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Abstract

Object Detection plays an essential role in many practical applications such as video anal-

ysis, image understanding, security, etc. Recent years have witnessed the breakthroughs of

Deep Learning based methods in various applications in daily life images. Deep Learning-

based methods achieve human-level performances on classification tasks for identifying

successfully more than tens of thousands of categories such as animal species, vehicles,

household objects, etc. However, deep neural networks are still limited in specific medical

image domains. The neural networks often fail for reasons such as a small number of

training data, difficulty characterizing the target objects, or a small number of differences

among the target objects.

This study is motivated by the need for a comprehensive method for medical image

domains to accelerate the diagnosis and treatment processes. However, the target objects

of medical image domains often (i) have less visual information, (ii) have a small number

of training data, and (iii) have various appearances. This dissertation detects objects with

a few features appearing in medical images. This study assumes that each target category

has enough distinctive features to identify even with a small number of features. Finding

those distinctive features is essential to detecting objects with less visual information.

In the case of small training data, the problem becomes more difficult since the method

must find the correct distinctive features within a few samples. A particular surround-

ing object may have a high probability of appearing along with the target object. With

a small number of training samples, the deep neural network detectors view the back-

ground information to identify the objects. This study focuses on finding features that

characterize the target objects rather than the unique background features to overcome

the problem. The segmentation-driven mechanism is proposed to guide the detector to

focus only on the regions of the target objects. The mechanism is integrated into a neural
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network detector to form Segmentation-driven RetinaNet to filter out the background by

the segmentation mask and then detect and identify the objects in the filtered image.

While the characteristic features are efficient for detection tasks, distinctive features

are essential for identifying the objects. Detecting objects in grayscale images is also a

challenging problem. Grayscale images with only one color channel have much smaller

feature spaces than general color images. The objects in grayscale images are characterized

only by outer shapes, connectivity, and the intensity of the pixels. The attention-driven

mechanism is proposed by replacing the segmentation with the attention mask to guide

the deep network in focussing on the distinctive features of the target objects.

Finally, this study explores the relationship among the various appearances of a target

object category. An object category may have several appearances, and each appearance

only shows some category features. In many cases, an appearance of one category may

have more similarities to that of another category than its intraclass appearances. Mo-

tivated by the taxonomy of animals, this study investigates the hierarchical multi-label

classifier and the category hierarchy structure. Training samples of each category are

clustered concerning the appearances. Multiple labels following the category hierarchy

structure are assigned to training samples. The hierarchical classifier is integrated with

the Segmentation-driven RetinaNet to form a unified network for detection.

Experiments are conducted on realistic datasets from the protozoa and DNA Profiling

domains as examples of objects with less visual information in color and grayscale images,

respectively. Experiments show that the Attention-driven mechanism effectively guides

the neural network detectors to find the distinctive characteristic features of the target

objects. Even with at most five samples per subcategory for training, this study success-

fully trained the proposed method for detecting the protozoa in the micrographs. With

16 training samples, the proposed method achieves the highest performance on the DNA

Profiling image dataset. Besides, the integrated hierarchical multi-label classifier boosts

the detection performance for the polymorphism problems.

Keywords: Detection, Segmentation, Identification, Protozoa, Genome Pro-

filing
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Chapter 1

Introduction

1.1 Background

This dissertation focuses on the detection, segmentation, and identification tasks of objects

in 2D images. The identification task aims to predict the class or category of the object

that appears in the input image. The identification tasks assumes that the input image

contains exactly one object instance belonging to one of the predefined target categories to

make it easier. The object takes the majority of the area of the input image. Localization

aims to predict the position of the object instance in the input image. In localization,

the input images also are assumed to contain exactly one object. Unlike identification

problems, the object takes a smaller proportion in the images. The problem would be

more complex and challenging for typical images that contain more than one object. The

detection aims to localize and identify the multiple objects in the input image. Detection

is more complex than identification and localization since the detection problems require

the systems to indicate multiple objects or perceive when no object is in the images. The

segmentation aims to indicate which pixels belong to the object instances. Figure 1.1

shows an example of detection, segmentation, and identification tasks.

Object Detection plays an essential role in Computer Vision. Recent years have wit-

nessed a breakthrough in Deep Learning-based methods in various applications in daily

images. Those methods are able to exceed human performances on large-scale image
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Dog

Detection

Segmentation

Identification

Figure 1.1: Examples of identification, segmentation, and detection task. (Image credit:
Shutterstock)

datasets which contain thousands of categories such as ImageNet [5]. However, in specific

domains such as medical image analysis, the Deep Learning-based methods often fail for

several reasons, such as the small number of training data [6; 7], or a small number of

differences among the target objects [8].

Since Deep Learning requires a massive amount of training datasets, they do not succeed

on small datasets or the domains that are difficult to collect training data. Various

appearances of a category make it difficult to capture the generalized appearance. Very

similar objects require the method’s capabilities to find the most distinctive features

among those objects.

The unavailability of the dataset is one of the critical problems of deep learning in

medical imaging [6]. The development of large medical imaging data is quite challenging

since the annotation from the experts requires extensive time and often requires multiple

expert opinions to overcome human error. While Deep Learning-based detection methods

require many training data samples to achieve good performances, detecting target objects

in small training sets remains a problem. The input image contains an arbitrary number of
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target object instances. Therefore, each region in the input image is treated independently.

In an image, the number of regions containing the target object instances is much less

than the number of background regions. It leads to the class imbalance problem from

the target categories and background. The small number of training data makes it more

difficult to train a detector for the target categories.

This dissertation focuses on detecting objects with less visual information in specific

domains such as medical image domains. They are objects that have fewer distinctive fea-

tures compared to ordinary objects. This study aims to learn the most distinctive features

among various appearances and similar categories of objects with less visual information.

This study chooses protozoa micrograph and DNA profiling images as examples of ob-

jects with less visual information. Figure 1.2 shows an example of protozoa, whose target

species are Giardia lamblia (Gla), Iodamoeba butschilii (Ibu), Toxoplasma gondi (Tgo),

Cyclospora cayetanensis (Cca), Balantidium coli (Bco), Sarcocystis (Sar ), Cystoisospora

belli (Cbe) and Acanthamoeba (Aca). Figure 1.3 shows an example of DNA profiling

image.

In general, an object instance can be decomposed into multiple components. Each

component can be decomposed into multiple parts. The decomposing process can be

applied further until reaching lines and curves. The relationship of decomposed parts

can be captured as a tree structure. Figure 1.4 shows some examples of part-based tree

structures of general objects such as planes and trucks. The depth of the tree is log(p),

where p is the number of primitive parts that can be decomposed from the object.

This study focuses on detecting and identifying objects with less visual information.

Compared with other general objects, the objects with less visual information have much

shallower part-level hierarchical tree structures. This study selects the domain of protozoa

micrograph as an example for objects in color images and the DNA profiling image domain

as examples for objects in grayscale images. Figure 1.5 shows the structure of some

protozoa in biology field. However, the appearances of protozoa show only the cell wall,

nucleus, and sometimes flagellum, while other parts are invisible in the micrograph. The

depth of protozoa part-based hierarchical tree structure is around 1 or 2. Figure 1.6
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Figure 1.2: Examples of the target protozoa. (The micrographs were provided by Dr.
Masaharu Tokoro at Kanazawa University)

(a) (b)

Figure 1.3: An example of DNA Profiling image. (The images were provided by Professor
Kiyoshi Yasukawa at Kyoto University)
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Hierarchical
StructureObject

Figure 1.4: Examples of part-based hierarchical tree structure. (Image taken from [9])

shows an example of part hierarchy of protozoa. In the example, the instance of the

protozoa can be decomposed into cell wall, macronucleus, and micronucleus. The other

parts are invisible in this image. It is difficult to decompose those parts further. DNA

profiling images contain trajectories in grayscale. The trajectories contain lines, curves,

and differences in pixel intensities. The part-based hierarchical tree structure is also

shallower than other general objects. Therefore, protozoa micrograph and DNA profiling

images can be considered objects with less visual information.

1.2 Research Motivation

Automated analysis methods for medical image domains are in demand. It would reduce

the time and human effort to diagnose and give treatment. Moreover, training medical

experts also require a lot of time and cost. Therefore, automated methods are significant

when analyzing, diagnosing, and treating large groups of people, such as crises, disasters,

or pandemics. However, there is no ”silver bullet” for all the existing problems. This

study is motivated by the need for a comprehensive method for medical image domains
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Figure 1.5: Detail parts of protozoa in biology field. (Image credit: biologydiscussion.com)

Paramecium

Cell wall Macronucleus Micronucleus

Figure 1.6: Example of part hierarchy of protozoa
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to accelerate the diagnosis and treatment processes.

Building an automated system for medical image domains requires computer vision

techniques and medical knowledge. The target objects in medical domains are often

captured by special devices. The characteristics of target objects are therefore different

compared to daily life objects. The visual features of those objects is not easy to formal-

ize. That leads to the challenge of learning to generalize those medical objects with the

computer.

What will be elucidated in this dissertation:

• Is it feasible to detect and identify objects with a small amount of information?

• What kind of features should be detected from the target objects?

Those are the underlying fundamental questions to pursue this dissertation. An object

has its original features that characterize its appearance. However, its appearance changes

to adapt to the changes in the environment. The original features and their changes make

the object unique even though, in most cases, the original features are not shown in

the images. Capturing the characterizing features and the unique changes is the key to

detecting objects with less visual information.

1.3 Research Question and Solutions

The dissertation’s research question is: “How can we identify a category with a small

number of visual information?”. An object can be described by its characteristic features.

Based on the characteristic features, the appearance of the object in the image can be

reconstructed. However, the characteristic feature sets of two different categories may

overlap. Generally, the structures of target objects change to adapt to the environment

during evolution and natural selection. By external influences, the appearance may also

roughly change during the lifetime. This dissertation assumes that even though the ap-

pearance roughly changes, each target category has distinctive features that are enough

to identify. This assumption holds for the case of an object with less visual informa-

7



tion. Finding those distinctive features is the key to detecting objects with less visual

information.

The Deep Learning model will learn the characteristics or distinctive features depending

on the purpose. The characteristic features will be learned in applications such as image

generating or image synthesis. From the learned features, the generator produces an image

toward the goal of the task. On the other hand, image classification learns distinctive

features to distinguish the differences between the target objects. Generally, learning

all the distinctive features is unnecessary. A few distinctive features are may enough

to classify the category among the target categories. This research aims to find the

characteristic features that are also distinctive to characterize the target objects. The

characteristic features are represented as latent factors or latent structural relationships

that make the target objects different from each other. To answer the research question,

this research focuses on the following problems:

• Finding characteristic features: This study focuses on finding characteristic

features of the target objects in the case of the small dataset and the case of

grayscale images. The interesting characteristic features are shape features and

texture features. In the case of small datasets, irrelevant features or backgrounds

are often selected as distinctive features to detect and identify the target object.

This study considers the protozoa and genome profiling images to find the texture

and shape features. The segmentation-driven mechanism is proposed to guide the

deep learning-based methods to focus only on the regions of the target objects.

• Finding distinctive features: This study is interested in the protozoa species that

share similar round shapes. Textures inside the cell wall are essential to identify

those protozoa. In genome profiling images, objects are characterized only by the

outer shape, the connectivity, and the intensities of the pixels. The primary to

improve the identification accuracy of the target objects in both cases is to find

the distinctive features. The attention-driven mechanism is proposed to refine the

segmentation results and focus on the distinctive features.

8



• Relationship of appearances in the polymorphism of the appearances:

Dividing the training samples into sub-categories helps improve the identification

performances in the case of polymorphism of the appearance of the target objects.

It would clarify the differences between samples of a category. Since similar samples

are clustered into the same sub-category, it is easier to generalize their common

features. Compared to the goal of detecting categories, detecting the sub-category

forces the network to learn more efficient features to distinguish the similar ap-

pearances of a different species. Dividing the training samples into sub-categories

helps to find the distinctive features to distinguish various appearances of a target

object. The divided sub-categories are treated independently to find the most dis-

tinctive features. However, the similarities between intraclass sub-categories, which

are divided from the same category, are not considered in this manner. The unique

differences contribute the most to identifying a category among the target category

set. To reveal the similarities of intraclass sub-categories, hierarchical multi-label

classifiers (in place of flat multiclass classifiers) are applied to this problem. Hi-

erarchical multi-label models provide a better view of prediction stages, including

taxonomy predictions. A hierarchical neural network classifier is proposed to solve

this problem.

Figure 1.7 shows the main structure of the sub-topics of this dissertation to solve this

research question. Each input sample only contains a smaller set of the characteristic

feature set of the target category. To identify the category of the input sample, a set of

characteristic features must be extracted correctly. This set of features is often smaller

than the distinctive feature set of the category. The task is to determine which category

the smaller set belongs to. Chapter 3 and 4 aim to extract the characteristic and distinctive

features from the input images. Chapter 5 explores the relationship between appearances

of the same category.
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Figure 1.7: Topic structure of this dissertation.

1.4 Technical Challenges

Object Detection is an important and challenging research topic. There are several chal-

lenges in the detection of objects with less visual information, such as:

• Finding the characteristic features among similar object category: Find-

ing characteristic features is essential to detecting the target objects. To annotate

objects in the images, the most common method is to draw rectangle bounding

boxes around the objects. Since most annotators are only specialized for a specific

domain, annotations which are more complex than rectangle bounding boxes are

not affordable. The target objects do not often take entire regions indicated by the

bounding boxes, irrelevant objects or backgrounds are included in the annotations.

In small datasets, a specific irrelevant feature may have a high probability of ap-

pearing along with the target category. The problem becomes more sensitive when

similar categories are in the target category set. Since there are few differences, the
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irrelevant features have high probabilities of being chosen as distinctive features.

• Small number of training data: In general, objects with less visual information

don’t often come with a small number of training data problems. With enough

training data, the Deep Learning-based methods can learn a category’s common

features and the most distinctive features to distinguish it from other categories.

Detecting objects with less visual information is also achieved with enough number

of training data. However, in the case of small training data, the problem becomes

more difficult since the method is required to be adapted the correct distinctive

features within a few samples. Almost all the category features appear one time

through the small data; thus those features can be chosen as distinctive features

to distinguish from other categories. The methods are easy to fall into learning

irrelevant features; therefore, they often fail to detect unseen object’s appearances in

the test images. This study focuses on detecting objects with less visual information

in the case of the small number of training data.

• Polymorphism of the appearances of the target: The objects may have var-

ious appearances in different images. For example, an animal grows over time;

thus, the image’s size changes. Images of a face taken from different poses and also

different appearances. In this study, this phenomenon is refered to polymorphism

of appearance. The polymorphism of appearance makes it difficult to capture the

generalized features of the category. A deep understanding of the causes of poly-

morphism of appearance helps to obtain the characteristic features and eliminate

the irrelevant features. The target objects show different appearances in different

image samples. Each appearance only shows some of the characteristic features of

the category. To correctly identify the category, the characteristic and distinctive

features in the appearance should be detected to infer the category’s feature set.
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1.5 Contribution

This dissertation detects and identifies objects with less visual information in the images.

To that end, this study aims to (1) find the characteristic features of the target objects,

(2) find the distinctive features of the target objects and (3) explore the relationship

between the appearances of the target objects. Experimental evaluations are performed

on various datasets, including the protozoa dataset and DNA Profiling image dataset.

The contributions of this dissertation are as follows:

• Establishing Segmentation-driven mechanism to find the characteristic fea-

ture of the target objects. The proposed mechanism guides the Deep Learning-based

methods to focus on the regions of the target objects. In the case of the small train-

ing data, this dissertation introduces Segmentation-driven RetinaNet to detect, seg-

ment, and identify the target objects. The proposed method applied segmentation

to filter out all the background, then detect and identify the object. Experiments

are conducted in the protozoa dataset to show the effectiveness the the proposed

method. Even with at most five samples per sub-category for training, the proposed

method can successfully detect and identify the species of protozoa.

• Establishing Attention-driven mechanism to find the distinctive feature of the

target objects. The attention mechanism guides the Deep Learning-based methods

to focus on the distinctive features that contribute for identification. This disserta-

tion introduces the Attention-driven RetinaNet for both protozoa and DNA profiling

domains. The segmentation mask is replaced with the attention mask, which fo-

cuses on the important parts of the object instances in the input image. Even with

16 images for training for the DNA profiling domain, the proposed method achieves

promising results for clinical analysis.

• Integrating hierarchical multi-label classifier for detecting the objects with

less visual information. This study explores the relationship of appearances of the

target categories to solve the polymorphism of the appearance problem. Charac-
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terizing the target objects based on their hierarchical relationships improves the

learning process on common features of categories and distinctive features of sub-

categories. This study introduces Segmentation-driven Hierarchical RetinaNet that

integrates the hierarchical classifier with a detection network for the less visual in-

formation objects. Applying the hierarchical structure for clustering the different

appearances clears the ambiguity in each category. Experiments are conducted on

the protozoa dataset. In these experiments, 5 samples per life-cycle stage are being

used to train the detection methods. The proposed method achieves the highest

mAP, precision, and recall values over the related works.

1.6 Dissertation Organization

Structure of this dissertation is as follows:

• Chapter 1: Introduction

This chapter mainly introduces preliminary concepts, technical challenges, research

question, contribution, and the outline of this dissertation. Brief views of the pro-

posed methods are also given.

• Chapter 2: Related Work

This chapter describes a literature review on related studies on the protozoa field

and DNA profiling domain. Related deep learning architectures are also reviewed.

• Chapter 3: Finding the characteristic features

This chapter presents the Segmentation-driven mechanism for neural network detec-

tors. The proposed mechanism helps the neural network to focus on finding the char-

acteristic features of the target categories, even in the case of small datasets. The or-

ganization of the Segmentation-driven RetinaNet, which integrates the segmentation-

driven mechanism into a neural network detector, is also presented in this chapter.

The Segmentation-driven RetinaNet is evaluated on the protozoa dataset provided

by Dr. Masaharu Tokoro at Kanazawa University.
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• Chapter 4: Finding the distinctive features

This chapter introduces the Attention-driven mechanism for improving the identifi-

cation accuracy of neural network detectors. This mechanism focuses on finding the

target objects’ distinctive features and essential parts. The mechanism is evaluated

on both protozoa and DNA profiling image datasets.

• Chapter 5: Polymorphism

This chapter explores the relationship of various appearances of the target cate-

gories. A hierarchical classifier is proposed to be intergrated into a neural network

detector to solve the polymorphism problem. The method is evaluated on the pro-

tozoa dataset.

• Chapter 6: Conclusions and Future Work

Finally, a summary of the presented methods is shown in Chapter 6. Besides,

this dissertation also discusses possible improvements and extensions for detecting

objects with less visual information.
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Chapter 2

Related Work

This section reviews existing methods for various species of protozoa and the related deep

network architectures to the proposed model.

2.1 Protozoa Domain

Due to the limitation of data accessing, there are few works on the same set of species.

Previous works also try to classify protozoa along with other kingdoms like metazoa or

fungi. Table 2.1 shows the target species of protozoa in previous works.

To the best of our knowledge, this study is the first to perform automatic detection for

protozoa images with backgrounds. Previous works only perform protozoa classification

and localization where segmentation of target objects are performed manually. On the

other hand, detection tasks require the capability of prediction when there are multiple

instances or no instance in the image.

Most of previous works [14; 15] on segmentation are semi-automatic. They use shape

features to segment out rounded shape objects and need manual selections to get the right

regions of protozoa. Automatic segmentation methods try to find elliptical objects in the

images [10; 16].

Suzuki et al. [10] applied ellipticity to segment out the protozoa. The ellipticity, ratio

between geodesic distances, curvature variance, salience variance, red texture, average in
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Table 2.1: Target Species of Previous Works

[10] [11] [12] [13] This study

Plasmodium malariae O
Balantidium coli O
Giardia intestinalis O O O
Entamoeba histolytica O
Cyclospora cayetanensis O
Iodamoeba butschlii O O
Emdolimax nana O
Blastocystis spp.
Acanthamoeba O
Sarcocystis O
Toxoplasma gondi O
Cystoisospora belli O
Trypanosoma spp. O

red channel, average number of regional minima in gradient, perimeter, area, and moments

are extracted. They used Optimum-Path Forest [17] as the classifier to identify the species

and achieved 97.46% of accuracy on protozoa. Yang et al. [18] focused on 7 parasitic eggs

from helminths and applied Artificial Neural Network on size, shape and smoothness fea-

tures. They tested 87 ordinary images and 100 impurity images and achieved 84% of

accuracy. Flores et al. [19] extracted color density histogram and orientation informa-

tion from parasite eggs in 0◦, 45◦, 90◦ and 135◦. They achieved 92.16% of accuracy by

applying Multiclass Support Vector Machine. Zou et al. [20] build a retrieval system

by decomposing the input images into multiple color channels and extracting SIFT [21]

features. Sergey Kosov et al. [22] used DeepLab-VGG-16 [23] and Conditional Random

Field [24] to identify 20 species of EM.

2.2 Genome Profiling Overview

Analyzing gene information is essential for understanding the genetic changes under the

effect of chemicals or the natural environment. Genome Profiling (GP) [25] is a wide-

range-applicable method that has the potential for analyzing the gene information of
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individual cells or species. GP helps to understand why people react differently to the

same medicine and to develop proper diagnoses and treatments [26]. In the field of foren-

sic medicine, GP can also be performed to analyze molecular phylogenetics of plasmid

samples to identify the virus that infected a body when the autopsy is difficult [27; 28].

Species identification and classification are essential in many practical domains such as

parasitology, microbes, biological treatment, and scientific research. The identification of

species depends on the kind of species that may require different methods. For example,

the Trichosporon species [29] have been classified depending on their morphological and

biochemical properties, the shape of segregating cells, and the amount of xylose contained

in a cell. To identify whether the blood samples are from humans, serological methods

[30; 31] and DNA analysis using polymerase chain reaction (PCR) amplification. Im-

munological methods apply non-specific reactions for orangutans and gorillas [32; 33]. It

is necessary to prepare specific antibodies of the species for immunological examinations.

The human-specific sequences are detected when applying DNA analysis in the D17Z1

myoglobin gene [34; 35], D-loop region [36; 37], cytochrome b gene [38], and 16S rRNA

gene of mitochondrial DNA [39], 285 rRNA [40], and TP53 gene [41]. Those conventional

DNA analyses require extensive human effort, technical skill, and expensive equipment

and reagents. Therefore, a simple, non-radioactive, non-toxic, and wide-range-applicable

method that can be applied to any species such as GP is in demand.

In the GP method, DNA is PCR-amplified using a random primer (random PCR).

Temperature gradient gel electrophoresis (TGGE) is performed. TGGE, which is reliable,

reproducible, and rapid, allows the simultaneous analysis of multiple samples. TGGE is

suitable for detecting known and unknown mutations in large genes where high sensitiv-

ity is required. TGGE separate DNA fragments of the same length but with different

sequences. The principle of the TGGE is that their partial denaturation reduces the

electrophoretic mobility of double-stranded DNA fragments. Domains that have identical

melting temperatures Tm lead to the melting of DNA fragments within discrete domains.

Once the domain reaches its melting temperature Tm at a particular position in the tem-

perature gradient gel, the segment of the DNA double helix transitions turns to melted

17



M
ob
ili
ty

Low
High

Temperature

Low
High

Temperature

TGGE Image

Scheme Real Example

Spiddos

Figure 2.1: Example of TGGE images.

single-stranded DNA. The migration of the DNA molecule then stops. The segment of

DNA melts from the lowest Tm to the highest Tm. Molecules with different sequences stop

migrating in the temperature gradient gel at different positions. DNA fragments are now

separated. The technique provides the profile of the genetic diversity of the dominant

populations. DNA fragments in TGGE profiles are visualized as images of trajectories. A

set of spiddos (species identification dots) that are the flexion points of the trajectories on

the TGGE profile image are extracted. The spiddos pattern corresponds to the melting

temperatures of the double-stranded DNA and the amplified fragments. Two types of

reference DNA, whose melting temperatures are known, are prepared as TGGE internal

standards to calibrate the extracted spiddos. The spiddos pattern is then compared to

the referenced patterns in the database to identify the species. Pattern Similarity Score

(PaSS) is calculated as a similarity metric to compare two spiddos patterns [42] for gene

identification.

However, the TGGE method has limitations, such as its labor-intensive nature and

intensity detection after electrophoretic separation. The image processing method is one

of the keys to speeding up the species identification process. In this study, an image-based
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method is proposed to extract the spiddos pattern automatically. The method takes

TGGE images as input, performs preprocessing techniques to enhance the trajectories,

and detects the spiddos. The TGGE image contains target trajectories that correspond

to the primers. Each target trajectory has a flexion point that indicates the melting

temperature of the primer. Due to the capture devices, the TGGE images also contain

several uninterested lines and dots, which are considered as outliers due to the capture

devices. From the image processing point of view, spiddos detection on TGGE images

has several technical challenges, such as the target trajectories being disconnected, heavy

noise, unstable brightness, trajectory overridden, and similar appearances between the

spiddos and uninterested flexion points. It is difficult to keep track of the disconnected

lines. Ridge detection [43; 44; 45] is able to detect the line in the form of multiple

small parts; that is hard to keep track of the line and find out the coordinate of the

spiddos. Heavy noise, unstable brightness, and trajectory overridden prevent global image

processing methods from enhancing the target trajectories.

The Genome Profiling method is developed by Nishigaki et al. [25] in the bio-industry

field and has been applied for many practical domains. The GP method can be applied

to identify species, including human [46; 47; 48], plants [49; 50; 51], bacteria [52; 53; 54],

insect [55; 56], and fungi [29]. Kinebuchi et al. [27] applied GP to identify human and

other 12 species that may be found at crime case. Thanakiakrai et al. [57] identifies the

meat species by using low resolution melting for two direct-triplex real-time PCR. [58; 59]

clusters the species and draw the taxonomy by grouping the closest genomes of the species.

However, GP requires a large amount of labor to perform and intensity detection after

electrophoretic separation. The domain experts decide the number of DNA fragments in

the test and the references with its certain melting temperatures. Spiddos patterns are

assigned manually by the domain experts. This study aims to build an image processing

method that can automatically extract the spiddos patterns from the TGGE images.
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2.3 Neural Network Architecture

Object Detection has a long and rich history in the Computer Vision field. One of the

earliest successes is the classic object detector with the sliding-window paradigm. Lecul

et al. [60; 61] apply convolutional neural networks for handwritten digits. Viola and

Jones [62] apply boosted cascade object detector for face detection. Felzenszwalb et al.

proposed Deformable Part-based Model [63; 64; 65] to detect objects and its parts in the

images.

With the resurgence of deep learning, one-stage and two-stage detectors came to domi-

nate for Object Detection. In two-stage detectors, the first stage produces a sparse set of

candidate proposals that may contain all the objects, then the second stage classifies the

proposals into whether foreground or background classes. One-stage detectors directly

predict object bounding boxes for images with no intermediate task needed. Modern

Deep learning-based detectors apply backbone network as the basic feature extractor to-

ward different requirements on accuracy and efficiency. Backbone networks for detection

are networks for classification tasks taking out the last fully connected layer. Deeper and

densely connected backbone such as Resnet [66], ResNeXt [67], or AmoebaNet [68] is

applied for high accuracy while light-weight backbone such as MobileNet [69], ShuffleNet

[70], or SqueezeNet [71] is applied for time efficiency or deploying on lightweight devices.

Figure 2.2: Architectures of some backbone networks used in detection networks.
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Selective Search [72; 73] methods are applied to produce the spare set of candidate

proposal in the first two-stage detectors. Region-based Convolutional Neural Networks

(R-CNN) [1] applied a convolutional neural network to the second stage to improve the

accuracy of the detector. Faster R-CNN [2] integrates Region Proposal Networks with the

second stage into a single convolution network to boost the speed and accuracy. Several

improvements have been proposed for R-CNN framework [74; 75; 76; 4; 66].

Figure 2.3: Region-based Convolytional Neural Network [1]

Figure 2.4: Faster Region-based Convolytional Neural Network [2]
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Sermanet et al. proposed OverFeat [77] as the first one-stage object detector network.

Single Shot Detector (SSD) [78; 79] and YOLO [80; 81] are proposed for the real-time

detection. RetinaNet [3], which is widely applied for protozoa detection, derived from

Region-based Convolutional Neural Networks (RCNN) [1]. RetinaNet [3] uses a backbone

network to extract the feature from the input image and Feature Pyramid Network (FPN)

[74] to represent the feature at multiple scale levels. RetinaNet achieves the state-of-the-

art in detection taks on COCO benchmark [82] which contains daily life objects and its

contexts. However, deep networks haven’t succeeded in the domains that have a small

number of training samples.

Figure 2.5: RetinaNet [3]

Mask RCNN [4] is also derived from RCNN to perform segmentation at the instance

level. Instance level segmentation is to predict whether a pixel belongs to a specific

instance or background. Mask RCNN predicts segmentation mask patches corresponding

to bounding boxes of detection task. The final segmentation result is the combination

of all the patches. Since this study applies segmentation information only to enhance

the accuracy of the identification task, the model only performs semantic segmentation

which tries to predict whether a pixel belongs to protozoa or background. SharpMask [83]

proposed a segmentation refinement technique that takes outputs of all the convolutional

layers to produce a sharp segmentation result. The proposed network in this study only

refers to the outputs of blocks of the backbone to reduce the number of parameters.

Different from Mask RCNN and SharpMask where the segmented masks of the objects

take major proportions in the patch, regions of protozoa only take small proportions in

the image. In the scenario that the background area is much larger than the areas of

22



the objects, the network just needs to predict ”background” for all the pixels to get high

accuracy. Therefore, the proposed network has to deal with the case of predicting all

”zero”. This study employs ResNet50 [66] (which groups its layers into 4 blocks) as the

backbone network for RetinaNet and the proposed model. The proposed network is built

up from RetinaNet to inherit the capability of detection. A segmentation network is

implemented into RetinaNet to produce a segmentation mask for the input image. The

segmentation mask is applied to filter out the background and feed the filtered image to

RetinaNet again to identify the species of protozoa in the image. For DNA profiling image

dataset, this study introduces Attention-driven RetinaNet that predicts segmentation,

refines by attention mask and detects on the attention results.

Figure 2.6: Mask RCNN [4]
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Chapter 3

Finding the characteristic features

3.1 Characteristic Features for Object Detection

In recent years, a large number of objects can be detected successfully by Deep learning-

based methods. In large-scale datasets, Deep Learning-based methods can achieve human-

level performances for general daily life objects. Daily life objects generally have a rich

source of features. They can be decomposed into plenty of parts. There are parts that

only one category has. Detectors can choose one of those parts as a distinctive feature to

distinguish from other categories. However, performing object detection on medical image

domains is still a challenging problem. The appearances of objects in medical images are

much simpler compared to daily life objects. Moreover, Deep Learning-based methods

are thrusting for a large amount of training data to achieve good performance. Perform-

ing object detection with small training sets is still a remaining challenge. This study

assumes that the target objects are irrelevant to the background. Otherwise, background

information can be considered a characteristic feature. In the case of a small training set,

a particular background or surrounding object may have a high probability of appearing

accompanied by the target object. For example, if there are only 5 samples per category, a

particular background will have at least 1
5
= 20% along with the target objects. However,

one specimen may contain multiple species of protozoa. Therefore, the background should

be considered as irrelevant to the target objects. To achieve good detection performance,
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this study aims to find the characteristic feature of the target objects.

This study takes protozoa as an example for target objects with less visual information.

Protozoans are a group of single-celled eukaryotic organisms. Since they can be found in

the natural environment, they are clustered into Environmental Microorganisms (EM).

They can infect and live parasitically in human or animals bodies. They may cause

diseases such as intestinal diseases, diarrhea, muscle pain, transitory edema. They also

cause damages to the eyes, brain, or other organs when living parasitically inside the

human body. Traditional methods, such as chemical methods or physical spectrum, are

used by biologists to detect the presence of protozoans based on their unique responses.

For example, Iodamoeba is luminesced when adding iodine. Cyclospora and Sarcocystis

are highlighted under UV light. Another efficient way is to apply molecular biology based

on DNA or RNA to detect the presence of protozoa. However, the above methods are

time-consuming and require expensive equipment. Morphological methods, which identify

protozoans by observing them under microscopes manually, are an alternative solution to

identify their species. However, distinguishing thousands of species of protozoans is still

difficult even for experienced doctors. Automatic methods for detecting, segmenting, and

identifying protozoa from micrographs are in demand to reduce the cost and processing

time from weeks to a few hours of all the processes. Previous methods on micrographs

used shape features to capture morphological differences among species. The regions

of protozoa instances are manually segmented out first. The shape features are then

extracted such as ellipticity [16; 84], perimeter and area [15; 14], color density information

[10], local feature on various color channel [20] or a combination of shape features [10]. The

Support Vector Machine [19], Neural Network [18], k Nearest Neighbor [85], Conditional

Random Field [22] can be used as the classifier to identify the species.

This study focuses on detecting Giardia lamblia (Gla), Iodamoeba butschilii (Ibu), Tox-

oplasma gondi (Tgo), Cyclospora cayetanensis (Cca), Balantidium coli (Bco), Sarcocystis

(Sar), Cystoisospora belli (Cbe) and Acanthamoeba (Aca) (Fig. 3.1). Those species cause

diseases to humans but are difficult to distinguish. It is important to identify them to

perform the right treatments. Their shapes are similar rounded that make it difficult to
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Figure 3.1: Example of the target species.

identify for even experts. The size of protozoa ranges from 1 to 150 micrometers. The

range of the size of a species may overlap with that of another. However, the size of pro-

tozoa in the micrographs also depend on the zoom scale levels. Therefore, methods that

are based on the sizes and the outer shape appearances are inefficient on these species.

The protozoa are transparent and crystal-clear with no color. To highlight their appear-

ance, medical institutes apply staining to enhance the contrast in the micrographs. The

color information of a certain species in micrographs changes depending on the staining

methods (Fig. 3.2). The staining methods used by medical institutions may be differ-

ent. Therefore, micrographs collected of the same species differ in color conditions. It is

necessary to consider methods that are robust to color information to improve versatility.

This study aims to find feature representations that are sufficient for protozoa detection,

segmentation, and identification and applicable to other species.

This study observes the behaviors of RetinaNet on dataset provided by Dr. Masa-

haru Tokoro at Kanazawa University to detect protozoa. By applying Class Activation

Mapping (CAM) method [86], it can be found that the background information is affects

identification predictions (Fig. 3.3). Less than 50% of the area of important regions are

the protozoa regions. The background information makes a higher proportion of contri-
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Figure 3.2: An example of the effects of dyeing method on micrographs. Balantidium coli
instances have different colors in different dyeing method.

bution in making the species predictions. An explanation for this phenomenon is that

in the case of lack of data, the network may find that a specific protozoa species often

appear with some particular surrounding objects. This study only trains the network

with a maximum of 5 samples per species. In the condition of the lack of data, there are

often the cases where all the bounding boxes in the training samples contain surrounding

objects. A specific surrounding object in the background may occupy at least 20% to

appear along with the target species in the dataset. The micrographs of the protozoa are

often noisy and contain a lot of dirt, blood cells, stools, etc. In many cases, it is almost

impossible to separate the protozoa from those surrounding objects by using rectangular

bounding boxes. Moreover, since the datasets are collected from a few medical institutes,

background information with a staining method highly correlated with the target species.

The insight that a species corresponds to a specific background may be true when the

protozoa live in the natural environment. On the other hand, this insight does not hold

when they are obtained from the same patient sample. A patient may be infected by

27



more than one species of protozoa. Multiple species of protozoa may appear in the same

micrograph. Therefore, the background information should be excluded when identifying

the species.

This study aims to find the characteristic features of the target objects. The network

needs to be designed so that the predictions is independent from the background. A

solution is to use segmentation to separate the target protozoa instances from surrounding

objects.

3.2 Segmentation-driven mechanism

In this study, characteristic features of the target objects are focused on the fly by a

Segmentation-driven mechanism. This mechanism guides the deep networks to focus

on the characteristic features in the inner texture of the target objects by applying a

segmentation mask to eliminate the background of the input image. This section describes

how to build the Segmentation-driven mechanism on RetinaNet in detail.

This section describes the segmentation network since the mechanism requires a segmen-

tation mask. Then, the overall architecture of the detection network with the Segmentation-

driven mechanism is described. Finally, this study shows the techniques that help to

overcome the lack of data problem in the protozoa domain.

The proposed detection network is named Segmentation-driven RetinaNet, which can

automatically detect, segment, and identify the protozoa species in the micrographs. The

proposed network applied RetinaNet to predict the bounding boxes of protozoa in the

micrographs. An instance of RetinaNet without classification layers is used as the back-

bone to extract the features of the input image. A segmentation network is then built

on top of that RetinaNet instance to predict the segmentation masks for the input im-

ages. The segmentation network mainly decodes the features extracted by the backbone

into single-channel images for segmentation instead of backing to 3 channel images. The

segmentation mask is applied to eliminate the background of the input image. Another

instance of RetinaNet with classification layers is applied as the detection network to
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detect the target objects in the filtered image.

A pre-trained weight of RetinaNet is used and fine-tuned to overcome the issue of

small number of data. The samples of each species are also divided into multiple groups

corresponding to their life cycle stages because there are significant differences among

these stages. Dividing images into life cycle stages make it easier to capture the general

feature of each life stage and distinctive features from the corresponding stages of other

species. The life cycle stage predictions are then mapped into species predictions to obtain

the final results.

3.2.1 Segmentation Network

The segmentation-driven mechanism requires segmentation masks to guide the network

to focus on the characteristic features of the target objects. A segmentation network is

employed to produce the segmentation mask by following the encoder-decoder manner. A

backbone network is applied to extract the image features. A Feature Pyramid Network

(FPN) is followed to represent the image features in multiple resolutions. The segmenta-

tion network is placed on top of the FPN and tries to produce a segmentation mask from

features extracted by the backbone network and FPN. To that end, the structure of the

segmentation network is a reversion of the backbone network. Convolutional, pooling,

and padding layers are replaced with deconvolutional, upsampling, and cropping layers.

Figure 3.4 shows the architecture of the segmentaion network. In Figure 3.4, the blocks

C1’, C2’, C3’, C4’, C5’, and FPN’ are built as the reversed version of the blocks C1, C2,

C3, C4, C5, and FPN, respectively.

Since the extracted feature map from the encoder-decoder manner is compact, the

produced segmentation mask is coarse and blurred. To refine the segmentation results, this

study follows the idea of a refinement segmentation network of SharpMask that maps the

outputs from later to earlier layers. Unlike SharpMask, this study refers to the outputs of

the backbone network (C2 to C5 in the ResNet case) to reduce the number of parameters.

This architecture helps the segmentation network obtain information from later to earlier
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(a) Tgo (b) Aca

(c) Cca (d) Ibu

(e) Sar (f) Gla

(g) Bco (h) Cbe

(i) CAM value

Figure 3.3: Example results of CAM on RetinaNet. The input images are on the left and
CAM results are on the right.

blocks to create a sharper segmentation image. This architecture is compatible with

various families of Convolutional Neural Networks. To deblur the segmentation result,
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residual connections are added from C2, C3, C4, C5 to C2’, C3’, C4’, C5’ respectively.

The sigmoid activation function is applied at the last layer to scale the predicted values

to the [0, 1] range.

3.2.2 Segmentation-driven RetinaNet

A unified network is built to segment, detect and identify the target objects in the input

image. The network predicts the segmentation mask for the input image, then predicts

bounding boxes and identifies the categories. The segmentation mask is applied to filter

out the backgrounds to force the network to take only target object instances into account

when producing the identification predictions.

The architecture of the proposed network is described in Fig. 3.5. This architecture

consists of 2 instances of the RetinaNet, but they are assigned different weights to deal

with various task. The first instance of RetinaNet is employed as the backbone for the

segmentation network as described above. The input image is fed into the first RetinaNet

instance to predict bounding boxes of the protozoa in the micrograph. The first RetinaNet

instance predicts the bounding boxes since it requires background information to indicate

the location of protozoa in the environment. The extracted feature by the FPN of the

first RetinaNet instance is fed into the segmentation network to produce the predicted

segmentation mask. The network computes the element-wise multiply between the input

image and the predicted segmentation mask to filter out the background in the input

image. Then the filtered image contains only the target objects’ instances. It is then fed

into the second RetinaNet instance to predict the probabilities of species for the bounding

boxes. Since the segmentation mask is applied to guide the network in producing the

predictions, the proposed network is named Segmentation-driven RetinaNet.

3.2.3 Data Augmentation

The small number of data is one significant difficulty in the detection task of objects with

less visual information, especially in the medical image domains. This section considers
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(a) Mask RCNN [4] (b) Sharp Mask [83]

(c) The Segmentation Network

Figure 3.4: The architecture of the proposed segmentation network with ResNet50 as the
backbone.
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Figure 3.5: The proposed Segmentation-driven RetinaNet.
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the protozoa domain as an example of objects with less visual information. It takes time

and effort to obtain the samples from the environment. Since the target species cause

human diseases, there are new samples only when there is a new patient. Several data

augmentation techniques are applied to enhance the data to overcome the small number

of data problems.

Rotation: In the micrographs, the protozoa instances appear in arbitrary orientations.

Based on this property, the protozoa regions can be rotated to get more data for training

without creating unrealistic samples. The centers of the bounding boxes of protozoa

instances are chosen alternatively as the origin of coordinates. The image is then rotated

around that center in all directions with an interval of 10 degrees. The new bounding

boxes of protozoa instances are calculated concerning the rotation angle in the new rotated

images.

Color Transfer: The color distributions of protozoa instances in the micrographs may

appear completely different due to various staining methods. The data is augmented

by changing the images’ overall color distributions to enhance the model’s robustness on

color changes. The color transfer technique [87] is applied to simulate various staining

conditions. To stimulate to the target staining condition, its color distribution is required.

Color distribution images, which contain only the background of the micrograph of the

target staining conditions, is prepared to calculate the target distribution. The protozoa

instances on the chosen images are removed to obtain the color distributions of the tar-

geted staining methods. In this study, 21 target color distribution images are created for

color transfer regarding the micrographs’ different staining and lighting conditions (Fig.

3.6).

3.2.4 Segmentation Loss

The total loss for training the entire model is as follows:

L = Lcls + Lbox + Lseg, (3.1)
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Figure 3.6: An example of color transfer technique to simulate the staining method on
the micrographs of Cyclospora cayetanensis.

where Lcls is the identification loss, Lbox is the bounding box prediction loss, and Lseg is

the segmentation loss. This study applies the focal loss for Lcls and the smoothed absolute

value loss for Lbox that are identical to RetinaNet.

The weighted cross-entropy loss function is applied to train the network for the segmen-

tation task. In the micrographs, the protozoa instances only take a small proportion. The

majority of the segmentation ground truth is background. Non-weighted loss functions

often result in the trivial case that the model only predicts ”zero” for all the pixels. To

balance the contributions of foreground and background pixels, the weight for foreground

pixels should be applied. This research applies the weight for background pixel as wb = 1

and the weight for foreground pixel as

wf =
#background pixel

#foreground pixel
(3.2)

which corresponds to the ratio between the number of foreground pixels and that of

background pixels. The segmentation loss on one image is as follows:

Lseg = −wf

w,h∑

i,j,si,j=1

log(ŝi,j)− wb

w,h∑

i,j,si,j=0

log(1− ŝi,j), (3.3)

where w and h are the width and height of the image, s is the segmentation ground truth,

and ŝ is the segmentation prediction, respectively. This segmentation loss only focuses

on the binary class segmentation problem where 0 and 1 correspond to background and
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foreground, respectively, instead of multiple categories or instances.

3.2.5 Network Training

Figure 3.7: Network training procedure.

To train the Segmentation-driven RetinaNet for the protozoa domain, a pre-trained

weight of RetinaNet is applied with the resnet50 as backbone trained on COCO dataset

[82]. The transfer learning technique is affective for cases where only small number of

dataset available (Fig. 3.7).

A sub-network that combines the first RetinaNet instance and the proposed segmen-

tation network is created. In this sub-network, the RetinaNet instance also predicts the
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categories of objects inside the bounding boxes. The weight of the pre-trained model is

transferred to the RetinaNet instance. Since the segmentation network is not pre-trained,

its derivatives concerning the weights are higher than the pre-trained Retina’s. A small

loss-weight for segmentation loss is applied to prevent the network from excessively mod-

ifying weights that could depress detection and identification performance.

The proposed Segmentation-driven RetinaNet is trained with the weight of the above

sub-network. The weight of the segmentation network is transferred from the trained

sub-network. The weights of both RetinaNet instances are initialized to the weights of

RetinaNet in the sub-network. The three tasks are trained one by one alternatively. While

training one task, the learning rates are set for the others two to be small instead of zero,

so the network learns the weights adapting to the three tasks.

3.3 Evaluation

3.3.1 Dataset

Experiments are conducted on the protozoa dataset provided by Dr. Masaharu Tokoro at

Kanazawa University, consisting of 38 images with 43 samples for training and 31 images

with 74 samples for testing. The image resolution was not constant, but ranging from

824x941 to 4086x1725 pix. All the images are real cases taken from the patients. There

are one to multiple instances in an image. The numbers of instances for each life-cycle

stage in training data are given in Table 3.1.

3.3.2 Evaluation Metric

Since the proposed network only performs segmentation at the class level, binary accuracy,

precision, and recall metrics are applied to evaluate the segmentation performance of the

proposed models. To evaluate the performance of the proposed network on detection

and identification, mAP metric is from PASCAL VOC [88] is applied. The mAP is the

interpolated average precision designed to penalize for missing target object instances,

37



Table 3.1: Number of training samples for each life-cycle stage.

#trainingsamples

Cca oocyst 1 3
Cca oocyst 2 2
Cca oocyst 3 1
Sar oocyst 1 1
Sar oocyst 2 2
Aca 5
Ibu 3
Tgo 4
Gla 3
Bco cyst 2
Bco trophozoite 1 3
Bco trophozoite 2 4
Cbe oocyst 1 3
Cbe oocyst 2 3
Cbe oocyst 3 2
Cbe oocyst 4 2

Total 43

duplicated detections, and false-positive detections. To calculate the mAP value, the

detection outputs of the model are sorted by the descendant order of confidence. The

accumulated precision and recall are computed following the descendant order. Finally,

the average precision is computed corresponding to the given set of recalls. In PASCAL

VOC, the set of chosen recall is the range [0,1] with the interval of 0.1. The formula for

mAP of PASCAL VOC is given as follows:

mAP =
1

11

10∑

t=0

max{precisioni|recalli >= t}. (3.4)

where precisioni and recalli is computed at the ith detection.

3.3.3 Result of Experiment

All the experiments are performed on a Xeon Gold 6130 2.1GHz CPU, 128 GB RAM,

and 2 NVIDIA Tesla P100 GPUs. The version of the proposed model was implemented
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Table 3.2: mAP, precision, and recall with respect to species.

Cca Sar Aca Ibu Tgo Gla Bco Cbe avg.
mAP

RetinaNet 0.82 0.10 0.53 0.18 0.00 0.36 0.39 0.00 0.30
Sub-network 0.86 0.18 0.78 0.73 1.00 1.00 1.00 0.32 0.73

Proposed method 0.89 0.50 0.73 0.84 1.00 0.84 0.61 0.75 0.77
Precision

RetinaNet 1.0 0.14 0.48 1.00 0.00 0.50 0.50 0.00 0.45
Sub-network 0.94 0.25 0.74 1.00 1.00 1.00 1.00 0.50 0.80

Proposed method 0.97 0.50 0.71 0.90 1.0 0.75 0.83 0.60 0.78
Recall

RetinaNet 0.83 0.67 0.94 0.10 0.00 0.33 0.43 0.00 0.41
Sub-network 0.94 0.67 1.00 0.70 1.00 1.00 1.00 0.67 0.87

Proposed method 0.92 0.67 1.00 0.90 1.00 1.00 0.71 1.00 0.90

using RetinaNet. The score threshold for making the decision is 0.34. The batch size is

set as 2 for training. The overlapping threshold for a bounding box to be matched to a

ground truth box is 0.8.

The colors of the predicted bounding box are pink, red, white, blue, yellow, black, light

blue, and green for Cca, Sar, Aca, Ibu, Tgo, Gla, Bco, and Cbe, respectively. To visualize

the segmentation results, the green channel of input images is replaced with the predicted

segmentation masks.

One mistake may cause a significant decrease in the result due to the lack of data

problem. The original RetinaNet and the proposed networks capture all the protozoa

instances. However, there are misidentifications of the species, especially between Ibu

and Sar. One misidentified instance will negatively affect the precision of the predicted

category and the recall of the true category. In these three examples (d, e, f) in Fig. 3.8,

RetinaNet successfully localized the protozoa instances but failed to identify the species.

The false identifications hurt the precision of the predicted categories (Ibu and Bgo) and

the recall of the true categories (Tgo, Ibu, and Cbe).
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(a) Tgo (b) Ibu (c) Cbe

(d) Tgo (e) Ibu

(f) Tgo (g) Ibu

(h) Cbe

Figure 3.8: Examples of detection of the original RetinaNet.

3.4 Summary of Finding characteristic features

This chapter focuses on finding the characteristic features for objects with less visual in-

formation in small datasets. In this problem, it can be found that the deep learning-based

Object Detection methods utilize the background information to make the identification

prediction. It is insufficient when the objects appear in other environments or objects
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(a) Cca (b) Aca

(c) Tgo (d) Ibu

(e) Sar (f) Gla

(g) Bco (h) Cbe

Figure 3.9: Examples of detection and segmentation of Segmentation-driven RetinaNet.

of different categories appear in the same images. Therefore, this study aims to find the

characteristic features of the textures of the target objects. This study introduces the

Segmentation-driven mechanism to guide the deep network to find the characteristic fea-

tures of the target objects. Segmentation masks are applied to filter out the background

of the images. By removing background information, only the features in the regions of

target object instances are learned.

This idea is demonstrated on the protozoa domain. Segmentation-driven RetinaNet
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is proposed to guide the network to take only the target object instance regions in the

image into account to find characteristic features for identifying the protozoa. Data aug-

mentation technique is applied to overcome the small number of data problem. This

study successfully trains the network to detect, segment, and identify protozoa with high

accuracy even though there are at most 5 samples per life-cycle stage for training. Ex-

perimental results on the protozoa dataset show the effectiveness of the proposed model

over the original RetinaNet.
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Chapter 4

Finding the distinctive features

4.1 Distinctive Features for Object Identification

An object can be decomposed into its outer shape, appearance, and inner textures. Those

are features that characterize the target objects. The characteristic features help to detect

the target objects. The objects in the target object set may share some characteristic

features in common. The system aims to learn the unique features of each category to

identify. Those features are called distinctive features. In the case of lack of training data,

a common feature, in theory, may be considered a unique feature. It is the bottleneck of

generalizing tasks for new input samples. Therefore, choosing quality distinctive features

is essential to detecting and identifying new test input.

Color images have three color channels (red, green, and blue). In each channel, a

pixel takes a value from 0 to 255. With three color channels, a pixel of a color image has

2553 possible values. The organizations of the inner pixels define the textures of the target

objects. The texture space of the objects in color images is enormous. On the other hand,

domains captured by specific devices are grayscale images with one color channel. With a

single color channel, a pixel of a grayscale image only has 256 different values. Detecting

objects with less visual information in grayscale is a challenging problem. The visual

information in grayscale images is much less than the color images. Objects in grayscale

images are characterized by their outer shape, pixel intensities, and connectivity. The
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outer shapes of the objects contribute more to the identification than the texture features.

This chapter discusses Genome Profiling images as examples of objects with less visual

information in grayscale images. The attention-driven mechanism is applied in place of

the Segmentation-driven to find quality distinctive features for the identification tasks of

both the protozoa and Genome Profiling image domains. Protozoa domain and Genome

Profiling domain may require different prerequisite preprocessing steps. For the Genome

Profiling images, the attention mechanism enhances the outer shape of the target trajec-

tories and spiddos. On the other hand, the attention mechanism enhances the selective

mask for the target objects’ instances for the protozoa domain.

4.2 Prerequisite Preprocessing Step

4.2.1 Genome Profiling domain

This subsection aims to reduce noise in the images and emphasize the thin trajectories

whose intensities are low. The intensities of pixels of a trajectory are not constant. Within

a trajectory, the intensities are lower around the bottom and higher around the top of

the image. The thinner trajectories have lower intensities than the thicker trajectories.

Global normalization, which change all the pixels into the same range of intensity values,

may remove the thin trajectories. Therefore, the input image is divided into multiple

patches to be treated locally. Local equalization is applied to emphasize the trajectories.

Normalizing the trajectories is a challenging problem because their pixel intensities are

non-identical because of TGGE nature. Surrounding noise may have higher intensities

than lower regions of trajectories prevent globally enhancing methods. An image pro-

cessing procedure is proposed to locally enhance the intensities of the target trajectories

in TGGE images. Morphological operators are performed to erose noise. An iterative

updating process is proposed to eliminate isolated regions. At each iteration, the process

tries to make a greater difference between the intensity values of the trajectories and the

isolated regions. After a certain number of updating iterations, the intensities of the tra-
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Figure 4.1: Preprocessing procedure.

jectories will be more different from the isolated regions that a threshold can be applied

to eliminate the noise.

In a local patch, the pixels of the trajectories have higher intensities than the surround-

ing pixels. The binary thresholding is applied to remove surrounding noise pixels. How-

ever, the thresholding alone cannot separate one trajectory from another that are close

to each other. Therefore, morphological operators are applied to remove lower intensity

regions between two trajectories. Erosion operator is applied to erode thin trajectories

and small regions. This operator is also helpful for separating one trajectory from another

that are closed to each others. Dilation operator is applied to fill in the gaps which may

be created by erosion operator. However, morphological operators may cause a side effect

at the edges of the resulting patches. Dilation operator also fills in the region between

trajectories and edges of the patch. It creates vertical and horizontal stripes in the result

image when combining all the resulting patches. To avoid this side effect, the edges of

the resulting patch is removed.

The isolated small regions, which can be considered as noise dots in the images, need

to be removed. To that end, an iterative updating process is applied to emphasize the
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Figure 4.2: An example of the proposed iterative updating method on a line and an
isolated dot.

pixels of the lines over the pixels of isolated regions. At the initial stage, pixels are set

to 1 if its intensity value is higher than a threshold. Others are set to 0. The values are

then updated iteratively. In each iteration, only the pixels, which are initialized as 1, are

updated. The value of the pixel is updated as the sum of its value and its neighbors in

a kernel of 3x3. The values of pixels that have more connections increase faster than the

pixels that have fewer connections. In the next iterations, pixels in large regions spread

their high values therefore their values increase faster than pixels in isolated small regions.

After a certain number of iterations, the values of pixels in large regions are much higher

than pixels in isolated regions. A threshold is applied to remove the isolated regions.

Figure 4.1 illustrates the preprocessing procedure with an example. The input image

is divided into multiple image patches. An image patch of two trajectories that are close

to each other is shown in the example. Since the pixels surrounding the trajectories

have relative high intensities, high threshold value may remove the trajectory pixels.

Erosion operator removes the pixels surrounding the trajectories and remains thin lines

indicating the positions of the trajectories. In this study, the kernel of 5x5 is applied for

the morphological operators. Larger kernels may remove even the target trajectories while

smaller kernels remains more surrounding pixels. The dilation operator is then applied to

recover the trajectories. Output1 in Figure 4.2 is the result of sticking back all the image

patches after the morphological operators. Since the dilation operator also fills the gaps

near the edges of the image patch, the Output1 contains vertical and horizontal strides.

To remove the strides, smaller region (pink rectangle) is remained in the resulting patch.

Output2 is the result when sticking the smaller region of the resulting patches. Therefore,
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to get the same resulting patch size from Output1, the image patches divided from the

input image must have larger size for the Output2. The divided patches may overlap each

other on the input image. The FinalOutput is obtained after removing the isolated dots

in the Output2 by applying the iterative updating process.

Figure 4.2 demonstrates the iterative update process with an example that contains a

line and a isolated dot. The pixel intensities are set to 1 for both the line and the isolated

dot at the initial stage. After the first iteration, the pixels at the center of the line have

higher values than the isolated dot. Since the intensities of the line’s pixels are higher

than isolated dot’s, the gap between them becomes larger after every iteration. After

several iterations, a threshold can be applied to remove the isolated dot. In the example

in Figure 4.2, threshold can be set as 100 to remove the isolated dot.

Object detection methods require manual annotation of the regions of the target objects

to separate them from the background in the images. Rectangle bounding boxes are

commonly used to indicate the regions of the objects since it is easy for non-experts to

annotate. In a small region within a bounding box, the spiddos share similar appearances

with uninterested flexion points or noise in the images. Keeping track of the target

trajectories is required to distinguish the spiddos from the noise in the images. Since

some regions in the top half of the images are in over brightness that occludes the target

trajectories, the trajectories are disconnected.

Segmentation can be applied to keep track of the trajectories to overcome the fragmen-

tation issue. The pixels from the beginning to the end of the trajectories can be indicated

in the segmentation masks. The segmentation areas can be beyond the bounding boxes

of the target objects. Segmentation is applied to keep track of the trajectories even in the

occluded regions.

Segmentation for Genome Profiling Images

The goal is to detect the spiddos in the TGGE images. The spiddos are annotated as

points in the input images by the domain experts. For general object detection methods,

annotations of the target objects are represented as its rectangle bounding boxes to help
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the networks to understand what the target objects should look like. To train the detector

on the spiddos, the positions of the spiddos are re-annotated as rectangle bounding boxes

whose centers are those spiddos coordinates. This helps to encode more information of

the trajectories from the left and right of the spiddos than the pixel intensity value at the

spiddos coordinate.

Rectangle bounding boxes may contain surrounding isolated regions. Those regions

may be considered as noise in the training process. Carefully indicating which pixels

are the target trajectories would clear the ambiguity in training samples. Therefore, a

segmentation mask, which indicates only the pixels of the target trajectories, is applied to

filter out those surrounding regions. Training the network to segment forces the network

to learn the ability to remove the noise and focus on the important regions.

Segmentation also helps to keep track of the target trajectories. Due to the over bright-

ness regions in the input images, the target trajectories are disconnected. The segmen-

tation samples for training, which are prepared manually, contain the annotation of the

bright pixels that belong to the target trajectories and dark pixels that can connect the

disconnected regions of the trajectories. Indicating the dark pixels helps the network learn

to predict the trajectories in the occluded regions.

4.2.2 Protozoa domain

In this chapter, protozoa dataset from ICIP 2022 Grand Challenge is being used to demon-

strate the idea of Attention-driven mechanism. In Chapter 3, the detection accuracy is

improved by applying the segmentation mask to filter out the background information.

Manually annotating segmentation for the entire dataset takes a long time and a great

effort. A solution for the datasets with no segmentation ground truth automatically

generates segmentation masks. It can be done either by:

• Training a segmentation model in a smaller dataset. A simple segmentation

network can be applied to segment the entire dataset. To reduce the human effort,

only a few samples are required to be annotated. Since the microorganisms can
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swim freely in their environment, their appearances can be at arbitrary orientations.

Therefore, rotating the samples can be applied as data augmentation to train the

segmentation network.

• Applying a segmentation network trained on another similar dataset

which has segmentation ground truth. Since they have circular round shapes,

it is unnecessary to have the same target category as the target dataset. However,

instance-level segmentation may not work due to the differences in target categories.

On the other hand, semantic-level segmentation, which tries to indicate the fore-

ground and background pixels, is suitable for this problem.

This study follows the second solution by applying the trained network described in

Chapter 3. Segmentation-driven RetinaNet from Chapter 3 generates semantic segmenta-

tion masks that indicate whether a pixel belongs to objects or background. However, the

generated segmentation masks may be insufficient since the model is trained on different

species or a small number of training samples. Training the model with such roughly

generated segmentation masks as ground truth may fail. The insufficient segmentation

masks are refined via the attention mechanism in the next stage.

4.3 Attention-driven mechanism

4.3.1 Visual Content Attention Block

The segmentation results are coarse and blurred around the boundaries of the objects.

The quality of the segmentation is not efficient enough for the deep networks to extract

the shape features. Moreover, the bounding boxes of the spiddos cannot cover entire

trajectories. Therefore, it requires global features to map the segmentation of the trajec-

tories to its spiddos. This study proposes to integrate the attention mechanism into the

detection network to enhance the trajectories’ information via the spiddos regions.

In recent years, the strength of attention is proved in many approaches of Computer

Vision, especially Object Detection [89; 90]. The goal of most attention mechanisms is
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to intensify the relationship of entities. The influence of attention is no more doubt in

most neural approaches. With the support of attention, the hidden and important char-

acteristics of images and objects are emphasized in another viewpoint, which is efficient

to deploy in most Deep Learning models. Among many kinds of attention, Multi-head

Attention is one of the most potential components in previous approaches. Different

from the other ones, Multi-head Attention considers entities in many parallel viewpoints,

which is completely useful to put it into practice [91]. Recently, this kind of attention is

a rapidly growing tendency in Computer Vision [92]. It is considered to be the dominant

Convolution Neural Network in most vision applications. Although it is still too early to

know the long-term evolution, there is no denying that Multi-head Attention is effective

in many vision approaches.

In this problems, the challenges come from the objects’ boundaries. The specific char-

acteristic of the genome is a tough struggle for Convolution Neural Network to digest and

emphasize the difference in images. Visual features are compressed and filtered by kernels

in many layers. Although this mechanism is useful to highlight the regional features of

images, it accidentally accentuates the global information of images. However, in this

typical domain, the interaction between segmentation and original images is vitally im-

portant to provide more context for optimizing the learning process. Therefore, this study

proposes visual content attention block to incorporate the attention information into the

convolutional features from the previous modules. With the aid of Multi-head Attention,

the proposed mechanism allows segmentation to observe and exploit the visual content in

many simultaneous viewpoints. This strength of the proposed approach is clarified in the

visualization of Fig. 4.3. Through the attentive features of the Visual Content Attention,

the peculiarity of the genome gradually becomes a real standout.

In particular, the proposed block is a combination of three sub-modules as follows:

• Guided-attention via visual content: As mentioned above, visual content is essen-

tial to reveal the relationship between the target objects and global information

from the segmentation process. Therefore, the strength of Multi-head Attention is
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Figure 4.3: Visual Content Attention Block.

applied to gain the attentive scores between images and segmentation of genome.

This mechanism allows the proposed model to digest and accentuate the interaction

among global and convolution features in many previous layers.

• Residual connection: After enhancing the uniqueness of the genome in segmentation,

the previous features are also retained to guide the next self-attention module in

feature extraction. Via the residual connection, the global and attentive features of

objects are highly preserved in the transmitting process.

• Self-Attention: Finally, the completed signal is intensified by a self-attention mod-

ule. With the power of self-attention, each feature in the final representation is

digested and estimated to reveal its internal importance and relationship against

the prediction.

As mentioned above, the module takes advantage of Multi-head Attention in both

Guided-Attention and Self-Attention whose difference is based on the configuration of

input. Mathematically, with the general inputs, the refined signal is calculated by Equa-
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tion 4.1.

MultiheadAttention(q,K, V ) = [head1, head2, ..., headh]W
O (4.1)

Each head headj, j ∈ {1, ..., h} in Multi-head Attention is pre-defined by users and reflects

the various consideration. The detail of each head is pointed out in Equation 4.2. In each

specific viewpoint, each query (q) is accumulative by the attentive score from the key

(K) and latent information from value V . In most approaches utilizing this attention, the

value of K and V is often similar. It allows query features to be considered and intensified

in the simultaneously meaningful space.

headj = softmax(
qWQ

j (KWK
j )T√

d
)VW V

j (4.2)

whereWQ
j , WK

j , W V
j are the weights for query, key, and value at the headj, respectively.

In the proposed approach, this mechanism makes use of Multi-head attention to accen-

tuate both segmentation and refined features. In the first sub-module, the segmentation

information s is updated by its interaction against original images I in Equation 4.3.

s
′
= MultiheadAttention(s, I, I) (4.3)

In the next process, the visual content and segmentation are maintained by Residual

Transmission via Concatenation operators. Finally, each feature fi of f = (I||s′ ||s) from
the combination of original images, segmentation, and attentive refinement is escalated

by a self-attention module in Equation 4.4.

fi = SelfAttention(fi) = MultiheadAttention(fi, fi, fi) (4.4)

Through the Residual Transmission and Self-Attention in the proposed architecture,

it is promising to understand and select the necessary features to enhance the learning

and predicting process. With the support of the delegated attention, the proposed model

proves its strength of maintaining and refining the essential information in both images

and segmentation. It is too hard to reach this characteristic only with Convolution Neural
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Network in traditional approaches.

4.3.2 Attention-driven RetinaNet

A unified network called Attention-driven RetinaNet is proposed to detect, segment, and

identify the species of the microorganisms in the microscopic images. Figure 4.4 shows

the architecture of the proposed network. The network architecture consists of the seg-

mentation network, the attention block, and a detection network in a pipeline.

Segmentation
Network

G
uided

Self

RetinaNet

Element-wise multiply

Input Image
Detection

Result

MultiHead Attention

Concatenation LayerGenerated Segmentation 
Groundtruth for Training

Attention Block

Figure 4.4: Attention-driven RetinaNet.

The proposed Attention-driven RetinaNet first produces the segmentation mask for the

input image via the segmentation network. The segmentation network employs a back-

bone network to capture the essential information in the image and then reverse all the

layers in that backbone to produce the segmentation mask. The attention block then re-

fines the segmentation result. As shown in Figure 4.4, even though the generated segmen-

tation ground truth for training is insufficient, the attention block still offers reasonable

attention masks for the microorganisms instances. The attention mask is element-wise

multiplied by the input image and the segmentation mask to filter out the background
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Figure 4.5: Attention-driven RetinaNet for Genome Profiling images.

and emphasize the important regions. A concatenation layer gathers all the results and

feeds them to the detection network. RetinaNet is applied as the detection network to

detect the target species.

The predicted segmentation result is fed into the detection network to detect the spid-

dos patterns. The detection network takes the segmentation mask as input and predicts

the bounding boxes and their probabilities. Joining the two networks allows the detection

network to adjust the weights of the segmentation network during the training phase to

detect the spiddos. The quality of the segmentation results directly affects the perfor-
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mance of the detection network. A connection from the C1’ block of the segmentation

network to the C1 block in the RetinaNet is added. This connection helps the network

to learn the features that efficient not only for segmentation but also for detection.

4.3.3 Model Training

The total loss for training the unified model is as follows:

L = wLprobLprob + wLboxLbox + wLsegLseg, (4.5)

where Lprob is the probability of bounding box prediction loss, Lbox is the bounding box

coordinate prediction loss, Lseg is the segmentation loss, and wLprob,wLbox, wLseg are their

loss-weights, respectively. In this study, the focal loss [3] and smoothed absolute value

loss are applied for Lprob and Lbox, respectively. For Lseg, the weighted cross-entropy loss

function is applied. To balance the contributions of foreground and background pixels,

this study applies weight for background pixel wb = 1 and weight for foreground pixel

wf = k
#background pixel

#foreground pixel
(4.6)

which corresponds to the ratio of the number of foreground pixels to the number of

background pixels, k is a hyper-parameter for controlling the contribution of foreground

pixels. The segmentation loss of one image is as follows:

Lseg = −wf

w,h∑

i,j,si,j=1

log(ŝi,j)− wb

w,h∑

i,j,si,j=0

log(1− ŝi,j), (4.7)

where w and h are the width and height of the image, s is the segmentation ground

truth, and ŝ is the segmentation prediction, respectively. Instead of multiple categories or

multiple instances, the segmentation loss only focuses on the binary class segmentation

problem where 0 and 1 correspond to background and foreground, respectively, in this

study.
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The transfer learning technique is applied to this problem since the number of training

sample is small. A pre-trained weight of RetinaNet is applied with the Resnet50 as

backbone trained on COCO dataset [82] for training the unified model. The weight is

transferred for the RetinaNet instance at the initial step. In the first training phase, only

the segmentation network is trained by assigning wLprob := 0 and wLbox := 0. The second

training phase trains the unified network by assigning wLprob and wLbox to 1 and wLseg

to 0.05, respectively. Since the priority is to detect the spiddos, wLseg should be set less

than wLprob and wLbox.

4.4 Evaluation of the Attention-driven Mechanism

4.4.1 Dataset

Experiments are conducted on the TGGE image datasets. The first data set, which

contains TGGE images of Bacillus coli and NIH, is divided into a training set and test

set. The training set contains 8 images of Bacillus coli and 8 images of NIH. The test set

contains 16 images of Bacillus coli and 16 images of NIH. The primers for references are:

• 5’-Cy3dTGCTACGTCTCTTCCGATGCTGTCTTTCGCT-3’

5’-dTTGAATTCTATCGGTTTATCA

• 5’-Cy3-GCCG GCATCACCGGCGCCACAGGTGCGGTTG-3’

5’-TAG CGAGGTGCCGCCGGCTTCCATTCAGGTC-3’

The number of DNA fragments varies from 5 to 6. The second data set contains 7 images

of HIV. The references are

• 5’-Cy3-TGCTACGTCTCTTCCGATGCTGTCTTTCGCT-3’

5’-TTGAATTCTATCGGTTTATCA-3’

• 5’-Cy3-GCCGG CATCACCGGCGCCACAGGTGCGGTTG-3’

5’-TAGC GAGGTGCCGCCGGCTTCCATTCAGGTC-3’
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The number of DNA fragments is 1. Samples are subjected to electrophoresis using

μTGGE apparatus, micro TG, with a temperature gradient (15-65◦C) set perpendicularly

to the direction of DNA migration (7 min at 100V).

Table 4.1: Detection performance on mAP, precision, and recall on Bacillus coli and NIH
dataset

mAP precision recall

w/o Preprocessing Procedure
Yolo 0.11 0.42 0.27

RetinaNet 0.12 0.63 0.16
Seg. RetinaNet 0.14 0.55 0.20
Att. RetinaNet 0.17 0.56 0.22

with Preprocessing Procedure
Faster-RCNN 0.36 0.50 0.76
Mask-RCNN 0.37 0.43 0.72

Yolo 0.12 0.33 0.20
RetinaNet 0.27 0.49 0.56

Seg. RetinaNet 0.14 0.22 0.68
Att. RetinaNet 0.36 0.57 0.62

4.4.2 Results and Discussion

Genome Profiling

All the experiments are performed on a Xeon Gold 6130 2.1GHz CPU, 128 GB RAM, and

an NVIDIA Tesla P100 GPU. The version of the proposed model was implemented using

RetinaNet with resnet50. The batch size is set as 2 for training. The overlapping threshold

for a bounding box to be matched to a ground truth box is 0.4. In the experiments, the

networks are trained on the training set of Bacillus coli +NIH and are evaluated on the

HIV dataset and the test set of Bacillus coli + NIH. Detection results are then compared

with the ground truth spiddos only. The total number of target trajectories corresponds

to the number of DNA fragments tested. Each TGGE test may contain a different number

of DNA fragments, the total number of target trajectories in the images is not the same.

The performance of the proposed network on spiddos detection is evaluated by the mean

average precision (mAP) metric [88].
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Table 4.2: Detection performance on mAP, precision, and recall on HIV dataset

mAP precision recall

w/o Preprocessing Procedure
Yolo 0.15 0.16 0.20

RetinaNet 0.10 1.00 0.07
Seg. RetinaNet 0.02 0.008 0.07
Att. RetinaNet 0.02 0.10 0.07

with Preprocessing Procedure
Faster-RCNN 0.32 0.37 0.87
Mask-RCNN 0.24 0.21 0.80

Yolo 0.17 0.45 0.33
RetinaNet 0.12 0.17 0.80

Seg. RetinaNet 0.25 0.32 0.87
Att. RetinaNet 0.62 0.86 0.80

Table 4.3: Segmentation performance

HIV NIH+bacillus

w/o Preprocessing Procedure
Seg. RetinaNet 0.98 0.97
Att. RetinaNet 0.98 0.97

with Preprocessing Procedure
Seg. RetinaNet 0.96 0.93
Att. RetinaNet 0.97 0.94

The left panels of Fig. 4.8 and Fig. 4.9 show examples of TGGE images (in greyscale)

with their ground-truth annotations. In each panel, the green rectangle indicates the area

of the gradient gel in the casting chamber for the test. The red dots indicate the spiddos

pattern of the image. Two of the four intersections of the white lines correspond to the

flexion points of the references. In a TGGE test, the target trajectories can be obtained

correctly because domain experts obtain information about which trajectories correspond

to the DNA fragments. However, in the proposed method, the position of the DNA sample

is unprovided; therefore, predicting the target trajectories is a challenging problem. One

possible solution to overcome this issue is a relaxation that assumes all trajectories are

potential trajectories. The network is designed to detect all possible spiddos. With

information about DNA position, a tracing technique can be applied to remove incorrect

detections; thus, the prediction accuracy of actual spiddos can be improved further. At the

current stage of this study, the potential flexion points are detected as shown in the right
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panels in Fig. 4.8 and Fig. 4.9. Prediction accuracy of the proposed method is compared

with ground truth. Results shown in Table 4.1 depict that the precision of the proposed

method achieves 0.43 which is comparable with other methods. This precision accuracy is

the consequence of overestimation as assumed that any trajectories could be a potential

target trajectory. The precision can be improved further by obtaining information of the

positions of the DNA samples.

The detection performance of the methods on Bacillus+NIH and HIV dataset are shown

in Table 4.1 and Table 4.2, respectively. For the Bacillus coli + NIH dataset, the mAP

of the methods are improved by applying the preprocessing process. Except for Yolo, the

recall of the methods are also improved. The magnitude of improvement in the Retina

family is much higher than Yolo. It can be concluded that the proposed preprocessing

procedure makes it easier for the Deep Learning-based detection networks to detect the

spiddos.

Table 4.1 shows the results of the performance of the proposed method and other meth-

ods on the Bacillus coli + NIH dataset. The proposed method achieves mAP, precision,

and recall values as 0.29, 0.43, and 0.61, respectively. In comparison with Seg. RetinaNet,

although recall is slightly lower, the precision is higher than that of Seg. RetinaNet by

almost twofold. In comparison with RetinaNet, the precision of the proposed method is

lower; however, the method can provide a higher mAP value. Figure 4.8 shows example

results on the Bacillus coli + NIH dataset of the proposed method. The proposed method

can predict bounding boxes that are almost separated; therefore, if provided with start-

ing points of target trajectories, target bounding boxes can be traced less ambiguously.

Thus, the misdetected boxes can be eliminated more accurately. Hence, the precision

of the method can be increased further. Results of the evaluation of the method and

other methods on the HIV dataset are shown in Table 4.2. The proposed method can

provide the mAP, precision, and recall values as 0.54, 0.71, and 0.8 respectively. Each

sample in the HIV dataset contains only one DNA fragment; thus, the input images are

less complicated than that of the Bacillus coli + NIH dataset. As a result, the method

achieves significantly higher performance. In contrast with other methods, although the
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Figure 4.6: ROC curves on Bacillus coli and NIH dataset.
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Figure 4.7: ROC curves on HIV dataset.
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input images are less complicated, the performance of other methods are only slightly be

improved. More precisely, the mAP and precision of the method are higher than that of

Seg. RetinaNet by more than twofold. Figure 4.8 and figure 4.9 show example results on

the Bacillus coli + NIH dataset and the HIV dataset of the proposed method respectively.

The proposed method can predict bounding boxes that are almost separated; therefore, if

provided with starting points of target trajectories, target bounding boxes can be traced

less ambiguously. Thus, the misdetected boxes can be eliminated more accurately. Hence,

the precision of the method can be increased further.

Precision-recall curves show the trade-off between the true positive and the predictive

value for a predictive model using different probability thresholds. The detector predicts

the probabilities of the target class to provide the capability to choose and calibrate the

threshold toward the trade-off between precision and recall. Reviewing both precision

and recall is useful where there is an imbalance in the observation between two classes.

In case of detection, two classes are the target class and the background class. All the

predictions are sorted with respect to the probabilities in descending order. The precision

and recall are calculated after every single prediction. The tested method starts at (0,1)

if the prediction with the highest probability is correct and at (0,0) otherwise. The

precision-recall curves of the networks on Bacillus coli + NIH and HIV are shown in the

Fig. 4.6 and Fig. 4.7, respectively. The curves drop rapidly at the beginning means that

the predicted spiddos with the highest confidence are misdetections. This phenomenon

commonly occurs due to the limited number of training data in the method that leads to

the uncertainty of the feature of the target class. In this case, there are similar appearances

between the spiddos and uninterested flexion points or noise dots. The curves then rise

steadily to the end means that the predicted spiddos with lower confidences are accurate.

The correct predicted spiddos with lower confidence dues to the small number of training

samples and the relaxation. For the HIV dataset, the proposed method achieves the

highest precision value at each specific level of recall. It shows that the proposed method

outperformed the other methods.

Table. 4.3 shows the segmentation performance of Seg. RetinaNet and the proposed
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Figure 4.8: Examples of the results of the Attention-driven RetinaNet on Bacillus coli +
NIH dataset. The left column is the input image in grayscale and ground-truth annotated
in color. The red dots indicate the ground-truth spiddos. The middle column is the
segmentation results and the right column is the results.
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Figure 4.9: Examples of the results of the Attention-driven RetinaNet on HIV dataset.
The left column is the input image and the ground-truth. The middle column is the
segmentation results and the right column is the results.
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network. The proposed network achieves the equivalent results to the Seg. RetinaNet.

Both Seg. RetinaNet and the proposed method segmentation accuracies are slightly re-

duced when applying the preprocessing procedure. An explanation is that the trajectories

get shaper and thinner after the preprocessing procedure. The middle panels in Fig. 4.8

and Fig. 4.9 show examples of segmentation results of the proposed method. The pro-

posed method is able to segment the trajectories in the clear regions and predict the

trajectories in occluded regions. If the occluded regions contain multiple trajectories, the

segmentation result is blurred in those regions. This study only performs semantic seg-

mentation that distinguishes pixels of the trajectories between that of the background.

Instance level segmentation that indicates the pixels of different trajectories may help to

remove the misdetections. This is left for future works.

In this study, the network is trained with a small number of training samples. Since

the GP method is on the way to be established, researchers are investigating various

directions to improve. The choices of referenced DNA fragments are also under investiga-

tion. Moreover, the TGGE is labor-intensive in nature. Therefore, the number of samples

using the same referenced DNA fragments is limited. However, the proposed method is

not limited to the choices of the referenced DNA fragments. The precision value can be

improved further when there are more training data.

Protozoa

For protozoa domain, experiments are conducted on the ICIP 2022 Grand Challenge

Parasitic Eggs dataset which consists of 11000 microscopic images of 11 categories. The

dataset is divided into the training set and test set. The training set consists of the 800

samples of each category; therefore, 8800 images in total.

The size of the input for MultiHead Attention is relatively small compared to the

input images. The input image need to be resized before feeding it into the MultiHead

Attention layer and resize the attention output to the input image. With a more powerful

GPU, increasing the size of the inputs for MultiHead Attention is expected to yield better

results.
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Table 4.4: mAP on ICIP 2022 protozoa dataset.

mAP ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ave.
DeTR [93] 0.09 0.76 0.18 0.09 0.18 0.00 0.09 0.25 0.09 0.09 0.18 0.18

Faster-RCNN [2] 0.17 0.59 0.42 0.18 0.31 0.09 0.09 0.23 0.72 0.52 0.27 0.33
RetinaNet 0.72 0.72 0.91 0.81 0.91 0.27 0.91 0.91 0.82 0.91 0.91 0.80

Seg-RetinaNet 0.10 0.18 0.07 0.16 0.18 0.09 0.18 0.40 0.09 0.33 0.07 0.17
Att-RetinaNet 0.82 0.88 0.90 0.82 0.91 0.18 0.90 0.91 0.91 0.91 0.91 0.82

Recall ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ave.
DeTR 0.01 0.89 0.17 0.05 0.11 0.00 0.02 0.45 0.04 0.10 0.13 0.18

Faster-RCNN 0.16 0.77 0.45 0.12 0.40 0.02 0.09 0.23 0.75 0.51 0.24 0.34
RetinaNet 0.70 0.80 0.92 0.87 0.91 0.29 0.92 0.92 0.84 0.99 0.99 0.83

Seg-RetinaNet 0.05 0.15 0.04 0.11 0.12 0.02 0.14 0.44 0.01 0.31 0.04 0.13
Att-RetinaNet 0.89 0.94 0.96 0.89 0.97 0.16 0.93 0.95 0.94 0.98 0.97 0.87

Table 4.5: mAP of few shots learning.

mAP ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ave.
DeTR 0.18 0.18 0.18 0.18 0.27 0.09 0.18 0.18 0.18 0.27 0.18 0.19

Faster-RCNN 0.18 0.17 0.17 0.18 0.27 0.18 0.18 0.18 0.18 0.27 0.27 0.20
RetinaNet 0.16 0.26 0.11 0.13 0.16 0.33 0.15 0.03 0.15 0.11 0.15 0.16

Seg-RetinaNet 0.07 0.17 0.07 0.14 0.17 0.27 0.17 0.30 0.08 0.25 0.09 0.16
Att-RetinaNet 0.17 0.14 0.14 0.14 0.09 0.44 0.17 0.17 0.20 0.17 0.25 0.19

Table 4.4 shows the detection results of all methods. The categories ω0, ..., ω10 corre-

spond to the category list of the Grand Challenge, i.e., Ascaris lumbricoides, Capillaria

philippinensis, Enterobius vermicularis, Fasciolopsis buski, Hookworm egg, Hymenolepis

diminuta, Hymenolepis nana, Opisthorchis viverrine, Paragonimus spp, Taenia spp. egg,

and Trichuris trichiura, respectively. The Att-RetinaNet achieves the highest mAP value

of 0.82 on average. The network only achieves 0.18 in mAP on the ω5, which is Hy-

menolepis diminuta, due to the low recall (0.16). Without quality segmentation ground

truth, Seg-RetinaNet [94] fails to segment and therefore fails to detect the microorganisms.

Figure 4.10 shows the segmentation, first and second attention results of the corre-

sponding input images. Segmentation masks mark all the target objects’ instances in

the images. It is easy to cover the objects’ regions in the segmentation masks. The

first attention, which is the guided multi-head attention, refines the boundaries of the

object instances in the segmentation. While the inner regions of the objects’ instance are

weighted equally in the first attention, the second attention, which is the self multi-head

attention, weights the essential parts for the identification task. In the results, it can be
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Input Image Segmentation 1st Attention 2nd Attention

Figure 4.10: Segmentation and Attention Results of Attention-driven RetinaNet on Pro-
tozoa image.
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interpreted that the second attention focuses more on one end of the protozoa instances.

Discriminately focusing on the objects’ instances leads to the improvement of detection.

Researches on the automatical detection of microorganisms often suffer from the small

number of training data problems. Therefore, it is useful to build a network that can be

trained with few labeled samples. It is difficult to collect a large number of microorganisms

with a broad set of species. Segmentation-driven RetinaNet is originally trained on at

most 5 samples per category but still offers promising results. In this experiment, the

networks’ ability on a few-shot learning problem is tested.

The 5 samples of each category in the ICIP 2022 Grand Challenge Parasitic Eggs

dataset are collected for the training set. Since the microorganisms appear at arbitrary

orientations, the images are rotated to generate more data without creating unrealistic

samples. The training set is augmented by rotating images at the center of the target

object’s bounding box with an interval of 5 degrees. The rest of the dataset, which is

10945 images, is reserved for testing.

Table 4.5 shows the results of the few-shot learning problem. Faster-RCNN achieves

the highest mAP (0.20) in this scenario with 0.99 precision. Our proposed Att-RetinaNet

achieves slightly higher mAP (0.19) than others in the RetinaNet family (0.16). This result

also shows the potential of our proposed network in applying it to real-world applications

where collecting data is challenging.

4.5 Summary of Finding distinctive features

This chapter focuses on finding the distinctive features for objects with less visual informa-

tion to enhance identification accuracy. The segmentation-driven mechanism is the key to

guiding the deep network in finding the characteristic features for detection. However, the

segmentation results produced by deep networks are coarse and blurred at the boundaries

of the objects. The segmentation-driven mechanism is replaced with the attention-driven

mechanism to find the distinctive features. Moreover, the attention mechanism is able to

refine the mistake in segmentation results.
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The proposed Attention-driven mechanism is applied to guide the network on the char-

acteristic and distinctive features. The attention-driven mechanism is also applied to the

protozoa domain. By predicting the segmentation, the network can keep track of the

trajectories even in the occluded, unclear regions. The attention mechanism is applied to

enhance the segmentation mask. The network then detects the spiddos patterns in the

attention mask. For the Genome Profiling domain, the proposed Attention-driven Reti-

naNet is trained on 16 samples of the dataset containing Bacillus coli and NIH genomes.

The network is evaluated on the test set containing 32 Bacillus coli + NIH and 7 samples

of the HIV dataset. Even though there are few samples for training, the network can still

detect the spiddos and achieves mAP of 0.29 and 0.54 on the two datasets. The proposed

network outperforms other related methods with respect to the mAP metric. The results

show that the proposed method can predict the segmentation of the trajectories even in

unclear and overlapping regions. Experiments are conducted on the extensive training

set and few-shot learning scenarios for the protozoa domain. The network achieves the

highest mAP in both cases.
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Chapter 5

Polymorphism

5.1 Polymorphism of a Category

In many domains, there are multiple appearances in the same class. This problem is called

the polymorphism. The multiple appearances in polymorphism problems may come from

different species, living conditions, evolution, etc. Each appearance contains a smaller

set of the feature set of its class. For example, there are several types of cats. They

share similar appearances since all of them are cats. Different poses of an object are also

examples of multiple appearance problems. Their appearance may also roughly change

during their lives.

There are several attempts that try to solve the polymorphism problems in object

detection. DPM [63] divides the samples of a class into multiple poses concerning the

aspect ratios. For example, the bounding boxes of cars in the front view have the shapes

of squares, while the side view has the forms of horizontal rectangles. The details of

the front view are also much different from the details of the side view. Clustering the

target object samples into groups of aspect ratios and training the detectors for each

group independently improve the detection performance. The idea is then derived from

the anchor box mechanism in modern detection networks. In detection neural networks

such as Yolo [81], SSD [78], or RetinaNet [3], the networks actually make thousands of

predictions, and only the those considered as objects are shown. A dense grid of bouding
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Figure 5.1: Example of the grid of anchor boxes in RetinaNet [3] that applied on the
input image to detection multiple object with different sizes and aspect ratios.
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boxes is applied to the input image to detect the object at multiple locations. Each cell of

the grid contains several classifiers that are in charge of several image regions with different

sizes and aspect ratios. Figure 5.1 shows an example of anchor boxes in RetinaNet. The

classifier detects the target object instance at the closest cell on the grid with the closest

size and aspect ratio. However, there are differences among the intraclass subcategories,

while there are similarities among the interclass subcategories. For example, there are

objects such as a face in which different poses have the same bounding box aspect ratios.

Therefore, a more sophisticated criteria is required to cluster the training samples.

Due to the regions and living conditions, species may change their appearances. One

possible solution is to collect many samples of all the appearances and train with robust

classifiers. However, this approach is insufficient in the domain that is difficult to collect

data. Few numbers of samples for each appearance lead the detector to overfit that

appearance.

In biology, experts cluster the living organisms into a taxonomy based on their appear-

ances, structure of the organs, living habitats, etc. A living organism is clustered into the

kingdom, phylum (or division), class, order, family, genus, and species. With the taxon-

omy relationship, similar species are separated. Hierarchical classifiers have been widely

applied to improve classification performance. In general daily life objects, there is also a

hierarchical relationship. Levatic et al. [95] discuss the importance of the label hierarchy

on the classification tasks. Several hierarchical classifier based methods have been devel-

oped such as SVM [96; 97], Decision Tree [98; 99], Artificial Neural Network [100], etc.

For object detection, Fan [101] proposed a method that clusters similar categories into a

new category to build a hierarchical relationship of image patches for localization tasks.

Bueno et al. [102] proposed a detection method with Deep Reinforcement Learning that

considers the hierarchical relationship of image regions.

The detection accuracy is often improved by detecting the dis-ambiguous sub-categories.

However, the information on the relationship between the sub-categories which belong to

the same category is not considered. Flat classifiers only find distinctive features of the

target classes. Multiple appearances of a class confuse the detector during training phase.
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A feature of one appearance may not appear in others. Those flat classifiers tend to focus

on a small group of differences enough to classify the target classes.

A hierarchical multi-label tree is applied to perform the hierarchical classification.

Leave-one-out strategy, which trains an independent classifier at every node in the hi-

erarchical relationship tree, is applied. At each node, the classifier is trained for the

binary classification task of that category versus the rest. This study employs a hierar-

chical classifier for multi-label problems. The hierarchy for RetinaNet is proposed to be

integrated on the natural hierarchical relationship of protozoa species and their life-cycle

stages.

Figure 5.2: Examples of protozoa that have similar appearances.

Different appearances of a category are treated as sub-categories. This chapter explores

the relationship between the sub-categories in the protozoa domain. There are a lot of

variations in the appearances of protozoa during their life-cycle stages. On the other

hand, a life-cycle stage of a species may have similar appearances to the life-cycle stages

of different species. Figure 5.2 shows examples of protozoa that have similar appearances.

The double wall-celled stage of Sarcocystis has two cysts inside a thick cell wall that is

similar to Cystoisospora. Sporulated oocyst stage of Sarcocystis is a single thick cell wall
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that is similar to Cyclospora and Iodamoba. Since there are a lot of differences among

stages, even for one species, it is hard to find general distinctive features to represent each

species.

The main contributions of this study in this problem are as follows:

• Exloring the hierarchical relationship of the target categories. In case of protozoa

domain, samples from each category of protozoa species are clustered with respect

to their life-cycle stage.

• Integrating the hierarchical classifier to deep network detector to form a end-to-end

network that detect the target object with its hierarchical structures simultane-

ously. This study proposed Segmentation-driven Hierachical RetinaNet to detect

and identify the protozoa with hierarchical multi-label.

5.2 Segmentation-driven Hierarchical RetinaNet

5.2.1 Hierarchical Relationship in Protozoa domain

Even though there is a small number of training samples, the hierarchical classifier is

employed to improve the performance when training samples appear differently. This

study employs the hierarchical relationship in the protozoa domain. The protozoa often

have two main stages: cyst and trophozoites. Each species’ life cycle is divided into

multiple stages that differ in morphology, such as the number of oocysts, wall cells, and

internal nuclei. Dividing each species into multiple life-cycle stages reduces the difficulty

of the generalization tasks of the model. It also helps clarify the distinctive features for

classification between similar stages across the species.

The network can be trained to predict the probabilities of the life-cycle stages instead of

the species. The predicted life-cycle stage, which has the maximum score, is then mapped

to the corresponding species category. Generally, predicting sub-categories yields better

results than predicting categories directly. Compared to the goal of detecting categories,
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Figure 5.3: The hierarchical relationship tree for the protozoa dataset.

detecting the subcategory forces the network to learn more efficient features to distinguish

the similar stages of different species.

Identifying the subcategories independently only focuses on the unique features of each

subcategory. The similarities between intra-class subcategories are not considered in this

manner. The hierarchical classifier is applied instead of the original flat classifier to reveal

the similarities of intraclass subcategories. The relationship between the subcategories for

life-cycle stages and the categories for species is considered as a hierarchical relationship.

Generally, the flat classifiers predict the subcategories and then infer the corresponding

category. On the other hand, the hierarchical classifier predicts a pair of subcategories

and their category. The hierarchical relationship is implicitly captured in the predictions.

Figure 5.3 shows the hierarchical relationship in the protozoa dataset.

5.2.2 Segmentation-driven Hierarchical RetinaNet Architecture

This chapter integrates a hierarchical classifier into the Segmentation-driven RetinaNet

for the protozoa domain. The flat classifier of the detection network instance is replaced
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with the hierarchical classifier. In the architecture of the detection network, multiple

classification sub-networks are organized in a grid after the Feature Pyramid Network to

predict the categories of the bounding boxes at numerous locations in the input image.

Each classification sub-network is a flat classifier that predicts the probabilities of either

the categories or the sub-categories. In the hierarchical classification, these sub-networks

predict the probabilities of the life-cycle stages. These layers are called sub-category classi-

fication layers. More fully connected layers are added after the sub-category classification

layers of these sub-networks to predict the probabilities of the species. These sub-category

and category classification layers organize the hierarchical classifiers that predict pairs of

the life-cycle stages and the species. The focal loss is applied for sub-category and category

layers during the training phase.

In this protozoa problem, each sub-category corresponds to exactly one category. There

is a trivial case in which the network only weights the corresponding sub-category nodes

in the case of predicting the probability of a particular category. A residual connection is

added from the Feature Pyramid Network to the category classification layers to prevent

the network from learning the trivial case. This residual connection helps the network

obtain the result of the sub-category classification layers and the extracted features of the

Feature Pyramid Network. Moreover, the residual connection forces the network to learn

the shared features for grouping the sub-categories into the corresponding categories.

The extracted features are then shared to identify both sub-categories and categories.

Therefore, the benefit of the hierarchical classifier is that the network is forced to si-

multaneously learn the distinctive features among the sub-categories and the similarities

between intraclass sub-categories.

The architecture of the hierarchical classifiers for Segmentation-driven RetinaNet is

illustrated in Fig. 5.4 where A is the number of anchor boxes in RetinaNet, K is the sum

of all the life-cycle stages, and S is the number of target species. The orange layer and

the purple layers are the subcategory classification layer and the category classification

layer, respectively. The architecture is able to be extended to more layers of hierarchy

when there are more layers in the hierarchical relationship structure. In this chapter,
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Figure 5.4: Hierarchical classifier for RetinaNet. For protozoa domain, the subcategory
classifier corresponds to the life-cycle stage while the category classifier correspond to the
species.

there are only two layers in the hierarchy: category and its first level of subcategory for

the protozoa domain.

5.3 Evaluation

The Segmentation-driven Hierarchical RetinaNet is evaluated on the protozoa dataset.

The results of the original RetinaNet, the sub-network used for training, Segmentation-

driven RetinaNet (Seg. Retina) and the Segmentation-driven Hierarchical RetinaNet (Seg.

Hier. Retina) in both cases with and without the sub-category of the life-cycle stages are

shown in Table 5.1.

The Seg. Hier. Retina achieves mAP, precision, and recall values on the average of 0.82,

0.85, and 0.94, respectively. Those are the highest results on among the tested methods.

By applying the hierarchical classifier, the detection performance increases 5% in mAP,

7% in precision, and 4% in recall, respectively. The hierarchical classifier improves the

performance of the network by reducing the overlapped bounding boxes (for example, the

case of Aca and Cca). Figure 5.5 shows the example segmentation and detection results

of the Seg. Hier. Retina. However, the scores of the predicted classes of Seg. Hier. Retina

is lower than Seg. Retina in these samples (Figs. 3.9 and 5.5). Seg. Hier. Retina misses
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Table 5.1: Detection performances on mAP, precision, and recall with respect to species.

Cca Sar Aca Ibu Tgo Gla Bco Cbe avg.
mAP

On category
RetinaNet 0.63 0.42 0.17 0.12 0.0 0.14 0.54 0.00 0.25
Sub-network 0.86 0.00 0.34 0.61 0.61 0.45 0.53 0.10 0.44
Seg. Retina 0.86 0.25 0.36 0.67 1.00 1.00 0.58 0.30 0.65

On sub-category
RetinaNet 0.82 0.10 0.53 0.18 0.00 0.36 0.39 0.00 0.30
Sub-network 0.86 0.18 0.78 0.73 1.00 1.00 1.00 0.32 0.73
Seg. Retina 0.89 0.50 0.73 0.84 1.00 0.84 0.61 0.75 0.77

Seg. Hier. Retina 0.77 0.42 0.77 0.96 1.00 1.00 0.90 0.75 0.82
Precision

On category
RetinaNet 0.69 0.40 0.19 0.67 0.00 0.22 0.50 0.00 0.33
Sub-network 0.95 0.00 0.42 0.75 0.67 0.50 0.58 0.14 0.50
Seg. Retina 0.94 0.33 0.44 0.82 1.0 1.0 0.64 0.33 0.69

On sub-category
RetinaNet 1.00 0.14 0.48 1.00 0.00 0.50 0.50 0.00 0.45
Sub-network 0.94 0.25 0.74 1.00 1.00 1.00 1.00 0.50 0.80
Seg. Retina 0.97 0.50 0.71 0.90 1.00 0.75 0.83 0.60 0.78

Seg. Hier. Retina 0.94 0.67 0.77 0.91 1.00 1.00 0.87 0.60 0.85
Recall

On category
RetinaNet 0.94 0.67 0.94 0.20 0.00 0.67 1.00 0.00 0.55
Sub-network 0.97 0.00 0.88 0.90 1.00 1.00 1.00 0.67 0.80
Seg. Retina 0.94 0.67 0.88 0.90 1.00 1.00 1.00 1.00 0.92

On sub-category
RetinaNet 0.83 0.67 0.94 0.10 0.00 0.33 0.43 0.00 0.41
Sub-network 0.94 0.67 1.0 0.70 1.00 1.00 1.00 0.67 0.87
Seg. Retina 0.92 0.67 1.00 0.90 1.00 1.00 0.71 1.00 0.90

Seg. Hier. Retina 0.83 0.67 1.00 1.00 1.00 1.00 1.00 1.00 0.94

few instances of Cca; therefore, the recall on Cca of Seg. Hier. Retina is lower than Seg.

Retina.

Table 5.2 shows the segmentation results of the Seg. Retina and Seg. Hier. Retina.

The Seg. Hier. Retina achieves average binary accuracy, precision, and recall of 0.98,
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Table 5.2: Segmentation performance.

Cca Sar Aca Ibu Tgo Gla Bco Cbe avg.
Binary Accuracy

Seg. Retina 0.99 0.97 0.97 1.00 0.99 0.99 0.86 0.98 0.96
Seg. Hier. Retina 0.99 0.92 0.96 1.00 0.99 0.98 0.99 0.99 0.98

Precision

Seg. Retina 0.84 0.74 0.90 0.82 0.91 0.76 0.96 0.55 0.86
Seg. Hier. Retina 0.86 0.89 0.90 0.83 0.91 0.87 0.98 0.75 0.93

Recall

Seg. Retina 0.99 0.96 0.96 0.99 1.00 0.94 0.85 0.95 0.91
Seg. Hier. Retina 0.99 0.95 0.94 1.00 1.00 0.89 0.92 0.94 0.95

0.93, and 0.95, respectively. The segmentation performance is slightly improved in binary

accuracy, precision, and recall. Since the network is a built-in end-to-end pipeline, the

detection network modifies the segmentation result to get higher detection performance.

Therefore, the segmentation performance is improved when the detection performance is

improved.

Figure 5.6 shows an example of detection result with probabilities of the categories of

Seg. Retina and Seg. Hier. Retina. In this example, Seg. Hier. Retina outperforms

Seg. Retina when successfully detects and identifies all the protozoa instances. The

Seg. Retina with the flat classifier tries to maximize the probabilities of the categories

with similar parts to the sample. This is because the flat classifiers learn the efficient

features to distinguish among the target category set. The appearances in the training

samples cannot cover all of those features in the case of a small number of training data.

Therefore, the network reffers them as distinctive features for other categories. In the

example, the probabilities of Sar and Iod produced by Seg. Retina is high, which leads

to the misidentified instance. On the other hand, Seg. Hier. Retina allows the category

classifier layer to adjust the probabilities produced by the subcategory classifier layer.

In the example, Seg. Hier. Retina adjusts the probability of Sar lower and that of Iod

higher.
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(a) Cca (b) Aca

(c) Tgo (d) Ibu

(e) Sar (f) Gla

(g) Bco (h) Cbe

Figure 5.5: Examples of detection and segmentation results of Segmentation-driven Hier-
archical RetinaNet.

5.4 Summary of Polymorphism

This study discusses the polymorphism of objects with less visual information. This

study explores the relationship of various appearances of the target categories. This study

introduces Segmentation-driven Hierarchical RetinaNet, which integrate the hierarchical

classifier to a detection network for the various appearance problem for the object with

less visual information. By applying the hierarchical structure and clustering the different
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Figure 5.6: Category probabilities predicted on an example input by Seg. RetinaNet and
Seg. Hier. RetinaNet.
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appearances, the ambiguity in each category is cleared. The Hierarchical Segmentation-

driven RetinaNet is evaluated on the protozoa dataset. Experimental results show that

the proposed network can learn the characteristic features among similar target objects.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the key contributions and the main observation obtained from

the experiments. This chapter also points out some potential research directions for future

work on detection for objects with less visual information.

6.1 Conclusion

This study is motivated by the need for a comprehensive method for medical image do-

mains to accelerate the diagnosis and treatment processes. This dissertation concerns the

detection, segmentation, and identification tasks for object with less visual information.

The target objects of this dissertation are objects that:

• have less visual information: decomposing the structure of the target objects yields

shallower part-based hierarchical structures than daily life objects.

• have a small number of training data: target objects in the domains that are difficult

to collect.

• have various appearances: each appearance shows a smaller number of features than

that of the feature set of its category.

The research question of this dissertation is: “How can we identify a category with a

small number of visual information?”. Finding characteristic and distinctive features is
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the essential to detect and identify the target categories. Those are shape and texture

features. This study also considers the distinctive features among similar appearance

objects.

To answer the research question, the dissertation focuses on:

• Finding characteristic features: This study first finds the texture features for the

target objects. Those features characterize the appearance of the target objects.

In the case of the small dataset, neural network detectors consider the background

information to predict the identification. Applying segmentation to filter out the

background force the deep network to focus on finding the features of the inner

textures of the objects.

• Finding distinctive features: While characteristic features are essential for detection

tasks, distinctive features are essential for identifying the objects, especially the

objects with less visual information. In color images, texture features of a target

object may be unique. With a single color channel, the outer shapes of the objects

contribute more to the identification than the texture features. Attention mecha-

nism is the key to guiding the deep network in focusing the distinctive characteristic

features of the target object.

• Polymorphism problems: This study explores the relationship of various appear-

ances of the target categories. There may be similar features shared among differ-

ent categories. On the other hand, there are also different features among objects

in the same category. Building a hierarchical structure for clustering the different

appearances clears the ambiguity in each category.

Characteristic features is essential for detecting the target objects. The Segmentation-

driven mechanism is proposed to guide the detector to focus on the characteristic features

of the target objects. Chapter 3 performs the segmentation-driven idea on the protozoa

domain to find the texture features. The main contributions of Chapter 3 to this problem

are:
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• Establishing Segmentation-driven RetinaNet, which filters out the background and

detects the target objects.

• Introducing several data augmentation techniques to overcome the small number of

data problem.

Even though there are at most five samples per life-cycle stage for training, we success-

fully train a practical system to detect, segment, and identify protozoa with high accu-

racy. Experimental results on the protozoa dataset show the effectiveness of the proposed

segmentation-driven mechanism.

On the other hand, the distinctive features is essential for identifying the target ob-

jects. The Attention-driven mechanism is proposed to guide the network to focus on the

distinctive features which also characterize the target objects. Chapter 4 performs the

idea on the protozoa and Genome Profiling image domain to find the distinctive features.

The main contributions of Chapter 4 are:

• Designing an prerequisite image enhancement process to enhance the connectivity

of objects in grayscale images

• Sharper the segmentation results by stacking attention layers

• Establishing the Attention-driven RetinaNet that focuses on the distinctive features

to improve the detection performance

Even though the case where there are few samples for training, the proposed method

is still able to detect the spiddos and achieves mAP values of 0.29 and 0.54 on the two

datasets of DNA Profiling images.

A hierarchical classifier is applied for the detection network to explore the similar and

different features among the target objects. Chapter 5 introduces Segmentation-driven

Hierarchical RetinaNet, which integrate the hierarchical classifier to the detection net-

work for the various appearance problem of the object with less visual information. The

proposed network is evaluated on the protozoa dataset. The proposed method captures

the hierarchical relationship between the life-cycle stages and the species to improve the
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detection performances. Experimental results show that our proposed network can learn

the characteristic features of the target objects. There are five samples per life-cycle

stage to train the detection methods. The proposed method achieves the highest mAP,

precision, and recall values over the related works.

6.2 Future Work

This section gives some possible further directions of this study, which are suggested by

the experiments and the recent progress of the computer vision.

Instance-level Segmentation

This dissertation performs semantic segmentation that clusters pixels into foreground or

background. The semantic segmentation is efficient to eliminate the background, therefore

boosting up the detection performance. However, the target object instances in the images

should be treated independently. Instance-level segmentation, which clusters pixels into

the specific object instance in details, is expected to guide the neural network detector to

separate the features among instances appeared in the image. Instance-level segmentation

is also expected to help the detector in case of overlapping objects.

Subcategory Data augmentation

A solution to overcome the lack of data problem is the data augmentation technique.

In this dissertation, color transfer and rotation augmentation techniques are applied to

train the neural network detectors. A more semantic augmentation is to generate more

data sample with respect to the subcategories corresponding to the various appearances.

Generative Adversarial Network (GAN) [103] or Variational Auto Encoder (VAE) [104]

can be applied to generate more data samples.

86



Bibliography

[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional

networks for accurate object detection and segmentation,” IEEE transactions on

pattern analysis and machine intelligence, vol. 38, no. 1, pp. 142–158, 2016.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in neural information pro-

cessing systems, 2015, pp. 91–99.

[3] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object

detection,” in IEEE International Conference on Computer Vision (ICCV), 2017,

pp. 2999–3007.

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in IEEE International

Conference on Computer Vision, 2017, pp. 2980–2988.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in IEEE conference on computer vision and

pattern recognition, 2009, pp. 248–255.

[6] “An overview of deep learning in medical imaging focusing on mri,” Zeitschrift für

Medizinische Physik, vol. 29, no. 2, pp. 102–127, 2019.

[7] L. Brigato and L. Iocchi, “A close look at deep learning with small data,” CoRR,

vol. abs/2003.12843, 2020. [Online]. Available: https://arxiv.org/abs/2003.12843

[8] E. Togootogtokh and A. Amartuvshin, “Deep learning approach for very similar

87



objects recognition application on chihuahua and muffin problem,” CoRR, vol.

abs/1801.09573, 2018. [Online]. Available: http://arxiv.org/abs/1801.09573

[9] D. Paschalidou, L. V. Gool, and A. Geiger, “Learning unsupervised hierarchical

part decomposition of 3d objects from a single RGB image,” CoRR, vol.

abs/2004.01176, 2020. [Online]. Available: https://arxiv.org/abs/2004.01176

[10] C. T. N. Suzuki, J. F. Gomes, and A. X. Falcao, “Automatic segmentation and

classification of human intestinal parasites from microscopy images,” Biomedical

Engineering, vol. 60, pp. 803–812, 2013.

[11] “A robust technique based on invariant moments – anfis for recognition of human

parasite eggs in microscopic images,” Expert Systems with Applications, vol. 35,

no. 3, pp. 728 – 738, 2008.

[12] F. Thung and I. S. Suwardi, “Blood parasite identification using feature based

recognition,” in International Conference on Electrical Engineering and Informatics,

2011, pp. 1–4.

[13] J. L. V. Noguera, H. L. Ayala, C. E. Schaerer, and M. Rolón, “Mathematical

morphology for counting trypanosoma cruzi amastigotes,” XXXIX Latin American

Computing Conference (CLEI), pp. 1–12, Oct 2013.

[14] F. B. Dazzo and B. C. Niccum, “Use of cmeias image analysis software to accu-

rately compute attributes of cell size, morphology, spatial aggregation and color

segmentation that signify in situ ecophysiological adaptations in microbial biofilm

communities,” Computation, vol. 3, no. 1, pp. 72–98, 2015.

[15] Z. Ji, K. J. Card, and F. B. Dazzo, “Cmeias jfrad: A digital computing tool to

discriminate the fractal geometry of landscape architectures and spatial patterns of

individual cells in microbial biofilms,” Microbial Ecology, vol. 69, no. 3, pp. 710–720,

2015.

[16] C. Li, Content-based Microscopic Image Analysis, May 2016.

88



[17] P. J. P., F. A. X., and S. C. T. N., “Supervised pattern classification based on

optimum-path forest,” International Journal of Imaging Systems and Technology,

vol. 19, no. 2, pp. 120–131, 2009.

[18] Y. S. Yang, D. K. Park, H. C. Kim, M.-H. Choi, and J.-Y. Chai, “Automatic identi-

fication of human helminth eggs on microscopic fecal specimens using digital image

processing and an artificial neural network,” IEEE Transactions on Biomedical En-

gineering, vol. 48, no. 6, pp. 718–730, 2001.

[19] R. Flores-Quispe, R. E. Patiño Escarcina, Y. Velazco-Paredes, and C. A.
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