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A Novel Filter Pruning Algorithm for Vision Tasks based on Kernel
Grouping

Jongmin Lee, Armagan Elibol, and Nak Young Chong

Abstract— Although the size and the computation cost of the
state of the art deep learning models are tremendously large,
they run without any problem when implemented on computers
thanks to the remarkable enhancements and advancements of
computers. However, the problem is likely to be faced when
the need for deploying them on mobile platforms arises. Model
compression techniques such as filter pruning or knowledge
distillation help to reduce the size of deep learning models.
However the conventional methods contain sorting algorithms
therefore they cannot be applied to models that have reshaping
layers like involution. In this research, we revisit a model com-
pression algorithm named Model Diet that can be both applied
to involution and convolution models. Furthermore, we present
its application on two different tasks, image segmentation and
depth estimation.

I. INTRODUCTION

Computer vision has been researched since the late 1960s
but image classification is still one of the main challenges.
After Geoffrey Hinton won the ImageNet Large Scale Vision
Recognition Challenge(ILSVRC)[1] as known as ImageNet
with AlexNet[2] on 2012, people started researching about
Convolutional Neural Networks(CNN) for image classifica-
tion. Modern neural networks[3], [4] achieved nearly 90%
accuracy on the ImageNet dataset, however, the number
of parameters is tremendously large. Although the models
introduced above have great performance on image tasks,
they still require high computational cost, therefore, applying
deep neural networks on mobile devices remains challenging.

There were several approaches for reducing the number
of parameters while trying not to lose the performance.
Knowledge distillation[5] is a method that uses a dense
network as a teacher model and a sparse network as a student
model. Filter pruning[6] is a method for reducing the number
of filters in CNN. When pruning the filters we sort by the sum
of weights for each filter for every layer. Since filters that
have weights close to 0 will not affect much of the model’s
performance, when given a proper threshold, we can get a
sparse model with similar performance.

However, it is hard to apply the conventional pruning
method for involution[7] since it requires sorting operation
on filters. Involution has reshaping layers therefore if the
filters are sorted, they lose the spatial information. To over-
come this problem, we need to rewrite the code for the model
which is hard to implement and time-consuming. In this
research, we propose a pruning method called the model
diet which is easy to implement, and effective for CNN
models including involution. Instead of sorting the filters
for each layer, we reduce a certain portion of the filters
by grouping the kernel weights therefore for involution, the

spatial information is not lost. Since the model depth is
maintained but the filters are reduced, we call this pruning
method a model diet, and we will show that diet models
have faster convergence compared with randomly initialized
models.

The model diet consists of 2 stages, the kernel grouping
stage and the group selection stage. kernel grouping is an
algorithm that splits the kernel weights into groups. The
kernel weights are split in order therefore when applied to
involution, the involution kernel does not lose the spatial
information. Once the kernel weights are split into groups,
we take the sum of the weights for each group. Then we use
the group that has the biggest sum, and we call this operation
group selection.

Deep learning frameworks such as TensorFlow or PyTorch
save the model’s weights as matrices. For involution, the
kernel weights are saved as a vector. When the weights
are loaded, the vector reshapes itself into the corresponding
shape. Therefore, the element of the vector indicates a certain
location in an image. If we apply conventional pruning
algorithms, the weights of the involution kernel will be sorted
also, resulting in a loss of spatial information. However, the
kernel grouping keeps the order of the weights, therefore
when applied to involution the loss of the spatial information
does not happen. Also, the computational complexity of the
model diet is O(n) whereas the computational complexity
of the conventional pruning is O(n log n). Since model diet
has the same computational complexity with selecting the
maximum element in a vector where conventional methods
have the same computational complexity with sorting.

In this research, we show the effectiveness of the model
diet in two computer vision tasks, image segmentation,
and depth estimation. We test the performance of the diet
model and the randomly initialized model. The diet model
showed faster convergence and performance compared with
the randomly initialized model. For image segmentation,
the dataset was easy to generalize and lacked difficulty
therefore the diet model and the randomly initialized model
showed equal performance, but the diet model still had faster
convergence. For depth estimation, both the diet model and
the randomly initialized model showed poor performance
even though the loss converged. Also, the difference between
groups was studied. We split the full model into 2 groups
and compared the performance. Both the group with the
bigger sum and smaller sum showed equal performance and
speed of convergence. Since pruning can be regarded as
weight initialization, we hypothesize that both the group
with bigger sums and smaller sums started from a different



location but shared the same local optimum point. This work
is an extension of our previous work [8] and presents extra
analysis on our proposed algorithm and the performance on
different vision tasks.

II. RELATED WORK

A. Involution

Involution[7] is a type of kernel that can reduce the inter-
channel redundancy of CNNs. It reversed the inheritance of
convolutions and has spatial-specific and channel-agnostic
features. This term means that Involution kernels refer to the
channels for each pixel when generating the kernel weights.
Unlike randomly generated kernels like CNN, Involution
takes the channel information when generating kernels. This
makes a difference because for Involution kernels the ker-
nel weights for each pixel differ. Convolution kernels, on
the other hand, share the same weights for every pixel.
This makes Involution kernels have wider receptive fields
compared to convolution kernels. This makes Involution
more similar to self-attention rather than convolution. Self-
attention is a relation between 2 pixels but involution takes
more pixels in regard, so we can consider Involution a more
generalized form of self-attention.

The feature map is defined as X ∈ RH×W×Ci and a
pixel inside the feature map is defined as Xi,j ∈ RCi .
The involution filter is defined as Hi,j ∈ RK×K×Ci . For
each layer, the involution kernel exists as the number of
output channels therefore each involution layer is defined
as H ∈ RH×W×K×K×Ci . The kernel generation function
is defined as ϕ : RCi 7→ RK2×Ci where K denotes the
involution kernel size. For each pixel Xi,j , linear projection
ϕ will be operated and the output will be reshaped into Ci

number of K×K shaped kernels. Since the involution filter is
a concatenated tensor of involution kernels, the entire kernel
generation can be written as below.

Hi,j = Reshape(ϕ(Xi,j)) (1)

Once the involution kernel is generated, we perform a
multiply-add operation through the channel dimension. The
difference between convolution and Involution is that for
convolution, every pixel shares the same kernel. On the
other hand, for Involution, the values of the kernel vary
depending on the pixels channel therefore all pixels have
different kernels.

B. Model compression

Frankle and Carbin [14] hypothesize that there exists a
sparse network that has a similar or even better performance
compared with the dense network. Although there might exist
a winning ticket i.e. the sparse network which has similar
performance with the dense network, it is tough to find the
initial weights of the parameters. Rather than finding the
winning ticket, pruning the weights from a pre-trained model
is easier. Knowledge distillation distills the knowledge from
a dense model i.e. a teacher model to a sparse one i.e. the
student model. Filter pruning prunes the filters of a CNN
model and re-trains the pruned model.

Pruning is a commonly used algorithm for model com-
pression. Hao Li et.al. [6] proposed a filter pruning algo-
rithm to reduce the number of weights in CNN. Pruning
algorithms like Dropout [11], remove the connections which
are also called weights. However, filter pruning prunes the
convolution kernel directly instead of pruning the weights.
When pruning the kernels, the kernels are sorted by their
sum of the weights and a certain proportion among the filters
is removed. The reason why the filters are sorted is that the
kernels that are closer to 0 are less likely to affect the output.

Zafrir et al. proposed an algorithm named prune once for
all (PruneOFA) in [15]. PruneOFA is composed of 2 steps,
teacher preparation, and student pruning. The teacher prepa-
ration step uses a pre-training dataset to train the teacher
model. After training the teacher model, the student model is
generated and pre-trained using the teacher model’s weights.
Then we prune the teacher model using Gradual Magnitude
Pruning (GMP) [12] and learning rate rewinding(LRR)[13].
After the pruning is done, we use the task dataset to finetune
the pruned model.

Data-free distillation[16] is a knowledge distillation
method that does not require data for knowledge distillation.
The conventional knowledge distillation method is to mini-
mize the 2 loss functions. One, the error between the ground
truth, and second, the error between the teacher model and
the student model. However, data-free distillation methods do
not require the original data used when training the teacher
model. Instead reconstructs the input data by using a random
gaussian noise for the teacher model’s input. The Gaussian
noise goes through the top layer i.e. the classification layer
to the bottom layer i.e. the input layer. We use the gradients
of each layer to reconstruct the input image.

Data-free adversarial distillation[17](DFAD) is an algo-
rithm that uses a GAN’s generator for sample generation. It
mimics the learning process of humans. The generator will be
trained to sample harder examples. Unlike the previous data-
free distillation, this algorithm does not require the layer’s
activation statistics. Instead, it generates images itself to train
the student network.

III. PROPOSED METHOD

The key point of pruning is that kernels are mutually
independent. Therefore it is possible to remove kernels that
less affect the performance of the model. However, for
algorithms such as involution, deciding which kernel to
remove might be difficult. The two main keywords of this
research are as follows.

1) Kernel grouping
2) Model Diet

A. Kernel grouping

Involution kernels, the weights are saved as a vector since
the kernels act as a linear layer. In order to avoid information
loss by the reshaping layer, the order of the kernel weights
must be kept. The order of the weights of a deep learning
model depends on its shape. For example, convolution layers
are saved as (output channels, input channels, K, K) where



TABLE I
NUMBER OF PARAMETERS NEEDED BY THE TYPE OF LAYERS AFTER APPLYING MODEL DIET

Type of layer Input Size Output Size #Parameters(g = 2) #Parameters(g = 3)
Convolution W ×H × Ci W ×H × Co 0.25 · (Ci × Co ×K2) 0.11 · (Ci × Co ×K2)

Fully Connected Ci Co 0.25 · (Ci × Co) 0.11 · (Ci × Co)
Batch Normalization W ×H × Ci W ×H × Co 0.5 · (2 · Co) 0.33 · (2 · Co)

K stands for the kernel size, and linear projection layers
are saved as (output features, input features). The kernel of
involution is generated by a linear projection therefore the
weights of involution are saved as (output features, input
features).

Since reshaping does not contain learnable parameters, the
output shape of a reshaping layer is unknown when loading
the weights. This means that when the weights of involution
are loaded, the weights can be reshaped into an arbitrary
shape. To reduce the parameters and keep the kernel weight’s
order, we need to split kernels into N groups for each layer,
where N is the number of the weights. The weights are first
split into g groups, where each group Gi takes the index from
(N/g) × i to (N/g) × (i + 1) where i is a natural number
smaller than g. We call this operation kernel grouping.

Fig. 1. Kernel Grouping for convolution kernels

Fig. 2. Kernel Grouping for fully connected layers

Fig. 2 shows kernel grouping for vectors. The figure on
the left shows the original model before kernel grouping
is applied. The figure on the right shows the weights after
kernel grouping is applied. Different groups are colored in
differently.

B. Model diet

Fig. 3 shows the visual explanation about the model diet
algorithm. The black and white kernels refer to the original
model i.e. the full model. Then we group the kernels into

N groups. After grouping the kernels we get the total sum
of the weights of kernels for each group. Finally, we choose
the group that has the biggest sum. We call this model the
diet model.

The term Model diet comes from reducing the weights
while maintaining the model depth. The weights of each
group are summed and the group that has the biggest sum is
used for the diet model. Our aim is to change the shape of the
weight (output channel, input channel, K, K) into (output
channel/g, input channel/g, K, K) therefore the weights from
index (N/g)× i to index (N/g)× (i+ 1) where i indicates
the index of the group which has the max sum of elements
are kept.

Fig. 4 shows how the model diet solves the information
loss for involution. The vector on the left corresponds to
the weights of the kernel generation. The vector on the right
indicates the involution kernel after the reshaping layer. Con-
ventional pruning methods need to sort the weights before
pruning. That will result in changing the order of the weights
and the output kernel will lose the spatial information. On
the other hand, the model diet prunes the weights without
sorting.

C. Computation Cost

Let K be the width and height of a kernel. Normally a
convolution kernel has the same width and height therefore
we let the number of weights per kernel be K2. We define the
depth of a model L and the number of kernels per layer as C.
Each layer consists of W×H×C number of pixels where W
and H are the width and height respectively. The size of the
convolution kernel for the input layer and the output layer is
C2 ×K2 for the full model. If the model diet is applied the
kernel size can be reduced to (C2×K2)/g since the channel
of the input and output layer is unchanged. Note that g is the
number of groups. On the other hand, layers in the hidden
layer can be reduced to (C2×K2)/g2. The same logic holds
for fully connected layers. The batch normalization layer
only depends on the output channels therefore the parameters
are reduced to (C2 ×K2)/g regardless of the location.

Table I shows the compression rate of the model diet
by the type of layers. In most cases, the proportion of the
compression stays in g2. This means, if we choose group the
kernels into 2 groups, 75% of the parameters are reduced and
89% if 3 groups.

IV. EXPERIMENTAL RESULTS

A. Compression Rate

We test the compression rate of the model diet on UNet
for image segmentation and depth estimation. Table II shows



Fig. 3. Visual explanation about model diet algorithm.

Fig. 4. Comparison between conventional pruning(top) and model
diet(bottom). The original involution is showed in the middle

TABLE II
NUMBER OF PARAMETERS (×106) BEFORE AND AFTER DIET.

Model Full Diet Reduction Rate
UNet 17.26 4.32 74.97%

the number of parameters. The diet could reduce up to
approximately 75% of the parameters.

Table III shows the number of floating-point operations
in a billion scale. It can be seen that the floating-point
operations have reduced about 75%. This difference will
make a drastic difference in the inference time when it is
needed to operate in real time.

TABLE III
NUMBER OF GFLOPS BEFORE AND AFTER DIET.

Model Full Diet Reduction Rate
UNet 10.02 2.52 74.85%

B. Comparison between Groups

Fig. 5 and Fig. 6 shows the test accuracy and test loss for
the 2 different groups tested with ResNet [9] and VGG [10].
The blue plot indicates the group with the bigger sum of the
weights and the orange one indicates the group which used
the smaller sum of groups. Either way, the convergence, and
performance are similar. Model diet prunes the kernels of
the full model which converged into a certain place on the
feature space. This means that the optimization leads the
weights into a local optimum. For the 2 models, the model
which used the bigger sum and the one with the smaller
sum will start from a different location in the feature space.
Although the 2 models have completely different weights,
they share the common convergence point of the full model
therefore we hypothesize that the 2 models also share the
same convergence point.

C. Image Segmentation

The image segmentation task is a task where we classify
each pixel in an image. The segmentation model takes an
image as an input and outputs a mask. each mask corresponds
to a certain label. We test the model diet algorithm on the U-
Net model[18]. Other experimental settings are the same with



Fig. 5. Comparison between the groups of VGG.

Fig. 6. Comparison between the groups of ResNet

Fig. 7. The test loss of random initialized and the diet model(Tested with
U-Net)

image classification. The U-Net model was trained using the
Carvana image masking dataset.

Fig. 7 shows the test loss of the diet model and the ran-
domly initialized model of U-Net. We use the binary cross-
entropy loss(BCE Loss). The diet model and the randomly
initialized model both show similar performance. However,
we can still observe that the diet model converges faster than
the randomly initialized model. There was no difference in
the performance between the diet model and the randomly
initialized model since the dataset lacks difficulty. Therefore
either model showed similar performance.

D. Depth Estimation

Depth estimation is close to image segmentation, but the
classification is changed to regression. We predict the depth
for each given pixel in an image. The NYU depth dataset
V2 was used for training. Also, the same U-Net model used
for image segmentation was used for depth estimation. The
training settings stay the same with image classification.

Fig.8 shows the test loss(MSE loss) for the diet model and
the randomly initialized model. Both diet model and ran-



Fig. 8. The test loss of random initialized and the diet model for depth
estimation(Tested with U-Net)

domly initialized model showed convergence around epoch
20. The performance of the diet model is slightly higher
than the randomly initialized model. Although the loss was
reduced, the prediction of the U-Net model was poor. Since
we used MSE loss for training, and MSE loss does not
guarantee the local information the decrease of the MSE loss
does not mean that the performance is getting better.

V. CONCLUSIONS

We tested the performance and convergence on 2 other
tasks. For image classification, the diet model showed bet-
ter performance and faster convergence compared to the
randomly initialized model. For image segmentation, both
the diet model and the randomly initialized model showed
similar performance. However, the diet model still had faster
convergence compared to the randomly initialized model. For
depth estimation, we used the same model architecture with
image segmentation. The performance was poor even though
the loss converged. The summation of groups did not affect
much on the performance. We hypothesize that both groups
with the bigger sum and the smaller sum exist in the same
local optimum.

Both the diet model and the randomly initialized model
trained for image segmentation had similar performance.
This happens due to the lack of difficulty of the dataset.
To test the effectiveness of the model diet, the U-Net model
must be tested on harder datasets such as the COCO image
segmentation dataset.

We failed to train the U-Net model for depth estimation.
To check whether the model diet works on depth estimation,
we must try state-of-the-art depth estimation models or
other training methods. In this research monocular depth
estimation was tested with U-Net with MSE loss trained with
the Adam optimizer. For future work, other state-of-the-art
models and training methods must be tested.

For future work, some experimental and performance
analyses will be targeted in other models for object detec-

tion, image generation, and similar other tasks. Also, more
sophisticated ways to select a group of weights apart from
the summation of weights and the effect of the sum of the
groups will be studied. To check if the weights are located
into a similar local optimum, similarity functions such as
cosine similarity will be used to compare the values of the
model’s weights. If the 2 models have big similarities, we
can conclude that 2 models converged into the same local
optimum. Also, if the models share the same convergence
point, it means that we can select either group and therefore
the algorithm can be simplified.
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