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Abstract

Recently, the Inverse Text Normalization (ITN) problem has received
significant attention when the Automatic Speech Recognition (ASR) system
has applicability in the production environment. The task aims to convert
spoken form text into the corresponding written form format. ITN plays an
important role when it helps to improve the readability of the ASR’s output
and improve the efficiency of natural language processing tasks behind the
ASR system.

This problem is challenging when it requires understanding the context
to normalize the text correctly. Traditional methods based on grammar rules
do not require training data but are less effective for cases with complex
contexts. Developing a system based on grammar rules is often complicated
due to language dependence and the need for language experts. This method
is also difficult to apply to the two subproblems of ITN: Restoring punc-
tuation and Capitalizing proper nouns, because they require deep context
understanding. Recent studies using deep learning proved to be quite effec-
tive, and system development also becomes more accessible when it does not
depend on language or grammar rules. This method also overcomes the lim-
itation of the traditional approach when the input has a complex context.
But deep learning requires many data to label the training process, which
is expensive. In addition, studies often focus on the problem of converting
text from spoken form to written form, ignoring two sub-problems: restoring
punctuation marks and capitalizing proper nouns. The deep learning method
can generate unrecoverable errors if the input sentence contains rare words.
However, research based on deep learning gives results superior to traditional
methods. However, it still has limitations: (1) Using a lot of labeled data, ig-
noring punctuation and capitalization restoration tasks, and (3) the model
often generates unrecoverable errors.

To overcome the above limitations of the deep learning method, we pro-
pose to use a deep language model that is trained first and then refined for
the ITN problem. Using a pre-trained language model makes it possible for
the model to use available contextual information instead of learning from
scratch. Pre-trained helps the ITN need very little labeled data compared
to training from scratch. However, using less training data means the un-
recoverable errors appear more. For this problem, we propose to apply the
subword technique to separate rate words into smaller units before training
the model. The subword method can handle the rare word problem in ITN
thoroughly. However, using fewer data makes more unrecoverable errors. For



this problem, we propose to apply the subword technique to separate rate
words into smaller units before training the model. Besides, we also train our
model simultaneously to process two additional problems, including restoring
punctuation marks and capitalizing proper nouns.

The experimental results of the proposed method are much higher than
the baseline method. Above all, the experimental results show that the model
achieves good results for two subproblems: Restoring punctuation marks and
Capitalizing proper nouns. For English data, our proposed method gives com-
petitive results with the state-of-the-art. Additionally, our solution using sub-
words shows significantly improved results than word units on both English
and Vietnamese datasets.
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Chapter 1

Introduction

1.1 Research background

The most commonly used text format is written form (i.e., including numbers,
punctuations, and syllables). This text format is also commonly used in most
natural language processing (NLP) tasks. However, the written form of text
is not used in speech-processing tasks (e.g., text-to-speech and automatic
speech recognition). Because the written form has unlimited words, it also
takes several syllables to read a number. These problems make it difficult
for the speech-processing model to map and learn the relationship between
input and output. Fortunately, we will no longer have to worry about these
problems when using the spoken form.

Inverse text normalization is the task that normalizes the spoken form
text to its written form. ITN is commonly used in the ASR system to im-
prove user readability and performance on downstream NLP tasks, such as
named entity recognition. A spoken form sentence can be divided into non-
normalized words (plain tokens) and normalized words [18]. The plain tokens
are words in written form preserved from the spoken form, while normalized
words are the words/phrases that need to be converted from the spoken form
to its corresponding written form (e.g., number, date, time).

ITN is closely related to the text normalization (TN) problem because
its goal is to standardize the text from written to spoken form for the text-
to-speech (TTS) system. Figure 1.1 shows the position of the TN problem
in the TTS system and the ITN in the ASR system. It also shows that TN
is TTS’s preprocessing module while ITN is ASR’s postprocessing module.
Because of this relationship, some studies also show the use of existing TN
systems to generate training data for the ITN task [13, 18, 26]. Besides, there
are also differences between ITN and TN problems. Punctuation marks and

1



Spoken form Written form

bốn phần trăm của năm ngàn là hai trăm

bốn phần trăm của năm nghìn là hai trăm
(four percent of five thousand is two hundred)

4% của 5000 là 200
(4% of 5000 is 200)

hôm nay là thứ ba ngày hai mươi tư
hôm nay là thứ ba ngày hai mươi bốn
hôm nay là thứ ba ngày hai bốn
hôm nay là thứ ba ngày hai tư
(today is tuesday the twenty-fourth)

Hôm nay là thứ 3 ngày 24
(Today is Tuesday the 24th)

a lô anh hai hai giờ chiều qua đón em nhé
(hello hai please pick me up at two o’clock in
the afternoon)

Alo, anh Hai 2 giờ chiều qua
đón em nhé
(Hello Hai, please pick me
up at 2 pm in the afternoon)

Table 1.1: Example of Vietnamese spoken form and corresponding written
form

capital words can be recovered from the written form at the input for the TN
problem, while these two problems need to be solved in the ITN problem.
Table 1.1 shows examples of spoken form sentences and their corresponding
written form. In the first two examples, a sentence in the written form can
have multiple variations in the spoken form. ITN needs to normalize all of
these variants to their correct written form. In the third example, the written
form also contains a proper noun (person’s name) and a punctuation mark
(comma). It is also a challenge with the ITN problem when compared with
TN.

There are three main approaches to these two TN and ITN problems
[26]. The first and most popular approach is based on weighted finite-state
transducer (WFST) grammars. This approach proved to be effective but lan-
guage dependent. Recently, the deep learning approach based on sequence-
to-sequence model using Bi-LSTM [17] or Transformer [18] has shown bet-
ter performance. Not only that, this method can be easily implemented for
different languages. However, its biggest drawback is that it can cause unre-
coverable errors. The third approach is to combine the above two methods
to minimize the dependence on grammar rules as well as limit the errors
generated by the deep learning model.
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Figure 1.1: The ITN task in the speech processing system

1.2 Problem statement

A recent study shows that the deep learning method using the Transformer
model gives more impressive results than the method based on WFST. It
also shows superiority in building and developing the system because the deep
learning method can be easily applied to different languages. Whereas WFST
is language bound when it depends on grammar rules. The most significant
difficulty when applying this deep learning method is that it requires a lot of
labeled data. Therefore, it would be great to solve the data labeling problem
partially. Several recent studies use a text normalization system based on
WFST to generate labeled data. However, this method has certain limitations
when using written data (e.g., Wikipedia, machine translation data), while
ITN is a problem applied to spoken form data. In addition, the data generated
from the WFST method, which is based on grammar rules, can cause the data
to lose its diversity and naturalness.

Besides advantages, the use of transformer-based sequence-to-sequence
(seq2seq) models also has the disadvantage of generating unrecoverable er-
rors. This problem usually occurs when the input contains words or phrases
that the model rarely encounters or has not encountered during training.
This issue explains why we need a lot of labeled data for model training.
Therefore, we need a solution to deal with those rare words to solve the
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Figure 1.2: The overview of ITN task

problem of generating unrecoverable error sentences. The approach of recent
studies is to apply the subword method (i.e., byte pair encoding) or combine
it with WFST to reduce the error, showing remarkable effectiveness. Nev-
ertheless, can we use a more straightforward method to deal with the rare
word problem for ITN when the rare words consist only of numbers or words
that contain digits?

ITN is a problem normalizing spoken text (ASR output) to the corre-
sponding written form. Therefore, the input sentence will contain only words
in lowercase and no punctuation. This missing is a challenge compared to
the TN task, which still has punctuation information and proper nouns. The
absence of these two pieces of information makes understanding the context
more difficult. Restoring the punctuation and capitalization of proper nouns
is also challenging, especially for proper noun information. Figure 1.2 shows
the general picture of ITN, which can be divided into three subtasks: (1)
normalization of entities, (2) punctuation restoration, and (3) capitalization
restoration. Recent studies have used written data to train the model to
overcome the problem of missing labeled data. Therefore, they do not have
experiments with these two subproblems of ITN. It would be great if we
could use a single model for all three of these subtasks.
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1.3 Research motivation

ITN is essential in normalizing ASR output into written forms people use
daily. The deep learning-based problem approach using the seq2seq model
has proven more efficient than the traditional approach. Using the Bidirec-
tional LSTM model (Bi-LSTM) to recent Transformer architecture shows its
performance in the ITN task, including accuracy and scalability compared
with WFST. The Transformer’s ability to capture contextual information
and non-sequential processing combined with positional encoding can explain
why the method achieved a good performance. Additionally, the introduction
of pre-trained language models based on Transformer architecture makes it
much more feasible to train natural language processing problems. Because
these pre-trained models significantly reduce the amount of labeled data to
finetune the model compared to having to train from scratch.

Studies show that using the seq2seq model based on Transformer archi-
tecture on ITN task has achieved good results. In addition, studies using
pre-trained language models such as BERT to finetune the target task give
good results on many NLP problems. Finetune from pre-trained is significant
for NLP problems in low-resource languages like Vietnamese. For the problem
from the seq2seq model generating unrecoverable errors when encountering
rare words, using a subword method like byte-pair-encoding (BPE) or senten-
cepiece will improve significantly. For this ITN task, we believe that the rare
word problem can be solved more simply when the ASR output is definitely
the words from its vocabulary list. Inspired by the above successes, we pro-
pose an end-to-end model based on a pre-trained language model combined
with subword processing to solve the ITN task. This proposal helps to train
the model with very little labeled data and still achieve good performance
with a low error rate.

1.4 Research objective

We proposes a seq2seq model based on the transformer architecture that uses
the pre-trained models to finetune ITN task using less labeled data for all
three ITN subtasks: (1) normalization of entities, (2) punctuation restoration,
and (3) capitalization restoration.

Since ITN is a specific task for ASR systems, it has only been interested
in the last few years, so there are no public data sources. Some studies use
WFST for automatic data generation from machine translation datasets,
Wikipedia. However, this has specific differences from the actual problem
and is affected by the performance of WFST. Our goal is to test the proposed
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model on speech data. Although labeled speech data is limited, a solution
using a pre-trained language model will assist in making this goal possible.

Besides, reducing the unrecoverable error rate on the seq2seq model is
also an objective of this work. unrecoverable errors will be encountered more
when the data size used for training is smaller. Nevertheless, the character-
istic of ITN is the limited vocabulary. Our proposed method using subwords
together with the use of a pre-trained language model set the goal to reduce
unrecoverable errors.

1.5 Thesis organization

We organize the structure of this report into six chapters. The first chapter
introduces the problem of this work, while the last is a conclusion about
this work. The remaining chapters of this thesis, in turn, present related
works, proposed methods, experimentation, and evaluation. Specifically, the
remaining chapters of this thesis are summarized as follows:

Chapter 2 presents recent studies related to TN and ITN tasks. We di-
vide recent research into three main directions. In each research direction,
we summarize the solutions of related works and discuss each method’s ad-
vantages and limitations. After that, we present the background knowledge
related to this work, and the final is the dataset information for the ITN
task.

Chapter 3 describes our method in detail in this thesis. First, we intro-
duce the baseline model architecture using FST-based for Vietnamese. Next,
we present the proposed method using the seq2seq architecture based on the
pre-trained Transformer architecture. Along with that is the subword pro-
cessing method to reduce the unrecoverable error rate of the neural network
on the ITN.

Chapter 4 illustrates our experimental process on the ITN task. The
content of this chapter includes detailed information about the data sets
used, the metrics used to evaluate the proposed model, and the configuration
details used in our model. Finaly, we shows the results of our experiments on
the proposed method for Vietnamese and English data sets, respectively. For
English, we also compared our results with recent studies. Next, we discuss
and analyze the experimental results.
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Chapter 2

Literature Review

2.1 Related works

While several studies have contributed to the TN task, the ITN task has
only received attention in the last few years when the ASR problem has the
potential for use in production. In addition, ITN is closely related to the TN
task, so we will explore studies related to both tasks in this literature review.

We can divide the literature on the ITN and TN into three main direc-
tions:

• The rule-based methods, e.g., based on the language’s grammar rules.

• Neural network models, typical using sequence-to-sequence models.

• Hybrid methods that aims to overcome the weaknesses of the two above
methods.

The following subsections discuss each approach to the problem in detail.

2.1.1 Rule-based methods

Using WFST grammars is a typical method for TN and ITN [3, 26]. This
method works based on a set of grammar rules of a particular language that
help find and classify words or phrases in an input sentence. Based on the
classification results, entities that are not plain tokens will be processed to
their correct written form. Studies using this method achieve high accuracy.

Ebden et al. [3] proposed a TN system called Kestrel that achieved overall
accuracy on the Google Text Normalization dataset [17] of 91.3% and 93.1%
on the English and Russian subsets, respectively. The author evaluates the
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system’s accuracy by category (e.g., date, decimal, money, telephone, ad-
dress), showing that many categories have absolute accuracy. However, high
accuracy in a category on the English set does not mean high accuracy in
Russian and vice versa. Besides evaluating the model’s accuracy, the author
also shows that more than 90% of the system errors reported by users have
been fixed. This number shows that errors caused by WFST can easily find
the cause of the error and fix it.

Recently, Yang Zhang et al. [26] announced an open-source PythonWFST
library for ITN called NeMo ITN. This library makes building and deploying
ITNs more convenient and efficient. Figure 2.1 shows that the NeMo ITN
system pipeline consists of two main stages: (1) The classify step uses WFST
to detect and classify the tokens in the input sentence; and (2) the verbalize
step is responsible for converting the tokens into the corresponding written
form. Meanwhile, the two intermediate steps, parse and generate permuta-
tions, act as support for the verbalize step. The Google Text Normalization
dataset was used to evaluate the performance of the proposed method. The
author has identified some problems when using TN data to evaluate ITN.
Specifically, several samples in the dataset are similar in spoken form but dif-
ferent in written form (e.g., the spoken form of "2000" and "2,000" are "two
thousand" or "5:00 pm" and "5 pm" has the same spoken form as "five p m").
Because ITN always only generates one single written form for each spoken
form input, this will result in lower accuracy (e.g., "two thousand" → "2000"
or "2,000" are both correct). To overcome this problem, the author uses regex
rules to handle the above cases, if possible, and obtain a "cleaned" version of
the original dataset. The author uses the Word Error Rate (WER) metric to
evaluate the method’s performance. The experiment shows results of 12.7%
and 10.14% on the original dataset and the "cleaned" version, respectively.
The WER significantly improved on the "cleaned" dataset compared with
the original across many categories, especially measure, money, and number.

Using WFST does not require labeled data or model training. This is
an advantage of the WFST approach compared to the neural network ap-
proach. This solution also shows good accuracy in recent studies. However,
this method requires expert linguists to build the system because it depends
on linguistic rules. Besides, it is not easy to reuse an existing system for an-
other language because the languages have different grammar. The author
of Kestrel [3] has noted that system development time depends on language
complexity. Russian or Slavic languages will take longer than English due
to morphological complexity. The scalability limitation is confirmed when
Kestrel’s research results have no similarity in English and Russian.

In conclusion, WFST is suitable for a single-language system. Deployment
and debugging are possible with language experts without the cost of making
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Figure 2.1: The NeMo ITN’s pipeline [26]

labeled data. However, this solution will be complex with a system that
supports multiple languages, and the development cost will increase with the
number of languages that need to be supported.

2.1.2 Neural network methods

Unlike the WFST grammars-based approach, training ITN or TN on a neural
network model requires a large amount of labeled data to train the model.
Studies in this direction often use the seq2seq model [9, 12, 4, 7].

Mansfield et al. [9] consider TN as a machine translation task and solve it
using the seq2seq model with Bi-LSTM architecture. This proposed method
helps the model to have more context information when the whole input sen-
tence is used instead of just words or phrases like the FST/WFST method.
Besides, the author proposes using subwords instead of word level to im-
prove the out-of-vocabulary (OOV) problem. Two different baseline models
were tested, including the window-based model (i.e., wrapping the tokens in
blocks and using the keyword "self" to represent non-normalize words) and
the sentence-based (i.e., using full-sentence for training). The proposed model
uses the sentencepiece1 toolkit to apply subword processing. Besides, the au-

1https://github.com/google/sentencepiece
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thor also added linguistic features for the model training process. The author
divided the English subset in the Google Text Normalization dataset [13] to
train and evaluate the model. When subwords were not applied, the window-
based model outperformed the sentence-based training. However, the author
also implies that using the window-based has limitations and is only used as
a baseline. When applying subwords, the model’s results reached 0.91% and
outperformed both baseline models, and when adding four linguistic features,
the WER was only 0.17%.

Pramanika et al. [12] use two models to solve the TN task. The first
model uses XGBoost to classify whether each word in a sentence needs to be
normalized or not. The characters of the current word and its neighboring
will be represented as vectors of Unicode values for training the classifier.
If a word is determined to be normalized, it is passed through the second
model. The second is a seq2seq model that uses the Differentiable Neural
Computer (DNC) architecture to replace Bi-LSTM. This model normalizes
words from written to spoken form. Experimental results show that changing
from Bi-LSTM to DNC with much smaller data used for training, the model
still gives competitive results with the previous study of Sproat et al. [17].

Besides the direct study of ITN, it is also considered in a larger problem
of ASR post-processing for readability (APR) proposed by Liao et al. [7].
Their goal is to convert noisy ASR output into readable text for humans
and downstream tasks while preserving the original meaning of the speaker.
The author has trained the model on different Transformer architectures and
open-source pre-trained models. The study also built a pipeline to build data
for APR from public data sources to evaluate the effectiveness of models.
The experimental results show that RoBERTa [8] is the more suitable model
for most evaluations.

In conclusion, studies using neural networks for ITN give better results
than the traditional WFST method. The model learned from a large corpus
can understand the context better than WFST is why we get a better re-
sult. Some studies incorporate additional entity boundaries (e.g., <s> entity
here </s>) in the data to help the model learn better [9, 17]. Besides the
advantage of efficiency, the method also shows that it can solve the scaling
problem of WFST. Neural network models do not depend on a particular
language. We can implement the same successful network architecture from
one language to another if we have labeled data with very little modifica-
tion compared to WFST. However, the neural network approach also has its
limitations. First, the lack of labeled data impedes model training, especially
deep learning. This problem is proven when many studies have built an auto-
matic pipeline to generate ITN data using text normalization system [13, 18,
26, 7]. Another limitation of neural networks is that the model can generate
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unrecoverable errors. While WFST errors are usually easy to find and fix,
errors in deep learning models are often empirical. The easiest solution for
the error of the neural model is to use more data to train the model.

2.1.3 Hybrid methods

For the ITN task, using WFST grammars requires a linguistic expert, and the
ITN performance depends heavily on handwritten grammar rules. An error
occurs if the grammar rules are missing or do not cover all cases. Meanwhile,
the most significant limitation when using neural networks is that the model
can generate unrecoverable errors. Therefore, some studies propose hybrid
methods to limit the weaknesses of WFST and neural networks [16, 17, 1,
25, 18].

Shugrina [16] proposed a method of combining hand-crafted grammar
with the language model to restore punctuation, capitalization, and nor-
malization of numeric entities. Specifically, hand-crafted grammars find all
potential variations of the written form of tokens that need to be normal-
ized. Then, finding the most suitable variant was evaluated by a language
model trained from written text. Although using a language model trained
on written text is appropriate for evaluating written form variations, this
approach encounters the obstacle of sparse numerical data. To overcome this
obstacle, the author classifies numeric values into different classes based on
the range of values before training the language model. The Numeric En-
tity Error Rate (NEER) metric evaluates the system’s performance in their
work. The results on their own dataset show that the system achieves NEER
of 16.1% on exact match and 11.2% when ignoring spaces. For punctuation
and capitalization, the F-score of their system achieved 0.64, 0.40, and 0.67
on the capitals, commas, and periods, respectively.

To overcome the unrecoverable error limitation of the neural network
for TN, Sproat et al. [17] use a hybrid of an RNN model with an FST-
based filter. The author implies that although RNN gives better accuracy
than FST, it still produces unrecoverable errors. FST was used to detect
and correct those error cases on entities related to money and measures
categories. Experimental results show that this combination helps to increase
the accuracy of money and measures categories by about 2% when compared
to using only RNN.

To minimize dependence on grammar rules, Alphonso et al. [1] proposed
a ranking-based approach of written texts to the ITN. First, Each output
hypothesis of ASR’s output will be put in the candidate generation stage.
Second, the generated candidates’ written form and features are put into
the candidate selection stage. In the first stage, written form candidates are
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generated by a WFST-based model along with the entity category infor-
mation. In the ranking stage, n-gram and LSTM language models generate
numeric features for each candidate. Experimental results show that the pro-
posed method achieves an 18.48% relative reduction in WER compared to
the baseline model (using FST-based). This result indicates that using ad-
ditional features gives better results than just using the language model for
ranking.

Sunkara et al. [18] have proposed using a combination of transformer-
based seq2seq model and FST-based to solve the ITN task. The limitation of
the traditional method is reusability and extensibility. The author has tested
the proposed method in English, German, Spanish and Italian. Experiments
show that the success of neural networks in ITN tasks in different domains
and languages has solved the limitation of WFST. Besides, the author pro-
poses using FST as a fallback result in case the transformer model returns a
low probability (unrecoverable errors seem to occur). This hybrid has helped
the ITN system in production when the FST can partially assist in reducing
the errors produced by the neural network model.

2.2 Background knowledge

To explain why we chose to use the pre-trained seq2seq model based on
transformer architecture to finetune the ITN task, we would like to present
an overview of the knowledge related to our work. The content in this section
includes the transformer architecture, pre-trained language models based on
the transformer, and the subword methods. They form the basis for the
proposed method that we will present in the next chapter.

2.2.1 Encoder-Decoder model

The encoder-decoder model was first introduced by Sutskever et al. [19] to
solve the seq2seq problems. This model aims to map inputs with outputs of
different lengths. These seq2seq problems can be machine translation, text
generation, and question answering. TN and ITN are also two tasks typically
considered seq2seq tasks. Figure 2.2 illustrates the high-level overview of the
encoder-decoder model. At a high level, an encoder-decoder model consists of
two blocks, the "encoder block" and the "decoder block", which are connected
through a vector called the "context vector".

• Encoder
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Figure 2.2: High-level overview of the Encoder-Decoder model

The encoder block is a list of recurrent units, such as Long short-term
memory (LSTM). The input is passed into the encoder block as a se-
quence, and each cell takes part of the input (i.e., a token of the input
sentence), captures its information, and forwards it to the next cell.
Each cell attempts to learn all its information and hold its value in its
final internal state. The final internal state of the last cell denoted the
entire encoder block and passed to the first cell of the decoder block,
and this is the context vector we mentioned above. In the encoder
block, the outputs at each step are all discarded. Figure 2.3 shows the
illustration of the encoder block.

The following formula 2.1 tells us how the cell in the encoder block
calculates its final internal state.

ht = f(W hhht−1 +W hxxt) (2.1)

Where:

- ht is the current cell,
- W hh is the weight of the previous cell,
- ht−1 is the previous cell,
- W hx is the weight of the current cell,
- xt is the current input cell.

• Decoder
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Figure 2.3: Illustration of the encoder block

After reading the whole input sequence, the first cell in the decoder
acquires the context vector from the encoder block, where the output-
sequence prediction initiates. The decoder block is also a list of recur-
rent cells, for example, LSTM cells. The initial state of the decoder is
the context vector taken from the last cell of the encoder. In the de-
coder block, we tended to the output and discarded the final internal
state of the last cell. Figure 2.4 shows the illustration of the decoder
block.

The following formula 2.2 calculates the final internal state of a cell in
the decoder block.

ht = f(W hhht−1) (2.2)

Furthermore, the output of the current cell is calculated by the formula
2.3:

yt = softmax(W sht) (2.3)

Where:

- W s is the weight of the current cell,
- The softmax function here generates a probability vector that helps
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Figure 2.4: Illustration of the decoder block

evaluate the reliability of the final result.

2.2.2 Transformer

The Transformer architecture was proposed by Vaswani et al. [23]. At a high
level, the transformer follows an encoder-decoder architecture without relying
on the recurrent. Transformers are better than the encoder-decoder models
above because this architecture can skip the recursion. Transformers process
the whole input sentence at once and learn relationships among words by the
multi-head attention mechanisms and positional embeddings.

In the paper, the encoder is a stack of six identical layers. In which
each layer includes two sub-layers. The first sub-layer is a multi-head self-
attention mechanism, while the remaining sub-layer is a fully connected feed-
forward network. There is a residual connection in each of the two sub-
layers, followed by a layer normalization. So, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the sub-layer itself func-
tion. The transformer encoder block does not capture any information about
the relative positions of the token in the input sequence because it does not
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Figure 2.5: The Encoder-Decoder of the Transformer architecture

operate recurrence. Instead, the position information is replaced by new po-
sitional encodings vectors. The positional encodings are calculated by sine
and cosine functions in different frequencies and return the vectors by the
same length as the input embeddings. Then, positional encodings vectors are
added to the input embeddings to supplement the positional information of
the tokens in the sentence.

The decoder block also is a stack consists six identical layers. As shown
in figure 2.5, each layer in the decoder also has two sub-layers like in the
encoder. However, an additional attention layer is added between them to
help the decoder attend to the output of the encoder stack. Similarly, the
three sub-layers also have residual connections around each sub-layers fol-
lowed by a normalization layer. Input embeddings in the decoder also added
the positional embeddings in the same way as the encoder.

The self-attention mechanism in the Transformer helps the encoder look
at other tokens in the input to find the relevant to the current token. This
mechanism helps improve the encoding of the current token. Consider the
following sentence:

"John took early retirement last year because of his bad health."

What is the word "his" mean in the above sentence? It is very easy for
a human when we look at other words in the sentence, but not simple for
a computer. That is why we need self-attention to embedding words in a
sentence, which helps improve the current token’s encoding.

The following formula 2.4 helps to calculate the self-attention of each
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token in a given sentence.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.4)

Where:

• Q: The query matrix,

• K: The key matrix,

• V : The value matrix,

• dk: The dimension of Q,K, V .

The query (Q), key (K), and value (V ) vectors are calculated by mul-
tiplying the X matrix by the weight matrices we trained (WQ,WK ,W V ),
where X is a matrix whose row corresponds to a token in the input sentence.

The encoder-decoder attention layer performs similarly to multiheaded
self-attention. However, this attention layer creates the queries matrix from
the layer below, while the keys and values matrix are taken from the output
of the encoder stack.

2.3 Dataset

There are not many public datasets for the ITN and TN tasks. Studies often
use text normalization developed based on WFST to generate data for ITN
automatically. Currently, the only publicly available large dataset of the TN
problem is the Google Text Normalization dataset [17]. This dataset is col-
lected from Wikipedia in written form, and its corresponding spoken form
is semi-automatically generated by the Kestrel system [3] - a TN system de-
veloped based on WFST. The dataset consists of two sets, English with 1.1
billion words and Russian with 290 million words.

Because the Google Text Normalization dataset is a pair of spoken and
written form sentences, we can use it to evaluate the ITN task. Recent studies
have used this dataset’s English set to evaluate the model’s effectiveness.
This work will also use this data set to evaluate and compare the results
with previous studies.
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Chapter 3

Methodology

In this chapter, we will present the proposed method that we will use for the
ITN task focusing on the Vietnamese language. However, there is currently
no research on ITN for Vietnamese similar to our method or experiments
on public data. Specifically, there is only a study on ITN for Vietnamese
proposed by Tran et al. [22] proposes a method using handcraft grammar
rules combined with Convolutional Neural Networks (CNNs) to normalize
ASR output. The author has experimented with restoring capitalization for
proper nouns and normalizing numeric entities on the data they built. There-
fore, we will use an FST-based model we developed as the baseline model for
this work.

The content presented in this chapter will be in the following order:

1. First, we summarize the pre-trained language models used in this work.

2. We introduce the baseline model architecture that we built for Viet-
namese.

3. We presented details of the proposed method for ITN.

4. The subword processing method combined with sentencepiece will be
applied to improve the unrecoverable error rate of the seq2seq model.

3.1 Preliminaries

3.1.1 T5

Raffel et al. [14] have published the transformer-based encoder-decoder sys-
tem called Text-to-Text Transfer Transformer (T5). T5 treats all NLP tasks
as a unified text-to-text format where all input and output are strings. This
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Figure 3.1: A diagram of T5 framework [14]

format makes T5 suitable for solving many NLP problems, such as text clas-
sification, machine translation, and question answering. The author also im-
plies that T5 can be used to train regression tasks by training it to predict
string representations of numeric values. Figure 3.1 is a diagram extracted
from the article showing the ability of T5 when it comes to solving many
NLP tasks.

Unlike BERT or GPT, which only uses the encoder or decoder part of
the Transformer, T5 proves that using both encoder-decoders is more efficient
than using only the decoder. Another factor of interest is the data used to
pre-train the T5 model. The author published and used the C41 dataset, a
cleaned version of Common Crawl2 dataset with a size of about 800GB. A
high-quality and diverse dataset makes the model’s learning efficient.

Based on the original T5, it is currently available in other variations,
including:

• T5v1.1: An upgraded version of T5 with some architectural modifica-
tions and is pre-trained on C4 without including the supervised tasks.

• mT5: The multilingual T5 version is pre-trained on the mC4 corpus
and includes 101 languages.

• byT5: A T5 model pre-trained using byte sequences instead of Senten-
cePiece subword processing.

We use the mT5 model to experiment with English and Vietnamese lan-
guages in this work.

1https://www.tensorflow.org/datasets/catalog/c4
2https://commoncrawl.org/
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Figure 3.2: BART is a combination of a bidirectional encoder and an autore-
gressive decoder. [6]

3.1.2 BART

BART (Bidirectional Auto-Regressive Transformers) is an encoder-decoder
model nearly identical to the transformer architecture proposed by Lewis et
al. [6]. The difference between BART and the original transformer is:

• Replace RELU with GeLU

• Difference layer size, base version (6 encoder layers, 6 decoder layers),
and large version (12 encoder layers, 12 decoder layers)

• The decoder layer has an additional cross-attention layer

• Without the feed-forward at the very end

BART uses both encoder and decoder, while BERT uses only a bidirec-
tional encoder, and GPT uses only an autoregressive decoder. In the pre-
training tasks, BART upgrades the complexity of the pre-training task to
include five different noising approaches:

• Token masking like BERT

• Text infilling is like token masking, but one mask can hide a span of
text (more than one token)

• Sentence permutation splits the document into sentences and shuffles
the sentence order
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• Document rotation predicts the starting position of a document after
the start position and order of sentences are changed

BART is helpful when finetuning text generation tasks and works well
for comprehension tasks. BART’s performance matched RoBERTa’s perfor-
mance with comparable training resources on GLUE and SQuAD. In the
experiments, BART performed new state-of-the-art results on a wide range
of abstract dialogue, text summarization, and question-answering tasks. That
is also the reason that we choose BART for our experiment. In this study,
we used the BART multilingual version named mBART.

3.1.3 BARTpho

In this work, we use BARTpho, a pre-trained seq2seq model for Vietnamese
published by Tran et al. [21]. BARTpho utilizes the pre-training strategy
and "large" architecture of the seq2seq denoising autoencoder. To train the
model, the author used PhoBERT data [10] that contains 20GB of uncom-
pressed text data. The pre-training task is like BART and includes sentence
permutation and text infilling. BARTpho comes in 2 different variants, word
and syllable. BARTpho-word uses a Vietnamese word tokenizer at the word
level. While BARTpho-syllable uses the sentencepiece toolkit to tokenize in-
put.

To demonstrate the effectiveness of BARTpho in Vietnamese, the au-
thor compared BARTpho with multilingual BART (mBART) of the same
size model on text summarization and punctuation and uppercase recovery
tasks. Experimental results show that BARTpho outperforms mBART on all
experiment tasks. Besides, the BARTpho-word variant gave slightly better
results than the syllable variant.

3.2 Baseline model

The purpose of this model is to normalize entities related to numeric types
(e.g., date, time, number, address, ...) from spoken to written form. The
model is built based on handwritten grammar rules combined with language
models. Figure 3.3 illustrates the architecture of this model, which consists
of four main components: entity boundary detector, classifier, parser, and
language model.

Entity Boundary Detector is a module responsible for finding all pos-
sible words or phrases that need to be normalized in the input sentence. This
search relies on sentence matching against a set of pre-defined keywords. The
results found by the entity boundary detector are usually not very accurate,
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Figure 3.3: Overview of the baseline ITN model for Vietnamese

but the module has good coverage. Entities detected in this step will be
passed to the classifier module for classification and processing.

The classifier consists of a set of m grammar rule groups (g1, g2, ..., gm)
that classify entities detected in the previous step. Each group of grammar
rules comes with a weight value (w1, w2, ..., wm). The weight is used to eval-
uate the priority of grammar rules. For example, each entity detected by
the entity boundary detector will be checked against each rule according to
weight priority. When various rules match an entity, weights are also used to
rank and derive the top k results with the highest weight before moving on
to the next step.

The parser is a module that converts spoken form entities provided by
the classifier into their corresponding written forms. Each group of grammar
rules gi has a corresponding parser pi. Therefore, each result obtained from
the previous step will be passed directly to the corresponding parser for pro-
cessing. These parsers perform normalization based on Vietnamese grammar
rules. In some unsure cases, the parser may return more than one written
form per entity, especially for number entities. Then, the language model in
the next step will assist in finding the most suitable written form.

The working principle of language model in this system is inspired by
Shugrina [16]. This language model is trained from written form sentences
data. Suppose a spoken-form entity has more than one variant written form.
In that case, the language model evaluates the variations in the context
with the words surrounding it to find the most suitable variant. We use the
language model’s perplexity score to rank variants. Finally, the spoken form
entities in the input sentence will be replaced by the most suitable written
form to complete the normalization process.
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Figure 3.4: Illustrate the pipeline of the proposed method

3.3 Proposed model

We consider ITN as a machine translation task in this work and solve it
using the seq2seq model. Formally, given an input as a sequence of m tokens
in spoken form x = (x1, x2, ..., xm), and the output sequence consist n tokens
in written form y = (y1, y2, ..., yn).

Inspired by the success of research using neural networks, especially trans-
formers on TN and ITN tasks, we proposed using a pre-trained language
model based on the transformer architecture combined with a data-driven
approach to solving the ITN task. The goal of this approach is to use very
little labeled data while ensuring competitive performance compared to pre-
vious work. Figure 3.4 presents an overview of our proposed method for the
ITN task.

In the training phase, labeled data consisting of many sentence pairs
(x, y) ∈ (X, Y ) where X, Y are the sources and targets data sets, is sent
to the data preprocessing step. The data encoder and decoder are where we
apply the subword technique that we present detailed in the next section. We
then finetune the language models based on the transformer architecture for
the ITN task. Similar to the inference phase, the input data has also applied
a pipeline like the training process. However, at this stage, we only have the
spoken form and will get the written form when moving through the trained
ITN model.

We experiment with several pre-trained language models for the proposed
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Name Language Size Max length
mT5-base [24] multilingual 12 encoders, 12 decoders 512
mT5-large [24] multilingual 24 encoders, 24 decoders 512
BARTpho [21] Vietnamese 12 encoders, 12 decoders 512
mBART-large [20] multilingual 12 encoders, 12 decoders 512

Table 3.1: Information about the pre-trained models used for the experiment

method, including BERT [2], T5 [14], and BART [6]. Because we use the
method for both English and Vietnamese languages, the multilingual versions
of the above language models are used. However, we don’t get good results on
BERT. In addition, we experimented with pre-trained language models for
existing monolingual Vietnamese, including viT5 [11], and BARTpho [21] but
did not achieve good results compared to the multilingual version. Finally,
we summarize information on pre-trained language models we used in Table
3.1. The max_length column specifies the max_length parameter that we
use for the experiments in this work.

3.4 Subword processing

The seq2seq model performs poorly when encountering OOV or rare words.
OOV and rare words also cause neural network models to generate unrecov-
erable errors. Previous studies also show that the most significant limitation
of the neural network method on ITN is the unrecoverable errors [18]. Al-
though the output of ASR has a fixed lexical size, its written form has no
lexical limit, and this is because numeric data will appear when converted
to a written form. The goal of ITN is to normalize spoken form to written
form, which is mainly related to numeric types (e.g., "nineteen ninety-six" →
"1996". That leads to OOV and rare words problem on ITN happening more
frequently than machine translation. Specific words like "ten, one hundred,
one thousand" will appear many times, but most spoken form numbers will
be scarce in the training data (e.g., "one thousand two hundred thirty-four").

To solve the problem of OOV and rare words, studies on neural machine
translation represent these words as subwords [15, 5]. Studies on the ITN
task also show the effectiveness of applying the same technique to solve the
rare word problem (e.g., sentencepiece toolkit3) [18, 9].

Inspired by the research of Mansfield et al. [9] in applying the technique
of inserting underscores between digits (e.g., "1324" → "_1 _3 _2 _4"). In
this work, we extend this technique to most tokens containing digits (e.g.,

3https://github.com/google/sentencepiece
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Category Original (written form) Encode (written form)

Number
12345
We need 123 more products
The result is 10.78

1 _2 _3 _4 _5
We need 1 _2 _3 more products
The result is 1 _0 _. _7 _8

Date/Time
19:56:03
The current time is 19:59 on October 16

1 _9 _: _5 _6 _: _0 _3
The current time is 1 _9 _: _5 _9 on October 1 _6

Measurement
The minimum running speed is 7.3km/h
Single room area is 15m2

The minimum running speed is 7 _. _3 _ km/h
Single room area is 1 _5 _m2

Percentage I have reached 50% of the target I have reached 5 _0 _% of the target
Money It costs ¥234 It costs ¥ _2 _3 _4
Expression 1+1=2 1 _+ _1 _= _2
Punctuation Saturday, February 11, 2023 Saturday _, February 1 _1 _, 2 _0 _2 _3

Table 3.2: Example of encoding data with subwords on several categories

date, time, fraction, measurement, ...). However, we changed the rules for in-
serting underscores to make encryption and decryption easier. This technique
saves numeric entities from the rare word problem where every numeric value
will be represented by the characters ’_0’ to ’_9’. Besides, we also apply it
to punctuation marks, this does not increase the model’s ability to learn
punctuation recovery, but it helps the preprocess easily. Table 3.2 provides
examples of how we encode tokens involving numbers and punctuation.
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Chapter 4

Experiment and Result

4.1 Data

In this work, we train and evaluate our method on Vietnamese and English
data sets. We use part of the Google Text Normalization dataset for English
to train and compare results with other studies. For Vietnamese, we use two
transcript datasets in two fields: social networks and academics. Below are
details about the data sets and how we split the data for model training and
evaluation.

The original Google Text Normalization dataset [17] for the English lan-
guage contains 1.1 billion words extracted from Wikipedia. Its spoken form
version was obtained using the Kestrel TN system [3]. In this work, we use
part of this dataset (about 31 million words), a version of the Text Normal-
ization Challenge - English Language on Kaggle1. In the competition, only
the training dataset has labels, so we only use this set for model training and
evaluation. From now on, we will call this piece of Google Text Normalization
data that we used in this work "en_wiki".

The first Vietnamese dataset we used to train and evaluate the model is
speech data on the social domain. The written form of this dataset is labeled
by humans from ASR output in spoken form. The dataset includes 47230
pairs of spoken form and written forms. The data is picked with 90% of
this dataset containing tokens that need to be normalized (i.e., containing
numbers or proper nouns). This dataset is challenging when the data is free-
style speech over an open domain. From now on, we will call this Vietnamese
social dataset "vi_social".

The second Vietnamese dataset we used to train and evaluate the model is

1https://www.kaggle.com/competitions/text-normalization-challenge-english-
language
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Figure 4.1: Spoken-form’s length distribution of vi_social (left), vi_tedtalks
(center) and en_wiki (right).

Dataset Train Test (%) Hard-test
en_wiki 600000 148066 (20) 40069
vi_social 37784 9446 (20) 1020
vi_tedtalk 170000 46845 (21) 1185

Table 4.1: Information on how to use the data for the experiment

the Vietnamese transcript collected from TEDTalks2. It is a free educational
video-sharing platform with subtitles. We have collected Vietnamese subtitles
contributed by users on this platform. After collecting and processing based
on audio chunks, we obtained 216845 subtitle segments. We then use an FST-
based text normalization system to create spoken forms for the subtitles. We
will name this dataset "vi_tedtalk".

To better understand the datasets, we observe the length of the data to
ensure whether the proposed method is suitable or not. Figure 4.1 shows
the length distribution (number of characters) across the data sets. Looking
at the length distribution, we find that the lengths of the vi_tedtalks set
have a wider distribution than the other two data sets. Generally, the length
of these data sets does not exceed 1000 characters, which is why we chose
max_length = 512 on pre-trained models.

We divide each dataset into approximately 80% for training and the re-
maining 20% for model evaluation purposes. Besides, to evaluate the effec-
tiveness of the proposed subword method, we create additional "hard-test"
sets, which are the complex items taken from the test set. A complex item

2https://www.ted.com/talks?language=vi
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must contain at least a word with at least three digits and four different char-
acters (e.g., It has increased by 123% from yesterday). Detailed information
on how the data is divided in each data set (number of items) is presented
in Table 4.1.

4.2 Metrics

We will first present the model evaluation method on the normalization of en-
tities subtask. Following Sunkara et al. [18], we use Word Error Rate (WER),
I-WER, and NI-WER to measure model performance. WER is used to mea-
sure the word error rate of the model on the entire target sentences, like
previous works on ITN and TN. Meanwhile, I-WER only measures the word
error rate on a group of words that need to be normalized, and NI-WER
is the WER of words that need to copy from the source spoken form (non-
normalized words). Figure 4.2 shows normalized and non-normalized words
in a sentence. We use the Levenshtein distance to align the words in the
source (spoken form) and target (written form). If a pair of words is the
same, it will be labeled NI-words, and the rest will be I-words. Using I-WER
and NI-WER helps us evaluate the model’s performance on the group of
words that need to be normalized while still observing the error rate on the
group of words that need to be copied from the source.

Because our system not only normalizes entities but also predicts capital-
ization and punctuation. Therefore, before the WER evaluation, the punc-
tuation will be removed, and the text will convert to lowercase. The WER
on a pair of written form sentences, references and hypotheses is calculated
using the equation 4.1 below.

WER =
S +D + I

N
=

S +D + I

C + S +D
(4.1)

Where:

• C is the number of corrections,

• S is the number of substitutions,

• D is the number of deletions,

• I is the number of insertions,

• N is the number of words in the reference (N = C + S +D).

For the remaining subtasks, punctuation and capitalization restoration,
we use the accuracy (%) metric to measure the model’s performance on two
tasks punctuation and capitalization restoration.
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Figure 4.2: Example of word tagging and WER calculation

4.3 Result

This section will present the experimental results of the proposed method on
the presented data sets. First, we want to show how the effect of the proposed
subword method affects the vocabulary size. Then measure the results of the
model on English and Vietnamese data sets.

4.3.1 Subword performance

The data of TN and ITN are pairs of spoken form and written form. As
mentioned earlier, the advantage of using the spoken form is that it can limit
the vocabulary size. Therefore, we only need to care about the vocabulary
size of written form sentences. ITN and TN are tasks that involve a lot of
numeric values, resulting in numeric values spanning a wide range. That is

29



Figure 4.3: Number of unique words in written form before and after apply
subword

why numeric vocabularies often appear less or do not appear in the training
data, leading to an inefficient model. We propose applying subword encoding
and decoding techniques to handle this problem.

To evaluate the subword method’s impact on the vocabulary size, we
counted the number of unique words in the written form of the data sets.
Then we proceed to apply subword encoding and count again. Figure 4.3
displays the vocabulary size before and after applying the subword method.
According to chart analysis, the vocabulary size is significantly reduced across
all data sets. Specifically, the vocabulary size was reduced by 58% and 31% on
the vi_social and vi_tedtalks datasets, and a 29% decrease on the en_wiki
dataset.

4.3.2 Performance on Vietnamese data

This section will publish experimental results on Vietnamese data sets. Be-
cause the proposed method uses a model to train three different subtasks,
normalize entities from spoken form to written form, restore punctuation,
and restore capitalization. For the most detailed evaluation, we will first
evaluate WER on the task of normalizing entities. And then measures the
performance of the remaining two subtasks using the accuracy metric.

Table 4.2 summarizes the experimental results of the proposed method on
two Vietnamese data sets. On each dataset, we first report the overall word
error rate (WER) on the sentence level, then the word error rate (I-WER)
on the words to be normalized, and finally, the word error rate (NI-WER)
of words should be copied from the input sentence. The pre-trained encoder-
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vi_social vi_social-hard vi_tedtalks vi_tedtalks-hard
Method WER I-WER NI-WER WER I-WER NI-WER WER I-WER NI-WER WER I-WER NI-WER
Baseline (FST) 10.1 64.6 5.2 24.8 103.9 12.5 3.3 37.5 3.0 6.8 35.7 5.4
BARTpho-word 5.1 25.6 3.3 9.7 44.0 4.4 3.9 29.0 3.6 5.4 28.1 4.3
mT5-base
+ Subword

4.1
3.2

30.9
26.2

1.7
1.2

10.5
9.1

60.0
52.0

2.8
2.5

2.0
1.9

32.4
26.8

1.7
1.7

5.3
4.7

32.0
15.8

4.0
4.1

mBART-large
+ Subword

3.3
3.0

25.0
23.1

1.3
1.2

7.8
7.1

39.6
38.9

2.8
2.2

1.20
1.15

30.4
24.1

0.9
0.9

3.0
2.0

36.2
14.8

1.4
1.4

mT5-large
+ Subword

2.6
2.5

19.4
18.5

1.1
1.0

6.3
5.6

33.9
28.0

2.0
2.1

1.7
1.6

26.6
23.5

1.4
1.4

4.4
4.0

22.9
13.2

3.5
3.5

Table 4.2: ITN performance on Vietnamese test sets ↓

decoders we used to compare against the baseline model included BARTpho,
mT5, and mBART. The model size of BARTpho, mT5-base, and mBART-
large are the same (12 encoders, 12 decoders, 1024 hidden), while mT5-large
uses 24 encoder-decoder layers.

Comparing the methods on the two data sets, we can see that WER on
vi_tedtalks is always better than on vi_social. That’s because the social do-
main is more complex than the scientific domain. Methods using pre-trained
encoder-decoder models have outperformed the baseline. In particular, mT5-
large has better results than other methods on most indicators. It is because
the size of the mT5-large model is twice the size of the other three neu-
ral network models. When comparing three models of BARTpho, mT5-base,
and mBART-large of the same size, mBART-large outperformed mT5 and
BARTpho on all indicators. Although BARTpho is a pre-trained monolingual
model for Vietnamese, the results are not as good compared to the multi-
lingual version. Because ITN focuses on normalizing numeric entities, while
BARTpho uses a word-level tokenizer. For the baseline model, we admit that
the model only normalizes an entity if it has high confidence. Therefore, the
model will skip normalizing the entities in the case of ambiguity, leading to
a relatively high I-WER compared to methods using neural networks.

During the experiment, we recognized that the proposed subword method
is only effective when pre-trained models use subword units. More specifically,
mT5 and mBART use the sentencepiece toolkit (i.e., byte-pair-encoding),
while BARTpho uses the word-level tokenizer. Therefore, we only experiment
and publish the results using the proposed subword method on mT5 and
mBART. The results show that WER is significantly improved on I-WER
when using the proposed subword method, leading to improved WER. The
effectiveness of the subword is more evident on the hard-test sets, where the
data contains more tokens than is broken down by the subword method. For
example, the subword method improves efficiency by more than 50% on the
vi_tedtalks test in terms of I-WER.

For the punctuation and capitalization recovery tasks, we use the accuracy
metric to evaluate the quality of the model. In this study, the task of recover-
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vi_social vi_tedtalks
Method lower Title Period Comma Question lower Title
mBART-large 99.03 93.58 95.89 98.85 91.06 99.32 87.71
mT5-base 99.00 92.57 94.81 98.95 89.55 98.75 87.39
mT5-large 98.99 94.00 96.22 98.81 93.65 98.64 90.20

Table 4.3: Result on capitalization and punctuation tasks ↑

ing uppercase words only focuses on restoring proper nouns with capital let-
ters. With the punctuation restoration task, we focus our experiments on the
three most common punctuation marks, including punctuation marks, com-
mas, and question marks. Table 4.3 summarizes our experimental results on
these two tasks on Vietnamese test sets. The capitalization restoration task
achieved relatively good results, with 94% and 90% accuracy on vi_social
and vi_tedtalks, respectively. Again, the larger model mT5-large gives better
results than the other two methods. The punctuation restoration task also
achieved good results on the vi_tedtalks test set. The model’s accuracy is
96%, 98%, and 93% on the period, comma, and question mark, respectively.
This positive result is the premise for optimizing the proposed method to help
the model gain better results on punctuation and capitalization restoration
tasks along with ITN.

4.3.3 Performance on English data

We use the proposed approach to experiment with the English language to
prove that the method is language-independent. In this experiment, we use
part of the Google Text Normalization dataset used for a competition on
Kaggle to train and evaluate the model. We also use the results of the two
latest works using two different methods for ITN to compare with the pro-
posed method. The first is a study using WFST-based proposed by Zhang et
al. [26]. The second method proposed by Sunkara et al. [18] uses transformer
architecture combined with FST. Both of these studies used the Google Text
Normalization dataset for the experimental process and used the word error
rate (WER) metric to measure the model’s effectiveness.

Table 4.4 summarizes our experimental results on English data com-
pared with related studies. More specifically, the work of Sunkara et al. [18]
shows state-of-the-art results with a WER of 0.9%. Meanwhile, our proposed
method combined with subword gives competitive results with state-of-the-
art. Again, applying subwords combine with byte-pair-encoding contributes
to a significant improvement in WER. The I-WER metric is greatly improved
when applying the proposed subword method, decreasing from 10.9% to 4%
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en_wiki en_wiki-hard
Method WER I-WER NI-WER WER I-WER NI-WER
Zhang et al. [26] 12.70 N/A N/A N/A N/A N/A
Sunkara et al. [18] 0.90 4.80 0.30 N/A N/A N/A
mBART 2.60 14.10 1.80 4.30 10.90 2.90
mBART+Subword 1.70 7.80 1.30 2.40 4.00 2.00

Table 4.4: Result on Engish dataset ↓

on the hard-test set. In this experiment, we only used a part (31 million
words) of the Google Text Normalization dataset [17] for the training pro-
cess, while the full dataset consisted of 1.1 billion words. Experimental results
show that our proposed method can be easily applied to different languages
and does not require too much data for the training process.
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Chapter 5

Conclusion

5.1 Summary

In this work, we propose to use a pre-trained language model based on trans-
former architecture combined with a data-driven approach to solving the
ITN task. We have experimented with several pre-trained language models
on English and Vietnamese data sets. The experiment results show that the
proposed method has competitive performance with related works on En-
glish, although using much less training data. For Vietnamese, our method
is highly effective on all three subtasks of ITN. Besides, the proposal to use
subwords significantly improves the model’s efficiency, especially for entities
with digits.

Our contributions to this work are summarized as follows:

• Propose a method of using a pre-trained model based on transformer
architecture for ITN using very little labeled data but still achieving
high efficiency.

• Experimenting with the proposed method on all three subtasks of ITN
gives good results.

• Proposal to use subwords together with sentencepiece shows a better
result on entities containing digits.

We hope that this work will promote research in improving the perfor-
mance of ITN in other low-resource languages like Vietnamese. The result
shows that the proposed method is effective on ITN tasks in both English
and Vietnamese, which mean that the method has potential in other natu-
ral language processing tasks such as text normalization, spelling correction,
machine translation, or question-answering.
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5.2 Future works

This work performs inverse text normalization for ASR output to improve
readability and efficiency on downstream tasks. Besides the results already
achieved, this task still has room for improvement. Therefore, we have a plan
to continue to improve the proposed method:

• Using pre-trained models is an advantage over training the model from
scratch. However, this method has limitations as the data used for pre-
training BART, or T5 is written data while ITN serves spoken text
data. Data domain differences are a limitation in improving model effi-
ciency. Therefore, we intend to finetune the pre-trained mask language
models with spoken form data before finetuning them for the ITN task.
We can collect spoken form data from movie subtitles and video subti-
tles from online video-sharing platforms. However, this job also requires
much time to perform.

• Data is always concerned with supervised learning tasks, including TN
and ITN. The lack of labeled data is a significant barrier to model
training. The ITN task primarily focuses on numeric and number-
related entities (e.g., date, time). Smaller data means that numeric
and number-related entities appear less frequently. Therefore, we plan
to use data augmentation techniques for ITN, primarily numeric and
number-related entities. The work on data augmentation can signifi-
cantly improve ITN performance.
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