzles in terms of the presence or absence of behavioral

order and hidden information in order to promote the research attention in the field of

puzzles, and gave references to most of the puzzles. Minesweeper, Mastermind, Solitaire,

and Tetris are thought of as a puzzle with hidden information. While Blocks World,

Clickomania, Lemmings, Mastermind, Minesweeper, N-Puzzle, Peg Solitaire, Rush Hour,

Solitaire, and Tetris are considered as a puzzle with the action order matters. At the

end of the study, many promising research directions based on puzzle research are given,

such as are the puzzles stochastic or deterministic? How large is the search space? Are

the puzzles single-goal or multi-goal? A lot of important inspirations are given to further

researchers. From this perspective, the Minesweeper has hidden information, while N-

puzzle does not, giving us some inspiration to distinguish between puzzle classifications.

“HuaRongDao” is a traditional sliding puzzle game in China, based on the “Romance

of the Three Kingdoms”, and is known as one of the “three incredible games of ancient
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China” along with the Tangram and the Nine Linked Rings for its richness of puzzle and

fun; also known as “the three incredible games in the world of intellectual games” by

foreign intellectual experts together with Rubik’s Cube and Independent Diamond Chess

for its many variations and never-ending play. N-puzzle is a kind of sliding puzzle which

the Fifteen Puzzle has been popular for more than 100 years, originated in December 1879

when Mr.Rice placed 15 wooden blocks on a cardboard box and surrounded the pieces

with a wooden frame called Gem. It took only a few months for it to become popular in

February 1880. The rule is to place the blocks in the box irregularly, then move the blocks

until the order is regular. These simple and somewhat ambiguous instructions were a key

factor in the development of the Fifteen Puzzle craze [18]. No matter old or young, black

or white, they tried to solve the Fifteen Puzzle all day and night. Later, it evolved into

8-puzzle and 24-puzzle, which became popular around the world as a di↵erent di�culty

division.

Throughout human history, puzzle games have their origins in the advent of brain

teasers and puzzles. Many educational games were created in the early days of handheld

gaming, where they created a template for games that required only thought and strategy

without any action or adventure. Erno Rubik created Rubik’s Cube in the late 1970s. The

3⇥3⇥3 Rubik’s cube is a classic three-Dimensional combination puzzle with 3⇥3 planes in

6 faces that can be rotated 90 degrees in each direction, with an ample state space of about

4.3⇥ 1019 possible configurations and only a single goal state [19]. It can be solved when

all planes on each face of the cube are the same color. The game length of the optimal

solution and nodes generated for random Rubik’s Cube problem has been discussed, which

has successfully increased the cost-e↵ectiveness of search algorithms. Tetris is considered

to be the game’s revolution and popularization of the puzzle game genre. Tetris is a

tile-matching video game created in 1984 by Russian software engineer Alexey Pajitnov

for the Electronika 60 computer [20]. Researchers said that Tetris, one of the ancestors

of the matching tiles game, combined with the chain shot (1985) have contributed to the

iterative development of Match-3 puzzles, with the representative nature of the popular

trend being Bejeweled faced to the audience of ”casual” gamers in 2001 [21].

In addition, with Minesweeper became a feature of Microsoft Windows in 1989, the

hidden information puzzle gained it its popularity [22,23]. With more versions, players can
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design the size of the board and the density of mines independently. It is worth mentioning

that the rules of the first step of minesweeper are extremely important, because it is related

to the winning rate of Minesweeper. i.e. whether the cell opened in the first step is likely

to be a mine or not, and how many of cells are opened in the first step. And in general,

the rules of the first step are determined by the puzzle designer.

2.3 Complexity of Solving Puzzles

From the time the puzzle appeared, people were trying to solve it. As more and

more attention was paid to the field of scientific research, researchers started to analyze

the type and complexity of the puzzle and tried to solve it in di↵erent ways until they

found the optimal solution to the puzzle. Indeed, an article of Stephen Cook [24] begins

succinctly by showing the problems faced when considering computational complexity:

“In general, it is much harder to find a solution to a problem than to recognize one when

it is presented.” This idea can be applied to most of the current popular puzzles. Three

possible correlations between P, NP, NPC, and co-NP are shown in Figure 2.1.

Polynomial-time (P) problems are those for which a method exists to solve them in

polynomial time. In the computational complexity theory, Polynomial time means that

the calculation time of a problem is not greater than a Polynomial multiple of the problem

size. Any abstract machine has a complexity class that includes problems that can be

solved by the machine in polynomial time. An optimization problem is called polynomial-

time solvable if a polynomial-time algorithm has been found, and the set of such problems

is denoted as P. Therefore, polynomial-time solvable problems are called P problems.

Non-deterministic polynomial time (NP) problems exist when an algorithm validates

the response “YES” in polynomial time for problem instances. Non-deterministic algo-

rithms decompose the problem into two phases: guessing and verifying. The guessing

phase of the algorithm is non-deterministic, and the verification phase of the algorithm is

deterministic, which verifies the correctness of the solution given in the guessing phase.

Let an algorithm M be a non-deterministic algorithm for solving a decision problem Q.

If the verification phase of M can be completed in polynomial time, then M is said to be

a polynomial-time non-deterministic algorithm. Some computational problems are deter-
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Figure 2.1: An illustration of three possible relationships among P, NP, NPC, and co-NP

ministic, such as those for which the result can be obtained by following the derivation of

the formula. However, some problems are not computable in a straightforward way. For

example, the problem of finding large prime numbers. Is there a formula to find out what

the next prime number is? The answer to such a question cannot be calculated directly,

but can only be obtained by indirect “guessing”. This is a non-deterministic problem.

These problems usually have an algorithm that does not tell the answer directly, but can

tell whether a possible result is correct or incorrect. This algorithm, which can show

whether the “guessed” answer is correct or not, is called polynomial non-deterministic

time problem if it can be computed in polynomial time.

A problem p is an NP-complete problem if and only if p is an NP problem and ev-

ery NP problem can be reducible to p in polynomial time [25], which means that NPC

problems are the most challenging problems in NP problems. The complexity of certain

problems in NP is related to the complexity of the entire class. If there is a polynomial

time algorithm for any of these problems, then all NP problems are polynomial time solv-

able. These problems are called NP-complete problems. Nowadays, in the pure scientific

research, communication, transportation, industrial design and enterprise management

departments, in the social military, political and commercial struggle emerged a large
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number of NP problems. If it is solved by the exhaustive method familiar to classical

pure mathematicians, the calculation time often reaches astronomical figures and has no

practical value at all. Many experienced mathematicians believe that there is no com-

plete, accurate, but not too slow solution to these problems. NP = P? Probably the most

important mathematical problem of the century.

Moreover, co-NP problems are complements of NP problems. In other words, co-NP

problems are those for which a polynomial-time solution exists to validate the answer

“NO” for problem instances. A problem p is a co-NP-complete problem if and only if it

is a co-NP problem, and every co-NP problem can be reduced to p in polynomial time,

implying that co-NP-complete problems are the most challenging co-NP problems.

Many research experiences have been put into studying the complexity of puzzle-

solving field, and lots of the puzzles that have created a popular craze have proven to

be NP problems. However, there are many classifications of the characteristics of these

puzzles, such as the hidden information, and the order of behavior is important. This

thesis focuses on focuses on analyzing the mechanism and characteristics of solving puzzles

from the perspective of uncertainty (hidden information) in puzzles, with N-puzzle as the

representative deterministic puzzle, and Minesweeper as the representative uncertainty

puzzle, as well as the significance of their information dynamics in the solving process in

the entertainment field.

2.3.1 N-puzzle

N-puzzle first appeared in the scientific literature in 1879 [7]. The N-puzzle game consists

of n numbered, movable tiles set in a m⇥m frame, where m⇥m� 1 = n, each of which

has a unique number from 1...n. The goal of the puzzle is to disarrange the initial state

cells out of order, then through legal movement, make all cells discharge in the order of

the goal state. It is interesting to note that not all N-puzzles are solvable. The states of

N-puzzle can be divided into two states, half of which cannot be legally moved to reach the

target state, while the other half can. This research also showed that the generalization

to the N-puzzle is NP-complete problem, but the 15-puzzle is not.

The A* algorithm is well-known heuristic algorithm for solving N-puzzle, especially for

8-puzzle, which has a relatively small search space. The IDA* algorithm as a linear space
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version of A* algorithm, was the first to obtain optimal solutions of 15-puzzle. Korf and

Schultze provide an improvement on the best first search, enabling them to complete the

first breadth first search of 15-puzzle [26]. Analysis and experiments in a study based on

IDA* algorithm for solving Rubik’s cube and N-puzzle show that the asymptotic heuristic

branching factor is the same as the brute force branching factor on the exponential tree.

This thesis shows that the e↵ect of heuristics is to reduce the e↵ective search depth by a

constant, rather than reducing the e↵ective branching factor, as opposed to brute force

search. This result lays a theoretical and practical foundation for the algorithm and

complexity of N-puzzle [12].

As the generation of 24-puzzle, the depth of the search tree increases as the number

of cells in the puzzle increases. An survey of puzzle games provided many of the methods

used by researchers trying to solve 24-puzzle [7]. Among them, researchers tried to use

IDA* algorithm for experiments to find the optimal solution, some tried to propose an

algorithm to find the sub-optimal solution in polynomial time, and some researchers

provided a technology to prune repeated nodes from the search. Besides, researchers

proposed a method based on IDA* algorithm and pattern database heuristics to find the

optimal solution of 24-puzzle. However, the purpose of this thesis on deterministic puzzles

is to find the optimal solution with the minimum number of steps. The IDA* algorithm

may not get the optimal solution because of insu�cient iteration depth, while the A*

algorithm always gets the optimal solution if it takes long enough.

2.3.2 Minesweeper

Minesweeper is a popular computer puzzle game that comes with some Microsoft Microsoft

Windows operating systems. It is played on an R⇥L | b, all of which are initially hidden.

R⇥L | b, where R and L are the number of rows and columns on the board, respectively,

and b is the number of mines. From the computational complexity perspective, previous

studies found that Minesweeper is too hard to solve in polynomial time. Moreover, as

one of the NP-complete problems, Minesweeper is the most di�cult NP problem as found

by [27]. From Minesweeper consistency problem, given a game of Minesweeper configu-

ration and a board state with some visible numbers and flagged mines, does there exist a

possible distribution of unknown mines to satisfy known information? [25] proposed that
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the Boolean satisfiability problem (SAT) could reduce to Minesweeper consistency prob-

lem, which was described as Boolean formula (i.e., all variables take TRUE or FALSE

assignments).

Furthermore, based on a theorem by [24] that Boolean satisfiability problem (SAT) is

NP-complete, which proved that the Minesweeper consistency problem is NP-complete.

Then, solving the Minesweeper consistency problem provides a way to Minesweeper in-

ference problem. For instance, given a game of Minesweeper configuration and a board

state, does a hidden cell exist that the player can infer undoubtedly? [25] and [28] studied

Minesweeper inference problem from the perspective of computational complexity the-

ory. They proved that the Minesweeper inference problem is a co-NP-complete problem

(the complements of NP problem), which is the most challenging problem in co-NP and

reduces the complement of SAT to the Minesweeper inference problem.

2.4 Game Refinement Theory

Game refinement (GR) theory has been studied the game outcome uncertainty, where

game dynamics are evaluated based on an innovative view on the outcome uncertainty

of the game simulated via the analogy of Newton’s law of motion [29] [1]. It has been

evaluated in the domain of game such as board games and sports games, also studied in

non-game domain such as education and business. Game refinement theory fundamen-

tally involves the measures that define the game sophistication that converges towards a

common range, where the most stochastic game located in GR 2 [0.07, 0.08], corresponds

to the lower bound (fairness) and upper bound (engagement), respectively. Later, it has

been involved to measure the attractiveness of a game [30], where the lower bound and

upper bound are corresponds to the game that more relies on skill and chance, respectively.

From game playing point of view, the information on reaching a game outcome for

a player is regarded as a function of time t, and the information on the game results

is regarded as the solved uncertainty (information) x(t). In other words, the process of

solving the uncertainty is an increasing function of time achieving such an outcome. Then,

(2.1) is obtained to illustrate the velocity in game, where the parameter n(1  n 2 N) is

the number of possible options (branching factors), the parameter t is the game length,
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which is depends on players.

x
0(t) =

n

t
x(t) (2.1)

However, such a formulation implies that the game outcome is known. In reality,

the game outcome is unknown until the game ends. As such, a realistic formulation

considering the uncertainty of the game outcome is given by (2.2). Note that 0  t  T

and 0  x(t)  1, and x(0) = 0 and x(T ) = 1. Here, from the game objective point of

view, the game length is assumed as T , and the game outcome is regarded as x(T ) = 1.

x(t) =

✓
t

T

◆n

(2.2)

The velocity in a game process can be seen as Equation (2.1), based on the accelerated

velocity in physics is used to describe changes in velocity, Equation (2.3) is given to

illustrate the rate of change of the solved information x(t) of the game progress, where

the solved information of (2.2) is assumed to be twice derivable at t 2 [0, T ]. This implies

that game is fascinating if this value increases or decreases, it will make the game even

more fascinating and entertaining. thus, this character is considered to be the one that

deserves the most attention in a well-refined game domain. This thesis is studied in

determining the deterministic and stochastic characters in puzzle field, which is a popular

single agent game domain.

x
00(t) =

n(n� 1)

T n
t
(n�2) |t=T=

n(n� 1)

T 2
(2.3)

Then, the GR measure is given as (2.4) in the root square of Equation (2.3), the

accelerated velocity. This measure has been verified to reflect some aspects of the en-

tertainment of games, such as attractiveness, engagement, and playing comfort. This

thesis focus on doing entertaining analysis with the game refinement theory in the puzzle

domain.

GR =

p
n(n� 1)

T
(2.4)
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2.4.1 Gamified experience for board games and sports games

Based on the study of game refinement theory, the ratio of solving uncertainty at di↵erent

depths is given as v, and the solved uncertainty of the game y(t) is an increasing function

of time t, which can be given by (2.5). Let p be the probability of selecting the best choice

among n number of options (branching factors). Hence, p = 1
n holds the moving velocity

in a game. Based on such notation, the risk frequency ratio m (risk frequency over the

whole game length) is defined as m = 1 � p = 1 � v = n�1
n . Then, gamified experience

is gained only when the risk of failure occurs with m � 1
2 , which implies n � 2, and has

been verified kinds of fun games.

y(t) = vt (2.5)

The slope (v) with the time (t) of a game progress model in (2.5) and mass in the

game playing have been determined in two domains: (1) scoring sports games, and (2)

board games. For scoring sports game, let G and T be the total scores of goals and shoot

attempts per game, respectively. Score rate v (the total scores of goals over the shoot

attempts per game) is given by (2.6), where the slope v (v = p) of game progress model is

equivalent with score rate in (2.5). Note that the score rate v in some sports (e.g., table

tennis, badminton, soccer) is given by v = 1
2 , this situation is because one would have a

point with the possibility of 1
2 at each round.

v =
G

T
and m = 1� v (2.6)

For board games, let B and D be the average number of possible moves and game

length. Score rate p is approximated as (2.7), by which p is equivalent with the slope v

(v = p) of game progress model in (2.5). Note that the v in board games is approximated

based on the number of plausible moves b, where n '
p
B is used in the best-case analysis

of an e�cient ↵� algorithm that is useful for pruning.

v ⇡ 1

2

B

D
and m = 1� v (2.7)
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2.5 Motion in Mind Measure

When players play games from the beginning to the end, the game progress can be

treated as solving uncertainty. In other words, the game is full of uncertainty at the

beginning, as the player play the game and the game process moves forward, the game’s

uncertainty information becomes less until zero at the end. Over time, the process of

playing the game is one of decreasing uncertainty. In a puzzle game, the game information

becomes certain when the player gets solutions to solve the puzzle.

Similar to physics in the world, vital physical quantities in mind are the velocity and

mass, with the assumptions of v +m = 1 which are based on the zero-sum assumption,

where gain or loss utility of one player is exactly balanced by the losses or gains of the

utility of its opponent; thus deriving a reliable measurement of players’ game experience,

such as engagement and comfort [1]. Moreover, in puzzle games, di↵erent levels players

may choose di↵erently at each step based on skills, di↵ering in velocity to move and

solutions to solve the puzzle; portraying di↵erent solve experiences, such as attractiveness

and engagement.

By analogically defining the game-winning (or success) rate and winning hardness

(or di�culty) as the velocity (v) and mass (m), respectively, various motions in mind

quantities can be determined [1]. Table 2.1 provides the analogical link of the related

physics in mind notations and its in-game context (specific to the current study).

Table 2.1: Analogical link between physics and game (adopted from [1])

Notation Physics context Game context

y Displacement Solved uncertainty
t Time Progress or length
v Velocity Win rate (p)
M Mass Win hardness (m)
g Acceleration (gravity) Acceleration, a
F Newtonian force Force in mind
~p Momentum Momentum
U potential energy Potential energy, Ep

As the table shown, the displacement (y) in physic corresponds to the solved uncer-

tainty in game context, and time (t) stands for the game progress or length in game
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domain. Force is determined as a product of mass and acceleration (F = ma), which re-

lates to the acquiring engagement of player’s movement ability in the game playing, from

Newton’s second law of motion. In classical physic, the gravitational potential energy U

is given by (2.8) where g and h stand for gravitational acceleration and height (or dis-

placement), respectively. Then, the potential energy (Ep) given by (2.9) can be obtained

by the correspondence of M = m, g = a, and h = y(t), where m and a stands for the

win hardness and acceleration in game, respectively. A game’s energy is defined as the

amount of the required information (energy) needed by the playing in the game process,

which is equivalent to the expectation of player to finish the game or the anticipation that

the player expect the game give.

U = Mgh (2.8)

Ep = ma

✓
1

2
at

2

◆
=

1

2
ma

2
t
2 = 2mv

2 (2.9)

Meanwhile, the notion of momentum in game-playing process is given by (2.10), which

defines the product of m and v, which is the moving di�culty (or hardness) and ability

to move, respectively. This equation states that momentum (p1) is directly proportional

to the velocity of a game, and directly proportional to the mass of a game. In other

words, such quantities describe the freedom magnitude of the player to use their ability

to address the di�culty in games. Note that momentum in game playing is relied on two

factors: the game progress ratio v and the hardness to move in a game m.

~p1 = mv (2.10)

The game experience depends on the game itself (objective), but also on the player

(subjective) such as skill, experience. Assumptions of both momentum and mass as the

manifestation of energy lead to the discussion on the notion of potential energy (Ep)

being conserved over time [31]. Then, such energy is transformed into the game’s mo-

mentum (~p1) and the mind’s momentum (~p2) of players, as given by (2.11). And, the ~p1

is considered the objective point of view, whereas the ~p2 is from the subjective point of

view. The former is associated with the game’s motion, while the latter is associated with

the player’s play experience [31], which is obtained based on equations (2.10), (2.11) and
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(2.12).

Ep = ~p1 + ~p2 (2.11)

~p2(m) = Ep � p1 = 2m3 � 3m2 +m (2.12)

Then, (5.2) is obtained by the first derivative of (2.12). Solving ~p2 = 0, then m = 3±
p
3

6 is

obtained. It was conjectured that m ' 0.79 is the upper limit for competitive play mode,

where m ' 0.21 is the lower limit for easy-win mode associated with the addictive zone

(Figure 2.2). Each limit value corresponds to risk-taking engagement and profit-winning

engagement, respectively. Interestingly, the cross point of ~p2 = Ep occurred whenm = 0.5,

which implies the moment where the game’s motion is the greatest while the mind’s

motion is non-existence since Ep reflects energy conservation of objective and subjective

motions. That means the game experience becomes fully stochastic, and predicting the

game outcome becomes impossible.

Puzzles are a classic single-player game about problem solving. This thesis focuses on

the player’s experience of solving puzzles, and figure out the di↵erence and connection to

playing a game. As well as, the dynamics in energy (motion) based on deterministic and

uncertain information during the solving process.
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Figure 2.2: Illustration of law of motion in mind over various mass (m). The subjective
motion(p2) is derived from the objective ones(p1), where subjective velocity (v2) was
established. ~p2 is derived based on the conservation of Ep.
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2.6 Chapter Summary

In this chapter, related works to this thesis were illustrated. Works related to some

ancient puzzles, namely the Tangram, HuaRongDao, Rubik’s Cube, and Minesweeper

are reviewed. Related work on problem classification, as well as enumerating complexity

and solution analysis using minesweeper and N-puzzle games as experimental platforms.

Moreover, in the field of entertaining analysis, game refinement theory which relies on the

uncertainty in the process of game is introduced. Meanwhile, the measurement method of

analyzing the change of motions in game-playing from the objective and subjective points

of view of player is expounded, which serves as the base to the linking between solving

puzzles and playing games.
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Chapter 3

Entertaining Analysis of Solving

Single-Agent Deterministic Puzzle

This chapter is based on an integrated, updated and condensed version of the following

publication:

• Liu Chang, Huang Shunqi, Mohd Nor Akmal Khalid, Hiroyuki Iida, Attractiveness

of Single-Agent Game: Case Study Using Sliding Puzzle. 2020 International Con-

ference on Advanced Information Technologies (ICAIT). 2020. pp. 76-81.

3.1 Chapter Introduction

With the characters always having certain solutions and no hidden information, re-

searchers have studied deterministic puzzles for decades. As early as the 1970s, Doran

collected the data through experiments for solving 8-puzzle games using three heuristics

algorithms and a weighted parameter [32]. Since then, many e↵orts have been directed

toward research in sliding puzzle games, focusing on finding the optimal solution or using

a sliding puzzle game as an experimental platform to verify the time and space complex-

ity of algorithms [12]. A study [33] proposed that the game-tree search algorithm and

the evaluation function are two core components of a two-player game playing program.
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These are also important in single-agent games. And, Hyper-Heuristic concept is an

promising way in designing puzzle-solving methods, as provided in [33], a hyper-heuristic

is “a search method or learning mechanism for selecting or generating heuristics to solve

computational search problems”. Nevertheless, little work has been done to focus on the

attractiveness of the game itself.

As a single-agent game, the N-puzzle game had been rated as one of the Chinese video

programs that exceeded 10 million in 2018. A sliding puzzle, sliding block puzzle, or

sliding tile puzzle is a combination puzzle that challenges a player to slide (frequently flat)

pieces along specific routes (usually on a board) to establish a specific end configuration.

It examines the player’s comprehensive ability to balance a whole range of dimensions,

including reasoning, computing, observation, memory, space, and creative ability.

Game refinement theory was first used to measure the attractiveness of multi-player

incomplete-information games for pointing out the critical factor in calculating the number

of options and game length [29]. In recent years, the game refinement theory has evaluated

increasing attractiveness and the sophistication of game theoretical aspects, such as sports

games and board games [34].

In recent studies, it has been shown that the game information in the brain is de-

termined by neurons, which transmit information to other parts of the body through

electrical signals, and the “strength” of such signals plays a role in understanding the

entertainment aspects of the game [35]. Hence, it is interesting to know the physics mea-

surements in mind of game playing. As indicated by many modern gaming principles

for many years, the 8-puzzle game is considered a mixture of skill and chance. Although

the puzzle game has been studied for decades, there is no publicly accessible database

with real playing data of 8-puzzle to evaluate its entertaining characteristics. Recent

findings based on motion in minds derived from the game progress model are utilized to

quantify the attractiveness of an 8-puzzle game [1]. Hence, this thesis uses 8-puzzle as a

deterministic testbed to explore entertaining analysis by developing AI solvers.

3.2 Game Testbed: 8-puzzle

The N-puzzle game consists of n numbered, movable tiles set in a m⇥m frame, where
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m ⇥ m � 1 = n, each of which has a unique number from 1...n. This thesis using 8-

puzzle as a testbed to explore the solving algorithm on various game length, as well as

the entertaining analysis for AI and human players. The 8-puzzle game consists of eight

numbered, movable tiles set in a 3⇥3 frame. One cell of the frame is always empty, thus

making it possible to move an adjacent numbered tile into the empty cell. The purpose

of this game is to move from the initial position to the target position with a minimum

number of steps. An example of a randomly generated 8-puzzle with the initial and the

final state is depicted in Figure 3.1.

Figure 3.1: An example of 8-puzzle

The 8-puzzle was used as a prominent platform to apply the heuristic search algorithms

in 1979 [36]. For several decades, researchers are focused on solving an 8-puzzle with

heuristic search algorithms. In 1993, [37] used iterative-deepening search in the 8-puzzle

to evaluate the benefit of the node where the algorithm performs better with a random

operator selection scheme.

Some studies analyzed the pathology of the 8-puzzle, where several heuristic func-

tions and various search tree properties were evaluated [38]. The authors concluded that

dynamic search depth is necessary to determine the right positions for a more e�cient

in-depth search. Kevin adopted genetic programming to solve an 8-puzzle to solve 20

puzzle instances, which then compared with other traditional algorithms (A* algorithm,

breadth-first search, and depth-first search) [39]. Although genetic programming could

produce solutions for all 20 puzzle instances, the A* algorithm provides a better solu-

tion. More recently, Hamming, Manhattan, and Chebyshev heuristics were compared,

where the space-time complexity of the A* algorithm has been improved with Chebyshev
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heuristics [40].

However, these studies are concerned about finding the optimal solution or improving

the solving algorithms. Limited studies have been conducted on evaluating the attrac-

tiveness of an 8-puzzle for players. Also, the A* algorithm is adopted in this thesis as

the AI player to randomly generate the 8-puzzle solution and explore the reason why the

game is challenging but accessible among some people.

3.3 Experimental Setup and Its Results

This section divides the 8-puzzle-based experimental simulation into two parts: the

first is the construction of the 8-puzzle AI solver using the A* algorithm, which is known

for solving puzzles; the second is the data collection based on the human player’s puzzle-

solving. Both are performed entertaining analyses by using game refinement theory and

motion in mind to discover the most sophisticated mechanics corresponding to players

of di↵erent abilities. In addition, we also try to analogize 8-puzzle to board games and

scoring sport games for entertaining analysis, providing promising directions for the field

of puzzle mechanics analysis.

3.3.1 A* Algorithm

The A* algorithm is a direct search method for solving the shortest path in a static road

network most e�ciently and is an e↵ective heuristic algorithm for solving many search

problems. The closeness of the distance estimation value in its algorithm to the actual

value determines the final search speed. A study compares the completeness and average

path length of Breadth-First Search, Depth First Search, Best First Search, and A*

Search. Experiments show that the average path length of algorithm A* is the shortest.

It is similar to the Breadth-First search in terms of technique but may be slower because

it is exhaustive. According to this characteristic, the single-agent AI system in this thesis

for the 8-puzzle game simulation is implemented using the python compiler with the A*

algorithm. It can be made faster by limiting the depth, where its procedure is given as

in Algorithm 1. It shows the game’s process while including essential parameters such
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as the number of nodes in the open list, the number of nodes in the close list, and game

length.

For solving 8-puzzle, A* algorithm is an e↵ective method to solve the shortest path

in a static road network, two lists have been created based on the principle: the open list

and the close list, which are related to the searching nodes. The open list saved all nodes

that have been generated and not examined, and the close list recorded nodes that have

been visited. In the searching process, the evaluation function is shown as:

f(n) = g(n) + h(n) (3.1)

where f(n) is the evaluation function of node n from the initial position to the goal

position, g(n) is the actual cost of going from the initial node to the n node, and h(n)

is the estimated cost of the optimal path from n to the goal position. The purpose of

this research is to find the data about nodes who has the minimum value, which means

it would be equally selected to get the optimal solution.

3.3.2 Analysis of the 8-puzzle for AI player

As such, an AI system equipped with the well-known A* algorithm was utilized to simulate

the optimal play of human players for data collection. The AI system randomly generates

the initial position of an 8-puzzle and moves the tiles in four ways: Left, Up, Right, Down

to find an optimal solution to move to the goal position. The simulation was conducted up

to 10,000 times for 9!/2 solvable problem instances and computed the optimal solutions

for all problem instances.

According to the game refinement theory, a good and sophisticated game always finds

the balance between chance and skill [29]. Since the sophisticated zone of game refinement

value for most popular games has been verified to be GR 2 [0.07, 0.08], the 8-puzzle game

is not the most sophisticated game version among the sliding puzzle games according to

the manual simulation. Table 3.1 shows that the GR = 0.064, which simulated through

10,000 runs, where the n and T are the average plausible options of each step and the

average steps to solve the puzzles, respectively. It implies that an 8-puzzle would be

enjoyable to professional or skillful players.

Based on the result in Table 3.1, considering only the average steps to solve as the
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Algorithm 1 A* algorithm of N-puzzle case

1: First put initial start node in open list

2: while open != null do

3: choose the best node from the open list

4: delete n node from the open list

5: add n node into the close node

6: for all son node of X do

7: if X is in close list then

8: Continue;

9: end if

10: if X is in open list then

11: compare the value of g in the open list and g

12: end if

13: if cn is empty then

14: add into open list.

15: end if

16: end for

17: check for end node in the open list

18: break.

19: end while

Table 3.1: Game refinement value of 10000 simulated times of 8-puzzle, where n and D

stands for the average number of plausible options and steps to solve respectively

Simulated Times n D GR

10000 1.94 21.03 0.064
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game length (D) may not be a viable solution to determine the underlying mechanisms

of the puzzle’s attractiveness. In the 8-puzzle game, each step made by the player may or

may not lead to a successful attempt to solve it. Hence, the game length (D) is defined

as the total steps to solve for the 8-puzzle game, and the 8-puzzle is divided into 29 levels

depending on the game length. The v was called the successful solving rate: The ratio of

the number of optimal solutions within D steps and all instances. For example, D = 5

implies all runs that successfully solved the puzzle in five or less are included in calculating

the success rate (v) for that particular game length.

Table 3.2 depicted the calculated GR and motion in mind values based on various D

value. It can be observed that the GR value and the success rate (v) increase gradually

with the increasing the total steps to solve the puzzle. According to the game refine-

ment theory, when D = 14 GR value is 0.0737 which located in the comfortable zone of

GR 2 [0.07, 0.08], where we obtain m = 0.962. Such D for the 8-puzzle would provide

comfortable game sophistication that can be enjoyed by beginner players.

Table 3.2: Motion in mind measures and GR value over di↵erent total steps to solve (D)
for the AI player (A* algorithm).

D v m GR F p Ep

10 0.0053 0.9947 0.0326 0.0011 0.0053 0.0001
11 0.0090 0.9910 0.0405 0.0016 0.0089 0.0002
12 0.0148 0.9852 0.0497 0.0024 0.0146 0.0004
13 0.0255 0.9745 0.0626 0.0038 0.0248 0.0013
14 0.0380 0.9620 0.0737 0.0052 0.0366 0.0028
15 0.0602 0.9398 0.0896 0.0075 0.0566 0.0068
16 0.0913 0.9087 0.1068 0.0104 0.0830 0.0151
17 0.1421 0.8579 0.1293 0.0143 0.1219 0.0346
18 0.2001 0.7999 0.1491 0.0178 0.1601 0.0641
19 0.2921 0.7079 0.1753 0.0218 0.2068 0.1208
20 0.3899 0.6101 0.1975 0.0238 0.2379 0.1855
21 0.5231 0.4769 0.2232 0.0238 0.2495 0.2610
22 0.6399 0.3601 0.2412 0.0209 0.2304 0.2949

23 0.7724 0.2276 0.2592 0.0153 0.1758 0.2716
24 0.8587 0.1413 0.2675 0.0101 0.1213 0.2084
25 0.9393 0.0607 0.2741 0.0046 0.0570 0.1071
26 0.9756 0.0244 0.2739 0.0018 0.0238 0.0464
27 0.9959 0.0041 0.2716 0.0003 0.0041 0.0081
28 0.9993 0.0007 0.2672 0.0002 0.0007 0.0014
29 1 0 0.2626 0 0.0007 0

29



Figure 3.2: The value of GR, F , p, and Ep, with respect to D in 8-puzzle. The gray area
indicates the peak range of F , p, and Ep and the GR zone

Meanwhile, Figure 3.2 shows that D 2 [21, 22] provides the best game playing experi-

ence for the 8-puzzle game. When D = 21, p reaches its peak value and F is the highest,

where both values of v and m are near to 0.5. This configuration implies that the game

provides players with su�cient magnitude of movement freedom and balances the amount

of skill needed to the challenge given. When D = 22, Ep is maximum, which implies that

it is the most engaged to play, which encourages movement potential and player’s mo-

tivation in the game. Interestingly, one cross point provided a border interpretation of

game playing behaviors. The cross point was found between D = 21 and D = 22, which

indicates the moment where the 8-puzzle game is the freedom to move limits the playing

ability. Moreover, the potential energy in mind have been observed with almost no growth

in the initial 14 game steps, which then increases quickly to a peak at the game depth of

22, which is appropriate depth to enjoy the sliding puzzle the most.

Based on the GR values, the situation implies that the play experience balances the

required skill and the element of chance, which makes the game felt more entertaining

and sophisticated. According to the force, making a move in the game is challenging, yet
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engaging when D is larger. A similar situation can be observed in a low-score game like

soccer [41]. As D increases, the engagement reduces (decrease in mass), and the ability

to move becomes trivial.

Observing the peaks of p and maximum F , the results of the game tend to be unpre-

dictable (v ' m ' 0.5), where the player felt enjoyable thrills because it is a fair game.

For example, it is like two players of a similar level playing against each other, where the

probability of winning and losing is equal (observing a seesaw e↵ect), making the game

enjoyable, thrilling, and fair.

Based on the potential energy, such a situation implies that most people may enjoy

it since its peak value is reached at a higher D, implying that the game is more relaxed

and comfortable to solve (i.e., a higher number of total steps were allowed). Also, v =

0.64 implies a little risk, and players enjoy winning the game while feeling relaxed and

comfortable. For example, if two players play three sets of games and one of the players

wins two games; thus, the potential energy to play a game is high due to having higher

winning possibilities and making the player felt comfortable.

3.3.3 Analysis of the 8-puzzle for human player

Another experiment consisting of 290 samples for 10 volunteer players of an 8-puzzle game

was conducted. The total steps to solve the game (D) relate the solution to the puzzle,

which means that the game’s di�culty will increase as the total step to solve increases.

Unlike the experiments of AI solver, the experiments for human players were based on

the di↵erence in the known optimal solution (game length), and the puzzles were divided

into 29 levels. The v was called the successful solving rate: The ratio of the number

of players solved in D steps to the total number of human players. For example, when

D = 10, v = 1 implies all can solve the game length of 10 for this level of 8-puzzle, and

the m = 1� v = 0. The results of game refinement and motion in mind measure for the

human player are shown in Table 3.3.

Comparing the D of the human player with the AI player, we see in most cases

that GR � 0.08 holds, which is out of the comfortable zone (Figure 3.3), implying that

the 8-puzzle game would be highly stochastic as well as being dependent on the player

intuition, that means more skill needed to be learned to enjoy the game more. For AI
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Table 3.3: Total steps to solve 8-puzzle games for human players, as well as various motion
in mind measures

D v m GR F p Ep

10 1 0 0.4472 0 0 0
11 0.9 0.1 0.4045 0.0164 0.09 0.1897
12 0.9 0.1 0.3873 0.0150 0.09 0.1897
13 0.7 0.3 0.3282 0.0323 0.21 0.5020
14 0.5 0.5 0.2673 0.0357 0.25 0.7071
15 0.4 0.6 0.2309 0.0320 0.24 0.7589
16 0.2 0.8 0.1581 0.0200 0.16 0.7155
17 0.2 0.8 0.1534 0.0188 0.16 0.7155
18 0.4 0.6 0.2108 0.0267 0.24 0.7688

19 0.2 0.8 0.1451 0.0168 0.16 0.7155
20 0.2 0.8 0.1414 0.0160 0.16 0.7155
21 0.1 0.9 0.0976 0.0086 0.09 0.5692
22 0.1 0.9 0.0953 0.0082 0.09 0.5692
23 0.1 0.9 0.0953 0.0082 0.09 0.5692
24 0.1 0.9 0.0913 0.0075 0.09 0.5692
25 0.1 0.9 0.0913 0.0075 0.09 0.5692
26 0.1 0.9 0.0877 0.0069 0.09 0.5692
27 0.1 0.9 0.0861 0.0067 0.09 0.5692
28 0.1 0.9 0.0845 0.0064 0.09 0.5692
29 0 1 0 0 0 0
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Figure 3.3: The GR value, F , p, and Ep, with respect to the game depth in 8-puzzle based
on human players

players, GR = 0.064 (less than 0.07) means that they rely on more skill to find the optimal

solution, implying that the 8-puzzle might be too easy, and the game would be enjoyable

to professional or skillful players. It can be observed that D 2 [14, 18] is the region where

~p and Ep is maximum, implying the best game playing experience for the 8-puzzle. At

D = 14, the ~p value is maximum while m = 0.5 with GR > 0.08, which implies that it is

the most interesting to play with equiprobable risk to move (risky play). At D = 18, the

Ep value is maximum with m > 0.5 implies that the game is the least di�cult and easy

to retain the player’s motivation by having su�cient challenge.

3.3.4 Further analysis of the results

As the total steps to solve the game (D) can also be analogously interpreted as the

di�culty of solving the 8-puzzle game, further analysis is conducted by dividing the player

levels into five levels, designated between 1 to 5. Level 1 represents the expert players who

could solve the most challenging problems, which means that the player has the ability

to solve puzzles that have an optimal solution of more than 26 steps. In contrast, level
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5 represents the players with the lowest ability who can only solve positions within ten

steps. Table 3.4 shows the analysis of the game progress model of an 8-puzzle as a board

game. It can be observed that level 5 has the highest ~p and Ep, which implies that players

at such level would feel more freedom to move while retaining their motivation to move

the game. Meanwhile, according to the GR value of Level 3, the game’s di�culty has

su�ciently sophistication for most players.

Table 3.4: Analysis of 8-puzzle game as a board game based on GR and motion in mind
measure

Level D B p m GR F ~p Ep

1 (26�1) 1.94 0.0461 0.9539 0.0663 0.0042 0.0440 0.0041
2 (21� 25) 1.93 0.0467 0.9533 0.0671 0.0043 0.0445 0.0042
3 (16� 20) 1.94 0.0547 0.9453 0.0787 0.0058 0.0517 0.0057
4 (11� 15) 1.98 0.1184 0.8816 0.1682 0.0250 0.1044 0.0247
5 (1� 10) 2.08 0.2364 0.7636 0.3277 0.0820 0.1805 0.0853

m = 1� v and p = v = B
2D ; a = 2v

D ; Ep = 2mv2; F = ma = m(GR)2;

On the other hand, Table 3.5 shows the analysis of the game progress model of an

8-puzzle as a scoring sports game. For such measures, the major di↵erence is found on

the v value which is determined by p = v = 1
n , and n stands for the average number

of plausible options. Level 4 and Level 5 has the highest Ep and ~p respectively, which

implies that the player will be retaining their high motivation and engagement, while felt

thrilling due to a fair game and great movement freedom. The GR value indicates that

the game sophistication at Level 3 is suited for most players, similar to what was found

based on the 8-puzzle analysis as a board game.

Table 3.5: Analysis of 8-puzzle game as a scoring sports based on GR and motion in mind
measure

Level D n p m GR F ~p Ep

1 (26�1) 1.94 0.5155 0.4845 0.0642 0.0311 0.2575 0.2498
2 (21� 25) 1.93 0.5181 0.4819 0.0648 0.0312 0.2587 0.2497
3 (16� 20) 1.94 0.5155 0.4845 0.0762 0.0369 0.2575 0.2498
4 (11� 15) 1.98 0.5051 0.4949 0.1666 0.0825 0.2525 0.2500

5 (1� 10) 2.08 0.4808 0.5192 0.3406 0.1769 0.2400 0.2496

m = 1� v and p = v = 1
n ; GR =

p
n(n�1)

T ; Ep = 2mv2; F = ma = m(GR)2

Comparing the two observations (Table 3.4 and Table 3.5), it can be inferred that
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8-puzzle game as a scoring sports game makes more sense, where Level 5 implies highest

di�culty (m) where the total steps to solve is the least (low D), and having high F value

indicates high ability requirement as well as its attractiveness (to watch). Also, Level

2 showed the greatest ~p (movement freedom) since it has p ' 0.5, indicating that the

game is fair and every step made is equiprobable to be better or worst in solving the

puzzle. Interestingly, Ep is the highest for Level 4, indicating that the game is exciting

and motivating. Since the GR value given at Level 3 is also the known zone value,

Level 3 provides the best sophistication for an 8-puzzle where su�cient challenge, thrills,

motivation, and movement freedom are satisfied; thus, being the most attractiveD setting,

aligned with the notion of being in the “noble uncertainty” [42]. Therefore, it is interesting

to note that having infinite game steps does not translate with the game experience being

engaging or exciting but took a long time instead.

3.4 Chapter Conclusion

The 8-puzzle game is a kind of single-agent game that could be beneficial to logical

training, which is famous worldwide. Meanwhile, people focused on finding its optimal

solutions and used the game as prominent platforms to analyze heuristic search algo-

rithms in the AI context. Hence, it is essential to know that the reason why the game is

attractiveness.

Based on the measure of game refinement theory and motion in mind, this thesis

analyzed the attractiveness of an 8-puzzle game by adopting A* algorithm as the AI

player to play randomly generated initial position of the puzzle. Meanwhile, the player’s

engagement, movement freedom, and entertainment from the aspect of the total steps to

solve the game were evaluated for both AI and human players. Thus, the entertaining

and sophisticated zone (total steps to solve) for di↵erent player’s levels were determined.

Improving the mechanics of the 8-puzzle game (such as setting the time limits, step

bonus, and di↵erent di�culties) to observe its attractiveness for various level players

would be the crucial agenda in the future work. Comparing with di↵erent types of sliding

puzzles, such as the one with more visual (such as an 8-pictures sliding puzzle) and

challenging ones (such as Sokoban), would also be an exciting future venture. Also, the
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reason behind the sliding puzzle game’s evolution would be another interesting prospect

of future studies.
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Chapter 4

Informational Dynamic of

Single-Agent Stochastic Puzzle

This chapter is based on an updated and condensed version of the following publication:

• Liu Chang, Huang Shunqi, Gan Naying, Mohd Nor Akmal Khalid, Hiroyuki Iida.

(2022). A Solver of Single-Agent Stochastic Puzzle: A Case StudyWith Minesweeper.

Knowledge-Based System, 2022, 246: 108630.

4.1 Chapter Introduction

Proposing an e�cient puzzle solver has been a significant research paradigm in Arti-

ficial Intelligence (AI). Since the work by [13] in 1994, e�cient solving mechanisms and

algorithms had been exclusively conducted on the domain of two-player zero-sum games.

Based on such domain, various methodologies have been proposed which take advan-

tage of the deterministic nature of such games, which is associated with predicting the

game-theoretic value [43] [44] and determining optimal strategy [45].

Due to the wide variety of puzzles of di↵erent properties, many research e↵orts had

been dedicated to investigating the computational complexity [7] and the possible clas-

sification of puzzles [46]. Moreover, a recent attempt at classifying puzzles had been
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mathematically formulated by simplifying the essential components of the puzzle into a

Boolean satisfiability problem (SAT) or Constraint Satisfaction Problem (CSP) to deter-

mine classes of the puzzle [47]. Thus, a problem-specific Monte-Carlo tree search (MCTS)

can e↵ectively be applied to the respective puzzle classes based on such mathematical def-

initions. However, such an investigation was still limited to deterministic puzzles.

As defined by [47], there are three types of puzzle classes: class A, class B, class AB,

and class C. The class A puzzle is a puzzle that can be statistically solved with simple

constraints. Meanwhile, class B puzzle is a puzzle that is directly a↵ected by the step or

sequence of moves with an additional time-related dimension. Moreover, the class AB is

the combination of class A and class B where the solver can address both classes. Finally,

class C is the puzzle that is outside of the other classes and has at least one random

feature and/or inputs.

The 2048 and Minesweeper are examples of the class C puzzle, since the former had

random input variables in every state while the latter contains random placement of hid-

den mines. Recently, a 2 ⇥ 2 version of 2048 had been solved by [48]. A similar puzzle,

namely Minesweeper, corresponds with a single-agent incomplete-information game [22]

that fits the criteria of the class C puzzle, which had been recently investigated to deter-

mine the reason for its attractiveness [49]. With the growing community around solving

Minesweeper, various AI agents or solvers have been introduced in the literature [50–55].

Nevertheless, a clear definition of puzzle categories is needed from the perspective of its

solvability. For such purpose, the Minesweeper puzzle was utilized as the benchmarking

testbed. In such a condition, what distinguishes a deterministic puzzle from other types of

puzzle, i.e., a stochastic puzzle? Therefore, this thesis proposes a definition of a stochas-

tic puzzle from its solvability, which forms the foundation for the proposed AI solver.

Moreover, the proposed AI solver takes advantage of both the deterministic and stochas-

tic elements of the puzzle, which called PAFG: the primary reasoning strategy (“P”), the

advanced reasoning strategy (“A”), the first action strategy (“F”), and the guessing strat-

egy (“G”). Such strategies also combine mathematical model, knowledge-driven rules, and

linear transformation to provide conducive moves in solving Minesweeper, comparable to

previously proposed Minesweeper AI solvers.
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4.2 Game Testbed: Minesweeper

Minesweeper is a classic single-agent incomplete-information game, which gains its

popularity as it became a feature of Microsoft Windows in 1989 [22, 23]. In the 1980s,

various Minesweeper-type video games were designed, such as Mined-Out, Yomp, and

Relentless Logic1. After that, Minesweeper was integrated into the entertainment pack

in many generations of Microsoft Windows, like 3D, hexagonal, triangular, and multiple

Minesweepers. This thesis focuses on the size of the standard board of the Minesweeper:

9⇥9, 16⇥16, and 16⇥30, which are the three furthest boards that have survived from the

emergence of the Minesweeper until now. And, based on these three puzzle configurations,

experimental simulations are performed using changing the number of mines.

The goal of Minesweeper is to open all non-mine hidden cells on the board and flag

all the mines on the board. If the player opens instead of flagging a mine cell incorrectly,

the game is lost. For example, Figure 4.1 (a) and (b) show a losing state and a winning

state of Minesweeper (16⇥30|99 mines), respectively. In this chapter, we use three classic

Microsoft Minesweepers as the testbed: beginner (9⇥9|10 mines), intermediate (16⇥16|40

mines), and expert (16⇥ 30|99 mines). To simplify its reference throughout the process,

these three puzzles were designated as board labelled as X, Y, Z, respectively.

The discrete model-based cellular automaton was first used to solve Minesweeper pro-

posed by [56] in 1951. Various distribution and mines density were recorded, and several

agents would automatically solve the problem mapped to specific networks by making ran-

dom choices using an adaptive algorithm. Besides, [27] found that solving Minesweeper is

an NP-complete problem which means that Minesweeper is hard to be solved in polyno-

mial time. Meanwhile, [50] formulated Minesweepers as Constraint Satisfaction Problem

(CSPs) with finite constraints or limitations to be satisfied. A heuristic strategy with a

backtracking algorithm was used to find the best guess in solving the game.

Based on the researcher’s study of Minesweeper, this thesis is directed at proposing

solving strategies applicable to the characteristics of stochastic puzzles, with the intention

of developing the AI solver with high winning rates state-of-the-art, as well as analyzing

the game mechanics and characteristics of Minesweeper. More importantly, it explores the

1http://www.minesweeper.info/wiki/Windows_Minesweeper#Windows_3.1
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(a) A losing state of Minesweeper

(b) A winning state of Minesweeper

Figure 4.1: Two final states of Minesweeper 16 ⇥ 30|99 mines, the purpose is to find all
hidden mines on the board without opening them. (a) is a losing state because the player
opened on a mine in the game process, (b) is a winning state while the player revealed all
mines on the board.
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classification of puzzles and the border between puzzles and games based on the solvability

of Minesweeper.

4.3 Research Methodology

The overall of the PAFG strategy is given by Algorithm 2. The first cell is opened

according to the first action rule, which ensures the first opened cell and the surrounding

cells are safe. Then, the primary reasoning strategy is simple and e↵ective, the advanced

reasoning strategy is used based on the primary reasoning strategy, and the problem

switches to finding invariables in a linear system of equations. Moreover, the Gauss-

Jordan elimination method is used to get general solutions, and some invariables can be

found since the solutions satisfy certain constraints. Furthermore, the guessing strategy is

based on the result of Gauss-Jordan elimination, and the binary tree search based on the

linear system model is used, where the binary tree is pruned according to the constraints

on the solutions of linear systems.

The time complexity for the primary reasoning strategy is O(n), n is the number

of unsolved number cells. For the advanced reasoning strategy, the time complexity is

O(n3), and n is the number of variables in the system of equations. Moreover, the time

complexity for the guessing strategy is O(2n), where n is the number of variables, and

setting the number of free variables n  20. The size of the entire search tree is capped at

220, and tree pruning dramatically reduces the size of the search tree; thus, significantly

reducing the expected complexity.

4.3.1 Building Minesweeper AI

The configuration of Minesweeper is denoted by R⇥L | b, where R > b and R,L, b 2 N⇤,

R and L are the number of rows and columns on the board, respectively, and b is the

number of mines. For any cell c, it can be represented by a pair of unique position (x, y),

i.e., c = (x, y), where 1  x  R, 1  y  L and x, y 2 N⇤, x and y are the row and

column number, respectively. The cell type I(c) is in the range of [�1, 10], the meaning

is as follows:
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Algorithm 2 The Overall Algorithm

Input B: game board

1: open the first cell according to the first action rule

2: while the game is not end do

3: S1, S2  PRS(B)

4: if S1andS2 are not empty then

5: open the cells in S1

6: flag the cells in S2

7: end if

8: S1, S2, C, V  ARS(B)

9: if S1andS2 are not empty then

10: open the cells in S1

11: flag the cells in S2

12: end if

13: S1, S2  GS(B,C, V )

14: open the cells in S1

15: flag the cells in S2

16: end while
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• I(c) = �1: c is an exploded mine.

• I(c) = 0: c is the number “0” displayed as a blank opened cell.

• 1  I(c)  8: c is a number that equals I(c).

• I(c) = 9: c is a hidden cell.

• I(c) = 10: c is a flagged cell.

Here, the I(·) is a function that its input is the position of a cell, and the output is

a type integer. The cells set C = { (x, y) | 1  x  R, 1  y  L, x, y 2 N⇤ }. The

neighborhood N(c) is a set surrounding cells(adjacent or diagonally adjacent) of c, i.e,

N(c) = { (x, y) | x0 � 1  x  x0 + 1, y0 � 1  y  y0 + 1, (x, y) 2 C, (x, y) 6= (x0, y0) }.

And, we define the N(·) as a function that its input is the position of a cell, and the output

is a set of positions of surrounding cells, and it is impossible that two di↵erent cells have

one same neighborhood. A corner cell has |N(c)| = 3, a border cell has |N(c)| = 5,

and other unsolved number cell if 1  I(c)  8, and there exists a cell c⇤ 2 N(c) such

that I(c⇤) = 9, and an unsolved block U is defined as a set of cells that satisfying two

conditions:

• For any c 2 U , c is an unsolved number cell.

• If |U | � 2, for any two di↵erent c1, c2 2 U , there exists a path connecting c1 and c2.

For an unsolved block U , the frontier F (U) is the set of cells that for any c 2 F (U), there

exists an unsolved number cell c⇤ 2 U such that c 2 N(c⇤). A cell c is an uninformed cell

if I(c) = 9 and for any c
⇤ 2 N(c), c⇤ is not a number cell. The uninformed set is the set

of uninformed cells. Figure 4.2 is an example of Minesweeper 9⇥ 9 board size. The gray

blank cells have I(c) = 0. The cells with black “f” are flagged cells, and the cells with

numbers are numbered cells. The set of orange blank cells is the frontier F (U1), the set of

blue and purple blank cells is the frontier F (U2), the set of green and purple blank cells

is the frontier F (U3), and the white cells are uninformed cells.
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Figure 4.2: The basic information of the cells on the board for minesweeper (9 ⇥ 9 |
10), there are three unsolved blocks on the board: U1 = {(2, 1), ..., (2, 6), (3, 6), ...,
(3, 8), (4, 8), (5, 7), (5, 8)}, U2 = {(6, 3), ..., (6, 6)}, U3 = {(7, 1), (7, 2)}.

Figure 4.3: An illustration of primary reasoning strategy: The cells with “f” and numbers
are flagged cell number cells, respectively.
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Primary Reasoning Strategy

The primary reasoning strategy has two rules. Firstly, the surrounding hidden cells are

safe for any cell when their value equals the number of surrounding flagged mines. Sec-

ondly, the surrounding hidden cells are mines for any cell when the number of surrounding

hidden cells equals its value minus the number of surrounding marked mines. These rea-

soning strategies were devised under the mathematical solving logic of players with the

basic knowledge and rules, whose general flow is described in Algorithm 3. For an unsolved

number cell c, suppose that f ⇤ is the set of flagged cells in N(c) and h
⇤ is the set of hidden

cells in N(c), i.e., f ⇤ = {c⇤ | I(c⇤) = 10, c⇤ 2 N(c)} and h
⇤ = {c⇤ | I(c⇤) = 9, c⇤ 2 N(c)}.

The line of 6 � 9 is one of the key ideas in Algorithm 3. It shows if |h⇤| = I(c) � |f ⇤|,

then for any c̄ 2 h
⇤, c̄ must be a mine.

Algorithm 3 Primary Reasoning Strategy

Input B: game board

Output S1: the set of safe cells, S2: the set of mine cells

1: Function PRS(B)

2: S1, S2  {} . empty set

3: for each unsolved number cell c on the board B do

4: f
⇤  the set of flagged cells in N(c)

5: h
⇤  the set of hidden cells in N(c)

6: if |h⇤| = I(c)� |f ⇤| then
7: S2  h

⇤

8: else if I(c) = |f ⇤| then
9: S1  h

⇤

10: end if

11: end for

12: Return S1, S2

13: end Function

Since c is an unsolved number cell, I(c) indicates the number of mines in h
⇤ [ f ⇤, the

cells in f
⇤ are flagged cells (or flagged mines), thus, there are I(c) � |f ⇤| mines in h

⇤.

There are
�
a1
a2

�
way(s) to distribute mines, where a1 = |h⇤|, a2 = I(c)� |f ⇤|, then,

�
a1
a2

�
= 1

since |h⇤| = I(c) � |f ⇤| (i.e., for any c̄ 2 h
⇤, c̄ must be a mine cell). If I(c) = |f ⇤|, then

for any c̄ 2 h
⇤, c̄ must be a number. Since there are I(c)� |f ⇤| mines in h

⇤, I(c) = |f ⇤|,
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there is no mines in h
⇤, i.e., for any c̄ 2 h

⇤, thus, c̄ must be a number cell. Figure 4.3 is

an example of primary reasoning strategy in Minesweeper case. Then, the Figure 4.2 can

be obtained since the cell (2, 1) has a number “3,” so (3, 1) and (3, 2) are mines that are

flagged, and the Figure 4.3 is obtained since the cell (2, 2) has a number “3”; thus, (1, 3),

(2, 3) and (3, 3) are safe to be open.

Advanced Reasoning Strategy

The advanced reasoning strategy is based on the primary reasoning strategy with a deeper

understanding of the mechanics of Minesweeper and knowledge-driven methods that ex-

ploit existing information. Firstly, the frontier division is conducted to get independent

frontiers. Then, we see each hidden cell of this frontier as a Boolean variable for each

independent frontier [50]. Subsequently, linear equations are proposed to find solution

invariability in the constrained linear system, where it always has the same value on all

possible solutions; thus, determining the corresponding cell is safe or not.

Frontier Division: Suppose that there exists some unsolved blocks U1, . . . , Uk (k 2 N⇤)

on the board, and the frontiers of these unsolved blocks are Fi = F (Ui) (i = 1, . . . , k).

Then, two di↵erent frontier F1 and F2 can be defined, where there exists an edge between

F1 and F2 if F1 \ F2 6= �, and F1 is dependent to F2 if there exists some edges that

can connect F1 and F2. Moreover, for three di↵erent frontier F1, F2, and F2, if F1 is

dependent to F2 and F2 is dependent to F3, then F1 is dependent to F3. Thus, hidden

cells are divided into di↵erent independent frontiers F̂1, ..., F̂n. Figure 4.4 is an example

of Frontier Division where the blue, orange and green parts are independent (i.e., The

distribution of mines in one part would not a↵ect other parts).

Boolean Modeling: Suppose that F̂ = {c1, ..., ck} is an independent frontier, for any

cell ci 2 F̂ , let W (ci) = {c⇤ | c⇤ 2 N(ci), 1  I(c⇤)  8}, where W (ci) is a set of number

cells that are in the neighborhood of ci. And, let W = W (c1) [ · · · [W (ck), where W is

a union of all the W (ci). Then, each ci 2 F̂ is a variable xi 2 {0, 1}, where “0” means

ci is a safe cell, and “1” means ci is a mine cell. Then, a system of linear equations can

be obtained according to the information W = {w1, . . . , wq}. Each equation of E has the

form as (4.1), where i = 1, ..., k , ai 2 {0, 1}, xi 2 {0, 1}, b 2 {1, 2, 3, 4, 5, 6, 7, 8}.
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Figure 4.4: Frontier division: an example of 9⇥9 Minesweeper configuration with the cells
marked with blue, orange, and green colors to signify di↵erent and independent frontiers.

a1x1 + ...+ akxk = b (4.1)

V can be seen as a set of all bijective mappings between ci and xi. A mapping

is bijective if and only if it is injective and surjective. For any w 2 W , the left side

of the equation is the sum of V [{c | c 2 N(c), I(c) = 9}], the right side is I(w) �

|{c | c 2 N(c), I(c) = 10}|. Figure 4.5 is an example of modeling the hidden cells (blue

color) into Boolean variables. We can see (4, 1) as x1, (4, 2) as x2, ..., (4, 6) as x6, then

V [1] = (4, 1), ..., V [6] = (4, 6). The system of linear equations is shown as (4.2), where

x1, ..., x6 2 {0, 1}.

8
>>>>>>>>><

>>>>>>>>>:

x1 + x2 = 1

x1 + x2 + x3 = 2

x2 + x3 + x4 = 2

x3 + x4 + x5 = 2

x4 + x5 + x6 = 2

(4.2)
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Figure 4.5: Boolean model of hidden cells: an example of a partial 9 ⇥ 9 Minesweeper
configuration (top part) with each hidden cells were modelled with Boolean variable xi 2
{0, 1}, where “0” means ci is a safe cell, and “1” means ci is a mine cell.

Gauss–Jordan Elimination Algorithm: After modeling hidden cells in an indepen-

dent frontier to Boolean variables, a system of linear equations can be established as

� : Ax = b, where for any element in A or in x, the value is 0 or 1. Here, the

Gauss–Jordan elimination algorithm is used to solve the system of linear equations by

transforming the augmented matrix of the linear system to its reduced row echelon form,

which transforms the original linear system into a simpler equivalent system [57].

Elementary row operations are needed to find the reduced row echelon form of a

matrix. Suppose that B[i] denotes the i-th row of a matrix B, there are three types of

elementary row operations:

• Row swapping: Swap the two di↵erent rowsB[i] andB[j], i.e.,B[i]$ B[j], i 6= j.

• Row multiplication: Multiply each element in B[i] by a non-zero constant c, i.e.,

B[i] cB[i], c 6= 0.

• Row addition: Add a multiple of a row B[j] on another row B[i], i.e., B[i]  

B[i] + cB[j], c 6= 0.

If a matrix C can be obtained from another matrix B by elementary row operations,

then B and C are equivalent. The function JS : B ! C is the function that does

Gauss–Jordan elimination to B, where B is the augmented matrix of a system of linear

equations, C is the reduced row echelon form of B. The size of B and C are same. Let

B be the augmented matrix of �, and C = JS(B), i.e., C is the reduced row echelon
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form of B. Suppose that B and C are ↵ ⇥ � matrices. For any i 2 {1, . . . ,↵} and

j 2 {1, . . . , �}, B[i][j] denotes the element of the i-th row and j-th column of B.

Conjecture 1 For the i-th row C[i], if there exists k 2 {1, ..., ��1} such that C[i][k] = 1

and C[i][j] = 0 for any j 2 {1, ..., k � 1, k + 1, ...� � 1}, then the variable xk = C[i][�].

Remark 1 Since C is the reduced row echelon form of B, where B is the the augmented

matrix of a system of linear equations, C[i][j] (1  j  � � 1) is the coe�cient of the

variable xj in the i-th equation, thus, if only one element C[i][k] = 1 in the first � � 1

elements, xk = C[i][�].

Conjecture 2 For the i-th row C[i], suppose that � = {j | j = 1, ..., � � 1,C[i][j] 6= 0},

if C[i][�] = 0, and C[i][k] > 0 for any k 2 � or C[i][k] < 0 for any k 2 �, then, xk = 0.

Remark 2 Suppose that � = {j | j = 1, ..., � � 1,C[i][j] 6= 0} = {�1, ..., �t}. Since

x�1 , ..., x�t 2 {0, 1}, if C[i][�1] > 0, ...,C[i][�t] > 0, then

C[i][�1]x�1 + ...+C[i][�t]x�t � 0 (4.3)

where equality x�1 = ... = x�t = 0. (The case that C[i][�1] < 0, ...,C[i][�t] < 0 is

similar, only need to replace “�” with “”). Since C[i][�] = 0, the equation is:

C[i][�1]x�1 + ...+C[i][�t]x�t = 0 (4.4)

From (4.3) and (4.4), x�1 = ... = x�t = 0 is obtained.

Conjecture 3 For the i-th row C[i], suppose that � = {j | j = 1, ..., � � 1,C[i][j] > 0},

� = {j | j = 1, ..., � � 1,C[i][j] < 0}. If C[i][�] =
P

k2� C[i][k], then for any � 2 �,

x� = 1, and for any � 2 �, x� = 0. If C[i][�] = �
P

k2� C[i][k], then for any � 2 �,

x� = 1, for any � 2 �, x� = 0.

Remark 3 Suppose that � = {j | j = 1, ..., � � 1,C[i][j] > 0} = {�1, ..., �t}, � =

{j | j = 1, ..., � � 1,C[i][j] < 0} = {�1, ..., �h}. Since x�1 , ..., x�t 2 {0, 1}, with equality
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x�1 = ... = x�t = 1. Since x�1 , ..., x�h 2 {0, 1}, with equality x�1 = ... = x�h = 0.

C[i][�1]x�1 + ...+C[i][�t]x�t 
tX

k=1

C[i][�k] (4.5)

C[i][�1]x�1 + ...+C[i][�h]x�h  0 (4.6)

From (4.5) and (4.6), we can get equation(4.7). Otherwise, since C[i][�] =
Pt

k=1 C[i][�k],

the equation is shown as (4.8):

C[i][1]x1 + ...+C[i][� � 1]x��1 
tX

k=1

C[i][�k] (4.7)

C[i][1]x1 + ...+C[i][� � 1]x��1 =
tX

k=1

C[i][�k] (4.8)

From (4.7) and (4.8), x�1 = ... = x�t = 1 and x�1 = ... = x�h = 0.

The algorithm of the advanced reasoning strategy is shown as Algorithm 4.
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Algorithm 4 Advanced Reasoning Strategy

Input B: game board

Output S1: the set of safe cells, S2: the set of mine cells

1: Function ARS(B)

2: S1, S2  {} . empty set

3: Do frontier division to get independent frontiers

4: for each independent frontier F̂ do

5: Switch cells in F̂ to variables

6: Establish a system of linear equations �

7: V  bijective mappings between cells and variables

8: B  the augmented matrix of � . ↵⇥ � matrix

9: C  GJ(B) . C is the reduced row echelon form of B

10: for i = 1, ...,↵ do

11: � {j | j = 1, ..., � � 1,C[i][j] > 0}
12: � {j | j = 1, ..., � � 1,C[i][j] < 0}
13: if � = � AND � = � then

14: Go to next loop

15: end if

16: if |� [ �| = 1 then

17: if C[i][�] = 0 then

18: Add V [j](j 2 � [ �) into S1

19: else

20: Add V [j](j 2 � [ �) into S2

21: end if
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Algorithm 4 Advanced Reasoning Strategy (continued)

22: else if C[i][�] =
P

k2� C[i][k] then

23: Add V [j](j 2 �) into S1

24: Add V [j](j 2 �) into S2

25: else if C[i][�] = �
P

k2� C[i][k] then

26: Add V [j](j 2 �) into S1

27: Add V [j](j 2 �) into S2

28: end if

29: end for

30: end for

31: Return S1, S2

32: end Function

The First Action Strategy

The first action strategy aims to find the best position of the first opened cell and acquire

more information that determines the safety of the following cells. In other words, choos-

ing the best initial position can significantly improve the winning rate. A study by [58]

defined the neighborhood as a set of cells relative to the first cell while [59] supposed that

none of the first cell’s neighbors are mines. Here, the safe neighborhood rule is proposed

with the basis of the first action rule and the neighbor cell, and both are for the first cell

opened. The discussion of the safe first action rule and the safe neighborhood rule is as

follows.

Safe First Action Rule: The safe first action rule is that the first opened cell must

be safe [59]. Suppose that c0 is the first opened cell, mines will be placed in other cells

{c | c 6= c0}. Then, it is assumed that the game configuration is R⇥L | b, and R� 8 � b,

then probability c0 is given by (4.9).

Pr(I(c0) = 0) =

�
b

RL�|N(c0)|

�
�

b
RL

� (4.9)

=
(RL� |N(c0)|� b+ 1)...(RL� |N(c0)|)

(RL� b+ 1)...(RL)
(4.10)
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To get the best first action, we need to find the first opened cell c0 that maximize the

probability that c0 is a “0”. The cardinality of c0 is defined as (4.11). Since R � 8 � m,

|N(c0)| = 3 can maximize Pr(I(c0) = 0). Thus, the corner cells are the best first action

under the safe first action rule of 1
4 of the board size.

|N(c0)| =

8
>>>>><

>>>>>:

3, c0 is a corner cell

5, c0 is a border cell

8, other cases

(4.11)

Safe Neighborhood Rule: The first action strategy also explores the safe neighbor-

hood rule to enhance the winning rate, which means the first opened cell and its neigh-

borhood must be safe. Suppose that c0 is the first opened cell, mines will be placed in

other cells {c | c 6= c0, c /2 N(c0)}. In this case, the probability c0 is given by (4.12).

Pr(I(c0) = 0) = 1 (4.12)

Such condition allowed for more information to be obtained when c0 was found. Sup-

pose that F is the frontier after doing the first action, and Z = {c | c 2 F, I(c) = 0}.

The problem switches to: if |Z| is a constant, how to maximize |Z|? This implies that

the closer c0 to the center of the board is, the larger the value of |Z|.

Guessing Strategy

The guessing strategy extends the two preceding reasoning strategies, which corresponds

to the stochastic elements during the solving process of Minesweeper, where each cell on

the board has uncertainty, and the player cannot determine the safe cell from the available

information. However, players of di↵erent abilities use the guessing strategy di↵erently;

for example, advanced players avoid using the guessing strategy whenever possible, while

beginners may use this strategy all the time. The key to the guessing strategy is to find

a hidden cell that maximizes its safety probability. The mathematical solving logic of

expert players is inspired by the skill of computing possibilities based on limited informa-
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tion. After dividing variables into free and leading variables by Gauss-Jordan elimination,

the binary tree search searches all possible combinations of free variables to find numer-

ical solutions. Finally, to reduce complexity, we pure the binary tree according to the

constraints on the general solutions of linear systems.

Constrained Search: Suppose that there is one independent frontier on the board,

and the advanced strategy is used to get a system of linear equations �. Let B be the

augmented matrix of �, where B is a ↵⇥� matrix. C is the reduced row echelon form of

B, which is got by Gauss–Jordan elimination [60]. The purpose is to find a hidden cell c

with minimal risk and provide more information. The Gauss–Jordan elimination divided

variables into free variables Vf and leading variables Vl. Any variable vl 2 Vl is a linear

combination of free variables in Vf and a constant, so the solutions are presented by free

variables.

Since the value of all variables are in {0, 1}, the binary tree search is used to find all

possible numerical solutions of �, where the critical point is need to search free variables

that can significantly reduce the scale of the search. The binary tree has f free variables,

and the depth of the root node is 0. The nodes with the depth less than f are non-leaf

nodes, which variable equals the depth d(1  d  f � 1). The left/right child node of a

non-leaf node n, and the variable is 0/1. Figure 4.6 shows an illustration of binary tree

search for free variables. Here, the completed node is defined as a node n that satisfies

either of these conditions: (a) n is a leaf node; (b) each child node of n is a completed node

or an illegal node. Moreover, a node n is an illegal node if one of the conditions is satisfied:

(a) the number of free variables equals 1 is significantly greater than r (remaining mines);

(b) there exists a leading variable not in {0, 1} under the variable state of n. Thus, when

pruning a binary tree, if a node is an illegal node, then no need to search its child nodes.

Otherwise, it stores the states of nodes from the root node to the current node, and each

legal leaf node presents a possible free variable. Thus, all possible numerical solutions of

� are obtained.

Additional Enhancements: The additional technique is to choose a variable that

would provide more information when the values of variables x̂1, ..., x̂t are near to “0”.

Then, it is assumed that xi = 0 for i = 1, ..., t, substitute x = 0 back into � by back-
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Figure 4.6: Binary tree search for free variables: x1 and x2 are free variables, blue nodes
are leaf nodes, which represents four variable states: x1 = 0, x2 = 0; x1 = 0, x2 = 1;
x1 = 1, x2 = 0; and x1 = 1, x2 = 1.

tracking method, and denote Inf(xi) as the number of invariables of �̄. Finally, the xi

is chose with the largest Inf(xi). However, all possibilities of hidden cells are searched

by brute-force search when the number of hidden cells on the board is insu�cient. Since

there is no information on the board, the best choice is to open a cell far from the solved

area since it has a higher probability of opening a “0” cell. The algorithm of the guessing

strategy is as Algorithm 5.

Algorithm 5 Guessing Strategy

Input B: game board, S: the set of solutions of linear systems

Output c0: the cell that will be opened

1: Function GS(B)

2: if S = � then

3: Choose a hidden cell c0 on B far from the solved areas randomly

4: else if the number of hidden cells on B is less than 6 then

5: Do a brute-force search to choose the safest c0 on B

6: else
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Algorithm 5 Guessing Strategy (continued)

7: Cand {}
8: for each s 2 S do

9: Vf  a list of free variables

10: Create the root node nr

11: nc  nr . current node

12: P  {}
13: while nr is not a completed node do . Search free variables

14: if nc is a leaf node then

15: Substitute the value of the free variables into s

16: Add a possible numerical solution into P

17: nc  the parent node of nc

18: Update the state of nc

19: else if nc is a completed node OR nc is illegal then

20: nc  the parent node of nc

21: Update the state of nc

22: else if the left child node of nc was not created then

23: Create a left child node n0

24: nc  n0

25: else

26: Create a right child node n1

27: nc  n1

28: end if

29: end while

30: Calculate probabilities that cells in p are safe

31: Add the safest cells and their probabilities into Cand

32: end for

33: c0  the safest cell in Cand

34: Return c0

35: end if

36: end Function
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4.4 Experiment Results and Analysis

In this section, we compare the winning rates of Minesweeper under sub-strategies

in the PAFG strategy and illustrate the similarities and di↵erences with other methods

or strategies, as well as the winning rate comparisons between the PAFG strategy and

existing methods, and the discussion of the future enhancement of the strategy.

4.4.1 First action rule and safe first action rule

The first action rule is used for the first step on the board, and the safe first action rule

means the first opened cell is safe. This paper conducted experiments on both rules to

increase the probability of game to proceeds and avoid the player failing at the first step.

The experiment results under the first action rule and safe first action rule are reported

in Table 4.1. The AI agent proposed based on the “PAFR” strategy were running for

10,000 games for the beginner (9 ⇥ 9 | 10 mines), intermediate (16 ⇥ 16 | 40 mines) and

expert (16⇥30 | 99 mines) configurations of the Minesweeper. It can be observed that the

winning rate of the safe first action rule achieves 87.9%, 78.2%, 39.7%, which is 10.9%,

12%, 8.1% higher than the first action rule.

Table 4.1: Comparison for first action rule and safe first action rule based on di↵erent
Minesweeper configuration.

Rule 9⇥ 9 | 10 16⇥ 16 | 40 16⇥ 30 | 99
First Action Rule 77% 66.2% 31.6%
Safe First Action Rule 87.9% 78.2% 39.7%

9⇥ 9 | 10: 9⇥ 9 board size with 10mines;
16⇥ 16 | 40: 16⇥ 16 board size with 40 mines;
16⇥ 30 | 99: 16⇥ 30 board size with 99 mines.

4.4.2 Safe first action rule and safe neighborhood rule

More information obtained means a higher probability of finding more safe cells and

mines, which was the basic idea of the safe neighborhood rule. The specific rule is that the

neighbor cells around the first opened cell are safe to obtain more board information. The

di↵erence between the safe first action rule and the safe neighborhood rule is the di↵erent
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location of the first action cell. Figures 4.7 and 4.8 show the winning rate of choosing

di↵erent first opened cells under di↵erent first action rules based on the game configuration

of 8⇥ 10 | 12, which is based on a quarter of the whole board. To better demonstrate the

results under these rules, this experiment takes Minesweeper in configuration 8 ⇥ 10 | 12

as an example and 10,000 runs per cell as the first open cell for both safe first action rule

and safe neighborhood rule.

The AI agent is based on the “PAR” strategy, where “R” is the random guessing

strategy. The result shows that the cell on the top left corner has the highest winning

rate of 71.5% based on the safe first action rule, while the cell closer to the center with the

winning rate around 85% under the safe neighborhood rule. Furthermore, it can obtain

from Figure 4.8 that the cell closer to the center has a higher winning rate, which suggests

that the AI solver following the safe neighborhood rule has a better chance of getting a

high winning rate. Since the correctness of the safe neighborhood rule has been proven

by the experimental results above, all the simulation experiments utilizing the PFAG

strategy are based on the safe neighborhood rule.

Figure 4.7: Safe first action rule. The winning rate of di↵erent first opened cells (game
configuration: 8⇥ 10 | 12 mines with “PAR” AI agent strategy on safe first action rule).

4.4.3 Guessing strategy and random guessing strategy

The di↵erence between PAFG and PAFR strategy is that “G” and “R” are di↵erent, where

“R” randomly guessing cells to open the cells, while “G” chooses the most promising safe
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Figure 4.8: Safe neighborhood rule. The winning rate of di↵erent first opened cells (game
configuration: 8 ⇥ 10 | 12 mines with “PAR” AI agent strategy on safe neighborhood
rule).

one. The game configuration in this paper: beginner 9⇥ 9 | 10, intermediate 16⇥ 16 | 40

and expert 16⇥30 | 99, which is a feature of Microsoft Windows. In order to compare the

experimental data with the previous studies, the experiment was conducted 10,000 times

with PAFG? AI agent with three Minesweeper configurations: beginner (8⇥8 | 10 mines),

intermediate (16 ⇥ 16 | 40 mines) and expert (16 ⇥ 30 | 99 mines), listed in Table 4.2.

Comparing with PAFR strategy, the PAFG strategy improved the winning rate for three

configurations (9⇥9 | 10, 16⇥16 | 40 and 16⇥30 | 99) of minesweeper by 2.6%, 6.7% and

18.1%, respectively. In this case, it can be seen that for all three puzzle configurations,

the “G” strategy has a significantly higher win rate than “R” strategy. For the guessing

strategy, the key is to use the information obtained, and to pay attention to the existing

information and search for unknown information is also a future direction.

4.4.4 Comparison of methods and strategy

To the best of our knowledge, the strongest AI in previous works is PSEQ-D256 [54], where

the proposed strategy has better performance for beginner level, the same for intermediate,

and 0.4% less for expert; thus, generally better performed than PSEQ strategies. The

di↵erence between PSEQ-D256 and PSEQ is that it uses several situations to choose

OPTIMAL procedure or HEURISTIC strategies. Moreover, it is a solver composed of

heuristic strategy and the quasi-optimal procedure while using the criterion of the number
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of situations; that is also why the performance at the expert level is slightly higher than

the strategy in this paper.

Table 4.2: Comparison of various methods and strategies from the previous works against
the proposed PAFG strategy performance (winning rate in percentage) in solving the
Minesweeper.

Strategy Beginner Intermediate Expert

PAFR? (this paper) 93.8% 79.6% 27.5%
PAFG? (this paper) 96.4% 86.3% 45.6%

PAFG (this paper) 82% 86.3% 45.6%
PSEQ-D256 [54] 81.8% 78.2% 40.1%
PSEQ [54] 81.6% 78.1% 39.6%
OH [53] 80.2% 74.4% 38.7%
cSimEnuLoClf [52] 80.0% 75.6% 37.5%
LSWPE [51] N.A. 67.7% 25.0%
Lordeiro (✏-greedy) [55] 77% 57.9% 4.1%
Lordeiro (UCB) [55] 76.4% 44.5% 0.62%
CSPStrategy† [50] 80.0% 44.3% 33.9%
Pedersen⇧ [51] 92.5% 67.7% 25%

beginner: 8⇥8 | 10, intermediate: 16⇥16 | 40, and expert: 16⇥30 | 99;
†: the configuration is: 8⇥ 8 | 10, 15⇥ 13 | 40, and 16⇥ 30 | 99;
?: the configuration is: 9⇥ 9 | 10, 16⇥ 16 | 40, and 16⇥ 30 | 99;
⇧: the configuration is: 10⇥ 10 | 10, 16⇥ 16 | 40, and 16⇥ 30 | 99.

It is worth noting that [54] had probed the corner blocks to be the first step to improv-

ing their strategies’ success rate. This condition is well validated by the safe first action

rule in this paper. Moreover, this thesis proposed the safe neighborhood rule to enhance

the performance of the PAFG strategy. As a result, even with the random guessing strat-

egy (R), the winning rate shown in Table 4.1 is higher than guessing strategies “P” and

“T” in PSEQ. After that, [54] discussed the PSEQ strategies based on the maximum

probability of the block and heuristic methods; this optimal and heuristic-based strategy

has a much higher win rate than the previous strategy. However, a remote similarity be-

tween the “G” strategy in PAFG and PSEQ maximizes the probability of the hidden safe

cell. At the same time, the constrained search and Gauss-Jordan elimination was used

to reduce the scale of the search, together with the backtracking method to enhance the

strategy. Thus, even without using heuristic methods, PAFG provides a high-level solver

of Minesweeper compared with PSEQ-D256 state of the art. Nevertheless, the di�culty

of solving Minesweeper increases as the density of mines increases, which means the “G”
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strategy needs to be used more often and choose the safest cell from the cell with currently

available information, without considering the part of the cell with unknown information.

4.5 Discussion

This chapter focuses on classic Microsoft Minesweeper by proposing an AI solver

based on the PAFG strategy that reaches the reported winning rate (see Table 4.2) to

facilitate the study of the puzzle-solving process. The four strategies proposed were

adopted to imitate di↵erent player abilities in solving problems, specifically, addressing

a single-agent game, such as Minesweeper. With the presence of stochastic elements

(e.g., hidden information of the mine location from all available cells on the board), the

solvability is dependent on improving the condition that can be regarded as a ‘puzzle’ while

mitigating the condition that can be regarded as a ‘game.’ In another word, mitigating

the most on the ratio of certainty against uncertainty.

Moreover, the definition of solvability that distinguishes ‘puzzle’ and ‘game’ from

the context of the stochastic single-agent game had been introduced and expanded from

the two-player zero-sum game. By adopting an appropriate Minesweeper AI strategy,

the experiment conducted on the various board size achieved adequate and comparable

performance to the strategy of the related works. With the reported winning rate of

the proposed PAFG given in Table 4.2, it is clear that based on the configuration of the

experiments, for instance, the 9⇥9 Minesweeper was solvable 82% of the time as a puzzle.

Meanwhile, Minesweeper was played as a game for the remaining 18% of the time. This

condition can be associated with the information dynamics of the solving process where

the random/hidden information of the single-agent game a↵ected the solvability of the

positions/moves, which makes it either solvable or not.

From the solvability point of view, the strategy of Minesweeper AI in solving problems

is based on cells with information on the board, since in most cases, the safety probability

of cells with information is more distinctive, which decides to be more informed compared

to the cells without any information. Moreover, in some cases, it is easy to determine

whether the hidden cells on the board are mines or not. Such a situation is when there

is a relationship between the number of hidden cells and the number of mines minus the
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number of flag cells, which constitutes the primary reasoning strategy (“P” strategy).

However, the purpose is to find all hidden mines on the board. As the information

increases, the problem is switched to finding variables in a Boolean variable linear system

of equations, which is over-determined in theory. Here, Gauss-Jordan elimination helped

reduce the augmented matrix into the row echelon form. The general solutions to the

system can be obtained with the advanced reasoning strategy (“A” strategy). Moreover,

the guessing strategy (“G” strategy) was used to find a hidden cell and maximize its safe

probability when all cells have a probability of being mines instead of open cells randomly.

In addition, the rule proposed in the first action strategy (“F” strategy) always keeps both

the first cell opened and the surrounding cells safe to obtain more information in the first

step.

The strength of the PAFG strategies was the complementary nature of the four strate-

gies to achieve a high winning rate in solving Minesweeper. In other words, each strategy

provides a balance between what is currently known and what is unknown of the puz-

zle state to decide the best possible future state of the puzzle. Based on the reported

experimental results, this condition showed that having such a balance is well-suited for

Minesweeper, where stochastic elements are always present, inducing insu�cient state of

the art approaches in dealing with such cases.

Nevertheless, if there is no available information on the board, opening a cell far from

the solved area is the best choice. The current maximum probability of safe cells was

obtained using a conditional probability based on known information. However, there

are cases where the maximum probability of safe cells based on known information is

lower than that of cells in regions of unknown information, such as when the density of

the remaining mines is low. Thus, balancing exploration and utilization based on known

information is an expecting direction of future improvement.

4.6 Chapter Conclusion

A knowledge-based rule verified by the experimental simulation had found that cells

closer to the center are the best positions for the “F” strategy with the safe neighborhood

rule. Furthermore, other strategies were used to obtain a high winning rate based on
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available information alongside game progression. For example, the safety probability of

each surrounding cell was independently calculated. In addition, the advanced reasoning

strategy is used to invariably find a linear system of equations based on the primary rea-

soning strategy mathematically. Moreover, the Gauss-Jordan elimination is adopted to

obtain general solutions in a linear system of equations, exploring the guessing strategy

to independently reduce the augmented matrix into the row echelon form under the infor-

mation of the considered cell. Compared with the solving strategy state of the art, this

AI solver reached a high winning rate with: 96.4% for 9⇥ 9(10mines) board size, 86.3%

for 16⇥ 16(40mines) board size, and 45.6% for 16⇥ 30(99mines) board size.

The design concept of this AI solver is based on the solving logic of players, which is

modeled mathematically to facilitate future entertainment analysis for di↵erent abilities

players to solve Minesweeper. Furthermore, more strategies correspond to the increased

player’s ability, which implies a higher winning rate, verified by proposed knowledge-

driven reasoning, strategies, and simulation conducted in this thesis. Promising future

work includes exploring the PAFG strategy in other related single-agent games, such as

2048 and similar games, to expand further and verify the definition established from this

thesis. Moreover, adopting the PAFG strategy as a tool to analyze and measure the

entertainment aspects of the single-agent stochastic game and other deterministic puzzles

is exciting prospects for future investigation.

63



Chapter 5

Finding the Border Between Games

and Puzzles

5.1 Chapter Introduction

Many games and puzzles can be converted into each other. We can easily turn many

puzzles into games, and vice versa. For example, Go as a game is composed of many small

puzzles. Games can have puzzles as a subset that together make up the game, as many

games do. And in most cases, the puzzles are an integral part of the overall game, because

games that place most of their challenge value on the puzzles they contain quickly lose

the uncertainty once all the puzzles have been solved. So, what exactly distinguishes the

game from the puzzle? This chapter describes the di↵erences and connections between

games and puzzles, as well as current researches on solving puzzles and playing games.

By listing studies in the field of puzzles, the gap between current research on puzzles and

players is pointed out. furthermore, a model of information change during puzzle solving is

proposed, using N-puzzle and Minesweeper as testbeds to analyze players’ entertainment

based on solving information. More importantly, the classification of puzzles is defined

from the perspective of solvability, leading to finding the border between puzzles and

games.
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5.2 Games and Puzzles

The earliest distinction made on games and puzzles had been previously discussed [61],

which emphasized the ability for ludic activity changes where a puzzle presents a singular

thing to “solve” (i.e., rule-based), while a game changes and responds based on the player’s

action and might be unpredictable (i.e., mechanics). Meanwhile, several researchers (e.g.,

[62], [63] and [64]) have mixed opinions on such distinction where the terminology such

as “puzzle game” was used in a broader sense while argues that all “games are puzzles to

solve.” Building on this understanding, it was noted that “almost every game has some

degree of puzzle-solving,” but finally concluded that there is a distinction, summarized

that a puzzle is static, while a game is interactive [65]. A recent study outlined that

puzzles and games shared distinctive traits based on the experience they provide to the

players, where puzzles being a subset of games that are rooted in a playable experience,

their a↵ordances and relationships with their players, and their places in the context of

“casual” games [4].

Studies indicate that emotions play an essential role in decision-making by utilizing

functional magnetic resonance imaging in Ultimatum game [66]. Also, decision-making

ability was measured for soccer players based on two levels: the player’s technical-tactical

skills (subjective way) and the tactical context (objective way). Similar to the board game

or sports game that uses the best move selection as a critical point of winning it [67] [68],

the average branching factor is the critical elements in ‘playing’ games or ‘solving’ puzzle.

While brute-force methods can be adopted to solve games, its consumption in space and

time would be infeasible [67]. Therefore, studies about the optimal solution of puzzle

games focused on search space reduction, like Breadth-First Search (BFS) and Depth

First Search algorithms (DFS) [69]. Usually, an optimal solution was found with the

least steps or cost in a game, which depends on reducing the branching factor of di↵erent

heuristic evaluation functions [70] [71].

A puzzle is an enjoyable game with a right or fixed answer to solve 1. As one of the

problem-solving modes, the puzzle consists of several sub-problems that could indepen-

dently be solved depending on players’ abilities (such as hand-eye coordination and logic)

1https://scottkim.com/
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and engaged players to accomplish challenging goals [72]. This thesis focuses on two types

of puzzles: N-puzzle, Minesweeper. These puzzles represent di↵erent problem-solving un-

der the setting of di↵erent state information dynamics (sequencing in N-puzzle, stochastic

in Minesweeper).

However, what all these puzzles have in common is discovering solutions to solve

subproblems that make up the goal state. It is interesting to know the dynamic solving

rate in puzzle solving progress and players’ experience. A recent study based on a physics-

based puzzle analyzes game levels design from two dimensions of axiality and density

from the perspective of game designers. One study suggests generating playable content

through defining better fitness functions or developing an e↵ective AI agent to play the

game more e↵ectively [73]. Generating the more playable content in a puzzle is essential

from the game design point of view, which is also vital to understand players’ behavior and

how people think in the game [74]. Such a study pointed out that perceptual speed is a

critical factor in solving Tangram puzzles and analyzing the correlation between selecting

puzzle pieces over time.

Based on previous work, the motion in mind concept uncover the motion changes of

game’s and players’ information [1] [31]. Such studies describes the player’s motion in

mind for various game uncertainty (m) over time. This thesis investigates the dynamic

uncertainty of problem-solving progression in di↵erent puzzles, and the interplays that

a player experience between solving and playing such puzzles. It can be said that the

information of the puzzle moves forward with di↵erent solving rates (or velocity) relatives

to players’ abilities. This thesis explores how the solving rate (v) changes in di↵erent

puzzles, with motion in mind from both objective and subjective views.

5.2.1 Current gaps in puzzle studies

Studies on puzzles had mainly been rooted in the application of puzzles as a tool to

understand the process of learning better. It was also agreed that puzzles had been a

commonly accepted method to introduce students to spatial thinking [75], computational

thinking [76] [77], and even musical thinking [78]. For instance, some studies had ex-

amined the learning and enjoyment aspect during game-playing by determining the best

pace challenges being presented from a game design perspective [63], in which a prag-
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matic approach of problem-solving taken from behavioral psychology where three met-

rics were used (unit of analysis, actions to completion, and presentation of novel skill).

Meanwhile, another study conducted a mixed-method approach in which problems with

learning structure within a game are identified along with the game progress, and the

di↵erent strategies players adapt to overcome that problem is determined by comparing

the optimum solutions in puzzles against observed player performance [79].

Another aspect of puzzle studies involves understanding player’s strategies in solving

puzzles. For example, one study proposed a visualization technique to compare behavior

sequences and capture strategies enacted by players in solving a puzzle, allowing the

verification of specific hypotheses about those strategies [80]. In contrast, another study

presented human-interpretable rules of puzzle-solving strategy, where a rich structure of

domain-specific knowledge and strategies that are not obvious from the description of a

game’s rules to be generalized for better understanding [81]. In another perspective, the

impact of strategy and dexterity on video games is that a player must use strategies to

decide between the number of moves and the dexterity to execute those moves correctly

[82]. An artificial intelligence (AI) agent simulates human-like strategy and dexterity

using player modeling by integrating them into a single framework that quickly measures

score distributions in interactive puzzles.

A causal relationship has been suggested in action video games to improve various

visual and attention skills by doing experiments in the habitual video-game and non-

video-game players [83]. Recent research experiments have discussed an action video

game, a puzzle game, or a real-time strategy game on the skills di↵erences between players,

including attention, memory, and executive control [84]. It illustrated players’ skills and

specific abilities that could be enhanced during the game’s progress [84] [85]. This thesis

sought to identify significant factors related to players’ ability in the puzzle game domain.

Players’ ability dramatically influences the game progress and resulted in di↵erences

among players. However, it is challenging to determine the puzzle’s velocity of progres-

sion from the motion in mind perspective. How can the change of solved uncertainty,

associated with the velocity (or the winning rate in general), be defined in this context?

In both the board or sports game domain, the best move selection model is adopted [1].

Meanwhile, solutions in most puzzles can be seen as a sequence of moves. In addition, as
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opposed to a two-player game tree, the puzzles’ game tree is viewed as indistinguishable

tree breadths, and the optimal solution is selected at each step [86]. Moreover, changes

of game-playing experience between di↵erent puzzle progression relative to the player’s

ability are analyzed, and its essential entertainment elements are established.

5.3 Informational Progress Model in Puzzle-solving

The model of move candidate selection based on skill and chance has been illustrated

as Figure 5.1, which has been previously proposed in the domain of board games [41] [1]

[29]. This illustration shows that skillful players would consider a set of fewer plausible

candidates (b) among all possible moves (B) to find a move to play. A core part of the

original game with branching factor B can be transformed into a stochastic game with a

smaller branching factor b since it is assumed that each candidate may be equally selected.

B b 1Skill Chance

Figure 5.1: An illustration of move selection model based on skill and chance (adopted
from [1])

Similarly, such a branching factor b exists in a puzzle game case, where the player

could select one among b with equal probability to get the optimal solution at each step

of the game process. The more b at one step, the greater the movement freedom to

select in that step and the easier it is to move the game forward. Hence, reducing the

candidates’ solution (B) down to a few (b) is crucial in puzzle game cases, where each

candidate has an equal probability of being selected. Unlike two-player board games with

solving uncertainty, a puzzle game is a classic single-agent problem-solving game with a

definite goal. The game can be solved if a solution to this problem is found, and usually,

the expert player can find the optimal solution. It is assumed that the game length of a

solvable puzzle game equals 1; otherwise, the game length is 0.

The proposed game progress model of game uncertainty is based on board games work

by [87], where the uncertainty on the game result is the number of moves in board games
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n. Here, the information on the solution of puzzle games is defined as the amount of

solved uncertainty (or information obtained) y(x), as given by (5.1).

y(x) =
⇣
x

B

⌘n

(5.1)

Where y(x) (0  y(x)  1) and x (0  x  B) are the uncertainty solved and uncertainty

represented by the branching factors, respectively. Here, n denotes the number of plausible

moves at a given position of the puzzle under the consideration. There is no uncertainty

after solving a puzzle, so the velocity of the solving process is given by (5.2), which is the

first derivation of the solved uncertainty.

y
0(x) =

n

Bn
x
n�1 |x=B =

n

B
(5.2)

Thus, the probability of solving a puzzle at each step pi is obtained as (5.4), where bi is

candidate options of equally being selected for optimal solutions, and B is all branching

factors. When bi = Bi, then pi = 1, which means that all branching factors are optimal

or has no information to solve at the current step, and the player has complete freedom

to select any of them. Conversely, bi = 1 means that only one search tree branch can be

selected to reach the optimal solution. Moreover, if v = 0, there is no solution for the

current situation. In this case, the average of solving a puzzle v and m are obtained as

(5.3), where D is the game length (total steps of solving), and m is the risk of solving a

puzzle.

pi =
bi

Bi
or pi = 1 (5.3)

v =
1

D

DX

i=1

pi and m = 1� v (5.4)

For deterministic puzzles, the ratio of b to B is related to the probability of getting

the optimal solution. Take N-puzzle as an example, the puzzle is a deterministic puzzle,

meaning that there is a definite solution to the puzzle, but the solution obtained may

not be optimal depending on the player’s ability. Therefore, this informational progress

model is significant to measure the uncertainty of obtaining the optimal solution to a

deterministic puzzle. But for stochastic puzzles, the ratio of b to B is about whether

there is a deterministic solution to the puzzle. This is because the hidden information
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in an uncertainty puzzle increases the probability that the puzzle is unsolvable. Take

Minesweeper as an example, in general, an increase in the number of mines will lead to

an increase in uncertain information. How to measure uncertain information in stochastic

puzzles is one of the further purposes of the proposed informational progress model.

5.4 Game Testbeds: N-puzzle and Minesweeper

In this section, we use N-puzzle and Minesweeper as representatives of deterministic

and stochastic puzzles, respectively, and conduct simulation experiments for information

analysis in solving puzzles and exploring puzzle mechanisms. At the same time, the

classification of puzzles is defined based on the winning rate of Minesweeper, and the

boundaries of puzzles and games are found.

5.4.1 Informational progression of N-puzzle

N-puzzle is a single agent game that consists of n � 1 numbered, movable tiles set in a

frame because one cell in the frame is always empty so that the cells around it can be

moved. The simulation result based on 8-puzzle, 15-puzzle, and 24-puzzle are summarized

in Table 5.1. It is observed that N-puzzle are easily solvable by AI agent, making its win

rate always 1. However, depending on the board size, the dynamics of the solving rate

would di↵er during the process.

Table 5.1: Analysis of n-puzzle game on motion in mind

N-puzzle v Ep p1 p2 v2

8 0.3877 0.1841 0.2374 -0.0533 -0.0871

15 0.2930 0.1214 0.2072 -0.0858 -0.1213

24 0.2365 0.0854 0.1805 -0.0952 -0.1246

In general, it was observed that an increase in the board size decreases the solving

rate, illustrating the increase in di�culty as the N-puzzle board size increases. Comparing

these three board sizes, 8-puzzle has the most Ep and v2, indicating the highest motivates
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in the game-playing experience with some errors (negative v2) in reaching the goal state

(associated with the notion of worry). Such experiences diminished when the board size

increases into 15-puzzle and 24-puzzle, where reductions of Ep and v2 were observed.

This research focuses on understanding the experience of the puzzle-solving process

by utilizing the game progress model of the N-puzzle. The dynamic solving rate (v) of the

8-puzzle game progress is shown in Fig 5.2. It can be observed that the solving rate drops

from peak to trough and repeats as the solving process. A common pattern observed is

that all the peak values are 1 and the trough is close to 0, and the speed drops more and

more slowly as the game progress. As the branching factor b value increases or decreases,

the corresponding v value would accelerate or decelerates. This dynamic v value reflects

the player solving the puzzle’s heuristic searching process and indicates the di�culties

of solving this puzzle at the current step. For example, if vi = 0.2, the di�culty of not

finding the optimal solution is mi = 0.8 for step i.
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Figure 5.2: Dynamic process of solving rate of 8-puzzle

Moreover, Figure 5.3 showed the distribution of v value in the solving 8-puzzle process

within 500 runs. As we can see, value v<0.2 accounted for the largest proportion, and the

number of nodes searched decreases with the increase of the solving rate, while the number

of v = 0.1 was the least. This situation illustrates the di�culty of finding the optimal

solution in solving 8-puzzle since there are many cases where the player is uncertain, as

opposed to v = 1.
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Figure 5.3: The distribution of the solving rate in the search process when solving 8-
puzzle.

Based on the study’s findings, the puzzle provides a di↵erent entertainment experience

where the information perceived and received by the players was e�ciently manipulated

and carefully refined. For instance, N-puzzle explores the information space where the

solving rates were in a “seesaw” e↵ect slowly throughout the play processes (see Fig-

ure 5.2), making both the motivation and challenge of the puzzle marginal most of the

time, while being surprising fresh at certain moments. It was an exciting take on informa-

tion aspects that involves process sequencing. At the same time, it can be associated with

strategic decision-making in business and engineering, where some decision was valid and

feasible for the long-term interest while in some rare occasions, requires a drastic measure

(e.g., application in industrial supply-chain and process planning problems).

5.4.2 Informational progression of Minesweeper

The distribution of the winning rates for the standard 9 ⇥ 9|10, 16 ⇥ 16|40, 16 ⇥ 30|99

configurations of Minesweeper are depicted in Figure 5.4. The experimental results were

based on 5000 instances each, where the winning rate was divided into three parts: 0�0.9,

0.9 � 1, and 1. As we can see, the 9 ⇥ 9 instances with a winning rate of 1 take up

the largest fraction of the three, which means that this Minesweeper has the highest

proportion of certainty. On the contrary, 16⇥30 board size have the highest uncertainty in
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solving it and simultaneously making it the most di�cult among the three configurations.

Moreover, as the board size increases, the ratio of 0.9�1 significantly increases, while the

ratio of v<0.9 increases the least, indicating the standard Minesweepers board sizes were

expected to provide su�cient play experience for non-novice players. Moreover, all three

configurations of Minesweeper show a large number of winning rates in 0.9� 1 compared

to a winning rate v<0.9 as a percentage of the total number in the presence of uncertain

information, which can indicate that the solving strategy proposed in this thesis works

well for di↵erent configurations of Minesweeper.

Also, from the above results, we can observe that a large board and a high number

of mines will lead to a lower winning rate for Minesweeper. This means that a large

board and a high number of mines will generate more hidden information, leading to

more unsolvable factors for Minesweeper and thus a lower win rate. Since Minesweeper

involves stochastic elements in the puzzle-solving process, two factors were considered to

corroborate the essential findings from such puzzles: the number of mines and board sizes.

Detailed discussion on such factors is given in the following sections.
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Figure 5.4: The distribution of solving rates for the three standard Minesweepers board
sizes

Moreover, together with Figure 5.5 shows the game length and the number of guess

times for solving Minesweeper 9⇥ 9 board size various the number of mines M 2 [1, 72],

each mine 2000 runs. We can observe that as the number of mines increases, the curves of

both the game length and the number of guesses increase and then decrease. In particular,

the game length peaks in subfigure (a) when the number of mines is 17, and after that it
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keeps decreasing to the end. This situation means that after a certain threshold of hidden

information is reached, the probability that the puzzle can be solved continues to decrease

until finally Minesweeper is solved with just one step. Also, in subfigure (b), although the

number of guesses first increases and then decreases, after the number of mines is 17, the

number of guesses is mostly greater than the value of 17, which shows that the increase

in the number of mines leads to an increase in uncertainty, and the increase in the hidden

information also leads to an increase in the uncertainty of whether the puzzle is solvable

or not.

Similarly, Figure 5.4 shows that as the size of the board increases and the number of

mines increases, the proportion of puzzles with a solving rate (winning rate) of less than 1

increases. There is a relationship between the uncertainty information in the puzzle and

these two values, and it may be that the density of the number of mines reaches a certain

threshold, leading to a certain threshold of uncertainty information, which in turn a↵ects

the solvability of the puzzle.

The study based on the solvability of deterministic puzzle and stochastic puzzles, gives

inspiration for the next to define about the di↵erent categories of puzzles, and to search

the border between puzzles and games. Allis et al. [13] proposed a definition of game

solvability based on ultra-weakly solved, weakly solved, and strongly solved. Puzzles can

be composed into games, and the fun of solving them can be enjoyed in solving them,

and similarly, games can be interchanged with puzzles, so it is interesting to study the

boundary between puzzles and games. Moreover, the classification of puzzles o↵ers a new

perspective, no longer based on the complexity of the mitosis, but on the winning rate

due to uncertainty information.

5.4.3 The solvability of single-agent game: evidence from Minesweeper

Generally, defining the solvability of a game depends on the observable outcome of the

game. In the context of two-player zero-sum games, [13] has defined solvability from

the perspective of game-theoretic values, which have three di↵erent levels: ultra-weakly

solved, weakly solved, and strongly solved. Such a solvability definition revolves around

the legal positions (or moves) made in the game (initial or all). As a result, a varying

degree of game-theoretic value is achieved under reasonable resources. Such a degree of
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(a) Game length various on the number of mines

(b) Guess times various on the number of mines

Figure 5.5: Game length and the number of guesses for solving Minesweeper 9⇥ 9 board
size various on the number of mines, 2000 runs each mine. (a) is the scatter diagram of
the average game length, and (b) is the scatter diagram of the guess times for solving
Minesweeper 9⇥ 9 board size.
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game-theoretic determination and consideration of the legal positions were the features

that di↵erentiate the three-level of solvability of the two-player zero-sum games. Based on

such understanding, this thesis develops the definition of a single-agent game’s solvability

based on such a foundation.

In the context of the solvability definition of two-player zero-sum games, solving the

game corresponds to finding a solution via a solution tree using tree search methods (such

as AND/OR tree search or equivalent). In this thesis, the concept of solving games is ex-

tended, which focuses on stochastic single-agent games. To define stochastic single-agent

games, the deterministic single-agent games must first be established from the solvability

perspective. As such, the solvability of a deterministic single-agent game can be defined as

finding a solution with 100% probability for any initial position. Furthermore, as discussed

by [47], a deterministic single-agent game is solvable when a solution can be statistically

determined with simple (class A) or time/state-dependent (class B) constraints.

A survey conducted on the di↵erent single-agent games had described its solvability

with features such as random, and hidden information is called a stochastic game [7] [47].

For example, Minesweeper and Tetris are stochastic single-agent games, while N-puzzle is

a deterministic single-agent game. As puzzle games evolved, stochastic single-agent games

are NP-hard problems such as Threes, and 2048 puzzle [88]. For a stochastic puzzle, the

solvability of such a puzzle is defined as finding a solution with less than 100% probability

but also being more than 0%.

Let p be the probability of a win (or winning rate) of a single-agent game. Thus, a

stochastic single-agent game is considered a ‘puzzle’ if and only if 0 < p < 1 in finding

a solution for any initial position. Otherwise, it is regarded as a ‘game.’ These two

distinction is established as the possible border between puzzle-solving and game-playing.

In this thesis, puzzle-solving is regarded as exhibiting more than 0% possibility of finding

a solution for any initial position of a single-agent game. Meanwhile, game-playing is

regarded as exhibiting no certainty of a solution to be found, as shown in (5.5).

p =

8
>>>>><

>>>>>:

1, deterministic puzzle

0 < p < 1, stochastic puzzle

0, game

(5.5)
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A single-agent AI solver of Minesweeper was conducted in 9⇥9 board for 144,000 runs,

where the mines are 1 M  72. Figure 5.6 shows the winning rate p = 1 when M  3;

thus, indicating that such a situation corresponds to a deterministic puzzle. Relative to

the definition given by [13], such a situation indicates a strongly solved instance since the

strategy adopted by the AI agent can determine the game-theoretic value for all positions.

As the number of mines increases, the winning rate decreases for M 2 [4, 39], which

corresponds to a weakly solved situation. In other words, the AI agent can determine at

least some game-theoretic value for an initial position since some uncertainty occurred

that makes certain positions in the game unsolvable. When M 2 [40, 66], p = 0 that

a solution is unavailable, a puzzle becomes a game. Finally, p ! 1 for M 2 [67, 72] as

available information is su�cient to determine a solution (or determine game-theoretic

game) after opening only several cells (similar situation as a strongly solved instance).
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Figure 5.6: The winning rate (p) of the 9 ⇥ 9 board size Minesweeper is based on the
number of mines M 2 [1, 72], with 2000 runs per mine. The winning rate p = 1 for M  3
indicates a deterministic puzzle; 0<p  1 for M 2 [4, 39] and M 2 [67, 71] indicates a
stochastic puzzle; otherwise, p = 0 for M 2 [40, 66] indicates a game.

The experiment conducted on the 9⇥ 9 Minesweeper, which 37.5% (54,000 instances)

of the total instances are unsolvable. Note that such instances may vary depending on

di↵erent factors; nevertheless, they constitute what can be defined as the “uncertainty”

element of the single-agent game.

Moreover, 16⇥ 16 board size of Minesweeper was used as a testbed for additional ver-

ification of the definition of puzzles, where the mines are 1 M  247. Figure 5.7 shows

the experimental results based on 2000 instances per mine. The winning rate p = 1 when

M  13 indicating this situation corresponds to a deterministic puzzle. As the number
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Figure 5.7: The winning rate (p) of the 16 ⇥ 16 board size Minesweeper is based on the
number of mines M 2 [1, 247], with 2000 runs per mine. The winning rate p = 1 for
M  13 indicates a deterministic puzzle; 0<p  1 for M 2 [14, 84] and M 2 [245, 246]
indicates a stochastic puzzle; otherwise, p = 0 for M 2 [86, 244] indicates a game.

of mines increases, the winning rate decreases for M 2 [14, 84] and [245, 246], which cor-

responds to a weakly solved situation with 0<p  1 with some uncertainty occurred that

makes certain positions in the game unsolvable. When M 2 [40, 66], p = 0 that a solution

is unavailable, a puzzle becomes a game. The overall trend of the win rate for the 16⇥ 16

Minesweeper is similar to that of the 9 ⇥ 9. Both are deterministic puzzles when the

number of mines is small, and as the number of mines increases, the uncertainty in the

puzzle begins to increase until it increases to the point where only a few clicks are needed

to solve the entire puzzle. This experiment verifies to some extent the positive certainty

of our proposed solvability based puzzle definition, and demonstrates that puzzles and

games can be transformed into each other according to changing conditions, pointing to

a new direction for the boundary between puzzles and games.

Meanwhile, stochastic puzzle-like such as Minesweeper provides several exciting per-

spectives in the thesis. Firstly, observation of di↵erent settings and ability levels provide

insights on the original or standard Minesweeper 16 ⇥ 16 and 16 ⇥ 30 board sizes being

suited for experienced players, while the 9⇥ 9 board size is suited for the beginner; thus,

corroborating the previous findings of similar nature [89]. It is curious as to how the

designer in the first place decided such setting. On the one hand, the potential reason is

that the original purpose of Minesweeper was the mastery of using the mouse peripheral;

thus, being educational. On the other hand, the mastery of mouse peripheral also requires

continuous e↵ort; thus, it requires the Minesweeper with enough challenge to be played
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even by experienced players. Hence, the design allowed for “leeways” for di↵erent player

abilities to match the di�culty expected from the play experience while catering to as

many di↵erent play audiences as possible. Nevertheless, Minesweeper provides a platform

to explore open problems, albeit in a limited sense.

5.5 Chapter Conclusion

Solvability is particularly important in the field of puzzle solving, which is about

having a definite solution to the puzzle. If the winning rate of a puzzle is equal to 1, it

means that the puzzle is deterministic and always solvable. If the winning rate is between

0 and 1, it means that there is uncertain information in the puzzle solving process leading

to an unsolvable puzzle, which we call weakly solvable. If the winning rate is equal to

0, then the puzzle becomes a game, which indicates that the puzzle is full of uncertainty

information without a definite solution to solve it.

Meanwhile, N-puzzle and Minesweeper are used as experimental platforms to analyze

the informational progression during the puzzle solving process. N-puzzle as a determin-

istic puzzle which implies a specific solution that allows N-puzzle to move from the initial

state to the ordered state of the target. The goal of the puzzle is to solve the puzzle in

as few steps as possible, so the choice of each step in the solution process is related to

the optimal solution of the puzzle. If each step is chosen from the optimal solution, what

is obtained together is the overall optimal solution to the puzzle. In general, for puzzles

like N-puzzle, there is no uncertainty of finding a solution, only uncertainty of finding the

optimal solution.

For Minesweeper, the size of the board and the number of mines are related to the

uncertainty information of the puzzle. From 9⇥9 and 16⇥16 Minesweeper, the uncertainty

in the solving process increases with the number of mines until the winning rate is 0, and

the puzzle becomes a game full of uncertainty. This means that there is no way to know

the output of the puzzle, and there are stochastic factors in the puzzle solving process

that cause the puzzle to be unsolvable, leading the researcher to find the border between

the puzzle and the game.

From the solved games domain, various two-player zero-sum perfect information games
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have been classified into ultra-weakly solved, weakly solved, and strongly solved [13]. For

example, ultra-weakly solved means the game can be solved but does not require the player

to achieve the optimal solution. Weakly solved is that player needs to achieve a draw in a

game, and strongly solved requires an optimal strategy in all legal positions to achieve the

optimal solution. It can be remarked that most solved games were equivalent to puzzles,

which were associated with v0. Meanwhile, weakly-solved and ultra weakly-solved were

associated with v0  v  v1 and v1  v  v2, respectively. However, such associations

were based on the reported results, and the information during the puzzle-solving progress

varies in players’ solving experience, which requires further experimentation and justifi-

cation. Therefore, it is interesting to compare di↵erent solving levels in a single-agent

puzzle or puzzle-like domain and establish relations to the two-player game solving in

future studies.
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Chapter 6

Conclusion

6.1 General Conclusion

Solving puzzles helps better understand the process’s informational progression and

explore entertaining analysis deeper. This thesis used the A* algorithm to find the optimal

solutions for N-puzzle and analyze heuristic searches in the artificial intelligence (AI)

context. Regarding solvability, N-puzzles are solvable (deterministic) puzzles because

there exist specific solutions to solve the puzzle, implying no uncertain information that

makes the puzzle unsolvable. However, the uncertainty in solving a deterministic puzzle

lies in finding the optimal solution to the puzzle. A single-agent puzzle, namely 8-puzzle,

does the observation of the uncertain information obtained from the optimal solution. It

concluded that uncertainty of the optimal solution in each step a↵ects the ability of the

A* algorithm to find the optimal solution in all steps. This relates to the probability of

the player finding the optimal solution to a deterministic puzzle, which, if achieved at

each step of the solution process, will lead the player to the optimal solution to the entire

puzzle.

The search methods and algorithms are crucial for obtaining the optimal solution

to a deterministic puzzle. However, for stochastic puzzles, where the winning rate is

in favor of obtaining more information during the solving process, the balance between

the information obtained and the search for hidden information is an important topic.

Besides, the research on uncertainty analysis of solving stochastic puzzles relies on a
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popular single-player puzzle known as Minesweeper. The uncertainty of solving it lies in

stochastic factors that make the puzzle unsolvable in the solving progress, which depends

on the number of mines and the size of the board. An AI solver was proposed based

on the obtained information on the board, called the ‘PAFG’ strategy, which stands for

the primary reasoning, the advanced reasoning, the first action strategy, and the guessing

strategy. More importantly, the first step is crucial to the winning rate when solving

a stochastic puzzle. A safe first step with more information will probably increase the

probability of a higher winning rate. The first action strategy in this thesis aims to find

the best position of the first opened cell and acquire more information that determines

the safety of the following cells. In other words, choosing the best initial position can

significantly improve the winning rate.

Game refinement theory and the concept of motion in mind have been verified by kinds

of sports games and board games of the sophisticated zone and entertaining analysis. The

experimental results of the 8-puzzle imply that it would be enjoyable for professional or

skillful players to find the optimal solution. Moreover, di↵erent game lengths would

provide comfortable game sophistication zones for players with di↵erent abilities. The

informational progress model in puzzle-solving is aligned with the velocity in the measure

of Motion in Mind. Applying the plausible candidates (b) over all possible moves (B)

values in the puzzle as the velocity (solving rate), corresponding to motion in mind mea-

sure, enable the solving experience of simulated players. Although for players, the gaming

experience lies in the uncertainty about the uncertain information of game output. For

deterministic puzzles, the uncertainty in solving progress comes from finding the optimal

solution, as for the N-puzzle. This solving experience depends on the player’s ability and

the searching exploration of the puzzle, resulting in various solving experiences for the

same puzzle. Beginners are drawn to solving the puzzle, while higher-level players are

fascinated by finding the optimal solution to the puzzle.

Furthermore, applying the winning rate (p) as the velocity value for a puzzle with

stochastic information and motion in mind measure allows the simulated players to solve

the puzzle and play game experiences to be engaged. When the value of p = 1, the

player is allowed to have the experience of solving a puzzle, this situation indicates a

deterministic puzzle. When the win rate is 0<p<1, the player is allowed to have the
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experience of solving a puzzle while experiencing uncertainty, which indicates a stochastic

puzzle. When p = 0, the player is allowed to have the whole game experience to solve

the puzzle. Results from these experiments leading the link between the border between

puzzles and games.

Overall, the future works in this research will focus on a deeper understanding of

the mechanics of puzzles by developing AI solvers and generating the proposed solving

strategy for the stochastic puzzle field. Moreover, improving puzzle mechanics for players

with di↵erent abilities, such as puzzle di�culty and hints of solution strategies. Further

investigation of the established link between puzzles and games would also be another

promising prospect for future studies.

6.2 Answers to Research Questions

Research objectives laid out at the beginning of this thesis as follows: (1) To develop

some AI solvers for solving some target puzzles (N-puzzle, Minesweeper, etc.). (2) To

establish puzzle categories from the perspective of solvability and find the border between

puzzles and games. (3) To explore the entertainment analysis of solving puzzle filed with

the game refinement theory and motion in mind measure, discover the characteristics of

each puzzle from the perspective of information dynamic in solving process, and reveal

the internal laws behind player’s behavior.

The results achieved for each problems are as follows:

• An AI system has been developed based on the A* algorithm, a well-known search

algorithm. It automatically generates the N-puzzle’s initial state and solves the puz-

zle with the optimal solution (least steps). It is observed that players with di↵erent

abilities enjoy di↵erent steps of the puzzle, which relies on the game refinement the-

ory and motion in mind measure. Such a situation may reflect the fact that length

(steps) reflects the di�culty of a deterministic puzzle. Moreover, an AI solver was

proposed based on the obtained information of Minesweeper, the solving strategy

called the ‘PAFG,’ which stands for the primary reasoning, the advanced reasoning,

the first action strategy, and the guessing strategy. The experimental simulation of
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various configurations yielded a high-level winning rate of 96.4%, 86.3%, and 45.6%

for the 9⇥ 9|10, 16⇥ 16|40, and 16⇥ 30|99 Minesweeper board configurations.

• The research in this thesis on finding the border between puzzles and games from

solvability was based on the puzzle with hidden information, namely Minesweeper

(p). The configurations of 9 ⇥ 9 board various on mines 2 [1, 72] was used as a

testbed to illustrate the dynamics of the winning rate on the basis of the solvability

definition of two-player zero-sum games, where p = 1 corresponds to a deterministic

puzzle, 0 < p < 1 indicates a stochastic puzzle, and p = 0 implies a game. Besides,

the 16⇥16 board various mines 2 [1, 247] was verified as a supplementary experiment

simulation.

• To discover the characteristics of puzzles from the perspective of information dy-

namics in solving puzzle process, the informational progress model in puzzle-solving

was first applied to the puzzle-solving field to analyze the uncertainty of finding an

optimal solution and solving a puzzle with stochastic elements. Then, to explore

the field of puzzle-solving for entertainment research, game refinement theory com-

bined with the motion in mind measure was used to analyze the impact of di↵erent

di�culty puzzles on players. The uncertainty of finding the optimal solution allows

players of di↵erent abilities to enjoy finding a solution to a deterministic puzzle. At

the same time, hidden information is a crucial factor that impacts the winning rate

of stochastic puzzles and allows players to engage.
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