
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 和音、機能、調性の相互依存性を考慮した教師なし認識

Author(s) 上原, 由衣

Citation

Issue Date 2022-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/18139

Rights

Description Supervisor: 東条 敏, 先端科学技術研究科, 博士

Doctoral Dissertation

Unsupervised Recognition of
Chords, Functions, and Tonality

Yui Uehara

Supervisor: Satoshi Tojo

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

[Information Science]

September 2022

Abstract

Music has provided indispensable pleasures to humans and is one of the large
markets in entertainment. Regularities that govern music have been studied
for philosophical interests in ancient times and practical uses in the present
age. As a result, music theories have converged into a certain degree of
common sense: harmony theory. The harmony theory has been employed
in music education and recent artificial intelligence. Despite its popularity,
composers and even listeners have not fully been satisfied with it, and thus
musical works have not been restricted by the theory.

The motivation of this study is to conduct a harmony analysis that reflects
the characteristics of diverse musical expressions. Harmony analysis can be
generalized as the following four processes. Firstly, define an appropriate
set of chord labels. Then, segments scores and assign chord labels. Finally,
analyze the labeled chord sequence by the chord functions. These processes
seem simple but not trivial in practice because of their interdependency.
It is especially significant for polyphonic music in contrast to music where
melody and harmony can be easily distinguished (e.g., homophonic music).
In addition, the notion of tonality would influence all these processes.

Previous efforts of unsupervised statistical learning for harmony have in-
dependently simulated chord labeling, chord function identification, or key
detection. This study argues that simulations for these three attributes
should be performed in a unified manner, considering the mutual dependency
between them. In addition, chords and keys may not be easily annotated
when we analyze a broader style of musical pieces. Therefore, we propose a
model that does not require pre-annotations for not-targeted attributes and
analyzes chord, function, and tonality in unified unsupervised learning.

To this end, this study attempts to combine a probabilistic generative
model and neural networks. As the generative model, we select the hid-
den semi-Markov model (HSMM), an extension of the hidden Markov model
(HMM). The HMM has been employed in previous works and showed promis-
ing results that well simulated known chord functions. However, considering
that this study aims to automatically segment scores and classify chords
instead of relying on pre-annotated chord symbols, we employ an HSMM
that explicitly models duration probabilities for hidden states that are ex-
pected to represent latent chord categories. Furthermore, a more difficult
problem arises in considering interdependencies between chord functions and
tonality; chord functions, which is a notion that represents chord transition
properties, are changed by local modulations, as H. Riemann pointed out.

In other words, a single transition matrix in conventional H(S)MM is no
longer sufficient to analyze chord progressions when considering local modu-
lations. Therefore, this study employs the idea of the neural hidden Markov
model, which can adjust the hidden state transition probability by the con-
texts, and extends it to the semi-Markov model. The neural networks can
utilize additional contexts, such as preceding chord sequences, pitch-classes,
and beat information, for calculating categorical distributions that comprise
the HSMM. Experiments show the added contexts considerably improve the
model’s generalization performance in terms of perplexity.

According to the aforementioned H. Riemann’s view, tonality can be rec-
ognized by analyzing chord transition properties. We further introduce a
teacher-student architecture to classify tonalities. While the teacher model
equips the elaborated neural network for calculating the transition probabil-
ity, the student model simplifies it to learnable matrices like a conventional
HSMM. We prepare multiple student transition matrices and expect them to
represent prototypes of tonalities. The student model classifies a predicted
(labeled) chord sequence into a tonality by comparing the count of chord
transitions with the transition probability matrices. Experiments show that
the three-students model is the most consistent with the human analysis in
terms of the F1-score; obtained three students can be interpreted as major,
minor, and dorian modes, respectively. The transition matrices of the model
reflect the difference between tonalities, consistently with known functions
of tonic, dominant, and subdominant.

Thus, the neural HSMM and the extension of teacher-student architec-
ture enable an unsupervised machine to recognize chords, chord functions,
and tonality. We consult J. S. Bach’s four-part chorales as the corpus of
this study and give qualitative analysis in comparison with the conventional
harmony theory. The consistency between the self-emergent chord functions
and the known harmony theory suggests the potential of the proposed model
to apply to a wider variety of music styles.

Keywords: Unsupervised Learning; Hidden Semi-Markov Model;

Neural Network; Music Harmony Analysis; Chord Segmentation;

Chord Function Recognition; Tonality Recognition.

Acknowledgments

Firstly, I express my sincere thanks to Professor Satoshi Tojo of Japan Ad-
vanced Institute of Science and Technology (JAIST), who has guided me
throughout this research. His academic and musical knowledge have fostered
my simple idea to a worthwhile study.

I wish to thank Professor Ryuhei Uehara of JAIST for his advice on my
minor research project. I received valuable insights from the experience of
the minor research. I also would like to thank Professor Masashi Unoki of
JAIST, who gave me valuable comments that improved my thesis.

I am very grateful to Dr. Tetsuro Kitahara, Professor of Nihon Univer-
sity, for his precious advice for my research and academic knowledge of music
informatics. I also wish to thank Dr. Daichi Mochihashi, Associate Profes-
sor of The Institute of Statistical Mathematics, for his valuable advice and
professional knowledge for statistical natural language processing.

I am very grateful to my fellow students in the Tojo laboratory, Hiroyuki
Yamamoto and Shuichi Shimosaka. I received a lot of inspiration from their
passion and knowledge for music and technology.

I would also like to thank people who have influenced and supported me
from before my Ph.D. study started. The knowledge and experiences I have
received from musical professionals have been an essential basis for this study.
Lastly, many thanks to my family for their support and encouragement.

i

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Research Objective . 2
1.3 Dissertation Outline . 4

2 Harmony Theory 5

2.1 An Exemplary Chord Progression 5
2.2 Techniques Beyond the Stereotype 6
2.3 Questions to the Conventional Theory 7

3 Background 10

3.1 Statistical Learning for Music 10
3.1.1 Key or mode detection 10
3.1.2 Chord function identification 11

3.2 J. S. Bach’s Four-part Chorales 13
3.3 Technically Related Works . 14

3.3.1 Hidden Markov Model 15
3.3.2 Hidden Semi-Markov Model 18

Forward Algorithm for HSMM 18
3.3.3 Perplexity . 20
3.3.4 Neural Networks . 20

Multi Layer Perceptron 21
Recurrent Neural Network 22
Long-Short Term Memory 22

3.3.5 Unsupervised Part-of-Speech Induction 24

4 Automatic Chord Segmentation and Chord Function Recog-

nition by Neural HSMM 26

4.1 Framework . 27
4.2 Architecture of Neural HSMM 30

4.2.1 Hidden State Transition Probability 31

ii

4.2.2 Initial Hidden State Probability 33
4.2.3 Duration Probability 34
4.2.4 Emission Probability 34

4.3 Training . 35
4.4 Experimental Setups . 35
4.5 Evaluation by Perplexity . 36
4.6 Qualitative Analysis for Induced Clusters 38

4.6.1 Induced Clusters and Model’s Perplexities 38
4.6.2 Hidden State Transitions 40

4.7 Discussion on an Analysis by the Model 41
4.8 Chapter Summary . 43

5 Unsupervised Clustering of Tonality 45

5.1 Tonality Distance by KL Divergence; a Preliminary Experiment 46
5.2 Unsupervised Clustering of Tonality by Teacher-Student Ar-

chitecture . 48
5.2.1 Framework . 48
5.2.2 Teacher Model . 50
5.2.3 Student Model . 51

5.3 Experimental Setups . 51
5.4 Results and Discussion . 52

5.4.1 Evaluation by Perplexity 52
5.4.2 Evaluation with a Human Analysis 54
5.4.3 Discussion on Transition Probability 57

5.5 Chapter Summary . 58

6 Conclusion 60

6.1 Achievements . 60
6.2 Limitations and Future Directions 61

A Comparison with Conventional HSMM Trained by the EM

Algorithm 64

A.1 Baseline Neural HSMM . 64
A.2 EM Algorithm for HSMM . 65

A.2.1 Backward Algorithm 65
A.2.2 State Estimation . 66
A.2.3 Parameter Re-estimation 68

A.3 Experiments . 68
A.3.1 Setups . 68
A.3.2 Results . 69

B Revised Average Perplexity 70

C Notations and Model Settings 73

C.1 Notations . 73
C.2 Model Settings . 74
C.3 Implementation . 74

D Analysis on BWV267 by the neural HSMM 75

E An Example of Chorale and Instrumental Music 78

List of Figures

2.1 W. A. Mozart: Piano sonata No.16, beginning part of 3rd
movement. 5

2.2 J. Brahms: Op. 122 No.4 . 6
2.3 G. Fauré: String quartet Op.121 8

3.1 Examples of different harmonizations on the same melody. . . 14
3.2 Graphical representation of hidden Markov model (HMM). . . 15
3.3 Hidden Semi-Markov model. 17
3.4 Multi Layer Perceptron (MLP) or Feedforward Neural Net-

work (FNN). 21
3.5 Recurrent Neural Network (RNN). 22
3.6 Long-Short Term Memory (LSTM). 23

4.1 BWV294 (in evaluation set) of analysis by the proposed model (8-
state HSMM). The key is transposed to have no key signature. 27

4.2 The network architecture for calculating transition probabili-
ties aij. si(s) are the set of hidden state embeddings. rhisto is
an additional context of pitch-class histogram. ht is another
additional context of embedded feature of preceding observa-
tions by the LSTM. o16, o1, and o7, are observation embed-
dings associated with observed tokens: xt−1 = 16, xt = 1, and
xt+1 = 7. 31

4.3 Averaged perplexities by three trials with random seeds of
{0, 1, 2} on the testing set. 37

4.4 Comparison between (Top) neural HSMM of the best evalua-
tion perplexity among the three random seeds, (Middle) neural
HSMM of the worst evaluation perplexity, and (Bottom) base
HSMM of the best evaluation perplexity. The bar charts show
the top three emissions per each hidden state. 38

4.5 Counts of hidden state transitions: (Top) major pieces, (Mid-
dle) minor pieces, and (Bottom) dorian pieces. The sequence
of hidden states is calculated by the Viterbi algorithm. 40

v

4.6 Chord classification by the neural HSMM on BWV267 (Excerpt) 42

5.1 Tonality distance, i.e., KL divergences, based on the 8-states
neural HSMMs. 47

5.2 Illustration for framework of proposed teacher-student archi-
tecture. 49

5.3 Averaged perplexities by three trials with random seed of
{0, 1, 2}. The number of students varies from 2 – 16. 53

5.4 Confusion matrices of clustering results, where the key that
appeared more often in a phrase is chosen for pivot chords. . . 54

5.5 Obtained emission and transition distributions for the 3-students
model. 58

A.1 Average perplexities of baseline neural HSMMs (solid) and
conventional EM-trained HSMMs (dotted) for testing dataset . 69

D.1 Chord classification by the neural HSMM on BWV267 (phrase
No.1–4) . 76

D.2 Chord classification by the neural HSMM on BWV267 (phrase
No.5–8) . 77

E.1 Four-part chorale BWV64.2 (Riemenschneider No.160) by J.
S. Bach . 78

E.2 Organ chorale BWV604 by J. S. Bach 79

List of Tables

4.1 Table of vocabulary. 29
4.2 The statistics of the dataset. 35
4.3 Ablation studies. Averaged perplexities by three trials with

random seeds of {0, 1, 2} on the testing set. The bold numbers
are the best score in the same number of the hidden state. . . 37

4.4 Chord categories obtained by the best scored 8-states neural
HSMM. The chord category is named after the chord name of
the top emission for each hidden state. 39

5.1 Counts and proportions of local modulations from the profes-
sionally annotated analysis of 20 pieces [21]. The main tonal-
ities are transposed to C major or a minor. 48

5.2 The statistics of dataset. 51
5.3 The statistics of keys in the human analysis [21]. We regard

sixteenth notes as one time step. Pieces are pre-transposed so
that they have no key signature. 52

5.4 Precision, Recall, and F1 scores of key detection. The human
analysis [21] is used as a gold data. 55

B.1 Average perplexity (originally reported as Table 4.3) 71
B.2 Revised average perplexity (a) 71
B.3 Revised average perplexity (b) 72

C.1 Notations in the neural HSMM. 73
C.2 The size of layers and related equations. 74

vii

Chapter 1

Introduction

1.1 Motivation

Composing or listening to music is one of the interesting abilities proper
to human beings. Musical pieces are noticeably structured like human lan-
guage, and thus their innate regularity allows us to understand and enjoy
both the latest popular songs and ones made in the distant past. The chal-
lenge of finding the regularities in music have attracted musicologists for a
long time ago [23, 69, 70, 74, 75]. The essence of their findings has been
summarized in practical textbooks [3, 59, 67], which have been employed in
music education and also artificial intelligence for music, such as structural
analysis [34, 72], recommendation [53], melody harmonization [35, 81], and
music generation [4, 61]. In reality, however, music is diverse and ambiguous.
Thus, it is not easy to manually construct music grammars that organize the
regularities and reflect the unique characteristics of individual pieces as well.
Therefore, textbooks have avoided becoming overly complicated by basing
the core parts of the theories on the most stylized pieces, such as Western
classical music on the classical era and the Jazz standards [3, 59, 67].

Considering that these textbook theories have been derived from the expe-
rience of existing music, the question naturally arises, ”Can a machine induce
inherent regularities in music by statistical learning?”. This study aims to
identify hidden regularities in music; it is conceptually and technically rele-
vant to grammar induction1 in Natural Language Processing (NLP) [11, 12,
17, 18, 80]. In these studies, a statistical model is trained on data to obtain
grammar for a language, but the same model can be trained on different
data to learn grammar for a different language. In other words, the learned

1More specially, the techniques of this study are closely related to part-of-speech (POS)
tag induction.

1

parameterizations for the statistical model represent the differences between
languages. Utilizing this data-driven framework in music is expected to unify
the view of musical phenomena while simultaneously revealing the individual
characteristics of pieces.

The attempt to find latent regularities in music differs from more popular
applications of music generation systems, while there are technical overlaps.
Although the machines have acquired some abilities to create musical pieces
by employing state-of-the-art techniques such as Transformers [43], the mech-
anism is intuitively hard for humans to understand and interact with the sys-
tem. Since elaborations of surface pitch events vary depending on genre or
instrumentation, humans need more robust and structured knowledge to be
utilized in creative works. Because of this reason, musicology has described
the nature of music in more abstract units such as chords and functions.
Therefore, this research performs feature acquisition for the known concepts
in musicology: chord, function and tonality.

Compared to direct applications such as music generation systems, data-
oriented statistical acquisition of regularity in harmony has been rarely in-
vestigated [44, 73, 82, 88]. They have found similarities between statistically
induced clusters and chord functions in textbook theories under the limited
condition where chord symbols, segmentation, and keys are given [44, 82, 88].
However, the concepts of chords, chord functions, and tonality2 are mutually
dependent in reality3. Therefore, this dissertation tries to analyze these three
features in a unified model. Since only a limited number of pieces can be eas-
ily pre-processed for chords and keys, the proposal is essential in developing
a data-driven harmony analysis for various pieces in the future.

1.2 Research Objective

This study aims to recognize chord, function, and tonality based on unsuper-
vised learning. It is not an implementation of textbook knowledge; instead,
a proposed statistical model is tuned with raw data of musical pieces. Al-
though our future goal is that a statistical model extensively recognizes the
characteristics and innate regularities of diverse masterpieces, we start by
experimenting with our model focusing on J. S. Bach’s four-part chorales;
and then examine the self-emergent patterns.

This study employs data-driven, unsupervised learning; however, it con-

2We use the term “tonality” in a somewhat broader meaning that indicates basically a
key but sometimes a church mode that is employed within tonal music. However, we use
“key” instead when targeting only modern 24 keys.

3More detail will be described in Chapter 2.

2

ceptually presupposes notions of musical knowledge such as chord, chord
function, and tonality. We regard these notions as corresponding to the
following statistical learning.

1. Chords are recognized by automatic segmentation and categorization
of surface pitch events.

2. Chord functions are statistical properties of transitions between chord
categories.

3. Tonality or key recognition is a categorization of chord transitions.

Here, we also take over a popular assumption of transpositional equivalency
between keys, which is employed in general music theories and previous stud-
ies [42, 44, 51, 73, 75, 88]. We do not consider the absolute position of the
main tonality but only the relative relationship between the main tonality
and local modulations. Therefore, targeted pieces are transposed so as not
to have no key signature before the analysis; this is automatically processed
from the key signature. Note that we neither apply modulation segmentation
nor mode(major or minor, and possibly church modes) classification that are
not self-evident only by a score. In classical music, in particular, we can
observe a wide variety of modulation techniques and developments, even if
the main key is normalized.

This study follows previous studies that targeted the statistical classifica-
tion of chord functions [44, 73, 82, 88]; however, it attempts to remove their
limitations that chord labeling/segmentation, mode classification, and mod-
ulation segmentation were given in advance. We analyze these features with
a unified model since chord, function, and tonality are mutually dependent
and should not be analyzed independently.

We select the hidden semi-Markov model (HSMM) as the model for this
study, the structure of which well agrees with the above concepts of chords
and chord functions. HSMM equips three components of categorical distri-
butions: hidden state transition, hidden state duration, and emission. The
model is suitable for automatic segmentation and categorization for chords;
the hidden states represent chord categories, and the duration probabil-
ity predicts the lengths of chord categories. Unlike hidden Markov model
(HMM), HSMM avoids the useless increase of the ratio of self-transition by
providing duration probability for the chord length; this allows the hidden
state transition probability to reflect the regularity of transitions between
chord categories as data-oriented chord functions.

However, the conventional HSMM would not be robust enough to obtain
appropriate chords and chord functions from the complicated surface pitch

3

events and local modulations. Therefore, we employ the idea of neural hidden
Markov model (HMM) and extend it to HSMM. The strength of utilizing
neural networks is that they allow for integrating additional features such
as metrical information and preceding observations. Experiments show the
effectiveness of additional contexts in terms of perplexity and quality for
induced chord categories.

We expect that an appropriate set of chord categories and tonalities (a set
of closely related keys appeared in modulations) vary between targeted music.
The proposed model’s objective is to produce an adequate interpretation of
chords, chord functions, and tonalities, with self-emergent categories, just by
raw scores 4 as input.

1.3 Dissertation Outline

We have introduced the motivation behind this work and presented the re-
search objective. The rest of this dissertation is organized as follows.

We first give some examples of musical works to show the efficacy and
limitations of the conventional harmony theory in Chapter 2. The first exam-
ple in the chapter (Section 2.1) also serves as a guide for the theory. On the
other hand, we show how a masterpiece is beyond the stereotypical patterns
in Section 2.2. Then, we give a further example (Section 2.3) that is hardly
analyzed by the conventional harmony theory even though a sense of tonality
is retained.

In Chapter 3, we introduce related works of statistical learning for music
(Section 3.1) and give technical backgrounds (Section 3.3). In addition, we
describe the background of J. S. Bach’s four-part chorales dataset that is
used as the corpus for this study in Section 3.2.

The following two chapters construct the central part of our study. In
Chapter 4, we propose a model that automatically segments surface pitch
events without given pre-defined chord symbols and key annotations. In
order to achieve this, we employ hidden semi-Markov model (HSMM) and
incorporate the techniques of the neural HMM. In Chapter 5, the model is
extended to classify chord sequences into tonalities by introducing a teacher-
student architecture.

Finally, we conclude the achievements of this study and discuss the future
directions in Chapter 6.

4We assume scores to be machine-readable, in particular, with MusicXML format.

4

Chapter 2

Harmony Theory

This chapter gives three examples of Western classical music to explain the
efficacy and limitation of conventional harmony theory. The first one (Section
2.1) is an example well described by the theory. In the second example
(Section 2.2), we can see a sophisticated technique of how a composer avoids
stereotypical chord progressions to create impressive work. Finally, we show
that the conventional theory is almost helpless to describe the example of
Section 2.3, even though it retains a sense of tonality. In other words, it
has a sense of tonal center and closely related keys where some extent of the
regularity of chord progressions can be heard. The question of how we can
make models to discover such hidden regularities is the starting motivation
of our study.

2.1 An Exemplary Chord Progression

chord degree
chord function

Figure 2.1: W. A. Mozart: Piano sonata No.16, beginning part of 3rd move-
ment.

An exemplary chord progression can be found in a piano sonata by W.
A. Mozart (Figure 2.1). Most theories employ the notion of chord func-
tions [70]: tonic (T), dominant (D), and subdominant (S). A Roman numeral

5

represents a chord degree, which corresponds to the degree between the root
note of a chord and that of the tonic chord (I). Correspondences between
chord degrees and chord functions are as follows: tonic = { I, III, VI },
dominant = { V, VII }, and subdominant = { II, IV }.

Surprisingly, the chord functions that consist of only three types of T, D,
and S describe typical chord progressions quite well. A unit of chord pro-
gressions is a chunk that starts with T and ends with T. Basically, variations
of units are only three types:

• T → D → T

• T → S → D → T

• T → S → T

Note that the progression of D → S is assumed to be rare, and thus not
found above. In fact, the example of Figure 2.1 consists of four chunks of
T → S → D → T.

2.2 Techniques Beyond the Stereotype

(A: I IV I)
D: I V IV

G: I V

I

IV I

D: IV I

D: VI IV I V/V V III VI V/III III VII/II II V I

key: chord degree

Figure 2.2: J. Brahms: Op. 122 No.4

We have seen that the chord functions successfully described Mozart’s
piano sonata. However, it would be too simplified to represent the rich
diversity of musical pieces, which have been highly elaborated to be unique
as art.

A good example is the beginning part of an organ chorale by J. Brahms
(Figure 2.2). In the beginning, while the key signature indicates D major,

6

the first three notes A G♯ A induce the expectation of an A major key. This
expectation is failed at bar 3 by the G major chord. Usually, when a key
changes to another (modulation), the two keys share at least one chord. [75].
Therefore, listeners would modify the interpretation to D major key and
consider the possibility of G major key for the next. However, the strange
thing is that the chord progression is dominant (V) → subdominant (IV)
at bars 2 to 3, which is unusual as described above. The expectation of D
major key failed again at bar 4 by the C major chord. Here, the S → D
progression appears again with G major key. Since the dominant strongly
expects tonic, this progression and modulations on the subdominant circle
(A major → D major → G major) would make listeners feel unanswered
or like floating. Combined with the light texture, this opening of the piece
sounds like a gentle breeze.

When the chorale melody begins (on and after the last beat of bar 5),
listeners hear an artistic contrast; the key is settled on D major, and the
chord progressions follow the principle of chord functions, accompanied by
decorative secondary dominants. This satisfactory chord progression (that
ends with an authentic cadence) and rich texture powerfully express the
bright meanings of the chorale text.

As seen above, the beginning part of the organ chorale was not described
well with the typical chord progression rules. Conversely, it would be a
polished technique by J. Brahms that produced the great contrast, reliant
on trained ears with traditional chord progressions.

2.3 Questions to the Conventional Theory

A further example with G. Fauré’s string quartet raises a fundamental ques-
tion of what is chord, key, and function. The beginning part (Figure 2.3a)
is still understandable with chord functions, though the transformed chords
of Neapolitan II and minor five make it sound different from usual. On the
other hand, it is hard to analyze bars 43–51 of the piece (Figure 2.3b) with
the traditional harmony theory. The convention of representing a chord by
its scale degree is based on the principle that chords are composed only with
pitches on a particular key, arranged as tertian harmony. Although chords on
different keys, especially secondary dominants, are commonly used as bor-
rowed chords, others are difficult to be represented with the chord degree
system.

As noted above, the notion of a chord and a chord function depends on a
key. However, on the contrary, chord functions indicate a tonic of a partic-
ular key, in a situation where closely related keys are inherently ambiguous.

7

e: I V I VII
(Neapolitan) (minor five)

I

G: I V

II

e:

VI

I II II VII/V V

key: chord degree

(a) Bar 1–8

G B F7 GDm Am F Dm6 Cmaj7 Em7 Em6 Gmaj7 Baug7chord name

(b) Bar 43–51

Figure 2.3: G. Fauré: String quartet Op.121

Therefore, H. Riemann discussed that a role (i.e., chord function) change of a
chord implied a modulation [70]. For example, a chord progression of G → C

would be highly ambiguous between V → I in C major key and I → IV in G

major key [77] 1. In this case, Cmajor key is more likely since the progression
of the dominant (D) → tonic (T) is assumed to be the strongest among the
functional chord progressions. This “chicken and egg” relationship between
keys and chord functions makes such a piece challenging to be analyzed that
is not based on a distinct key or stereotypical chord progressions.

Figure 2.3b would not be adequately analyzed in a conventional theory,
although some characteristics of the piece could be interpreted with known
concepts such as a seamless interchange between relative keys and borrowed
chords from the parallel minor. However, this piece also has some sense of
modal harmony, making it challenging to align to a particular major or minor
key. At present, we have given up assigning chord degrees to it and just shown
a possible interpretation of chord names. In this case, even the assignment

1V7 (dominant seventh) does not have this problem since it has F [77].

8

of chord names is not trivial because of finely meshed suspensions.
As we have seen thus far, masterpieces extend far beyond a textbook

harmony theory. Although it would be impossible to know all of their so-
phisticated techniques, the motivation behind this study is to find the char-
acteristics of their art without fitting them into an incomplete stereotype.

9

Chapter 3

Background

3.1 Statistical Learning for Music

Statistical learning of music has traditionally been developed for individual
concepts such as key detection and chord function identification. While this
study aims for a unified recognition of harmony, function, and tonality, it
also draws on previous studies of individual elements. This section reviews
such related studies for key detection and chord function identification.

3.1.1 Key or mode detection

Most key-finding algorithms were based on the frequency of each pitch-class
represented as a histogram [1, 2, 37, 42, 51, 79]. An optimal key is detected
by comparing the histogram with a template that is called key-profile. One
of the most well-known works is the Krumhansl-Schmuckler algorithm which
adopts the key-profile obtained by a psychological experiment [51]. More
recent works employed statistical, data-oriented approaches. Temperley con-
structed it by a simple count-based probabilistic model and showed that this
data-oriented model could estimate some tonal properties [77]1. Albrecht
and Shanahan used large corpora and improved the detection accuracy [2].
Hu and Saul employed a topic model based on Latent Dirichlet Allocation
(LDA) and trained key profiles by unsupervised learning [42]. Assuming that
the number of keys was 24 and relative homogeneity between keys sharing
the same scale, the model automatically obtained key profiles corresponding
to major and minor scales.

However, pitch-histogram-based results would be ambiguous when there
is no difference in the observed count of pitch-classes. For example, a chord

1They represented them as tonal implication, tonal ambiguity, and tonalness.

10

progression of G → C would be highly ambiguous between V → I in C ma-
jor key and I → IV in G major key [78]. Therefore, several works have
considered chord progressions for key detection [26, 56]. The advantage of
using chord progressions is that a strong functional progression such as the
dominant motion would strongly suggest a particular key without being re-
stricted by fixed scope where a pitch-class histogram is calculated. Thus, it
was found to be effective for modulation detection [56, 84].

Most preceding works of key-finding algorithms have presupposed the
modern tonal system of 24 keys [2, 6, 42, 51, 78, 79]. Therefore, several data-
oriented computational music analysis works have been excluded or manually
normalized pieces written in church mode [73, 84, 88]. However, excluding
pieces that do not follow the modern tonal system would conflict with the con-
cept of data-oriented music analysis aiming to reflect the diversity of targeted
data rather than relying on textbook knowledge. Only a few computational
studies have focused on finding modes to the best of our knowledge. Harasim
et al. built a histogram-based Bayesian probabilistic model and adapted it
to datasets that were divided by time periods [37]. As a result, they found
four clusters of modes for the Renaissance era and two for later eras.

3.1.2 Chord function identification

Several studies have endeavored to find the statistical property of harmony or
chord progressions in a data-driven manner rather than relying on textbook
knowledge [44, 73, 82, 88].

Rohrmeier and Cross adopted a hierarchical clustering on bi-grams of
pitch-class sets from J. S. Bach’s four-part chorales, where major and mi-
nor pieces were divided. They found that chords that preceded dominant
were the most distinctive in both major and minor scale datasets. In addi-
tion, asymmetric properties between major and minor keys, such as relatively
weak tonic functionality in minor, also emerged [73]. This result is under-
standable since the minor scale retains the characteristics of medieval church
modes [75]. Although their study was illuminating [73], using a heuristic
chord segmentation as a pre-process would affect the clustering result and
become an obstacle to the broader application of the data-oriented approach.

Jacoby et al., therefore, investigated the balance of the chord clustering
by introducing the optimal complexity-accuracy curve [44]. They conducted
the chord clustering with several traditions of chord representations, such as
chord degrees and figured-bass representations. When using chord degrees as
chord classes, the clustering with functional harmony theory based on tonic,
dominant, and subdominant was plotted on the optimal curve. In contrast,
clustering with the chord qualities (i.e., major, minor, and diminished) was

11

far less accurate. These results suggest that the functional harmony theory is
more favorable than chord qualities as categorization for chords when using
the chord degrees as the chord representations.

On the other hand, Tsushima et al. [82] found the chord functions from
Berklee chord sequences of a popular music dataset by modeling chord pro-
gressions with generative models (hidden Markov model (HMM) and proba-
bilistic context-free grammar (PCFG)) rather than clustering. They reported
that when the number of states was 4, the trained output probability could
be interpreted as the chord functions: tonic, dominant, subdominant, and
others, though the model achieved better perplexity with more states.

White and Quinn also employed HMM in datasets that include J. S.
Bach’s four-part chorales and found that obtained clusters and their state
transition property showed similarities to the known chord functions [88].
When employing HMM, selecting an optimal number of clusters is not trivial;
a larger number of clusters would help the model gains accuracy but loses
simplicity and interpretability. However, selecting an optimal number of
clusters would not be trivial since the larger number of clusters would help
the model to gain accuracy but lose simplicity or interpretability. Therefore,
they adapted the k-medoids clustering to find the best number of states for
HMMs; the optimal numbers of hidden states were 3 and 13.

As we have seen, the previous studies above successfully found the chord
functions consistent with general harmony theory. However, they performed
chord clustering under limited conditions; major/minor pieces are separated [73,
44], or only majors are used after modulation segmentation [88]. In other
words, they avoided the inherent ambiguity of chords and tonalities by pre-
processing. Such pre-processing would have helped the model obtain coin-
cided results with known chord functions. Conversely, Hugo Riemann dis-
cussed that a role change of a chord in a context implied a modulation [70];
this suggests that the independent treatments of chords and tonalities would
not follow the nature of music. Furthermore, more complicated pieces would
not be trivially pre-processed. Therefore, this study seeks a more unified
recognition of chord, function, and tonalities, which eliminates heuristic pre-
processing as much as possible.

Finally, we describe some background as to why we use a relatively simple
model, a kind of (semi-)Markov model, in this study. In applications such
as the generation of chord progressions [62] or melody harmonization [81],
tree-structured models were shown to be more advantageous. Nevertheless,
as the most closely related works suggest [73, 44, 82, 88], bi-grams or Markov
property of chord progressions well agrees with the functional harmony the-
ory. We probe into the functional property of chord progressions without
blurring the issue rather than employ a model with high expressive power.

12

We agree that HMM cannot discuss musical forms that have a structure of
remote dependency. At the same time, we expect that these remote depen-
dencies would not be described based solely on chord progressions but also
on metrical regularities and melodic structures. Although these remote de-
pendencies will not be addressed in this study, we will incorporate the chord
length, which has been ignored in previous studies, utilizing a semi-Markov
model [90] because we consider it important in modeling chord progressions.

3.2 J. S. Bach’s Four-part Chorales

In this dissertation, we consult J. S. Bach’s four-part choral pieces BWV253–
438 from the Music21 corpus, formatted as MusicXML [21]2. These chorales
are indexed by the Riemenschneider numbering system [71], the total number
of which is 371.

Chorales are originally hymns sung in Lutheran Church, the texts of
which are written in German. Most hymn melodies in the dataset were not
composed by J. S. Bach. The melodies originated from Gregorian chants,
folk songs, and other familiar melodies [71]. Even Martin Luther (1483–
1546) himself composed texts and melodies for some of them. The four-
part chorales is a collection of harmonizations by J. S. Bach based on such
chorale melodies. Thus, the melodies retain the feature of the medieval to
Renaissance era. Therefore, some are not written in modern 24 keys, but in
medieval church modes, especially dorian [22, 73].

The four-part chorales were not performed in a cappella but accompanied
by an orchestra in real, larger-scale pieces. Nevertheless, the outstanding art
by J. S. Bach can be found in the harmonization, especially in the bass
lines. In addition, he often used unusual harmonic progressions to express
the meanings of the chorale texts [71].

Thus, the harmonized four-part chorales, even though in the simplest
form, cannot be fully analyzed by the generalized harmony theory. Therefore,
we believe this collection is an appropriate starting point for our data-driven
harmonic analysis.

According to the analysis by Dahn [22], there are several duplications in
the 371 harmonized chorales; thus, we have removed those 23 pieces based
on it. However, we regard different harmonizations as independent items,
examples of which are shown in Figure 3.1. Although these pieces share
the same melody, their harmonizations are different. Interestingly, even the
key for the beginning section seems to be different.

2In works for melody harmonization, the JSB Chorale dataset [13] that only includes
MIDI numbers is often used.

13

8











 














  

 

   



  

 

    

  

  

  





   







 

 

 



   

 




































 









(a) Riemenschneider No.21

8

















     

   

      

 

    

  

  

 

    



  









 

  




































 









(b) Riemenschneider No.367. The key is normalized so as not to have the key signature.

Figure 3.1: Examples of different harmonizations on the same melody.

The fermata notation (point d’orgue) represents the end of a lyric para-
graph in chorales. We regard each phrase divided at the fermata position
as an independent sequence; however, when we provide these phrases to the
training, evaluation, and testing set, we give randomness over pieces (not
over phrases).

3.3 Technically Related Works

This section introduces technically related models and works. Firstly, we
describe hidden Markov model (HMM) in the next section (Section 3.3.1),
then hidden semi-Markov model (HSMM) (Section 3.3.2), which is the core

14

model of this study. Next, we introduce perplexity that is the automatic
evaluation metric for statistical models in Section 3.3.3. We utilize neural
networks to embed additional contexts to the HSMM; related neural network
components are described in Section 3.3.4. Finally, we review related works
of unsupervised part-of-speech (POS) induction, from which we have drawn
technical ideas.

3.3.1 Hidden Markov Model

hidden
states

observations

HMM

Figure 3.2: Graphical representation of hidden Markov model (HMM).

hidden Markov model (HMM) is a simple but beneficial model employed
in numerous applications such as speech recognition [29], biotechnology [25],
economics [38], and music [64, 83]. In the model, a Markov chain of hidden
states lies behind an observable sequence. Therefore, it has been used espe-
cially in sequence labeling tasks where hidden states represent labels to be
assigned. HMM can be trained through both supervised and unsupervised
learning [68]. Supervised learning can be adopted when labeled data for hid-
den state sequences are available. On the other hand, unsupervised learning
that optimizes the log marginal likelihood is usable when we do not have any
manually labeled data.

The joint probability of the HMM is expressed as follows,

P (x1:T , z0:T) = P (z0)
T
∏

t=1

P (zt|zt−1)P (xt|zt)

where zt is a hidden state and xt is an observation at time t. Thus, HMM
consists of the following three categorical distributions3:

3Emission distribution is not limited to the categorical distribution.

15

Initial hidden state probability: ρi = P (z0 = i)

Hidden state transition probability: aij = P (zt = j|zt−1 = i)

Emission probability: bik = P (xt = k|zt = i)

where i, j are hidden state indices, and k is the index for an observed symbol.
Once the model is trained, the best hidden state sequence is decoded by the
Viterbi algorithm [28].

The marginal probability (3.1) for HMM is calculated through a dynamic
program called the forward-backward algorithm.

P (x1:T) =
∑

z0:T

P (x1:T , z0:T) (3.1)

In order to describe the algorithm, the forward probability αt(j) and the
backward probability βt(j) are introduced as follows [10, 68].

P (zt = j|x1:T) =
P (zt = j, x1, ..., xt)P (xt+1, ..., xT |zt = j)

P (x1:T)
=

αt(j)βt(j)

P (x1:T)

αt(j) ≡ P (zt = j, x1, ..., xt)

βt(j) ≡ P (xt+1, ..., xT |zt = j)

Both α(zt) and β(zt) can be calculated recursively as shown in (3.2) and
(3.3). The calculating processes are called forward algorithm and backward
algorithm respectively.

Forward: αt(j) = P (xt = k|zt = j)
∑

i

αt−1(i)P (zt = j|zt−1 = i) (3.2)

Backward: βt(j) =
∑

i

βt+1(i)P (xt+1 = k|zt+1 = i)P (zt+1 = i|zt = j) (3.3)

Since
∑

i P (zt = i|x1:T) = 1, the marginal probability P (x1:T) is calculated
as follows: where t can be selected arbitrarily. If we only need to know the
marginal probability, we can select T , which eliminates the need to calculate
the backward recursion since βT (i) = 1 [10].

P (x1:T) =
∑

i

αt(i)βt(i) =
∑

i

αT (i)

Although both forward and backward recursions are employed in the expec-
tation maximization (EM) algorithm for unsupervised training of HMM [10,
68], we directly optimize the marginal probability by a gradient-based opti-
mizer and thus only require the forward algorithm.

16

hidden states

tokens
(obervations)

transition
and residence

probability

emission probability

(a) Graphical representation of Hidden Semi-Markov Model (Residential-time HMM). The
notation z:t] means a hidden state z ends at time t, similarly, z[t+1:t+τ] starts at time t+ 1
and ends at time t+ τ .

(b) Possible paths of hidden states and durations for HSMM (Residential-time HMM). In
this example, the number of hidden states is 3, and the maximum duration of a hidden state
is 2. The dashed line represents the state index change and the duration selection. The
solid line represents the decrement of the state duration.

Figure 3.3: Hidden Semi-Markov model.

17

3.3.2 Hidden Semi-Markov Model

Hidden semi-Markov model (HSMM) extends hidden Markov model (HMM)
by introducing the notion of the duration of each hidden state. In other
words, while HMM implicitly represents the state duration by the increase
of the ratio of self-transition, HSMM equips an explicit architecture for it.
This is important for us when we do not have chord labeling or segmen-
tation. Although there are several variants for HSMM of the difference in
modeling about the duration [90], we select a model called “Residential-time
HMM” [91].

Graphical representation of HSMM (Residential-time HMM) is shown in
Figure 3.3a, where we borrow the notation used by Yu et al. [90].

t1 : t2]: a state lasts at latest from t1 and ends at time t2.

[t1 : t2]: a state starts at t1 and ends at t2 (with duration t2 − t1 + 1).

Residential-time HMM assumes that a hidden state transition is independent
of the duration of the previous hidden state. With this assumption, hidden
state transition is described as follows4.

P (St = (j, τ ′)|St−1 = (i, τ)) =

{

ai,(j,τ ′) if τ = 1 (transition)

1(τ ′ = τ − 1) if τ > 1 (decrement)

Therefore, possible paths consist of products of hidden states and durations
as shown in Figure 3.3b, where i is an index of hidden state and τ is
the remaining duration of it. Furthermore, ai,(j,τ ′) can be decomposed into
transition probability and duration probability as follows.

ai,(j,τ ′) = aijpjτ ′

Thus, in HSMM, duration probability5 is added in addition to the three
categorical distributions for HMM described in Section 3.3.1. Note that a
hidden state changes to another only when the remaining duration τ = 1.
Therefore, the duration probability determines a hidden state duration, and
the self-transition probability aii is always zero.

Forward Algorithm for HSMM

We have seen that the marginal probability lnP (x1:T) for HMM is calculated
through the forward algorithm. In this paragraph, we detail the one for
HSMM.

4
1(x) is the indicator function that equals to 1 if x is true and 0 otherwise.

5τ ∈ D is a discrete value of remaining time steps, and D is the maximum duration.

18

For HSMM, the forward algorithm marginalizes the possible paths of
durations in addition to states (as illustrated in Figure 3.3b). The αt(j, τ)
represents the forward probability that the hidden state at t is j and the
remaining duration of which is τ , and output tokens from t = 1 to t, i.e.,
x1:t, are observed. It is decomposed as follows:

αt(j, τ) = P (zt:t+τ−1] = j,x1:t)

= αt−1(j, τ + 1)P (xt = k|zt = j)

+ P (τ |zt = j)P (xt = k|zt = j)
∑

i\j

αt−1(i, 1)P (zt = j|zt−1 = i)

= αt−1(j, τ + 1)bjk + pjτbjk
∑

i\j

αt−1(i, 1)aij

where P (τ |zt = j) = pjτ is duration probability, P (xt = k|zt = j) = bjk is
emission probability, and P (zt = j|zt−1 = i) = aij is transition probability.
Note that when the state at t is j, there are two possibilities: (i) the hidden
state at time t − 1 is also j with the remaining duration at there is τ + 1,
(ii) the hidden state at time t− 1 is i (i ̸= j) and the remaining duration is
1 then is transferred another hidden state j at the time t.

We apply a scaling by replacing αt(i, τ) to the conditional probability,
similar to HMM [90], and obtain a modified forward algorithm.

α̂t(j, τ) = P (zt:t+τ−1] = j|x1:t) =
αt(j, τ)

P (x1, . . . , xt)

Ct = P (xt|x1, . . . , xt−1)

P (x1, . . . , xt) =
t

∏

t′

Ct′ (3.4)

Ctα̂t(j, τ) =
αt(j, τ)

P (x1, . . . xt−1)

= α̂t−1(j, τ + 1)bjk + piτbjk
∑

i\j

α̂t−1(i, 1)aij (3.5)

As can be seen from (3.4), the marginal probability is obtained by P (x1:T) =
P (x1, . . . , xT) =

∏T

t′ Ct′ , where T is the length of an entire observation se-
quence. Note that Ct is obtained by summing up (3.5) about all j and τ ,
since

∑

j

∑

τ α̂t(j, τ) = 1. We set the initial probability to yield the initial
hidden state z0 that does not yield observation by considering the initial
boundary condition: α0(i, 1) = P (z0 = i) and α0(i, τ) = 0 for τ > 1 [90].
Therefore, α0 = α̂0 and C0 = 1.0 at t = 0.

19

3.3.3 Perplexity

Unsupervised learning is a technique to discover hidden patterns from raw
data without human supervision. Manually annotated test data are not
always available. Furthermore, obtaining consistent chord annotations or
key assignments is not trivial in the music domain [50, 77].

In order to evaluate unsupervised sequential modeling without any refer-
ence data, perplexity is used as a common metric [5, 15, 16, 47, 82]. Perplexity
can be expressed in several equivalent forms:

Perplexity: P = T

√

1

P (x1:T)
(3.6)

= 2−
1
T
log2 P (x1:T ;θ) (3.7)

= exp

(

−
1

T
lnP (x1:T ;θ)

)

where x1:T is an observed sequence, and θ is a set of model parameters. As
can be seen in (3.6), perplexity is the inverse probability normalized by the
sequence length. It is generally desirable that a trained model achieves high
test data probability, and thus smaller perplexity means better generalization
performance.

In addition, perplexity has a relation to the cross-entropy [47]. When the
actual probability is P ∗ (that cannot be known), cross-entropy between it
and an estimated probability is as follows.

H(P ∗, P) = lim
T→∞

−
1

T

∑

x1:T

P ∗(x1:T) log2 P (x1:T) (3.8)

However, according to the Shannon-McMillan-Breiman theorem, (3.8) is ap-
proximated into (3.9) if the process is stationary and ergodic [20, 47].

H(P ∗, P) = lim
T→∞

−
1

T
log2 P (x1:T) (3.9)

Thus, we can obtain perplexity by raising 2 to the power of the cross-entropy,
as can be seen from (3.7) and (3.9).

3.3.4 Neural Networks

This section briefly introduces the neural network components employed in
this work.

20

input layer

hidden layer

output layer

activation function

fully connected (FC)
layer

FC

fully connected (FC)
layer

input vector

hidden
vector

output vector

tanh

FC

(2-layer) MLP

output vector

input vector

Figure 3.4: Multi Layer Perceptron (MLP) or Feedforward Neural Network
(FNN).

Multi Layer Perceptron

Multi layer perceptron (MLP) or feedforward neural network (FNN) is the
essential neural network, which works as a function y = f(x, θ) [33]. An
MLP consists of an input layer, (a) hidden layer(s), and an output layer.
However, from the perspective of learnable components, an MLP with one
hidden layer equips two fully connected layers, and thus it is called “2-layer”
MLP. Similarly, an MLP with two hidden layers is called “3-layer” MLP,
and so on.

A fully connected layer applies a linear transformation6 as follows,

h = Wx+ b

where W is a learnable weight matrix and b a bias vector.
An activation function that is a nonlinear function usually follows each

hidden layer, which plays an important role for MLP to be a good approxi-
mate function. In this dissertation, we use the hyperbolic tangent function
(tanh) as the activation function for MLPs, which normalizes the value to
the range −1 to 1.

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)

Thus, the whole process of 2-layer MLP is as follows.

MLP2(x) = W (2)(tanh(W (1)x+ b(1))) + b(2)

When we need a categorical distribution as output, we further apply the

6It is called an affine transformation since it has a bias term.

21

softmax function to the output layer,

softmaxj(x) =
exp(xj)

∑K

j′ exp(xj′)
(3.10)

where K is the number of categories.

Recurrent Neural Network

RNN RNN RNN

input vector

hidden vector

Figure 3.5: Recurrent Neural Network (RNN).

Recurrent Neural Network (RNN) recursively embeds produced hidden
vectors as inputs, as shown in Figure 3.6, and thus it is suitable for sequen-
tial data. Each RNN unit is similar to a fully connected layer with the tanh
activation function.

ht = tanh(W inxt + bin +W recht−1 + brec)

Long-Short Term Memory

In practice, the vanilla RNN described in the previous paragraph is rarely
used since it is known to suffer the exploding and vanishing gradient prob-
lem [65]. Long-Short Term Memory (LSTM) [41] improves the architecture
by introducing gates to control the flow of information.

22

forgot gate
LSTM

tanh

tanh

input gate
cell

output gate LSTM

input vector

hidden vector

(memory) cell

Figure 3.6: Long-Short Term Memory (LSTM).

For each time step, the LSTM unit calculates the following functions7:

ft = σ(W fxxt + bfx +W fhht−1 + bfh) : forget gate (3.11)

it = σ(W ixxt + bix +W ihht−1 + bih) : input gate (3.12)

ot = σ(W oxxt + box +W ohht−1 + boh) : output gate (3.13)

gt = tanh(W gxxt + bgx +W ghht−1 + bgh) : cell (3.14)

ct = ft ⊙ ct−1 + it ⊙ gt (3.15)

ht = ot ⊙ tanh(ct) (3.16)

where σ is the sigmoid activation function8, and ⊙ denotes Hadamard prod-
uct. The three gates, i.e., forget (ft), input (it), and output (ot), work as
gates to control the amount of information to be added or discarded, and
thus the sigmoid function that normalizes the value 0 to 1 is applied. On the
other hand, gt is an information embedding, and thus tanh is employed as
the activation function just like the vanilla RNN.

We use ht as an embedded feature for a sequence observed up to t. Since
ct is used only internally, we simplify the notation for LSTM as follows to
mean all processes of (3.11),(3.12),(3.13),(3.14),(3.15), and (3.16).

ht = LSTM(xt,ht−1)

7Although there are several variants for LSTM, we employ the PyTorch implementa-
tion [66].

8σ(x) = 1
1+exp(−x)

23

3.3.5 Unsupervised Part-of-Speech Induction

Unsupervised chord function identification is technically closely related to
unsupervised part-of-speech (POS) induction in Natural Language Process-
ing (NLP); the task is to identify latent categories of words that are expected
to be part-of-speech.

Brown et al. [14] proposed a greedy clustering method to maximize the
average mutual information of adjacent word classes (bigram of classes) and
obtained clusters that were adequate both syntactically and semantically.
They also constructed an interpolated class-based 3-gram language model by
using the assignment of obtained clusters. The class-based model achieved
better perplexity than the word-based 3-gram model, though the improve-
ment was small. Nevertheless, this pioneering work showed that a simple
feature, the count of bi-grams, could provide syntactic and semantic aspects
of natural language.

HMM is a natural selection for building language models with latent
word classes. The expectation maximization (EM) algorithm is widely used
to train HMM but is known to be often stuck into local optima. Johnson [45]
employed hidden Markov models (HMMs) for building the language model
and tested multiple optimization methods: Expectation maximization (EM),
Gibbs sampling, and Variational Bayes. The results showed that EM assigned
a relatively equal number of words to each hidden state and scored worse
than other methods in terms of 1-to-1 accuracy 9. Similarly, Goldwater and
Griffiths [32] showed the efficacy of Bayesian methods for POS tag induction,
which make use of priors that are likely to produce sparse distributions. In
addition, the full Bayesian methods integrate over possible parameters and
thus are more robust than Maximum likelihood estimation (MLE) trained
by EM.

In order to improve models for POS tag induction, the effectiveness
of utilizing linguistic features such as morphological information has been
shown. Clark [19] significantly improved the perplexity of the class-based lan-
guage model by incorporating morphological information. Berg-Kirkpatrick
et al. [8] proposed an extension of HMMs that incorporated manually de-
signed additional features by modeling emission distribution as softmax re-
gression 10. Although a modified EM algorithm could be applied for training
the model, directly optimizing the likelihood was empirically more effective
than the EM.

More recently, Tran et al. proposed the unsupervised neural HMM [80];

91-to-1 accuracy is an evaluation metric, where at most one cluster can be assigned to
any gold standard tag.

10Softmax regression is a multi-class extension of logistic regression.

24

the model retained the strength of seamless integration with additional con-
texts. They introduced two additional contexts: infinite context with the
Long-Short Term Memory (LSTM) 11 and morphological information via
character Convolutional Neural Networks (CNNs). Unlike the feature HMM [8]
that incorporated manually designed features, the neural HMM automati-
cally utilized additional contexts to calculate transition and emission distri-
butions with the help of neural networks such as LSTM and CNN. Despite
its simple framework, the neural HMM outperformed even the highly pol-
ished models such as the Bayesian mixture model [18] or the hierarchical
Pitman-Yor Process HMM [12].

Note that the neural HMM can be regarded as a variant of Input-Output
HMM [7] if we consider the additional contexts as input features. In addition,
unlike the Hybrid DNN-HMM12 model [89] that converts a pre-trained GMM-
HMM13 to a DNN-HMM or the tandem model [39] that combines features
by a supervised DNN to an HMM, the neural HMM is seamless and fully
unsupervised.

11They called it “infinite” since the LSTM could embed an unlimited length of preceding
observations.

12Deep Neural Network (DNN)
13Gaussian Mixture Model (GMM)

25

Chapter 4

Automatic Chord Segmentation

and Chord Function

Recognition by Neural HSMM

In this chapter and the following one, we present our methodology of unsu-
pervised recognition of chords, functions, and tonality; these three are central
notions of harmony theory. As previously stated in Section 1.2, we regard
these notions as corresponding to the following statistical learning.

1. Chords are recognized by automatic segmentation and categorization
of surface pitch events.

2. Chord functions are statistical properties of transitions between chord
categories.

3. Tonality or key recognition is a categorization of chord transitions.

In this chapter, we introduce a model that automatically learns chord cate-
gories and segments surface notes to be classified into them; in other words,
a model that performs 1. and 2. Instead of relying on pre-defined chord
symbols and keys, this study employs unsupervised learning to categorize
chords; we expect an appropriate set of chords to differ by musical style and
aim to obtain them in a data-driven manner.

Following the previous studies [82, 88], we select an hidden Markov model
(HMM) as a promising one to analyze chord progressions. We take over a
popular assumption of transpositional equivalency between keys, which is
employed in general music theories and previous studies [42, 44, 51, 73, 75,
88]. Therefore, the targeted scores are transposed not to have key signatures
before the analysis. Even though the main keys are normalized, a wide

26

variety of local modulations are expected to exist. As H. Riemann pointed
out [70], chord functions are changed by local modulations; a single transition
matrix of the conventional HMM employed in previous studies would be
insufficient to analyze chord progressions. Therefore, we employ the idea of
neural HMM, which can adjust the hidden state transition probability by the
contexts [80]. We can easily embed additional contexts with neural networks
to improve transition and emission architectures. Furthermore, to make the
model consider metrical structures, we extend the neural HMM to the neural
hidden semi-Markov model (HSMM).

We evaluate our model on J. S. Bach’s four-part chorales dataset (→ Sec-
tion 3.2) and use perplexity (→ Section 3.3.3) as the evaluation metric based
on previous works [82, 84]. Experiments show that our model appropriately
segments and classifies surface pitch classes, especially with the smallest-
perplexity model. Additional contexts with neural network modeling are
shown to improve perplexity. In addition, we show that the transitions be-
tween categories reflect the difference in tonalities when we count them by
separating pieces into groups of majors, minors, and dorian scales.

4.1 Framework

time step 10 2 3 4 5 6 7 8 9 10 1112 13141516 1718 19 20 21 22 23 24 25 26 27 28 2930 3132

token index 0

33343536

0 1919 2 2 1414 4 4 2020 3 3 1212 0 0 79 79 4 4 20 20 16 16 1 7 0 0 0 0 0 0 0 0

hidden states 4 3 6 4 2 3 4 7 3

residential time 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 2 1 4 3 2 156 4 3 2 1 4 3 2 15678

-

hidden states

tokens
(obervations)

Figure 4.1: BWV294 (in evaluation set) of analysis by the proposed model (8-
state HSMM). The key is transposed to have no key signature.

As seen in Section 3.3.2, hidden semi-Markov model (HSMM) is an ex-
tension of hidden Markov model (HMM), where a Markov chain of hidden

27

states lies behind an observable sequence. With the “semi-Markov” exten-
sion, we can consider the duration of each hidden state to avoid the useless
increase of the ratio of self-transition. Although there are several variants
for HSMM as to the difference in modeling about the duration, we select a
model called “Residential-time HMM”, which does not allow self-transition
(→ Section 3.3.2).

In HSMM, each hidden state (zt] = i) can produce multiple observations.
Then, when a hidden state changes to another one (j), the model calculates
the next state’s duration probability pjτ and the transition probability aij.
However, there could be multiple possible combinations (or paths) of the
hidden state and duration for HSMM, as we have seen in Figure 3.3b. For
example, suppose the number of hidden states is three, and the maximum
duration of a hidden state is two. When the hidden state index is i = 0, and
the remaining duration is τ = 1 at the time step t, possible conditions for the
previous time step t− 1 are (i = 0, τ = 2), (i = 1, τ = 1), and (i = 2, τ = 1).
Note that if the current remaining duration is τ = 1, the hidden state must
change to another at the next time step. On the other hand, if τ > 1, the
hidden state continues into the next time step.

We expect that hidden states represent chord categories, which are not
given a priori and thus learned in an unsupervised manner. With the Markov
property assumption, hidden states (chord categories) are learned to govern
the progression of the forthcoming chord category. We argue that an appro-
priate set of chord symbols would be diverse along with targeted pieces and
thus adopt unsupervised learning.

We give a more detailed description of the proposed framework by showing
an example in Figure 4.1. Since HSMM takes discrete time series, we set
a time step by every sixteenth note; it is the minimum duration of note in
the corpus, except for only a few exceptions of 32nd notes. We obtain a
pitch-class vector for each segment1. For example, when the time step is at
25, the pitch names of notes contained in the segment are (C, D, G), and
thus corresponding pitch-class vector is (0, 2, 7).

We build a vocabulary from every combination of the observed four-part
pitch classes and call them tokens. For example, the token index for (0, 2, 7)
is set to 16. The whole vocabulary is shown in Table 4.1. As shown in the
example, observations may include passing tones. We expect that a hidden
state works as a chord category behind these raw pitch-class vectors. Looking
at time step 25 again, we can see that the index of the hidden state is 7. Here,
the hidden state lasts from time step 25 to 28, which includes three types of
pitch-class vectors, (0, 2, 7), (2, 7, 11), and (2, 5, 7, 11), but all the three can

112 pitch classes in an octave: C, C♯, D, ..., B are numbered as: 0, 1, 2, ..., and 11.

28

Table 4.1: Table of vocabulary.

index pitch vec. pitch name index pitch vec. pitch name

0 (0,4,7) C,E,G 40 (2,4,7,10) D,E,G,A♯(Bb)
1 (2,7,11) D,G,B 41 (1,4,7) C♯(Db),E,G
2 (0,4,9) C,E,A 42 (0,2,5) C,D,F
3 (2,5,9) D,F,A 43 (0,2,4,9) C,D,E,A
4 (0,5,9) C,F,A 44 (5,7,11) F,G,B
5 (4,8,11) E,G♯(Ab),B 45 (0,4,6,9) C,E,F♯(Gb),A
6 (1,4,9) C♯(Db),E,A 46 (0,5,7,9) C,F,G,A
7 (2,5,7,11) D,F,G,B 47 (1,4,7,10) C♯(Db),E,G,A♯(Bb)
8 (2,6,9) D,F♯(Gb),A 48 (0,7,9) C,G,A
9 (4,7,11) E,G,B 49 (2,4,7) D,E,G
10 (0,2,5,9) C,D,F,A 50 (4,7,10) E,G,A♯(Bb)
11 (0,2,6,9) C,D,F♯(Gb),A 51 (2,9,11) D,A,B
12 (2,5,11) D,F,B 52 (0,3,6,9) C,D♯(Eb),F♯(Gb),A
13 (2,4,8,11) D,E,G♯(Ab),B 53 (0,2,7,9) C,D,G,A
14 (0,4,7,9) C,E,G,A 54 (3,6,9,11) D♯(Eb),F♯(Gb),A,B
15 (2,5,9,11) D,F,A,B 55 (2,4,9,11) D,E,A,B
16 (0,2,7) C,D,G 56 (3,6,11) D♯(Eb),F♯(Gb),B
17 () Rest 57 (2,5,7,9) D,F,G,A
18 (1,4,7,9) C♯(Db),E,G,A 58 (2,7,9,11) D,G,A,B
19 (0,4,7,11) C,E,G,B 59 (2,6,11) D,F♯(Gb),B
20 (0,4,5,9) C,E,F,A 60 (2,5,7,10) D,F,G,A♯(Bb)
21 (2,7,10) D,G,A♯(Bb) 61 (0,2,9) C,D,A
22 (0,2,4,7) C,D,E,G 62 (0,2,6) C,D,F♯(Gb)
23 (4,9,11) E,A,B 63 (0,2,7,11) C,D,G,B
24 (0,4,7,10) C,E,G,A♯(Bb) 64 (2,4,7,9) D,E,G,A
25 (2,4,7,11) D,E,G,B 65 (4,5,9) E,F,A
26 (0,6,9) C,F♯(Gb),A 66 (2,5,7) D,F,G
27 (2,8,11) D,G♯(Ab),B 67 (0,7) C,G
28 (2,4,9) D,E,A 68 (2,4,8) D,E,G♯(Ab)
29 (0,5,7) C,F,G 69 (2,5) D,F
30 (2,5,10) D,F,A♯(Bb) 70 (0,4,11) C,E,B
31 (2,4,5,9) D,E,F,A 71 (0,5,9,11) C,F,A,B
32 (2,5,8,11) D,F,G♯(Ab),B 72 (5,9) F,A
33 (0,2,5,7) C,D,F,G 73 (4,7,9,11) E,G,A,B
34 (0,4,9,11) C,E,A,B 74 (2,5,9,10) D,F,A,A♯(Bb)
35 (2,7,9) D,G,A 75 (4,7,9) E,G,A
36 (0,4) C,E 76 (4,7) E,G
37 (7,11) G,B 77 (4,9) E,A
38 (0,9) C,A 78 (0,4,8) C,E,G♯(Ab)
39 (0,4,5,7) C,E,F,G 79 Others Others

29

be interpreted as a part of G major chord.
A hidden state emits a token with probability bik, where i is a hidden state

index and k is a token index. In the case of time step 25, pitch-class vector
(0, 2, 7) (the token index of which is 16) is emitted with the probability of
b7,16, from the hidden state indexed 7. A hidden state is changed to another
one with the probability of transition probability aij multiplied by duration
probability pjτ , where i is the index of the current hidden state, j is the
forthcoming hidden state index, and τ is the duration of the forthcoming one
respectively. The probability of the transition from hidden state 7 to hidden
state 3 at time steps 28 to 29 is a7,3p3,8.

Note again that hidden states and their duration are not given a pri-
ori but obtained by unsupervised learning. More precisely, we first optimize
parameters that determine transition, duration, and emission categorical dis-
tributions so that a tuned model gives higher likelihoods to targeted pieces,
and then obtain the best hidden state sequence based on the model. Next,
we give a detailed description of the architecture of neural networks used in
the neural HSMM.

4.2 Architecture of Neural HSMM

Conventional HSMMs have categorical parameters as matrices of parameters.
In contrast, neural HSMM equips neural network components as functions for
calculating transition, duration, and emission distributions. As mentioned
in the previous section, the role of each distribution is as follows.

• Transition distribution is the probability of transition from a hidden
state to another; it corresponds to transition of chord categories.

• Duration distribution is the probability of duration of a hidden state;
it corresponds to the duration of a chord category.

• Emission distribution is the probability for a hidden state to emit a
particular token. In our case, this is the probability for a chord category
to emit a particular pitch-class vector.

Besides these three distributions, a special case of transition distribution,
i.e., initial state distribution, is described in Section 4.2.2.

The same graphical representation (Figure 3.3a) applies to neural HSMMs,
but the categorical distributions are obtained as outputs of neural networks
that can employ additional musical contexts for the calculation. We show
these networks and additional contexts in the following paragraphs: hidden
state transition probability (Section 4.2.1), initial state probability (Section

30

LSTM LSTM LSTM ...

C C# ...E... A A＃B

pitch-class histogram

observation embedding

hidden state embedding
(learnable feature vector of state i)

Figure 4.2: The network architecture for calculating transition probabilities
aij. si(s) are the set of hidden state embeddings. rhisto is an additional con-
text of pitch-class histogram. ht is another additional context of embedded
feature of preceding observations by the LSTM. o16, o1, and o7, are obser-
vation embeddings associated with observed tokens: xt−1 = 16, xt = 1, and
xt+1 = 7.

4.2.2), duration probability (Section 4.2.3), and emission probability (Section
4.2.4)2.

4.2.1 Hidden State Transition Probability

We denote a hidden state at time step t as zt and state index of which as i or j.
Given the number of hidden state S, each hidden state i ∈ S has a transition
distribution to the next hidden state j ∈ S, which is denoted as aij, and thus
∑

j aij = 1. Note that, in HSMM (Residential-time HMM), the self-transition
aii is set to zero (→ Section 3.3.2) since it is not the transition distribution
but the duration distribution that manages the duration of a hidden state.
Instead of having aij just as a single learnable value, we prepare a function
that calculates it by employing neural network components as follows,

aij = P (zt+1 = j|zt = i) = softmaxj(MLP3([si; ct])) (4.1)

where MLP3 is a 3-layer Multi Layer Perceptron with one input layer, two
hidden layers, and one output layer. A hyperbolic tangent (tanh) activation
function follows after each hidden layer (→ Section 3.3.4). The output layer

2The summary of notations (Table C.1) and model settings (Table C.2) can be found
in Appendix.

31

of this function is softmax (3.10) to satisfy the condition
∑

j aij = 1. The
output layer size of the transition MLP2 in (4.1) should be smaller by one
than the number of states (S − 1) since it does not allow self-transitions.
Since aij corresponds to the transition probability of hidden state i to j,
the input for the network includes a feature for hidden state i. We provide
a hidden state embedding si, which is a learnable vector associated with
hidden state index i. This hidden state embedding is also jointly used in the
network for the duration and emission probability (described in Section 4.2.3
and Section 4.2.4); it would help capture relationships between hidden states
(chord categories) and emissions (observed pitch-class vectors).

Taking further advantage of neural HMM, we introduce two additional
contexts for calculating hidden state transition probability: a pitch-class
histogram and an embedded feature of preceding pitch-class vectors. We
feed a concatenation of these two contexts ct to (4.1).

Additional context 1: Pitch-class histogram (HISTO)
The first additional context is a pitch-class histogram that is the fre-
quency of occurrence of each pitch class calculated from an entire
phrase, which represents tonality. We split a piece into chord sequences
at each fermata (point d’orgue) that works as a full-stop marker of a
lyric and then sum up the duration of each pitch-class to obtain a pitch-
class histogram of a sequence. Even though the key signature would
distinguish the main tonality of a piece3, there would be local modu-
lations. Thus we employ such a histogram as indirect information for
local tonality. We obtain the feature of a pitch-class histogram of a
chord sequence rhisto as follows.

rhisto = MLP2(v
histo) (4.2)

where vhisto ∈ R
12 is the raw pitch-class histogram of a sequence.

Additional context 2: Embedded feature of preceding observations by the
LSTM (LSTM)
The second additional context is an embedded feature of preceding
observations by the Long-Short Term Memory (LSTM) [41], based on
the idea from [80]. LSTM is a variant of Recurrent Neural Network
(RNN) that recursively feeds observations; thus, it is suitable for a
feature function for sequential data (→ Section 3.3.4). In our case, it

3However, the main tonalities of pieces that are written in church modes (e.g., dorian)
would not correspond to the key signature system of modern tonality. In addition, the key
signature alone does not distinguish major/minor. Furthermore, some minor pieces retain
the feature of church modes [75] and frequently proceed relative major keys [73, 84].

32

corresponds to a feature of a temporal sequence (from t = 1 to the
current time step t) of pitch-class vectors. At each time step, we input
an observation embedding ok that is associated with observation v

pitch
k

at t4 to LSTM as follows (4.3)(4.4).

ok = tanh(MLP2(v
pitch
k)) (4.3)

ht = LSTM(ok,ht−1) (4.4)

In the calculation of an observation embedding (4.3), vpitch
k is a binary

pitch-class vector, that is, a 12-dimensional vector of 1/0. For example,
if the pitch-class vector is (2, 5, 7, 11), the corresponding binary pitch-
class vector is (0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1). We expect that binary pitch-
class vectors give raw information of observations instead of symbolized
token indices, and it is also used in the emission distribution network
described in Section 4.2.4.

Finally, we concatenate the two contexts and obtain the context vector as
(4.5), where [;] denotes vector concatenation. This context vector is applied
to the transition probability network (4.1).

ct = [rhisto ;ht] (4.5)

We illustrate the network for calculating transition probability aij in Fig-

ure 4.2, which we have described in this section. Note that transition prob-
ability thus dynamically varies by contexts in neural HSMM, though it is
static in conventional models. Therefore, while we train a model without
distinguishing major/minor pieces or local modulations, we expect that the
additional contexts adjust transition probabilities automatically.

4.2.2 Initial Hidden State Probability

Since the first pitch-class vector at the time 1 does not have a preceding
observation, this special distribution for the initial hidden state is provided.
We set an external initial hidden state z0 at time step 0 that has no emission
and duration 1 to meet the initial boundary condition of HSMM. The initial
hidden state probability ρi is calculated as follows. ρi is the only component
that remains almost the same as the conventional model, except that it is
normalized by the softmax function.

ρi = P (z0 = i) = softmaxi(π)

where i is a hidden state index, π ∈ R
S is the learnable weight vector, and

S is the number of hidden states.
4In this example, xt = k, which means that the token index for xt is k.

33

4.2.3 Duration Probability

The duration probability determines how long the hidden state i (i.e., a chord
category) will reside in the same hidden state. The network for calculating
it is as follows.

piτ = softmaxτ (MLP3([si; r
beat
t])) (4.6)

rbeat
t = MLP2([v

timesig ; vbeatt]) (4.7)

Additional context 3: Beat position (BEAT)
In (4.6), rbeat

t is an additional context for the calculation of duration
probability, which is expected to give metrical information. [vtimesig ; vbeatt]
is a 2-dimensional vector that consists of a beat position and the nu-
merator of a time signature. In this study, vtimesig is constant (= 4)
since we only treat four-four time (4/4) pieces, while vbeatt could vary
among {1.0, 1.25, · · · , 4.5, 4.75}.

The output layer size of the duration MLP2 in (4.6) is 16, a maximum dura-
tion length corresponding to a whole note. The hidden state embedding si
used in the network for transition probability is used again and is expected
to help the model jointly learn the transition and duration distribution of
hidden state i.

4.2.4 Emission Probability

We employ a discrete HSMM in this study; therefore, each observation is
associated with token index k ∈ V in the vocabulary, as mentioned in the
example in Section 4.1. The probability that hidden state i yields a token
index k (bik) is calculated as follows, based on [80].

bik = P (xt = k|zt = i) = softmaxk(s
T
i ok+lk) =

exp (sTi ok + lk)
∑

k′ exp (s
T
i ok′ + lk′)

(4.8)

Additional context 4: Observation embedding from binary pitch-class vec-
tor (PITCH)
We use the same observation embedding ok used in the transition prob-
ability (4.3) calculation for emission probability (4.8). Instead of em-
ploying weight matrices or MLPs, the emission probability is learned
as the dot product of a hidden state embedding and an observation em-
bedding. The bias value lk ∈ R would help to consider the frequency of
each chord. In contrast to the conventional discrete HMM that cannot
use the raw information about the observation once converted into a
token index, our model does not lose it by the observation embedding.

34

4.3 Training

It is known that there is no analytical solution to obtain an optimal pa-
rameterization of an HMM that maximizes the likelihood of the observed
sequence [68]. Although the widely used Baum-Welch re-estimation algo-
rithm (a kind of the Expectation maximization (EM) algorithm) is able to
obtain a locally optimal parameterization, it would be stuck in bad local
optima when the likelihood surface is complex [68]. On the other hand,
we can utilize gradient-based methods to maximize the marginal likelihood
∑N

n=1 lnP (x
(n)
1:T) where x

(n)
1:T is an observed sequence since it is an optimization

problem [68, 48, 54]. We employ the known dynamic programming named
the forward algorithm for HSMM to calculate the marginal likelihood [68, 90]
(→ Section 3.3.2).

Neural network models are generally trained by gradient-based optimiz-
ers and the backpropagation for gradient computing. Recently, along with
the success of neural networks, efficient optimizers also have been proposed.
We can naturally utilize gradient-based optimization when implementing the
HSMM as a neural network [48]. In this study, we use one of the latest op-
timizers, RAdam [55], which adjusts the learning rate automatically.

We empirically found the effectiveness of the gradient-based method by
comparing neural HSMMs of minimum architecture (we call them baseline
models) with conventional models trained by the EM algorithm; the experi-
ments are shown in Appendix A.

4.4 Experimental Setups

Table 4.2: The statistics of the dataset.

#pieces (maj.) (min.) (dor.) (other) #phrases #obs. tokens

Train 185 (89) (70) (23) (3) 1155 38452
Eval. 51 (21) (23) (6) (1) 314 10408
Test 54 (28) (20) (5) (1) 350 11868

We use J.S.Bach’s four-part chorales by the Riemenschneider numbering
system (1-371) from the Music21 Corpus [21] as our dataset resource, details
of which were described in Section 3.2. We only contain four-four time (4/4)
pieces and exclude 27 pieces that are not four-part voices or have some prob-
lems, such as a collapsed format. Thus, the number of pieces is 290. We
regard each phrase as an independent sequence, however, when we provide

35

these phrases to training, evaluation, and testing sets, we give randomness
over pieces, not phrases.

In this study, we take over the assumption of transpositional equivalency
between keys, as mentioned at the beginning of this chapter. This is basically
equivalent to transposing all the major pieces to C major and all the minor
ones a minor, relying on key signatures. However, some pieces of the corpus
are written in dorian scale without any key signature. From the viewpoint
of modern tonality, we regard them in d minor; however, we do not shift
them to a minor. Also, local modulations are shifted in the same way, so as
to preserve the relative positions of constituent notes. Finally, we ignore the
difference by octaves in pitch events and inversion in chords.

We assign token indices (k) for pitch classes, the accumulated pitch-
duration of them in the dataset over 95%, and then the remaining chords are
merged to “Others.” The obtained vocabulary size was 80, including “Rest”
(Table 4.1).

In training, we set the mini-batch 8. We train models up to 500 epochs;
however, the process is stopped when the lowest loss on the evaluation set is
not updated over 20 epochs. We apply the dropout [40] to each hidden layer
of MLPs, which randomly ignores some ratio of neurons (12.5% in our case)
during training to avoid over-fitting.

4.5 Evaluation by Perplexity

Perplexity (Section 3.3.3) is a widely used metric for sequential modeling
without any reference data [5, 15, 16, 47, 82]. It corresponds to the inverse
probability normalized by the sequence length and thus is an indicator of the
model’s generalization performance.

We examine the performance on multiple numbers of hidden states: 3 to
16. We conduct the experiments with three different random seeds of {0, 1, 2}
for each number of hidden states and report the averaged score.

In addition to the neural HSMM, we implement a baseline model that
represents probabilities as simply learnable weight vectors or matrices with
softmax output layers. The baseline model is almost “Non-Neural” but an
HSMM tuned by the same gradient-based optimizer. We compare the pro-
posed model with this baseline to see how efficiently the elaborated neural
network components work. In Figure 4.3, we can see that the elaborated
neural models considerably outperformed the baselines.

The ablation study also shows the efficacy of additional contexts, as shown
in Table 4.3. Removing any additional contexts degraded the perplexity:
the pitch histograms (−HISTO), an embedded feature of preceding obser-

36

Figure 4.3: Averaged perplexities by three trials with random seeds of
{0, 1, 2} on the testing set.

vations by the LSTM (−LSTM), the beat positions (−BEAT), and the ob-
servation embeddings from binary pitch-class vectors (−PITCH). Among
these contexts, removing5 the observation representation by pitch classes
(−PITCH) led to a significant drop. Since we do not employ MLPs for the
architecture of calculation of emission probability but force a model to learn
relationships between hidden states and vocabularies directly, the informa-

5In this case, we used an observation embedding of learnable weights in the same way
as the hidden state embedding instead of the pitch-class one.

Table 4.3: Ablation studies. Averaged perplexities by three trials with ran-
dom seeds of {0, 1, 2} on the testing set. The bold numbers are the best score
in the same number of the hidden state.

#hidden states 4 8 16 32
BASE 16.47 11.42 7.96 5.64
NHSMM 14.43 9.36 6.14 4.74

−HISTO 15.18 9.78 6.51 4.92
−LSTM 14.94 9.67 6.47 5.07
−BEAT 14.85 9.65 6.29 4.77
−PITCH 16.88 10.64 7.23 5.38

37

Best perplexity model of the eight state Neural-HSMM (eval. perplexity = 7.97)

Worst perplexity model of the eight state Neural-HSMM (eval. perplexity = 9.18)

Best perplexity model of the eight state BASE-HSMM (eval. perplexity = 9.92)

Figure 4.4: Comparison between (Top) neural HSMM of the best evaluation
perplexity among the three random seeds, (Middle) neural HSMM of the
worst evaluation perplexity, and (Bottom) base HSMM of the best evaluation
perplexity. The bar charts show the top three emissions per each hidden
state.

tion of raw pitch classes would help the learning.

4.6 Qualitative Analysis for Induced Clusters

This section presents a qualitative analysis and discusses the induced chord
clusters. We focus on the eight-state models since we have transposed pieces
not to have key signatures and have assumed that each cluster would roughly
correspond to a triad on the diatonic scale or otherwise to the rests.

4.6.1 Induced Clusters and Model’s Perplexities

We investigate if we can find clearer clusters in the higher-scored model
in obtained examples. Figure 4.4 shows the emission probabilities of the
best neural HSMM, the worst neural HSMM, and the best baseline model.
Note that we have executed three trials of training for each model with a

38

Table 4.4: Chord categories obtained by the best scored 8-states neural
HSMM. The chord category is named after the chord name of the top emis-
sion for each hidden state.

hidden state index state0 state1 state2 state3

chord category D̂ Â d̂ Ĉ

emit. top3 (1) D.F♯(G♭).A C♯(D♭).E.A D.F.A C.E.G
(2) C.D.F♯(G♭).A C♯(D♭).E.G.A C.D.F.A C.E.G.B
(3) C.F♯(G♭).A D.E.A D.F.B C.D.E.G

hidden state index state4 state5 state6 state7

chord category F̂ Ê â Ĝ

emit. top3 (1) C.F.A E.G♯(A♭).B C.E.A D.G.B
(2) Others E.G.B C.E.G.A D.F.G.B
(3) C.E.F.A D.F.G♯(A♭).B C.E.A.B C.D.G

different random seed among {0, 1, 2}. Here the “best” model means that
the evaluation perplexity of which is the smallest among the three trials.

We observe that the clusters obtained by the best scored neural HMM
mainly consist of the chords on diatonic scales (C major and a minor) and its
commonly-used borrowed chords such as D major chord. Figure 4.4 shows
the emission probabilities of the top three emissions for each hidden state
index. For ease of readability, we name chord categories by the name of the
most frequent output chord for each hidden state index, as summarized in
Table 4.4.

Although the most frequent chord is representative of the category, it does
not correspond to a unique chord but a set of emission probabilities; therefore,
we add “hat” to it. The cluster Â may emerge from two reasons: the common
use of the Picardy third or the dominant of dorian mode pieces. It is worth
noting that seventh and passing chords are merged into appropriate clusters,
e.g., C.D.E.G in the same hidden state for C.E.G (state3) and D.F.G.B for
D.G.B (state7).

Even though employing the same neural HSMM, the worst perplexity
model (in the middle of Figure 4.4) seems less appropriate than the best
model. For example, C.E.A is mixed up with C.F.A and E.G♯(A♭).B in
state7, and C.E.G (state4) and passing chords around it (state0) are sepa-
rated. Although we would be able to choose a model by perplexity, we admit
that difficulty in obtaining the global optimum still exists even though we
employ the efficient gradient-based optimizer.

The best baseline model (the evaluation perplexity of which is 9.92) is
still worse than the worst neural HSMM (9.18). Moreover, not only the best

39

: D̂ : Â : ̂d : Ĉ : F̂ : Ê : ̂a : Ĝ

: D̂ : Â : ̂d : Ĉ : F̂ : Ê : ̂a : Ĝ

: D̂ : Â : ̂d : Ĉ : F̂ : Ê : ̂a : Ĝ

Figure 4.5: Counts of hidden state transitions: (Top) major pieces, (Mid-
dle) minor pieces, and (Bottom) dorian pieces. The sequence of hidden
states is calculated by the Viterbi algorithm.

baseline model scored a worse perplexity, but it possessed more miscellaneous
clusters than neural HSMMs. However, we can observe that C.E.G and
D.F.G.B of state3, or D.G.B and D.F♯(G♭).A of state5, in the same tonality,
would tend to be merged into the same category in the baseline HSMM.

4.6.2 Hidden State Transitions

Since chord functions lie in the regularity of chord progressions, we try to
find them by investigating the transitions between obtained chord categories.
We count the hidden state transitions on major pieces, minor pieces, and do-
rian pieces separately to see whether the model appropriately reflects the
difference of tonalities in its state transitions. Note that, instead of exam-
ining the hidden state transition probability directly, we count the number
of transitions after decoding the sequence of hidden states by the Viterbi
algorithm[28] since the hidden state transition probability changes by con-
text.

We show the result of hidden state transition properties by the best scored
neural HSMM in Figure 4.5 (the emission probability of which is shown
at the top of Figure 4.4). In major pieces, the tendency that {state0:D̂,
state2:d̂, state4:F̂} (secondary dominant or subdominant) → state7:Ĝ (dom-
inant) → state3:Ĉ (tonic) is noticeable. While in minor pieces, the tendency
described above suggests the existence of the relative major keys, which is

40

consistent with previous works [73, 84]. In addition, a strong transition
from state5:Ê (dominant) → state6:â (tonic) are observed. Unlike in major
pieces, the transition from state2:d̂ (subdominant) → state5:Ê (dominant)
is increased in minor pieces; it corresponds to the transition of subdominant
→ dominant. Finally, in dorian pieces, transitions from state1:Â (dominant)
→ state2:d̂ (tonic) are observed. Unlike C major and a minor pieces, the
transition from state7:Ĝ no longer has the strong tendency of proceeding
to state3:Ĉ but tends to proceed to state1:Â instead, corresponding to the
progression of subdominant → dominant.

4.7 Discussion on an Analysis by the Model

In this section, we discuss the adequacy of our model from an obtained result.
We select BWV267 from our testing set since a human analysis on which is
publicly available [21]6. Although this study is not aimed to reproduce the
human analysis, we consult it as a possible interpretation for local modula-
tions and chord annotations. Note that we normalized the score to have no
key signature; thus, the main key became C major, while the original key was
G major. We show extractions of the result in Figure 4.67. According to
the human analysis [21], there are local modulations to {F major, G major,
d minor, g minor} keys in this piece.

In this example, we could see that the model found an effective set of
clusters to cover chords appeared that in a piece, including local modulations.
For example, in the section of the G major key (phrase No.4, time step 21–
32), we observed the cluster of D̂ (state0), which was a borrowed chord seen
from the C major key. This cluster D̂ was used again in the section of the
g minor key (phrase No.7, time step 7–32). Interestingly, g minor chords,
i.e., D.G.A♯(B♭) (k = 21) and D.F.G.A♯(B♭) (k = 60), were classified into
the same cluster as Ĝ (state7) since g minor chord and G major one shared
the dominant (D) (state0: D̂). Similarly, in the section of F major (phrase
No.4, time step 1–20), C major dominant seventh chords, i.e., C.E.G.A♯(B♭)
(k = 24), were classified into the same cluster as C major chords (state3:
Ĉ). According to Schoenberg, local modulations basically remain in closely
related keys and thus can be analyzed by altered chords [75]. In the case of
g/G chords and C/C7 chords described above, these alternations (g or C7) do
not change the probable progression of chords and thus would be classified

6https://github.com/cuthbertLab/music21/tree/master/music21/corpus/

bach/choraleAnalyses
7The result for the whole piece is shown in Appendix: Figure D.1 (phrase No.1–4)

and Figure D.2 (phrase No.5–8).

41

https://github.com/cuthbertLab/music21/tree/master/music21/corpus/bach/choraleAnalyses
https://github.com/cuthbertLab/music21/tree/master/music21/corpus/bach/choraleAnalyses

time step 10 2 3 4 5 6 7 8 9 10 111213 14 1516 1718 19 20 2122 23 24 25 26 27 28 2930 3132

token index 4 4 1010 0 0 2424 4 4 464679 79 2424 4 4 79 79 2 2 55 23 62 62 79 79 1 1 1 1

hidden states 1 3: 4: 3: 4: 6: 0:

residential time 1 2 1 2 1 4 3 2 1 6 5 4 3 2 1 2 1 4 3 2 1 2 112 2 1 2 1 1234

-

5: 7:2: 4:

time step 10 2 3 4 5 6 7 8 9 10 111213 14 1516 17181920 21 22 23 24 25 26 27 28 29 30 3132

token index 0 0 3333 0 0 0 0 4 4 2020 1 1 1212 6 6 6 6 31 31 79 79 3 3 3 3 6 6 6 6

hidden states 4 3: 3: 4: 2: 1: 2: 2:

residential time 1 2 1 2 1 4 3 2 1 4 3 2 1 2 1 2 1 4 3 2 1 2 112 2 1 2 1 1234

-

4: 1:7: 7:

time step 10 2 3 4 5 6 7 8 9 10 1112 1314 15 16 1718 19 20 2122 23 24 25 26 27 28 29 30 3132

token index 6 6 1818 3 3 2828 3 3 3 3 2121 79 79 7979 50 50 7979 3 3 64 64 18 18 6969 6969

hidden states 4 1: 2: 4: 7: 1:

residential time 1 4 3 2 1 2 1 2 1 4 3 2 1 2 1 4 3 2 1 2 1 2 112 2 1 2 1 1234

-

2: 2:1: 7:2: 4:

phrase No. 6

phrase No. 5

phrase No. 4

- IV/ C = I / F V/F I6 / FV2/F V6/5 / F I / F ii / G V7 / G I / G = V / C

human analysis - I / C IV / C V6/C V6/5/C
IV6/5/d V6 / d i / d V / d

human analysis - V6/d V6/5/d i/d i6/d iv6/d ii6o/d i6/4 / d V7 / d i / d

4:

human analysis

time step 10 2 3 4 5 6 7 8 9 10 111213 14 1516 1718 19 20 2122 23 24 25 26 27 28 2930 3132

token index 4 4 1010 0 0 2424 4 4 464679 79 2424 4 4 79 79 2 2 55 23 62 62 79 79 1 1 1 1

hidden states 1 3: 4: 3: 4: 6: 0:

residential time 1 2 1 2 1 4 3 2 1 6 5 4 3 2 1 2 1 4 3 2 1 2 112 2 1 2 1 1234

-

5: 7:2: 4:

time step 10 2 3 4 5 6 7 8 9 10 111213 14 1516 17181920 21 22 23 24 25 26 27 28 29 30 3132

token index 0 0 3333 0 0 0 0 4 4 2020 1 1 1212 6 6 6 6 31 31 79 79 3 3 3 3 6 6 6 6

hidden states 4 3: 3: 4: 2: 1: 2: 2:

residential time 1 2 1 2 1 4 3 2 1 4 3 2 1 2 1 2 1 4 3 2 1 2 112 2 1 2 1 1234

-

4: 1:7: 7:

time step 10 2 3 4 5 6 7 8 9 10 1112 1314 15 16 1718 19 20 2122 23 24 25 26 27 28 29 30 3132

token index 6 6 1818 3 3 2828 3 3 3 3 2121 79 79 7979 50 50 7979 3 3 64 64 18 18 6969 6969

hidden states 4 1: 2: 4: 7: 1:

residential time 1 4 3 2 1 2 1 2 1 4 3 2 1 2 1 4 3 2 1 2 1 2 112 2 1 2 1 1234

-

2: 2:1: 7:2: 4:

phrase No. 6

phrase No. 5

phrase No. 4

- IV/ C = I / F V/F I6 / FV2/F V6/5 / F I / F ii / G V7 / G I / G = V / C

human analysis - I / C IV / C V6/C V6/5/C
IV6/5/d V6 / d i / d V / d

human analysis - V6/d V6/5/d i/d i6/d iv6/d ii6o/d i6/4 / d V7 / d i / d

4:

human analysis

time step 10 2 3 4 5 6 7 8 9 10 11 1213 14 1516 1718 19 20 2122 23 24 25 26 27 28 2930 3132

token index 3 3 12 12 0 0 4545 2121 60 6079 79 7979 8 8 11 11 7979 21 21 53 53 11 11 373737 37

hidden states 4 3: 7: 4: 0: 4: 0:

residential time 1 4 3 2 1 2 1 2 1 4 3 2 1 4 3 2 1 4 3 2 1 2 112 4 3 2 1 1234

-

7: 7:2: 0:

time step 10 2 3 4 5 6 7 8 9 ... 12 13 ... 16 17 19 20 2122 23 24 29

token index 9 9 79 79 2 2 61 61 16 16 1 0 2 4 9 9 29 1010

hidden states 4 6: 3: 4: 3: 2:

residential time 1 2 1 2 1 2 1 2 1 4 3 2 2 2 1 2 1

-

5:

1

1

4: 0: 7:

0 1919

4 3 2 1

18

1

6:

2 4

2 1

5:

2 1

7:

1 1

25 28...

4 3 2 1

29 0 0

30 31

2222

3:

2 1

323334

2 1

4:

7979

3536

2 1

2:

4242

3536

2 1

7:

1616

3738

1

2:

1010

2 4 3 2 1 4 3 2 1

39 42...

7:

1 1 7 7

43 46...

3:

0 0 0 0

phrase No. 8

phrase No. 7

human analysis - i / d
ii / C viio/C I6 / C viio7/g i / g iio2 / g v6/g v6/5/g i / g V7 / g I / g

human analysis - iii / C vi / C V / C I / C vi / C iii / C I / C ii6/5 / C ii7 / C V / C V7 / C I / C

Figure 4.6: Chord classification by the neural HSMM on BWV267 (Excerpt)

42

into the same function as the one on the diatonic scale (G or C).
In the longest modulation section of d minor (phrase No.6), we could see

that the cluster of the tonic chord (state3: Ĉ) had not appeared and that
the cluster of the d minor chord (state2:d̂) tended to proceed to the A major
chords (state1:Â).

Since we ignored inversions of chords in this study, we basically could
not capture the difference between them. We admit that it needs further
consideration and left it as future work. In addition, we observed more
“Others” tokens (k = 79) in modulation sections that hindered the analysis.
“Others” or “Unknown” token has been introduced in discrete HMMs to avoid
useless increase of dimension of the emission distribution. However, once an
observation is converted into “Others”, the raw information about it (which
is pitch-class vector in our case) will be lost. More effective treatment for less
frequent observations or more direct representation for emission distribution
is another important future work for us.

4.8 Chapter Summary

In this chapter, we introduced the neural hidden semi-Markov model (HSMM)
that automatically segments surface pitch classes and classifies them into
chord categories. In contrast to the previous works [44, 73, 84, 88], we did not
distinguish tonalities (major, minor, and other tonalities in church modes)
to train the model. We did so for both conceptual and practical reasons. For
a conceptual reason, chords, functions, and tonalities are mutually depen-
dent [70] and should not be analyzed independently. In practice, we cannot
easily distinguish tonalities (especially local modulations) in advance when
we consider applying the model to more complicated pieces such as ones in
the post-romantic period. Hence, we proposed a model that allows for chord
segmentation and classification while considering tonality as a context, with-
out distinguishing it in advance. We adopt the two techniques in order to
achieve the above.

• We employed hidden semi-Markov model (HSMM) instead of HMM,
which introduced the notion of the duration of a hidden state.

• Neural networks are utilized for calculating categorical distributions
to embed the pitch-class distribution, preceding chord sequences, beat
information, and so on, as additional contexts.

The experimental results satisfactorily showed the efficacy of such con-
texts in terms of perplexity in comparison with the conventional HSMM and

43

other ablation studies (Section 4.5). Furthermore, we successfully obtained
clear chord clusters with the best scored proposed model where seventh
chords and borrowed chords were classified into appropriate clusters (Sec-
tion 4.6.1). Also, we have shown a full exemplification of BWV267 (Section
4.7).

We found that the transition between hidden states well simulated the
known functional harmony theory. We examined it by counting the number
of hidden state transitions on major pieces, minor pieces, and dorian pieces
separately. As a result, we confirmed that the distribution of hidden state
transitions was consistent with the known classical theory (Section 4.6.2).
However, it is a major drawback of the proposed model that cannot explicitly
distinguish the difference of tonalities but relies on the pre-defined annotation
of them in evaluation. Therefore, we further extend the model in order to
incorporate unsupervised tonality detection, as described in the next chapter.

44

Chapter 5

Unsupervised Clustering of

Tonality

In the previous chapter (Chapter 4), we introduced the neural hidden semi-
Markov model (HSMM) that automatically identified a chord sequence from
a surface musical structure; it automatically segmented and classified surface
pitch classes into chords without relying on conventional chord symbols. In
addition, we found that the model appropriately reflected the difference in
tonalities in its hidden state transitions.

Although the neural HSMM automatically adjusts hidden state transi-
tion probability with the help of efficient additional contexts, it does not
explicitly detect changes in the trend of transition probability. Therefore,
we counted the transition of classified chords for major, minor, and dorian
pieces separately. In this chapter, we further extend the model by employing
a teacher-student architecture to classify tonality1.

We propose a methodology to obtain a set of tonalities that appeared in
targeted pieces by classifying chord transitions, which is an extension of the
neural hidden semi-Markov model (Chapter 4). We employ it as a teacher
model that classifies surface pitch-class vectors into chord categories and
gives counts of transitions between chords. We also prepare student models
that simplify the network for calculating transition probability by replacing
it with a set of learnable matrices just like the conventional hidden semi-
Markov model (HSMM). The model equips multiple students (i.e., transition
matrices), which are expected to represent different tonalities. Note that the
teacher model does not know the difference between tonalities, but students
discover it by the learning. In this sense, students are not just simplified
versions of the teacher model.

1See footnote 2 in Chapter 1

45

Before introducing the proposed model, we show a preliminary exper-
iment that suggests the neural HSMM intrinsically represents similarities
between tonalities in the next section (Section 5.1). After that, we describe
the proposed teacher-student model for unsupervised mode classification in
Section 5.2. Then, we show experimental setups (Section 5.3) and results
(Section 5.4).

5.1 Tonality Distance by KL Divergence; a

Preliminary Experiment

According to Schoenberg, at least one chord is shared by the two keys when a
key changes to another (modulation) [75]. In other words, modulations tend
to be conducted between keys that share more common pitches. Therefore, a
cadential progression indicates a particular key, even when most pitches are
common [70, 75].

As a generative statistical model, a trained neural HSMM gives the
marginal likelihood lnP (x1:T ;θ)

2 to an observed sequence x1:T . We expect
that a model trained with a dataset of a particular key gives the highest
likelihood to the targeted key and higher likelihoods to closely related keys.
Therefore, the difference between the marginal likelihoods calculated by two
different keys is expected to simulate the distance between the two keys.

The notion above is formally expressed as the Kullback-Leibler divergence
(KL divergence) [46, 52, 76]3.

DKL(θkey1,θkey2) =
1

N

N
∑

i=1

1

Ti

[logP (xkey1|θkey1)− logP (xkey1|θkey2)]. (5.1)

In equation (5.1), x = x1:Ti
is an observed sequence with length Ti, N is the

number of observed sequences, and θkey1 and θkey2 are parameters of HMMs
tuned by different keys. The superscript xkey1 represents that the data xkey1

is expected to follow the same distribution as the model θkey1. To apply this
to an estimation of tonality distance, we regard θkey1 as a model tuned by
data of key1 and θkey2 by key2.

Here, we once put the main objective of unsupervised recognition of tonal-
ity aside and examine an intrinsic property for the model to express the
tonality distance by employing the KL divergence, as a preliminary experi-
ment. Different from the previous chapter’s model (Chapter 4), we omitted

2θ is the set of parameters of the model.
3(5.1) is an approximated form of KL divergence specialized in HMM.

46

(a) KL divergences between C major and each of 24
keys.

(b) KL divergences between a minor and each of 24
keys.

Figure 5.1: Tonality distance, i.e., KL divergences, based on the 8-states
neural HSMMs.

the pitch-class histogram (4.2) from the additional contexts since it might be
an unfair advantage to the prediction of tonality. In this preliminary exper-
iment, we trained C major and a minor models separately so that we could
compute KL divergences between major keys and minor ones45.

The obtained result when key1 was fixed to C major is shown in Fig-

ure 5.1a. We arranged keys in ascending order of the KL divergence. Al-
though it would not be surprising that a, F, and G had quite small distances,

4Although we divided pieces to C major or a minor by their main tonalities, here
again, we left local modulations untouched. Therefore, related keys which appeared as
local modulations were expected to have smaller KL divergence

5Also, we reduced the assignment of the “Others” token to avoid the unexpected increase
in its ratio when we included those between remote keys for this preliminary experiment.
In particular, we change the proportion of the “Others” token to 0.2%, which means we
give a unique token index to a pitch-class vector when the accumulated duration of which
is larger than a quarter note.

47

Table 5.1: Counts and proportions of local modulations from the profession-
ally annotated analysis of 20 pieces [21]. The main tonalities are transposed
to C major or a minor.

C major A minor
key count prop. key count prop.
C 36 50.7 a 30 43.5
G 14 19.7 C 16 23.2
d 8 11.3 G 11 15.9
a 6 8.5 e 6 8.7
F 6 8.5 d 5 7.2
g 1 1.4 D 1 1.4
Total 71 100 Total 69 100

the closeness of d would be evidence that the obtained result faithfully re-
flected the targeted pieces. The result is consistent with the professional
analyses for the first 20 pieces (by Riemenschneider numbering) that are
publicly available in the Music21 corpus [21]6, where we could see a consid-
erable amount of modulation from C to d, as summarized in Table 5.1.
Furthermore, Table 5.1 shows all the local modulations that appeared in
the 20 pieces. Thus, the set of related keys from professionally annotated
local modulations: {G, d, a, F, g} was completely included in the closest
six keys in our result. Similarly, the result for the case of a minor showed
considerable agreement with the analysis, as shown in Figure 5.1b.

5.2 Unsupervised Clustering of Tonality by

Teacher-Student Architecture

5.2.1 Framework

In the previous section (Section 5.1), we have seen that the neural HSMM
could assess the similarities between tonalities. Based on the discussion by
Riemann that a chord changes its function in modulation [70], we expect
that the difference in tonality mainly appears in hidden state transitions7.

Although we have examined the difference by separating the pieces by
keys so far, we now classify chord transitions in an unsupervised manner and

6→ footnote 6 in Chapter 4
7Here, we normalize pieces so as not to have key signatures and assume that modula-

tions are mainly within closely related keys.

48

Student Neural HSMM

no em
ission

Sequence of
Observation Indices

Time Step

Observed
Pitch-classes

0 1 2 3 4 5 6 7 8 9 101112 13 14 1516 1718 19 20 21 22 23 24 252627 28 29 30 3132

0 9 9 9 9 9 98282 9 9 2525 2 2 2 2 151513 13 2 2 2 2 1515 5 13 2 2 2 2

Teacher Neural HSMM

 transition networkduration network emission network

Sequence of
Decoded Chord Classes

(#hidden states = 8)
6 1 1 1 1 1 1 0 0 1 1 1 1 2 2 2 2 7 7 1 1 2 2 2 2 7 7 1 1 2 2 2 2

Chord Transition Count

1
1 3

2

1
2

0 1 2 3 4 5 6 7
0
1

2
3
4

5
6
7

normalize

1
1/4 3/4

1

1
1

0 1 2 3 4 5 6 7
0
1

2
3
4

5
6
7

student's transition matrix:
(learnable)

select the
closest student

transition matrix

Loss

student's transition matrix: 0
(learnable)

student's transition matrix:
(learnable)

duration network emission network

(obtained by the forward algorithm
with the selected student model)

Normalized
Chord Transition

Count

Figure 5.2: Illustration for framework of proposed teacher-student architec-
ture.

49

obtain categories of tonality. In order to achieve this, we extend the neural
HSMM with teacher-student architecture, as illustrated in Figure 5.2. The
learning procedure is summarized as follows.

1. Obtain a sequence of hidden states (i.e., chord categories) from the
teacher model.

2. Count transitions between chord categories where we do not include
self-transitions. We normalize the obtained count matrix Mcount = (cij)
so as to meet

∑

j cij = 1.

3. Select the closest matrix in the student model where the similarity is
calculated as Frobenius inner product of count matrix (cij) and student
hidden state transition matrix (qij):

∑

ij cijqij.

4. Calculate the marginal likelihood lnP (x1:T ,θ
m∗

) (where x1:T is a se-
quence of observation indices) with the selected student’s model θm∗

and optimize it with a gradient-based optimizer, where model parame-
ters except for the transition matrix are shared with the teacher model
and fixed.

5.2.2 Teacher Model

We basically follow the implementation of neural HSMM described in the
previous chapter (Chapter 4). We use the eight hidden states model that was
found to represent chords on diatonic scales and frequently borrowed chords.
However, we remove the additional context of pitch-class histograms that
ought to be acquired after the analysis of the entire phrase in order to focus
on a purely transition-based model. Then, the neural network architecture
for hidden state transition probability is modified as follows:

aij = softmaxj(MLP([si;ht])) (5.2)

ok = tanh(MLP(vpitch
k))

ht = LSTM(ok,ht−1)

where aij is transition probability, i, j are indices of hidden states, si is a
learnable feature of hidden states, and ht is an additional context of the
embedded feature of preceding observations by Long-Short Term Memory
(LSTM). ok is an observation embedding that is obtained from the corre-
sponding pitch-class vector vpitch

k .
Given a sequence of observed pitch classes x1:T , we extract the sequence of

chord categories (i.e., the sequence of best hidden states) z∗1:T with the Viterbi

50

algorithm [28] based on the teacher model. Thereafter, we count hidden state
transitions from the sequence of the best hidden states and obtain the count
matrix Mcount = (cij), and then normalize it to meet

∑

j cij = 1. Note that
we do not include self-transitions when we count the hidden state transitions;
thus, the count matrix would be sparse, as illustrated in Figure 5.2.

5.2.3 Student Model

The student model simplifies the neural network for transition probabil-
ity (5.2) to matrices; we denote it qmij , where m ∈ Nm, and Nm is the number
of students. The student transition matrices are implemented as learnable
vectors and thus optimized by learning to become prototypes for tonalities.

Classification is conducted by selecting the student matrix qm
∗

ij that has
the highest similarity to the count matrix received from the teacher model.
The similarity is simply calculated as the Frobenius inner product between
the student’s transition matrix qmij and the count matrix cij:

∑

ij cijq
m
ij .

The teacher model is pre-trained, and parameters except for hidden state
transition networks (5.2) are shared with the student model. When training,
we calculate the marginal likelihood lnP (x1:T ;θ

m∗

) with the selected student
model θm∗8 and optimize it with a gradient-based optimizer9.

5.3 Experimental Setups

Table 5.2: The statistics of dataset.

train dev. test
piece 176 49 65

phrase 1100 301 418

We use the same dataset in Chapter 4, which consists of J. S. Bach’s four-
part chorales from the Music21 Corpus [21]10. Again, we randomly divide
pieces into training, development, and testing sets. In addition, we specially
reserve the first 20 pieces in the Riemenschneider numbering for testing since
we use the human annotations for them [21] as gold data. Then, we split a
piece into phrases at each fermata that indicates the end of a lyric paragraph
in chorales and regard each phrase as an independent sequence. The statistics

8More precisely, the student model with the selected transition matrix aij = qm
∗

ij .
9We use the same optimizer (RAdam [55]) used in Chapter 4

10See also Section 3.2

51

of the dataset are shown in Table 5.2. Here, we only use four-four time (4/4)
pieces and exclude pieces that are not four-part voices or have some problems,
such as a collapsed format. Thus, we have 13 testing pieces with the human
analysis.

As in Chapter 4, we normalize pieces so as not to have key signatures.
While some pieces are not written in the same system of key signatures as the
modern tonal system since they retain the feature of the church modes, we
do not distinguish them beforehand by our human judgment. We transpose
keys in the human analysis [21] in the same manner. The statistics of keys
after normalization in the human analysis for the 13 pieces are shown in
Table 5.3.

Table 5.3: The statistics of keys in the human analysis [21]. We regard
sixteenth notes as one time step. Pieces are pre-transposed so that they have
no key signature.

C F G a d e g
1196 176 360 570 598 8 66

We use the same model settings (Table C.2) and learning setups (e.g.,
training epochs, the mini-batch size, and the dropout setting), as described
in Section 4.4. Token indices are basically assigned in the same manner as
Section 4.4; however, we slightly modify them so as to include pitch classes
the accumulated duration of which is larger than four whole notes. Thus,
the vocabulary is almost the same as Table 4.1, but three tokens are added:
(4, 6, 9) : (E,F♯(E♭),A), (2, 4, 5, 11) : (D,E,F,B), (1, 7, 9) : C♯(D♭),G,A.

5.4 Results and Discussion

5.4.1 Evaluation by Perplexity

As described in Section 3.3.3 and Section 4.5, perplexity is a common evalua-
tion metric that represents the model’s generalization performance. However,
previous works found that models with a larger number of parameters (e.g.,
the number of hidden states) scored smaller (better) perplexity and thus
hardly discovered an optimal setting of hyperparameters only by consulting
perplexity [82, 85]. Therefore, we varied the number of student matrices (i.e.,
cluster of tonalities) from 2 – 16. We expect that an appropriate number of
clusters exists in this range; the modern tonal system has two modes (ma-
jor scale and minor scale, or ionian and aeolian), while the medieval church
modes are often categorized in 8 – 12 modes. In addition, local modulations

52

(a) Perplexities on the development set.

(b) Perplexities on the testing set.

Figure 5.3: Averaged perplexities by three trials with random seed of
{0, 1, 2}. The number of students varies from 2 – 16.

53

are basically within closely related keys [75], which is consistent with the
human annotation in Table 5.3. Obtained perplexity for development and
testing sets are shown in Figure 5.3. We observed that a larger number
of students contributed to a better score of perplexity. However, we also
noticed in Figure 5.3 that when the number of students was larger than 4
or 6, the improvement of perplexity became less significant. This finding is
consistent with our intuition that the number of modes is not so many. How-
ever, we admit that the difficulty of finding an optimal number of students
by perplexity solely.

5.4.2 Evaluation with a Human Analysis

C F G a d e g

0
1

1046.0 20.0 204.0 164.0 60.0 0.0 26.0

68.0 148.0 142.0 386.0 504.0 8.0 40.0

0

500

1000

(a) #students = 2

C F G a d e g

0
1

2

62.0 148.0 32.0 4.0 514.0 8.0 40.0

942.0 20.0 152.0 104.0 12.0 0.0 26.0

110.0 0.0 162.0 442.0 38.0 0.0 0.0

0

200

400

600

800

(b) #students = 3

C F G a d e g

0
1

2
3

34.0 148.0 32.0 4.0 446.0 8.0 40.0

106.0 0.0 38.0 358.0 38.0 0.0 0.0

70.0 0.0 188.0 116.0 68.0 0.0 26.0

904.0 20.0 88.0 72.0 12.0 0.0 0.0

0

200

400

600

800

(c) #students = 4

C F G a d e g

0
1

2
3

4
5

6
7

8
9

10

0.0 132.0 20.0 0.0 184.0 8.0 24.0

82.0 0.0 114.0 0.0 12.0 0.0 0.0

0.0 0.0 0.0 20.0 12.0 0.0 0.0

692.0 20.0 0.0 16.0 0.0 0.0 0.0

22.0 16.0 0.0 4.0 318.0 0.0 16.0

8.0 0.0 0.0 24.0 0.0 0.0 0.0

24.0 0.0 0.0 80.0 8.0 0.0 0.0

48.0 0.0 4.0 110.0 18.0 0.0 0.0

150.0 0.0 44.0 194.0 12.0 0.0 0.0

88.0 0.0 164.0 30.0 0.0 0.0 26.0

0.0 0.0 0.0 72.0 0.0 0.0 0.0

0

100

200

300

400

500

600

(d) #students = 11

Figure 5.4: Confusion matrices of clustering results, where the key that ap-
peared more often in a phrase is chosen for pivot chords.

Next, we consult the human analysis and evaluate to what extent ob-

54

Table 5.4: Precision, Recall, and F1 scores of key detection. The human
analysis [21] is used as a gold data.

#students (i) choose the first (ii) choose the last
P R F1 P R F1

2 56.11 83.17 67.01 55.97 82.95 66.84
3 67.47 79.90 73.16 67.83 79.83 73.34

4 66.76 73.37 69.91 66.76 73.44 69.94
5 65.06 63.57 64.30 65.48 63.42 64.44
6 65.98 56.04 60.60 67.40 56.39 61.41
7 64.99 50.71 56.97 66.26 51.07 57.68
8 68.75 59.66 63.88 69.03 59.87 64.13
9 64.63 50.36 56.61 64.77 50.57 56.80
10 68.04 46.95 55.56 68.61 47.30 56
11 69.03 53.84 60.49 69.32 53.34 60.29
12 64.42 38.78 48.41 65.34 39.99 49.61
13 65.48 40.48 50.03 65.84 41.12 50.62
14 67.61 37.64 48.36 67.54 38.85 49.33
15 67.76 37.29 48.10 67.33 36.58 47.40
16 66.76 37.71 48.20 66.83 37.86 48.33

#students (iii) choose the more often (iv) the most by phrase
P R F1 P R F1

2 55.04 82.95 66.18 55.42 83.13 66.51
3 67.40 80.11 73.21 68.07 82.53 74.61

4 67.33 74.29 70.64 70.48 77.71 73.92
5 65.34 64.56 64.95 69.28 68.07 68.67
6 65.98 57.10 61.22 66.87 60.24 63.38
7 64.99 51.49 57.46 66.87 51.81 58.38
8 69.60 60.3 64.62 74.10 63.25 68.25
9 64.63 51.14 57.10 65.66 51.81 57.92
10 68.75 47.66 56.29 71.69 47.59 57.20
11 70.03 54.47 61.28 74.10 56.63 64.19
12 64.42 39.84 49.23 66.27 41.57 51.09
13 65.91 41.55 50.97 67.47 42.77 52.35
14 67.97 38.71 49.32 71.69 40.36 51.65
15 68.18 37.71 48.56 71.69 36.75 48.59
16 67.83 38.71 49.29 72.89 40.36 51.95

55

tained clusters of modes are consistent with it. We create a confusion matrix
Mconfusion = (dlr), where each element represents the counts of events classi-
fied to the cluster l by the model and key r in the human annotation. Then
we calculate the Precision, Recall, and F1 scores as follows11.

Precision =

∑

l maxr(dlr)
∑

l

∑

r dlr
(5.3)

Recall =

∑

r maxl(dlr)
∑

l

∑

r dlr
(5.4)

F1 = 2×
Precision× Recall

Precision + Recall
(5.5)

For each obtained cluster of tonality l, we regard the corresponding gold
tonality r as one where the maximum numbers of l are assigned: maxr(dlr).
Then, Precision is calculated as (5.3). On the other hand, for each gold tonal-
ity r, corresponding l is assigned by maxl(dlr), and thus Recall is calculated
as (5.4). Thus, Precision and Recall are in the trade-off relation. Therefore,
we consult the F1 score (5.5), which is the harmonic mean of Precision and
Recall.

The obtained scores are shown in Table 5.4. The human analysis often
assigns two keys to pivot chords12. Therefore, we calculated the score with
three settings for pivot chords: (i) choosing the first key, (ii) choosing the
last key, and (iii) choosing the key that appeared more often in a phrase. We
did not find a significant difference among the three settings in the obtained
results. While modulations often occur within phrases, one of our model’s
drawbacks is that it can only detect tonality by phrase. Therefore, we also
examined the score by (iv) selecting the most appeared key in a phrase from
human annotations.

We found that the three-students model achieved the best F1 score in all
settings. While a larger number of students contributed to the improvement
of Precision, it degraded Recall as a trade-off. The confusion matrix for
the three-students model (Figure 5.4b) showed that student 0 was mainly
classified into d minor, student 1 to C major, and student 2 to a minor.
While the human analysis [21] uses key labels of modern tonality, d minor
would correspond to dorian mode. Discovered three modes (C major, a

minor, dorian) are consistent with another analysis [22] where a considerable
number of pieces are classified into dorian mode.

11The definition of Precision and Recall used here ((5.3) and (5.4)) is somewhat different
from the common definition that assumes the number of classes in gold and prediction is
the same. In this study, we use a known definition that is used for the different number
of classes [87].

12A pivot chord is a chord that is shared by multiple keys.

56

The second-best four-students model addedGmajor cluster (Figure 5.4c).
This finding is understandable since G major is the fourth most key in the
human analysis (Table 5.3). Finally, in the 11-students model that scored
the best Precision, we found that some students seemed to represent a mix-
ture of keys. For example, while student 4 was a clear cluster of d minor
(dorian), student 0 was a mixture of d minor and F major. In addition,
there are several classes of a mixture of a minor and C major, where the
proportions of the two keys are varied.

The findings that a larger number of students did not distinguish in-
dependent local keys and constructed mixtures of them would indicate the
limitation of our model that detects tonality by phrase. Nevertheless, it is
consistent with the previous findings of the seamless interchange between a
minor key and its relative major key [73, 84].

5.4.3 Discussion on Transition Probability

Finally, we show the obtained prototypes of chord transitions for the three
discovered tonalities in Figure 5.5b, Figure 5.5c, and Figure 5.5d. Note
that each hidden state represents a chord category, which is shown in Fig-

ure 5.5a. Although the clusters of tonalities were obtained in an unsuper-
vised manner, the transition probabilities of which appropriately reflected
the difference in the feature of chord transitions. For example, the dominant
motion G → C and motion of subdominant or secondary dominant {d,D} →
to dominant G are noticeable in student 1, which represents C major key.
Unlike student 1, in student 2, which represents a minor key, G major chord
(hidden state 3) has a little larger transition probability to a minor chord
than C major chord.

The transition probability from hidden state 7 (d minor or D major
chords) shows the difference among the three tonalities. In student 0 (do-
rian mode), hidden state 7 (s7) has a considerable transition probability to
hidden state 0 (Others, or g as subdominant) and hidden state 4 (A major
as dominant). On the other hand, in student 1 (C major key), s7 has the
largest transition probability to hidden state 3 (G major chord). Thus it
seems to work as the subdominant or secondary dominant. Finally, in stu-
dent 2 (a minor key), s7 tends to proceed to s1 (E major or e minor chord)
as subdominant in a minor.

57

C

G

F

aE, e

A d, D

Others, g, Rest

(a) Top three emission probabilities for each hidden state.

Others, g, Rest E, e a G A C F d, D

(b) The transition distribution of cluster 0 for the 3-students model.

Others, g, Rest E, e a G A C F d, D

(c) The transition distribution of cluster 1 for the 3-students model.

Others, g, Rest E, e a G A C F d, D

(d) The transition distribution of cluster 2 for the 3-students model.

Figure 5.5: Obtained emission and transition distributions for the 3-students
model.

5.5 Chapter Summary

In this chapter, we extended the neural HSMM proposed in the previous
chapter (Chapter 4) so as to be able to discover clusters of tonalities. In
particular, we introduced a teacher-student architecture, where we employed
the previous neural HSMM as the teacher model and prepared the student
models that simplified the architecture of transition probability to multiple
learnable matrices. The number of student matrices corresponded to the
number of clusters of tonalities.

We classified tonalities by selecting the student matrix that achieved the
highest similarity to the count of chord transitions given from the teacher
model. The matrices were tuned by the gradient-based optimization with
the loss of the negative log marginal likelihood by the student model. On the

58

other hand, other parameters were fixed and shared with the teacher model.
We expected the leaned transition matrices of students represented pro-

totypes of tonalities. Since the teacher model was not designed to distinguish
the difference of tonalities by itself, but students discovered it by the learn-
ing, students were not just simplified versions of the teacher model, in this
sense.

We experimented with the proposed model with multiple settings of the
number of students: 2–16 and evaluated the obtained clusters by consulting
the human analysis. As a result, the 3-students model was the most con-
sistent with the human analysis regarding the F1 score. By looking at the
confusion matrix, we found that the obtained three clusters corresponded to
dorian, C major, and a minor, respectively. In addition, the tuned tran-
sition matrices reflected the difference between tonalities, consistently with
known tonic, dominant, and subdominant functions. Thus, our model found
an appropriate cluster of tonalities without relying on human knowledge.

59

Chapter 6

Conclusion

6.1 Achievements

The objective of this study was to recognize chord categories, progression
regularities, and tonality in a unified manner towards the statistical acquisi-
tion of inherent regularities in music. A fundamental difficulty here was that
the three notions of harmony analysis, chords, chord functions, and tonal-
ity, are mutually dependent. Unlike preceding studies of unsupervised chord
function identification that have disconnected this dependency in advance,
we proposed models that analyzed these three notions considering their re-
lationships.

To this end, we first proposed the neural HSMM that automatically
learned chord categories and segmented surface notes to be classified into
them in a situation where latent tonality could affect hidden state transi-
tion probabilities (Chapter 4). Here, we employed HSMM instead of HMM.
Since HSMM equipped the notion of the duration of a chord, it enabled
the model to segment notes without causing the useless increase of self-
transitions. Thus, we could interpret the hidden state transition probabilities
as learned chord progression regularities for the targeted pieces.

In the proposed model, neural networks were employed to calculate emis-
sion, hidden state transition, and duration distributions, where additional
contexts, e.g., preceding chord sequences, pitch-classes, and beat informa-
tion, were embedded (Section 4.2). Such additional contexts were demon-
strated to be effective by ablation studies to improve the model’s generaliza-
tion performance in terms of perplexity1 (Section 4.5). The best eight-state
model discovered clear chord clusters that mainly consisted of the chords on
diatonic scales and commonly-used borrowed chords (Section 4.6.1). Further-

1Backgrounds for perplexity were described in Section 3.3.3.

60

more, transitions between chord categories were found to reflect the differ-
ence of tonalities with a tendency consistent with known chord functions by
separately analyzing major, minor, and dorian pieces, which were manually
classified.

Next, we extended the model to be able to classify tonalities in an unsu-
pervised manner by employing the teacher-student architecture in Chapter 5.
The teacher model was the same as the one proposed in Chapter 4, except for
removing pitch histograms from additional contexts (Section 5.2.2). The stu-
dent models, i.e., multiple learnable matrices of hidden state transition prob-
abilities, were tuned so as to become prototypes of tonalities (Section 5.2.3).
We consulted the human analysis and evaluated to what extent obtained
clusters of modes were consistent with it. As a result, the three-students
model achieved the best F1 score, corresponding to dorian, C major, and
a minor, respectively (Section 5.4.2). Furthermore, learned prototypes for
tonalities (hidden state transition matrices) appropriately reflected the dif-
ference between the three tonalities, consistent with chord functions of tonic,
dominant, and subdominant.

As summarized above, we proposed a model that recognizes chord cate-
gories, regularity of progression, and tonality in a unified manner using the
neural HSMM and its extensions. Removing the prior annotation of key and
chord segmentation presented a new difficulty, as it turned out that the base-
line model could not find the appropriate chord clusters (Section 4.6). The
proposed neural HSMM and additional contexts contributed to the solution.

6.2 Limitations and Future Directions

As the first step of giving up pre-annotated knowledge, we examined the
proposed model on well-studied J. S. Bach’s four-part chorales instead of
proceeding to a broader range of pieces. The four-part chorales of J. S. Bach
were expected to be described by the conventional theory for the most part
but at the same time retained the feature of church modes. What was ex-
pected was appropriately demonstrated by the self-emergent chord functions
and tonalities. Although we admit that the coverage of experimented pieces
was limited, the achievements encourage us to apply our model to more
diverse musical pieces in the future. However, this study remains several
limitations before applying it to diverse musical styles and metrically more
complex pieces. Our immediate future works are the following three issues,
which may also be interrelated.

Unsupervised selection of an appropriate number of clusters

First, we have postponed selecting a unique optimal number of hid-

61

den states; we examined multiple numbers of them instead. Consistent
with previous works [44, 82, 84], we found the difficulty in selecting
the appropriate number of hidden states; a larger number of hidden
states contributed to the improvement of perplexity. In addition, an
appropriate number of hidden states may depend on the granularity at
which we want to describe the knowledge. Nevertheless, studies based
on Bayesian nonparametric methods suggest sophisticated approaches
to select an optimal number of latent parameters [11, 58, 60]. Re-
cent works have further studied the combination of the neural HMM
and Bayesian methods [31, 63]. We plan to extend our model to au-
tomatically find an optimal number of latent states by utilizing these
approaches.

Dynamic modulation detection

In Chapter 5, the proposed model of unsupervised clustering of tonality
was limited to phrase-based clustering. However, the length of each
phrase that was separated by the fermata position was usually two or
three measures, which was not very large, and thus the matrix of counts
of chord transitions was sparse. We found appropriate clusters of modes
from such sparse count matrices. Therefore, we hope to extend it to a
dynamic model. Another direction for dynamic modulation detection
is employing multiple or hierarchical sequences of hidden states [27,
30]. In addition, combining both discriminative and generative models
would be an interesting suggestion [9].

Extensions for more complex musical pieces

The surface structures of J. S. Bach’s four-part chorale dataset that
we used as the corpus for this study were relatively simple and co-
herent, regarding the rich diversity of musical pieces. Therefore, we
would need further extensions to deal with such pieces that have more
complex structures. We show an example of four-part harmonization
(Figure E.1) and organ chorale (Figure E.2) in the Appendix. While
these two are written based on the same hymn2, the organ chorale is
more elaborated.

We expect that the innate regularity in the granularity of chord func-
tions and tonalities would not differ between the two pieces. On the
other hand, we would need the chord segmentation to be more robust
for the difference in surface structures. While we embedded surface in-
formation to some extent by the additional context of pitch-classes (Sec-
tion 4.2), it would not be sufficient for more complicated pieces. A pos-

2“Gelobet seist du, Jesu Christ”

62

sible direction is extending the categorical emission distribution with a
more flexible architecture like Variational Auto Encoder (VAE) [49] or
Vector Quantized Variational Auto Encoder (VQ-VAE) [86]. The com-
bination of HMM and VAE has been studied in unsupervised acoustic
unit discovery, which was found to be more effective than the con-
ventional HMM-GMM since observations would not follow Gaussian
distribution in reality [24, 31].

By solving these immediate issues, we will be able to apply the unsu-
pervised statistical learning of musical grammar to extensive musical pieces.
We expect to find inherent regularities unique to each composer, especially
those in the post romanticism era, which have not been studied well for their
complex harmony.

Not only the finding of composer-dependent musical grammar would be
important in musicology, but it also potentially contributes to computational
systems that interact with humans in music understanding or creation. To
this end, the proposed model conceptually presupposed notions of chords,
chord function, and tonality as described in Chapter 1, unlike some recent
studies aiming directly at music generations (compositions) [36, 43]. These
notions have a long history and contributed to a broad range of musical
activities. With such properly structured knowledge, humans can learn from
examples and creatively utilize them. We hope to improve the proposed
unsupervised statistical learning to provide such knowledge that reflects the
unique characteristics of each composer.

63

Appendix A

Comparison with Conventional

HSMM Trained by the EM

Algorithm

As described in Section 4.3, the widely used expectation maximization (EM)
algorithm possibly leads to bad local optima. We compare the conventional
HSMM trained by EM with a neural HSMM of minimum architecture tuned
by a gradient-based optimizer (RAdam [55]).

A.1 Baseline Neural HSMM

For comparison, we implement a minimum neural HSMM denoted as the
baseline model; it represents distributions as simply learnable weight vectors
or matrices with softmax output layers,

initial hidden state : ρi = P (z0 = i) = softmaxi(π)

hidden state transition : aij = P (zt+1 = j|zt = i) = softmaxj(v
trans.
i)

hidden state duration : piτ = P (τ |zt = i) = softmaxτ (v
dur.
i)

emission : bik = P (xt = k|zt = i) = softmaxk(v
emit
i)

where π, vtrans.
i , vdur.

i and vemit
i are (unnormalized) learnable vectors for

initial state, state transition, state duration and emission distributions re-
spectively. Given these distributions, the marginal likelihood for a sequence
(P (x1:T)) can be calculated by the forward algorithm, as shown in Section
3.3.2. The optimizer takes the negative log marginal likelihood (− logP (x1:T))
as loss and tunes the learnable vectors.

64

A.2 EM Algorithm for HSMM

In this section, we briefly describe the EM algorithm for HSMM, in particular,
the Residential-time HMM [90, 91]. In addition to the forward algorithm
(Section 3.3.2), we need to add the following processes.

A.2.1 Backward Algorithm

The backward variable is defined as follows [90, 91]:

βt(j, τ) ≜ P (xt+1:T |zt:t+τ−1] = j)

where

βt(j, τ) = P (xt+1 = k|zt+1 = j)βt+1(j, τ − 1) = bjkβt+1(j, τ − 1), for τ > 1.

βt(j, 1) =
∑

i\j

P (zt+1 = i|zt = j)P (xt+1 = k|zt+1 = i)
(

∑

τ≥1

P (τ |zt+1 = i)βt+1(i, τ)
)

=
∑

i\j

ajibik

(

∑

τ≥1

piτβt+1(i, τ)
)

Similar to the forward algorithm, we perform scaling to avoid underflow.
The modified backward recursion is following.

β̂i(j, τ) =
βt(j, τ)

P (xt+1:T |x1:t)

Ct+1β̂t(j, τ) =
βt(j, τ)

P (xt+2:T |x1:t+1)
= bjkβ̂t+1(j, τ − 1)

Ct+1β̂t(j, 1) =
βt(j, 1)

P (xt+2:T |x1:t+1)
=

∑

i\j

ajibik

(

∑

τ≥1

piτ β̂t+1(i, τ)
)

where
Ct+1 = P (xt+1|x1:t)

and the following equation is used.

P (xt+2:T |x1:t+1) =
P (x1:T)

P (x1:t+1)

P (x1:t+1) = P (xt+1|x1:t)P (x1:t) = Ct+1P (x1:t)

Note that Ct (t = 1, . . . , T) are calculated in the forward algorithm (see
Section 3.3.2) then passed to the backward algorithm.

65

A.2.2 State Estimation

Similar to the EM algorithm for HMM, variable ξt(i, j) and γt(j) are in-
troduced to estimate hidden states [10, 90, 91]. In addition, the variable
ηt(j, τ) is introduced to estimate residential times. We describe them in the
following.

ξt(i, j):
ξt(i, j) is defined as ξt(i, j) ≜ P (zt−1 = i, zt = j,x1:T), i ̸= j and is
calculated as follows [91].

ξt(i, j) = αt−1(i, 1)P (zt = j|zt−1 = i)P (xt = k|zt = j)
(

∑

τ≥1

P (τ |zt = j)βt(j, τ)
)

= αt−1(i, 1)aijbjk

(

∑

τ≥1

pjτβt(j, τ)
)

Here again, we apply a scaling as follows.

ξ̂(i, j) ≜ P (zt−1 = i, zt = j|x1:T) =
ξt(i, j)

P (x1:T)

=
1

P (xt|x1:t−1)

αt−1(i, 1)aijbjk
P (x1:t−1)

(

∑

τ≥1 pjτβt(j, τ)

P (xt+1:T |x1:t)

)

=
1

Ct

α̂t−1(i, 1)aijbjk

(

∑

τ≥1

pjτ β̂t(j, τ)
)

γt(j):
γt(j) is defined as γt(j) ≜ P (zt = j,x1:T). The recursion for γt(j) is
derived as follows, based on [91].

By using following equation,

P (zt = j, zt+1 = j,x1:T) = P (zt = j,x1:T)− P (zt = j, zt+1 ̸= j,x1:T)

= P (zt+1 = j,x1:T)− P (zt ̸= j, zt+1 = j,x1:T)

66

then,

γt(j) ≜ P (zt = j,x1:T)

= P (zt+1 = j,x1:T)+
(

P (zt = j, zt+1 ̸= j,x1:T)− P (zt ̸= j, zt+1 = j,x1:T)
)

= γt+1(j) +
∑

i ̸=j

(

P (zt = j, zt+1 = i,x1:T)− P (zt = i, zt+1 = j,x1:T)
)

= γt+1(j) +
∑

i ̸=j

(ξt+1(j, i)− ξt+1(i, j))

The initial condition for it is,

γT (j) =
∑

τ≥1

αT (j, τ)

Since the above derivation still holds if we change P (zt = j,x1:T) to
P (zt = j|x1:T), we have,

γ̂t(j) ≜ P (zt = j|x1:T) = γ̂t+1(j) +
∑

i ̸=j

(

ξ̂t+1(j, i)− ξ̂t+1(i, j)
)

γ̂T (j) =
∑

τ≥1

α̂T (j, τ)

ηt(j, τ):
ηt(j, τ) is defined as ηt(j, τ) ≜ P (zt−1 ̸= j, zt = j, τ,x1:T) and is calcu-
lated as follows [91].

ηt(j, τ) ≜ P (zt−1 ̸= j, zt = j, τ,x1:T)

=
(

∑

i ̸=j

αt−1(i, 1)P (zt = j|zt−1 = i)
)

P (xt = k|zt = j)P (τ |zt = j)βt(j, τ)

=
(

∑

i ̸=j

αt−1(i, 1)aij

)

bjkpjτβt(j, τ)

67

Then, the scaling is applied as follows.

η̂t(j, τ) ≜
ηt(j, τ)

P (x1:T)

=
1

P (xt|x1:t−1)

∑

i ̸=j αt−1(i, 1)aij

P (x1:t−1)
bjkpjτ

βt(j, τ)

P (xt+1:T |x1:t)

=
1

Ct

(

∑

i ̸=j

α̂t(i, 1)aij

)

bjkpjτ β̂t(j, τ)

A.2.3 Parameter Re-estimation

Given ξt(i, j), γt(j) and ηt(j, τ), initial hidden state ρj, hidden state tran-
sition aij, hidden state duration pjτ , and emission bjk parameters are re-
estimated as follows. Note that aii = 0 for the Residential-time HMM (Sec-
tion 3.3.2) [90, 91].

ρj =
γ0(j)

∑

j γ0(j)

aij =

∑T

t=1 ξt(i, j)
∑

j

∑T

t=1 ξt(i, j)
, i ̸= j

pjτ =

∑T

t=1 ηt(j, τ)
∑

τ≥1

∑T

t=1 ηt(j, τ)

bjk =

∑T

t=1 γt(j)δ(xt, k)
∑T

t=1 γt(j)

where δ(xt, k) = 1 if xt = k otherwise 0.

A.3 Experiments

A.3.1 Setups

The same dataset and vocabulary as those described in Section 4.4 are used
in this additional experiment. In addition, the same maximum epochs and
early-stop settings in Section 4.4 are used. While the parameters in the
baseline model are updated by mini-batch training (the mini-batch size is
8), the parameter re-estimation in the EM algorithm is conducted at every
end of an epoch. Each value in the (unnormalized) learnable vectors for
the baseline model is initialized by N (0, 1). The parameter matrices for the
conventional HSMM tuned by EM are initialized randomly using uniform
distribution and normalized to meet the sum of probabilities to 1.

68

A.3.2 Results

22 23 24 25 26 27 28 29

#states

4

6

8

10

12

14

16

18

pe
rp

le
xi

ty

Perplexities on the test set
HSMM-EM
HSMM-BASE

Figure A.1: Average perplexities of baseline neural HSMMs (solid) and con-
ventional EM-trained HSMMs (dotted) for testing dataset

We compared the average perplexities1 of baseline neural HSMMs and
conventional HSMMs trained by EM in the number of hidden states {4, 8,
16, 32, 64, 128, 256, 512}. The scores of conventional HSMMs trained by
EM showed rebound at numbers of hidden states larger than 128, which is a
sign of overfitting. On the other hand, the baseline neural HSMMs seemed
to converge into a certain minimum value. In addition, the baseline neural
HSMMs outperformed EM models in terms of perplexity in all numbers of
hidden states.

These results suggest that even the most straightforward neural HSMM
baseline would have the merit of robustness compared to the EM-based con-
ventional model. Note again that the neural HSMMs have shown further
efficiency by elaborated architectures with additional contexts, as reported
in Section 4.5.

1Here, we used the revised version of average perplexity (a) described in Chapter B.

69

Appendix B

Revised Average Perplexity

In Section 4.5, we have reported the average perplexity calculated as follows,

Average perplexity (originally reported) =

∑Nd

n=1 exp
(

− 1
T (n) logP (x1:T (n))

)

Nd

=

∑Nd

n=1 exp
(

− 1
T (n)

∑T (n)

t=1 logP (xt|x1, . . . , xt−1)
)

Nd

where Nd is the number of testing sequences and T (n) is the sequence length
of a testing sequence x1:T (n) ; this value is a simple average of the perplexity
of each sequence.

However, considering the perplexity can be interpreted as an approxi-
mated cross-entropy between the actual (but unknown) probability and an
estimated probability as mentioned in Section 3.3.3, we report revised per-
plexities calculated as follows12.

Average perplexity (revised(a)) = exp
(

−

∑Nd

n=1 logP (x1:T (n))
∑Nd

n=1 T
(n)

)

= exp
(

−

∑Nd

n=1

∑T (n)

t=1 logP (xt|x1, . . . , xt−1)
∑Nd

n=1 T
(n)

)

Furthermore, if the n-gram model P (xt|x1, . . . , xt−1) is different for each

1In addition, we also modified the sequence length T (n) not to count the artificial start
symbol.

2Note that we further take a simple average with three random seeds in both scores of
original and revised average perplexities.

70

sequence, the following definition should be applied [57].

Average perplexity (revised(b)) = exp
(

−
1

Nd

Nd
∑

n=1

1

T (n)
logP (x1:T (n))

)

= exp
(

−
1

Nd

Nd
∑

n=1

1

T (n)

T (n)
∑

t=1

logP (xt|x1, . . . , xt−1)
)

Although the original average perplexity (Table B.1) and revised ones
(Table B.2, Table B.3) show similar results, the revised calculations would
be more appropriate considering the background of the perplexity. In our
case, both revised perplexities (a) and (b) could be used; the additional
context of the histogram (4.2) may implicitly change the n-gram probability
for sequence, but the other contexts do not break the n-gram assumption3.

Table B.1: Average perplexity (originally reported as Table 4.3)

#hidden states 4 8 16 32
BASE 16.47 11.42 7.96 5.64
NHSMM 14.43 9.36 6.14 4.74

−HISTO 15.18 9.78 6.51 4.92
−LSTM 14.94 9.67 6.47 5.07
−BEAT 14.85 9.65 6.29 4.77
−PITCH 16.88 10.64 7.23 5.38

Table B.2: Revised average perplexity (a)

#hidden states 4 8 16 32
BASE 16.65 11.35 7.86 5.52
NHSMM 14.25 9.14 5.97 4.62

−HISTO 14.91 9.45 6.33 4.78
−LSTM 14.65 9.49 6.37 4.97
−BEAT 14.49 9.42 6.16 4.65
−PITCH 16.46 10.21 6.89 5.11

3In addition, the additional contexts are not random variables like the input features
in Input-Output HMM [7].

71

Table B.3: Revised average perplexity (b)

#hidden states 4 8 16 32
BASE 16.64 11.37 7.88 5.53
NHSMM 14.21 9.12 5.95 4.61

−HISTO 14.89 9.44 6.31 4.78
−LSTM 14.63 9.47 6.33 4.96
−BEAT 14.47 9.41 6.13 4.63
−PITCH 16.46 10.21 6.89 5.12

72

Appendix C

Notations and Model Settings

C.1 Notations

Table C.1: Notations in the neural HSMM.

N : number of sequences in a mini-batch
n ∈ N : a sequence index in a mini-batch
S : number of hidden states
V : vocabulary size
T : maximum time step of a sequence
t ∈ T : time step
zt : hidden state at t
i, j ∈ S : state indices
D : maximum hidden state duration
τ ∈ D : duration index
xt : index of observed pitch-class content at t
k ∈ V : observed symbol index
x1:T : an observed sequence
piτ : duration probability
ρi : initial hidden state probability
π : unnormalized initial hidden state probability
aij : hidden state transition probability
bik : emission probability
si : hidden state embedding

v
pitch
k : binary pitch-class vector

vhisto : observed pitch-class histogram
rhisto : pitch-class histogram encoding
ok : observation encoding
lk : emission bias

73

C.2 Model Settings

Table C.2: The size of layers and related equations.

layer size eq.

hidden layer size of MLP3

for transition and duration probability 16 (4.1), (4.6)

dimension of hidden state embedding vector (si) 16 (4.1), (4.6), (4.8)

hidden layer sizes of MLP2

for histogram embedding 8 (4.2)

hidden and layer sizes of MLP2

for observation embedding 16 (4.3)

dimension of observation embedding vector (ok) 16 (4.3), (4.8)

dimension of LSTM hidden vector ht 16 (4.4)

hidden layer size of MLP2

for beat encoder 8 (4.7)

dimension of beat embedding vector rbeatt 8 (4.7)

C.3 Implementation

The code is available at:
https://github.com/yui-u/emerge-chord-function

74

https://github.com/yui-u/emerge-chord-function

Appendix D

Analysis on BWV267 by the

neural HSMM

75

time step 10 2 3 4 5 6 7 8 9 10 1112 13141516 17 18 19 20 21 22 2324 25 26 27282930 3132

token index 0 0 0 0 4 4 2020 1 1 7 7 2 2 4 4 1 1 19 19 3 3 4343 29 29 4444 0 0 0 0

hidden states 4 3: 4: 7: 6: 7: 2: 7:

residential time 1 4 3 2 1 4 3 2 1 4 3 2 1 2 1 2 1 2 1 2 1 2 112 4 3 2 1 5678

-

time step 10 2 3 4 5 6 7 8 910 1112 13141516 1718 19 20 21 22 23 24 2526 27 28 2930 3132

token index 1 1 1 1 0 0 1919 4 4 1010 0 0 0 0 4 4 20 20 16 16 0 0 7 7 7 7 0 0 0 0

hidden states 4 7: 3: 4: 3: 4: 7: 7:

residential time 1 4 3 2 1 4 3 2 1 2 1 2 1 4 3 2 1 4 3 2 1 2 112 4 3 2 1 1234

-

time step 10 2 3 4 2 1 7 8 9 10 1112 131415 16 1718 19 20 21 22 23 24 2526 27 28 2930 3132

token index 0 0 0 0 1 1 5151 7373 9 9 4 4 2 2 5151 1 1 22 22 0 0 3333 1 7 0 0 0 0

hidden states 4 3: 7: 5: 4: 2: 3: 7:

residential time 1 4 3 2 1 2 1 2 1 4 3 2 1 2 1 2 1 2 1 4 3 2 112 4 3 2 1 1234

-

4: 3: 6: 3:

2: 3: 3:

2: 6: 7: 3:

phrase No. 2

phrase No. 1

phrase No. 3

human analysis - I / C IV / C V/C V7/C vi / C V6 / C ii/C ii7/C V7 / C I / C

human analysis - V6 / C I / C IV6 / C I6 / C IV / C V / C V7 / C I / C

human analysis - I / C V6 / C iii6 / C IV6 / C V6 / C I / C V7 / C I / C

3:

time step 10 2 3 4 5 6 7 8 9 10 111213 14 1516 1718 19 20 2122 23 24 25 26 27 28 2930 3132

token index 4 4 1010 0 0 2424 4 4 464679 79 2424 4 4 79 79 2 2 55 23 62 62 79 79 1 1 1 1

hidden states 1 3: 4: 3: 4: 6: 0:

residential time 1 2 1 2 1 4 3 2 1 6 5 4 3 2 1 2 1 4 3 2 1 2 112 2 1 2 1 1234

-

5: 7:2: 4:

time step 10 2 3 4 5 6 7 8 9 10 111213 14 1516 17181920 21 22 23 24 25 26 27 28 29 30 3132

token index 0 0 3333 0 0 0 0 4 4 2020 1 1 1212 6 6 6 6 31 31 79 79 3 3 3 3 6 6 6 6

hidden states 4 3: 3: 4: 2: 1: 2: 2:

residential time 1 2 1 2 1 4 3 2 1 4 3 2 1 2 1 2 1 4 3 2 1 2 112 2 1 2 1 1234

-

4: 1:7: 7:

time step 10 2 3 4 5 6 7 8 9 10 1112 1314 15 16 1718 19 20 2122 23 24 25 26 27 28 29 30 3132

token index 6 6 1818 3 3 2828 3 3 3 3 2121 79 79 7979 50 50 7979 3 3 64 64 18 18 6969 6969

hidden states 4 1: 2: 4: 7: 1:

residential time 1 4 3 2 1 2 1 2 1 4 3 2 1 2 1 4 3 2 1 2 1 2 112 2 1 2 1 1234

-

2: 2:1: 7:2: 4:

phrase No. 6

phrase No. 5

phrase No. 4

- IV/ C = I / F V/F I6 / FV2/F V6/5 / F I / F ii / G V7 / G I / G = V / C

human analysis - I / C IV / C V6/C V6/5/C
IV6/5/d V6 / d i / d V / d

human analysis - V6/d V6/5/d i/d i6/d iv6/d ii6o/d i6/4 / d V7 / d i / d

4:

human analysis

Figure D.1: Chord classification by the neural HSMM on BWV267 (phrase
No.1–4)

76

time step 10 2 3 4 5 6 7 8 9 10 111213 14 1516 1718 19 20 2122 23 24 25 26 27 28 2930 3132

token index 4 4 1010 0 0 2424 4 4 464679 79 2424 4 4 79 79 2 2 55 23 62 62 79 79 1 1 1 1

hidden states 1 3: 4: 3: 4: 6: 0:

residential time 1 2 1 2 1 4 3 2 1 6 5 4 3 2 1 2 1 4 3 2 1 2 112 2 1 2 1 1234

-

5: 7:2: 4:

time step 10 2 3 4 5 6 7 8 9 10 111213 14 1516 17181920 21 22 23 24 25 26 27 28 29 30 3132

token index 0 0 3333 0 0 0 0 4 4 2020 1 1 1212 6 6 6 6 31 31 79 79 3 3 3 3 6 6 6 6

hidden states 4 3: 3: 4: 2: 1: 2: 2:

residential time 1 2 1 2 1 4 3 2 1 4 3 2 1 2 1 2 1 4 3 2 1 2 112 2 1 2 1 1234

-

4: 1:7: 7:

time step 10 2 3 4 5 6 7 8 9 10 1112 1314 15 16 1718 19 20 2122 23 24 25 26 27 28 29 30 3132

token index 6 6 1818 3 3 2828 3 3 3 3 2121 79 79 7979 50 50 7979 3 3 64 64 18 18 6969 6969

hidden states 4 1: 2: 4: 7: 1:

residential time 1 4 3 2 1 2 1 2 1 4 3 2 1 2 1 4 3 2 1 2 1 2 112 2 1 2 1 1234

-

2: 2:1: 7:2: 4:

phrase No. 6

phrase No. 5

phrase No. 4

- IV/ C = I / F V/F I6 / FV2/F V6/5 / F I / F ii / G V7 / G I / G = V / C

human analysis - I / C IV / C V6/C V6/5/C
IV6/5/d V6 / d i / d V / d

human analysis - V6/d V6/5/d i/d i6/d iv6/d ii6o/d i6/4 / d V7 / d i / d

4:

human analysis

time step 10 2 3 4 5 6 7 8 9 10 11 1213 14 1516 1718 19 20 2122 23 24 25 26 27 28 2930 3132

token index 3 3 12 12 0 0 4545 2121 60 6079 79 7979 8 8 11 11 7979 21 21 53 53 11 11 373737 37

hidden states 4 3: 7: 4: 0: 4: 0:

residential time 1 4 3 2 1 2 1 2 1 4 3 2 1 4 3 2 1 4 3 2 1 2 112 4 3 2 1 1234

-

7: 7:2: 0:

time step 10 2 3 4 5 6 7 8 9 ... 12 13 ... 16 17 19 20 2122 23 24 29

token index 9 9 79 79 2 2 61 61 16 16 1 0 2 4 9 9 29 1010

hidden states 4 6: 3: 4: 3: 2:

residential time 1 2 1 2 1 2 1 2 1 4 3 2 2 2 1 2 1

-

5:

1

1

4: 0: 7:

0 1919

4 3 2 1

18

1

6:

2 4

2 1

5:

2 1

7:

1 1

25 28...

4 3 2 1

29 0 0

30 31

2222

3:

2 1

323334

2 1

4:

7979

3536

2 1

2:

4242

3536

2 1

7:

1616

3738

1

2:

1010

2 4 3 2 1 4 3 2 1

39 42...

7:

1 1 7 7

43 46...

3:

0 0 0 0

phrase No. 8

phrase No. 7

human analysis - i / d
ii / C viio/C I6 / C viio7/g i / g iio2 / g v6/g v6/5/g i / g V7 / g I / g

human analysis - iii / C vi / C V / C I / C vi / C iii / C I / C ii6/5 / C ii7 / C V / C V7 / C I / C

Figure D.2: Chord classification by the neural HSMM on BWV267 (phrase
No.5–8)

77

Appendix E

An Example of Chorale and

Instrumental Music

7












 



  

 

  

   

  

  

   

 

  

 

 

 



 























Figure E.1: Four-part chorale BWV64.2 (Riemenschneider No.160) by J. S.
Bach

78

Figure E.2: Organ chorale BWV604 by J. S. Bach

79

Glossary

authentic cadence is a cadence of dominant to tonic . 7

borrowed chord is a chord that cannot be described by a chord degree in
the current key but by another key . 7

chord is a combination of pitches that concurrently sound . 80

chord degree is the degree between the root note of a chord and that of
the tonic chord . 6

chord function is a category or role of a chord that is defined based on the
regularity of chord progressions . 5

church mode or a Gregorian mode is a modal scale used in medieval music
that is often categorized by 8 – 12 modes . 13, 43, 52, 61

dorian is one of the church modes, the tonic of which is d . 13, 27, 36,
39–41, 44, 45, 56, 57, 59, 61

modulation is a change of tonality . 7, 46

Neapolitan II is a transformed chord, the root note of which is ♭II . 7

root note is the bottom note for a chord arranged as tertian harmony . 6,
80

secondary dominant is a chord that has a dominant function to the fol-
lowing chord . 7, 40, 57

tertian harmony is the basis of chords that are constructed with thirds .
7

80

Acronyms

CNN Convolutional Neural Network. 25

D dominant. 5–8, 11, 12, 40, 41, 59, 61

DNN Deep Neural Network. 25

EM expectation maximization. 16, 24, 35, 64–66, 68, 69

FNN feedforward neural network. 21

GMM Gaussian Mixture Model. 25

HMM hidden Markov model. v, 3, 4, 12–16, 18, 24–27, 35, 43, 46, 60, 62,
63, 66

HSMM hidden semi-Markov model. 3, 4, 14, 15, 18, 19, 27, 28, 30, 31,
33–36, 38–40, 43, 45, 46, 48, 50, 58, 60, 61, 64, 65, 68, 69

KL divergence Kullback-Leibler divergence. 46, 47

LSTM Long-Short Term Memory. 22, 23, 25, 32, 37, 50

MLE maximum likelihood estimation. 24

MLP multi layer perceptron. 21, 37

NLP Natural Language Processing. 1, 24

PCFG probabilistic context-free grammar. 12

POS part-of-speech. 1, 15, 24

RNN Recurrent Neural Network. 22, 23, 32

81

S subdominant. 5–7, 11, 12, 40, 41, 57, 59, 61

T tonic. 5–8, 11, 12, 40, 41, 59, 61

tanh hyperbolic tangent function. 21–23

VAE Variational Auto Encoder. 63

VQ-VAE Vector Quantized Variational Auto Encoder. 63

82

Bibliography

[1] B. J. Aarden. Dynamic melodic expectancy. The Ohio State University,
2003.

[2] J. Albrecht and D. Shanahan. The use of large corpora to train a new
type of key-finding algorithm: An improved treatment of the minor
mode. Music Perception: An Interdisciplinary Journal, 31(1):59–67,
2013.

[3] E. Aldwell, C. Schachter, and A. Cadwallader. Harmony and voice
leading. Cengage Learning, Inc, 2018.

[4] T. Anders and E. R. Miranda. A computational model that generalises
schoenberg’s guidelines for favourable chord progressions. In 6th Sound
and Music Computing Conference., 2009.

[5] E. Arisoy, T. N. Sainath, B. Kingsbury, and B. Ramabhadran. Deep
neural network language models. In Proceedings of the NAACL-HLT
2012 Workshop: Will We Ever Really Replace the N-gram Model? On
the Future of Language Modeling for HLT, pages 20–28, 2012.

[6] H. Bellmann. About the determination of key of a musical excerpt.
In R. Kronland-Martinet, T. Voinier, and S. Ystad, editors, Computer
Music Modeling and Retrieval, pages 76–91, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[7] Y. Bengio and P. Frasconi. Input-output hmms for sequence processing.
IEEE Transactions on Neural Networks, 7(5):1231–1249, 1996.

[8] T. Berg-Kirkpatrick, A. Bouchard-Côté, J. DeNero, and D. Klein. Pain-
less unsupervised learning with features. In Human Language Technolo-
gies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 582–590, Los Angeles,
California, June 2010. Association for Computational Linguistics.

83

[9] G. Bideault, L. Mioulet, C. Chatelain, and T. Paquet. A hybrid crf/hmm
approach for handwriting recognition. In International Conference Im-
age Analysis and Recognition, pages 403–410. Springer, 2014.

[10] C. M. Bishop. Pattern Recognition and Machine Learning. Springer
New York, 2006.

[11] Y. Bisk and J. Hockenmaier. An HDP Model for Inducing Combinatory
Categorial Grammars. Transactions of the Association for Computa-
tional Linguistics, 1:75–88, 03 2013.

[12] P. Blunsom and T. Cohn. A hierarchical pitman-yor process hmm for
unsupervised part of speech induction. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 865–874, 2011.

[13] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling tem-
poral dependencies in high-dimensional sequences: Application to poly-
phonic music generation and transcription. In Proceedings of the 29th
International Coference on International Conference on Machine Learn-
ing, ICML’12, page 1881–1888, Madison, WI, USA, 2012. Omnipress.

[14] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L.
Mercer. Class-based n-gram models of natural language. Computational
Linguistics, 18(4):467–480, 1992.

[15] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and
T. Robinson. One billion word benchmark for measuring progress in
statistical language modeling. arXiv preprint arXiv:1312.3005, 2013.

[16] J.-T. Chien and Y.-C. Ku. Bayesian recurrent neural network for lan-
guage modeling. IEEE transactions on neural networks and learning
systems, 27(2):361–374, 2015.

[17] C. Christodoulopoulos, S. Goldwater, and M. Steedman. Two decades
of unsupervised POS induction: How far have we come? In Proceed-
ings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 575–584, 2010.

[18] C. Christodoulopoulos, S. Goldwater, and M. Steedman. A bayesian
mixture model for pos induction using multiple features. In Proceed-
ings of the 2011 conference on empirical methods in Natural Language
Processing, pages 638–647, 2011.

84

[19] A. Clark. Combining distributional and morphological information for
part of speech induction. In 10th Conference of the European Chapter
of the Association for Computational Linguistics, Budapest, Hungary,
Apr. 2003. Association for Computational Linguistics.

[20] T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.

[21] M. S. Cuthbert and C. Ariza. music21: A toolkit for computer-aided
musicology and symbolic music data. In Proceedings of the 11th Inter-
national Society for Music Information Retrieval Conference, 2010.

[22] L. Dahn. So how many bach four–part chorales are there?, 2018. http:
//www.bach-chorales.com/HowManyChorales.htm.

[23] D. de La Motte and V. Primožič. Harmonielehre. Bärenreiter, 1980.

[24] J. Ebbers, J. Heymann, L. Drude, T. Glarner, R. Haeb-Umbach, and
B. Raj. Hidden markov model variational autoencoder for acoustic unit
discovery. In InterSpeech, pages 488–492, 2017.

[25] S. R. Eddy. What is a hidden markov model? Nature biotechnology,
22(10):1315–1316, 2004.

[26] L. Feisthauer, L. Bigo, M. Giraud, and F. Levé. Estimating keys and
modulations in musical pieces. In 18th Sound and Music Computing
Conference, 2020.

[27] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov
model: Analysis and applications. Machine learning, 32(1):41–62, 1998.

[28] G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–
278, 1973.

[29] M. Gales and S. Young. The application of hidden markov models in
speech recognition. Found. Trends Signal Process., 1(3):195–304, Jan.
2007.

[30] Z. Ghahramani and M. I. Jordan. Factorial hidden markov models.
Machine learning, 29(2):245–273, 1997.

[31] T. Glarner, P. Hanebrink, J. Ebbers, and R. Haeb-Umbach. Full
bayesian hidden markov model variational autoencoder for acoustic unit
discovery. In Interspeech, pages 2688–2692, 2018.

85

http://www.bach-chorales.com/HowManyChorales.htm
http://www.bach-chorales.com/HowManyChorales.htm

[32] S. Goldwater and T. Griffiths. A fully bayesian approach to unsupervised
part-of-speech tagging. In Proceedings of the 45th annual meeting of the
association of computational linguistics, pages 744–751, 2007.

[33] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press,
2016.

[34] M. Granroth-Wilding and M. Steedman. Statistical parsing for harmonic
analysis of jazz chord sequences. In International Computer Music Con-
ference, pages 478–485, 2012.

[35] R. Groves. Automatic harmonization using a hidden semi-markov
model. In AIIDE Workshop, pages 48–54, 2013.

[36] G. Hadjeres, F. Pachet, and F. Nielsen. Deepbach: a steerable model
for bach chorales generation. In International Conference on Machine
Learning, pages 1362–1371. PMLR, 2017.

[37] D. Harasim, F. C. Moss, M. Ramirez, and M. Rohrmeier. Exploring
the foundations of tonality: statistical cognitive modeling of modes in
the history of Western classical music. Humanities and Social Sciences
Communications, 8(1):5, 2021.

[38] M. R. Hassan and B. Nath. Stock market forecasting using hidden
markov model: a new approach. In 5th International Conference on
Intelligent Systems Design and Applications (ISDA’05), pages 192–196.
IEEE, 2005.

[39] H. Hermansky, D. P. W. Ellis, and S. Sharma. Tandem connection-
ist feature extraction for conventional hmm systems. In 2000 IEEE
International Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No.00CH37100), volume 3, pages 1635–1638, 2000.

[40] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

[41] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[42] D. J. Hu and L. K. Saul. A probabilistic topic model for unsupervised
learning of musical key-profiles. In 10th International Society for Music
Information Retrieval Conference, pages 441–446, 2009.

86

[43] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, C. Hawthorne,
A. M. Dai, M. D. Hoffman, and D. Eck. Music transformer: Generating
music with long-term structure. arXiv preprint arXiv:1809.04281, 2018.

[44] N. Jacoby, N. Tishby, and D. Tymoczko. An information theoretic ap-
proach to chord categorization and functional harmony. Journal of New
Music Research, 44(3):219–244, 2015.

[45] M. Johnson. Why doesn’t EM find good HMM POS-taggers? In Pro-
ceedings of the 2007 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 296–305, Prague, Czech Republic, June 2007.
Association for Computational Linguistics.

[46] B. Juang and L. R. Rabiner. A probabilistic distance measure for hidden
markov models. AT&T technical journal, 64(2):391–408, 1985.

[47] D. Jurafsky. Speech & language processing. Pearson Education India,
2000.

[48] Y. Kim, S. Wiseman, and A. M. Rush. A tutorial on deep latent variable
models of natural language. arXiv preprint arXiv:1812.06834, 2018.

[49] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[50] H. V. Koops, W. B. de Haas, J. A. Burgoyne, J. Bransen, A. Kent-
Muller, and A. Volk. Annotator subjectivity in harmony annotations
ofpopular music. Journal of New Music Research, 48(3):232–252, 2019.

[51] C. L. Krumhansl. Cognitive foundations of musical pitch. Oxford Uni-
versity Press, 2001.

[52] S. Kullback and R. A. Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[53] F.-F. Kuo and M.-K. Shan. A personalized music filtering system based
on melody style classification. In 2002 IEEE International Conference
on Data Mining, 2002. Proceedings., pages 649–652. IEEE, 2002.

[54] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction
to the application of the theory of probabilistic functions of a markov
process to automatic speech recognition. Bell System Technical Journal,
62(4):1035–1074, 1983.

87

[55] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On
the variance of the adaptive learning rate and beyond. In International
Conference on Learning Representations, 2020.

[56] N. N. López, L. Feisthauer, F. Levé, and I. Fujinaga. On local keys,
modulations, and tonicizations. In 7th Digital Libraries for Musicology,
2020.

[57] Y. Miao, E. Grefenstette, and P. Blunsom. Discovering discrete latent
topics with neural variational inference. In Proceedings of the 34th Inter-
national Conference on Machine Learning - Volume 70, ICML’17, page
2410–2419. JMLR.org, 2017.

[58] D. Mochihashi, T. Yamada, and N. Ueda. Bayesian unsupervised word
segmentation with nested Pitman-Yor language modeling. In Proceed-
ings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Pro-
cessing of the AFNLP, pages 100–108, Suntec, Singapore, Aug. 2009.
Association for Computational Linguistics.

[59] J. Mulholland and T. Hojnacki. The Berklee Book of Jazz Harmony.
Berklee Press, 2013.

[60] M. Nakano, J. L. Roux, H. Kameoka, T. Nakamura, N. Ono, and
S. Sagayama. Bayesian nonparametric spectrogram modeling based on
infinite factorial infinite hidden markov model. In 2011 IEEE Work-
shop on Applications of Signal Processing to Audio and Acoustics (WAS-
PAA), pages 325–328, 2011.

[61] M. Navarro, M. Caetano, G. Bernardes, L. Nunes de Castro, and J. M.
Corchado. Automatic generation of chord progressions with an artifi-
cial immune system. In International Conference on Evolutionary and
Biologically Inspired Music and Art, pages 175–186, 2015.

[62] J.-F. Paiement, D. Eck, and S. Bengio. A probabilistic model for chord
progressions. In Proceedings of the Sixth International Conference on
Music Information Retrieval (ISMIR), 2005.

[63] A. Pakman, Y. Wang, C. Mitelut, J. Lee, and L. Paninski. Neural
clustering processes. In International Conference on Machine Learning,
pages 7455–7465. PMLR, 2020.

88

[64] H. Papadopoulos and G. Peeters. Large-scale study of chord estimation
algorithms based on chroma representation and hmm. In 2007 Interna-
tional Workshop on Content-Based Multimedia Indexing, pages 53–60.
IEEE, 2007.

[65] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of train-
ing recurrent neural networks. In International conference on machine
learning, pages 1310–1318. PMLR, 2013.

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

[67] W. Piston and M. DeVoto. Harmony. W. W, Norton & Company, 1978.

[68] L. R. Rabiner. A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[69] J.-P. Rameau. Treatise on Harmony. Dover Publications, 1971.

[70] H. Riemann. Harmony Simplified: Or the Theory of the Tonal Functions
of Chords. Augener, 1896.

[71] A. Riemenschneider, editor. 371 harmonized chorales and 69 chorale
melodies with figured bass by Johann Sebastian Bach. G. Schirmer, Inc.,
1986.

[72] M. Rohrmeier. Towards a generative syntax of tonal harmony. Journal
of Mathematics and Music, 5(1):35–53, 2011.

[73] M. Rohrmeier and I. Cross. Statistical properties of tonal harmony in
bach’s chorales. In 10th International Conference on Music Perception
and Cognition, pages 619–627, 2008.

[74] H. Schenker. Harmony. University of Chicago Press, 1957.

[75] A. Schoenberg. Structural Functions of Harmony (revised edition). W.
W. Norton & Company, 1969.

89

[76] H. Tanie, T. Inamura, and Y. Nakamura. Construction of proto-symbol
space in which stored motion pattern by continuous hmms adopted topo-
logical structure. In The 17th Annual Conference of the Japanese Society
for Artificial Intelligence, pages 215–215, 2003.

[77] D. Temperley. The tonal properties of pitch-class sets: Tonal impli-
cation, tonal ambiguity, and tonalness. Computing in Musicology, 15,
2007.

[78] D. Temperley. The tonal properties of pitch-class sets: Tonal impli-
cation, tonal ambiguity, and tonalness. Computing in Musicology, 15,
2007.

[79] D. Temperley and E. W. Marvin. Pitch-class distribution and the iden-
tification of key. Music Perception, 25(3):193–212, 2008.

[80] K. Tran, Y. Bisk, A. Vaswani, D. Marcu, and K. Knight. Unsuper-
vised neural hidden markov models. In Proceedings of the Workshop on
Structured Prediction for NLP, pages 63–71, 2016.

[81] H. Tsushima, E. Nakamura, K. Itoyama, and K. Yoshii. Function- and
rhythm- aware melody harmonization based on tree-structured parsing
and split-merge sampling of chord sequences. In Proceedings of 18th
International Society for Music Information Retrieval Conference, pages
502–508, 2017.

[82] H. Tsushima, E. Nakamura, K. Itoyama, and K. Yoshii. Generative sta-
tistical models with self-emergent grammar of chord sequences. Journal
of New Music Research, 47(3):226–248, 2018.

[83] Y. Ueda, Y. Uchiyama, T. Nishimoto, N. Ono, and S. Sagayama. Hmm-
based approach for automatic chord detection using refined acoustic
features. In 2010 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 5518–5521. IEEE, 2010.

[84] Y. Uehara, E. Nakamura, and S. Tojo. Chord function identification
with modulation detection based on hmm. In R. Kronland-Martinet,
S. Ystad, and M. Aramaki, editors, Perception, Representations, Image,
Sound, Music, pages 166–178, Cham, 2021. Springer.

[85] Y. Uehara and S. Tojo. The simulated emergence of chord function. In
J. Romero, T. Martins, and N. Rodŕıguez-Fernández, editors, Artificial
Intelligence in Music, Sound, Art and Design, pages 264–280, Cham,
2021. Springer.

90

[86] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete
representation learning. In NIPS, 2017.

[87] Y. Wang, H. C. Leung, S. Yiu, and F. Y. Chin. MetaCluster 5.0: a
two-round binning approach for metagenomic data for low-abundance
species in a noisy sample. Bioinformatics, 28(18):i356–i362, 09 2012.

[88] C. W. White and I. Quinn. Chord Context and Harmonic Function in
Tonal Music. Music Theory Spectrum, 40(2):314–335O, 11 2018.

[89] D. Yu, L. Deng, and G. E. Dahl. Roles of pre-training and fine-tuning in
context-dependent dbn-hmms for real-world speech recognition. In NIPS
2010 workshop on Deep Learning and Unsupervised Feature Learning,
2010.

[90] S.-Z. Yu. Hidden semi-markov models. Artificial intelligence,
174(2):215–243, 2010.

[91] S.-Z. Yu and H. Kobayashi. An efficient forward-backward algorithm
for an explicit-duration hidden markov model. IEEE signal processing
letters, 10(1):11–14, 2003.

91

Publications

Journal papers

[1] Y. Uehara and S. Tojo. Chord Function Recognition as Latent State
Transition. SN Computer Science, (Accepted).

[2] Y. Uehara, S. Tojo, and R. Uehara. Unsupervised Discovery of Tonality
in Bach’s Chorales. Journal of Intelligence Informatics and Smart Tech-
nology, volume 8, October 2022, (In Press).

International conferences

[3] Y. Uehara, S. Tojo, and R. Uehara. Unsupervised Discovery of Tonality in
Bach’s Chorales. In Proceedings of the Sixteenth International Conference
on Knowledge, Information and Creativity Support Systems (KICSS 2021),
2021.

[4] Y. Uehara and S. Tojo. The Simulated Emergence of Chord Function.
In: J. Romero, T. Martins, N. Rodŕıguez-Fernández, editors, Artificial
Intelligence in Music, Sound, Art and Design. EvoMUSART 2021, Lecture
Notes in Computer Science, vol 12693, pages 264-280, Springer, Cham,
2021.

[5] H. Yamamoto, Y. Uehara, and S. Tojo. Jazz Harmony Analysis with ϵ-
Transition and Cadential Shortcut. In Proceedings of the 17th Sound and
Music Computing Conference (SMC2020), pages 316-322, 2020.

[6] Y. Ogura, H. Ohmura, Y. Uehara, S. Tojo, and K. Katsurada.
Expectation-based Parsing for Jazz Chord Sequences. In Proceedings of
the 17th Sound and Music Computing Conference (SMC2020), pages 350-
356, 2020.

92

[7] Y. Uehara, E. Nakamura, and S. Tojo. Chord Function Identification with
Modulation Detection Based on HMM. In: R. Kronland-Martinet, S. Ys-
tad, and M. Aramaki, editors, Perception, Representations, Image, Sound,
Music. CMMR 2019, Lecture Notes in Computer Science, vol 12631, pages
166-178, Springer, Cham, 2021.

93

	1 Introduction
	1.1 Motivation
	1.2 Research Objective
	1.3 Dissertation Outline

	2 Harmony Theory
	2.1 An Exemplary Chord Progression
	2.2 Techniques Beyond the Stereotype
	2.3 Questions to the Conventional Theory

	3 Background
	3.1 Statistical Learning for Music
	3.1.1 Key or mode detection
	3.1.2 Chord function identification

	3.2 J. S. Bach's Four-part Chorales
	3.3 Technically Related Works
	3.3.1 Hidden Markov Model
	3.3.2 Hidden Semi-Markov Model
	Forward Algorithm for HSMM

	3.3.3 Perplexity
	3.3.4 Neural Networks
	Multi Layer Perceptron
	Recurrent Neural Network
	Long-Short Term Memory

	3.3.5 Unsupervised Part-of-Speech Induction

	4 Automatic Chord Segmentation and Chord Function Recognition by Neural HSMM
	4.1 Framework
	4.2 Architecture of Neural HSMM
	4.2.1 Hidden State Transition Probability
	4.2.2 Initial Hidden State Probability
	4.2.3 Duration Probability
	4.2.4 Emission Probability

	4.3 Training
	4.4 Experimental Setups
	4.5 Evaluation by Perplexity
	4.6 Qualitative Analysis for Induced Clusters
	4.6.1 Induced Clusters and Model's Perplexities
	4.6.2 Hidden State Transitions

	4.7 Discussion on an Analysis by the Model
	4.8 Chapter Summary

	5 Unsupervised Clustering of Tonality
	5.1 Tonality Distance by KL Divergence; a Preliminary Experiment
	5.2 Unsupervised Clustering of Tonality by Teacher-Student Architecture
	5.2.1 Framework
	5.2.2 Teacher Model
	5.2.3 Student Model

	5.3 Experimental Setups
	5.4 Results and Discussion
	5.4.1 Evaluation by Perplexity
	5.4.2 Evaluation with a Human Analysis
	5.4.3 Discussion on Transition Probability

	5.5 Chapter Summary

	6 Conclusion
	6.1 Achievements
	6.2 Limitations and Future Directions

	A Comparison with Conventional HSMM Trained by the EM Algorithm
	A.1 Baseline Neural HSMM
	A.2 EM Algorithm for HSMM
	A.2.1 Backward Algorithm
	A.2.2 State Estimation
	A.2.3 Parameter Re-estimation

	A.3 Experiments
	A.3.1 Setups
	A.3.2 Results

	B Revised Average Perplexity
	C Notations and Model Settings
	C.1 Notations
	C.2 Model Settings
	C.3 Implementation

	D Analysis on BWV267 by the neural HSMM
	E An Example of Chorale and Instrumental Music

