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Zero Moment Two Edge Pushing of Novel Objects
with Center of Mass Estimation

Ziyan Gao, Armagan Elibol, and Nak Young Chong

Abstract—Pushing is one of the fundamental nonprehensile
manipulation skills to impart to an object changes in position
and orientation. To exploit this skill to manipulate novel objects,
explicit knowledge of their physical properties should be given
a priori. In this work, we estimate the center of mass (CoM) of
an object by narrowing down its probable location with a deep
learning model and Mason’s voting theorem. In addition, we
propose the Zero Moment Two Edge Pushing (ZMTEP) method
to translate a novel object without rotation to a goal pose. The
proposed method enables a pusher to select the most suitable two-
edge-contact configuration for a given object using the estimated
CoM and the geometrical shape of the object. Notably, neither
the friction between the object and its support plane nor the
friction between the object and the pusher are assumed to be
known. We evaluate the proposed CoM estimation and ZMTEP
methods through a series of experiments in both simulation and
real robotic pusher settings. The result shows that the CoM
estimation method has good mean squared error properties and
small standard deviation, and the ZMTEP method significantly
outperforms competitive baseline methods.

Note to Practitioners—This article aims to endow robotic arms
with the capability of moving or aligning objects by pushing,
which is much more simple and secure than pick-and-place
or in-hand manipulations. Most in-demand manipulation skills
require sophisticated hand design and control, which might not be
affordable for industrial applications staying cost-competitive. In
contrast, robot pushing can be implemented with different types
of simple pushers and straightforwardly applied to pre-grasp
manipulation. This article makes the estimation of an object’s
CoM location practical. Building upon the estimation method, a
robust and noise-tolerant two-edge-contact pushing configuration
selection method is presented to translate an arbitrarily shaped
unknown object to its goal pose.

Index Terms—Planar Pushing, Object CoM Estimation, Two
Edge Pushing, Data-driven Automation

I. INTRODUCTION

Moving an object from one location to another is a common
task encountered in our daily life and industrial production
lines. This task can be accomplished through pick-and-place,
pushing, throwing, and similar others. Among these, pushing
is an undemanding manipulation primitive [1] to locate and
orient an object to a desired pose. Pushing neither needs
form or force closure nor requires conforming to the object’s
geometrical shapes. Pushing is preferable to re-positioning
of an object not directly graspable within the given pose.
Therefore, pushing can be used to complement other tasks
such as object placement [2], object singulation [3], [4], and
grasping [5]–[8].

All authors are with the School of Information Science, Japan Ad-
vanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
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The pusher-slider system with a single point contact exhibits
multiple contact modes (sticking, sliding, and separation), in-
determinacy due to unknown pressure distribution, and under-
actuation. All of these introduce challenges on modeling,
controlling, and planning. The pusher-slider system becomes
stable by introducing extra contacts. Lynch and Mason [9]
showed that there is a set of pushing directions along which
the slider’s pose relative to the pusher remained fixed given
known physical properties. They proposed line pushing with
multiple contacts on the same edge of a polygonal slider and
stabilized its motion [9]–[11].

Supposing that a robot pushes an object on a flat surface,
and there is nearly zero friction between the robot and the ob-
ject, line pushing becomes extremely difficult as there is little
friction that can be exploited. It is therefore advantageous to
use multi-edge contact whose normal force direction positively
spans the desired pushing direction. A robot equipped with an
adjustable stroke gripper can make multiple contacts that are
not necessarily on the object’s same edge. It should be also
noted that when a pusher maintains line (or point) contact with
a slider to move it around, non-holonomic constraints need to
be addressed. Zhou et al. [11] showed that Dubin’s curve is
the time optimal trajectory under the assumption of sticking
contact.

In this work, instead of solving the trajectory planning
problem in a complex way, we pose a new question: how
can we select two contact points from two polygonal edges
of an object with unknown physical and frictional properties,
respectively, to slide it along a straight line to a goal pose?
As the shortest distance between two points is a straight line,
a solution to this problem yields a reasonably close optimal
shortest path. There are two main issues to be addressed
in this problem; first, the object’s physical properties, such
as the CoM and friction coefficient need to be identified.
Secondly, the contact points are properly selected given noisy
observations and error-prone estimates of physical properties.
The following assumptions are made throughout this paper:

• Both the robot’s end effector (pusher) and the object
(slider) are rigid, and interact quasi-statically.

• Object geometry can be extracted by a vision sensor.
• The plane in which the object lies is flat and uniform.
• Coulomb’s friction law applies.
• The pusher maintains contact with the slider during

pushing.

In [12], we proposed a few shot learning model trained
on our large-scale simulation dataset called SimPush that
contains more than two million labeled pushing examples.



2

SimPush has proven useful in training a learning model and
predicting object motions in real robot settings. We narrow
down the probable location of the CoM of an object by com-
bining our few shot learning and Mason’s voting theorem [13].
The proposed method uses the spatial relationship between
the pushing action and the predicted object rotation. Then,
analyzing the force and moment conditions of pure translation,
and the moment labeling representation of the contact force,
we propose a double-contact pusher-slider interaction, called
Zero Moment Two Edge Pushing (ZMTEP), to translate a
novel object to a goal pose.

In real-world pushing, measurement noise and CoM esti-
mation error are unavoidable, leading to an incorrect contact
configuration. Therefore, we discuss the tolerance of ZMTEP
to noisy observation and error-prone CoM estimates. We found
that the tolerance to the CoM estimation error increases, as
the distance between two contact positions increases. The
tolerance to noisy observations increases up to a certain point
and decreases as the contact point moves toward the endpoint
of the object edge. A series of experiments are conducted to
verify if the proposed CoM estimation and ZMTEP methods
are valid and competitive compared to two baseline methods in
simulation and real settings. The results revealed that the CoM
estimation error was low overall that can be well tolerated by
the two-edge-contact configuration selected by ZMTEP.

To summarize, the main contributions of this work are
threefold:
• An integrated CoM estimation method combining the

motion prediction model and the voting theorem.
• The most suitable two-edge-contact pushing configuration

for translating a novel object without rotation.
• An analysis of tolerance to measurement noise and error-

prone CoM estimates.
This paper is organized as follows. In Section II, we review

the related work in object inertial parameter estimation and
planar pushing. In Section III, we present our CoM estimation
method. In Section IV, we conduct force and moment analysis
and moment labeling representation for the two-edge-contact
configuration with its tolerance capability. We then present
the ZMTEP method for pure translation. From Section V
to Section VII, we provide a detailed description of imple-
mentation and data we gathered in the CoM estimation and
object translation experiments. Finally, Section VIII draws
conclusions.

II. RELATED WORK

A. Object Inertial Parameter Estimation

An object’s inertial parameters can be identified by var-
ious techniques classified into three types: purely visual, ex-
ploratory, and fixed-object [14]. The fixed-object type requires
a fixed connection between the robot and an object such as
grasping, which is beyond the scope of this research.

The purely visual type directly estimates the inertial prop-
erty using a vision sensor. Trevor et al. [15] proposed a deep
learning model trained on a labeled dataset to estimate the
volume and density of the object using a RGB-D image.

Although this model has competitive performance on image-
to-mass tasks compared with humans, the estimation result is
highly affected by occlusion or light conditions.

The exploratory type requires the robot to interact with the
object to measure the applied forces and object motion. Then,
the inertial parameters are estimated by solving physics laws
of motion. Yu et al. [16] used a two-finger pushing in a trial-
and-error approach making the line of CoM pass between the
fingers. This method may be inefficient when dealing with
an arbitrarily shaped object. Mavrakis et al. [17] estimated
inertial properties using a single-contact pushing and data-
driven learning model. Kloss et al. [18] used an Extended
Kalman Filter (EKF) to iteratively estimate object physical
properties (such as the CoM, friction, and mass) based on
the information extracted from the object mask. The EKF
was implemented assuming an ellipsoid model [19] between
the applied force and the resultant object motion. Song et
al. [20] proposed to learn the coupled mass-friction parameters
through minimizing the simulation-reality gap. This method
required a set of hypothesized mass and friction models and
the object was coarsely approximated by rigidly-connected 2D
small grids. Allevato et al. [21], [22] used a neural network
to tune the inertial parameters of the physics engine based
on the difference in observation from the real object motion.
However, it was limited to known objects. Instead of relying
on an approximation model or physical simulator, data-driven
models were used to learn the causality between the object
motion and the inertial parameters in some studies. Li et al.
[23] used recurrent neural networks to estimate the CoM of
the object. Xu et al. [24] proposed a disentangled learning
module to implicitly encode an object’s physical properties
through robot-object interaction. Kumar et al. [25] employed
a policy network to interact with an articulated object, and a
predictor network to predict the mass distribution of the object.

In this work, we propose an exploratory type CoM esti-
mation method for an arbitrarily shaped object using a robot
equipped with a vision sensor. In contrast to other exploratory
type methods, only a few robot-object pushes are needed with
no a priori assumption about friction.

B. Planar Pushing

Mason [13] analyzed the mechanics of quasi-static pushing
and presented the voting theorem for determining the sense
of rotation of a pushed object. Goyal et al. [26], [27] intro-
duced the concept of limit surface to describe the relationship
between the applied wrench and the object twist by assuming
minimum energy dissipation. Lynch et al. [19] proposed the
ellipsoidal approximation to the actual limit surface [9], [10],
[19]. Zhou et al. [11] presented a physics-based data-driven
model to approximate the limit surface. Kloss et al. [28]
combined a deep learning model and an ellipsoid limit surface
to improve both the generalization capability and accuracy.
Lin et al. [29] integrated a recurrent neural network for
pushing interaction modeling into a model predictive control
framework.

Without focusing on the pusher-slider interaction models,
some studies used data-driven methods to learn from historical
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Fig. 1. Schematic of object motion inference using motion prediction model.

pushing interactions [30]–[32]. Hermans et al. [30] presented
a kernel’s method to learn the contact locations for pushing
an unknown object. However, only the shape features were
considered with a state feedback controller. In contrast, our
ZMTEP method selects contact locations considering both the
geometrical shape as well as the CoM of an object. Li and
Payandeh [33] proposed a parametric formulation to find a
two-point contact configuration of equilibrium push in which
relative rotation between the pusher and the object will not
happen employing a simplified model of a known object. Most
notably, based on fewer assumptions, our method determines
the most suitable two-edge-contact configuration, analyzing
the mechanics of pure translation that exhibits high tolerance
toward measurement and CoM estimation noises.

On the other hand, instead of relying on push interac-
tion models, Lloyd and Lepora [34] employed tactile and
proprioceptive feedback to push an object across planar and
curved surfaces. Danielczuk et al. [6] presented and compared
several pushing policies for object singulation in cluttered bin
environments which did not consider pushing interactions.

III. COM ESTIMATION

We introduce a new CoM estimation method, combining our
few-shot learning motion prediction model [12] and Mason’s
voting theorem (VT). Our learning model predicts the sense
of rotation of a pushed object. The probable CoM region is
selected through a decision process until it is narrowed down to
the region whose centroid is considered the CoM of the object.
In the following part, we review our few shot learning model
and introduce the process of our CoM estimation method.

A. Prediction Model

Basically, the prediction model predicts object motion for a
pushing primitive by integrating limited pushing priors based
on the Residual Convolutional Network (ResNet) [35] and
Attentive Neural Process (ANP) [36]. The ResNet is referred
to as pushing embedding module. It takes the object mask
and pushing action (and the resultant motion if available) as
input and outputs a high-dimensional feature to represent the
input. ANP with an encoder-decoder structure predicts the
resultant motion for test data by integrating pushing priors. The
encoders takes the pushing priors as input and outputs a rep-
resentative features for each pushing prior and a permutation-
invariant representation. The decoder incorporates the output
of encoder to predict the corresponded object motion for test
pushing data. The specific inference procedure is as follows:

• Collect m pushing priors {cpi,ni,θpi ,∆Oi}i=1,...,m, where
cpi is the contact location, ni is the surface normal at
cpi, θpi is the pushing direction w.r.t. ni, and ∆O is the
changes in object state represented by ∆x,∆y,∆θ .

• Feed the pushing priors to the pushing embedding model
and encoder of few-shot learning model.

• Predict ∆O for test data.
An example is shown in Fig. 1, where a triangular object is

subjected to pushing actions. There are seven pushes marked
by the green arrows whose resultant object motions are known,
and another push marked by the orange arrow whose resultant
motion is unknown. Each push specifies a contact point cp,
a normal direction n, and a push direction w.r.t. the normal
direction θp. The pushes in green with its resultant motions
form the pushing priors. The prediction model aims to predict
the resultant motion for the push marked in the orange arrow
by integrating the pushing priors. We denote the few-shot
learning model by F

∆x̂,∆ŷ,∆θ̂ = F(cp,n,θp,Sprior) (1)

where Sprior indicates pushing priors. As the few-shot learning
model is used for the process of estimating the CoM, only ∆θ̂

is used. Therefore, ∆x̂ and ∆ŷ are ignored in this work.

B. VT for CoM Estimation

VT relates the sense of rotation of a pushed object with
the spatial relationship between several rays and the CoM of
the object. VT states that three rays, RL,RR delimiting the
left and right boundaries of the friction cone at the contact
point and RP indicating the line of pushing, vote for the sense
of rotation. For instance, if any two of the three rays have
a negative moment about the CoM, the object would rotate
clockwise regardless of the third ray generated moment.

The probable location of the CoM can be determined by
analyzing the relationship between the rays and the resultant
object rotation. A pushing example is illustrated in Fig. 2(a).
The red arrow is the pushing direction specifying the ray RP,
when RL and RR are assumed to be known. If the object rotates
clockwise, at least two rays have a negative moment about the
CoM. Therefore, RL and RR must have a negative moment and
RP has an indeterminate moment about the CoM. Then, the
probable CoM location can be determined by RL and RR. As
RL has negative moment to area two, three, and four, while
RR has negative moment to area three and four, area three
and four are the areas to which both RL and RR have negative
moment. Therefore, CoM must be located in area three and
four. The VT cannot be used to locate the CoM of a novel
object as RL and RR are unknown.

C. Region Selection Rules

We describe our method for narrowing the probable location
of the CoM. Notably, a friction cone is not given at the contact
point. The method determines the CoM location using the
pushing direction and the sense of rotation of a pushed object.
In our method, the sign of moment that RP generates about
the CoM is always determined. Therefore, the probable CoM
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Fig. 2. Probable CoM location narrowing: Yellow region is considered the probable CoM location, while green region is excluded. Red arrow is the pushing
direction. Black dash lines are friction cone limits at the contact point. Probable location is initialized to the convex hull of the object mask. When pushing
direction is aligned with the contact normal, the location can be narrowed if the sense of rotation is known. When pushing direction is not aligned with the
contact normal, there are two cases that we cannot narrow the location. In such cases, we use another push action to continue to narrow the location.

Fig. 3. CoM estimation process. The first image illustrates the object with
ground truth CoM in red dot. The second image shows the convex hull of
the object as the probable CoM location in yellow color. Other images show
a sequence of narrowing locations until the size reaches a threshold or no
pushing action helps narrow the location.

location can be narrowed using RP and the resultant rotation.
An illustrative example is shown in Fig. 2.

In order to convey the idea clearly, we consider the follow-
ing two cases. In the first case, the pushing direction is aligned
with the contact normal as shown in Fig. 2(b), where RP is
inside the friction cone. In this case, if the sense of rotation
is known, then the probable CoM region can be determined.
Let us assume that RP is aligned with the contact normal,
and the object rotates clockwise. If the CoM of the object
is outside the friction cone, both RL and RR should have a
negative sign of moment about the CoM, and RP must have
the same sign of moment with RL and RR as RP is inside the
friction cone. Then the regions where RP has negative sign of
moment can be regarded as the probable CoM regions. If the
CoM is between RL and RR, RL and RP must have a negative
moment about the CoM, as there should be at least two rays
that have a negative sign of moment about the CoM. In this
case, the regions where RP has a negative moment can be
considered the probable CoM region.

The second case is that the pushing direction is different
from the contact normal as shown in Fig. 2(c) and (d). This

case introduces ambiguity as the sense of rotation might be
dominated by RL or RR. Let us consider the left side of
Fig. 2(c), where the object rotates counter-clockwise, and RP
can either have a positive or negative moment about the CoM.
Therefore, the probable CoM region cannot be inferred by
RP. The same applies to the right side of (d) in Fig. 2. On
the other hand, for the right side of Fig. 2(c), the object
rotates clockwise, and RP and RL must have a negative sign
of moment about the CoM. In this case, the CoM region can
be narrowed by RP and so is the left side of (d) in Fig. 2.

Algorithm 1: CoM Region Decision Process
Input: F,Sprior,ACH ,{cpi}m,{ni}m,{θp}a,θT ,aT
/* F is the prediction model, Sprior is the

pushing priors, ACH, which consists of a set

of pixel locations, represents the region

inside the convex hull of the object. {θp}a

is a set of angles w.r.t. normal direction,

{cpi}m, {ni}m are sampled contour point and

normal direction associated. θT is a

threshold for predicted rotation. aT is a

threshold of the area of probable CoM

region. */

Output: ACoM
/* ACoM is probable CoM Region which consists

of a set of pixel coordinates {Ppix} */

1 ACoM ← ACH // probable CoM region

initialization

2 Spush← /0 // initialize a cache

3 for θp in {θp}a do
4 for cpi in {cpi}i=1,...m do
5 θ̂i = F(cpi,ni,θp,Sprior) // rotation

prediction

6 if ∥θ̂i∥> θT then
7 Append(Spush, {cpi,ni,θp, θ̂i})

8 Sort Spush based on the amount of rotation in
descending order

9 for {cpi,ni,θp, θ̂i} in Spush do
10 ACoM ←UPDATE(ACoM,cpi,ni,θp, θ̂i,aT )
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Algorithm 2: Probable CoM Region Update

Input: ACOM,cpi,ni,θp, θ̂i,aT
Output: ACoM1

1 Function Update(ACoM , cp, n, θp, θ̂ , aT):
2 ACoM1← ACoM // new probable CoM region

initialization

3 Construct RP based on cp, n and θp.
4 if ACoM1.size()>= aT then
5 return ACoM1

6 else
7 if RP.intersect(ACoM1) is True then
8 if sign(θ̂)> 0 then
9 if θp ≥ 0 then

10 for ppix in ACoM1 do
/* cross operation */

11 if RP×ppix ≤ 0 then
12 Delete(ACoM1, ppix)

13 return ACoM1

14 else
15 return ACoM1

16 else
17 if θp ≤ 0 then
18 for ppix in ACoM1 do
19 if RP×ppix ≥ 0 then
20 Delete(ACoM1, ppix)

21 return ACoM1

22 else
23 return ACoM1

24 else
25 return ACoM1

D. CoM Estimation Method

We leverage the predicted sense of rotation of a pushed
object to narrow the probable CoM regions in an iterative
manner using Algorithm 1 and Algorithm 2. First, we collect
a series of pushing examples as pushing priors. These pushing
priors are used to help infer resultant object rotations for
other pushes. Then, we sample a series of contact points
uniformly around the object perimeter. Incorporated with the
pushing priors, for each contact point, we query the prediction
model to predict the rotation for different pushing directions
at that contact point. There is considerable empirical evidence
that the deep learning model predicts accurately the sense of
rotation of a pushed object if the pushing action causes a
large amount of rotation, but it tends to become less accurate
if the pushing action causes a small amount of rotation.
Therefore, we remove the pushing actions predicted to cause
an object to rotate by an angle smaller than θT , and sort the
remaining pushing actions based on the amount rotation in
descending order. After that, the sorted pushing actions with
their predicted sense of rotation of an object are used to narrow

down the probable CoM region until the ratio between the
sizes of the probable CoM region and convex hull of the
object becomes smaller than the area threshold aT . Fig. 3
shows a sequence of snapshots of probable CoM regions being
narrowed down.

IV. TWO-EDGE-CONTACT PUSHING

We introduce our ZMTEP method for translating an object
to a goal pose under the quasi-static assumption. First, the
forces exerting on the object are analyzed when the object
undergoes pure translation. We then revisit moment labeling
representation for contact forces. We compare different contact
configurations and analyze tolerance to noise on contact and
estimated CoM positions. Finally, we present the ZMTEP
method for two-edge contact configuration selection.

A. Quasi-Static Analysis of Pure Translation

Let us consider a pusher and an object lying on a flat surface
with isotropic friction, where the CoM, the centroid of pressure
distribution, and the centroid of friction are projected to the
same point on the plane [37]. The magnitude of the contact
force between the pusher and the object can be arbitrarily large
due to the non-penetration constraint of a rigid body. In case
the object moves in low speed, the inertia force would be in
the order of the friction force. In translational motion, sliding
friction is replaced by an equivalent resultant force passing
through the CoM that opposes the motion of the object.

As the two-edge-contact pushing exploits the pusher’s col-
laborative contact interactions with the object, the direction of
the net force must be the same as the pushing direction to
achieve translational motion. The pusher’s contact force acts
inward on the object, and two contact forces must be able to
set the object in motion toward the direction of the net force
additively. Also, the line of the net force must pass through the
CoM of the object to generate zero moment about the CoM.

B. Zero Moment Two Edge Contact Pushing (ZMTEP)

We first define several explanatory lines of direction to con-
vey the proposed idea of two-edge-contact configuration. We
then analyze the tolerance range of the contact configuration,
leading to the ZMTEP for pure translation.

1) Defined Lines: We define five lines: ld , ln, l f l , l f r, lc. ld is
the line passing through the CoM of an object and is aligned
with the pushing direction. ln is perpendicular to the surface
at the contact point between the pusher and the object. l f l
and l f r are the left and right boundary of the friction cone at
the contact point, respectively. lc is the direction of the contact
force bounded by l f r and l f l . When there is no friction between
the pusher and the object, lc coincides with ln. Fig. 4 illustrates
an example for pushing an object along ld , where two contact
points between the object and the pusher are denoted by
the subscript 1 and 2, respectively. The shaded region is the
moment representation for this contact configuration, which
will be introduced latter.
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Fig. 4. Illustration of the lines defined in IV-B1.

Fig. 5. Moment labeling representation of pusher-slider system. As in
Fig. 4, pushers are denoted by small circles which make contact with the
slider represented by a rectangle. The CoM has an offset from the centroid.
Black arrows delimit the friction cone at the contact. Red regions show the
pushing directions along which the object can be translated using the contact
configuration employed.

2) Two-Edge Contact Configuration: Within the scope of
two-edge-contact pushing between the pusher and the object,
the contact configuration can be described by Ctec

Ctec = (cp1,n1,cp2,n2), (2)

where n1 and n2 are specified by the definition of ln. In this
work, we only consider the case that n1 and n2 are not parallel.
In other words, ln1 intersects with ln2. If the friction coefficient
is known, l f l1, l f r1, l f l2.l f r2 can be also specified.

3) Moment Labels for Two-Edge-Contact Configuration:
Moment labeling gives a graphical representation of the com-
posite wrench cone. Each contact has a friction cone associated
with the contact point whose boundary is determined by the
friction coefficient between the pusher and the object. Fig. 5(a)
shows a moment labeling of a composite wrench cone for a
single-point contact. The gray shaded regions represent the
sign of moment that the resultant force would generate about

the region. This can be interpreted as all of the forces that
have a different sign of moment about the shaded region or the
forces that pass through the shaded region cannot be generated.

Figs. 5(b)-(f) show moment labeling representations for
two-edge-contact configurations. The moment labels for each
contact can be combined to represent the composite wrench
cone. The red shaded regions show the composite wrench cone
passing through the CoM with two-edge-contact configuration,
where any resultant wrench inside the composite wrench cone
satisfies the force and moment conditions. Therefore, the
composite wrench cone also specifies the directions along
which the object can be translated.

Figs. 5(b)-(e) show the same Ctec with gradually reduced
friction cones, and the red shaded regions become narrower
correspondingly. Fig. 5(e) is a special case that the friction
coefficient between the pusher and the object is equal to
zero. In this case, shaded regions converge to a single point.
The resultant forces must pass through this intersection point.
Therefore, all of the resultant forces that also pass through
the CoM have the same direction, which is from the CoM to
the intersection of the shaded regions. This set of forces is
always a subset of the set of forces generated in Fig. 5(b)-
(d). In other words, this direction can be always achieved by
the contact configuration regardless of friction cones. When
two contact normal forces pass through the CoM as shown in
Fig. 5(f), the resultant forces are positively spanned by these
two normal forces even though there is no friction between
the pusher and the object.

Theorem 1: Given ld and a pushing direction, if there exists a
two-edge-contact configuration with which the corresponding
contact normal forces positively span the pushing direction,
also ln1, ln2 and ld intersect at a single point, then the object
can be translated along the pushing direction using the two-
edge-contact configuration.

Based on the moment labeling analysis of Fig. 5(e), given a
known object with Ctec, we can always find a pushing direction
along which the object is translated.

4) Contact Position Tolerance Analysis: Robots may not
precisely achieve a desired contact configuration due to var-
ious types of image noise. Therefore, it is of importance to
investigate under what circumstances the contact noise can be
tolerated. As shown in Fig. 6, given an object with known
CoM and its pushing direction, we can draw ld . For a Ctec,
the set of composite wrenches passing through the CoM can
be illustrated by the red region. A Ctec is valid, if ld lies inside
the composite wrench cone. Let us examine two-edge-contact
configurations by the orange and green pusher in Fig. 6(a)-
(b), where the blue arrow is the pushing direction and ld is
coincident with the boundary of the wrench cone. Keeping
the position of the orange pusher on the horizontal edge
fixed, we change the position of the green pusher. Without
loss of generality, any combination of two contact forces can
positively span the pushing direction. Fig. 6(a) shows the lower
limit position of the green pusher found by drawing a line that
passes through ld ∩ l f r1 parallel to l f r2. Similarly, Fig. 6(b)
shows the upper limit position of the green pusher found by
drawing a line that passes through ld ∩ l f l1 parallel to l f l2.
If we draw a line segment whose endpoints are the lower
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Fig. 6. Contact position tolerance range. (a) and (b) show the position limits
of green pusher when orange pusher remains fixed. (c)-(e) show the tolerance
range of each pusher position when the other pusher remains fixed. (f)-(h)
shows common tolerance ranges of both pushers’ positions within which the
object can be purely translated.

and upper limit positions of the green pusher, we can obtain
the tolerance range of the green pusher position. Similarly,
keeping the position of the green pusher fixed, we can find
the tolerance range of the orange pusher. In some cases (see
Fig. 6(e)), the endpoint may be out of the object boundary. In
such cases, the line segment ends on the boundary.

Fig. 6(c)-(e) show the contact position tolerance ranges
represented by colored line segments. We found that, as the
distance between the contact points increases, the tolerance
range also increases up to a certain point and then decreases
as the contact point approaches the object boundary. Also, the
tolerance range increases if the friction cone becomes larger.

In practice, the positions of both pushers may be perturbed
at the same time. Fig. 6(f)-(h) show the common tolerance
range of two pushers. In other words, if two pushers select
the contact position within the common tolerance range, the
net force can be generated for translating the object. This
common tolerance range is specified by the position limits
of both pushers found as follows: first, we assume that both
pushers make contact with the object by Theorem1, and ld ,
ln1, and ln2 intersect at a single point. Then, we let the orange
pusher move toward left (or right) on its edge until l f r1 (or
l f l1) passes through the intersection point ld ∩ ln2. The limits
for the green pusher position can be found in a similar way.
The common tolerance range depends on the distance between
the contact points in the same way as Fig. 6(c) to (e).

5) CoM Estimates Tolerance Analysis: Error-prone CoM
estimates also cause incorrect contact configuration. Therefore,
we need to analyze the tolerance range of the CoM. Given an
object with the estimated CoM and a pushing direction, we
can draw l̃d . If the ground truth CoM is on l̃d , there is no
estimation error introduced, because we select Ctec based on
Theorem 1. Fig. 7 shows four two-edge-contact configurations
for pushing an object along the blue arrow with an estimated

Fig. 7. CoM tolerance range given the two-edge-contact configurations.

Fig. 8. The twenty object shapes used in the simulation experiments.

CoM. Based on the friction cone, we can obtain the CoM
tolerance range by the following procedure:
• Find the intersection points l f l1∩ l f l2 and l f r1∩ f f r2.
• Draw two boundary lines passing through one intersection

point parallel to the pushing direction.
• The CoM tolerance range is wrapped by the boundary

lines and the object boundary.
If the ground truth CoM is inside the yellow shaded region,

the estimated CoM can be tolerated. In other words, the
yellow shaded region denotes the tolerance range of the CoM
estimates. With the distance between the pushers becomes
larger, the tolerance range enlarges. The tolerance range will
also be larger for the same two-edge-contact configuration if
the friction cone becomes larger. It can be observed that the
two-edge-contact configuration with a large distance between
two contact points shows high tolerance toward inaccurate
estimates.

We now propose our ZMTEP method in order to find
two-edge-contact configurations for pushing a novel object as
shown in Algorithm 3. Given a number of sampled contour
points with associated contact normals, the CoM position,
and the pushing direction, this algorithm outputs the most
suitable two-edge-contact configuration in which the distance
between two contact points is maximized. As the tolerance
range becomes smaller due to near-corner contact selection, we
remove the contour points near object corners. When dealing
with a novel object, ZMTEP estimates the CoM using the
method proposed in Section III.

V. EXPERIMENTAL SETTINGS

We carried out experiments both in simulation and real robot
settings. We denote the surface friction coefficient as µs and
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Algorithm 3: Zero Moment Two-Edge Pushing
Input: {cpi}m,{ni}m,PCoM,dp
/* {cpi}m, {ni}m are the sampled contour points

and the associated normal direction. PCoM is

the position in image frame. dp is the

pushing direction. */

Output: C∗tec
/* C∗tec refers to a two-edge contact

configuration */

1 C∗tec← /0 // initialize C∗tec

2 D← 0 // initialize a variable representing

the distance between two contact points

3 for cpi, ni in {cpi}m,{ni}m, i is from 1 to m do
4 Get ln1 based on cpi and ni
5 Get ld based on PCoM and dp
6 Get ln1∩ ld
7 for cp j, n j in {cp j}m, {n j}m, j is from i to m do
8 Get lc2 based on cp j and n j

/* ∥a,b∥ represents the Euclidian

distance between a and b. ε is a small

value */

9 if ∥ln2∩dp, ln1∩ ld∥< ε then
10 if ∥cpi,cp j∥> D then
11 C∗tec← (cpi,ni,cp j,n j)
12 D←∥cpi,cp j∥

13 return C∗tec

Fig. 9. Real robotic pusher experimental platform. The left figure shows
the CoM estimation and object translation experiment setting. The two right
figures show the low and high frictional settings with the measured frictional
coefficients in parentheses under the assumption of Coulomb’s friction law.

the pusher friction coefficient as µp. We created a simulation
environment composed of a plane and two spherical pushers.
Coulomb’s law of friction applies to the push-slider-supporting
plane interaction and µs and µp can be adjusted. We used
twenty different objects with convex and concave shapes in
Fig. 8. The size of objects varies from 27cm2 to 150.5cm2.

A real experimental setup is shown in Fig. 9. A 5-DoF
manipulator equipped with a variable opening stroke parallel-
jaw gripper pushes a CoM changeable grid box on a flat
surface. The stroke ranges from 0cm to 8.6cm and the size
of the grid box is 14cm× 8cm. We wrap the gripper with
two different materials: a low friction kraft paper and a high
friction rubber. As for the plane surface, we test the table top

surface itself and the foam surface. The grid box is wrapped
in kraft paper. As the box has uniform density, the CoM is
the same as its centroid. We put two lead blocks into different
cells to change the CoM. The box weighs around 200 grams
and each lead box has around 80 grams. The position and
orientation of the box are monitored using ArUco Markers [38]
attached to the top cover of the box.

VI. COM ESTIMATION EXPERIMENT

A. Simulation Experiment

We evaluate the accuracy of our CoM estimation method
in the following three aspects: (1) objects of different shapes
and sizes, (2) different frictional settings, and (3) impact of the
proposed deep learning model. For the first purpose, we use
twenty different objects depicted in Fig. 8. For each object, we
assign ten different CoM locations. For the second purpose,
we assign 0.1 and 1.0 for a low frictional setting and a high
frictional setting, respectively, to both µs and µp. For the third
purpose, as the prediction accuracy of the deep learning model
highly depends on the pushing priors, we use different single
contact pushing priors collected as follows. Given a specific
object, we randomly sample several contact points. The robot
pushes the object at each contact point 3cm forward along
any of the {θp}a directions. The contact points and pushing
directions, as well as the resultant object motion are recorded
as the pushing priors.

The pipeline is as follows: The pushing priors are collected
for each object with a specified CoM location in each frictional
setting. During pushing prior collection, We collect a total of
twelve pushing priors for each estimation procedure. Then,
the pushing priors are fed into the prediction model. As we
set the total number of sampled contact points {cpi}m to fifty
in Algorithm 1, and there is five direction pushing directions
({θp}a is set to {−60°,−30°,0°,30°,60°}.w.r.t. the normal
direction at each contact point), the prediction model predicted
resultant object motion for two hundred and fifty different
pushing actions. All of the RP’s specified by the five pushing
directions at each sampled contact point can divide the convex
hull of the object into small enough regions to ensure that
the estimation error will be bounded by the area threshold
aT to achieve the estimation accuracy requirement. The angle
threshold θT is set to 2°, that is, if the predicted amount of
rotation is less than 2°, we will not update the potential CoM
region based on this pushing action. We set the area threshold
aT to 0.1, which means that the CoM estimation process will
be terminated if the ratio between the sizes of the probable
CoM region and convex hull of the object becomes smaller
than 0.1. Finally, we run Algorithm 1 to find the potential
CoM region and use its centroid as the estimated CoM. This
CoM estimation pipeline is repeated three hundred times for
each object with a specific CoM in each frictional setting. In
each estimation procedure, different pushing priors are used.
As we assign ten different CoMs and conduct CoM estimation
in two friction settings, the CoM estimation was conducted six
thousand times for each object.

The obtained results are presented in Fig. 10. The statistical
results are computed over ten different CoM locations assigned
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Fig. 10. CoM Estimation Results in Simulation Environments. Objects are sorted by their representative size. The height of bars shows the mean estimation
error in percentage and the intervals represent standard deviations. Red and green bars show the estimation errors for low friction and high friction, respectively.

Fig. 11. CoM estimation results in low and high friction settings. Red dot
represents the ground truth CoM. Other dots are estimated CoMs. The brighter
the color, the closer to the ground truth.

to each object. The objects are sorted by the representative size
(RS), defined by the distance between the object’s centroid
to the farthest point on its perimeter, and the estimation
errors are multiplied by the reciprocal of RS. The main idea
behind this is that if an object’s physical properties are not
observable, one can assume that the CoM is located at the
centroid of that object. This would be same with the initial
step in our algorithm before we apply any pushing action.
The maximum error of the estimation occurs when the CoM
ground truth is located on the object perimeter farthest from its
centroid. Given that RS is the maximum estimation error, we
provide the relative error computed separately for each object.
As shown in Fig. 10, the mean estimation error is around
0.15. After investigating the effects of different frictional
settings, we reached a conclusion that our CoM estimation
method performs more accurately overall in a low frictional
environment.

Fig. 12. CoM Estimation Result in Real Experiment. Red and green bars
show the estimation errors in percentage for low friction and high friction,
respectively.

B. Experiments in Real Platform

In real experiments, we insert two lead blocks into the box
to change the CoM, PCoM , that can be computed by Eq. 3.

PCoM =
1
M

Σ
n
i miri, (3)

where M is the total mass equal to the sum of masses of the
box and two lead blocks, denoted by mi, respectively, and ri
represents the position of mi in a reference coordinate frame in
the plane. We measured the masses of the empty box and each
lead block using an electric scale with precision 0.1 gram. The
ri coordinate of the empty box was regarded as the centroid
of the box as it has uniform density, and the ri value of each
lead block approximated to the center of the compartment in
which each block was inserted.

We follow the previous pushing prior collection procedure
in two different settings: a foam surface and the rubber
wrapped gripper referred to as high frictional setting and a
plastic surface and the kraft paper wrapped gripper referred to
as low frictional setting. For each frictional setting, we select
five different lead block cells as shown in Fig. 11, resulting
in five different CoMs. We sample twelve contact points
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uniformly across the box perimeter, and the robot pushes each
contact point along five directions. The grid box was pushed
sixty times for each CoM configuration and frictional setting.
The CoM estimation pipeline is the same as the simulation.
The estimation procedure was repeated six hundred times, for
each of which, twelve pushing priors are sampled from sixty
pushing examples.

We use the same method to represent the estimation error
in the real experiments of CoM estimation, which is shown
in Fig. 12. It can be observed from the figure that our CoM
estimation method can generalize to real settings, comparable
to the results of simulation experiments. Overall, the estima-
tion uncertainty is smaller in low frictional setting. As the
result for the fourth CoM configuration, the estimation error
became large. One reason is that, compared with other CoM
configurations, the pressure distribution is more decentralized.
Such a configuration causes an object to rotate less, leading
to inaccurate CoM estimates.

VII. OBJECT PUSHING EXPERIMENTS

A. Simulation Experiment

We conduct three simulation experiments to
• find feasible sets of two-edge contact configuration.
• evaluate the effect of the surface and pusher friction.
• evaluate the performance of ZMTEP for different objects.
In the first simulation, we find the feasible two-edge-contact

configurations that translate the object (11) in Fig. 8 along a
pushing direction. Here both µs and µp are set to 0.1. The two
contact points are selected on different edges whose normal
directions are not parallel. There are ten different choices to
select two edges. We uniformly sample the contact points from
each of the two edges and combine each pair of contact points
as a two-edge-contact configuration. A push is considered a
success if the object is translated to a goal pose within 0.5cm
and 5°, respectively.

We show four examples in Fig. 13, where each two-
edge-contact configuration Ctec forms an intersection point
ln1∩ ln2. We observed that almost all of the feasible two-edge-
contact configurations represented by the blue circle marks
are found by combining the edges whose contact normals
can positively span the pushing direction. In this figure, the
blue intersection points are distributed symmetrically along
the blue arrow passing through CoM aligned in the pushing
direction denoted as ld in Section IV-B1. The closer the
intersection point to ld , the less the change in object orientation
during pushing. The two-edge-contact configurations whose
intersection points are on the blue arrow satisfy Theorem1
and therefore result in pure translational motion. Also, the
number of blue circle marks increased in the direction of
ld arrowhead including those marks located away from ld ,
leading to an increase in the number of suitable configurations
available. This phenomenon can be explained by the CoM
estimates tolerance analysis. For those contact configurations
whose normal directions positively span the pushing direction,
each contact configuration obeys Theorem1 but the CoM
estimates may not be accurate. When moving closer to the
arrowhead, the distances between two pushers increases so

Fig. 13. Results of object translation simulation. Blue arrow shows the
pushing direction and green square mark shows the CoM. Green cross marks
on object edges represent the sampled contact points. Yellow arrows show the
contact normals that can positively span bright gray regions. A pair of contact
points are selected from the sampled contact points on each of two edges.
Red and blue cross marks are intersection points formed by two-edge-contact
configurations. Red marks are fail and blue marks are success.

that the configuration shows high tolerance to the error of CoM
estimates. Observing the distribution of the red cross marks,
the failure can be a result of the following three reasons: (1)
the corresponding normal directions cannot positively span
the pushing direction, such as the second row of Fig. 13
(2) the two-edge-contact configuration whose corresponding
intersection point are too far away from ld , and (3) the distance
between the contact points is too narrow so that even a small
error in contact points results in failure.

In the second simulation, we use nine different friction
settings by permuting three different friction coefficients
(0.1,0.5,1.0). In each of the settings, we push the triangular
object (1) shown in Fig. 8 along random directions. We select
two edges whose normal directions can positively span the
pushing direction. We then combine each contact point on
each edge to find feasible two-edge push configurations. A
push is considered a success using the same criterion as the
first simulation experiment. From the result of the second
simulation experiment, we found that with the increase of the
pusher friction or surface friction, the number of successful
pushing has also increased. We conclude that both the friction
between the pusher and the object and the friction between
the surface and the object mutually contribute to enlarging the
contact tolerance range. Similar to the first pushing simulation
experiment, the number of intersection points increased in the
direction of ld arrowhead for each of the frictional setting,
which leads to the same conclusion that the contact configura-
tion having larger distance between two contact points exhibits
high CoM estimates tolerance. In addition, as each row or
column of intersection points along the contact normals can
be seen as a set of contact configurations that one pusher
position gets perturbed when the other remains fixed. Along



11

TABLE I
OBJECT TRANSLATION SIMULATION EXPERIMENT

Object Low Friction High Friction
Proposed1 Proposed2 Baseline1 Baseline2 Proposed1 Proposed2 Baseline1 Baseline2

1 1.000 0.985 0.277 0.362 1.000 1.000 0.823 0.769
2 0.942 0.925 0.050 0.175 1.000 1.000 0.350 0.500
3 1.000 0.975 0.117 0.242 1.000 0.983 0.608 0.567
4 0.975 0.900 0.267 0.492 1.000 1.000 0.992 0.733
5 0.984 0.952 0.234 0.419 0.960 0.960 0.863 0.677
6 1.000 0.921 0.414 0.443 0.979 0.993 0.957 0.786
7 0.938 0.906 0.312 0.328 1.000 0.969 0.744 0.721
8 0.981 0.915 0.321 0.481 1.000 1.000 0.849 0.660
9 0.905 0.781 0.248 0.489 0.978 0.942 0.964 0.761

10 0.985 0.916 0.298 0.511 1.000 1.000 0.955 0.674
11 0.992 0.961 0.403 0.597 0.992 1.000 0.891 0.845
12 0.949 0.934 0.301 0.368 1.000 0.993 0.853 0.757
13 0.967 0.919 0.366 0.528 0.992 0.992 1.000 0.815
14 1.000 0.835 0.339 0.543 1.000 1.000 0.808 0.752
15 1.000 0.976 0.317 0.357 1.000 1.000 0.762 0.683

Fig. 14. Nine simulation environments with different surface and pusher
frictions. Success rate is computed by calculating the ratio between the total
number of success pushes and the total number of pushes.

the pushing direction, when counting the number of success
pushes in rows or columns, the number of success pushes
increases up to a certain point and then deceases, which is
supported by the contact position tolerance analysis.

In the third simulation, we verify the ZMTEP using the
objects in the first two rows in Fig. 8 in a low friction
setting (µs and µp are 0.1) and a high friction setting (µs
and µp are 1.0). Each object assigned to ten different CoMs is
translated 25cm along the fifteen uniformly sampled directions.
Henceforth, a push is considered a success if the slider is
within 1cm and 10° of a goal pose.

For comparison purpose, we used following methods:
• Proposed1 selects two contact points by ZMTEP, given

the CoM.
• Proposed2 selects two contact points by ZMTEP, esti-

mating the CoM.

• Baseline1 uses two contact points that have the maximum
distance from the slider’s centroid along the direction
perpendicular to the pushing direction. Increasing the
distance between two contact points, errors of contact
location and CoM estimation can be better tolerated.

• Baseline2 uses two contact points that are the largest
possible equal distance away from the given CoM along
the direction perpendicular to the pushing direction. This
method relies on the CoM ground truth and ensures that
the CoM is in the middle between two contact points
along the pushing direction. The distance between two
contact points tends to be smaller than Baseline1.

The obtained results in the form of mean ratio of successful
pushes are presented in Table I. From the result, in a low fric-
tion environment, Proposed1 performed best and Proposed2
is the second best. The baseline methods performed far less
accurately than our proposed methods. Baseline1 performs
worse than Baseline2, as the tolerance capability is restricted
by the limited friction. Baseline2 reaps the benefits of knowing
the CoM ground truth. In high friction environment, the
performance of Proposed1 and Proposed2 improved further.
Compared with the baseline methods in a low friction envi-
ronment, even though the two-edge contact configurations in
high friction setting are the same as the ones in low friction
setting, their performances are greatly improved. Baseline1
performed better than Baseline2 as the tolerance capability
gets enlarged due to the increase in friction. This result shows
that high friction helps expand the wrench cone. Therefore, the
performance of baseline methods highly rely on the friction.
On the other hand, the proposed methods work well irre-
spective of frictional conditions. Compared with Proposed1,
even though Proposed2 use the estimated CoM which may
introduces undesired contact configuration, the performance
of Proposed2 drops only slightly. The reason is that we select
a two-edge-contact configuration with a tolerance range.

B. Real Experiment

Changing the friction properties of the pusher and the plane
as well as the CoM of a grid box slider, we find a set of feasible
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Fig. 15. Real robot pushing of a box with a variable stroke gripper along the blue arrow direction. Blue triangle markers are sampled contact points. Each
pair of contact points form an intersection point denoted by red cross markers and orange dot markers. Blue squares are the CoMs of the grid box. The CoMs
in (b) and (c) are biased by two lead blocks near the corner.

two-edge-contact configurations. The robot uses its parallel-
jaw gripper to translate the box slider 25cm along a desired
direction. Given a pushing direction, we sample 14 contact
points on the short edge and 16 contact points on the long
edge, yielding a set of 224 paired configurations. As we set the
gripper stroke limit to 8.1cm, some of the paired configurations
cannot be achieved, leading to 183 pushes available.

We conduct a total of six experiments as illustrated in
Fig. 15(a)-(f), where the robot pushes the box in the direction
of the blue arrow. In (b) and (c), the position of CoM is biased
arising from the addition of lead blocks. In all experiments, the
object is placed on a plastic plane pushed by the kraft paper
wrapped gripper except (d) and (e). (d) uses a high friction
foam surface and (e) uses a rubber wrapped gripper.

From the result of the real object translation experiment
shown in Fig. 15(a), the closer to the line of pushing the
intersection points are, the more stable the pushes are. The
intersection points of feasible two-edge-contact configuration
form a cone. With the stroke of the parallel-jaw gripper in-
creases, the contact configurations tolerate more. In Fig. 15(b)
and (c), the feasible set of intersection points is biased the
same amount as the CoM. In Fig. 15(d), as the surface
friction is larger than others, the number of successful pushes
increases correspondingly. In Fig. 15(e), we changed the
friction between the pusher and the object, the number of
successful pushes greatly increased. Fig. 15(d) and (e) state
that both surface and pusher frictions contribute to enlarging
the tolerance range of the contact. In Fig. 15(f), we changed
the pushing direction, the feasible set is also changed cor-
respondingly. In summary, we verified Theorem 1 on a real
platform under various conditions. The feasible two-edge-
contact configurations depend on the CoM location as well
as the pushing direction. Increasing the friction of supporting
surface or the pusher enlarges the contact tolerance.

VIII. CONCLUSION

We addressed the problem of planar multi-contact pushing
of novel objects undergoing pure translational motion. First,

we presented a novel CoM estimation method by combining
Mason’s voting theorem and a deep learning motion predic-
tion model trained on our simulation dataset SimPush. We
demonstrated the process of how the probable CoM location
can be narrowed down with no a priori assumption about
friction between the pusher and object. Secondly, we proposed
the two-edge-contact pushing interaction called ZMTEP to
translate an object to a goal pose. Using moment labeling
representation, we showed that the pushing configuration
stated in Theorem 1 satisfies the condition of pure translation.
Thirdly, toward real-world applications suffering from image
sensor noise and error-prone CoM estimates, we analyzed the
tolerance region of contact configuration to both contact noise
and inaccurate CoM estimates. We showed that as the distance
between two contact locations increases, the proposed ZMTEP
exhibits high tolerance to both issues.

We demonstrated through extensive experiments both in
simulation and real robotic pusher-slider settings that the
proposed CoM estimation method has good mean squared
error properties and small standard deviation and ZMTEP
outperformed the baseline methods. To the best of our knowl-
edge, this research is the first attempt to provide a thorough
analysis and empirical evidence of multi-edge-contact pushing
based on fewer assumptions to achieve a reasonably close
optimal shortest path of translational motion. One of the
future directions would be investigating multi-edge-contact
configuration selection for re-orienting an object before and
after an action executes. In addition, pushing an object at
a high speed, beyond the quasi-static approximation, would
be also of importance to further reduce the time needed for
translating an object to a goal pose.
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