
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
数ショット学習による未知の摩擦面への新規物体の平面押

し込みの研究

Author(s) 高, 子焱

Citation

Issue Date 2022-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/18137

Rights

Description Supervisor:丁 洛榮, 先端科学技術研究科, 博士

Doctoral Dissertation

A FEW-SHOT LEARNING APPROACH TO CONTROLLED PLANAR

PUSHING OF NOVEL OBJECTS ON UNKNOWN FRICTIONAL SURFACES

Gao Ziyan

Supervisor Nak Young Chong

Graduate School of Advanced Science and Technology

Japan Advanced Institute of Science and Technology

(Information Science)

Septemper 2022

Abstract

Robot planar pushing is one of the primitive elements of non-prehensile manip-

ulation skills, and has been widely studied as an alternative solution to complex

manipulation tasks. To transfer this skill to novel objects, reasoning the pushing

effect on object motion is important for selecting proper contact locations and

pushing directions. However, complex contact conditions and unknown physical

properties of the object cause difficulties in reasoning. In this work, firstly, we

present a new large planar pushing dataset that contains a wide range of simulated

objects, and a novel representation for pushing primitives for the data-driven

prediction model. The prediction model was evaluated both in simulation and

real experimental settings. The results show that the prediction model purely

trained using our simulation dataset is capable of predicting real object motions

accurately. Secondly, We exploit the few-shot learning model on object center

of mass estimation as well as push planning for re-arranging object positions.

For center of mass estimation problem, we estimate the center of mass (CoM)

of an object by narrowing down its probable location with the proposed model

and Mason’s voting theorem. The result shows that the CoM estimation method

has good mean squared error properties and small standard deviation. For push

planning, we propose a computation efficient planning method that employs a

heuristic to reduce the possibility of making sliding contact between the pusher

and the object. The experimental results showed that the push planning method

effectively reduces the number of pushes required to move unknown real objects to

target positions. Apart from exploiting the few-shot learning model, we proposed

to use dynamic pushing to estimate the center of mass online efficiently. We

I

conducted simulation experiment and the estimation process was conduced both in

isotropic and an-isotropic frictional settings. Comparing with the result of quasi-

static pushing for CoM estimation, dynamic pushing significantly outperformed

both in isotropic and an-isotropic frictional setting. In addition, we propose the

Zero Moment Two Edge Pushing (ZMTEP) method to translate a novel object

without rotation to a goal pose. The proposed method enables a pusher to select

the most suitable two-edge-contact configuration for a given object using the esti-

mated CoM and the geometrical shape of the object. Notably, neither the friction

between the object and its support plane nor the friction between the object and

the pusher are assumed to be known. We evaluate the proposed CoM estimation

and ZMTEP methods through a series of experiments in both simulation and real

robotic pusher settings. The results show that the ZMTEP method significantly

outperforms competitive baseline methods. Keywords: Planar Pushing, Object

Center of Mass Estimation, Path Planning, Non-prehensile Manipulation, Data-

driven Automation

II

Acknowledgment

First of all, I would like to express my sincere gratitude and respect to Prof. Chong

who is my principal supervisor. I cannot approach this stage without his great

help. He gave me endless encouragement and wise guidance to make the way of

pursuing this degree enjoyable. At the beginning, he gave me high freedom to

choose the research topic, then, he gave me right direction to start my research

and offered everything that I need to conduct my research and experiment. His

encouragement raised me up to be brave and spirited to difficulties encountered.

Then, I would like to appreciate my second advisor Prof. Elibol. In research,

he empty his purse to help me how to conduct research, how to think like a

researcher. His ”painful” questions shaped my thinking. In daily life, when I

feel depressed, he always be there to encourage me.

Also, I would like to express my sincere gratitude to my parents. They spare

their all to support me. Due to Covid-19, I haven’t chance to come back to my

hometown, I miss them very much. As an engineer, my father often discusses with

me on the methodology of problem solving task, which gives me many insights

when I was got stuck in research. My mother gives me endless love which I cannot

repay. Her biggest wish to me is not to be someone who is rich or sciential but to

be someone who has a joyous life.

I would like to appreciate my girlfriend Miss.Hanzi Lu. She accompanies me

to experience joys and sorrows of the life and research. I cannot imagine the

shape and color of life without her. It is her who always believes me no matter

what challenges I was facing in research. In daily life, we experienced the beauty

of Tirihama shore at dusk, the grande of Kamikouti, The cozy of bonfire, and the

III

tasty of three meals a day. All these experiences make me believe that she is the

one whom I want to marry.

Last but not least, I want to thank Mr.HUANG Hsuan Tsung, he helped me

greatly to design the hardware for conducting the experiment. In addition, I want

to than Dr.Zhihao Shen and Mr.Yanhao Wang, they helped me for setting the real

platform.

IV

V

VI

List of Figures

3.1 SimPush: Large-Scale Planar Pushing Dataset available at https://github.com//SimPush 18

3.2 Planar pushing simulation environment developed in CoppeliaSim. 18

3.3 Pushing samples for different shapes. For each shape, 17-18

contact points are uniformly sampled across the object perimeter . 20

4.1 Action maps: The first one is the mask image and the applied

pushing action, the middle two images are the action maps gen-

erated based on start pushing position and end pushing position

respectively. The last image is to visualize the difference between

action maps. 26

4.2 Proposed push embedding model (a) and encoder-decoder learn-

ing model (b and c). In push embedding, CNN takes the stacked

object mask and action maps as input and encodes the spatial

relations between the object state and action. FCN projects ∆O

to the same dimensional space as fd . Residual attention module is

utilized to selectively combine them to output fe. 28

4.3 Cascaded residual attention module. the long gray blocks are the

fully connected layers. 30

4.4 Real experimental setting. 34

4.5 Different lead block positions ((a)-(d)) and surface frictions ((e)

carpet, (f) foam, and (g) cloth) 35

VII

https://github.com/lingerjp/SimPush

4.6 Real novel objects used in our experiment. 36

4.7 Prediction error with respect to different number of pushing priors. 40

5.1 Schematic of object motion inference using motion prediction

model. 44

5.2 Probable CoM location narrowing: Yellow region is considered

the probable CoM location, while green region is excluded. Red

arrow is the pushing direction. Black dash lines are friction cone

limits at the contact point. Probable location is initialized to the

convex hull of the object mask. When pushing direction is aligned

with the contact normal, the location can be narrowed if the sense

of rotation is known. When pushing direction is not aligned with

the contact normal, there are two cases that we cannot narrow the

location. In such cases, we use another push action to continue to

narrow the location. 47

5.3 CoM estimation process. The first image illustrates the object with

ground truth CoM in red dot. The second image shows the convex

hull of the object as the probable CoM location in yellow color.

Other images show a sequence of narrowing locations until the

size reaches a threshold or no pushing action helps narrow the

location. 48

5.4 Estimating the CoM region: The red arrow in the direction of

the contact normal represents the pushing action. The black dash

lines delimit the friction cone. CW and CCW refer to clockwise

and counter-clockwise rotations, respectively. The yellow regions

represent the CoM region and the dark green regions do the non-

CoM region. 54

VIII

5.5 Real robotic pusher experimental platform. The left figure shows

the CoM estimation and object translation experiment setting.

The two right figures show the low and high frictional settings

with the measured frictional coefficients in parentheses under the

assumption of Coulomb’s friction law. 60

5.6 CoM Estimation Results in Simulation Environments. Objects

are sorted by their representative size. Markers show the mean

estimation errors and the intervals represent standard deviations.

Red line shows the estimation error in low frictional setting and

green dash-dotted line in high frictional setting. 62

5.7 An example of normalized heat map representation for accumu-

lated distance weighted amount of rotation using Object19. 63

5.8 While the figure on top denotes segmented points, the figure

bottom shows the largest connected component extracted from the

segmented points. The center of this region is the estimated CoM

and for this specific example, the distance between the estimated

CoM and the real one is 2.02 pixels equivalent to 0.54cm. 64

5.9 Experimental results on isotropic frictional floor. 67

5.10 Experimental results on anisotropic frictional floor. 68

5.11 Robustness comparison between dynamic and quasi-static pushing. 69

5.12 CoM estimation results in low and high friction settings. Red dot

represents the ground truth CoM. Other dots are estimated CoMs.

The brighter the color, the closer to the ground truth. 73

5.13 CoM Estimation Result in Real Experiment. Red bars show the

estimation errors in percentage in low frictional setting, and green

bars show the estimation errors in percentage in high frictional

setting. 74

IX

6.1 Pushing planning flowchart given the object’s initial and target

poses. A few prior pushes are collected for encoding the object

dynamics. Then, the push effect map is generated by the trained

model to predict the effect of the representative actions. After

that, the representative actions are ranked based on the translating

effect. The top ranked actions are selected as candidates of the

efficient actions. Finally, the non-maximum suppression method

is utilized to get the efficient actions. The proposed cost function

quantifies each representative actions. Then we sample an action

among the top ranked actions considering uncertainties associ-

ated. This procedure will continue until the pose error between

the current and target state meets the given criterion. 76

6.2 Illustration of the proposed planning method. ai is the pushing

action applied to the object at the current time step t. vp(ai)

and tvd are the predicted and expected object displacement, re-

spectively, at t. ta∗ is the action selected based on Eq. 6.2.
t+1vd|ai is the expected object displacement at t + 1 time step,

when applying ai calculated by Eq. 6.3. t+1vp|ai is the predicted

object displacement, when applying ta∗ at t +1 time step by Eq. 6.4. 78

6.3 Test objects used for planning simulation. 79

X

6.4 Illustration of pushes: (a) encoding object dynamics, (b)-(g) gen-

erated push effect map. Twelve pushes are conducted around the

contour of the object along with a random direction within (-60,

60) w.r.t. the surface normal. (b) to (d) are the prediction object

motion (translation and rotation) for the pushes along with normal

direction to the outline. (e) to (f) are the predicted uncertainty

w.r.t. the translation along x y axis as well as the rotation. In

general, the predicted uncertainty for rotation tends to be larger

than translation. 80

6.5 Test objects used for planning on real experiment setting. 82

6.6 Accumulated movement of objects shown in Fig. 6.3 for the

planning task. The line inside each color box is the mean of the

accumulated movement. 83

6.7 An example of pushing test-object-exp 3 in Fig. 6.5 to a new

position. (a) the initial and target poses 30cm away. The initial

orientation is randomly selected. (b) pushing action denoted by an

arrow and cost denoted as heatmap at each contact point in each

step. There are 5 costs associated with each contact point as there

are 5 representative pushing actions. Here only the minimum cost

of each contact point is demonstrated. 84

6.8 Accumulated movement of objects shown in Fig. 6.5. 84

7.1 Illustration of the lines defined in 7.1.2.1. 91

XI

7.2 Moment labeling representation of pusher-slider system. As in

Fig. 7.1, pushers are denoted by small circles which make contact

with the slider represented by a rectangle. The CoM has an offset

from the centroid. Black arrows delimit the friction cone at the

contact. Red regions show the pushing directions along which the

object can be translated using the contact configuration employed. 92

7.3 Contact position tolerance range. (a) and (b) show the position

limits of green pusher when orange pusher remains fixed. (c)-(e)

show the tolerance range of each pusher position when the other

pusher remains fixed. (f)-(h) shows common tolerance ranges

of both pushers’ positions within which the object can be purely

translated. 95

7.4 CoM tolerance range given the two-edge-contact configurations. . 97

7.5 The twenty object shapes used in the simulation experiments. . . . 98

7.6 Results of object translation simulation. Blue arrow shows the

pushing direction and green square mark shows the CoM. Green

cross marks on object edges represent the sampled contact points.

Yellow arrows show the contact normals that can positively span

bright gray regions. A pair of contact points are selected from

the sampled contact points on each of two edges. Red and blue

cross marks are intersection points formed by two-edge-contact

configurations. Red marks are fail and blue marks are success. . . 101

7.7 Nine simulation environments with different surface and pusher

frictions. Success rate is computed by calculating the ratio be-

tween the total number of success pushes and the total number of

pushes. 103

XII

7.8 Real robot pushing of a box with a variable stroke gripper along

the blue arrow direction. Blue triangle markers are sampled

contact points. Each pair of contact points form an intersection

point denoted by red cross markers and orange dot markers. Blue

squares are the CoMs of the grid box. The CoMs in (b) and (c) are

biased by two lead blocks near the corner. 106

XIII

XIV

List of Tables

3.1 Comparison with existing push datasets 20

3.2 Summary of parameters used in SimPush 20

4.1 Prediction error on the test data of all the implemented models. . . 38

4.2 Translation prediction errors (in mm) for CoM-controllable Box . 39

4.3 Rotation prediction errors (in degree) for CoM-Controllable Box . 39

4.4 Prediction errors for objects motion in Fig. 4.6 40

5.1 Studies on object inertial parameter estimation 43

5.2 Computational results obtained using Alg. 4 65

5.3 Results of CoM Estimation on Isotropic Floor 70

5.4 Results of CoM Estimation on Anisotropic Floor 71

6.1 The mean, standard deviation of the pushing steps as well as the

accuracy for objects shown in Fig. 6.3 87

7.1 Object Translation Simulation Experiment 104

XV

XVI

Contents

Abstract I

Acknowledgment III

List of Figures VII

List of Tables XV

Contents XVII

Chapter 1 Introduction 1

Chapter 2 Literature Review 11

2.1 Dataset . 11

2.2 Push Interaction Modeling . 12

2.3 Push Planning . 13

2.4 Object Inertial Parameter Estimation 14

2.5 Contact Location Selection for planar pushing 15

Chapter 3 Large-Scale Planar Pushing Simulation Dataset 17

3.1 Simulation Environment . 17

3.2 Objects . 19

3.3 Dataset Collection Procedure . 21

XVII

Chapter 4 A few-shot Learning Model for Pushing Effect Prediction 25

4.0.1 Pushing Primitive Representation 25

4.0.2 Proposed Learning Model 29

4.1 EXPERIMENTS . 31

4.1.1 Training Dataset . 31

4.1.2 Baseline and Ablation Models 32

4.1.3 Training . 33

4.1.4 Real Experiments . 34

4.2 EXPERIMENTAL RESULTS AND DISCUSSION 36

4.2.1 Model Prediction Result 36

4.3 Conclusion . 39

Chapter 5 Object Center of Mass Estimation 43

5.1 CoM Estimation by using the prediction model 43

5.1.1 Prediction Model . 44

5.1.2 VT for CoM Estimation 45

5.1.3 Region Selection Rules 46

5.1.4 Combined CoM Estimation Method 51

5.1.5 CoM detection using predicted accumulated object rotation 52

5.1.6 CoM estimation by using Dynamic Pushing 54

5.2 EXPERIMENTAL SETTINGS 59

5.3 CoM Estimation Experiment . 60

5.3.1 Simulation Experiment 60

5.4 simulation experiment by predicted accumulated object movement 63

5.5 Simulation experiment of CoM estimation by dynamic pushing . . 66

5.5.1 Experiments in Real Platform 72

Chapter 6 Single-Contact Push Planning Using Data-Driven Model 75

XVIII

6.0.1 Planning . 75

6.1 Experiment . 79

6.1.1 planning in simulation . 79

6.1.2 planning on real platform 82

6.1.3 Planning Evaluation . 82

Chapter 7 Multi-Contact Pushing For Novel Object 89

7.1 Two-Edge-Contact Pushing . 89

7.1.1 Quasi-Static Analysis of Pure Translation 89

7.1.2 Zero Moment Two Edge Contact Pushing (ZMTEP) 90

7.2 Object Pushing Experiments . 99

7.2.1 Simulation Experiment 99

7.2.2 Real Experiment . 107

Chapter 8 Conclusion 109

References 113

Publications 123

XIX

XX

Chapter 1

Introduction

Moving an object from one location to another is a common task encountered

in our daily life and industrial production lines. This task can be accomplished

through pick-and-place, pushing, throwing, and similar others. Among these,

pushing is an undemanding manipulation primitive [1] to locate and orient an

object to the desired pose. Pushing neither needs form or force closure nor

requires conforming to the object’s geometrical shapes. Pushing is preferable to

re-positioning an object not directly graspable within the given pose. Therefore,

pushing has been used to complement other tasks such as object placement [2],

object singulation [3, 4], and grasping [5–8].

Even though pushing has many attractive features, it exhibits multiple contact

modes (sticking, sliding, and separation), indeterminacy due to unknown pressure

distribution of the pushed object, and under-actuation. All of these introduce

challenges in modeling, controlling, and planning.

Modeling for the pusher-slider system is important to facilitate efficient con-

trol and planning. For modeling the pusher-slider interactions, earlier works were

focusing on employing analytic models to characterize the object behaviors given

the external pushing force. For instance, Mason [9] proposed voting theorem to

predict the object rotation direction without the knowledge of pressure distribu-

tion. Goyal et al. [10, 11] introduced the concept of limit surface to describe

the relationship between the applied wrench and the object twist by assuming

1

minimum energy dissipation (MED). However, analytic models under-fits the real

pushing interactions and many assumptions are made such as the known friction,

perfect uniform ground, MED, Coulomb’s friction law, etc,.

Recently, Stuber et al. [12] reviewed the methods for modeling the pusher-

slider system with machine learning-based approaches that benefit from their en-

hanced performance in modeling complex object motions with fewer assumptions.

However, there exist several challenges with machine learning models to gener-

alize to novel object behaviors. Firstly, it is commonly recognized that the scale

and quality of the dataset play an important role in dealing with the generalization

issue. But the large scale and diverse datasets are difficult to get, as collecting data

using a real robot is extremely expensive and time-consuming. Until now, several

pushing datasets have been presented [13, 14]. However, the datasets contain a

limited number of objects that are most similar in shape and size. In practice, an

infinite number of real-world objects and their unknown physical properties make

machine learning models difficult to generalize. Other than that, an appropriate

representation for a machine learning model is also required in order to scale to

objects with various shapes, sizes, and parameters [14].

There are studies showing that the knowledge learned from simulation can

be transferred to real settings with (or without) a small amount of real data [15–

19]. Depierre et al. [20] and Byravan et al. [19] presented a large-scale dataset

collected in a simulation environment stressing the advantage in both scale and

diversity.

Motivated by these works, we release a large-scale, contact-rich pushing

dataset called SimPush to deal with the push effect prediction problem. The Sim-

Push dataset contains 69 objects (depicted in Fig. 3.1) with diverse dimensions

and shapes that appear either convex or concave. We adopt quasi-static pushing

to interact with the object.

2

A vast variety of physical properties are considered; surface and contact

frictions, the center of mass (CoM), mass, and moment of inertia of the object.

These properties are arranged in different combinations to change the motion of

the object pushed at various contact points in different directions leading to more

than 2 million pushes in total.

Even though the data-driven model can better model the pushing interactions,

it is still challenging to deal with novel objects because of unknown physical

properties, such as mass, the center of mass (CoM), friction, etc,. On the other

hand, humans can quickly identify the object’s behavior after a few interactions

with that object. We wonder if it is possible to endow the robot with this capability

to have a better generalization for modeling the pushing interactions for novel

objects.

Based upon the recent development of Few-shot learning models [21] which

can rapidly generalize to new tasks using few labeled samples, we adopt a

few-shot learning model to predict push effects. The few-shot learning model

leverages a small set of pushing priors, which can be collected in a self-supervised

manner, aiming to infer the pushing effect for other pushing actions. This model

can help deal with an infinite number of real-world objects using a limited dataset.

In addition, we propose a compact method for representing pushing primitives to

preserve the spatial relationship between the object and the pusher. It helps the

learning model encode the relation between object state changes and the applied

action.

We trained the few-shot learning model integrated with the proposed repre-

sentation method using the SimPush dataset, and then empirically evaluate the

model performance in simulation and a real setting. The results show that the

proposed method not only outperforms existing models but also demonstrates the

robust prediction of unknown object motions.

3

If the pushing effect prediction model is available, how can we use it? In this

work, we used the prediction model in two aspects: single-contact push planning

and object CoM estimation. In this work, single-contact push planning deal with

the problem of translating the novel object to its desired position. Specifically, we

use the trained push effect model to predict the push effects for a set of sampled

pushing actions. After that, we propose to employ a heuristic method aiming

to reduce the possibility of making sliding contact between the pusher and the

object. Given a specific task, we design a cost function and a small set of pre-

selected efficient pushing actions to evaluate all pushing actions. The efficiency

of the planning method is measured by the following two aspects; the first one is

the accumulated movement of the object since larger accumulated movements are

most likely a result of sliding contacts between the pusher and the object during

pushing. The second one is the number of pushing steps. The more pushing steps

executed, the less efficient the planning is. Through extensive simulation and real

robot experiments, our method is demonstrated to be robust against changes in the

object’s pose, size, and shape.

For the object CoM estimation problem, we combine the prediction model

with Mason’s voting theorem to estimate the object CoM. Notably, neither the

friction between the object and its support plane nor the friction between the object

and the pusher are assumed to be known. Please note that Mason’s voting theorem

cannot be applied directly to this problem because of the absent knowledge of the

friction cone at the contact position between the robot and the novel object. In

this work, we examine the cases in which the probable region of object CoM can

be uniquely specified by the pushing actions and the resultant rotation directions.

Specifically, the probable region is initialized by the convex hull of the object

shape, the proposed method uses a set of sampled pushing actions with predicted

resultant object rotation directions to iteratively narrow down the probable region

4

of object CoM location. We evaluate the proposed CoM estimation through a

series of experiments in both simulation and real robotic pusher settings. The

result shows that the CoM estimation method has good mean squared error

properties and small standard deviation.

We employ a prediction model and quasi-static pushing to deal with CoM

estimation. However, there is considerable empirical evidence that even though

the prediction model has decent performance in predicting the resultant object

rotations of pushing action, it has less in-accurate performance for pushing actions

which results in small amount of rotations. In addition, the quasi-static pushing

may lead to inaccurate estimation due to the sliding contact because of the sensory

noise, i.e., in-accurate contact normal estimation due to the sensor resolution. On

the other hand, dynamic pushing, which pushes the object at high speed, can

shorten the time of sliding contact by introducing inertial force which can keep

the object moving after terminating the movement of the pusher. One of the

assumptions of Mason’s voting theorem is quasi-static dynamics, we wonder if

Mason’s voting theorem still holds in dynamic pushing. In addition, instead of

using a prediction model, we estimate the object’s CoM online and minimize the

number of pushes executed. We conducted a simulation experiment on twenty

different objects and in different frictional settings (isotropic and anisotropic).

The result showed that dynamic pushing significantly outperformed quasi-static

pushing on CoM estimation task.

In the previous study, we directly leveraged the prediction model and heuris-

tics to re-arrange the object by using single-contact pushing. However, if the

object’s CoM is available and more than a single contact configuration can be

achieved, how can we exploit it to increase the efficiency of the object re-

arrangement task? The study [22] done by Lynch and Mason claimed that the

pusher-slider system becomes stable by introducing extra contacts. Specifically, it

5

shows that there is a set of pushing directions along which the slider’s pose relative

to the pusher remained fixed given known physical properties. They proposed to

use line pushing with multiple contacts on the same edge of a polygonal slider and

stabilized its motion [22–24].

Supposing that a robot pushes an object on a flat surface, and there is nearly

zero friction between the robot and the object, line pushing becomes extremely

difficult as there is little friction that can be exploited. It is therefore advantageous

to use multi-edge contact whose normal force direction positively spans the

desired pushing direction. A robot equipped with an adjustable stroke gripper

can make multiple contacts that are not necessarily on the object’s same edge. It

should be also noted that when a pusher maintains line (or point) contact with a

slider to move it around, non-holonomic constraints need to be addressed. Zhou

et al. [24] showed that Dubin’s curve is the time optimal trajectory under the

assumption of sticking contact.

Instead of solving the trajectory planning problem in a complex way, we pose

a new question: how can we select two contact points from two polygonal edges

of an object with estimated CoM to slide it along a straight line to a goal pose?

As the shortest distance between two points is a straight line, a solution to this

problem yields a reasonably close optimal shortest path. To deal with this problem

of double-contact selection, we analyzed the force and moment conditions of

pure translation, and the moment labeling representation of the contact force, we

propose a double-contact pusher-slider interaction, called Zero Moment Two Edge

Pushing (ZMTEP), to translate a novel object to a goal pose.

In real-world pushing, measurement noise and CoM estimation error are

unavoidable, leading to an incorrect contact configuration. Therefore, we discuss

the tolerance of ZMTEP to noisy observation and error-prone CoM estimates. We

found that the tolerance to the CoM estimation error increases, as the distance

6

between two contact positions increases. The tolerance to noisy observations

increases up to a certain point and decreases as the contact point moves toward

the endpoint of the object edge. A series of experiments are conducted to verify

if the proposed CoM estimation and ZMTEP methods are valid and competitive

compared to the two baseline methods in simulation and real settings. The results

revealed that the CoM estimation error was low overall that can be well tolerated

by the two-edge-contact configuration selected by ZMTEP.

The following assumptions are made throughout this paper:

• Both the robot’s end effector (pusher) and the object (slider) are rigid, and

interact quasi-statically.

• Object geometry can be extracted by a vision sensor.

• The object contact normal can be extracted.

• The plane in which the object lies is flat.

• Coulomb’s friction law applies.

To summarize, the main contributions of this work are threefold:

• A large-scale and diverse planar pushing dataset that contains convex and

concave objects with different physical properties.

• A push effect prediction model and a compact state representation for planar

pushing.

• A push planning method integrating a push effect prediction model to

translate the novel object to the desired position efficiently.

• An integrated CoM estimation method combining the motion prediction

model and the voting theorem.

• A efficient CoM estimation method by dynamic pushing operation.

• The most suitable two-edge-contact pushing configuration for translating a

novel object without rotation.

7

• An analysis of the tolerance to measurement noise and error-prone CoM

estimates.

This paper is organized as follows.

• Chapter. 2, The research background related to pushing dataset generation,

pushing interaction modeling, pushing planning, object inertial parameter

estimation, as well as contact location selection for planar pushing, are

represented.

• Chaper. 3 represents our simulation planar pushing dataset - SimPush.

Firstly, the simulator and physical engine we used are introduced, then is

the procedure of self-supervised dataset generation.

• Chapter. 4 shows the proposed pushing effect prediction model and the

pushing primitive representation. The dataset generation based on SimPush

for training the push effect prediction model is described. Then, we evaluate

the prediction model both in simulation and in a real setting.

• Chapter. 5 introduces the several object CoM estimation methods. Firstly,

the method combining the prediction model and Mason’s voting theorem

for CoM estimation is presented. Then is the CoM estimation method by

using the predicted accumulated object rotation. After that, we present

CoM estimation by using dynamic pushing. Finally, we evaluated all of

the mentioned methods in simulation and evaluate the first method in the

real setting.

• Chapter. 6 introduces the proposed push planning methods by exploiting the

prediction model.

• Chapter. 7 presents double-contact configuration selection method for

purely translating novel object. In this chapter, we analyze the sensory toler-

ance and CoM estimation tolerance capability of the contact configuration.

• Chapter. 8 summarizes the dissertation and draws several potential future

8

works.

9

10

Chapter 2

Literature Review

2.1 Dataset

Learning-based methods are capable of dealing with unseen objects using various

datasets [14, 25–28] for training. Yu et al. [13] made great effort on collecting

a planar pushing dataset using a high fidelity real robot system. They collected

pushing data using 11 objects over 4 different surfaces with different pushing

velocities. However, the number of the objects was limited and the influence of

the physical properties of the objects to the resultant motion was not fully studied.

Recently a pushing dataset called Ommipush [14] was presented. It contains

objects formed by combining 4 different magnet sides and using extra mass to

change object weight and CoM. However, objects generated using magnets lacks

a variety in shapes due to side-sharing and limited physical properties. Compared

with the aforementioned dataset, our SimPush dataset is characterized by the

large-scale diverse physical responses to pushing action. There are other push

datasets for different purposes. Finn et al. [29] proposed a pushing dataset that

contains 57 thousands pushes to directly model the pixel motion in the image

frame. Eitel et al. [30] proposed a pushing dataset for object singulation task.

Pulkit et al. [31] presented a pushing dataset collected in a self-supervised way for

learning intuitive physics. However, these datasets only contain visual and robot

11

pushing information and the physical properties of the object are not considered.

2.2 Push Interaction Modeling

Mason [9] analyzed the mechanics of quasi-static pushing and presented the

voting theorem for determining the sense of rotation of a pushed object. Goyal

et al. [32] introduced the limit surface reasoning the frictional forces with object

motion. Kloss et al. [33] combined a deep learning model and an ellipsoid limit

surface to improve both the generalization capability and accuracy. Zhou et al.

[24] present a physics-based data-driven model to approximate the limit surface.

Bauza et al. [14] and Goo et al. [34] used Attentive Neural Process (ANP) [35] to

learn the object dynamics by incorporating pushing priors. Li et al. [18] proposed

a data-driven method utilizing the experience of push interactions with novel

objects to implicitly learn a forward model encoding the relationship between

the action and object state. However, the accuracy of the learned model was

not explicitly investigated. Fragkiadaki et al. [36] predicted ball motion under a

pushing force by leveraging the most recent glimpse of the object-centered image

patches.

Different studies have been conducted to predict object motion incorporating

system identification methods [15, 37–41]. The object physical properties are

usually either explicitly estimated [15, 39] or implicitly represented by neural

networks [36, 38, 40, 41]. Specifically, Wu et al. [39] fed explicitly estimated

physical parameters as input to an analytical model of physical system to estimate

object motion. Wang et al. [38] proposed to collect the tactile feedback data when

executing predefined motion to implicitly encode physical properties of novel

objects.

In addition, studies [29, 42–44] put predicting action effects into the video

12

prediction scenario with the self-supervised learning method.

2.3 Push Planning

Some studies focus on learning an inverse model which aims to find the proper

action for achieving the target without reasoning the action effects [31, 45–47].

Specifically, Zeng et al. [45] proposed the transporter network to infer object

displacement and robot action through finding the correspondence of the deep

features. However, dealing with out-of-distributed objects might be difficult

because of the unknown physical properties. Apart from that, Lin et al. [48]

and Arrudaet al. [49] employ the model predictive path integral approach to

optimize the pushing action. The cross-entropy method is also intensively used

in [3, 50, 50, 51]. These methods need roll-out simulation from current state

which is computationally expensive. Cosgun et al. [2] utilized planar pushing

to create space for placing objects on a cluttered surface. Specifically, they

propose a heuristic, which favors less overlap with the object to be placed,

to simplify the push plans. Cosgun et al. [2] and Dogar et al. [7] employ a

simulator to predict pushing effect on the objects that exist in the scene which are

assumed to be known. In contrast, our push planning method deals with unknown

objects. Florence et al. [52] proposed to build the policy model upon the visual

correspondence model to speed up training. This method seems promising but re-

training the policy model is needed to push a new object. In this work, different

from the aforementioned methods, we propose a computation-efficient planning

method that integrates the predicted push affordances to reduce the possibility of

sliding contact between the pusher and the object, leading to efficient sequences of

pushing novel objects to the target positions. Lin et al. [48] integrated a recurrent

neural network for pushing interaction modeling into a model predictive control

13

framework.

2.4 Object Inertial Parameter Estimation

An object’s inertial parameters can be identified by various techniques classified

into three types: purely visual, exploratory, and fixed-object [53]. The fixed-object

type requires a fixed connection between the robot and an object such as grasping,

which is beyond the scope of this research.

The purely visual type directly estimates the inertial property using a vision

sensor. Trevor et al. [54] proposed a deep learning model trained on a labeled

dataset to estimate the volume and density of the object using a RGB-D image.

Although this model has competitive performance on image-to-mass tasks com-

pared with humans, the estimation result is highly affected by occlusion or light

conditions.

The exploratory type requires the robot to interact with the object to mea-

sure the applied forces and object motion. Then, the inertial parameters are

estimated by solving physics laws of motion. Yu et al. [55] used a two-finger

pushing in a trial-and-error approach making the line of CoM pass between the

fingers. This method may be inefficient when dealing with an arbitrarily shaped

object. Mavrakis et al. [56] estimated inertial properties using a single-contact

pushing and data-driven learning model. Kloss et al. [15] used an Extended

Kalman Filter (EKF) to iteratively estimate object physical properties (such as

the CoM, friction, and mass) based on the information extracted from the object

mask. The EKF was implemented assuming an ellipsoid model [57] between

the applied force and the resultant object motion. Song et al. [37] proposed to

learn the coupled mass-friction parameters through minimizing the simulation-

reality gap. This method required a set of hypothesized mass and friction models

14

and the object was coarsely approximated by rigidly-connected 2D small grids.

Allevato et al. [58,59] used a neural network to tune the inertial parameters of the

physics engine based on the difference in observation from the real object motion.

However, it was limited to known objects. Instead of relying on an approximation

model or physical simulator, data-driven models were used to learn the causality

between the object motion and the inertial parameters in some studies. Li et

al. [18] used recurrent neural networks to estimate the CoM of the object. Xu et

al. [40] proposed a disentangled learning module to implicitly encode an object’s

physical properties through robot-object interaction. Kumar et al. [17] employed

a policy network to interact with an articulated object, and a predictor network to

predict the mass distribution of the object.

In this work, we propose an exploratory type CoM estimation method for an

arbitrarily shaped object using a robot equipped with a vision sensor. In contrast

to other exploratory type methods, only a few robot-object pushes are needed with

no a priori assumption about friction.

2.5 Contact Location Selection for planar pushing

Without focusing on the pusher-slider interaction models, some studies used data-

driven methods to learn from historical pushing interactions [60–62]. Hermans et

al. [60] presented a kernel’s method to learn the contact locations for pushing

an unknown object. However, only the shape features were considered with

a state feedback controller. In contrast, our ZMTEP method selects contact

locations considering both the geometrical shape as well as the CoM of an object.

Li and Payandeh [63] proposed a parametric formulation to find a two-point

contact configuration of equilibrium push in which relative rotation between the

pusher and the object will not happen employing a simplified model of a known

15

object. Most notably, based on fewer assumptions, our method determines the

most suitable two-edge-contact configuration, analyzing the mechanics of pure

translation that exhibits high tolerance toward measurement and CoM estimation

noises.

On the other hand, instead of relying on push interaction models, Lloyd and

Lepora [64] employed tactile and proprioceptive feedback to push an object across

planar and curved surfaces. Danielczuk et al. [6] presented and compared several

pushing policies for object singulation in cluttered bin environments which did

not consider pushing interactions.

16

Chapter 3

Large-Scale Planar Pushing Simula-

tion Dataset

In this chapter, we present a large-scale planar pushing simulation dataset called

SimPush shown in Fig. 3.1. Firstly, we detailed the procedure of the data

collection by using a simulator. Then we compare SimPush with other available

dataset.

3.1 Simulation Environment

The simulation environment was created with CoppeliaSim [65] as shown in

Fig. 3.2. A spherical pusher with a diameter of 0.95cm is attached to a cylinder

with a length of 20cm to be the pusher, while a 6-DOF articulated manipulator

holds and controls the position of the pusher. We created 5 flat floor surfaces

with various coefficients of friction. Each object is pushed across the floor. There

are mainly four physics engines available: Bullet, ODE, Vortex, and Newton.

We compared the performance of the engines in the aspect of stability and

repeatability. For the stability test, we assigned different physical properties to the

same objects. The Vortex engine has proven the most robust against the assigned

physical properties. For the repeatability test, we applied the same pushing action

to the objects a number of times with low linear velocity causing a change in

17

Figure 3.1: SimPush: Large-Scale Planar Pushing Dataset available at

https://github.com//SimPush

Figure 3.2: Planar pushing simulation environment developed in CoppeliaSim.

18

https://github.com/lingerjp/SimPush

the state of the objects. We found that both the mean and standard deviation of

the change were minimum when using the Vortex engine. Therefore, we choose

Vortex Studio’s physics engine [66] to simulate the dynamic interaction between

the pusher and diverse objects.

3.2 Objects

We designed 69 objects that come in a variety of shapes, either convex or concave.

The objects are diverse in size, ranging from 3.5cm× 6cm to 20cm× 17cm. For

each object, we make 40 different combinations of physical properties, including

the contact friction of the side surface (µp), mass (M), inertia (I, calculated by

scaling the default inertia tensor given by the simulator), and CoM. The range of

each physical properties are shown in Table 3.2. The CoM of the object is defined

by taking the following steps: First, the object mask is segmented from an image

captured using a depth camera. Since the CoM of the object is located inside the

convex hull of the object mask, we randomly sample a position inside the convex

hull as the CoM location. Then, we specify the CoM location relative to the object

frame at the centroid based on the transformation matrix between the camera and

the object frames.

We then assign specific physical properties and 5 different frictional surfaces

(µs) to each object. Finally, we have 200 different contact dynamics for each

object.

In Table 3.1, SimPush is compared with the existing datasets.

19

Table 3.1: Comparison with existing push datasets

Dataset objects surfaces pushes Platform Size

SimPush 2760 5 180 Simulation ∼2M

Omnipush [14] 250 1 250 Real ∼63K

Yu [13] 11 4 6000 Real ∼264K

Table 3.2: Summary of parameters used in SimPush

Surface friction coefficients (µs) 0.2, 0.4, 0.6, 0.8, 1.0

Contact friction coefficients (µp) 0.5, 1.0

Number of center of mass for each object 10

Ratio range of object moment of inertia [0.01,100]

Range of object mass [50g, 400g]

Number of pushes for each object 180

Number of shapes 69

Figure 3.3: Pushing samples for different shapes. For each shape, 17-18 contact

points are uniformly sampled across the object perimeter

, each of which has 10 different push directions. The line with different color

represents different pushing direction w.r.t. the contact normal direction.

20

3.3 Dataset Collection Procedure

For each object with combinations of physical properties and µs, push data are

collected as given in Algorithm 1. Each run returns around 180 pushes. In

this work, we assume quasi-static interactions, where the inertial force is in the

suborder of the frictional forces. The velocity is controlled by the displacement

per time step. We set this displacement to be 0.3 mm with the time step of

50 ms, yielding a pushing velocity of 6 mm/s. We assume that this velocity

is small enough to satisfy the quasi-static condition. In order to verify if this

parameter setting produces both reliable and repeatable object motions, we chose

a rectangular object and selected 18 pushing points uniformly along the object

perimeter. The robot pushed each point 100 times with the same set of randomly

selected directions with 3 cm forward. We observed that the resultant position

and orientation of the object were all close enough for each pushing point. The

start location of the pusher can be either in contact or not in contact with the

object. Fig. 3.3 shows the pushing samples on four example objects in SimPush.

We repeat this procedure for each object until the simulation goes through all the

combinations of physical properties and surfaces. We finally create more than 2

million pushes. For each push sample, the following information is recorded.

• RGB-D Image: A camera mounted on top of the table operates in ortho-

graphic projection mode. We obtain the corresponding mask image by re-

projecting the point cloud to the image plane with 224×224 resolution.

• CoM: We record the CoM of the object before and after pushing. Note that

all the objects have the same thickness, and the locations of CoM are given

in the image frame in the xy-plane. One-half the thickness is assigned to the

z coordinate of CoMs of the objects.

• Action: Actions are represented by the starting and terminating position of

21

the pusher in the image frame.

• Object Pose: We record the pose of the object before and after pushing.

• Properties: Mass, inertia, contact friction, and surface friction are stored

for the implementation of the baseline model.

22

Algorithm 1: Data Collection Scheme
Input: object, µs,PCoM,µp, I,m

/* µs is the friction of the ground, PCoM refers to the

position of center of mass in object frame. µp is the

friction of the pusher. I is the inertial tensor. m is

the object mass. */

Output: cache

/* cache contains a series of applied pushing actions as

well as the changes in object pose before and after the

execution of the pushing actions. */

1 Set surface friction µs

2 Load object to the ground, determine initial object pose Oinit , set inertial

parameters PCoM, µp, inertia I, and mass m.

3 Sample k points {cpi}i=1,...k and {ni}i=1,...k uniformly across the object

perimeter.

4 Sample n push directions {θp j} j=1,...,n in range of [−3π

4 , 3π

4] w.r.t. the

normal of each contact point {cpi}i=1,...k.

5 cache← /0

6 cache.append(Oinit)

7 for i = 1, ...,k do

8 for j = 1, ...,n do

9 Reset object to Oinit .

10 ε ← Random-Sample()/* small perturbation */

11 Move pusher to cpi + ε .

12 Push object 3cm along the direction specified byθp j and ni w.r.t

the contact normal.

13 Get object state Oi j

14 cache.append(cpi + ε,ni,θp j ,Oi j)

23

24

Chapter 4

A few-shot Learning Model for Push-

ing Effect Prediction

We formulate the push effect prediction problem as follows: given m pushing pri-

ors {cpi,ni,θpi,∆Oi}i=1,...,m and n test data {cp j,n j,θp j} j=1,...,n, cp,n,θp define

the pushing action, and ∆O is the changes in object state represented by ∆x,∆y,∆θ .

We assume all the object poses in pushing priors and tests before pushing are the

same. The problem is how to efficiently incorporate the pushing priors to predict

the ∆O for test examples. Given the target and initial object pose, and a set of

push actions with the corresponding push effects, the push planning problem is

how to iteratively select the push action based on the target direction and the push

effects to optimize the number of required pushing. In this section, firstly we

introduce the representation for pushing and the pre-processing for input. Then

we introduce the few-shot learning model. Finally, we explain the method used in

push planning.

4.0.1 Pushing Primitive Representation

4.0.1.1 Action maps

The way of describing pushing primitives plays an essential role in modeling the

push effect. Pushing primitives can be described by the pusher’s starting and

25

Figure 4.1: Action maps: The first one is the mask image and the applied

pushing action, the middle two images are the action maps generated based on

start pushing position and end pushing position respectively. The last image is to

visualize the difference between action maps.

terminating positions [15, 18, 34, 67], commonly represented by a 4× 1 vector

[xs,ys,xt ,yt]
> in which the first two dimensions are for the starting position and

the other two dimensions for the terminating position.

However, we found that this simple representation tends to make the learning

model to be overfitting the training dataset. This might be due to the fact that the

total number of object shapes is still limited even though the number of collected

pushing actions in the dataset is large. In this work, we propose a representation

for the pushing action that provides better generalization capability to novel

object shapes. Specifically, we use the distance transform formulation defined

by Eqs. 4.1 through 4.3 to create two images with the same resolution as mask

images called action maps. The term c in Eqs. 4.1 and 4.2 is the normalization

term that depends on the size of the image used. The first action map is created

based on the pushing start position; the closer to the starting position, the higher

pixel value assigned. The second action map is created based on the pushing end

position; the closer to the ending position, the lower pixel value assigned. The

first action map guides the model to focus on the geometric features at the contact

point. The pushing direction and magnitude can be inferred from the difference

between the two action maps. Fig. 4.1 shows an example of the generated action

26

maps and the visualization between those action maps.

s(x,y,xs,ys) = e−
d(x,y,xs,ys)

c (4.1)

t(x,y,xt ,yt) =
d(x,y,xt ,yt)

c
(4.2)

d(x,y,xp,yp) =
√

(x− xp)2 +(y− yp)2 (4.3)

4.0.1.2 Push Embedding Model

To maintain the spatial relation between the applied pushing action and object

state, and to help the learning model focus on the local contact feature and

pushing, we stack the object mask and action maps along the channel axis to be

the one of the inputs to pushing embedding model. As mentioned at the beginning

of this section, the pushing priors contain object mask, applied actions and the

resultant object motions. The pushing tests only contain object mask and the

applied actions. There is a slight difference in embedding between pushing priors

and tests. The proposed pushing embedding model is shown on the left in Fig. 4.2.

For embedding pushing priors, a Convolutional Neural Network (CNN) takes the

stacked object mask and action maps as input and outputs fd , while ∆O is reshaped

to the same dimension as fd by the Fully Connected Network (FCN). After that,

fe is obtained by concatenating them together. Notably, only a CNN model is

needed to embed pushing tests to fd .

For the CNN part, we use 5 pre-trained layers of ResNet50 [68] to construct

the base structure. On top of pre-trained layers, we build a 1×1 2-D convolution

layer and one FCN. CNN outputs a 256-D feature vector fd . FCN for reshaping

∆O is constructed by two layers with the same dimension of 256 with ReLU

activation function.

27

Figure
4.2:

Proposed
push

em
bedding

m
odel(a)

and
encoder-decoder

learning
m

odel(b
and

c).
In

push
em

bedding,C
N

N

takes
the

stacked
objectm

ask
and

action
m

aps
as

inputand
encodes

the
spatialrelations

betw
een

the
objectstate

and
action.

FC
N

projects
∆

O
to

the
sam

e
dim

ensionalspace
as

fd .R
esidualattention

m
odule

is
utilized

to
selectively

com
bine

them
to

output
fe .

28

4.0.2 Proposed Learning Model

We develop the push effect prediction module based on ANP [35] to model the

causality between the applied pushing action and the resultant object motion.

Fig. 4.2 shows the proposed push effect prediction model (middle and right).

The main motivation behind using ANP is that, firstly, ANP is a powerful model

for regression tasks. It can predict an arbitrary number of test data based on an

arbitrary number of priors while keeping computation complexity linear w.r.t.

the number of priors. Then, it has two self-attention modules to boost the

representation of the priors. Two self-attention modules boost each isolated prior

by integrating the attentions calculated with all the priors, but the second one

performs the mean operation upon the output to obtain a permutation-invariant

representation. As a result, the first attention module outputs a representative

feature for each prior, while the second attention module only outputs a single

representative feature given all priors. In addition, ANP has a cross-attention

module to imitate the functionality of the kernel in the Gaussian process to com-

pute the similarity between tests and priors to improve fitting performance. This is

also reasonable in our application scenario, since similar pushing actions should

have similar resultant object motions. Finally, a multi-layer perceptron (MLP) is

used to predict the corresponding label for test data. In our model architecture,

there are also two self-attention modules and one cross-attention module with the

same structure as ANP. However, we replace the MLP with an attention module

named as cascaded residual attention. The cascaded residual attention selectively

combines different source inputs to enhance inference capability.

The cascaded residual attention model consists of two residual attention mod-

ules. For each residual attention, it takes two feature vectors of the same length

to output a representative feature vector of two inputs with the same size. The

29

Figure 4.3: Cascaded residual attention module. the long gray blocks are the fully

connected layers.

process can be represented by Eqs. 4.4 and 4.5.

Fattn(fin1, fin2) = tanh(concat(fin1, fin2)W T +b) (4.4)

fout = Fattn(fin1, fin2) · fin2 + fin1, (4.5)

where tanh is the activation function. The cascaded residual attention model in

decoder is shown in Fig. 4.3

Let us assume that there are m pushing priors and only one test. During

encoding, the pushing priors are fed into the proposed push embedding module

and self-attentions to get { fs}m and fm, where fm is the element-wise mean of the

output of the second self-attention module. During decoding, the test is embedded

to fd , then the cross-attention module takes fd and { fs}m as input to output fc.

After that, fc, fd, fm are fed into a cascaded residual attention module and FCN to

output the predicted object motion for the test.

In order to measure the uncertainty of the prediction, we design the FCN in

decoder to predict both object motion and prediction uncertainty by outputting

30

mean and standard deviation. Since the standard deviation must be a non-negative

real number, we add a ReLU layer after the linear layer for the uncertainty. We use

non-negative log-likelihood as the loss function to minimize the prediction error.

4.1 EXPERIMENTS

4.1.1 Training Dataset

As a training step for the few-shot learning model, we create a dataset that consists

of {M, priors, test, label} tuples. For each tuple, M represents the object mask

specifying the initial object pose. Object mask is obtained by cropping original

mask image around the object center with (100,100) pixels, as it should fully

include the biggest object in SimPush. The biggest object occupies around 90×

90 pixels in the image frame. The pushing priors contain a series of pushing

actions with known effects on the changes in object state, while the test contains

actions and the label contains the outcome of test actions. In each tuple, all of the

actions are applied to the same object with the same pose.

In SimPush, there are about 180 pushes for each object with specific physical

property. For generating the training dataset, We randomly select 30 pushes to

form a tuple from the 180 pushes. For each tuple, the orientation of object mask is

randomly selected. Twelve of pushes are used as pushing priors and the remaining

ones are the test actions and the corresponding labels. This procedure is repeated

50 times for each object. Because there are 200 different physical properties for

each object shape, we obtain around 10K tuples for each object shape. We use

57 shapes for training and 12 shapes for testing. In total, the training set contains

more than 570K tuples and the test set contains around 120K tuples.

31

4.1.2 Baseline and Ablation Models

4.1.2.1 Baseline models

We compare our model with the following baseline models.

• NaiveCNN takes all the features containing the object’s mask image, action

maps, a 8-D vector which consists of position in object mask, location of

CoM, surface friction µs, contact friction µc, mass, and a scale ratio of pre-

specified nominal inertia as input and outputs the ∆O. It consists of three

sub-modules: The first one is a convolution network the same as the one in

the push embedding module. The second one is a fully connected layer that

has 8,128,256 dimensions to process low-dimensional vector. At the end,

we use another FCN with 512,256,128,3 to predict object motion.

• Push-Net takes historical pusher-object interactions into consideration to

encode the transformation of the object state. We adapt it to explicitly

predict object motion, taking 18 object masks and actions as input and

outputting the action outcome for the current object state. We also add the

loss term of the CoM to the loss function [18].

4.1.2.2 Model Ablations

We investigate contributions of object mask, action maps, and attention layers to

the proposed model. We implemented the following three ablation models.

• Model I (feature) with other ablations; the models using object mask

images perform better, possibly due to recent advances in CNN for push

embedding. Therefore, the models have flexibility to encode the relation

between pushing action and object shape.

• Model II (no action maps) with the proposed model; the action maps

32

greatly helped improve the performance in predicting both translation and

rotation.

• Model III (no residual attention module) with the proposed model; the

cascaded residual attention model selectively combines them and leads to

more accurate pushing performance, instead of concatenating the input from

a different source and feeding to MLP.

• Model IV (single-pixel encoded action maps) with the proposed model;

the action maps are generated by creating an image with the same size as

object mask, and it is initialized by assign all pixel intensities to zeros.

One way to encode the pushing action is to discretize the pushing action

into the pixel locations and assign the pixel intensities to one, however,

discretization introduces extra error on prediction. Therefore, we apply lin-

ear interpolation to assign the pixel values to four neighbor pixel locations

around the start and terminate pushing position.

4.1.3 Training

We implemented all the models using PyTorch. We set the batch size to 128 for

NaiveCNN and 32 for other models. The Adagrad optimizer [69] was used, where

the learning rate was set to 0.001 with exponential time decay. For the baseline

and ablation models, we used mean squared error as the loss function, since we

only compare the performance on predicting pushing action effect. We stopped

training at the 20th epoch for all models, as there were no significant changes

in the loss curve thereafter. The training was conducted using an NVIDIA GTX

3090 GPU.

33

Figure 4.4: Real experimental setting.

4.1.4 Real Experiments

We evaluate the proposed object motion prediction model in an experimental

setting using the XArm 5 Lite robot as shown in Fig. 4.4. The robot arm is

equipped with the in-house built pusher and an RGBD camera (Intel RealSense

D450) mounted at the distal end of the arm. We generate a point cloud from the

camera and re-project it to the surface where the object is placed to get the object

mask.

For the first experiment, we 3D printed a CoM controllable box of size

14× 7× 6cm, with 4× 8 grids inside the box as shown in Fig 4.5. We used

3 different surfaces made of artificial carpet, foam, and cloth having different

friction coefficients and textures. We opted 4 different patterns of lead block

positions in the box changing its CoM and pushed the box across the surfaces. The

box has around 200 grams, and each lead block has approximately 80 grams. For

each combination of CoM pattern and surface, the pusher executes a linear motion

34

Figure 4.5: Different lead block positions ((a)-(d)) and surface frictions ((e)

carpet, (f) foam, and (g) cloth)

with 3cm to push the object 30 times at different contact points and pushing

directions. Finally, we collect 30×3×4 pushes for all the combinations of CoM

settings and surfaces. We select 12 pushes as the pushing priors and the remaining

ones as the test for each CoM setting and surface combination, using the model

purely trained by the simulated data to predict the pose change of the pushed

object. For the second experiment, we collected pushes for the three unknown

objects shown in Fig. 4.6. They are complex in terms of shape and frictional

contact with the floor surfaces. We push each object 30 times over the carpet

surface, while keeping other parameters the same as the first experiment.

35

Figure 4.6: Real novel objects used in our experiment.

4.2 EXPERIMENTAL RESULTS AND DISCUS-

SION

4.2.1 Model Prediction Result

The performance of the models implemented on the test set are given in Table 4.1.

The last two columns represent prediction errors on translation and rotation. We

use the 5th to 95th quantiles to represent the mean, standard deviation, maximum,

and minimum. The average translation and rotation of the objects in SimPush are

19.13mm and 10.65°, respectively.

The performance of two Push-Nets [18] are provided in Table 4.1. Here we

only show the performance of the last time step. These two models perform less

accurate than NaiveCNN. This is mainly due to the fact that NaiveCNN takes the

internal parameters as input so that it also can learn how the internal parameters

affect object motion. On the other hand, the result shows that the Push-Net trained

with auxiliary CoM target performed similarly to the Push-Net without auxiliary

36

learning in translation, yet worse in rotation. It can be conjectured that CoM plays

a less dominant role in object motion. This is consistent with our observation that

the motion of an object is slightly affected by the CoM when it has a much large

object moment of inertia. Compared with the proposed model, all of the baseline

models perform less accurately both in translation and rotation.

In the ablation study, we compare the proposed model to the following

alternatives.

To verify if the proposed model can predict object motion for pushes with a

larger magnitude, we collect a dataset that contains 6cm pushes using the object

shown in Fig. 4.1 by following Algorithm 1. Then we re-scale the object mask and

pushing lengths by a scale factor of 0.5 since the pushing magnitude is doubled.

After that, we follow the same procedure as in Section. 4.1.1 to prepare the test

set and evaluate the proposed effect models to this test set. The result is shown

in the last row of Table. 4.1. We observe that rotation prediction error becomes

larger, however there is no difference in the translation prediction error.

To verify the influence of the number of available pushing priors to the

prediction accuracy, we evaluate the trained model on test set with varied number

of pushing priors. The range of the number of pushing priors available is from

(1,12). The result is shown in Fig. 4.7. We observe that the mean and standard

deviation of the prediction error get decreased with the increase of the number of

pushing priors. On the other hand, the rate of improvement is decreasing with the

increase of the number of pushing priors.

Table 4.2 and Table 4.3 show the result of predicting the motion of the CoM

controllable box pushed over different surfaces. Because of the simulation-reality

gap, noisy mask image, and calibration error, the results are less accurate than

the one shown in Table 4.1. However, the proposed model purely trained by the

simulation dataset predicted pretty close. The average translation and rotation of

37

Table
4.1:Prediction

erroron
the

testdata
ofallthe

im
plem

ented
m

odels.

M
odels

translation
(m

m
)

rotation
(degree)

m
ean

std
m

ax
m

in
m

ean
std

m
ax

m
in

N
aiveC

N
N

3.94
2.53

11.05
0.72

3.15
2.64

12.37
0.20

Push-N
et(w

ithoutauxiliary)
5.06

3.52
14.34

0.77
4.32

3.60
16.49

0.28

Push-N
et

5.05
3.50

14.77
0.89

4.58
3.72

16.87
0.25

M
odelI(feature)

3.88
2.82

11.68
0.69

3.48
2.96

13.96
0.21

M
odelII(w

ithoutaction
m

aps)
3.44

2.52
11.04

0.63
2.94

2.68
12.98

0.17

M
odelIII(w

ithoutresidualattention
m

odule)
3.47

2.51
10.56

0.61
2.77

2.51
12.27

0.16

M
odelIV

(single-pixelencoded
action

m
aps)

3.42
2.34

11.56
0.55

2.75
2.53

12.03
0.14

Proposed
M

odel
3.08

2.19
10.71

0.48
2.52

2.43
11.64

0.12

Proposed
M

odel(6
cm

pushing)
2.81

2.31
11.01

0.39
3.97

4.06
19.61

0.17

38

Table 4.2: Translation prediction errors (in mm) for CoM-controllable Box
Carpet Foam Cloth

mean std max min mean std max min mean std max min

CoM1 3.1 1.3 6.4 1.72 3.15 1.78 6.89 0.78 4.98 2.32 9.96 1.71

CoM2 5.29 2.31 8.78 1.55 4.52 1.93 7.53 1.5 4.86 3.25 10.52 1.08

CoM3 3.61 1.29 6.49 1.78 3.85 1.84 6.55 1.21 5.56 3.5 13.19 1.84

CoM4 3.92 1.5 6.29 1.79 3.84 1.88 7.42 1.57 6.24 2.63 11.29 2.6

Table 4.3: Rotation prediction errors (in degree) for CoM-Controllable Box
Carpet Foam Cloth

mean std max min mean std max min mean std max min

CoM1 4.17 3.38 12.96 1.03 3.36 2.05 7.2 0.4 3.38 2.09 6.63 0.53

CoM2 3.99 2.49 9.57 1.0 3.28 1.94 6.55 0.61 4.46 3.0 11.55 0.47

CoM3 3.02 2.55 9.13 0.2 2.48 1.64 5.68 0.19 3.92 2.53 10.35 0.47

CoM4 2.95 1.63 6.26 0.84 2.89 2.44 8.1 0.61 3.29 2.31 7.83 0.41

all the combinations are 20.8mm and 11.28°, and the mean prediction errors on

translation and rotation are 4.17mm and 3.43°, respectively. The worst accuracy

results were obtained both in translation and rotation when the object was sliding

on the cloth surface, mainly due to cloth deformation.

We show the performance of our model on real novel objects in Table 4.4. The

average translation and rotation of the objects are 23.13mm, 21.41mm, 19.72mm,

and 11.71°, 11.28°, 12.93°, respectively. Similarly, compared with the result

in the first experiment, there is no significant difference both in translation and

rotation error.

4.3 Conclusion

Based on the collection simulation dataset and ANP, we proposed a novel method

to encode pushes, which greatly improved the model performance. Based on the

39

Table 4.4: Prediction errors for objects motion in Fig. 4.6

translation (mm) rotation (degree)

mean std max min mean std max min

obj1 4.23 1.95 8.88 1.30 4.03 4.08 13.53 0.20

obj2 3.34 1.72 6.30 0.57 2.92 2.23 7.71 0.05

obj3 4.67 2.36 9.28 0.26 3.72 3.07 11.84 0.59

Figure 4.7: Prediction error with respect to different number of pushing priors.

encoder-decoder structure, we developed cascaded residual attention modules to

combine features from different sources. Compared with ANP that concatenates

all features together and feeds into MLP, our model efficiently combined the

features and helped the representation learning.

Firstly, we evaluate the trained model on simulation test set, compared with

the baseline models, our prediction model achieved the lowest mean and standard

deviation of prediction error.

Then, we evaluate the trained model on larger magnitude pushing dataset. The

result show that the trained model has similar performance on object translation

but worse performance on object rotation. One reason is that the change in object

orientation due to larger magnitude pushing is large and beyond the learned object

motion distribution, which leads to a larger object rotation prediction error.

40

In addiction, we evaluate the trained model on test set with varied number of

available pushing priors. Based on the result, we conclude that the more number

of pushing priors available, the more accurate prediction. However, the rate of

improvement is decreased with the increase of the number of pushing priors.

Finally, We evaluated the proposed model purely trained by SimPush on a

real platform. We designed a CoM controllable box pushed by a robot arm across

different surfaces. Due to the noisy input and the simulation-to-reality gap, our

model was not on a par with the results in simulation. However, our model

predicted object motions with reasonable accuracy. We pushed three unknown

real objects across the unknown frictional floor surface to challenge our model.

Notably, the proposed model performed encouragingly well. Using the large-scale

dataset, our model efficiently learned to make use of pushing priors to infer the

novel action outcome. Compared with the model which depends on the quality of

identification system, our model has proven robust in complicated object pushing.

41

42

Chapter 5

Object Center of Mass Estimation

5.1 CoM Estimation by using the prediction model

In robotic grasping and manipulation, it is widely assumed that an object’s inertial

parameters are a priori known. The parameters can be estimated using a special

hardware in a controlled environment, which may not be suitable for commonly

used industrial robots.

Planar pushing can be used for object inertial parameter estimation by several

pushing interactions with the object. Table. 5.1 represents several works on

object inertial parameter estimation by planar pushing. In this work, instead of

leveraging the force sensor or simulator, we propose a novel method to estimate

the CoM of a novel object via planar pushing using only a position-controlled

robot arm and a vision sensor available commercially off-the-shelf.

Table 5.1: Studies on object inertial parameter estimation

Method Force sensor Simulator Object

Yu et al [55] " % Box

Song et al [37] % " Arbitray

Mavrakis et al [56] " % Arbitray

Proposed % % Arbitray

43

Figure 5.1: Schematic of object motion inference using motion prediction model.

In this chapter, we propose two kinds of method to CoM estimation by

planar pushing. The first kind of methods combine our few-shot learning motion

prediction model [70] and Mason’s voting theorem (VT). Our learning model

predicts the sense of rotation of a pushed object. The probable CoM region

is selected through a decision process until it is narrowed down to the region

whose centroid is considered the CoM of the object. The second kind of methods

leverage dynamic pushing and voting theorem for estimating the object’s CoM.

Different from [56] which trains an end-to-end data-driven model for this task,

our method explicitly reasons the effect of a pushing effect on narrowing the CoM

region so that it can better generalize to novel object. In addition, our method can

help to select pushing actions to efficiently interact the object so that to minimum

the number of pushing needed.

In the following part, we review our few shot learning model and introduce

the process of our CoM estimation method.

5.1.1 Prediction Model

Basically, the prediction model predicts object motion for a pushing primitive by

integrating limited pushing priors based on the Residual Convolutional Network

(ResNet) [68] and Attentive Neural Process (ANP) [35]. The specific inference

procedure is as follows:

44

• Collect m pushing priors {cpi,ni,θpi,∆Oi}i=1,...,m, where cpi is the contact

location, ni is the surface normal at cpi, θpi is the pushing direction w.r.t. ni,

and ∆O is the changes in object state represented by ∆x,∆y,∆θ .

• Feed the pushing priors to the pushing embedding model and encoder of

few-shot learning model.

• Predict ∆O for test data.

An example is shown in Fig. 5.1, where a triangular object is subjected to

pushing actions. There are seven pushes marked by the green arrows whose

resultant object motions are known, and another push marked by the orange arrow

whose resultant motion is unknown. Each push specifies a contact point cp, a

normal direction n, and a push direction w.r.t. the normal direction θp. The pushes

in green with its resultant motions form the pushing priors. The prediction model

aims to predict the resultant motion for the push marked in the orange arrow by

integrating the pushing priors. We denote the few-shot learning model by F

∆x̂,∆ŷ,∆θ̂ = F(cp,n,θp,Sprior) (5.1)

where Sprior indicates pushing priors. As the few-shot learning model is used for

the process of estimating the CoM, only ∆θ̂ is used. Therefore, ∆x̂ and ∆ŷ are

ignored in this work.

5.1.2 VT for CoM Estimation

VT relates the sense of rotation of a pushed object with the spatial relationship

between several rays and the CoM of the object. VT states that three rays, RL,RR

delimiting the left and right boundaries of the friction cone at the contact point

and RP indicating the line of pushing, vote for the sense of rotation. For instance,

if any two of the three rays have a negative moment about the CoM, the object

45

would rotate clockwise regardless of the third ray generated moment.

The probable location of the CoM can be determined by analyzing the rela-

tionship between the rays and the resultant object rotation. A pushing example is

illustrated in Fig. 5.2(a). The red arrow is the pushing direction specifying the ray

RP, when RL and RR are assumed to be known. If the object rotates clockwise, at

least two rays have a negative moment about the CoM. Therefore, RL and RR must

have a negative moment and RP has an indeterminate moment about the CoM.

Then, the probable CoM location can be determined by RL and RR. As RL has

negative moment to area two, three, and four, while RR has negative moment to

area three and four, area three and four are the areas to which both RL and RR have

negative moment. Therefore, CoM must be located in area three and four. The VT

cannot be used to locate the CoM of a novel object as RL and RR are unknown.

5.1.3 Region Selection Rules

We describe our method for narrowing the probable location of the CoM. Notably,

a friction cone is not given at the contact point. The method determines the CoM

location using the pushing direction and the sense of rotation of a pushed object.

In our method, the sign of moment that RP generates about the CoM is always

determined. Therefore, the probable CoM location can be narrowed using RP and

the resultant rotation. An illustrative example is shown in Fig. 5.2.

In order to convey the idea clearly, we consider the following two cases. In

the first case, the pushing direction is aligned with the contact normal as shown

in Fig. 5.2(b), where RP is inside the friction cone. In this case, if the sense

of rotation is known, then the probable CoM region can be determined. Let

us assume that RP is aligned with the contact normal, and the object rotates

clockwise. If the CoM of the object is outside the friction cone, both RL and

RR should have a negative sign of moment about the CoM, and RP must have the

46

Fi
gu

re
5.

2:
Pr

ob
ab

le
C

oM
lo

ca
tio

n
na

rr
ow

in
g:

Y
el

lo
w

re
gi

on
is

co
ns

id
er

ed
th

e
pr

ob
ab

le
C

oM
lo

ca
tio

n,
w

hi
le

gr
ee

n
re

gi
on

is
ex

cl
ud

ed
.

R
ed

ar
ro

w
is

th
e

pu
sh

in
g

di
re

ct
io

n.
B

la
ck

da
sh

lin
es

ar
e

fr
ic

tio
n

co
ne

lim
its

at
th

e
co

nt
ac

t
po

in
t.

Pr
ob

ab
le

lo
ca

tio
n

is
in

iti
al

iz
ed

to
th

e
co

nv
ex

hu
ll

of
th

e
ob

je
ct

m
as

k.
W

he
n

pu
sh

in
g

di
re

ct
io

n
is

al
ig

ne
d

w
ith

th
e

co
nt

ac
tn

or
m

al
,t

he

lo
ca

tio
n

ca
n

be
na

rr
ow

ed
if

th
e

se
ns

e
of

ro
ta

tio
n

is
kn

ow
n.

W
he

n
pu

sh
in

g
di

re
ct

io
n

is
no

ta
lig

ne
d

w
ith

th
e

co
nt

ac
tn

or
m

al
,

th
er

e
ar

e
tw

o
ca

se
s

th
at

w
e

ca
nn

ot
na

rr
ow

th
e

lo
ca

tio
n.

In
su

ch
ca

se
s,

w
e

us
e

an
ot

he
rp

us
h

ac
tio

n
to

co
nt

in
ue

to
na

rr
ow

th
e

lo
ca

tio
n.

47

Figure 5.3: CoM estimation process. The first image illustrates the object with

ground truth CoM in red dot. The second image shows the convex hull of the

object as the probable CoM location in yellow color. Other images show a

sequence of narrowing locations until the size reaches a threshold or no pushing

action helps narrow the location.

48

Algorithm 2: CoM Region Decision Process
Input: F,Sprior,ACH ,{cpi}m,{ni}m,{θp}a,θT ,aT

/* F is the prediction model, Sprior is the pushing priors,

ACH, which consists of a set of pixel locations,

represents the region inside the convex hull of the

object. {θp}a is a set of angles w.r.t. normal

direction, {cpi}m, {ni}m are sampled contour point and

normal direction associated. θT is a threshold for

predicted rotation. aT is a threshold of the area of

probable CoM region. */

Output: ACoM

/* ACoM is probable CoM Region which consists of a set of

pixel coordinates {Ppix} */

1 ACoM← ACH // probable CoM region initialization

2 Spush← /0 // initialize a cache

3 for θp in {θp}a do

4 for cpi in {cpi}i=1,...m do

5 θ̂i = F(cpi,ni,θp,Sprior) // rotation prediction

6 if ‖θ̂i‖> θT then

7 Append(Spush, {cpi,ni,θp, θ̂i})

8 Sort Spush based on the amount of rotation in descending order

9 for {cpi,ni,θp, θ̂i} in Spush do

10 ACoM←UPDATE(ACoM,cpi,ni,θp, θ̂i,aT)

same sign of moment with RL and RR as RP is inside the friction cone. Then the

regions where RP has negative sign of moment can be regarded as the probable

49

Algorithm 3: Probable CoM Region Update

Input: ACOM,cpi,ni,θp, θ̂i,aT

Output: ACoM1

1 Function Update(ACoM, cp, n, θp, θ̂ , aT):

2 ACoM1← ACoM // new probable CoM region initialization

3 Construct RP based on cp, n and θp.

4 if ACoM1.size()>= aT then

5 return ACoM1

6 else

7 if RP.intersect(ACoM1) is True then

8 if sign(θ̂)> 0 then

9 if θp ≥ 0 then

10 for Ppix in ACoM1 do
/* cross operation */

11 if RP×Ppix ≤ 0 then

12 Delete(ACoM1, Ppix)

13 return ACoM1

14 else

15 return ACoM1

16 else

17 if θp ≤ 0 then

18 for PPix in ACoM1 do

19 if RP×Ppix ≥ 0 then

20 Delete(ACoM1, Ppix)

21 return ACoM1

22 else

23 return ACoM1

24 else

25 return ACoM1

50

CoM regions. If the CoM is between RL and RR, RL and RP must have a negative

moment about the CoM, as there should be at least two rays that have a negative

sign of moment about the CoM. In this case, the regions where RP has a negative

moment can be considered the probable CoM region.

The second case is that the pushing direction is different from the contact

normal as shown in Fig. 5.2(c) and (d). This case introduces ambiguity as the

sense of rotation might be dominated by RL or RR. Let us consider the left side of

Fig. 5.2(c), where the object rotates counter-clockwise, and RP can either have a

positive or negative moment about the CoM. Therefore, the probable CoM region

cannot be inferred by RP. The same applies to the right side of (d) in Fig. 5.2. On

the other hand, for the right side of Fig. 5.2(c), the object rotates clockwise, and

RP and RL must have a negative sign of moment about the CoM. In this case, the

CoM region can be narrowed by RP and so is the left side of (d) in Fig. 5.2.

5.1.4 Combined CoM Estimation Method

We leverage the predicted sense of rotation of a pushed object to narrow the proba-

ble CoM regions in an iterative manner using Algorithm 2 and Algorithm 3. First,

we collect a series of pushing examples as pushing priors. These pushing priors

are used to help infer resultant object rotations for other pushes. Then, we sample

a series of contact points uniformly around the object perimeter. Incorporated

with the pushing priors, for each contact point, we query the prediction model to

predict the rotation for different pushing directions at that contact point. Based

on our experience, the deep learning model predicts accurate resultant object

rotation directions if the pushing actions cause large amount of object rotations,

but it is less accurate to predict for pushing actions which cause small amount of

objects rotations. Therefore, we remove the pushing actions whose corresponding

predicted amount of resultant object rotations are smaller than θT , and we sort

51

the pushing actions based on the corresponding predicted amount object rotations

in descending order. After that, the sorted pushing actions with corresponding

predicted object rotation directions are used to narrow down the probable CoM

region until the ratio of the sizes between probable CoM region and the region

covered the convex hull of the object is small than the area threshold aT . Fig. 5.3

shows a sequence of snapshots of probable CoM regions being narrowed down.

5.1.5 CoM detection using predicted accumulated object rota-

tion

Inspired by the fact that if the contact force passes through the CoM, then the

object will be purely translated, otherwise, the object will rotate clock-wise or

counter clock-wise based on VT, we propose an algorithm summarized in Alg. 4.

It assumes given a set of actions defined by their start and end-points and their

predicted motions on the object. Our idea is based on accumulating rotations for

each point (pixel) in the object mask image weighted accordingly to their distance

to lines defined by the start and end-point actions and identifying the region that

has the lowest amount of accumulated rotation as a potential region where the

CoM is possibly located. This can be also interpreted as the region where actions

generating a small amount of rotations pass. For each action line (calculated via

its start and end-points), we compute the distance from pixels to the line and use

this distance as a weight for the predicted amount of rotation generated by this

action. This way of the computed amount is accumulated for each pixel used for

each action. We then apply a threshold to segment the potential region. Due to

the selected threshold, there might be some isolated locations. In order to filter

them out, we make use of the connected component method to find the largest

connected region within the segmented pixels. This largest connected region is

regarded as the potential CoM region and its center is computed as the estimated

52

Algorithm 4: CoM Estimation by Accumulated Motion
Input: Object Mask M = (xi,yi) i = 1,2, · · · ,m,

List of actions Action and predicted rotation ∆θi i = 1,2, · · · ,n.

Area segmentation threshold aT ∈ [0,1]

Output: Predicted location of PCoM

/* Create an auxiliary matrix, Sθ, for accumulating

distance weighted rotation amount */

1 Sθ ← 0

2 foreach action in Action do

3 construct Rp based on action

4 foreach Ppix in M do

5 d← Compute distance between Ppix and Rp

6 Sθ (Ppix)← Sθ (Ppix)+ e(−d) · |∆θa|

7 Sθ ← normalize Sθ to the interval [0,1]

8 Ac← Sθ < aT /* Create a segmented region of object mask as

Ac */

9 Ac← The largest connected region in Ac

10 PCoM← Compute the centroid of Ac

53

Figure 5.4: Estimating the CoM region: The red arrow in the direction of the

contact normal represents the pushing action. The black dash lines delimit the

friction cone. CW and CCW refer to clockwise and counter-clockwise rotations,

respectively. The yellow regions represent the CoM region and the dark green

regions do the non-CoM region.

CoM position.

5.1.6 CoM estimation by using Dynamic Pushing

In other methods proposed previously, we leveraged a prediction model to pre-

dict the resultant object rotations, then we use sampled pushing action and the

associated predicted object rotation directions to narrow down the CoM region.

However, there are two main shortcomings: the needs of pushing priors and

prediction uncertainty. In this section, in stead of leveraging on prediction model,

we estimate the object CoM online and minimize the number of pushes needed.

Our main idea is to constrain the pushing direction to the contact normal to

ensure that RP lies in the middle of the two boundaries of the friction cone. By

doing so, the indeterminate cases shown in Fig. 5.2 (c,d) can be avoided. the

CoM region can be uniquely determined by the spatial relationship of pushing

direction as well as the CoM. In practice, there are some circumstances that the

54

object rotates so small that this amount cannot be easily detected by a vision sensor

due to sensor limitations (e.g., resolution or distance between the object and the

sensor). Fortunately, in such cases, the distance between CoM and RP is small.

Therefore, we intuitively set a threshold θT for object rotation and a confidence

bandwidth Cbw for possible CoM region selection. If the resultant object rotation

is less than the threshold, the region whose inner pixel locations to RP is less

than the selected confidence bandwidth is regarded as the CoM region. Fig. 5.4

illustrates the selection rules for the proposed method.

The pseudocode of the proposed method is illustrated in Algorithm 5 and

Algorithm 6. The CoM region is initialized in Algorithm 5 with the region inside

the convex hull of the object mask. For each push, we use Principal Component

Analysis of the current CoM region to find its centroid c and principal components

V. Then, we check if the corresponding line of each pushing action passes through

the CoM region or not.

We compute the distance vector d between c and each line of pushing specified

by the contact normal Nct . We then use a linear cost function to score each pushing

action given by

s = w>
 d>

(NctV1)
>

 , (5.2)

where w is a two-dimensional weight vector and V1 is the main principal vector.

As both Nct and V1 are normalized, (NctV1)
> represents the cosine similarity

between Nct and V1. We aim to find the pushing action that has a small cosine

similarity to V1 to avoid a prolate-shaped CoM region. Using this cost function,

the pushing action can be selected that has a close distance to c and small cosine

similarity with V1. Following resultant object rotation, Algorithm 6 updates the

CoM region.

On the other hand, the assumption of Voting Theorem is quasi-static dynamics

55

Algorithm 5: CoM Region Decision Process by dynamic pushing
Input: agent,Pch,Pct ,Nct ,w,θT ,Cbw,npush

/* Pch, which consists of a set of pixel locations,

represents the region inside the convex hull of the

object. Pct, Nct are the sampled contour points and

normal directions associated. Pch, Pct, Nct are all (∗×2)

matrices, where * is the number of sampled contour

points or the size of region inside the convex hull of

the object. npush is the number of pushes that we set.

*/

Output: PCoM

/* PCoM is probable CoM Region which consists of a set of

pixel coordinates. */

1 PCoM← Pch // probable CoM region initialization

2 for i = 1 to npush do
/* opencv library */

3 c, V, x← PCA(PCoM)

/* shapely library */

4 Pct , Nct ← valid(Pct ,Nct ,PCoM)

/* calculate distances between c to the lines specified

by Pct and Nct */

5 d← c−Pct
‖c−Pct‖ ×Nct

/* Calculate scores for each contacts. */

6 s = w>

 d>

(NctV1)
>

7 j = argmin s

8 θrot ← agent.execute(Pct j ,Nct j)

9 PCoM←UPDATE(PCoM, Pct j ,Nct j , θrot , cbw,θT)

56

Algorithm 6: Probable CoM Region Update of Alg. 5
Input: PCoM, Pct j ,Nct j , θrot , cbw, θT

Output: PCoM

1 Function Update(PCoM, Pct j ,Nct j , θrot , cbw, θT):

2 if ‖θrot‖> θT then

3 if sign(θrot > 0) then

4 for PCoMi in PCoM do

5 if Nct j × (PCoMi−Pct j)≤ 0 then

6 Delete(PCoM, PCoMi)

7 return PCoM

8 else

9 for PCoMi in PCoM do

10 if Nct j × (PCoMi−Pct j)≥ 0 then

11 Delete(PCoM, PCoMi)

12 return PCoM

13 else

14 for PCoMi in PCoM do

15 d← (PCoMi−Pct j)×Nct j

16 if d ≥Cbw then

17 Delete(PCoM, PCoMi)

18 return PCoM

57

and uniform ground where the slider slides. The CoM methods which leverage VT

have several failure modes under quasi-static interactions.

• Sliding contact due to in-accurate estimation of contact normal.

• Pushing the object with decentralized density distribution.

• Non-uniform frictional ground.

In practice, the accurate contact normal may not be available when dealing with

novel objects, in-accurate estimation on contact normal introduces estimation

noise to the CoM region decision process. For instance, if the estimated contact

normal is not bounded by the friction cone, when pushing the object along this

estimated contact normal, the contact position will change due to the activation

of sliding contact, which may results in reversed object rotation direction, then

updating the CoM region by using this estimated contact normal and the resultant

object rotation will lead to a wrong region which does not contain the CoM ground

truth.

In quasi-static interaction, if the pusher pushes an object with decentralized

density distribution, even the object rotation direction still obey VT, the amount

of rotation is small so that it may not be observable to sensors.

The perfect-uniform ground may not be available in real setting, even it is that

case, the physical properties of the ground will change dynamically because of

the abrasion. non-uniform ground violate the assumption of Voting Theorem so

that it results in in-accurate estimation on CoM.

In this section, we introduce the CoM estimation method by using dynamic

pushing operation. Dynamic pushing operation means that the pusher pushes the

object with high acceleration. One of the benefit of dynamic pushing is that it

activates the effect of inertial force. The higher the acceleration of the pusher, the

higher the inertial force is. With the help of inertial force, breaking contact occurs

after terminating the movement of the pusher as the slider will keep moving due

58

to the inertial force. If the pusher pushes the slider with high acceleration and

small motion magnitude, the period of the sliding contact will be small due to the

breaking contact, which remove the noise introduced by the inaccurate contact

normal estimation.

For pushing the object with decentralized density distribution. with the help

of the inertial force, the resultant amount of rotation by dynamic pushing will be

larger than the one of quasi-static pushing, which makes the rotation direction

easier to be detectable.

By using dynamic pushing operation, the effect of frictional force generated

by the ground to the object becomes smaller comparing with the contact force and

inertial force. We argue that the CoM estimation by using dynamic pushing will

be more robust than using quasi-static pushing.

5.2 EXPERIMENTAL SETTINGS

We carried out experiments both in simulation and real robot settings. We denote

the surface friction coefficient as µs and the pusher friction coefficient as µp. We

created a simulation environment composed of a plane and two spherical pushers.

Coulomb’s law of friction applies to the push-slider-supporting plane interaction

and µs and µp can be adjusted. We used twenty different objects with convex and

concave shapes in Fig. 7.5. The size of objects varies from 27cm2 to 150.5cm2.

A real experimental setup is shown in Fig. 5.5. A 5-DoF manipulator equipped

with a variable opening stroke parallel-jaw gripper pushes a CoM changeable grid

box on a flat surface. The stroke ranges from 0cm to 8.6cm and the size of the

grid box is 14cm×8cm. We wrap the gripper with two different materials: a low

friction kraft paper and a high friction rubber. As for the plane surface, we test

the table top surface itself and the foam surface. The grid box is wrapped in kraft

59

Figure 5.5: Real robotic pusher experimental platform. The left figure shows the

CoM estimation and object translation experiment setting. The two right figures

show the low and high frictional settings with the measured frictional coefficients

in parentheses under the assumption of Coulomb’s friction law.

paper. As the box has uniform density, the CoM is the same as its centroid. We put

two lead blocks into different cells to change the CoM. The box weighs around

200 grams and each lead box has around 80 grams. The position and orientation

of the box are monitored using ArUco Markers [71] attached to the top cover of

the box.

5.3 CoM Estimation Experiment

5.3.1 Simulation Experiment

We evaluate the accuracy of our CoM estimation method in the following three

aspects: (1) objects of different shapes and sizes, (2) different frictional settings,

and (3) impact of the proposed deep learning model. For the first purpose, we

use twenty different objects depicted in Fig. 7.5. For each object, we assign ten

60

different CoM locations. For the second purpose, we assign 0.1 and 1.0 for a

low frictional setting and a high frictional setting, respectively, to both µs and

µp. For the third purpose, as the prediction accuracy of the deep learning model

highly depends on the pushing priors, we use different single contact pushing

priors collected as follows. Given a specific object, we randomly sample several

contact points. The robot pushes the object at each contact point 3cm forward

along any of the {θp}a directions. The contact points and pushing directions, as

well as the resultant object motion are recorded as the pushing priors.

The pipeline is as follows: The pushing priors are collected for each object

with a specified CoM location in each frictional setting. During pushing prior col-

lection, We collect a total of twelve pushing priors for each estimation procedure.

Then, the pushing priors are fed into the prediction model. As we set the total

number of sampled contact points {cpi}m to fifty in Algorithm 2, and there is five

direction pushing directions ({θp}a is set to {−60°,−30°,0°,30°,60°}.w.r.t. the

normal direction at each contact point), the prediction model predicted resultant

object motion for two hundred and fifty different pushing actions. All of the

RP’s specified by the five pushing directions at each sampled contact point can

divide the convex hull of the object into small enough regions to ensure that the

estimation error will be bounded by the area threshold aT to achieve the estimation

accuracy requirement. The angle threshold θT is set to 2°, that is, if the predicted

amount of rotation is less than 2°, we will not update the potential CoM region

based on this pushing action. We set the area threshold aT to 0.1, which means

that the CoM estimation process will be terminated if the ratio between the sizes

of the probable CoM region and convex hull of the object becomes smaller than

0.1. Finally, we run Algorithm 2 to find the potential CoM region and use its

centroid as the estimated CoM. This CoM estimation pipeline is repeated three

hundred times for each object with a specific CoM in each frictional setting. In

61

Figure 5.6: CoM Estimation Results in Simulation Environments. Objects are

sorted by their representative size. Markers show the mean estimation errors and

the intervals represent standard deviations. Red line shows the estimation error in

low frictional setting and green dash-dotted line in high frictional setting.

each estimation procedure, different pushing priors are used. As we assign ten

different CoMs and conduct CoM estimation in two friction settings, the CoM

estimation was conducted six thousand times for each object.

The obtained results are presented in Fig. 5.6. The statistical results are

computed over ten different CoM locations assigned to each object. The objects

are sorted by the representative size (RS), defined by the distance between the

object’s centroid to the farthest point on its perimeter, and the estimation errors

are multiplied by the reciprocal of RS. The main idea behind this is that if an

object’s physical properties are not observable, one can assume that the CoM is

located at the centroid of that object. This would be same with the initial step in

our algorithm before we apply any pushing action. The maximum error of the

estimation occurs when the CoM ground truth is located on the object perimeter

farthest from its centroid. Given that RS is the maximum estimation error, we

provide the relative error computed separately for each object. As shown in

Fig. 5.6, the mean estimation error is around 0.15. After investigating the effects

62

Figure 5.7: An example of normalized heat map representation for accumulated

distance weighted amount of rotation using Object19.

of different frictional settings, we reached a conclusion that our CoM estimation

method performs more accurately overall in a low frictional environment.

5.4 simulation experiment by predicted accumulated

object movement

An example of a normalized heat map representation for accumulated distance

weighted amount of rotation (represented by Sθ , which is computed in Alg. 4)

is depicted in Fig. 5.7. Following this example, by applying a segmentation

threshold and connected component algorithm, a potential CoM region can be

determined. Fig. 5.8 denotes applying these steps to the example case.

Computational experiments were carried out on 300 different simulations for

each object obtained using different parameters in object properties. Table 5.2

presents the statistical summaries (in the form of the mean and standard deviation)

as well as the minimum and maximum distance between the real and the estimated

CoM coordinates using Alg. 4. These distance measurements are given in cm and

we also included the object sizes in cm2.

63

Figure 5.8: While the figure on top denotes segmented points, the figure bottom

shows the largest connected component extracted from the segmented points. The

center of this region is the estimated CoM and for this specific example, the

distance between the estimated CoM and the real one is 2.02 pixels equivalent

to 0.54cm.

64

Table 5.2: Computational results obtained using Alg. 4

Objects
Object Low Friction High Friction

Size mean std min max mean std min max

Obj1 32.9 0.742 0.251 0.056 1.691 0.717 0.323 0.020 1.785

Obj2 35.6 0.696 0.317 0.056 1.693 0.697 0.327 0.020 1.950

Obj3 27.0 0.458 0.235 0.009 1.491 0.671 0.335 0.007 2.473

Obj4 103.3 1.004 0.381 0.019 2.076 1.311 0.515 0.005 3.213

Obj5 42.5 0.786 0.349 0.034 1.846 0.835 0.390 0.010 2.193

Obj6 58.0 0.856 0.335 0.008 2.293 1.034 0.397 0.021 2.412

Obj7 53.4 0.849 0.362 0.045 1.991 1.127 0.502 0.023 3.095

Obj8 110.4 1.096 0.407 0.047 2.471 1.223 0.510 0.065 3.084

Obj9 119.4 1.240 0.470 0.043 2.662 1.320 0.587 0.026 4.118

Obj10 91.0 0.906 0.427 0.013 2.030 1.462 0.536 0.034 2.786

Obj11 83.0 1.132 0.441 0.058 2.324 1.208 0.603 0.013 2.738

Obj12 58.3 1.100 0.361 0.050 2.463 1.075 0.461 0.022 3.643

Obj13 38.2 0.673 0.255 0.025 1.395 0.791 0.313 0.022 2.407

Obj14 43.0 0.859 0.440 0.066 2.185 0.749 0.344 0.015 2.153

Obj15 35.2 0.633 0.317 0.017 1.606 0.751 0.328 0.026 2.154

Obj16 67.8 0.939 0.323 0.079 3.673 0.884 0.378 0.016 2.352

Obj17 51.6 0.563 0.270 0.007 1.355 0.578 0.278 0.002 1.814

Obj18 120.4 1.029 0.445 0.043 2.801 1.170 0.591 0.012 4.210

Obj19 126.3 1.025 0.648 0.013 2.947 1.377 0.737 0.021 4.279

Obj20 150.5 1.233 0.485 0.173 3.329 1.317 0.561 0.101 4.133

65

5.5 Simulation experiment of CoM estimation by dy-

namic pushing

In this experiment, we compare the CoM estimation accuracy by using different

pushing velocity. We used the same test objects used in the previous experiment.

To examine the impact of the mass moment of inertia of an object about the z-

axis, denoted by Izz, we scale the default value of Izz by a factor of 1 and 10. We

use two different pushing speeds: one (40cm/s) is considered dynamic pushing,

and the other (4cm/s) quasi-static pushing. In each run of CoM estimation, we

execute 5 pushes, resulting in 6,400 CoM estimations in total. Furthermore, to

evaluate the performance on the anisotropic floor, we create a surface plane with

two different frictional coefficients (0.1 and 1, respectively) along two principal

axes, and set the pusher friction coefficient to 0.5. we follow Algorithm 5 and set

w to [1,0.5]>. We set rotation threshold θT and confidence bandwidth Cbw to 1°

and 10 pixels. The pushing length is set to 3cm.

The simulation results of CoM estimation on isotropic frictional floor are

detailed in Fig. 5.9 and Table 5.4. The result shows that the CoM estimation

error with dynamic pushing is smaller than quasi-static pushing. We observed

one notable case with quasi-static pushing that the estimation error tends to be

large when an object has a large Izz, or pushed across a high frictional floor, which

results in a small amount of rotation misleading CoM region selection. On the

other hand, in the case of dynamic pushing, as the wrench exerted by the floor on

the object no longer dominates the object motion, the object motion follows the

VT and the resultant rotation is larger than that of quasi-static pushing.

The simulation result of CoM estimation on anisotropic frictional floor is

shown in Fig. 5.10 and Table 5.4. It can be observed that dynamic pushing still

exhibits good performance even on the anistropic frictional floor. Compared with

66

Fi
gu

re
5.

9:
E

xp
er

im
en

ta
lr

es
ul

ts
on

is
ot

ro
pi

c
fr

ic
tio

na
lfl

oo
r.

67

Figure
5.10:E

xperim
entalresults

on
anisotropic

frictionalfloor.

68

Figure 5.11: Robustness comparison between dynamic and quasi-static pushing.

the result on the isotropic frictional floor, the estimation error does not increase

much. However, the estimation error with quasi-static pushing increases signifi-

cantly. Fig. 5.11 shows the influence of friction on estimation error with dynamic

and quasi-static pushing, respectively. Encouragingly, compared with the quasi-

static pushing case, friction has a limited influence on estimation accuracy with

dynamic pushing. The anisotropic frictional setting affects estimation accuracy

small with dynamic pushing but deteriorates estimation accuracy significantly

with quasi-static pushing.

The results showed that dynamic pushing can improve the accuracy and

robustness of estimation, supported by a series of simulation experiments. As

a result, the proposed CoM estimation method with dynamic pushing achieved

impressive performance on CoM estimation for novel objects both in isotropic

and anisopropic frictional floors.

69

Table 5.3: Results of CoM Estimation on Isotropic Floor

Object
High Speed Pushing Low Speed Pushing

mean std max min mean std max min

obj1 0.489 0.206 1.034 0.166 0.949 0.657 3.251 0.255

obj2 0.476 0.278 1.208 0.123 0.915 0.364 1.932 0.137

obj3 0.423 0.205 1.008 0.091 0.591 0.362 1.804 0.15

obj4 0.631 0.29 1.136 0.0 2.06 0.844 3.604 0.536

obj5 0.481 0.351 1.568 0.05 1.071 0.553 2.537 0.176

obj6 0.605 0.274 1.154 0.134 1.297 0.599 2.611 0.149

obj7 0.713 0.315 1.789 0.196 1.3 0.673 3.015 0.217

obj8 0.651 0.303 1.597 0.299 1.936 1.174 5.018 0.299

obj9 0.742 0.32 1.379 0.134 2.2 1.177 4.939 0.67

obj10 0.66 0.389 1.43 0.092 2.067 0.963 4.999 0.625

obj11 0.619 0.342 1.723 0.174 1.805 1.031 5.999 0.402

obj12 0.619 0.291 1.285 0.054 1.423 0.7 3.599 0.054

obj13 0.598 0.365 1.695 0.153 1.004 0.602 3.027 0.203

obj14 0.53 0.258 1.252 0.064 1.253 0.901 3.502 0.052

obj15 0.521 0.28 1.367 0.11 0.678 0.356 1.368 0.187

obj16 0.689 0.274 1.292 0.054 1.103 0.603 3.187 0.054

obj17 0.645 0.309 1.533 0.136 0.919 0.567 3.332 0.136

obj18 0.8 0.472 2.624 0.143 1.735 1.132 4.238 0.155

obj19 0.87 0.532 2.227 0.176 1.811 1.17 6.288 0.088

obj20 0.812 0.282 1.542 0.377 1.862 1.079 5.276 0.476

70

Table 5.4: Results of CoM Estimation on Anisotropic Floor
High Speed Pushing Low Speed Pushing

mean std max min mean std max min

obj1 0.597 0.296 1.478 0.255 1.408 0.667 2.283 0.166

obj2 0.595 0.351 1.208 0.097 1.744 1.014 4.382 0.137

obj3 0.607 0.284 1.173 0.019 1.602 0.644 2.953 0.688

obj4 0.598 0.295 1.046 0.0 3.651 1.836 5.439 0.758

obj5 0.51 0.365 1.384 0.086 2.039 0.818 3.536 0.552

obj6 0.649 0.38 1.576 0.134 2.006 0.93 3.835 0.34

obj7 0.742 0.483 2.323 0.196 2.098 1.115 4.347 0.615

obj8 0.631 0.303 1.597 0.027 3.22 1.184 5.488 1.349

obj9 0.832 0.324 1.379 0.134 3.789 1.413 5.517 0.858

obj10 0.667 0.407 1.43 0.092 2.073 0.676 2.697 0.334

obj11 0.606 0.32 1.266 0.174 2.513 0.937 3.608 1.058

obj12 0.655 0.288 1.26 0.299 1.76 0.929 3.294 0.308

obj13 0.556 0.328 1.28 0.05 1.938 0.881 3.601 0.364

obj14 0.596 0.363 1.399 0.089 1.83 1.174 4.493 0.502

obj15 0.771 0.321 1.368 0.31 1.347 0.68 2.898 0.232

obj16 0.764 0.296 1.286 0.388 2.525 1.126 4.502 0.388

obj17 0.599 0.272 1.288 0.233 2.428 1.479 4.809 0.45

obj18 0.832 0.456 1.787 0.164 2.863 1.532 5.179 0.649

obj19 0.822 0.381 1.376 0.12 3.026 1.756 6.287 0.267

obj20 1.15 0.491 2.148 0.383 3.319 2.189 6.807 0.641

71

5.5.1 Experiments in Real Platform

In real experiments, we insert two lead blocks into the box to change the CoM,

PCoM, that can be computed by Eq. 5.3.

PCoM =
1
M

Σ
n
i miri, (5.3)

where M is the total mass equal to the sum of masses of the box and two lead

blocks, denoted by mi, respectively, and ri represents the position of mi in a

reference coordinate frame in the plane. We measured the masses of the empty

box and each lead block using an electric scale with precision 0.1 gram. The ri

coordinate of the empty box was regarded as the centroid of the box as it has

uniform density, and the ri value of each lead block approximated to the center of

the compartment in which each block was inserted.

We follow the previous pushing prior collection procedure in two different

settings: a foam surface and the rubber wrapped gripper referred to as high

frictional setting and a plastic surface and the kraft paper wrapped gripper referred

to as low frictional setting. For each frictional setting, we select five different lead

block cells as shown in Fig. 5.12, resulting in five different CoMs. We sample

twelve contact points uniformly across the box perimeter, and the robot pushes

each contact point along five directions. The grid box was pushed sixty times for

each CoM configuration and frictional setting. The CoM estimation pipeline is

the same as the simulation. The estimation procedure was repeated six hundred

times, for each of which, twelve pushing priors are sampled from sixty pushing

examples.

We use the same method to represent the estimation error in the real experi-

ments of CoM estimation, which is shown in Fig. 5.13. It can be observed from

the figure that our CoM estimation method can be generalized to real settings,

comparable to the results of simulation experiments. Overall, the estimation

72

Figure 5.12: CoM estimation results in low and high friction settings. Red dot

represents the ground truth CoM. Other dots are estimated CoMs. The brighter

the color, the closer to the ground truth.

uncertainty is smaller in low frictional setting. As the result for the fourth CoM

configuration, the estimation error became large. One reason is that, compared

with other CoM configurations, the pressure distribution is more decentralized.

Such a configuration causes an object to rotate less, leading to inaccurate CoM

estimates.

73

Figure 5.13: CoM Estimation Result in Real Experiment. Red bars show the

estimation errors in percentage in low frictional setting, and green bars show the

estimation errors in percentage in high frictional setting.

74

Chapter 6

Single-Contact Push Planning Using

Data-Driven Model

6.0.1 Planning

Planning is to push the object from its initial pose to the target within pre-specified

steps as shown in Fig. 6.1. Before starting the planning process, several pushes

are executed to interact with the object and these interactions are fed into the few-

shot learning model to encode object dynamics. The push effect map specifies

the object pose as well as the effects associated with the representative actions. It

is calculated only one time and will be reused multiple times until the planning

task ends. In the phase of push effect map generation, we sample multiple points

on the outline of the object mask and take 5 directions w.r.t. the surface normal

(0°,±30°,±60°) as representative actions {ar}n similar to [15]. Then the push

effect map is generated using the prediction model to predict the push effect for

all representative actions.

In the phase of Efficient Action Selection in Fig. 6.1, we select a set of can-

didates for the efficient actions from the representative actions. Those candidates

efficiently translate the object, causing small changes in the object’s orientation.

However, in practice, there are many candidates similar in contact position as

well as pushing direction, which implies that we can make some calculations

75

Figure 6.1: Pushing planning flowchart given the object’s initial and target poses.

A few prior pushes are collected for encoding the object dynamics. Then, the

push effect map is generated by the trained model to predict the effect of the

representative actions. After that, the representative actions are ranked based on

the translating effect. The top ranked actions are selected as candidates of the

efficient actions. Finally, the non-maximum suppression method is utilized to get

the efficient actions. The proposed cost function quantifies each representative

actions. Then we sample an action among the top ranked actions considering

uncertainties associated. This procedure will continue until the pose error between

the current and target state meets the given criterion.

unnecessary. Furthermore, the candidates with a large amount of uncertainty

should not be included in the efficient action set. We therefore sort the action

candidates based on the predicted uncertainties. Then using Non-Maximum

76

Suppression, we filter out candidates similar in contact position or ones with large

uncertainties. The remained actions are referred to as the efficient actions denoted

by {a∗}m.

In the planning procedure, in each pushing step, an action is selected by a

greedy planner minimizing the proposed function defined in Eq. 6.1. The core

idea of the proposed method is to increase the priority of the actions in efficient

action set {a∗}m in successive pushing steps so as to reduce the possibility of

sliding contact between the pusher and the object. Fig. 6.2 explains the idea of the

cost function. Firstly, we find the action that are most likely translate the object

to the target among {a∗}m using Eq. 6.2. vp(ai) represents the predicted object

displacement vector for action ai. tvd is the required object displacement vector

calculated by subtracting the object’s current position vector from its target posi-

tion vector. ta∗ is the action that maximizes the dot product between vp(ai) and
tvd . Meanwhile, we calculate the expected object displacement after executing the

pushing action ai, represented by t+1vd|ai in Eq. 6.3. If the magnitude of t+1vd|ai is

0, the object can be translated to the target position exactly by executing ai. After

that, we calculate the predicted object displacement vector for ta∗ after executing

ai using Eq. 6.4. θp(ai) in Eq. 6.4 represents the predicted object rotation for

ai. R(·) returns a 2× 2 rotation matrix. Finally, we compute the cost for each

pushing action ai in the representative action set {ar}n using Eq. 6.1. The first

term is the same as Eq. 6.3. The second term is the λ weighted cosine similarity

between t+1vd|ai and t+1vp|ai . This term plays a core role in adjusting the object’s

orientation so as to increase the priority of the selected efficient action ta∗. If λ

is high, the planner will pay much attention to adjusting the object’s orientation,

which turns out to be inefficient. In this work, we normalize the first term by the

mean magnitude of predicted object displacement and set λ to 1. The planning

procedure will be terminated if the position error meets the requirement or the

77

Figure 6.2: Illustration of the proposed planning method. ai is the pushing action

applied to the object at the current time step t. vp(ai) and tvd are the predicted and

expected object displacement, respectively, at t. ta∗ is the action selected based

on Eq. 6.2. t+1vd|ai is the expected object displacement at t + 1 time step, when

applying ai calculated by Eq. 6.3. t+1vp|ai is the predicted object displacement,

when applying ta∗ at t +1 time step by Eq. 6.4.

.

number of pushing steps exceed the requirement.

φ(ai) = ‖t+1vd|ai‖−λ

t+1vp|ai ·
t+1vd|ai

‖t+1vd|ai‖‖t+1vp|ai‖
(6.1)

ta∗ = arg max
ai∈{a∗}m

vp(ai) · tvd (6.2)

t+1vd|ai =
tvd−vp(ai) (6.3)

t+1vp|ai = R(θp(ai)) ·vp(
ta∗) (6.4)

78

6.1 Experiment

6.1.1 planning in simulation

Figure 6.3: Test objects used for planning simulation.

Firstly, we evaluate the proposed planning method in the simulation environ-

ment using 10 different objects shown in Fig. 6.3, each of which has 40 different

physical properties including the CoM, inertia, weight, and contact friction. We

conduct 20 push experiments for each object with specific properties that reach

up to 8K push experiments in total. Each push experiment is defined by the

distance between the initial and target positions of the object and the direction

approaching the target. The initial position and orientation are kept the same and

the distance is set to 300 millimeters, while the direction is uniformly sampled

from (−180°,180°). The pushing task is considered as success if the position error

is less than the threshold within 14 pushing steps, otherwise as having failed. We

choose 14 steps, as the mean translation distance per pushing is 22.2 millimeters

when the pushing directions lie in the range of (−60°,60°) w.r.t. the surface

normal direction of the contact. The threshold was set to 3cm the same as the

79

Figure
6.4:

Illustration
of

pushes:
(a)

encoding
object

dynam
ics,

(b)-(g)
generated

push
effect

m
ap.

Tw
elve

pushes
are

conducted
around

the
contour

of
the

objectalong
w

ith
a

random
direction

w
ithin

(-60,60)
w.r.t.

the
surface

norm
al.

(b)

to
(d)

are
the

prediction
objectm

otion
(translation

and
rotation)

for
the

pushes
along

w
ith

norm
aldirection

to
the

outline.

(e)
to

(f)
are

the
predicted

uncertainty
w.r.t.

the
translation

along
x

y
axis

as
w

ellas
the

rotation.
In

general,the
predicted

uncertainty
forrotation

tends
to

be
largerthan

translation.

80

pushing length of an interval. The accuracy is the ratio of the total number of

pushing tasks completed with a number of pushing steps lower than the threshold

to the total number of conducted pushing tasks for each object.

Before the planning procedure, the robot interacts with the object a few

times. Fig. 6.4 illustrates an example of the push effect map generation procedure

mentioned in Fig. 6.1. The robot pushes the object with unknown physical

properties 12 times at different contact points with a direction sampled from

(−60°,60°) w.r.t. the surface normal direction. Each push length is 3cm. Then,

the applied pushing action and the resulting changes in object pose are used as the

pushing priors to infer the resulting object motion and the prediction uncertainty

for the representative actions {ar}n. As mentioned in 6.0.1, we used 5 different

pushing directions w.r.t. the surface normal vector. We used 500 representative

pushing actions in total, and the push effects can be efficiently calculated on GPU

in less than 1 second. Based on the push effects and uncertainty predicted, and the

top 100 representative action candidates, we apply the non-maximum suppression

algorithm to get a set of efficient actions represented by {a∗}m.

In the planning procedure, the proposed cost function in Eq. 6.1 quantifies

each representative action. We select the top 5 action candidates and use the

softmax function to transform uncertainties associated with these candidates into

a probability distribution. Finally, one action can be sampled from the distribution

to be executed.

For the baseline method, prior pushing collection and push effect map genera-

tion procedure were kept the same as the proposed method. However, the baseline

method selects the top 5 ranked actions only minimizing the first term in Eq. 6.1.

In other words, the baseline method only select actions that can minimize the

translation error from the current to target positions.

81

Figure 6.5: Test objects used for planning on real experiment setting.

6.1.2 planning on real platform

We evaluated the proposed method in real experimental settings on the foam

surface with isotropic friction. We consider 6 different objects given in Fig. 6.5.

Among them, the motions of test-object-exp 4 and test-object-exp 5 are difficult

to predict, since test-object-exp 4 is pretty light (less than 5g) and test-object-exp

5 has high contact friction across the foam. We conduct 16 pushing experiments

for each object. The initial positions are identical, however the initial orientation

is sampled uniformly in (−180°,180°). We followed the same procedure as in

simulation.

6.1.3 Planning Evaluation

[ht]

The comparative performance of the proposed planning and the baseline meth-

ods is presented in Table 6.1 with the mean, standard deviation and accuracy of

82

Fi
gu

re
6.

6:
A

cc
um

ul
at

ed
m

ov
em

en
to

fo
bj

ec
ts

sh
ow

n
in

Fi
g.

6.
3

fo
rt

he
pl

an
ni

ng
ta

sk
.T

he
lin

e
in

si
de

ea
ch

co
lo

rb
ox

is
th

e

m
ea

n
of

th
e

ac
cu

m
ul

at
ed

m
ov

em
en

t.

83

Figure 6.7: An example of pushing test-object-exp 3 in Fig. 6.5 to a new position.

(a) the initial and target poses 30cm away. The initial orientation is randomly

selected. (b) pushing action denoted by an arrow and cost denoted as heatmap at

each contact point in each step. There are 5 costs associated with each contact

point as there are 5 representative pushing actions. Here only the minimum cost

of each contact point is demonstrated.

Figure 6.8: Accumulated movement of objects shown in Fig. 6.5.

84

pushing steps. Fig. 6.6 shows the accumulated movement of the objects. Ideally,

the accumulated movement will be very close to 0.3m, when the object approaches

the target straight. Lower accumulated movement means less distance traveled

on the plane. Compared with the baseline method, our method achieved lower

accumulated movement on average for the objects shown in Fig. 6.3. From the

results shown in Table 6.1, we found that the proposed planning yields a smaller

number of pushes except for test-object-sim 9 in which both of the methods have

relatively good performance. Moreover, the proposed planning shows a lower

standard deviation, leading to the fact that the method is less sensitive to the

object’s initial orientation as well as different physical properties. The baseline

method is sensitive to the object shape than the proposed method, as it suffered

from low accuracy on test-object-sim 1 and test-object-sim 6.

We found that the baseline model performs obviously worse than the proposed

method for narrow and long objects with a small number of edges such as test-

object-sim1 and test-object-sim6. Especially, in the case that the principal axis of

this type of object is aligned with the desired translation direction, the baseline

method tends to choose to push actions that cause sliding contact between the

pusher and the object so that the object motion after each pushing is small. On

the other hand, the proposed method performed robustly for this type of object,

favoring actions to rotate the object in such a way to make the principal axis of

the object perpendicular to the desired translation direction.

Fig. 6.8 shows the accumulated movement for the test objects on the real

platform. It can be seen that the accumulated movement of test-object-exp 4 is

the largest among the test objects. This is mainly due to the fact that test-object-

exp 4 is too light resulting that the contact situation between object and foam

surface introduces more randomness in object motion. We use the same metric for

calculating the accuracy. We found that the accuracy in total is 94.79%. All the

85

objects were successfully pushed to the target within 14 pushes except test-object-

exp 4 and test-object-exp 5 for which 3 and 2 pushing tasks are failed, respectively.

Test-object-exp 5 tends to remain in its position during pushing because of the

high contact friction. Notably, the proposed method still performed well for test-

object-exp 3 even it has complex contact conditions with the surface.

Fig. 6.7 shows an example of pushing test-object-exp 3 in Fig 6.5. In this

example, the robot pushed 10 times to translate the object to the target position.

One interesting thing we found is that, at the steps from 1 to 4, the robot tried to

adjust object orientation choosing several different contact points. After that, the

robot focused on translating the object, while adjusting the object’s orientation by

slightly changing the pushing direction or contact point. Evidently, this is aligned

with our original intention, as we aim to realize efficient pushing by changing the

orientation of the object, which makes translation efficient.

86

Table 6.1: The mean, standard deviation of the pushing steps as well as the

accuracy for objects shown in Fig. 6.3

Object Method Mean Std Accuracy (in percent)

obj1
proposed 11.33 2.40 90.50

baseline 12.18 3.24 78.12

obj2
proposed 10.77 1.68 97.25

baseline 10.79 1.79 96.50

obj3
proposed 10.68 1.70 96.50

baseline 10.94 2.15 92.50

obj4
proposed 10.90 1.78 95.62

baseline 11.33 2.24 90.75

obj5
proposed 10.99 1.59 96.88

baseline 11.30 1.97 93.62

obj6
proposed 11.60 2.62 87.12

baseline 12.22 3.21 76.75

obj7
proposed 10.53 1.51 98.79

baseline 10.77 1.76 96.21

obj8
proposed 11.07 1.78 96.00

baseline 11.39 2.00 92.38

obj9
proposed 10.83 1.70 97.29

baseline 10.65 1.46 100.00

obj10
proposed 11.09 1.64 97.43

baseline 11.30 1.72 95.14

87

88

Chapter 7

Multi-Contact Pushing For Novel

Object

7.1 Two-Edge-Contact Pushing

We introduce our ZMTEP method for translating an object to a goal pose under

the quasi-static assumption. First, the forces exerting on the object are analyzed

when the object undergoes pure translation. We then revisit moment labeling

representation for contact forces. We compare different contact configurations

and analyze tolerance to noise on contact and estimated CoM positions. Finally,

we present the ZMTEP method for two-edge contact configuration selection.

7.1.1 Quasi-Static Analysis of Pure Translation

Let us consider a pusher and an object lying on a flat surface with isotropic

friction, where the CoM, the centroid of pressure distribution, and the centroid

of friction are projected to the same point on the plane [72]. The magnitude of the

contact force between the pusher and the object can be arbitrarily large due to the

non-penetration constraint of a rigid body. In case the object moves in low speed,

the inertia force would be in the order of the friction force. In translational motion,

sliding friction is replaced by an equivalent resultant force passing through the

89

CoM that opposes the motion of the object.

As the two-edge-contact pushing exploits the pusher’s collaborative contact

interactions with the object, the direction of the net force must be the same as

the pushing direction to achieve translational motion. The pusher’s contact force

acts inward on the object, and two contact forces must be able to set the object in

motion toward the direction of the net force additively. Also, the line of the net

force must pass through the CoM of the object to generate zero moment about the

CoM.

7.1.2 Zero Moment Two Edge Contact Pushing (ZMTEP)

We first define several explanatory lines of direction to convey the proposed idea

of two-edge-contact configuration. We then analyze the tolerance range of the

contact configuration, leading to the ZMTEP for pure translation.

7.1.2.1 Defined Lines

We define five lines: ld, ln, l f l, l f r, lc. ld is the line passing through the CoM of an

object and is aligned with the pushing direction. ln is perpendicular to the surface

at the contact point between the pusher and the object. l f l and l f r are the left

and right boundary of the friction cone at the contact point, respectively. lc is the

direction of the contact force bounded by l f r and l f l . When there is no friction

between the pusher and the object, lc coincides with ln. Fig. 7.1 illustrates an

example for pushing an object along ld , where two contact points between the

object and the pusher are denoted by the subscript 1 and 2, respectively. The

shaded region is the moment representation for this contact configuration, which

will be introduced latter.

90

Figure 7.1: Illustration of the lines defined in 7.1.2.1.

7.1.2.2 Two-Edge Contact Configuration

Within the scope of two-edge-contact pushing between the pusher and the object,

the contact configuration can be described by Ctec

Ctec = (cp1,n1,cp2,n2), (7.1)

where n1 and n2 are specified by the definition of ln. In this work, we only consider

the case that n1 and n2 are not parallel. In other words, ln1 intersects with ln2. If

the friction coefficient is known, l f l1, l f r1, l f l2.l f r2 can be also specified.

7.1.2.3 Moment Labels for Two-Edge-Contact Configuration

Moment labeling gives a graphical representation of the composite wrench cone.

Each contact has a friction cone associated with the contact point whose boundary

91

Figure 7.2: Moment labeling representation of pusher-slider system. As in

Fig. 7.1, pushers are denoted by small circles which make contact with the slider

represented by a rectangle. The CoM has an offset from the centroid. Black arrows

delimit the friction cone at the contact. Red regions show the pushing directions

along which the object can be translated using the contact configuration employed.

92

is determined by the friction coefficient between the pusher and the object.

Fig. 7.2(a) shows a moment labeling of a composite wrench cone for a single-

point contact. The gray shaded regions represent the sign of moment that the

resultant force would generate about the region. This can be interpreted as all of

the forces that have a different sign of moment about the shaded region or the

forces that pass through the shaded region cannot be generated.

Figs. 7.2(b)-(f) show moment labeling representations for two-edge-contact

configurations. The moment labels for each contact can be combined to represent

the composite wrench cone. The red shaded regions show the composite wrench

cone passing through the CoM with two-edge-contact configuration, where any

resultant wrench inside the composite wrench cone satisfies the force and moment

conditions. Therefore, the composite wrench cone also specifies the directions

along which the object can be translated.

Figs. 7.2(b)-(e) show the same Ctec with gradually reduced friction cones, and

the red shaded regions become narrower correspondingly. Fig. 7.2(e) is a special

case that the friction coefficient between the pusher and the object is equal to zero.

In this case, shaded regions converge to a single point. The resultant forces must

pass through this intersection point. Therefore, all of the resultant forces that also

pass through the CoM have the same direction, which is from the CoM to the

intersection of the shaded regions. This set of forces is always a subset of the set

of forces generated in Fig. 7.2(b)-(d). In other words, this direction can be always

achieved by the contact configuration regardless of friction cones. When two

contact normal forces pass through the CoM as shown in Fig. 7.2(f), the resultant

forces are positively spanned by these two normal forces even though there is no

friction between the pusher and the object.

Theorem 1 Given ld and a pushing direction, if there exists a two-edge-contact

configuration with which the corresponding contact normal forces positively span

93

the pushing direction, also ln1, ln2 and ld intersect at a single point, then the

object can be translated along the pushing direction using the two-edge-contact

configuration.

Based on the moment labeling analysis of Fig. 7.2(e), given a known object

with Ctec, we can always find a pushing direction along which the object is

translated.

7.1.2.4 Contact Position Tolerance Analysis

Robots may not precisely achieve a desired contact configuration due to various

types of image noise. Therefore, it is of importance to investigate under what

circumstances the contact noise can be tolerated. As shown in Fig. 7.3, given a

known object and its pushing direction, we can draw ld . For a Ctec, the set of

resultant wrenches passing through the CoM can be illustrated by the red region.

A Ctec is valid, if ld lies inside the composite wrench cone. Let us examine

two-edge-contact configurations by the orange and green pusher in Fig. 7.3(a)-

(b), where the blue arrow is the pushing direction and ld is coincident with the

boundary of the wrench cone. Keeping the position of the orange pusher on the

horizontal edge fixed, we change the position of the green pusher. Fig. 7.3(a)

shows the lower limit position of the green pusher found by drawing a line that

passes through ld∩ l f r1 parallel to l f r2. Similarly, Fig. 7.3(b) shows the upper limit

position of the green pusher found by drawing a line that passes through ld ∩ l f l1

parallel to l f l2. If we draw a line segment whose endpoints are the lower and upper

limit positions of the green pusher, we can obtain the tolerance range of the green

pusher position. Similarly, keeping the position of the green pusher fixed, we can

find the tolerance range of the orange pusher. In some cases (see Fig. 6(e)), the

endpoint may be out of the object boundary. In such cases, the line segment ends

on the boundary.

94

Figure 7.3: Contact position tolerance range. (a) and (b) show the position limits

of green pusher when orange pusher remains fixed. (c)-(e) show the tolerance

range of each pusher position when the other pusher remains fixed. (f)-(h) shows

common tolerance ranges of both pushers’ positions within which the object can

be purely translated.

95

Fig. 7.3(c)-(e) show the contact position tolerance ranges represented by

colored line segments. We found that, as the distance between the contact

points increases, the tolerance range also increases up to a certain point and then

decreases as the contact point approaches the object boundary. Also, the tolerance

range increases if the friction cone becomes larger.

In practice, the positions of both pushers may be perturbed at the same time.

Fig. 7.3(f)-(h) show the common tolerance range of two pushers. In other words,

if two pushers select the contact position within the common tolerance range,

the net force can be generated for translating the object. This common tolerance

range is specified by the position limits of both pushers found as follows: first, we

assume that both pushers make contact with the object by Theorem1, and ld , ln1,

and ln2 intersect at a single point. Then, we let the orange pusher move toward

left (or right) on its edge until l f r1 (or l f l1) passes through the intersection point

ld ∩ ln2. The limits for the green pusher position can be found in a similar way.

The common tolerance range depends on the distance between the contact points

in the same way as Fig. 7.3(c) to (e).

7.1.2.5 CoM Estimates Tolerance Analysis

Error-prone CoM estimates also cause incorrect contact configuration. Therefore,

we need to analyze the tolerance range of the CoM. Given an object with the

estimated CoM and a pushing direction, we can draw l̃d . If the ground truth CoM

is on l̃d , there is no estimation error introduced, because we select Ctec based on

Theorem 1. Fig. 7.4 shows four two-edge-contact configurations for pushing an

object along the blue arrow with an estimated CoM. Based on the friction cone,

we can obtain the CoM tolerance range by the following procedure:

• Find the intersection points l f l1∩ l f l2 and l f r1∩ f f r2.

• Draw two boundary lines passing through one intersection point parallel to

96

Figure 7.4: CoM tolerance range given the two-edge-contact configurations.

97

Figure 7.5: The twenty object shapes used in the simulation experiments.

the pushing direction.

• The CoM tolerance range is wrapped by the boundary lines and the object

boundary.

If the ground truth CoM is inside the yellow shaded region, the estimated CoM

can be tolerated. In other words, the yellow shaded region denotes the tolerance

range of the CoM estimates. With the distance between the pushers becomes

larger, the tolerance range enlarges. The tolerance range will also be larger for the

same two-edge-contact configuration if the friction cone becomes larger. It can be

observed that the two-edge-contact configuration with a large distance between

two contact points shows high tolerance toward inaccurate estimates.

We now propose our ZMTEP method in order to find two-edge-contact con-

figurations for pushing a novel object as shown in Algorithm 7. Given a number

of sampled contour points with associated contact normals, the CoM position, and

the pushing direction, this algorithm outputs the most suitable two-edge-contact

configuration in which the distance between two contact points is maximized.

As the tolerance range becomes smaller due to near-corner contact selection, we

remove the contour points near object corners. When dealing with a novel object,

ZMTEP estimates the CoM using the method proposed in Section 5.1.

98

Algorithm 7: Zero Moment Two-Edge Pushing
Input: {cpi}m,{ni}m,PCoM,dp

/* {cpi}m, {ni}m are the sampled contour points and the

associated normal direction. PCoM is the position in

image frame. dp is the pushing direction. */

Output: C∗tec

/* C∗tec refers to a two-edge contact configuration */

1 C∗tec← /0 // initialize C∗tec

2 D← 0 // initialize a variable representing the distance

between two contact points

3 for cpi, ni in {cpi}m,{ni}m, i is from 1 to m do

4 Get ln1 based on cpi and ni

5 Get ld based on PCoM and dp

6 Get ln1∩ ld

7 for cp j, n j in {cp j}m, {n j}m, j is from i to m do

8 Get lc2 based on cp j and n j

/* ‖a,b‖ represents the Euclidian distance between a

and b. ε is a small value */

9 if ‖ln2∩dp, ln1∩ ld‖< ε then

10 if ‖cpi,cp j‖> D then

11 C∗tec← (cpi,ni,cp j,n j)

12 D←‖cpi,cp j‖

13 return C∗tec

7.2 Object Pushing Experiments

7.2.1 Simulation Experiment

We conduct three simulation experiments to99

• find feasible sets of two-edge contact configuration.

• evaluate the effect of the surface and pusher friction.

• evaluate the performance of ZMTEP for different objects.

In the first simulation, we find the feasible two-edge-contact configurations

that translate the object (11) in Fig. 7.5 along a pushing direction. Here both

µs and µp are set to 0.1. The two contact points are selected on different edges

whose normal directions are not parallel. There are ten different choices to select

two edges. We uniformly sample the contact points from each of the two edges

and combine each pair of contact points as a two-edge-contact configuration. A

push is considered a success if the object is translated to a goal pose within 0.5cm

and 5°, respectively.

We show four examples in Fig. 7.6, where each two-edge-contact configura-

tion Ctec forms an intersection point ln1 ∩ ln2. We observed that almost all of

the feasible two-edge-contact configurations represented by the blue circle marks

are found by combining the edges whose contact normals can positively span

the pushing direction. In this figure, the blue intersection points are distributed

symmetrically along the blue arrow passing through CoM aligned in the pushing

direction denoted as ld in Section 7.1.2.1. The closer the intersection point to ld ,

the less the change in object orientation during pushing. The two-edge-contact

configurations whose intersection points are on the blue arrow satisfy Theorem1

and therefore result in pure translational motion. Also, the number of blue circle

marks increased in the direction of ld arrowhead including those marks located

away from ld , leading to an increase in the number of suitable configurations

available. This phenomenon can be explained by the CoM estimates tolerance

analysis. For those contact configurations whose normal directions positively

span the pushing direction, each contact configuration obeys Theorem1 but the

CoM estimates may not be accurate. When moving closer to the arrowhead, the

100

Fi
gu

re
7.

6:
R

es
ul

ts
of

ob
je

ct
tr

an
sl

at
io

n
si

m
ul

at
io

n.
B

lu
e

ar
ro

w
sh

ow
s

th
e

pu
sh

in
g

di
re

ct
io

n
an

d
gr

ee
n

sq
ua

re
m

ar
k

sh
ow

s

th
e

C
oM

.G
re

en
cr

os
s

m
ar

ks
on

ob
je

ct
ed

ge
s

re
pr

es
en

tt
he

sa
m

pl
ed

co
nt

ac
tp

oi
nt

s.
Y

el
lo

w
ar

ro
w

s
sh

ow
th

e
co

nt
ac

tn
or

m
al

s

th
at

ca
n

po
si

tiv
el

y
sp

an
br

ig
ht

gr
ay

re
gi

on
s.

A
pa

ir
of

co
nt

ac
tp

oi
nt

s
ar

e
se

le
ct

ed
fr

om
th

e
sa

m
pl

ed
co

nt
ac

tp
oi

nt
s

on
ea

ch

of
tw

o
ed

ge
s.

R
ed

an
d

bl
ue

cr
os

s
m

ar
ks

ar
e

in
te

rs
ec

tio
n

po
in

ts
fo

rm
ed

by
tw

o-
ed

ge
-c

on
ta

ct
co

nfi
gu

ra
tio

ns
.

R
ed

m
ar

ks
ar

e

fa
il

an
d

bl
ue

m
ar

ks
ar

e
su

cc
es

s.

101

distances between two pushers increases so that the configuration shows high

tolerance to the error of CoM estimates. Observing the distribution of the red

cross marks, the failure can be a result of the following three reasons: (1) the

corresponding normal directions cannot positively span the pushing direction,

such as the second row of Fig. 7.6 (2) the two-edge-contact configuration whose

corresponding intersection point are too far away from ld , and (3) the distance

between the contact points is too narrow so that even a small error in contact

points results in failure.

In the second simulation, we use nine different friction settings by permuting

three different friction coefficients (0.1,0.5,1.0). In each of the settings, we push

the triangular object (1) shown in Fig. 7.5 along random directions. We select

two edges whose normal directions can positively span the pushing direction. We

then combine each contact point on each edge to find feasible two-edge push

configurations. A push is considered a success using the same criterion as the first

simulation experiment. From the result of the second simulation experiment, we

found that with the increase of the pusher friction or surface friction, the number

of successful pushing has also increased. We conclude that both the friction

between the pusher and the object and the friction between the surface and the

object mutually contribute to enlarging the contact tolerance range. Similar to the

first pushing simulation experiment, the number of intersection points increased

in the direction of ld arrowhead for each of the frictional setting, which leads to

the same conclusion that the contact configuration having larger distance between

two contact points exhibits high CoM estimates tolerance. In addition, as each

row or column of intersection points along the contact normals can be seen as

a set of contact configurations that one pusher position gets perturbed when the

other remains fixed. Along the pushing direction, when counting the number of

success pushes in rows or columns, the number of success pushes increases up

102

Figure 7.7: Nine simulation environments with different surface and pusher

frictions. Success rate is computed by calculating the ratio between the total

number of success pushes and the total number of pushes.

103

Table
7.1:O

bjectTranslation
Sim

ulation
E

xperim
ent

O
bject

L
ow

Friction
H

igh
Friction

Proposed1
Proposed2

B
aseline1

B
aseline2

Proposed1
Proposed2

B
aseline1

B
aseline2

1
1.000

0.985
0.277

0.362
1.000

1.000
0.823

0.769

2
0.942

0.925
0.050

0.175
1.000

1.000
0.350

0.500

3
1.000

0.975
0.117

0.242
1.000

0.983
0.608

0.567

4
0.975

0.900
0.267

0.492
1.000

1.000
0.992

0.733

5
0.984

0.952
0.234

0.419
0.960

0.960
0.863

0.677

6
1.000

0.921
0.414

0.443
0.979

0.993
0.957

0.786

7
0.938

0.906
0.312

0.328
1.000

0.969
0.744

0.721

8
0.981

0.915
0.321

0.481
1.000

1.000
0.849

0.660

9
0.905

0.781
0.248

0.489
0.978

0.942
0.964

0.761

10
0.985

0.916
0.298

0.511
1.000

1.000
0.955

0.674

11
0.992

0.961
0.403

0.597
0.992

1.000
0.891

0.845

12
0.949

0.934
0.301

0.368
1.000

0.993
0.853

0.757

13
0.967

0.919
0.366

0.528
0.992

0.992
1.000

0.815

14
1.000

0.835
0.339

0.543
1.000

1.000
0.808

0.752

15
1.000

0.976
0.317

0.357
1.000

1.000
0.762

0.683

104

to a certain point and then deceases, which is supported by the contact position

tolerance analysis.

In the third simulation, we verify the ZMTEP using the objects in the first

two rows in Fig. 7.5 in a low friction setting (µs and µp are 0.1) and a high

friction setting (µs and µp are 1.0). Each object assigned to ten different CoMs

is translated 25cm along the fifteen uniformly sampled directions. Henceforth, a

push is considered a success if the slider is within 1cm and 10° of a goal pose.

For comparison purpose, we used following methods:

• Proposed1 selects two contact points by ZMTEP, given the CoM.

• Proposed2 selects two contact points by ZMTEP, estimating the CoM.

• Baseline1 uses two contact points that have the maximum distance from

the slider’s centroid along the direction perpendicular to the pushing direc-

tion. Increasing the distance between two contact points, errors of contact

location and CoM estimation can be better tolerated.

• Baseline2 uses two contact points that are the largest possible equal distance

away from the given CoM along the direction perpendicular to the pushing

direction. This method relies on the CoM ground truth and ensures that

the CoM is in the middle between two contact points along the pushing

direction. The distance between two contact points tends to be smaller than

Baseline1.

The obtained results in the form of mean ratio of successful pushes are

presented in Table 7.1. From the result, in a low friction environment, Proposed1

performed best and Proposed2 is the second best. The baseline methods per-

formed far less accurately than our proposed methods. Baseline1 performs worse

than Baseline2, as the tolerance capability is restricted by the limited friction.

Baseline2 reaps the benefits of knowing the CoM ground truth. In high friction

environment, the performance of Proposed1 and Proposed2 improved further.

105

Figure
7.8:R

ealrobotpushing
ofa

box
w

ith
a

variable
stroke

gripperalong
the

blue
arrow

direction.B
lue

triangle
m

arkers

are
sam

pled
contactpoints.E

ach
pairofcontactpoints

form
an

intersection
pointdenoted

by
red

cross
m

arkers
and

orange

dotm
arkers.

B
lue

squares
are

the
C

oM
s

of
the

grid
box.

T
he

C
oM

s
in

(b)
and

(c)
are

biased
by

tw
o

lead
blocks

near
the

corner.

106

Compared with the baseline methods in a low friction environment, even though

the two-edge contact configurations in high friction setting are the same as the

ones in low friction setting, their performances are greatly improved. Baseline1

performed better than Baseline2 as the tolerance capability gets enlarged due to

the increase in friction. This result shows that high friction helps expand the

wrench cone. Therefore, the performance of baseline methods highly rely on

the friction. On the other hand, the proposed methods work well irrespective of

frictional conditions. Compared with Proposed1, even though Proposed2 use

the estimated CoM which may introduces undesired contact configuration, the

performance of Proposed2 drops only slightly. The reason is that we select a

two-edge-contact configuration with a tolerance range.

7.2.2 Real Experiment

Changing the friction properties of the pusher and the plane as well as the CoM

of a grid box slider, we find a set of feasible two-edge-contact configurations.

The robot uses its parallel-jaw gripper to translate the box slider 25cm along a

desired direction. Given a pushing direction, we sample 14 contact points on the

short edge and 16 contact points on the long edge, yielding a set of 224 paired

configurations. As we set the gripper stroke limit to 8.1cm, some of the paired

configurations cannot be achieved, leading to 183 pushes available.

We conduct a total of six experiments as illustrated in Fig. 7.8(a)-(f), where the

robot pushes the box in the direction of the blue arrow. In (b) and (c), the position

of CoM is biased arising from the addition of lead blocks. In all experiments,

the object is placed on a plastic plane pushed by the kraft paper wrapped gripper

except (d) and (e). (d) uses a high friction foam surface and (e) uses a rubber

wrapped gripper.

107

108

Chapter 8

Conclusion

Following the recent works in [13, 14], we presented a large-scale simulation

dataset called SimPush containing a vast variety of objects diverse in shape

and size. We simulated planar pushing under hundreds of varying conditions

of contact friction, surface friction, mass, inertia, and CoM. Eventually, this

dataset has more than 2 million push examples. Furthermore, we proposed a

novel method to encode pushes, which greatly improved the model performance.

Based on the encoder-decoder structure, we developed cascaded residual attention

modules to combine features from different sources. Based on the proposed

single-step prediction model, we proposed a novel planning method that can deal

with objects with unknown physical properties.

We evaluated the proposed model purely trained by SimPush on a real

platform. We designed a CoM controllable box pushed by a robot arm across

different surfaces. Due to the noisy input and the simulation-to-reality gap, our

model was not on par with the results in the simulation. However, our model

predicted object motions with reasonable accuracy. We pushed three unknown

real objects across the unknown frictional floor surface to challenge our model.

Notably, the proposed model performed encouragingly well. Using the large-scale

dataset, our model efficiently learned to make use of pushing priors to infer the

novel action outcome. Compared with the model which depends on the quality

of the identification system, our model has proven robust in complicated object

109

pushing. We evaluated the proposed planning method both in simulation and on

a real platform. The planning method not only minimizes the position error but

also takes the efficiency of pushing into account. It should be emphasized that

the proposed model performs as well in the unknown real world as in simulations

with small samples of real-world evidence.

We studied the linear single-point contact pushing from the aspects of both

predicting object motion and planning pushes to translate the object to the desired

position. As a future direction of this research, a direct extension would be

predicting push effects when there are obstacles near the object. The current push

planning method was assumed to use fixed length actions. Push planning with

variable length actions will be an interesting problem for future research. For

instance, pushing an object for a long distance initially toward a goal position, then

pushing the object a short distance to adjust finely the object pose may lead to an

efficient planning approach to reduce the number of pushes required. In addition,

different types of contact (e.g., multi-point contact) can also be an extension of

this work. Such types of contact could improve pushing efficiency but also make

the prediction model challenging since the dynamics of contact tends to become

more complicated.

We presented a novel CoM estimation method by combining Mason’s voting

theorem and a deep learning motion prediction model trained on our simulation

dataset SimPush. We demonstrated the process of how the probable CoM location

can be narrowed down with no a priori assumption about friction between the

pusher and object.

We addressed the problem of planar multi-contact pushing of novel objects

undergoing pure translational motion. We proposed the two-edge-contact pushing

interaction called ZMTEP to translate an object to a goal pose. Using moment

labeling representation, we showed that the pushing configuration stated in The-

110

orem 1 satisfies the condition of pure translation. Thirdly, toward real-world

applications suffering from image sensor noise and error-prone CoM estimates,

we analyzed the tolerance region of contact configuration to both contact noise and

inaccurate CoM estimates. We showed that as the distance between two contact

locations increases, the proposed ZMTEP exhibits high tolerance to both issues.

We demonstrated through extensive experiments both in simulation and real

robotic pusher-slider settings that the proposed CoM estimation method has

good mean squared error properties and small standard deviation and ZMTEP

outperformed the baseline methods. To the best of our knowledge, this research

is the first attempt to provide a thorough analysis and empirical evidence of

multi-edge-contact pushing based on fewer assumptions to achieve a reasonably

close optimal shortest path of translational motion. One of the future directions

would be investigating multi-edge-contact configuration selection for re-orienting

an object before and after an action executes. In addition, pushing an object at a

high speed, beyond the quasi-static approximation, would be also of importance

to further reduce the time needed for translating an object to a goal pose.

111

112

References

[1] M. T. Mason, “Progress in nonprehensile manipulation,” The International

Journal of Robotics Research, vol. 18, no. 11, pp. 1129–1141, 1999.

[Online]. Available: https://doi.org/10.1177/02783649922067762

[2] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning for

object placement on cluttered table surfaces,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2011, pp. 4627–4632.

[3] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised visual

planning with temporal skip connections,” in 1st Annual Conference on

Robot Learning, ser. Proceedings of Machine Learning Research, vol. 78,

2017, pp. 344–356. [Online]. Available: http://proceedings.mlr.press/v78/

frederik-ebert17a.html

[4] Z. Dong, S. Krishnan, S. Dolasia, A. Balakrishna, M. Danielczuk, and

K. Goldberg, “Automating planar object singulation by linear pushing with

single-point and multi-point contacts,” in IEEE International Conference on

Automation Science and Engineering, 2019, pp. 1429–1436.

[5] L. Chang, J. Smith, and D. Fox, “Interactive singulation of objects from

a pile,” IEEE International Conference on Robotics and Automation, pp.

3875–3882, 2012.

113

https://doi.org/10.1177/02783649922067762
http://proceedings.mlr.press/v78/frederik-ebert17a.html
http://proceedings.mlr.press/v78/frederik-ebert17a.html

[6] M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push poli-

cies to increase grasp access for robot bin picking,” in IEEE International

Conference on Automation Science and Engineering, 2018, pp. 1249–1256.

[7] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”

Robotics: Science and Systems, vol. 1, 2011.

[8] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,

“Learning synergies between pushing and grasping with self-supervised

deep reinforcement learning,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2018, pp. 4238–4245.

[9] M. T. Mason, “Mechanics and planning of manipulator pushing operations,”

International Journal of Robotics Research, vol. 5, no. 3, pp. 53–71, 1986.

[10] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry friction

part 1. limit surface and moment function,” Wear, vol. 143, no. 2,

pp. 307–330, 1991. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/0043164891901043

[11] ——, “Planar sliding with dry friction part 2. dynamics of motion,”

Wear, vol. 143, no. 2, pp. 331–352, 1991. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/0043164891901054

[12] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things forward: A survey on

robot pushing,” Frontiers in Robotics and AI, vol. 7, p. 8, 2020.

[13] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million

ways to be pushed. a high-fidelity experimental dataset of planar pushing,”

in IEEE/RSJ International Conference on Intelligent Robots and Systems,

2016, pp. 30–37.

114

https://www.sciencedirect.com/science/article/pii/0043164891901043
https://www.sciencedirect.com/science/article/pii/0043164891901043
https://www.sciencedirect.com/science/article/pii/0043164891901054

[14] M. Bauza, F. Alet, Y.-C. Lin, T. Lozano-Pérez, L. P. Kaelbling, P. Isola, and

A. Rodriguez, “Omnipush: accurate, diverse, real-world dataset of pushing

dynamics with rgb-d video,” arXiv preprint arXiv:1910.00618, 2019.

[15] A. Kloss, M. Bauza, J. Wu, J. B. Tenenbaum, A. Rodriguez, and J. Bohg,

“Accurate vision-based manipulation through contact reasoning,” in IEEE

International Conference on Robotics and Automation, 2020, pp. 6738–

6744.

[16] Z. Xu, W. Yu, A. Herzog, W. Lu, C. Fu, M. Tomizuka, Y. Bai, C. K. Liu,

and D. Ho, “Cocoi: Contact-aware online context inference for generalizable

non-planar pushing,” arXiv preprint arXiv:2011.11270, 2020.

[17] K. N. Kumar, I. Essa, S. Ha, and C. K. Liu, “Estimating mass distribution

of articulated objects using non-prehensile manipulation,” arXiv preprint

arXiv:1907.03964, 2019.

[18] J. K. Li, W. S. Lee, and D. Hsu, “Push-net: Deep planar pushing for objects

with unknown physical properties,” in Robotics: Science and Systems, 2018.

[Online]. Available: http://www.roboticsproceedings.org/rss14/p24.html

[19] A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion using

deep neural networks,” IEEE International Conference on Robotics and

Automation, no. 3, pp. 173–180, 2017.

[20] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A large scale dataset

for robotic grasp detection,” in IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, 2018, pp. 3511–3516.

[21] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few

examples: A survey on few-shot learning,” ACM Comput. Surv., vol. 53,

no. 3, jun 2020. [Online]. Available: https://doi.org/10.1145/3386252

115

http://www.roboticsproceedings.org/rss14/p24.html
https://doi.org/10.1145/3386252

[22] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics,

controllability, and planning,” The International Journal of Robotics

Research, vol. 15, no. 6, pp. 533–556, 1996. [Online]. Available:

https://doi.org/10.1177/027836499601500602

[23] F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile

manipulation with hybrid model predictive control,” The International

Journal of Robotics Research, vol. 39, no. 7, pp. 755–773, 2020. [Online].

Available: https://doi.org/10.1177/0278364920913938

[24] J. Zhou, M. T. Mason, R. Paolini, and D. Bagnell, “A convex

polynomial model for planar sliding mechanics: theory, application,

and experimental validation,” The International Journal of Robotics

Research, vol. 37, no. 2-3, pp. 249–265, 2018. [Online]. Available:

https://doi.org/10.1177/0278364918755536

[25] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen,

“Learning hand-eye coordination for robotic grasping with deep learning

and large-scale data collection,” The International Journal of Robotics

Research, vol. 37, no. 4-5, pp. 421–436, 2018. [Online]. Available:

https://doi.org/10.1177/0278364917710318

[26] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp

from 50k tries and 700 robot hours,” IEEE International Conference on

Robotics and Automation, vol. 2016-June, pp. 3406–3413, 2016.

[27] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,”

IEEE International Conference on Robotics and Automation, pp. 2786–

2793, 2017.

116

https://doi.org/10.1177/027836499601500602
https://doi.org/10.1177/0278364920913938
https://doi.org/10.1177/0278364918755536
https://doi.org/10.1177/0278364917710318

[28] Z. Xu, Z. He, J. Wu, and S. Song, “Learning 3d dynamic scene

representations for robot manipulation,” CoRR, vol. abs/2011.01968, 2020.

[Online]. Available: https://arxiv.org/abs/2011.01968

[29] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for physical

interaction through video prediction,” arXiv preprint arXiv:1605.07157,

2016.

[30] A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects using

a push proposal network,” Springer Proceedings in Advanced Robotics,

vol. 10, pp. 405–419, 2020.

[31] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to poke

by poking: Experiential learning of intuitive physics,” in Advances in Neural

Information Processing Systems, 2016, pp. 5074–5082.

[32] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry friction

part 1. limit surface and moment function,” Wear, vol. 143, no. 2, pp. 307–

330, 1991.

[33] A. Kloss, S. Schaal, and J. Bohg, “Combining learned and analytical models

for predicting action effects,” CoRR, vol. abs/1710.04102, 2017. [Online].

Available: http://arxiv.org/abs/1710.04102

[34] W. Goo and S. Niekum, “Local nonparametric meta-learning,” arXiv

preprint arXiv:2002.03272, 2020.

[35] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum,

O. Vinyals, and Y. W. Teh, “Attentive neural processes,” arXiv preprint

arXiv:1901.05761, 2019.

117

https://arxiv.org/abs/2011.01968
http://arxiv.org/abs/1710.04102

[36] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik, “Learning visual

predictive models of physics for playing billiards,” International Conference

on Learning Representations, pp. 1–12, 2016.

[37] C. Song and A. Boularias, “A probabilistic model for planar sliding of ob-

jects with unknown material properties: Identification and robust planning,”

in IEEE/RSJ International Conference on Intelligent Robots and Systems,

2020, pp. 5311–5318.

[38] C. Wang, S. Wang, B. Romero, F. Veiga, and E. Adelson, “Swingbot:

Learning physical features from in-hand tactile exploration for dynamic

swing-up manipulation,” IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 5633–5640, 2020.

[39] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T. Freeman, “Physics

101: Learning physical object properties from unlabeled videos,” British

Machine Vision Conference, vol. 2016-September, pp. 39.1–39.12, 2016.

[40] Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song, “Densephysnet:

Learning dense physical object representations via multi-step dynamic

interactions,” in Robotics: Science and Systems, 2019. [Online]. Available:

http://www.zhenjiaxu.com/DensePhysNet/

[41] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown: Learning

a universal policy with online system identification,” Robotics: Science and

Systems, vol. 13, 2017.

[42] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual foresight:

Model-based deep reinforcement learning for vision-based robotic control,”

arXiv preprint arXiv:1812.00568, 2018.

118

http://www.zhenjiaxu.com/DensePhysNet/

[43] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised visual planning

with temporal skip connections.” in CoRL, 2017, pp. 344–356.

[44] J. Walker, C. Doersch, A. Gupta, and M. Hebert, “An uncertain future:

Forecasting from static images using variational autoencoders,” in European

Conference on Computer Vision. Springer, 2016, pp. 835–851.

[45] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,

T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, and J. Lee, “Transporter

networks: Rearranging the visual world for robotic manipulation,” 2021.

[46] Z. Gao, A. Elibol, and N. Y. Chong, “A 2-stage framework for learning to

push unknown objects,” in Joint IEEE International Conference on Devel-

opment and Learning and Epigenetic Robotics, 2020, pp. 1–7.

[47] Z. Gao, A. Elibol, and N. Y. Chong, “Non-prehensile manipulation learning

through self-supervision,” in IEEE International Conference on Robotic

Computing, 2020, pp. 93–99.

[48] C. Lin, M. Grner, P. Ruppel, H. Liang, N. Hendrich, and J. Zhang, “Self-

adapting recurrent models for object pushing from learning in simulation,”

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.

5304–5310, 2020.

[49] E. Arruda, M. J. Mathew, M. Kopicki, M. Mistry, M. Azad, and J. L. Wyatt,

“Uncertainty averse pushing with model predictive path integral control,”

IEEE-RAS International Conference on Humanoid Robots, pp. 497–502,

2017.

[50] J. Wang, C. Hu, Y. Wang, and Y. Zhu, “Dynamics learning with object-

centric interaction networks for robot manipulation,” IEEE Access, vol. 9,

pp. 68 277–68 288, 2021.

119

[51] Y. Ye, D. Gandhi, A. Gupta, and S. Tulsiani, “Object-centric forward mod-

eling for model predictive control,” arXiv, no. CoRL, pp. 1–13, 2019.

[52] P. Florence, L. Manuelli, and R. Tedrake, “Self-supervised correspondence

in visuomotor policy learning,” 2019.

[53] N. Mavrakis and R. Stolkin, “Estimation and exploitation of objects

’ inertial parameters in robotic grasping and manipulation: A survey,”

Robotics and Autonomous Systems, vol. 124, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0921889019302313

[54] T. Standley, O. Sener, D. Chen, and S. Savarese, “image2mass: Estimating

the mass of an object from its image,” in Proceedings of the 1st

Annual Conference on Robot Learning, ser. Proceedings of Machine

Learning Research, vol. 78, 2017, pp. 324–333. [Online]. Available:

https://proceedings.mlr.press/v78/standley17a.html

[55] Y. Yu, T. Arima, and S. Tsujio, “Estimation of object inertia parameters on

robot pushing operation,” in IEEE International Conference on Robotics and

Automation, 2005, pp. 1657–1662.

[56] N. Mavrakis, A. M. Ghalamzan E., and R. Stolkin, “Estimating an object’s

inertial parameters by robotic pushing: A data-driven approach,” IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 9537–9544,

2020.

[57] K. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active sensing by

pushing using tactile feedback,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, vol. 1, 1992, pp. 416–421.

[58] A. Allevato, E. S. Short, M. Pryor, and A. Thomaz, “Tunenet: One-shot

residual tuning for system identification and sim-to-real robot task transfer,”

120

https://www.sciencedirect.com/science/article/pii/S0921889019302313
https://proceedings.mlr.press/v78/standley17a.html

in Proceedings of the Conference on Robot Learning, vol. 100, 2020, pp.

445–455.

[59] A. Allevato, M. Pryor, and A. Thomaz, “Multi-parameter real-world system

identification using iterative residual tuning,” in Proceedings of the ASME

International Design and Technical Conference, 2020.

[60] T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick, “Learning contact locations

for pushing and orienting unknown objects,” in IEEE-RAS International

Conference on Humanoid Robots, 2013, pp. 435–442.

[61] S. Krivic and J. Piater, “Online adaptation of robot pushing control to object

properties,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2018, pp. 4614–4621.

[62] C.-Y. Chai, W.-H. Peng, and S.-L. Tsao, “Adaptive unknown object rear-

rangement using low-cost tabletop robot,” in IEEE International Conference

on Robotics and Automation, 2020, pp. 2372–2378.

[63] Q. Li and S. Payandeh, “Manipulation of convex objects via two-agent

point-contact push,” The International Journal of Robotics Research,

vol. 26, no. 4, pp. 377–403, 2007. [Online]. Available: https:

//doi.org/10.1177/0278364907076819

[64] J. Lloyd and N. F. Lepora, “Goal-driven robotic pushing using tactile and

proprioceptive feedback,” IEEE Transactions on Robotics, pp. 1–12, 2021.

[65] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly v-

rep): a versatile and scalable robot simulation framework,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2013.

121

https://doi.org/10.1177/0278364907076819
https://doi.org/10.1177/0278364907076819

[66] “CM Labs Vortex Studio Academic,” https://www.cm-labs.com/

vortex-studio/software/vortex-studio-academic-access/, accessed: 2020-09-

30.

[67] A. Kloss, S. Schaal, and J. Bohg, “Combining learned and analytical models

for predicting action effects from sensory data,” The International Journal

of Robotics Research, 2020. [Online]. Available: https://doi.org/10.1177/

0278364920954896

[68] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2016, pp. 770–778.

[69] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for

online learning and stochastic optimization.” Journal of Machine Learning

Research, vol. 12, no. 7, 2011.

[70] Z. Gao, A. Elibol, and N. Y. Chong, “Planar pushing of unknown objects

using a large-scale simulation dataset and few-shot learning,” in IEEE In-

ternational Conference on Automation Science and Engineering, 2021, pp.

341–347.

[71] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marı́n-

Jiménez, “Automatic generation and detection of highly reliable fiducial

markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–

2292, 2014. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0031320314000235

[72] M. T. Mason, Mechanics of Robotic Manipulation. Cambridge, MA, USA:

MIT Press, 2001.

122

https://www.cm-labs.com/vortex-studio/software/vortex-studio-academic-access/
https://www.cm-labs.com/vortex-studio/software/vortex-studio-academic-access/
https://doi.org/10.1177/0278364920954896
https://doi.org/10.1177/0278364920954896
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://www.sciencedirect.com/science/article/pii/S0031320314000235

Publications

[1] Ziyan Gao, Armagan Elibol, and Nak Young Chong, “A Few-Shot Learning

Framework for Planar Pushing of Unknown Objects,” Intelligent Service

Robotics (2021 Impact Factor 2.468), https://doi.org/10.1007/s11370-022-

00425-7, May 21, 2022

[2] Ziyan Gao, Armagan Elibol, and Nak Young Chong, “Zero Moment Two

Edge Pushing of Novel Objects with Center of Mass Estimation,” IEEE

Transactions on Automation Science and Engineering (2021 Impact Factor

6.636), Conditionally Accepted April 20, 2022.

[3] Ziyan Gao, Armagan Elibol, and Nak Young Chong, “Estimating the Center

of Mass of an Unknown Object for Nonprehensile Manipulation,” 2022

IEEE International Conference on Mechatronics and Automation, August

7-10, 2022 (Accepted for Oral Presentation).

[4] Ziyan Gao, Armagan Elibol, and Nak Young Chong, “Estimating the Center

of Mass of an Unknown Object via Dynamic Pushing,” 2022 IEEE 18th

International Conference on Automation Science and Engineering (CASE),

August 23-27, Industry paper, 2022 (Accepted for Oral Presentation)

[5] Ziyan Gao, Armagan Elibol, and Nak Young Chong, “Planar Pushing

of Unknown Objects Using a Large-Scale Simulation Dataset and Few-

Shot Learning,” 2021 IEEE 17th International Conference on Automation

Science and Engineering (CASE), August 23-27, 2021, pp. 341-347, doi:

123

10.1109/CASE49439.2021.9551513.

[6] Ziyan Gao, Armagan Elibol, and Nak Young Chong, “A 2-Stage Framework

for Learning to Push Unknown Objects,” 2020 Joint IEEE 10th Interna-

tional Conference on Development and Learning and Epigenetic Robotics

(ICDL-EpiRob), November 26-27, 2020, pp. 1-7, doi: 10.1109/ICDL-

EpiRob48136.2020.9278075.

[7] Ziyan Gao, Armagan Elibol, and Nak Young Chong, “Non-Prehensile

Manipulation Learning through Self-Supervision,” 2020 Fourth IEEE Inter-

national Conference on Robotic Computing (IRC), November 9-11, 2020,

pp. 93-99, doi: 10.1109/IRC.2020.00022.

[8] Ziyan Gao, Armagan Elibol, and Nak Young Chong, “A Hybrid 2-Stage

Method for Robotic Planar Pushing,” Proceedings of the International Con-

ference on Ubiquitous Robots (UR), Kyoto, Japan, June 22-26, 2020 (Work-

in-Progress Presentation).

[9] Ziyan Gao and Nak Young Chong, “Efficient Robotic Grasp Learning by

Demonstration,” Proceedings of International Conference on Robot Intelli-

gence Technology and Applications; Springer Lecture Notes in Mechanical

Engineering, pp. 87-99, Putrajaya, Malaysia, Dec. 16-18, 2018.

124

	Abstract
	Acknowledgment
	List of Figures
	List of Tables
	Contents
	Chapter 1 Introduction
	Chapter 2 Literature Review
	2.1 Dataset
	2.2 Push Interaction Modeling
	2.3 Push Planning
	2.4 Object Inertial Parameter Estimation
	2.5 Contact Location Selection for planar pushing

	Chapter 3 Large-Scale Planar Pushing Simulation Dataset
	3.1 Simulation Environment
	3.2 Objects
	3.3 Dataset Collection Procedure

	Chapter 4 A few-shot Learning Model for Pushing Effect Prediction
	4.0.1 Pushing Primitive Representation
	4.0.2 Proposed Learning Model
	4.1 EXPERIMENTS
	4.1.1 Training Dataset
	4.1.2 Baseline and Ablation Models
	4.1.3 Training
	4.1.4 Real Experiments

	4.2 EXPERIMENTAL RESULTS AND DISCUSSION
	4.2.1 Model Prediction Result

	4.3 Conclusion

	Chapter 5 Object Center of Mass Estimation
	5.1 CoM Estimation by using the prediction model
	5.1.1 Prediction Model
	5.1.2 VT for CoM Estimation
	5.1.3 Region Selection Rules
	5.1.4 Combined CoM Estimation Method
	5.1.5 CoM detection using predicted accumulated object rotation
	5.1.6 CoM estimation by using Dynamic Pushing

	5.2 EXPERIMENTAL SETTINGS
	5.3 CoM Estimation Experiment
	5.3.1 Simulation Experiment

	5.4 simulation experiment by predicted accumulated object movement
	5.5 Simulation experiment of CoM estimation by dynamic pushing
	5.5.1 Experiments in Real Platform

	Chapter 6 Single-Contact Push Planning Using Data-Driven Model
	6.0.1 Planning
	6.1 Experiment
	6.1.1 planning in simulation
	6.1.2 planning on real platform
	6.1.3 Planning Evaluation

	Chapter 7 Multi-Contact Pushing For Novel Object
	7.1 Two-Edge-Contact Pushing
	7.1.1 Quasi-Static Analysis of Pure Translation
	7.1.2 Zero Moment Two Edge Contact Pushing (ZMTEP)

	7.2 Object Pushing Experiments
	7.2.1 Simulation Experiment
	7.2.2 Real Experiment

	Chapter 8 Conclusion
	References
	Publications

