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Abstract
In most of practical scenarios, the announcement system must
deliver speech messages in a noisy environment, in which the
background noise cannot be cancelled out. The local noise re-
duces speech intelligibility and increases listening effort of the
listener, hence hamper the effectiveness of announcement sys-
tem. There has been reported that voices of professional an-
nouncers are clearer and more comprehensive than that of non-
expert speakers in noisy environment. This finding suggests
that the speech intelligibility might be related to the speaking
style of professional announcer, which can be adapted using
voice conversion method. Motivated by this idea, this paper
proposes a speech intelligibility enhancement in noisy environ-
ment by applying voice conversion method on non-professional
voice. We discovered that the professional announcers and non-
professional speakers are clusterized into different clusters on
the speaker embedding plane. This implies that the speech intel-
ligibility can be controlled as an independent feature of speaker
individuality. To examine the advantage of converted voice in
noisy environment, we experimented using test words masked
in pink noise at different SNR levels. The results of objective
and subjective evaluations confirm that the speech intelligibility
of converted voice is higher than that of original voice in low
SNR conditions.
Index Terms: Voice conversion, speech intelligibility, profes-
sional announcer, speech-in-noise

1. Introduction
In most of the situation, public announcement systems must de-
liver speech messages through adverse listening environments
with various competing sounds and reverberation. These neg-
ative conditions degrade intelligibility of the announcement
speech, and in some cases, damage the integrity of the intended
message. One solution to maintain the speech intelligibility
is to increase the intensity of playback volume to increase the
signal-to-noise ratio (SNR). However, this approach is only use-
ful to some degrees due to the limitation of playback equipment
power and the comfort of listener. Consequently, various ap-
proaches have been proposed to increase the speech intelligi-
bility in noisy environments without increasing the total power
of speech. These include modification of spectral properties
[1, 2, 3], dynamic range compression [4, 5, 6], modification of
speech modulation spectrum [7, 8], and time-scale modification
[9, 10].

It is known that the voice-related professions, such as
professional announcers, voice actor, and singer, can produce
speech with the impression of clearer and easier to hear than
normal person [11, 12]. Moreover, recent studies have shown
that the speech from professional announcer can maintain its
intelligibility better than speech from non-expert person in very

noisy environment [13]. This phenomenon can be exploited to
inspire speech enhancement algorithms that seek to improve
speech intelligibility in noise. In this work, we aim to apply
voice conversion technique to mimic a speaking style of the
professional announcer. Voice conversion refers to the process
of modifying voice personality without changing the linguis-
tic information conveyed in speech waveform. Furthermore,
voice conversion can be applied to control different attributes
of voice style, i.e., gender and accent [14]. This study will clar-
ify whether the announcer-adapted speech from voice conver-
sion model still inherits the noise-resistance property of natural
announcer speech. In addition, this study proposes a method
to increase the speech intelligibility without completely change
the voice individuality, which is useful in the situation where
the identity of the speaker needs to be preserved.

The structure of voice conversion model and the training
procedure are described in Section 2. Next, the detail for ex-
perimental settings is shown in Section 3. Then the results of
objective and subjective evaluations are described in Section 4.
Finally, we conclude our paper Section 5 with some discussions
for the future work.

2. StarGAN-v2 voice conversion model
In this paper, a voice conversion method based on StarGANv2
[15] model is used. We follow the official implementation
of StarGANv2-VC [16] which is publicly available at 1. The
overview structure of voice conversion model is depicted in Fig.
1. The models consist of 6 modules as follows:

• Style encoder network consists of a stack of 4 resid-
ual network (resnet) [17] layers an average pooling
layer to extract the speaker embedding semb from mel-
spectrogram. The dimension of speaker embedding vec-
tor is set to 128.

• F0 network is pretrained to predict the F0 value and
voice/un-voice region from the input mel-spectrogram.
The F0 network is a stack of 2 convolutional layers,
3 resnet layers and a recurrent bidirectional long-short
term memory layer. The output of the last resnet layer is
used as the F0 features for generator network.

• Speech recognition (ASR) network is pretrained to pre-
dict the phoneme sequence from mel-spectrogram. The
ASR network is a joint CTC-attention VGG-BLSTM
network given by the Espnet Toolkit 2 [18].

• Parallel WaveGAN [19] vocoder is pretrained to gener-
ate speech waveform from input mel-spectrogram. The
pretrained checkpoint is publicly available at 3.

1https://github.com/yl4579/StarGANv2-VC
2https://github.com/espnet/espnet
3https://github.com/kan-bayashi/ParallelWaveGAN
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Figure 1: Overview structure of StarGAN-v2 voice conversion model. The model consists of a generator network to convert input mel-
spectrogram, a discriminator network for adversarial training, a style encoder to extract speaker embedding, a pretrained F0 network
for extracting F0 feature, a pretrained speech recognition to extract linguistic features, and a pretrained Parallel WaveGAN vocoder to
generate waveform from mel-spectrogram.

• The generator network (G) consists of two sub-modules:
an encoder network and a decoder network. The encoder
takes the input mel-spectrogram and generate the hidden
feature vector. The concatenation of hidden feature vec-
tor and F0 feature vector is fed to the decoder network to
generate converted mel-spectrogram conditioned on the
input speaker embedding.

• Discriminator network consists of two sub-modules: a
real-fake classifier trained to discriminate real and con-
verted mel-spectrogram, and a classifier to predict the
speaker identity of input mel-spectrogram.

2.1. Training procedure

The training data consists of utterances from 20 professional an-
nouncers from ATR [20] dataset A-set and 20 non-expert speak-
ers from ATR dataset C-set. All the utterances are preprocessed
by resampling to 24 kHz, removing leading and trailing silence,
and combining to 5-second chunks. There is total 22.234 utter-
ances, in which 500 utterances are used for validation. The 80-
band log-mel spectrogram with band limited frequency range (0
to 8 kHz) is extracted using short-time Fourier transform. The
window length and frame shift are set to 1024 and 256 respec-
tively. We follow training strategy as described in [16] with
the same objective functions and hyper-parameters. The voice
conversion model is trained for 50 epochs with batch size of
48 using 2 Nvidia RTX3090 GPUs. The training process takes
approximately 1 day to finish.

2.2. Visualization of speaker embedding

The speaker embedding is a vector that encodes speaker indi-
viduality conveyed in the input mel spectrogram into a com-
pact vector. By analyzing the speaker embedding using princi-
pal component analysis (PCA), we can factorize out the dom-
inant features of speaker individuality. Figure 2 plots the first
and second principal components of the speaker embedding af-
ter training. The first component corresponds to the gender of
the speakers, while the second component corresponds to the
voice type, which is non-expert voice or professional announcer
voice. This result suggests that the style of voice, i.e., non-
expert style or announcer style, can be controlled independently
from other voice attributes.

Figure 2: 2D visualization of first and second principal compo-
nents of speaker embedding. The red dots and eclipse shades
denote the centroid and covariance of each cluster.

3. Experimental settings
3.1. Approach 1

From the study of Kobayashi et al. [13], it has been shown that
speech from professional announcers is perceptually clearer and
easier to hear than that of non-expert voice even in noisy en-
vironments. This phenomenon is mainly originated from the
differences of voice quality, clarity, projection, ring or reso-
nant. However, it is unclear that whether the announcer-adapted
voice can still possess this property of natural announcer voice.
To investigate this point, we transform speaker individuality
of speaker M105 (non-expert in ATR C-set) to that of tar-
get speaker MAU (professional announcer in ATR A-set) us-
ing voice conversion model. The speaker embedding of MAU
speaker is used to synthesize the converted stimuli.

3.2. Approach 2

As can been clearly seen in Fig. 2, the second principal compo-
nent of the speaker embedding captures the difference between
non-expert speaker and professional announcer. This behav-
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ior is advantageous as the non-expert voice can be converted to
have the voice style of professional announcers only by chang-
ing the second principal components of speaker embedding.
Since the professional announcers are more intelligible even in
noisy environment, it is expected that the second principal com-
ponent can be used to increase the intelligibility of non-expert
voice. To clarify this point, we propose to replace the second
principal component of M105 speaker embeddings with the av-
erage value calculated from the second principal component of
all male professional announcers. Then, the obtained speaker
embedding is used to synthesize converted stimuli. Different
from Approach 1, the speaker individuality of source speaker
is partly changed as other principal components of speaker em-
beddings are preserved.

3.3. Experiment speech stimuli

We select 520 Japanese words, each may contain 1 to 4 mora,
from the ATR Digital Voice Database A-set (ATR-A) and ATR
Digital Voice Database C-set (ATR-C) as the clean stimuli for
target and source speaker. All speech waveforms are prepro-
cessed to 16 kHz sampling rate with single channel. There are
4 types of speech stimuli in the experiments, which are denoted
as follows:

• Non-expert: Natural speech of non-professional
speaker, which is collected from speaker M105 in ATR-
C set.

• Announcer: Natural speech of professional announcer,
which is collected from speaker MAU in ATR-A set.

• VC-1: converted speech from speaker M105 to speaker
MAU (Approach 1) by voice conversion model.

• VC-2: converted speech by shifting the second princi-
pal components of speaker embedding of speaker M105
(Approach 2) by voice conversion model.

To create the noisy stimuli, we mask the clean stimuli with
pink noise at 5 different SNR levels: -9dB, -6dB, -3dB, 0dB,
and ∞ (no noise). We calculate the root-mean-square of the
speech signal only in the voice region and scale the noise signal
to match with the desired SNR level. The voice region is de-
rived from the text transcription of ATR dataset. To avoid the
effect of different onset and offset timing between speech stim-
uli, duration of each stimulus is adjusted to contain the same
200ms of leading noise and 200ms of trailing noise. In addi-
tion, speech stimuli are gated with two raised cosine onset and
offset windows of 40-ms to avoid overshoot distortion.

4. Evaluations
4.1. Objective evaluation

Two objective metrics are used to evaluate the intelligibility
of converted speech: 1) average vowel space, and 2) extended
short-time objective intelligibility (eSTOI) [21].

4.1.1. Vowel space analysis

Several studies have reported that the expansion of vowel space
corresponds to an increase of speech intelligibility [22, 23].
Based on this information, we compare the areas of the aver-
age vowel spaces derived from different types of stimuli. The
formant frequencies of 5 Japanese vowels (/a/, /e/, /i/, /o/, and
/u/) are extracted using Praat tool [24]. The locations of vow-
els in each utterance are determined using the text transcription
provided with the dataset. Then the average frequency of first

Figure 3: Average vowel space of non-expert, announcer, VC-1,
and VC-2 stimuli, with respective areas: 2.64, 3.60, 2.91 and
2.95 (×105 Hz2).

and second formants of vowels are calculated across all speech
utterances. The vowel space is defined as the smallest polygon
that fits all the vowels. As can be seen from Fig. 3 the aver-
age vowel space of professional announcer exhibits the largest
area (3.6 × 105 Hz2). This result aligns with the above as-
sumption that the speech intelligibility increases with a larger
vowel space. Interestingly, the converted voices from non-
expert speaker (VC-1 and VC-2) show an expansion of vowel
space from the non-expert vowel space, from 2.64×105 Hz2 to
2.91×105 Hz2 and 2.95×105 Hz2 respectively. Moreover, the
vowel space of VC-1 and VC-2 appears to have similar shape
to that of professional announcer. This result indicates that the
converted voice might have better intelligibility than non-expert
voice in noisy environment.

4.1.2. eSTOI measurements

To objectively measure the intelligibility of speech in noise, we
calculate the eSTOI of the speech stimuli at 4 SNR levels: -
9dB, -6dB, -3dB and 0dB using pySTOI python package4. The
clean speech is used as the reference signal for eSTOI calcula-
tion. As can be seen from Fig. 4, the announcer voice can resist
to noisy environment better than non-expert voice as expected.
Moreover, VC-1 and VC-2 stimuli also show a comparable per-
formance to that of the announcer voice. This result confirms
the effectiveness of our proposed method.

4.2. Subjective evaluations

We conducted listening tests to compare the intelligibility of
4 types of speech stimuli. The listening test is conducted in
sound-proof room to avoid any interference. Speech stimuli are
presented via a D/A converter (RME, Fireface UCX), a head-
phone amplifier (STAX, SRM-1/MK2), and an electro-static
headphone (STAX, SR-404) in a diotic fashion. The sound pres-
sure level is fixed at 60dB LAeq, measured on the clean speech
stimuli by a sound level meter (Brüel&Kjær, Types 2250) via
an artificial ear (Brüel&Kjær, Type 4153). Each participant lis-
tens to a set of 300 different random words, which are equally
distributed into 5 SNR levels and 4 types of speech stimuli.
The stimulus is presented only once for each trial and the order
of presented speech stimuli is randomized for each participant.
The duration of the whole listening test is approximately 40
minutes, which is divided into 4 sections with 2 minutes break

4https://github.com/mpariente/pystoi
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Table 1: p-value of post-hoc pairwise comparison between 4 types of stimuli using Tukey’s HSD test. Values that reject the null
hypothesis are in bold.

SNR Non-expert - VC1 Non-expert - VC2 Non-expert - Announcer Announcer - VC1 Announcer - VC2 VC1 - VC2

−9 dB 0.001 0.001 0.003 0.77 0.77 0.90
−6 dB 0.064 0.024 0.0021 0.47 0.71 0.9
−3 dB 0.1 0.031 0.001 0.23 0.52 0.9
0 dB 0.08 0.03 0.001 0.28 0.55 0.9
∞ 0.016 0.32 0.9 0.051 0.59 0.45

Figure 4: Average eSTOI score of non-expert, announcer, VC-
1, and VC-2 stimuli across all utterances. The horizontal axis
shows the SNR in dB. The eSTOI score is in range [0, 1], with
higher score indicates better intelligibility. Error bar indicates
standard deviation.

between each section. There were 10 native Japanese partici-
pants, whose age ranging from 23 to 29 years old, joined our
listening test.

Before each test, the listeners are provided with instruction
and some sample stimuli to get used to the sound level. Figure
5 reports the average word correction rate across participants.
One-way ANOVA test show that there were statistical differ-
ences between 4 types of stimuli. A post-hoc pairwise analysis
using Tukey HSD test (p < 0.05) was carried out to determine
statistical differences between pair of stimuli types in different
SNR conditions.

The results shown in Table 1 indicate that VC-2 and an-
nouncer stimuli are significant different from non-expert stimuli
in noisy conditions (SNR ≤ 0dB). In addition, no statistical dif-
ference between all 4 types of stimuli is found in clean condition
(SNR = ∞). These results suggest that VC-2 is more effective
than VC-1 for enhancing speech intelligibility in noisy condi-
tion. The possible reason for this difference might correspond
to the increase amount of distortion when speaker individual-
ity is completely changed. However, further analysis must be
carried out to clarify this point.

5. Conclusions
The present work has proposed a speech intelligibility enhance-
ment in noisy environment using voice conversion technique.
The results from objective measurements and subjective evalu-
ation confirm that adapting to announcer voice can increase the
intelligibility of non-expert speaker. By analyzing the PCA of
speaker embedding, it has been discovered that the announcer-
speaking style is an independent features of speaker individual-

Figure 5: Average word correct answer rates across partici-
pants. The horizontal axis shows the SNR in dB and ∞ denotes
that the speech stimuli is presented without noise. Error bar in-
dicates standard deviation.

ity. By modifying the second principal component of speaker
embedding, we can manually control the amount of announcer-
speaking style, hence increasing the intelligibility of speech in
noisy environment without completely change the speaker indi-
viduality. Statistical analysis shows that modifying the second
principal components yields the highest performance. Beside
using announcer voice as the target, the proposed method can
be applied to mimic Lombard Effect [25] and Clear speech [26].
The Lombard Effect is the involuntary tendency when speaking
in noisy environment. In contrast, Clear speech refers to the
voluntary adjustment of speaking style to maximize intelligibil-
ity. Both speaking styles can effectively increase the intelligi-
bility of speech in noisy environment. For the future work, the
proposed method can be extended to generate converted speech
adaptively to the noise condition in order to further improve the
speech intelligibility in noise. For code in this research is pro-
vided at 5.

6. Acknowledgements
This work was supported by the SCOPE Program of Min-
istry of Internal Affairs and Communications (Grant number:
201605002) and Grant-in-Aid for Scientific Research (Grant
number: 20H04207).

7. References
[1] W. Kleijn, J. B. Crespo, R. C. Hendriks, P. N. Petkov, B. Sauert,

and P. Vary, “Optimizing speech intelligibility in a noisy environ-
ment: A unified view,” IEEE Signal Processing Magazine, vol. 32,
pp. 43–54, 2015.

5https://github.com/tuanvu92/Intelligible_VC

174



[2] C. H. Taal and J. H. Jensen, “Sii-based speech preprocessing for
intelligibility improvement in noise,” in INTERSPEECH, 2013.

[3] C. H. Taal, R. C. Hendriks, and R. Heusdens, “Speech energy
redistribution for intelligibility improvement in noise based on a
perceptual distortion measure,” Comput. Speech Lang., vol. 28,
pp. 858–872, 2014.

[4] T.-C. Zorila and Y. Stylianou, “On spectral and time domain en-
ergy reallocation for speech-in-noise intelligibility enhancement,”
in INTERSPEECH, 2014.

[5] T.-C. Zorila, V. Kandia, and Y. Stylianou, “Speech-in-noise in-
telligibility improvement based on spectral shaping and dynamic
range compression,” in INTERSPEECH, 2012.

[6] C. Chermaz and S. King, “A sound engineering approach to near
end listening enhancement,” in INTERSPEECH, 2020.

[7] A. Amano-Kusumoto, T. Arai, K. Kinoshita, N. Hodoshima,
and N. Vaughan, “Modulation enhancement of speech by a pre-
processing algorithm for improving intelligibility in reverberant
environments,” Speech Commun., vol. 45, pp. 101–113, 2005.

[8] T. V. Ngo, R. Kubo, and M. Akagi, “Increasing speech intelligi-
bility and naturalness in noise based on concepts of modulation
spectrum and modulation transfer function,” Speech Communica-
tion, 2021.

[9] Y. Tang and M. Cooke, “Subjective and objective evaluation of
speech intelligibility enhancement under constant energy and du-
ration constraints,” in INTERSPEECH, 2011.

[10] V. Aubanel and M. Cooke, “Information-preserving temporal re-
allocation of speech in the presence of fluctuating maskers,” in
INTERSPEECH, 2013.

[11] H. Noh and D.-H. Lee, “How does speaking clearly influence
acoustic measures? a speech clarity study using long-term aver-
age speech spectra in korean language,” Clinical and Experimen-
tal Otorhinolaryngology, vol. 5, pp. 68 – 73, 2012.

[12] C. Kashimada, K. Ogita, T. Ishikawa, H. Hasegawa, and
M. Ayama, “Effects of voice training on subjective evaluation of
voice quality,” The Journal of The Institute of Image Information
and Television Engineers, vol. 63, pp. 1818–1823, 2009.

[13] M. Kobayashi and M. Akagi, “Intelligibility of announcer’s
speech in noisy environments,” IEICE Technical Report, vol. 119,
pp. 95–99, 2020.

[14] T. V. Ho and M. Akagi, “Non-parallel voice conversion with
controllable speaker individuality using variational autoencoder,”
2019 Asia-Pacific Signal and Information Processing Associa-
tion Annual Summit and Conference (APSIPA ASC), pp. 106–111,
2019.

[15] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse im-
age synthesis for multiple domains,” 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 8185–
8194, 2020.

[16] Y. A. Li, A. Zare, and N. Mesgarani, “Starganv2-vc: A diverse,
unsupervised, non-parallel framework for natural-sounding voice
conversion,” in INTERSPEECH, 2021, pp. 1349–1353.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 770–778, 2016.

[18] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. Yalta, J. Heymann, M. Wiesner, N. Chen, A. Renduchintala,
and T. Ochiai, “Espnet: End-to-end speech processing toolkit,”
ArXiv, vol. abs/1804.00015, 2018.

[19] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel wavegan: A fast
waveform generation model based on generative adversarial net-
works with multi-resolution spectrogram,” ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6199–6203, 2020.

[20] A. T. R. I. International, “Digital voice database,” http://www.
atr-p.com/.

[21] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. R. Jensen,
“A short-time objective intelligibility measure for time-frequency
weighted noisy speech,” 2010 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 4214–4217, 2010.

[22] A. Amano-Kusumoto and J.-P. Hosom, “A review of research on
speech intelligibility and correlations with acoustic features,” in
Center for Spoken Language Understanding, Oregon Health and
Science University (Technical Report CSLU-011-001), 2011.

[23] E. Godoy, M. Koutsogiannaki, and Y. Stylianou, “Approaching
speech intelligibility enhancement with inspiration from lombard
and clear speaking styles,” Comput. Speech Lang., vol. 28, pp.
629–647, 2014.

[24] P. Boersma, “Praat, a system for doing phonetics by computer,”
2002.

[25] E. Lombard, “The sign of the elevation of the voice,” Ann. Dis-
eases Ear, Larynx, Nose, Pharynx, vol. 37, p. 101–119.

[26] R. Smiljanic and A. R. Bradlow, “Speaking and hearing clearly:
Talker and listener factors in speaking style changes,” Language
and linguistics compass, vol. 3 1, pp. 236–264, 2009.

175


