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Abstract—With the increasing prevalence of robot-led au-
tomation in many fields such as industry, health-care, agri-
culture, etc., robot manipulator arms are often required to
handle sophisticated manipulation tasks in which both the object
and environmental physical parameters are unknown. In order
to deal with these tasks, fast and accurate estimation of the
inertial parameters of the object and frictional characteristics
of flooring surfaces are of crucial importance toward developing
intelligent and efficient object manipulation strategies. In this
work, we propose an integrated framework for estimating the
center of mass of an unknown planar object using a force
sensor-less manipulator arm pushing the object on a horizontal
plane. We evaluate two algorithmic solutions through extensive
pusher-slider frictional interaction simulations. The result shows
that the proposed framework can estimate the center of mass
location efficiently and accurately only with a few pushing
interactions.

Index Terms—Planar Pushing, Frictional Interaction, Center
of Mass Estimation, Few-Shot Learning, Voting Theorem

I. INTRODUCTION

Currently, robots are expected to not only be able to ex-
ecute human-programmed actions in environment-controlled
industrial plants but also capable of perceiving object ge-
ometry and inertial parameters of the object for autonomous
dexterous manipulation without human intervention. Probing
the inertial parameters of the object is important for energy-
efficient manipulation [1] as well as motion planning [2]–[4].
For instance, Mavrakis et al. [1] leverages the object’s inertial
parameters for grasp selection to minimize the joint torque.
Song et al. [2] identifies the object mass distribution in order
to efficiently re-arrange objects to facilitate grasping. As
different locations of an object’ center of mass (CoM) leads
to a different response to the contact force in planar pushing,
Li et al. [3] utilize a recurrent neural network simultaneously
to learn a representative feature for forwarding modeling as
well as to predict the CoM. Gao et al. [4] show that the
CoM information can help improve the sampling efficiency
for object re-arrangement.

In this work, we propose two methods for estimating an
object’s CoM. The first method uses a set of given actions
and their resulting predicted motion via a few-shot motion
prediction model proposed by Gao et al [5]. It accumulates

the total amount of weighted predicted amount of rotation for
the points in the object mask and aims to segment the area
where this accumulation is minimum as it will be the region
that is less likely to rotate. The second method estimates
the CoM by combining the object motion prediction model
with Mason’s Voting Theorem (VT) [6] to refine the possible
CoM region progressively with aiming to minimize the total
number of pushes needed. This aim is modeled by using
a proposed Average Equality Score function. We evaluated
the proposed methods using 20 different objects with a total
number of 6,000 random sets of actions in a simulation
environment.

II. RELATED WORK

Planar pushing has been a quite involved research topic
studied in modeling, planning, control as well as physical
property estimation perspective. Mason [6] pioneered the
study of quasi-static dynamics of a pusher-slider system,
relating the sense of object rotation to the spatial relationship
between the object CoM and several rays specified by the
friction cone at the contact point and pushing direction. Goyal
[7] proposed the concept“limit surface” to relate the applied
contact force with the object motion under the maximum
energy dissipation and Coulomb friction law. This limit
surface is approximated by an ellipsoid model for control
by Lynch [8]. Recently, data driven models have been used
for the same modeling problem by Zhou et al. [9] and Bauza
et al. [10].

For estimating the physical properties of the object by
planar pushing, many methods can be classified into the
exploratory category in an overview by Mavrakis et al. [11].
Yu et al. [12] proposed a least-squares solution for finding
a rectangular object’s inertial parameters given a series of
force and object acceleration measurements. On the other
hand, Mavrakis et al. [13] proposed a data-driven method
for inertial parameter estimation. Kloss et al. [14] employed
an extended Kalman filter with an ellipsoid force-motion
model to estimate these parameters without force measure-
ment. However, the estimation error is prone to be large.
Xu et al. proposed a disentangled learning framework to



Fig. 1. Few-shot learning model for object motion prediction

distinguish different objects’ physical properties by iterative
dynamic pushing and colliding. Kumar et al. [15] proposed a
reinforcement learning method to interact with the articulated
object for predicting the mass distribution of the object. In
this work, we aim to estimate the CoM of an unknown object
pushed by a force sensor-less manipulator arm on a horizontal
surface. Instead of directly predicting the CoM location, we
first employ a few-shot learning model to predict the resultant
object rotation, which gives clues to the location of CoM.
We then estimate a region containing the CoM based on the
spatial relationship between the applied pushing action and
the resultant object rotation.

III. CENTER OF MASS ESTIMATION METHODS USING
MOTION PREDICTION MODEL

A. few-shot learning model

In this work, we make use of a few-shot learning mo-
tion prediction model illustrated in Fig. 1. This model is
developed based on attentive neural process (ANP) [16],
leveraging the pushing priors whose resultant object motions
are known to help predict the resultant motions for the
pushing query. The benefit of ANP is that, unlike Gaussian
Process (GP) whose time complexity is in O(n3) which
might be intractable with the increase of pushing priors, the
relationship between the computational cost and the number
of pushing priors is linear.

Specifically, this model predicts the object motion for a
given action defined by the starting and ending point coordi-
nates in the image frame. Each pushing prior is composed of
an object mask, a pushing action, and the resultant object
motion. Each pushing query consists of the same object
mask and pushing action only. The model employs a residual
convolutional neural network [17] mapping pushing priors

and pushing query into high dimensional feature vectors.
Then the model utilizes the Transformer [18] to predict the
resultant object motion for pushing query based on these
feature vectors. In the training phase, the model is trained
to predict the resultant object motion for pushing actions
with a magnitude of 3cm under the quasi-static interactions
assumption that the object will stop sliding/rotating immedi-
ately if the pusher breaks contact with it. After training, the
model leverages as few as twelve pushing priors to predict
the resultant object motion for arbitrary pushing actions. This
model is originally used to re-arrange the object to the target
pose by pushing, but in this work, we use it to estimate the
CoM by combining it with the VT.

B. Voting Theorem

In the VT, if the floor surface on which the object slides
is flat and uniform and the quasi-static assumption holds,
then the relationship between the contact force and the
object rotation caused can be determined by the spatial
relationship between the object’s CoM and several rays.
The rays are illustrated in Fig. 2. RL and RR delimit the
left and right boundaries of the friction cone at the contact
position, respectively, and the RP is the pushing direction at
the contact position. RL, RR and RP vote on the sense of
rotation. The vote is performed by examining what sign of
moment the ray has to the CoM of the object. If RL and RR
vote for clock-wise rotation and RP votes for counter clock-
wise rotation (illustrated on the left of Fig. 2), then the object
will rotate clock-wise as two rays have voted for clock-wise.
On the other hand, if RL votes for clock-wise rotation but
RR and RP vote for counter clock-wise (illustrated on the
right of Fig. 2), then the object will rotate counter clock-
wise correspondingly.

In the scenario of CoM estimation, we can use VT to
determine a region which must contains the CoM for some
pushing action and resultant rotation pairs. When the RP
is along with the contact normal, then the region can be
determined without knowing the coefficient of friction at the
contact point. If RP disagrees with the contact normal, there
are some cases where the region can be determined without
knowing the coefficient of friction. For instance, given the
contact normal referred to as n, if RP×n is positive and the
resultant object rotation is counter-clockwise, then the region
can still be determined based on VT.

C. CoM detection methods

Inspired by the fact that if the contact force passes through
the CoM, then the object will be purely translated, otherwise,
the object will rotate clock-wise or counter clock-wise based
on VT, we propose an algorithm summarized in Alg. 1.
It assumes given a set of actions defined by their start
and end-points and their predicted motions on the object.
Our idea is based on accumulating rotations for each point
(pixel) in the object mask image weighted accordingly to



Fig. 2. Illustration of rotation prediction by Voting Theorem

their distance to lines defined by the start and end-point
actions and identifying the region that has the lowest amount
of accumulated rotation as a potential region where the
CoM is possibly located. This can be also interpreted as the
region where actions generating a small amount of rotations
pass. For each action line (calculated via its start and end-
points), we compute the distance from pixels to the line and
use this distance as a weight for the predicted amount of
rotation generated by this action. This way of the computed
amount is accumulated for each pixel used for each action.
We then apply a threshold to segment the potential region.
Due to the selected threshold, there might be some isolated
locations. In order to filter them out, we make use of the
connected component method to find the largest connected
region within the segmented pixels. This largest connected
region is regarded as the potential CoM region and its center
is computed as the estimated CoM position.

Algorithm 1: CoM Region Detection Process
Input: Object Mask P = (xi,yi) i = 1,2, · · · ,m,
List of actions A = (sxi,syi,exi,eyi) and predicted
motion (Θi, txi, tyi) i = 1,2, · · · ,n.
Area segmentation threshold st ∈ [0,1]
Output: Predicted location of CoM, CoM = (x,y)
/* Create an auxiliary matrix,

Sθ (x,y), for accumulating distance
weighted rotation amount */

1 Sθ (x,y)← 0
2 foreach action a in Akeep do
3 l← Compute the pushing line using a
4 foreach point p in P do
5 d← Compute distance between p and l

Sθ (p)← Sθ (p)+ e(−d) · |Θa|

6 Sθ ← normalize Sθ to the interval [0,1]
7 Pc← Sθ < st /* Create a segmented

region of object mask as Pc */
8 Pc← The largest connected region in Pc
9 CoM← Compute mean x and y of points in Pc

Fig. 3. Plot of an Action Equality Score function formulated in Eq. 1. It
reaches its maximum value when divided regions are equal to each other.

Combining the prediction model with the VT makes it
possible to narrow down the possible CoM locations. Thus,
we propose a progressive algorithm given in Alg. 2. It aims to
narrow down progressively the potential area where the CoM
is located as well as reduce the total number of pushes, unlike
the previous algorithm. Based on the VT and the resulting
object rotation (clockwise or counter-clockwise) of an applied
action, the potential area for CoM can be restricted. In order
to minimize the total number of actions used, we propose
to select the action whose line divides the potential region
into approximately equal two pieces. In order to measure
efficiently the equality of the divided regions in terms of
number of points (or pixels), we devise to use the following
function named as Action Equality Score;

h(n1,n2) =
2
√

n1×n2

n1 +n2
(1)

For a given action a, n1 and n2 are the total number of points
in two regions divided by the action line in the object mask
image. This function reaches its maximum value (which is
1) when n1 is equal to n2 and its plot is illustrated in Fig. 3.
We also remove actions that divides subregions extremely
unequal (e.g., (%10,%90) ) using a threshold value on their
equality score.

IV. NUMERICAL RESULTS

In order to evaluate the performance of the proposed meth-
ods, we created a simulation environment using CoppeliaSim
and Vortex Physics Engine. We tested our algorithms on 20
objects designed in different shapes and sizes. Fig. 4 shows
the objects used in computational experiments.

An example of a normalized heat map representation for
accumulated distance weighted amount of rotation (repre-
sented by Sθ , which is computed in Alg. 1) is depicted in
Fig. 5. Following this example, by applying a segmentation
threshold and connected component algorithm, a potential
CoM region can be determined. Fig. 6 denotes applying these
steps to the example case.



Fig. 4. Tested objects used in computational experiments.

Fig. 5. An example of normalized heat map representation for accumulated
distance weighted amount of rotation using Object19.

Fig. 6. While the figure on top denotes segmented points, the figure bottom
shows the largest connected component extracted from the segmented points.
The center of this region is the estimated CoM and for this specific example,
the distance between the estimated CoM and the real one is 2.02 pixels
equivalent to 0.54cm.

Algorithm 2: Progressive CoM Region Detection
Algorithm
Input: Object Mask P = (xi,yi) i = 1,2, · · · ,m,
List of actions A = (sxi,syi,exi,eyi) and predicted
motion (Θi, txi, tyi) i = 1,2, · · · ,n,
Line-to-point distance threshold dt
Area ratio st ∈ [0,1], tθ small rotation threshold, and
th action score threshold
/* We used st = 0.1, dt = 0.5pix., */
/* tθ = 5◦, and th = 0.6 */
Output: Predicted location of CoM, CoM = (x,y)

1 Akeep← Remove actions |Θi|< tθ

2 Pc← P
3 while size of Pc > st× size of P or Akeep ̸=∅ do
4 foreach action a in Akeep do
5 Compute the number of points (n1,n2) in two

subregions of Pc divided by the action a line
6 Compute Equality Score, ha via the function

defined in Eq. 1.
7 Choose action as in Akeep with the highest h

score dividing Pc approximately equal two
pieces Pc1 and Pc2.

8 Pc← Pc1 or Pc2 accordingly to the predicted
rotation Θa following VT Theory

9 Akeep← Remove actions hai < th and as

10 Pc← The largest connected region in Pc
11 CoM← Compute mean x and y of points in Pc

Computational experiments were carried out on 300 dif-
ferent simulations for each object obtained using different
parameters in object properties. Table I presents the statistical
summaries (in the form of the mean and standard deviation)
as well as the minimum and maximum distance between the
real and the estimated CoM coordinates using Alg. 1. These
distance measurements are given in cm and we also included
the object sizes in cm2.

Experimental results are detailed in Table II for the method
described in Alg. 2. Since this algorithm works in a progres-
sive manner and also aims to reduce the total number of
pushing actions, we present the number of pushing actions
used in order to estimate the CoM position. In order to
verify the efficiency of using the Action Equality Score
function, we tested our algorithm without using this score
function-based elimination. Instead, we simply sort actions
with the total absolute (discarding clock-wise or counter
clock-wise) amount of their predicted rotation in ascending
order, since a pushing action generating a small amount of
rotation is likely that its line passes near a CoM location.
Fig. 7 denotes the comparison for the total number of pushes
done. It can be observed that filtering and selecting actions
via their equality score provided a notable reduction in the



TABLE I
COMPUTATIONAL RESULTS OBTAINED USING ALG. 1

Objects
Object Low Friction High Friction
Size mean std min max mean std min max

Obj1 32.9 0.742 0.251 0.056 1.691 0.717 0.323 0.020 1.785
Obj2 35.6 0.696 0.317 0.056 1.693 0.697 0.327 0.020 1.950
Obj3 27.0 0.458 0.235 0.009 1.491 0.671 0.335 0.007 2.473
Obj4 103.3 1.004 0.381 0.019 2.076 1.311 0.515 0.005 3.213
Obj5 42.5 0.786 0.349 0.034 1.846 0.835 0.390 0.010 2.193
Obj6 58.0 0.856 0.335 0.008 2.293 1.034 0.397 0.021 2.412
Obj7 53.4 0.849 0.362 0.045 1.991 1.127 0.502 0.023 3.095
Obj8 110.4 1.096 0.407 0.047 2.471 1.223 0.510 0.065 3.084
Obj9 119.4 1.240 0.470 0.043 2.662 1.320 0.587 0.026 4.118
Obj10 91.0 0.906 0.427 0.013 2.030 1.462 0.536 0.034 2.786
Obj11 83.0 1.132 0.441 0.058 2.324 1.208 0.603 0.013 2.738
Obj12 58.3 1.100 0.361 0.050 2.463 1.075 0.461 0.022 3.643
Obj13 38.2 0.673 0.255 0.025 1.395 0.791 0.313 0.022 2.407
Obj14 43.0 0.859 0.440 0.066 2.185 0.749 0.344 0.015 2.153
Obj15 35.2 0.633 0.317 0.017 1.606 0.751 0.328 0.026 2.154
Obj16 67.8 0.939 0.323 0.079 3.673 0.884 0.378 0.016 2.352
Obj17 51.6 0.563 0.270 0.007 1.355 0.578 0.278 0.002 1.814
Obj18 120.4 1.029 0.445 0.043 2.801 1.170 0.591 0.012 4.210
Obj19 126.3 1.025 0.648 0.013 2.947 1.377 0.737 0.021 4.279
Obj20 150.5 1.233 0.485 0.173 3.329 1.317 0.561 0.101 4.133

TABLE II
COMPUTATIONAL RESULTS OBTAINED USING ALG. 2

Objects

Low Friction Settings High Friction Settings
Object Errors in cm Number of Pushing Actions Errors in cm Number of Pushing Actions
Size mean std min max mean std min max mean std min max mean std min max

Obj1 32.9 0.576 0.250 0.024 1.690 2.688 0.665 1 5 0.741 0.344 0.038 2.158 3.519 0.754 2 6
Obj2 35.6 0.764 0.361 0.026 2.163 3.146 0.627 2 5 0.817 0.447 0.013 2.461 3.976 0.503 2 6
Obj3 27.0 0.537 0.300 0.024 1.506 2.808 0.593 2 5 0.597 0.306 0.011 2.168 3.575 0.678 2 5
Obj4 103.3 1.120 0.527 0.092 2.353 3.198 0.939 1 6 1.342 0.618 0.062 3.799 4.160 0.606 2 6
Obj5 42.5 0.812 0.387 0.051 1.801 2.858 0.709 1 5 0.846 0.420 0.032 3.111 4.049 0.281 3 6
Obj6 58.0 0.729 0.382 0.035 2.009 3.473 0.638 2 5 1.017 0.486 0.014 3.005 3.830 0.600 2 6
Obj7 53.4 0.892 0.413 0.049 1.991 3.050 0.656 2 5 1.235 0.629 0.029 3.427 3.445 0.708 2 6
Obj8 110.4 1.089 0.494 0.055 2.676 2.885 0.765 2 5 1.247 0.571 0.060 3.125 3.876 0.653 2 7
Obj9 119.4 1.346 0.609 0.131 2.802 3.228 0.646 2 6 1.246 0.591 0.031 4.806 3.743 0.656 2 7
Obj10 91.0 1.241 0.408 0.120 2.536 3.398 0.807 2 5 1.099 0.499 0.042 3.103 3.795 0.718 2 6
Obj11 83.0 1.101 0.381 0.162 2.780 3.013 0.685 1 5 0.941 0.454 0.036 2.882 4.093 0.635 2 6
Obj12 58.3 1.103 0.462 0.069 2.629 3.120 0.752 2 5 1.138 0.492 0.009 3.743 3.855 0.627 2 6
Obj13 38.2 0.735 0.289 0.039 1.802 2.878 0.783 1 5 0.726 0.382 0.059 2.472 4.175 0.444 2 6
Obj14 43.0 0.865 0.497 0.017 2.253 3.222 0.615 2 6 0.759 0.374 0.036 2.556 4.236 0.615 2 6
Obj15 35.2 0.614 0.376 0.031 1.716 3.156 0.755 2 6 0.626 0.348 0.049 2.141 4.027 0.654 2 6
Obj16 67.8 1.087 0.496 0.151 2.432 3.171 0.764 2 6 0.935 0.476 0.044 2.935 4.139 0.661 2 6
Obj17 51.6 0.631 0.382 0.031 1.705 3.154 0.778 2 6 0.684 0.357 0.035 2.124 4.171 0.430 3 6
Obj18 120.4 1.607 0.575 0.272 3.098 3.387 0.785 2 6 1.322 0.660 0.085 4.635 3.914 0.567 2 6
Obj19 126.3 1.094 0.594 0.029 2.656 3.633 0.674 2 6 1.424 0.814 0.104 4.541 3.965 0.499 2 6
Obj20 150.5 1.263 0.489 0.250 3.443 3.802 0.672 2 6 1.236 0.555 0.062 3.215 4.292 0.531 2 6

total number of pushes needed to estimate the CoM location
while maintaining similar accuracy.

V. CONCLUSIONS

Robotic manipulator arms have been in use for a variety of
tasks mostly in the automation of repetitive tasks in industry
settings. Lately, rather than a single/special purpose robot ma-
nipulator, enhanced multiple manipulation capabilities have
been demanded for flexible robot-led automation. Endowing
robots with such capabilities requires more intensive sensing
and identification of the physical properties of objects being
manipulated. The CoM is one of the most important physical
properties of an object and in order to translate an object

without rotating it, the force needs to be applied along the
line passing as close as possible to the CoM location. In
this paper, we presented two novel methods to estimate the
CoM locations of a novel object using different actions and
predicted motions of actions, which has proven to be an
accurate and fast approach in realistic simulation settings. We
will validate the effectiveness of the proposed algorithms in
real robotic pusher-slider settings and further investigate the
impact of accuracy of estimated CoM locations on various
nonprehensile manipulation tasks.



Fig. 7. Comparison of the total number of pushes. The mean, minimum
and maximum number of pushes for test objects are represented as curves.
While dashed lines report the results of using the Equality Score Function
(named as ’proposed’), solid lines show the result without using the proposed
function.
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