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Abstract

For modeling human intelligence, understanding emotional intelligence is an
important and challenging issue. In affective computing, it has been reported
that not only text, acoustic, and visual signals (observable signals) but also
physiological signals (unobservable signals) are useful for estimating emotions
and their related states. Physiological signals are expected to provide addi-
tional and less biased information compared with observable signals. Thus,
coupled with growing interest in the development of emotionally intelligent
systems, many studies related to physiological signals have been reported
thus far; however, techniques that apply physiological signals for realistic
emotion estimation tasks such as online (sequential) recognition for dialogue
systems are still in the research phase, and there are unresolved issues in fun-
damental and applied research. In this thesis, three main research problems
that have not previously been explored are addressed.

First, as one of the fundamental unresolved issues, physiological signals
have individual differences that cause performance degradation of machine
learning models based on physiological signals. Generally, it is assumed that
both training and test data for machine learning are derived from the same
distribution. Thus, estimation performance can degrade if there are physi-
ological individual differences in unseen individual test data. In this thesis,
physiological individual differences are considered a covariate shift to resolve
this problem, and the Importance-Weighting (IW) method is introduced,
which complements the model and is robust against individual differences for
performance improvement of the models trained with physiological data. As
a result, Importance-Weighted Support Vector Machine (IW-SVM) models
outperform conventional models based on physiological features in emotion
and personality estimation. These results indicate that IW in machine learn-
ing models can reduce the effects of physiological individual differences in
physiological responses and contribute to the proposal of a new model for
emotion and personality estimations based on physiological signals.

Second, although fundamental research on physiological signals provides
insight into their potential, the effectiveness of physiological signals is often
evaluated under emotion-evoked conditions. Thus, few studies have analyzed
physiological signal effectiveness in naturalistic conditions. In particular, the
evaluation and comparison of physiological signals with other observable sig-
nals under naturalistic human-agent interactions are insufficient. In human-
agent interactions, it is necessary for the systems to identify the current
internal state of the user to adapt their dialogue strategies. Nevertheless,



this task is challenging because the current user’s sentiment is not always ex-
pressed by observable signals in a natural setting and changes dynamically.
However, it is possible that physiological signals provide valuable informa-
tion for online sentiment estimation since physiological responses cannot be
consciously regulated. As applied research, a machine learning model based
on physiological signals to estimate a user’s sentiment at every exchange
during a dialogue is presented in this thesis. Using a wearable sensing de-
vice, the physiological data including the Electrodermal Activity (EDA) and
Heart Rate (HR) in addition to acoustic and visual information during a
dialogue are evaluated. The sentiment labels are annotated by the partic-
ipants (referred to as Self-repoted Sentiment (SS) label) for each exchange
consisting of a pair of system and participant utterances. The experimental
results show that a multimodal Deep Neural Network (DNN) model com-
bined with the EDA and visual features achieves an accuracy of 63.2%. The
analysis of the SS estimation results for each individual indicate that the hu-
man coders often incorrectly estimate negative sentiment labels, and in this
case, the performance of the DNN model is higher than that of the human
coders. These results indicate that physiological signals can help in detecting
the implicit aspects of negative sentiments, which are acoustically/visually
indistinguishable.

Finally, although the potential of the physiological signals in online SS
estimation during dialogue is clarified in the abovementioned task, there is
no comprehensive and thorough analysis of physiological signal application
for multimodal fusion. Thus, the second task is extended by introducing
different types of sentiment labels (annotated by third-party), which further
clarify the contributions of physiological signals. Additionally, two state-of-
the-art language models and six machine learning models, including recently
reported multimodal DNN, are introduced. Furthermore, these analyses en-
able the creation of a robust multimodal physiological model that combines
the proposed physiological signal processing method and the Transformer
language model, named Time-series Physiological Transformer (TPTr). This
model can capture sentiment changes based on both time-series linguistic
and physiological information. In ensemble models, the proposed methods
significantly outperform the previous best result (p < 0.05). These results
provide new insight into machine learning methods that utilize both linguis-
tic information and physiological responses during dialogue exchanges, which
has not previously been explored.

In summary, this thesis presents novel robust physiological signal process-
ing for emotion/sentiment estimation and its application to adaptive dialogue
systems. This proposal will lead to a new application of physiological signals
that are widely applicable in various fields. For example, the educational sys-
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tem can capture the concentration level of students by monitoring students’
internal states, and the psychological counseling system can be supported
by understanding the context behind words. These emotionally intelligent
systems will provide significant improvements in our lives in the future.

Keywords: Sentiment Analysis; Physiological Signal Processing; Machine
Learning; Multimodal Signal Processing; Dialogue System.
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Chapter 1

General Introduction

Affective computing is defined as computing that relates to, arises from, or
influences emotions [1]. The global affective computing market size gradually
increased and was valued at USD 20.23 billion in 2019 [2], suggesting that
not only researchers but also many developers and ordinary people focus
on this research-related domain. The development of emotion research is
expected to provide many valuable applications, such as mental health care
and educational support; thus, the demand for emotionally intelligent agents
will further increase.

The estimation of a user’s sentiment during a dialogue is one of the most
fundamental concerns in the affective computing field. Although user senti-
ment estimation per session (i.e., batch processing) is important, user senti-
ment estimation per exchange (i.e., online processing) is needed to create an
adaptive dialogue system. In fact, as a user’s sentiment states can change dy-
namically during dialogues, it is necessary to capture the dynamic sentiment
changes in real time. For example, if the user is interested in the current
topic, the dialogue system should continue as is, whereas if the user is bored,
the system should change the current topic. In pursuit of the realization
of emotionally intelligent agents, this simple but challenging task has been
considered by many researchers using a variety of approaches [3].

The textual lexicon-based approach has long been mainstream in senti-
ment analysis. With the spread of social media platforms, which utilize not
only text but also images and videos, the effectiveness of multimodal analy-
sis has been extensively investigated in recent years [4, 5]. The technique of
fusing verbal and nonverbal information to differentiate sentiment is called
multimodal sentiment analysis [6, 7]. Textual, visual and audio features have
different characteristics and complement each other for sentiment analysis,
as shown in [6].

However, to realize adaptive dialogue systems, several problems remain
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Dialogue system, etc. User Third-party

He/She seems to enjoy talking...I’m bored of talking...

chat dialogue

Self-reported Sentiment (SS) Third-party Sentiment (TS)

Figure 1.1: Self-repoted Sentiment (SS) and Third-party Sentiment (TS)

to be resolved in multimodal sentiment analysis research.
First, ideally, sentiment labels annotated by users (hereafter referred to

as Self-repoted Sentiment (SS) labels) should be used for sentiment analysis,
but many previous works use sentiment labels annotated by a third party
(hereafter referred to as Third-party Sentiment (TS) labels) [8, 9, 10]. The
difference between SS and TS is illustrated in Figure 1.1. In this example, SS
is depicted as a thought balloon with his or her negative sentiment (bored).
However, a third-party thinks that he or she seems to enjoy talking based
on observable user behavior, such as utterances and facial expressions. Of
course, third-party cannot access the user’s thought balloon in the anno-
tation process; therefore, SS and TS labels are not always consistent. In
other words, TS does not completely reflect a user’s true sentiment in his or
her mind. In fact, Truong et al. showed discrepancies between SS and TS
(observed emotion ratings) [11].

Second, related to above-mentioned problem, users’ emotional states are
not always expressed as true sentiments since users can mask or modify their
true feelings during a dialogue episode. Textual, audio, and visual informa-
tion of the user is known to be useful for TS estimation [7]. Models based
on this observable information achieve high estimation performance for TS
because TS labels are based on observable signals (i.e., text, audio, visual
signals) from the user and are correlated with those observable signals. How-
ever, there is no guarantee that models based on observable signals achieve
similar performance in “SS” estimation.

Furthermore, most works considering physiological signals have explored
the ability to capture emotions under induced visual emotional stimuli, and

2



few studies have investigated whether signals detected in relatively short
episodes (approximately 10 seconds) are effective for SS and TS estimation
in human-agent interaction settings. Thus, the effects of physiological signals
that change quickly under naturalistic conditions on sentiment estimation
remain unclear.

Physiological signals can be used to estimate sentiments because these
signals are closely related to the states of the Autonomic Nervous System
(ANS). The ANS consists of the sympathetic and parasympathetic nervous
systems, which maintain the homeostasis of organisms by involuntary auto-
matic control of the peripheral organs in the body [12]. For example, the emo-
tions of anger and fear activate the sympathetic nervous system and increase
the Heart Rate (HR) and respiratory rate. In contrast, when relaxing, the
parasympathetic nervous system is the dominant part and decreases the HR
and respiratory rate. The Electrodermal Activity (EDA) is another represen-
tation of physiological changes and has been widely used in emotion-related
research [13, 14]. The EDA indicates electrical changes on the skin surface,
derived from the activity of the eccrine sweat glands, and is considered to
be an arousal indicator [13]. In addition, a correlation has been reported
between regional cerebral blood flow measured using positron emission to-
mography and HR variability in emotion-evoking stimuli [15]. This evidence
appears to indicate a strong correlation between the brain and peripheral
tissues. Thus, valuable information for emotion recognition can likely be
obtained from such physiological signals.

However, there are physiological individual differences in applying physio-
logical data to the development of a machine learning model. Generally, when
using data from individuals, the test data from one user should be completely
excluded from the training dataset. For example, Leave-One-User-Out Cross-
Validation (LOUOCV) should be employed to evaluate the machine learning
model. Obviously, this user-independent evaluation schema is also important
in emotion recognition tasks. On the other hand, estimation performance of
the models would decrease if the emotional physiological responses between
users are different. This problem, in which the training (source) data are
biased and potentially nonrepresentative, is known as a covariate shift. [16].
It is necessary to consider covariate shifts in the LOUOCV schema whenever
the dataset includes data, such as physiological signals, that have individ-
ual differences. This fundamental problem of physiological signals has not
been resolved in previous affective computing studies; thus, there is a need
to create appropriate emotion estimation model-based physiological signals
that are robust against individual differences.

Sentiment estimation during human-agent interaction is one of many ap-
plied studies of affective computing, and realizing an adaptive dialogue sys-

3



tem is one of the ultimate goals of research and development of dialogue
systems. It is possible that physiological signals may resolve the above-
mentioned issues of multimodal sentiment analysis, i.e., physiological signals
may be useful for SS estimation by capturing subtle physiological changes
even in naturalistic human-agent interactions; however, although physiolog-
ical signals have the potential for emotion estimation to complement models
based on textual, visual and audio features, many previous studies have eval-
uated the effectiveness of physiological signals under emotional stimuli. Thus,
evaluation of the physiological signals under naturalistic conditions such as
a chat-dialogue (i.e., using the real text, audiovisual, and physiological data
collected in naturalistic conditions simultaneously) is clearly lacking. There-
fore, physiological signals have unresolved issues from the point of view of
applied research.

In this doctoral thesis, above-mentioned fundamental problem in physio-
logical signal processing and problems in physiological signal processing for
dialogue as applied research are addressed for the development of adaptive di-
alogue systems. The problems and their solutions are summarized as follows:

1. Physiological individual differences

Problem: Physiological individual differences, which are the cause of
the performance degradation in emotion estimation, exist in applying
physiological data to the machine learning model.

Solution: Using the covariate shift adaptation (also referred to as
Importance-Weighting (IW)) technique, a machine learning model that
is robust against physiological individual differences is proposed to es-
timate an individual’s emotion and personality (Chapter 3).

2. Physiological signal processing for dialogue

Problem: The effectiveness of the physiological data has been evaluated
under the emotion-evoking condition. The potential of physiological
signals for online (i.e., exchange-level) multimodal sentiment estimation
remains unknown. Additionally, TS has often been used for multimodal
sentiment analysis and has not been evaluated SS simultaneously, which
is deeply involved in physiological response.

Solution: The effectiveness of the physiological signals is evaluated us-
ing data collected in naturalistic human-agent interaction in real-time
and compared with other modalities in SS estimation (Chapter 4).

3. Comprehensive analysis and model proposal
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Figure 1.2: Summary of this study.

Problem: Although the potential of physiological signals in online SS
estimation is clarified in Chapter 4, there is no comprehensive and thor-
ough analysis of physiological signal application for multimodal fusion,
enabling the creation of a robust multimodal physiological model.

Solution: As an extension of Chapter 4, an evaluation of the machine
learning model based on the data collected in human-agent interaction
settings, including text, acoustic, visual and physiological features rep-
resented by State-Of-The-Art (SOTA) representation models, is per-
formed (Chapter 5). Based on this comprehensive and thorough anal-
ysis, new time-series physiological signal processing methods are pro-
posed for online SS estimation (Chapter 6).

A summary of this doctoral thesis is depicted in Figure 1.2. Task 1 is posi-
tioned in fundamental research (Chapter 3). Task 2 is positioned in applied
research (Chapter 4) and further extended by Chapter 5. Finally, new physio-
logical signal processing for online sentiment estimation that is robust against
changes in sentiment state is proposed (Chapter 6). Chapter 2 describes an
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overview of the physiological signals, Chapters 3 to 6 present each task, and
Chapter 7 concludes this study.

6



Chapter 2

Related Works

This chapter describes a brief explanation of emotion, sentiment, physiologi-
cal signals and multimodal sentiment analysis. The definitions of “Emotion”
and “Sentiment” are described in Section 2.1, since the former is related to
Task 1 (Chapter 3) and the latter is related to Tasks 2 and 3 (Chapter 4
to 6). Section 2.2 describes the physiological signals involved in all of the
work in this thesis. A basic explanation of the physiological signals and
their application to the machine learning reported previously are presented.
Finally, recently developed multimodal datasets that are closely related to
Tasks 2 and 3 (Chapters 4 to 6) are presented in Section 2.3. An overview of
recently developed multimodal datasets clarifies the difference between this
thesis and previous studies. More detailed related works are described later
in each chapter.

2.1 Emotion and Sentiment

Emotions are a collection of psychological states [17], including subjective ex-
periences, expressive behaviors such as facial expressions and gestures, and
physiological signals such as HR and EDA. Six basic emotion categories are
proposed by Ekman, i.e., anger, disgust, fear, happiness, sadness, and sur-
prise [18]. In the field of affective computing, emotion detection, modeling
and practical applications have been actively investigated [1]. Data analysed
in Chapter 3 include the data collected during movie watching as emotion
stimuli; thus, the words “emotion” and “emotion estimation” are used for
describing this study.

In contrast, “sentiment” refers to an emotional disposition, i.e., a ten-
dency to have a particular type of affective experience (e.g., positive or neg-
ative) [19]. Unlike evoked emotions, which typically have external mani-
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festations, sentiment is not necessarily expressed explicitly [4]. Moreover,
the expression of emotion or sentiment is regulated by emotional intelligence
[20], influenced by personality [21], and dependent on context [22]. Hence,
estimating the true sentiment in a person’s mind is a challenging and in-
terdisciplinary research task that includes elements of psychology and social
science. In naturalistic conditions such as chat-dialogue settings, the word
“sentiment” is appropriate since there are no explicitly evoked emotions such
as fear and sadness. Thus, the words “sentiment” and “sentiment estima-
tion” are used in Chapter 4 to 6.

2.2 Physiological Signals

Linguistic, visual and audio information are essential to building computers
that can recognize and express emotions. Additionally, since it is difficult to
control physiological responses by oneself, physiological signals have the ad-
vantage of extracting implicit emotional responses [23]. For example, when a
person is watching a movie or engaged in a video game, it is difficult to mea-
sure their interest and immersion level by only their appearance because their
emotion might not be shown explicitly. In addition, with the development
of physiological signal sensing devices [24], a feedback system that processes
and interprets a user’s biological responses and returns an appropriate re-
sponse to the user has been proposed in the Human-Computer Interaction
(HCI) [25] and Brain Computer Interface (BCI) [26] domains. Thus, physio-
logical signals are expected to be useful and compensate for other modalities
in emotion/sentiment estimation.

The use of physiological signals with machine learning methods has been
considered to estimate a user’s internal state [14, 27, 28]. Kim and André
[27] proposed an emotion recognition approach that involved measured phys-
iological signals, including Electroencephalogram (EEG), Electrocardiogram
(ECG), EDA, Electromyogram (EMG) and respiration. In a 2D emotion
(valence and arousal) classification task in four quadrants, they achieved an
accuracy of 70% for subject-independent classification by exploiting dichoto-
mous categorizations. AlZoubi et al. [29] utilized ECG, EMG and EDA data
to detect emotions during interactions between participants and tutoring sys-
tems. Participants were instructed to retrospectively report their affective
states during 20-second intervals, and these data were used as class labels.
Machine learning methods, including Support Vector Machine (SVM), K-
nearest neighbor, and Naive Bayes (NB), have been used for classification
tasks in previous studies. Recently, deep learning methods have also been
applied for emotion recognition tasks with physiological signals [30, 31, 32].
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These studies revealed that physiological signals can be used for emotion
recognition and implied that physiological signals can effectively complement
one another in multimodal approaches.

However, relative to linguistic, visual and audio information, effective-
ness of the physiological information in the multimodal approach has not
been comprehensively evaluated. In particular, the role of physiological sig-
nals in human-agent interaction settings has rarely been investigated. Thus,
a thorough and comprehensive analysis of physiological signals is needed to
understand their role and appropriate fusing methods for multimodal emo-
tion/sentiment estimation.

2.3 Multimodal Sentiment Analysis

One of the key techniques for extracting a user’s sentiment from information
other than linguistic information is nonverbal information processing. Hu-
mans communicate with each other using not only natural language but also
nonverbal behaviors such as facial expressions [33, 34], vocal behavior [35]
and gestures [36]. For facial expressions, Ekman and Friesen developed Fa-
cial Action Coding System (FACS), which enabled emotion mapping [37] and
has been used for numerous affective computing studies. For vocal behav-
ior, acoustic information such as loudness, pitch, and rhythm are expressions
of emotion. Similar to facial expression, the relationship between vocal be-
havior and emotion and their modeling have been extensively investigated
[35, 38]. For gestures, although there are a few gesture-based emotion stud-
ies relative to facial expression and vocal behavior, they are also related to
emotional expression. For example, high-frequency hand clapping expresses
joy and satisfaction [39]. These nonverbal behavioral cues are called social
signals [38]. Social signal processing is often used to construct automatic
user state estimation models for adaptive dialogue systems [40, 41, 42]. For
instance, facial expressions, body gestures and prosody are frequently used
as nonverbal information for sentiment analysis [3, 4, 5].

Since the 2000s, many multimodal datasets for sentiment/emotion anal-
ysis have been created. Table 2.1 lists multimodal datasets that are closely
related to this thesis. Busso et al. [10] created a corpus that includes the
facial expressions and gestures of actors during scripted and unscripted spo-
ken communication called IEMOCAP. This corpus is widely used for a joint
analysis of speech and gestures and contributes to the progress of multimodal
analysis. As shown in the 3rd column in Table 2.1, the emotion type of this
dataset is “acted”. Emotion research based on emotion expressed by the
actor has merit in terms of obtaining the ground-truth label. It enables the
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Table 2.1: Multimodal dataset for sentiment/emotion analysis. “Type” in-
dicates sentiment/emotion type, i.e., (act)ed, (eli)cited, or (nat)uralistic. L,
language; A, audio; V, visual, P, physiological; #Sub, number of subjects;
#Samp, number of samples; (con), continuous ratings.
Dataset Domain Type Modality Label #Sub #Samp

IEMOCAP [10] Scripted & unscripted action act L, A, V TS 10 10037
SEMAINE [43] Human-agent interaction eli A, V TS 150 (con)
RECOLA [44] Video conference nat A, V, P TS 46 (con)
MOSI [8] Movie review (monologue) nat L, A, V TS 98 2199
MOSEI [9] Open-domain (monologue) nat L, A, V TS 1000 23453
MELD [45] TV-series (multi-party) act L, A, V TS 407 13708
Hazumi1911 [46] Human-agent interaction nat L, A, V, P SS, TS 30 2859

correct association of the expressed emotion and label. However, there is
a large difference between acted and naturalistic emotions. In fact, perfor-
mance improvement by the multimodal approach in the acted dataset is three
times higher than naturalistic one [47]; therefore, there may be overestima-
tion of the effectiveness of the multimodal model and may not be suitable
for research aimed at realizing naturalistic HCI, such as chit-chat dialogue
systems. The SEMAINE dataset [43] includes audiovisual information in
human-agent interaction settings. The RECOLA dataset [44] includes not
only audiovisual information but also physiological information and is often
used to investigate the effectiveness of physiological signals (e.g., [48, 30]).
Pérez-Rosas et al. [7] created a multimodal corpus called MOUD, which was
collected from a product review of YouTube (Spanish). They demonstrated
the effectiveness of the joint use of visual, acoustic, and linguistic modali-
ties for utterance-level sentiment analysis (positive, negative, or neutral, as
labeled by two annotators) based on video reviews, i.e., naturalistic con-
ditions. In that study, an accuracy of 70.9% was achieved by using only
linguistic information, but by fusing linguistic, acoustic and visual informa-
tion, the accuracy improved to 74.1%. A larger-scale dataset for multimodal
sentiment/emotion analysis was obtained in [9], including 23,453 annotated
sentences from more than 1,000 online YouTube speakers. The large-scale
multimodal multi-party emotional conversational database was also recently
created by Poria et al. [45], which contains approximately 13,000 utterances
from 1,433 dialogues based on TV-series. In addition, Yao et al. [49] reported
multimodal sentiment analysis in real-life settings (consumer interviews) with
noisy transcriptions and imbalanced label distributions, i.e., more challenging
settings.

All mentioned datasets have helped to drive advances in multimodal sen-
timent research. However, multimodal sentiment analysis is still in its in-
fancy. As mentioned in Chapter 1, most multimodal analyses are based on
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TS labels and ignore SS labels. In particular, multimodal analysis with phys-
iological signals that are closely related to the emotional response has been
scarcely investigated. To solve this problem, the recently created dataset
Hazumi1911 ([46], the bottom row in Table 2.1), which includes SS labels,
TS labels and physiological signals per exchange during dialogue, is used
in this thesis (Chapter 4 to 6, more details of the dataset are described in
Chapter 4). Furthermore, physiological individual differences have not been
considered in previous studies. Thus, this thesis starts by presenting this
fundamental problem and its solution (please see Figure 1.2 for the position
of the research).
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Chapter 3

Biosignal-based Emotion
Recognition with Importance
Weighting

3.1 Introduction

The advantages of biosignals in emotional inner state estimations are evi-
denced in theoretical research in physiology. The ANS consists of the sym-
pathetic nervous system and the parasympathetic nervous system, which
maintain homeostasis of organisms [50]. Emotional stimuli activate the sym-
pathetic nervous system, and these responses result in an increased HR and
EDA. On the other hand, when relaxing, the parasympathetic nervous sys-
tem becomes dominant and these parameters return to a steady state. Since
a correlation between brain activity and Heart Rate Variability (HRV) in
emotion-evoking stimuli has also been reported [15], it is likely that valuable
information is included in physiological signals.

Emotions are also related to personality [51, 52, 53]. Extraversion is as-
sociated with low cortical arousal to external stimuli and a desire for more
stimuli that evoke emotions, while neuroticism is associated with confusion
and nervousness, even in low-stress situations [51]. It has also been reported
that agreeableness is a predictor of efforts to control emotion [52], and consci-
entiousness predicts lower reactivity to negative emotions [53]. These results
suggest that emotion is modulated by personality, so it is necessary to simul-
taneously understand emotion and personality. As emotions are related to
the physiological systems described here, Zuckerman [54] assumed that bio-
logical factors such as monoamine neurotransmitters and genetic factors are
related to personality. Since personality is also associated with the ANS and
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HRV [55], biosignals may also contain valuable information for personality
estimation.

Recently, A dataset for Multimodal research of affect, personality traits
and mood on Individuals and GrOupS (AMIGOS) dataset [56], which con-
sists of multimodal recordings of biosignals, such as the ECG and Galvanic
Skin Response (GSR), was constructed for research on emotion and person-
ality. The performance results of emotion and personality estimations were
shown in [56], but most of the results achieved approximately 50-55% mean
F1-scores in binary classification tasks. Although biosignals are expected to
be useful for estimating emotion and personality, performance improvement
is still needed.

One of the concerns in applying nonverbal data, such as biosignal data,
to the development of a machine learning model is the existence of individual
differences, as shown in [57, 58]. Generally, when using data from individu-
als, the test data from one user should be completely excluded in the train-
ing dataset. For example, Leave-One-User-Out Cross-Validation (LOUOCV)
should be employed to evaluate the machine learning model. Obviously, this
user-independent evaluation schema is also important in emotion recognition
tasks. On the other hand, estimation performance of the models would de-
crease if the emotional physiological responses between users are different.
This problem, in which the training (source) data are biased and potentially
nonrepresentative, is known as a covariate shift. [16]. It is necessary to con-
sider covariate shifts in the LOUOCV schema whenever the dataset includes
data, such as biosignals, that have individual differences. For this reason, we
adapt a machine learning model using the covariate shift adaptation (also
referred to as IW) technique to estimate an individual’s emotion and per-
sonality in this study. The main contribution of our work is summarized as
follows:

Emotion and personality estimations with the importance-weighted
model: We adapt a machine learning model using the IW technique to esti-
mate an individual’s emotion and personality. We constructed Importance-
Weighted Logistic Regression (IW-LR) and an Importance-Weighted Support
Vector Machine (IW-SVM) and performed emotion and personality estima-
tions with the AMIGOS dataset. The binary classification results show that
the IW method significantly improve the emotion and personality estimation
performance results in the SVM model (Section 3.4.2).

Comparison of the estimation performance to the theoretical upper
bound: Additionally, to examine the validity of our experimental results, we
performed Bayesian Error Rate (BER) analysis with the AMIGOS dataset.
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The BER represents a lower bound on the error rate and is used to bench-
mark the classification algorithms [59, 60]. Comparing the accuracy based
on the estimated BER with our constructed model performance, we analyzed
the upper bound of the estimation performance results with the AMIGOS
dataset (Section 3.5.1).

Effective features for emotion and personality estimation: To eval-
uate the contribution of each biological feature to binary classification tasks
in a scalable manner, feature analysis was conducted by an ablation test.
We revealed that ECG features were effective features for valence estimation
and that almost all GSR features were effective for arousal estimation. GSR
features also contribute to personality estimation, especially the 2nd differ-
ence of Skin Conductance (SC), which was the most effective feature. These
results are discussed in Section 3.5.2.

3.2 Related Works

3.2.1 Databases for Emotion and Personality Research

Emotion recognition during video-watching tasks or human-machine inter-
face interaction has been mainly based on audiovisual data. For example, the
SEMAINE database [43] includes the visual, audio, and emotional scores of
150 subjects during interactions with an artificial agent. This database was
constructed for a dialogue system to enhance user experience and is utilized
in some research on emotion recognition [61, 62]. In addition, McDuff et al.
[63] constructed a database to analyze interest in commercial videos; this
database contains the facial expression data of 242 users, who were recorded
with webcams while they watched videos (Affectiva-MIT Facial Expression
Dataset (AM-FED) dataset). In recent years, there have been several re-
ports on the construction of multimodal databases that include not only au-
diovisual data but also biological signals. The MAHNOB-human computer
interface database contains the visual, audio, gaze, ECG, GSR, respiration,
Skin temperature (TEMP), EEG, and emotional scores of 27 individuals [64].
Each data point was acquired while the subjects viewed 20 kinds of videos
that evoke emotions such as joy and fear. The Database for Emotion Analysis
using Physiological Signals (DEAP) used a one-minute music video to evoke
emotions [65]. This database contains the EEG, GSR, respiration amplitude,
TEMP, ECG, blood volume by plethysmograph, EMG, Electrooculogram
(EOG) and emotional scores of 32 subjects. DECAF contains magnetoence-
phalography (MEG) data, which have higher spatial resolution than EEG
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data and minimal physical contact; the data include the emotional responses
of 30 subjects to 40 music videos and 36 movie clips annotated in advance by
experts with the kind of emotion evoked [66]. In addition to MEG data and
emotional responses, EOG, ECG, EMG, and facial expression data based on
near-infrared light are included. The databases described here do not contain
information about subjects’ personalities.

As previously mentioned, many databases for emotion recognition based
on biological signals have been reported in recent years. However, because
personality significantly influences emotions and is an important factor re-
lated to emotional responses to stimuli, it is necessary to investigate the
relation between emotion and personality for model implementation and ap-
plication in the real world. There are several studies on personality trait
recognition [67, 68, 69], which are often based on linguistic, acoustic, and
visual information. However, to the best of our knowledge, there are only
two databases that include biosignals for multimodal research on emotion
and personality: ASCERTAIN [70] and AMIGOS [56]; the related studies
proposed emotion and personality estimation models in a similar framework.
These databases include EEG, ECG, GSR, visual information, emotional
scores (valence and arousal) and personality data (Big Five personality traits,
[71]).

3.2.2 Application of Importance Weighting

To address the physiological individual differences in emotion and person-
ality estimations, we consider an individual difference as a covariate shift,
where the distribution of the training input density and test input density,
changes from ptr(x ) to pte(x ), but the conditional distribution of the outputs
given the inputs p(y|x ) remains unchanged [16]. Covariate shift adaptation,
which is also referred to as IW, can be considered domain shift adaptation
and categorized into a sample-based approach in domain adaptation meth-
ods [72]. In speaker recognition, which is a technology for recognizing indi-
viduals from speech, the distribution of audio data (input density) changes
depending on the measurement conditions, and these situations can cause
performance degradation. To solve this problem, the IW method has been
shown to be useful for improving recognition performance [73]. Furthermore,
in BCI research area, it has been reported that the IW method improves the
performance results of models based on EEG in linear discriminant analysis
[74]. To the best of our knowledge, there is no report that evaluates the IW
method in the context of biosignal-based emotion and personality estima-
tions. It is possible that the IW method can also improve the performance
results of emotion and personality recognition models based on other physio-
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Table 3.1: F1-score for the emotion recognition models reported in ASCER-
TAIN [70] and AMIGOS [56].

Dataset Classifier Feature Valence Arousal Mean

ASCERTAIN [70]

NB ECG 0.600 0.590 0.595
NB GSR 0.680 0.660 0.670

L-SVM ECG 0.560 0.570 0.565
L-SVM GSR 0.640 0.610 0.625

AMIGOS [56]
NB ECG 0.535 0.550 0.543
NB GSR 0.531 0.548 0.540

Table 3.2: F1-score for the personality recognition models reported in AS-
CERTAIN [70] and AMIGOS [56].

Dataset Classifier Feature Ex Ag Co Ne Op Mean

ASCERTAIN [70]

NB ECG 0.560 0.550 0.600 0.530 0.480 0.544
NB GSR 0.450 0.390 0.570 0.490 0.280 0.436

L-SVM ECG 0.060 0.450 0.510 0.600 0.350 0.394
L-SVM GSR 0.000 0.340 0.350 0.560 0.360 0.322

AMIGOS [56]
L-SVM ECG 0.621 0.513 0.590 0.140 0.483 0.469
L-SVM GSR 0.268 0.510 0.655 0.362 0.699 0.499

logical signals, such as ECG or GSR. With respect to physiological individual
differences, we focus on the IW method and verify whether the IW method
is effective for improving the performance results of emotion and personality
estimations with biosignals.

3.2.3 Performance Comparison of Previous Methods

NB and Linear Support Vector Machine (L-SVM) are employed for binary
classification of emotion (valence and arousal) and personality (Big Five) in
[70] and [56]. Tables 3.1 and 3.2 show the mean F1-scores for each model
based on the different modalities (ECG and GSR) reported in [70] and [56].
As shown, the macroaverages of the F1-scores (average F1-scores over all
dimensions) in the binary classification task reported in [70] are 56.5–67.0%
and 32.2–54.4% for emotion estimation and personality estimation, respec-
tively. Similarly, in the short video experiment, the macroaveraged F1-scores
reported in [56] are approximately 54% and 46.9–49.9% for emotion estima-
tion and personality estimation, respectively. Thus, it is necessary to improve
the performance results of the models based on these peripheral biosignals.

ASCERTAIN [70] and AMIGOS [56] are available datasets; with these
datasets, some models have been recently proposed. Zhao et al. [75] employed
a hypergraph structure to formulate personality correlations among differ-
ent subjects and physiological correlations among corresponding stimuli and
proposed a novel method called vertex-weighted multimodal multitask hy-
pergraph learning (VM2HL). The emotion recognition model constructed by
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VM2HL shows the best accuracy of 74.34% for valence and 79.46% for arousal
in the binary classification task with the ASCERTAIN dataset. Harper and
Southern [76] proposed a framework based on the Bayesian Deep Neural
Network (DNN) and achieved an 88% F1-score in the binary classification
task for valence with the ECG data of the AMIGOS dataset. Gjoreski et
al. [77] constructed a model that is referred to as a meta-learner based on
classification probabilities, which are outputs from seven machine learning
algorithms (e.g., decision tree, NB, and SVM) that are input into a random
forest and then used for arousal estimation in a binary classification task
with six datasets, including ASCERTAIN and AMIGOS [77]. Comparing
the meta-learner with the conventional SVM model, the binary classifica-
tion accuracy improved from 60% to 63%. Miranda-Correa and Patras [32]
combined Convolutional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs) and presented a multitask cascaded DNN model that jointly
predicted a subject’s emotion and personality. Applying this model to the
EEG data, it was mentioned that the macroaverage of the F1-score of person-
ality binary classification was improved 2.7% compared to the best baseline
results in [70].

In addition to the previously mentioned models, several models are based
on the ASCERTAIN dataset [31, 78] and AMIGOS dataset [79, 80, 81, 82,
83, 84, 85]. The highest performing model achieved an F1-score of 88% in
[76]; however, this model is limited to only the valence level and has not
been tested on the arousal level or the five personality factors. The mod-
els presented in [75] and [77] are also limited to emotion estimation and
are not models for personality estimation. Alternatively, many studies have
focused on developing automatic personality recognition in the personality
computing region (review in [86]). Automatic personality recognition is the
task of inferring self-assessed personalities. Although many studies on auto-
matic personality recognition apply text-based or nonverbal behavior-based
approaches, but the effectiveness of biosignal-based approaches is not fully
understood. In this study, we propose a model for estimating not only va-
lence and arousal but also the five factors of personality with the AMIGOS
dataset. In [32], the proposed DNN model included personality estimation,
but the macroaverage of the F1-score in binary classification was 57.5%.
Thus, further investigation and performance improvement are still needed.
Assuming the individual differences in physiological responses as covariate
shifts and factors of performance degradation, we utilize the IW technique
for covariate shift adaptation and show the performance improvement of the
adapted models compared to the conventional procedure.
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Figure 3.1: Overview of the emotion and personality estimations in this
study.

3.3 Methods

Figure 3.1 shows the framework of our research. To investigate the effective-
ness of the IW technique in emotion and personality estimation, ECG and
GSR raw data from the AMIGOS dataset were preprocessed and feature ex-
traction was conducted. Using these features, conventional models (Logistic
Regression (LR) and L-SVM) and IW (IW-LR and IW-SVM) models were
constructed for comparison between conventional methods and IW methods
for the estimation performance. The performance evaluation was based on
LOUOCV and the F1-score of each classification. This section describes the
AMIGOS dataset, preprocessing and features extraction methods, and each
machine learning model.

3.3.1 Dataset

AMIGOS [56] is a dataset that is employed in research on multimodal emo-
tion and personality estimations. The dataset is publicly available for aca-
demic research purposes. To collect the data in AMIGOS, subjects watched
videos with emotional stimuli, and EEG, ECG and GSR were recorded by
sensor devices during the videos. The subjects self-reported emotional va-
lence and arousal based on Russell’s circumplex model [87] and used self-
assessment manikins (range 1 to 9) at the end of each trial. Personality traits,
that is, extraversion, agreeableness, conscientiousness, neuroticism and open-
ness, proposed by Costa and McCrae [71] were obtained via an online form
after the experiment was completed. The short videos for emotion stimuli
utilized in the AMIGOS dataset consisted of clips from comedies and hor-
rors, such as Mr. Bean and The Exorcist [66, 64]. The ECG and GSR raw
data from the short video experiment in the AMIGOS dataset were utilized
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Table 3.3: Nine ECG features extracted in this study.
Five time-domain features

HR heart beat per minute
RRI interval between one R-wave and the next (ms)
RMSSD root mean square of successive RRI differences
NN50 the number of successive RRI differences >50 ms
pNN50 percentage value of NN50

Four frequency-domain features

vLoF very low frequency (0.003 - 0.04 Hz)
LoF low frequency (0.04 - 0.15 Hz)
HiF high frequency (0.15 and 0.4 Hz)
LoF/HiF ratio of LoF to HiF

as input, and emotional and personality scores were employed as output in
our study.

3.3.2 Preprocessing and Feature Extraction

ECG Features

An ECG is a recording of the electrical activity of the heart. The heart is
composed of the left atrium, left ventricle, right atrium, and right ventricle.
The ECG waveform, which shows excitation of the left and right ventricular
muscle, is referred to as the QRS wave, and the upward deflection is referred
to as the R-wave. HRV analysis based on the R-wave Interval (RRI) is an
indicator of autonomic nervous activity and has been suggested to be related
to emotions and personality [70, 56, 27]. In the AMIGOS dataset, ECG
data were recorded with a Shimmer ECG Unit (Shimmer, Dublin, Ireland)1

with a sampling frequency of 256 Hz. The analysis referred to the Shimmer
platform manual, and feature extraction was performed over the final 50 s
of the stimulus presentation in this study, as in a previous report [70]. The
PeakUtils library (PeakUtils 1.3.2)2 was selected for R-wave detection. In
the setting of PeakUtils, the amplitude threshold was 0.3, and the interval
threshold (minimum distance between each R-wave) was 154, which corre-
sponds to 100 bpm. Since the varying intervals between the R-peaks cause
sample-time nonuniformity, the Lomb-Scargle method was utilized to esti-
mate the power spectral density (PSD). The area under the PSD curve was
calculated using Simpson’s composite rule. Figure 3.2 shows an example of
the analysis of the ECG data in the AMIGOS dataset. The five time-domain
features and four frequency-domain features, for a total of nine features, as
shown in Table 3.3, were extracted with reference to [70, 56, 27].

1http://www.shimmersensing.com/
2https://pypi.org/project/PeakUtils/
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Figure 3.2: An example of the analysis of the ECG data. The horizontal axis
shows the number of samples (20 s × 256 Hz sampling frequency), and the
vertical axis shows the potential difference (µV). The blue line corresponds
to the heartbeat waveform, and the orange circle corresponds to the peak of
the R wave.

GSR Features

GSR reflects sweat gland activity via the sympathetic nervous system, and
in the field of psychophysiology, it is widely utilized to detect emotional
changes and as an index for arousal level [13]. Because emotional sweating is
likely to occur in the fingers, a phenomenon that is associated with emotional
(arousal) changes, the SC data in the AMIGOS dataset were measured with
electrodes (Shimmer GSR sensors, Shimmer, Dublin, Ireland) attached to
fingers. Each measured value was stored as a 16-bit integer in the AMIGOS
dataset, and thus, the SC level was calculated from the reciprocal after con-
verting each 16-bit integer into a skin electrical resistance value by referencing
the Shimmer manual. Noise was removed by a low-pass filter (sampling fre-
quency of 128 Hz, pass-band edge frequency of 1 Hz, and stop-band edge
frequency of 2 Hz). SC changes in time series are decomposed into SC levels
(tonic component) and Galvanic Skin Response (GSR)s; the SC level was
calculated with polynomial fitting (degree = 10); and the GSR was detected
with PeakUtils (amplitude threshold of 0.3, and interval threshold of 3 s).
Figure 3.3 shows an example of the analysis of the SC data in the AMIGOS
dataset. After preprocessing, five GSR features in total (mean, standard de-
viation, 1st and 2nd difference of SC, and number of GSRs) were extracted.
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Figure 3.3: An example of the analysis of the GSR data. The horizontal
axis represents the number of samples (50 s × 128 Hz sampling frequency),
and the vertical axis represents the SC (µSiemens). The gray dashed line
corresponds to the SC level, the blue line corresponds to the time series of
SC and the orange circle corresponds to the GSR.

3.3.3 Machine Learning Model

Physiological measurements often encounter the problem of individual dif-
ferences (such as behavior and thought) [57, 58] and nonstationality (such
as changes in the experimental condition) [74, 88]. The IW method is shown
to be effective in addressing these situations [73, 74]. Thus, to address this
problem in biosignal-based emotion and personality estimations, we utilize
the IW method in machine learning modeling. Each importance-weighted
model is described in this subsection.

Importance-weighted Logistic Regression (IW-LR)

LR is a generalized linear model and popular learning algorithm for binary
classification. Assuming that the data consist of an input x i and output
yi ∈ {+1,−1} and (x 1, y1), (x 2, y2), . . . , (xn, yn) drawn from independent
and identically distributed (i.i.d.) variables, the logistic loss function is

L(w ;x , y) := log(1 + exp(−yf(x ;w))) (3.1)

where w is the parameter vector. Standard learning methods do not produce
the optimal solution under a covariate shift even when the number of training
samples tends to infinity. The influence of a covariate shift could be alleviated
by weighting the loss function according to importance (described in Section
3.3.3). An importance-weighted version of LR is referred to as IW-LR [89,
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90]), and the optimization problem can be expressed as follows:

argmin
w

[
1

2
∥w∥2 + C

ntr∑
i=1

(ri)
γ log(1 + exp(−yif(x tr

i ;w)))

]
(3.2)

where C is the penalty parameter that adjusts the trade-off between the loss
function and the penalty term ∥w∥2. r(x ) is the importance and γ is the
flattening parameter. ntr is the number of the training samples.

Importance-weighted Support Vector Machine (IW-SVM)

SVM is also a popular and conventional learning algorithm for binary clas-
sification [91]. Assuming that the data consist of an input x i and output
yi ∈ {+1,−1}, the convex quadratic optimization problem of the soft mar-
gin SVM model is given by

argmin
w

[
1

2
∥w∥2 + C

ntr∑
i=1

ξi

]
(3.3)

subject to yi(w
Tx tr

i + b) ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ ntr

where w is the parameter vector of the discriminant function, b is the bias
parameter, ξ is the slack variable, C is the penalty parameter that adjusts
the trade-off between the loss function and the maximization of the margin,
and ntr is the number of training samples. An importance-weighted version
of L-SVM is referred to as the IW-SVM [90]), and the optimization problem
can be expressed as follows:

argmin
w

[
1

2
∥w∥2 + C

ntr∑
i=1

(ri)
γξi

]
(3.4)

subject to yi(w
Tx tr

i + b) ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ ntr, γ ∈ [0, 1]

where r(x ) is the importance and γ is the flattening parameter. When train-
ing the importance-weighted model, the penalty parameter C is fixed, but
the penalty for the samples with greater importance is increased and the
penalty for the samples with low importance is decreased by the IW.
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Importance Estimation

Importance is defined as the ratio of the test density to the training density
and is given by

r(x ) =
pte(x )

ptr(x )
(3.5)

where ptr(x ) is the training input density and pte(x ) is the test input density.
There are some methods for calculating importance r(x ), such as Kernel
Mean Matching (KMM) [92], the Kullback-Leibler Importance Estimation
Procedure (KLIEP) [93] and unconstrained Least-Squares Importance Fit-
ting (uLSIF) [94]. Because the uLSIF method can be computed faster than
other methods [94] and uLSIF with a Gaussian kernel (Kernelized variant
of uLSIF (KuLSIF) [95]) compares favorably with other approaches, we em-
ployed KuLSIF in this study. The squared error of the estimator r(x ) is
expressed as follows:

1

2

∫ (
r̂(x ) − pte(x )

ptr(x )

)2

ptr(x )dx (3.6)

In this expression, the constant can be safely disregarded, and the expecta-
tions are approximated by sample averages. Subsequently, r̂(x ) is obtained
as an optimal solution of

loss(r) =
1

2n

n∑
i=1

r̂(x tr
i )2 − 1

m

m∑
j=1

r̂(x te
j ) +

λ

2
∥θ∥2 (3.7)

where θ is the parameter vector and λ is the regularization parameter. It is
assumed that the model for r̂(x ) is

r̂(x ) =
∑
d

θdϕd(x ) (θ1, . . . , θD ∈ R) (3.8)

k(x ,x ′) = ϕ(x )Tϕ(x ′), ϕ(x ) = (ϕ1(x ), . . . , ϕD(x ))T (3.9)

where k is a kernel function. Applying the representer theorem, θ is given
by the following expression:

θ =
n∑

i=1

αik(x ,x tr
i ) +

m∑
j=1

βjk(x ,x te
j ) (3.10)

Therefore, the optimization problem is reduced to
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r̂(x ) =
n∑

i=1

αik(x ,x tr
i ) +

1

mλ

m∑
j=1

k(x ,x te
j ) (3.11)

Substituting Eqs. (3.10) and (3.11) into the loss function, Eq. (3.7), and
given the extremal condition of Eq. (3.7) with respect to parameters α =
(α1, . . . , αn)T, the following linear equation is solved for α:(

1

n
K11 + λIn

)
α = − 1

nmλ
K121m (3.12)

(K11)ii′ = k(x tr
i ,x

tr
i′ ), (K12)ij = k(x tr

i ,x
te
j ) (3.13)

3.4 Experiments

Data from thirty-seven subjects were utilized for the experiment that cor-
responds to [56]. The feature set was standardized to have an average of 0
and a variance of 1 for each subject. For the binary classification task, the
emotion and personality scores were divided into low and high classes via the
median value and converted to −1 and +1, respectively.

3.4.1 Experimental Settings for the Classification Task

In the case of our experiment, most of the r(x ) are arranged in 10-1 to 10-2

order. Thus, we set the penalty parameter C = 100 to adjust the order. The
flattening parameter γ is the hyperparameter (0 ≦ γ ≦ 1), which flattens
the importance weights [90]. γ = 1 in this study. We set the total number
of epochs to 1000, and the learning rate to 0.01. These hyperparameters
for the conventional and IW methods are identical, except for the flattening
parameter γ, which is specific for IW.

Binary classification of valence and arousal was performed with the con-
ventional (LR and L-SVM) and importance-weighted (IW-LR and IW-SVM)
models (Section 3.3.3). All settings were identical for the conventional and
importance-weighted models, except for the presence of IWs. Subjects used
a self-assessment to report their emotional valence and arousal scores after
watching each of 16 short videos, that is, 16 samples can be applied per
subject for model construction. In the fusion model, the ECG and GSR
feature vectors were concatenated and utilized for binary classification. The
LOUOCV method was performed in the ECG, GSR and fusion models. In
this method, the test data from one participant are excluded in the training
dataset. This method was repeatedly applied to each user (37 in total), and
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the macro F1-score was calculated in each estimation. Each macro F1-score
was averaged and applied as the result value. This method is identical to
that in [56]. In this way, the F1-scores of the conventional and importance-
weighted models were compared. In personality estimation, features obtained
from 16 videos were concatenated and used for model construction. The bi-
nary classification task for the Big Five traits, namely, extraversion, agree-
ableness, conscientiousness, neuroticism and openness, was performed in the
conventional and importance-weighted models, and similar to the emotion
estimation, the F1-scores were obtained by LOUOCV and compared. The
difference between the F1-scores of the conventional models and those of the
importance-weighted models (∆%) was utilized as a performance improve-
ment index for the IW method.

3.4.2 Results

Emotion Estimation Performance

The results of the binary classification task in emotion estimation are sum-
marized in Table 3.4. In Table 3.4, the difference between the F1-score of
the conventional and importance-weighted models (∆%) was applied as a
performance improvement index for the IW method. For the valence esti-
mation task, models trained with ECG features have the best performance
results, but performance improvement of the IW methods was not observed
(columns 3 and 4). On the other hand, the best models among the con-
ventional SVM models were the fusion models, which reached F1-scores of
60.0% (column 6),. This performance was improved by the IW methods in
the arousal estimation task (0.8∆%, column 8). For the F1-score macroaver-
age, all importance-weighted models outperformed the conventional models
(shown in column 11), except the SVM model based on GSR features. For
LR trained with ECG, GSR, and fusion features, the mean ∆% values are
0.4%, 1.7%, and 1.1%, respectively; for SVM, the mean ∆% values are 0.1%,
0% and 0.7%, respectively. The maximum performance results of IW-SVM
on the emotion classification task reached a 57.6% F1-score macroaverage
with the fusion model.

Personality Estimation Performance

The results of the binary classification task in personality estimation are
summarized in Table 3.5. For personality estimation, IW improves all the
performance results of the SVM models in terms of the macroaveraged F1-
scores (average of the F1-scores of the estimated five personality factors, as
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Table 3.4: Performance comparison between the conventional and
importance-weighted models on the emotion estimation task. Mean F1-scores
for emotion estimation using the ECG and GSR models are shown. (W/O,
without IW (i.e., the conventional model); IW, the importance-weighted
model; fusion, the ECG+GSR features)

Classifier Feature
Valence Arousal Mean

W/O IW ∆% W/O IW ∆% W/O IW ∆%

LR ECG 0.564 0.558 -0.6 0.507 0.520 1.4 0.535 0.539 0.4
LR GSR 0.353 0.396 4.3 0.592 0.583 -0.9 0.472 0.489 1.7
LR fusion 0.523 0.551 2.8 0.601 0.595 -0.5 0.562 0.573 1.1
SVM ECG 0.564 0.564 -0.1 0.501 0.502 0.2 0.532 0.533 0.1
SVM GSR 0.343 0.349 0.6 0.595 0.589 -0.6 0.469 0.469 0.0
SVM fusion 0.538 0.544 0.6 0.600 0.608 0.8 0.569 0.576 0.7

Mean 0.481 0.494 1.3 0.566 0.566 0.1 0.523 0.530 0.7

shown in columns 19 and 20 in Table 3.5). However, there were no per-
formance improvements in the LR models. The best performance result is
observed in the IW-SVM model trained with GSR features, which resulted
in a 59.4% macroaveraged F1-score. To evaluate the effectiveness of the IW
method in total, rather than in each classifier and features, a comparison
between the conventional method and the IW method was performed using
“Mean” values from Table 3.4 and 3.5 (12 values in total: emotion, 6 mean
values; personality, 6 mean values). Comparing this 12 mean values, there is
significant difference between conventional and IW method models (paired
t-test, p = 0.032). Moreover, among the 2 emotion factors and 5 personality
factors, the average value at every column of the importance-weighted model
is higher than that of the conventional model, except for neuroticism (Table
3.4 row 9 and Table 3.5 row 9). These results indicated that the IW method
effectively worked in the binary classification task.
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Table 3.5: Performance comparison between conventional and importance-weighted model in the personality esti-
mation. (W/O, without IW; IW, the importance-weighted model; fusion, the ECG+GSR features; Ex, extraversion;
Ag, agreeableness; Co, conscientiousness; Ne, neuroticism; Op, openness)

Classifier Feature
Ex Ag Co Ne Op Mean

W/O IW ∆% W/O IW ∆% W/O IW ∆% W/O IW ∆% W/O IW ∆% W/O IW ∆%

LR ECG 0.513 0.513 0.0 0.593 0.593 0.0 0.432 0.432 0.0 0.593 0.593 0.0 0.595 0.595 0.0 0.545 0.545 0.0
LR GSR 0.483 0.473 -1.0 0.649 0.675 2.7 0.510 0.535 2.5 0.590 0.528 -6.2 0.593 0.593 0.0 0.565 0.561 -0.4
LR fusion 0.432 0.459 2.7 0.621 0.621 0.0 0.456 0.426 -3.0 0.593 0.593 0.0 0.510 0.510 0.0 0.523 0.522 -0.1
SVM ECG 0.535 0.504 -3.1 0.565 0.608 4.3 0.510 0.560 4.9 0.584 0.590 0.6 0.539 0.535 -0.4 0.547 0.559 1.3
SVM GSR 0.459 0.539 8.0 0.728 0.702 -2.6 0.560 0.539 -2.0 0.584 0.598 1.4 0.535 0.590 5.5 0.573 0.594 2.1
SVM fusion 0.262 0.528 26.6 0.619 0.590 -2.9 0.473 0.526 5.3 0.504 0.473 -3.2 0.449 0.405 -4.5 0.461 0.504 4.3

Mean 0.447 0.503 5.5 0.629 0.632 0.2 0.490 0.503 1.3 0.575 0.563 -1.2 0.537 0.538 0.1 0.536 0.548 1.2

SVM [56] ECG 0.621 - - 0.513 - - 0.590 - - 0.140 - - 0.483 - - 0.469 - -
SVM [56] GSR 0.268 - - 0.510 - - 0.655 - - 0.362 - - 0.699 - - 0.499 - -
DNN [32] EEG 0.590 - - 0.754 - - 0.539 - - 0.621 - - 0.371 - - 0.575 - -
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3.5 Discussion

Traditionally, feature engineering and model selection, such as L-SVM or NB
model, are the preferred methods to improve the estimation performance in
machine learning. Although these techniques are powerful tools in affective
computing and personality estimation even today, performance of a recog-
nition model can be degraded if there are individual differences. Especially,
in applying biosignal data, there is the need to take into account the indi-
vidual differences [57, 58]. Our main focus is the physiological individual
differences in the training data, which are considered a covariate shift in
machine learning theory. We investigated whether the IW technique com-
pensates for this shift. Our work focuses on the probabilistic distribution of
the samples derived from biosignals, and thus, is different from traditional
methods, such as feature engineering and the model selection approach for
performance improvement. The experimental results showed that the IW
method significantly improved estimation performance. These results indi-
cated that the physiological individual differences caused degradation of the
estimation performance, which was effectively mitigated by the IW methods
in emotion and personality estimations. In this section, we further analyze
the estimated upper bound of the classification accuracy for the AMIGOS
dataset. In addition, feature analysis was performed to investigate the effec-
tive biological features. We discussed the differences between our results and
the results of previously reported models.

3.5.1 Analysis of the Classification Performance by Es-
timating BER

To examine the validity of the binary classification accuracy, we performed
BER estimation with the AMIGOS dataset. The BER estimation task was
performed with the SmartSVM package3, which includes the Henze-Penrose
estimator of the BER based on the construction of the Euclidean minimal
spanning tree [60]. The BER is not the true value but the estimated value
obtained with this model. For a comparison of the experimental results of
the binary classification accuracy in this study, we considered 1 − BER as
the upper bound on the accuracy. Figure 3.4a and d shows the comparison
of the (IW-)LR model accuracy with the (IW-)SVM model accuracy based
on ECG features and 1−BER in emotion and personality estimations. Sim-
ilarly, figure 3.4b and e shows the case of the models based on GSR features,
and figure 3.4c and f shows the case of the fusion models. Most of the results

3https://pypi.org/project/smartsvm/
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Figure 3.4: Comparison of the BER with the accuracy of the binary classifi-
cation model. (a and d) The classification accuracy of the LR (open circle),
IW-LR (closed circle), SVM (open circle) and IW-SVM (closed circle) models
trained with ECG features is compared to 1 − BER (red asterisk). (b and
e) The classification accuracy of the LR, IW-LR, SVM and IW-SVM models
trained with GSR features are compared to 1 − BER, and similarly, (c and
f) shows the fusion models (V, valence; A, arousal, Ex, extraversion; Ag,
agreeableness; Co, conscientiousness; Ne, neuroticism; Op, openness; Ave,
average accuracy of these seven factors).

based on the conventional method and IW method were less than 1−BER,
but the models derived from IW methods tended to produce results nearly
equal to this estimated upper bound. This result indicated that the exper-
imental results of our constructed model were reasonable, and it is difficult
to outperform this estimated benchmark unless improving data collection
methods or feature extraction methods.

3.5.2 Feature Analysis

The IW-SVM method based on fusion (ECG and GSR) features was the best
model in emotion estimation (Table 3.4), and the IW-SVM model trained
with GSR features was the best model in personality estimation (Table 3.5)
with respect to the macroaveraged F1-score. Simultaneously, the perfor-
mance results of the conventional versions of these models have the greatest
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Table 3.6: Contribution of each feature for emotion estimation (F1, F1-score;
diff, the difference between the original fusion model’s F1-score and the F1-
score of the feature-removed model).

Features Emotion
ECG+GSR features in
Table 3.4

Valence Arousal Mean
0.538 0.600 0.569

Removed features F1 diff F1 diff F1 diff

HR 0.522 +0.017 0.608 -0.008 0.565 +0.004
RRI 0.537 +0.002 0.597 +0.003 0.567 +0.002
NN50 0.547 -0.008 0.612 -0.012 0.579 -0.010
pNN50 0.547 -0.009 0.617 -0.017 0.582 -0.013
RMSSD 0.533 +0.005 0.606 -0.006 0.570 -0.001
vLoF 0.511 +0.027 0.588 +0.012 0.550 +0.020
LoF 0.561 -0.023 0.590 +0.011 0.575 -0.006
HiF 0.550 -0.012 0.579 +0.022 0.564 +0.005
LoF/HiF 0.556 -0.018 0.585 +0.016 0.570 -0.001
SC mean 0.548 -0.010 0.609 -0.009 0.579 -0.010
SC sd 0.554 -0.016 0.589 +0.011 0.571 -0.002
1st diff 0.550 -0.012 0.558 +0.042 0.554 +0.015
2nd diff 0.550 -0.012 0.600 +0.000 0.575 -0.006
n of GSR 0.541 -0.002 0.594 +0.007 0.567 +0.002

macroaveraged F1-scores among the conventional methods (L-SVM fusion
model performance in emotion estimation: 0.569 macroaveraged F1-score,
L-SVM GSR model performance in personality estimation: 0.573 macroav-
eraged F1-score). Although the ECG and GSR features employed in this
study are conventional features, the effectiveness of the conventional features
for emotion and personality estimation are not simultaneously investigated
in detail. Thus, we investigate the contribution of each feature by ablat-
ing the features one by one from these models. If the F1-score degraded
after feature ablation, the ablated feature was effective for estimation. In
contrast, if the F1-score improved, the ablated feature was not effective for
estimation. Table 3.6 shows the emotion estimation performance and the
change in F1-score caused by ablating each feature from the original fusion
model. “diff” indicates the difference between the F1-score of the original
fusion model and the feature-ablated model; thus, “diff” values with a pos-
itive sign (+) indicate that the ablated feature was effective for estimation.
ECG features (HR, RRI, Root Mean Square of Successive R-wave interval
Differences (RMSSD), and very Low Frequency (vLoF)) were effective fea-
tures for valence estimation (columns 2-3 in Table 3.6). On the other hand,
RRI, the frequency-domain features of ECG, and GSR features, except for
the SC mean, were effective features for arousal estimation (columns 4-5 in
Table 3.6). Considering the macroaveraged F1-score, vLoF was the most
effective feature (+0.02) among all features.

Based on the mean “diff” values shown in Table 3.6 row 7, four factors

30



Table 3.7: Contribution of each feature evaluated by a backward-forward
stepwise method. The fusion model without pNN50 and 2nd diff are em-
ployed for evaluation in the final step. The other remaining features are
ablated one by one (diff, the difference between the final step model’s F1-
score and the F1-score of the feature-removed model).

Features Emotion
ECG+GSR features of
the final step

Valence Arousal Mean
0.557 0.609 0.583

Removed features F1 diff F1 diff F1 diff

HR 0.538 +0.019 0.566 +0.043 0.552 +0.031
RRI 0.543 +0.014 0.573 +0.036 0.558 +0.025
NN50 0.549 +0.008 0.580 +0.029 0.564 +0.019
RMSSD 0.543 +0.014 0.577 +0.032 0.560 +0.023
vLoF 0.532 +0.025 0.562 +0.047 0.547 +0.036
LoF 0.553 +0.004 0.564 +0.045 0.559 +0.024
HiF 0.544 +0.014 0.549 +0.060 0.546 +0.037
LoF/HiF 0.538 +0.019 0.550 +0.059 0.544 +0.039
SC mean 0.547 +0.010 0.563 +0.046 0.555 +0.028
SC sd 0.543 +0.014 0.509 +0.100 0.526 +0.057
1st diff 0.530 +0.027 0.575 +0.034 0.552 +0.031
n of GSR 0.550 +0.007 0.565 +0.044 0.558 +0.025

(Total number of successive R-wave interval differences that differ by more
than 50 ms (NN50), percentage value of NN50 (pNN50), SC mean and 2nd
diff) seem to have a inhibitory effect to the classification task. To further
verify the roles of these features, we additionally evaluated the contribution
of features using backward-forward stepwise selection [96]. Following the
ablation test shown in Table 3.6 (refers to first step), stepwise selection was
performed using the mean “diff” value. The feature-removing criteria is
whether the “diff” value is negative and minimum in this step. For example,
among the four factors, pNN50 represents the worst case, since the mean
“diff” value is −0.013, which is negative and minimum in Table 3.6 row
7. Thus, the feature set “without pNN50” was utilized for the next step.
The next evaluation is performed in the same way as in the first step. The
re-entering criteria of a feature, which is already removed, is whether the
estimation performance improves by re-entering. Based on these criteria,
the final results of the stepwise selection is depicted in Table 3.7. There are
no features that satisfy the removing/re-entering criteria. Considering these
results, the NN50 and SC mean could also contribute to emotion estimation,
but we could not clarify the effectivity of pNN50 and 2nd difference of SC
(2nd diff) in our experiment.

Similarly, in Table 3.8, the personality estimation performance and the
differences between the original GSR model results and the feature-removed
results are listed. All GSR features were effective in estimating agreeableness
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and neuroticism (columns 4-5 and 8-9 in Table 3.8). The 2nd diff was the
most effective feature in total (+0.042, row 8 and column 13). The 1st
diff (+0.023, row 7 and column 13) and number of GSRs (+0.018, row 9
and column 13) were also effective features for personality estimation, but it
seemed that the SC mean and sd were not very important.
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Table 3.8: Contribution of each feature for personality estimation (F1, F1-score; diff, the difference between the
original GSR model’s F1-score and the F1-score of the feature-removed model).

Features Personality
GSR features
in Table 3.5

Ex Ag Con Ne Op Mean
0.459 0.728 0.560 0.584 0.535 0.573

Removed features F1 diff F1 diff F1 diff F1 diff F1 diff F1 diff

SC mean 0.567 -0.108 0.648 +0.080 0.590 -0.030 0.547 +0.037 0.550 -0.015 0.580 -0.007
SC sd 0.535 -0.075 0.621 +0.107 0.590 -0.030 0.468 +0.116 0.648 -0.113 0.572 +0.001
1st diff 0.539 -0.080 0.593 +0.135 0.461 +0.099 0.540 +0.044 0.619 -0.084 0.550 +0.023
2nd diff 0.553 -0.094 0.581 +0.147 0.461 +0.099 0.552 +0.032 0.510 +0.025 0.531 +0.042
n of GSR 0.458 +0.001 0.608 +0.120 0.480 +0.080 0.535 +0.049 0.695 -0.160 0.555 +0.018
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3.5.3 Performance Comparison with a Previous Re-
port

The dataset used here was collected by [56]. Identical subjects and the same
biosignal raw data applied in [56] were utilized as input sources in this study.
With respect to the emotional scores, Miranda-Correa et al. [56] utilized
scores based on external annotations, but we used emotional scores based on
self-assessment so there is a difference in the evaluation value (output y). In
addition, since Miranda-Correa et al. [56] employed the NB model for emo-
tion estimation, it is difficult to simply compare it with our L-SVM model.
Harper and Southern [76] achieved an 88% F1-score in the binary classifi-
cation task for valence based on a self-assessment. Their model achieved
the best performance results to the best of our knowledge, and our model
could not outperform it. However, the proposed model in [76] only included
the valence factor, but our proposed model comprehensively included two
emotional factors and five personality factors based on the self-assessment.
Therefore, our work has important significance from the perspective of gen-
eralizing the effectiveness of IW methods. Alternatively, for personality es-
timation, Miranda-Correa et al. [56] used scores based on a self-assessment,
and we used the same personality scores and classifier (L-SVM) as [56]. In
addition, the experimental settings are aligned with the settings used in [56]
to enable a proper comparison of model performance (F1-score). Therefore,
to verify the effect of preprocessing and IW methods, we compared the model
performance results between [56] and our study (Table 3.5). The macroav-
erages of the mean F1-score reported in [56] were 46.9% and 49.9% in the
ECG model and GSR model, respectively, based on the short video scenario.
Therefore, the average performance results of our model were higher than the
performance results reported in [56], irrespective of IW. The preprocessing,
such as waveform analysis and peak detection, conducted in this study was
not substantially different from that employed in [56], and these are conven-
tional methods; however, the feature set utilized for model building may be
different. In this study, NN50 and pNN50 (Table 3.3) were extracted from
the ECG data, and the standard deviation of SC and the 2nd difference of
SC were extracted from the GSR data; however, they were not described in
[56]. On the other hand, 60 spectral powers in the bands from [0-6] Hz are
extracted as ECG features, and spectral powers in the bands from [0-2.4]
Hz are extracted as GSR features in [56] but not in our study. These differ-
ences in feature extraction methods may influence the emotion of personality
estimation performance.
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3.5.4 Performance Comparison with a Deep Neural
Network

Miranda-Correa et al. [56] constructed a DNN model with the AMIGOS
dataset, and it was reported that the performance results of five personality
factors (macroaverage of the mean F1-score) reached a maximum of 57.5%
in binary classification (row 11 and column 18 in Table 3.5). In [32], it was
mentioned that this model outperformed the best baseline mean F1-score
result [70] by 2.7%, on average, when comparing the same five personality
factors. In our study, although we did not use the EEG features, the IW-
SVM based on GSR features outperformed [32] (57.5% F1-score) by 1.9%
in the five personality factor estimations (row 7 and column 19 in Table
3.5). The EEG is relatively complicated measurement compared to ECG
or GSR; therefore, applying IW method to the ECG or GSR shown in this
chapter may be more practical. In addition, it was reported that the IW
method improves the performance result of the model based on EEG in linear
discriminant analysis in the BCI research area [74]. Although deep learning-
based automatic personality recognition is one of the latest approaches [97], it
is not always necessary to use a DNN, which requires greater computational
resources for personality estimation, and it seems that feature engineering or
the IW method is an option for performance improvement.

3.5.5 Importance-weighted Support Vector Machine in
Speech Emotion Recognition

The IW-SVM model based on physiological signals may be effective not only
with the AMIGOS dataset but also in other emotional/personality research.
In speech emotion recognition (SER), the classification performance of a
model can be degraded if the data acquisition environment and conditions
are different. Hassan et al. [98] constructed an SER model using one of the
two independently acquired datasets as training data and the other dataset
as test data. In speech processing, cepstral mean normalization (CMN) and
vocal tract length normalization (VTLN) are often utilized to compensate
for channel and speaker differences. However, in [98], considering the differ-
ences between the datasets as a covariate shift, the IW-SVM algorithm was
also applied to compensate for the differences known as domain adaptations.
As a result, CMN + VTLN improved the binary classification accuracy by
3.4% compared to the standard L-SVM, but the IW method improved the
accuracy by 5.5%. Although we considered physiological individual differ-
ences “within” the dataset as covariate shifts, considering the differences
“between” the datasets as a covariate shift and compensating for this shift
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with the IW method could also be effective.

3.5.6 Computational Complexity and Hyperparame-
ters

We used KuLSIF for importance estimation. The computational cost of
KuLSIF is approximately proportional to n3, where the smaple size is n, and
can be improved computationally and made more efficient by numerically
minimizing the loss function (n2), as shown in [95]. Although other methods,
which estimate IW exist [92], KuLSIF yields lower computational costs than
other estimators [95, 99]. Alternatively, the complexity of the standard SVM
is typically n3 [100] and that of the LR is nm2 [101], where m is the number
of features. Considering the computational complexity, IW estimation does
not substantially affect the total computation time. However, IW estimation
is needed for every test input, and applying this method to real-time response
system is not feasible.

Regarding the hyperparameter, we set the flattening parameter γ = 1 in
the experiment. To evaluate the effect of this hyperparameter, we have con-
ducted additional analysis using the best model (emotion, IW-SVM fusion
model; personality, IW-SVM GSR model) with setting γ = {0.1, 0.5, 1.0}. As
a result, no improvement nor degradation was observed (±0.3∆%) in emo-
tion estimation. On the other hand, the estimation performance degraded
(−2.1∆%) in personality estimation with the setting γ = 0.1 probably due
to overflattening, which could diminish the effect of IW. Coupled with the
evaluation of the other version of the domain adaptation, an effective hyper-
parameter search could be needed in the future.

3.5.7 Limitations and Future Works

The overall performance is improved by the IW method and this method
outperforms the SOTA DNN model in personality estimation. Thus, we
considered that IW methods are effective overall. However, the IW method
does not always yield better results, as shown in Table 3.4 and 3.5, because
the IW method assumes the distribution of the training input density and
the test input density changes but the conditional distribution of the outputs
given inputs remains unchanged. If these assumptions are violated, there can
be no benefit of the IW method.

Also, IW method is not applicable to unseen individual test data since IW
method require test input in advance. Thus, compensation by the IW method
is started after measurement of physiological signals. These operation and
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calibration time cause time lag in real-time systems; therefore, this is one of
the limitations of this study.

The IW method is one of the domain adaptation methods and is re-
ferred to as a sample-based approach [72], which increases the penalty for
the data samples that are more important in the learning process. More
recently, other domain adaptation methods, such as deep domain adaptation
approaches, have been developed [102]. Thus, other improved versions of the
domain adaptation, which yield better results and are more stable, need to
be considered.

Although we focused on the individual differences derived from physi-
ological responses, effective data collection and preprocessing methods are
also important issues. For example, [103] addressed the problem of the lossy
EEG sensor communication pattern. Thus, a comparison and combination
of these methods with IW is one of the directions for future works.

3.6 Chapter Summary

We constructed importance-weighted versions of LR and SVM and compared
them to conventional models in emotion and personality estimations to evalu-
ate whether the IW method can improve biosignal-based model performance.
As a result, in emotion estimation, the IW-SVM outperforms the L-SVM by
a 0.7% macroaveraged mean F1-score in the fusion model. Moreover, a per-
formance improvement of 2.1% was achieved by the IW-SVM in the five per-
sonality factor estimation models based on the GSR features. These results
are reasonable because the model’s classification accuracy was similar to the
accuracy based on BER estimation. Moreover, our results were comparable
to those of a previously reported DNN model, which suggests the usefulness
of the IW method in biosignal-based emotion and personality estimations.
These results indicate that the IW method can reduce individual differences
in peripheral physiological responses and can contribute to the proposal of a
new model for emotion and personality estimations based on biosignals.
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Chapter 4

Analysis of Physiological
Signals toward Adaptive
Dialogue Systems

4.1 Introduction

Recently, biosignals including EEG, ECG, and EDA have been used to detect
changes in the implicit responses and emotional states of a user. For exam-
ple, applications utilizing these biosignals have been reported for a movie
watching task [56], stress detection [104], and the provision of personalized
recommendations [105]. However, the contribution of these biosignals in es-
timating a user’s sentiment during dialogues remains unknown.

It is difficult to correctly estimate a user’s sentiments using only the
acoustic and visual information if the user does not explicitly express his/her
emotion to the dialogue system. In this regard, biosignals may enhance the
performance of user sentiment estimation by supplementing the acoustic and
visual information collected simultaneously [106, 107, 108, 109], as long as the
wearable sensors do not disturb the dialogue. In this study, we demonstrated
that the physiological information collected from participants engaged in dia-
logues with the agents improved the estimation accuracy of the participants’
sentiment labels, which were annotated by the participants themselves for
each exchange.

The main contributions of this chapter can be summarized as follows.
Estimating sentiment labels by using the physiological signals dur-
ing dialogues: To clarify the effectiveness of the physiological signals in
estimating a participant’s sentiment label, we evaluated models based on the
physiological modality in human–agent interaction settings and compared
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them with those pertaining to acoustic and visual information. In addition,
we verified the effectiveness of combining the physiological signals with acous-
tic/visual signals on the same task. The experimental results are presented
in Section 4.6.
Comparison between multimodal DNN and human model: We col-
lected a new dialogue corpus, including two types of sentiment labels an-
notated to each exchange consisting of a system utterance followed by a
participant utterance. One is the sentiment labels annotated by the par-
ticipants themselves and the other is those annotated by multiple human
coders. The accuracy of human coders in estimating the participant senti-
ments was examined to clarify the difference in the two types of sentiment
labels. Moreover, the accuracies of estimation by the human coders and
models trained with multimodal features helped compare the performances
of third party humans and computational models involving physiological sig-
nals. The analysis helped demonstrate the challenging nature of the task
and the contribution of the automatic multimodal recognition technique in
estimating the participants’ sentiment states. This analysis is described in
Section 4.7.1.
Example showing relationships between sentiment labels and EDA
signals: We investigated the relationship between the participants’ senti-
ment scores and EDA features. The results of the correlation analysis were
used to correlate the GSR numbers and an EDA feature with the sentiment
scores. We examined the time series sentiment scores and GSR numbers
and presented an example of the dynamic changes in these parameters. The
analyses are described in Section 4.7.2.

4.2 Related Works

In the affective computing domain, relationships between the emotional and
nonverbal information, such as facial expressions, speech, gestures, and phys-
iological states have been examined [14, 24]. In [56, 70], multimodal data
including EEG, ECG, and EDA data were collected while the participants
watched a video, and an emotion recognition model was proposed based on
these biosignals (details of the is described in Section 3.2, Chapter 3). For
emotion elicitation, these studies used videos that were classified into one of
four quadrants of the valence arousal space. Kim and André [27] investigated
the potential of physiological signals for emotion recognition by using biosen-
sors such as EMG, ECG, EDA, and respiration sensors. As emotional stim-
uli, they used music that spontaneously induced real emotional states in the
users. Kalimeri and Saitis [104] presented a multimodal framework to detect
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the stress of visually impaired people when they were placed in unfamiliar
locations. The EEG and EDA data were collected using wearable sensing
devices, and a random forest model was used to estimate stressful environ-
mental conditions. With advances in biosignal sensors, many studies have
focused on emotion recognition using biosignals [110, 111, 112, 113]. How-
ever, only a few studies under nonstressful conditions or without emotional
stimuli, especially in human–agent interaction settings, have been conducted.
Therefore, in this study, we investigated the effectiveness of physiological sig-
nals for sentiment estimation in an interactive chat dialogue.

To implement an adaptive dialogue system, it is important to recognize
the user’s engagement, interest, and sentiment (e.g., enjoyment during the
conversation) based on multimodal behaviors, and many studies have focused
on these factors [114, 115, 40]. In [40], a recognition model for user engage-
ment (interest and willingness to continue the dialogue) in human–robot
interactions was proposed based on the user’s audio–visual information. In
[41], to assess the presence of the interest of a user in a time series, they
considered an exchange between the system and user as a unit in a chat
dialogue. The facial expression, head movement, and prosody of the utter-
ances were used as the multimodal information in this study. Tavabi et al.
[42] attempted to generate natural and engaging social interactions in hu-
man–agent dialogue systems and estimated the empathy in an uncontrolled
environment. They proposed a multimodal DNN to identify opportunities in
which the agent should express empathetic responses. In the aforementioned
studies, the estimation was based on the user’s explicit information, such as
the audio/visual information, and the physiological signals were not consid-
ered. In our study, we constructed models based on multimodal information,
including physiological signals, which can help detect the implicit aspects of
a user’s sentiment during dialogues.

We used a multimodal dialogue corpus including the user’s interest la-
bel, user’s sentiment label, and topic continuance, which were annotated
by human coders at the exchange level [116], to implement an adaptation
mechanism of the dialogue strategy in spoken dialogue systems. These three
labels were correlated and simultaneously captured the different aspects of
the internal state of the user. Considering the relationship among the la-
bels, we applied a multitask learning technique to the binary classification
tasks and demonstrated that a multitask DNN model trained with multi-
modal features outperformed a single task DNN. The dialogue corpus we
used did not include physiological data. In this chapter, the newly collected
dialogue corpus included not only acoustic/visual features but also physio-
logical features. Moreover, this corpus included the exchange level sentiment
labels annotated by both the participants themselves and third party human
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coders. Thus, the corpus enabled the investigation of the novel aspects of
the physiological features in this setting and comparison of the effectiveness
corresponding to the physiological and acoustic/visual modalities to estimate
the user’s sentiment.

Chaminade et al. [117] constructed an experimental setup that provided
temporally aligned behaviors along with physiological activity during hu-
man–agent interactions. They focused on the communicative behavior in
social interactions and showed that the physiological measures were corre-
lated with various communicative behaviors; however, the user sentiment
was not annotated. Egorow and Wendemuth [118] showed that physiological
signals, including EMG, skin conductivity, and respiration, could help detect
dialogue stages in which the user experienced trouble in interacting with the
dialogue system. However, the user’s sentiment labels were not annotated
by the users and were simply divided into two classes based on the predeter-
mined dialogue situation. In our study, the sentiment score was annotated
both by the participants themselves and external coders for every exchange
in a natural chat dialogue. Therefore, models that recognize the dynami-
cally changing sentiments of the user can be constructed, and adaptation
strategies for multimodal dialogue systems can be implemented.

4.3 Data

We used a multimodal dialogue corpus named Hazumi1911 [46], collected
from November 2019. The recording setting was almost the same as that of
Hazumi1712 [119] and Hazumi1902 [120], except physiological sensors were
newly used in Hazumi1911. 1

4.3.1 Data Collection

Figure 4.1 shows an overview of the study flow. Data were collected in the
context of a human–agent dialogue as in [119], following which, the par-
ticipants communicated with a virtual agent known as MMDAgent2 shown
on the display. The agent was operated using the Wizard of Oz method.
Specifically, a human operator (Wizard) remotely controlled the system and
interacted with participants in another room. The participants were not in-
formed that the agent was remotely controlled by a human operator until
the end of the experiment. No specific task was assigned in the dialogue; i.e.,
the participants simply chatted with the agent.

1Hazumi1712, 1902 and 1911 are publicity available [121].
2http://www.mmdagent.jp/
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Figure 4.1: Overview of the estimation of the user’s sentiment at the exchange
level.

Basically, the operator selected the utterances of the agents from the pre-
defined utterance list by watching the participants’ states through a camera.
The operator tried to make them enjoy the conversation and want to con-
tinue talking. Because the operator was well trained and had time to select
the next utterance while the participant was speaking (around 10-second
long), there was a small waiting time before the agent started responding.
The agent generated random animation of subtle movements as multimodal
behavior (head and hand gestures and facial expressions), which is a built-in
component of MMDAgent.

The time series physiological signals were collected during the dialogues
using a physiological sensor, that is, the Empatica E4 wristband3. In gen-
eral, if the sympathetic nervous system is activated by emotional stimuli,
sweat glands are activated, increasing the level of sweating. These changes
might not be perceptible by the user; however, the EDA sensor can detect
these small changes as changes in the SC by using two electrodes in con-
tact with the skin. Furthermore, as the E4 device is wireless and worn like
a wristwatch, it causes neither disturbance nor discomfort during the dia-
logues. Thus, this device is suitable to investigate a user’s sentiment during
dialogues. The EDA and HR of the participants were recorded at 4 and 1
Hz, respectively. In addition, a Blood Volume Pulse (BVP) was obtained,
and the HR was computed as the output from this device. In terms of the

3https://www.empatica.com/research/e4/
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acoustic signals, the voice of the participant was recorded as a 16 kHz WAV
file by using a Microsoft Kinect V2 sensor. In terms of the visual signals, the
facial expressions of the participants were recorded using a video camera at
30 frames per second (fps), and motion data were recorded using the Kinect
sensor at 30 fps.

4.3.2 Participants

Thirty participants (aged 20–70 y; male/female, 15/15) were recruited from
the general public through a recruitment agency. Data from 26 participants
were used for analysis; the data of four participants were disregarded because
of missing values after preprocessing. The average duration of the data was
20.5 min per participant. The dialogue data of one participant contained 95
exchanges on average.

4.3.3 Annotation

Two types of annotations were labeled in this study: (1) SS annotation and
(2) external sentiment annotation, which were annotated by the participants
themselves and external coders, respectively. In this study, an exchange was
defined as a section that began from the start time of a system utterance
and ended at the start time of the next system utterance. Based on this
definition, a total of 2468 exchanges obtained from 26 participants were an-
notated. The annotation procedures were as follows:
(1) Self-reported sentiment annotation: The participants themselves
annotated the labels per exchange while watching their videos after the ex-
periment. The labels were assigned as scores ranging from 1 (not enjoying
the dialogue) to 7 (enjoying the dialogue). The positive sentiments included
“enjoy talking”, “want to continue talking”, and “satisfied with the talk”,
and the negative sentiments included “want to stop talking” and “confused
about the system utterances”.
(2) External sentiment annotation: Five human coders annotated the
labels per exchange as scores ranging from 1 (participants seem to be bored
with the dialogue) to 7 (participants seem to enjoy the dialogue) while watch-
ing the recorded videos of the dialogues. This assessment was performed
considering the acoustic, visual, and linguistic features of the participants.
The human coders were instructed not to assign labels considering only a
part of the exchange and to assign labels considering the differences among
individual participants after watching the entire recording of the target par-
ticipant.
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The agreement between the coder ratings was calculated using Cronbach’s
alpha. Generally, a Cronbach’s alpha of > 0.8 indicates a high consistency
between the annotated labels. In this study, Cronbach’s alpha was 0.83 in the
external sentiment annotation, indicating the reliability of the annotation.
A more detailed description of the annotation methods has been presented
in [116].

4.4 Multimodal Feature Extraction

We focused on the analysis of nonverbal data, especially the analysis of the
physiological implicit responses. To compare the effectiveness of the non-
verbal features, the physiological, acoustic, and visual information was syn-
chronized using the log data and preprocessed for feature extraction. All the
features were extracted from the whole dialogue per exchange, similar to the
annotation procedure described in Section 4.3.3. In this section, we describe
the nonverbal features extracted from each modality.

4.4.1 Physiological Features

The EDA and HR were recorded using the E4 wristband placed on the par-
ticipants’ wrist. The EDA, measured as the SC, reflects the sweat gland
activity through the sympathetic nervous system and is widely used to de-
tect the changes in the emotional states at the arousal level [13]. The SC in
the time series was decomposed into the SC level (tonic component) and SC
response (also known as the GSR). Therefore, the SC level was calculated
using polynomial fitting (degree of 10), and the GSR was detected using
PeakUtils4 (amplitude threshold of 0.3). Subsequently, the GSR number per
exchange was extracted as an EDA feature (Figure 4.2). Moreover, we cal-
culated the following statistics for the EDA and HR in each exchange and
used them as physiological features: mean, standard deviation, skewness,
kurtosis, maximum and minimum values, mean of the first and second differ-
ences, range (difference between maximum and minimum values), slope and
intercept of the linear approximation, and 25th and 75th percentile values.
Overall, 27 features (14 and 13 features from the EDA and HR, respectively)
were extracted as the physiological features from each exchange. The data
were normalized using the min-max normalization into a range of zero to
one.

4https://pypi.org/project/PeakUtils/
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Figure 4.2: Example of SC analysis, showing the EDA signal (blue curve),
tonic component (baseline, orange curve), and GSR (red circles).

4.4.2 Acoustic and Visual Features

Acoustic signals from the participant utterances were used to extract fea-
tures. The INTERSPEECH 2009 Emotion Challenge feature set (IS09) [122]
was extracted using the OpenSMILE5 software. The types of acoustic fea-
tures are as follows: root mean square frame energy, mel frequency cepstral
coefficient 1-12, zero crossing rate from the time signal, voicing probability,
and fundamental frequency (F0). To each of these, the delta coefficients are
also calculated. Finally, 12 statistics: mean, standard deviation, kurtosis,
skewness, minimum and maximum value, position of maximum and mini-
mum values, range between maximum and minimum, slope and offset of a
linear approximation with their mean square error are calculated and used as
acoustic features. Thus, 384 (16 × 2 × 12) acoustic features were extracted
in total from each exchange.

The facial expressions and motion activity in each exchange were ex-
tracted as the visual features. Using the OpenFace library[123], the facial
landmarks around the eye (4 points), mouth (4 points), and eyebrow (4
points) were determined, and the velocity (maximum, mean, and standard
deviation) and acceleration (maximum) were calculated at each point as the
facial tracking features. Also, the estimated categories of the facial action
units described in [124] were used as the facial features. OpenFace can detect
the presence of 18 types of action units in every frame. We use the proportion
of occurrences of these 18 types of action units in each user’s utterance as
facial action unit features. We combine the facial tracking features and the
facial action unit features and use these features as facial feature vectors.

The motion data of the hands, shoulders and head, recorded by the Mi-

5https://www.audeering.com/opensmile/
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crosoft Kinect sensor were employed, and the calculated velocity and accel-
eration were used as the motion features. Overall, 87 features were extracted
from the facial expressions and motion activity as the visual features. The
data were normalized for each participant through the Z score normaliza-
tion, that is, considering a mean and standard deviation of zero and one,
respectively, for all samples pertaining to each participant.

4.5 Experiment

The aim of this study was to verify whether physiological features can help
estimate a participant’s sentiment labels. To this end, we performed binary
classification tasks on the sentiment labels by using machine learning models
and an external sentiment annotation score (which can be regarded as a “hu-
man” model). In the binary classification tasks, the sentiment labels were
divided into high and low classes considering a threshold of 4 (neutral state).
The number of high/low classes of the sentiment labels was 1119/1349. Sim-
ilarly, the external sentiment annotation score was processed and divided
into high and low classes, and the number of the high/low classes of the ex-
ternal sentiment annotation was 1701/767. In the correlation analysis, the
sentiment scores in the range of 1 to 7 were used to calculate the correlation
coefficient.

4.5.1 Machine Learning Models

Linear Support Vector Machine (SVM)

In the binary classification task, L-SVM models [91] based on physiological,
acoustic, visual and multimodal features were constructed to compare the
estimation accuracy. The SVM models were optimized using a fivefold cross-
validation scheme for the training data set with the penalty parameters set
as {0.001, 0.01, 0.1, 1, 10}. The penalty parameter ensures a balance between
the loss function and margin maximization. We used the SVM in two ways
to fuse the different modalities: Early Fusion (EF) and Late Fusion (LF).
In EF, the feature vectors from different modalities were concatenated into
one feature vector. In the LF, the results of the trained unimodal output
were combined to provide a final estimation. In the SVM model, the final
estimation was based on the decision function of the unimodal models.
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Deep Neural Network (DNN)

We used DNN models to verify whether the models improved the performance
in the binary classification task. To this end, we used DNNs in two ways to
fuse the different modalities, similar to the aforementioned SVM modeling.

To train the unimodal feature set using the EF, the DNN was composed
of an input layer, two middle layers with 64 units, two middle layers with 32
units, and an output layer. When using the EF to train the multimodal (bi-
modal and trimodal) features, the same architecture as that in the unimodal
configuration was used, including two middle layers with 128 units for the
bimodal features and a layer with 192 units for the trimodal features.

When using the LF to train the multimodal feature set, two layered DNNs
were composed. For the lower layer, a neural network with an input layer
and two middle layers with 64 units was prepared to extract the unimodal
features. For the higher layer, the output units of the unimodal models were
concatenated, and the layer with the concatenated units was connected to two
hidden layers with 32 units. The concatenated layer had a high dimensional
output, and thus, a dropout was implemented after the layer.

In all the DNN models, we set the batch size as 32, total number of epochs
as 30, and dropout rate as 0.3. We used the Adam optimizer and set the
learning rate as 0.001. For the DNNs, we trained and tested the models three
times through random initialization and reported the average accuracy.

4.5.2 Evaluation Procedure

To evaluate the models, the cross-validation method (LOUOCV) was per-
formed in the SVM and DNN models. In the LOUOCV, the samples corre-
sponding to each exchange between the participant and dialogue system were
used as the test data, and the remaining samples were used as the training
data. This procedure ensured that the test data from one participant were
completely excluded in the training dataset, thereby avoiding overestimation.
We compared the average accuracy of the test data set among the models
based on each modality. The majority baseline for the binary classification
of the SS annotation was 54.7%.

4.6 Experimental Result

Table 4.1 lists the estimation accuracy of the SVM models for the binary
classification, and Table 4.2 lists those of DNN models. We used the follow-
ing four feature sets to investigate the contribution of physiological signals to
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estimate the participants’ sentiments: P, physiological features; A+P, acous-
tic + physiological features; P+V, physiological + visual features; A+P+V,
fusion of all the features. To analyze the contribution of EDA and HR fea-
tures, physiological features (PEH) were divided into EDA subset (PE) and
HR subset (PH), and the estimation accuracy of the models using each fea-
ture set was evaluated (rows 4 to 6 and columns 2 to 8 in Table 4.1 and
4.2). In addition, acoustic features (A), visual features (V), and acoustic +
visual features (A+V) set (columns 9 to 12 in Table 4.1 and 4.2) were used
for comparison with physiological models.

The EF or LF technique was used to fuse the different modalities, as
described in Section 4.5.1. To investigate the extent to which the human an-
notators could estimate the participant’s positive/negative sentiment labels,
the estimation accuracy of the participant’s sentiment based on the external
sentiment annotation was also evaluated.
Performance of the SVM models: Table 4.1 lists the estimation accuracy
of the SVM models. The unimodal models estimation accuracy are shown in
columns 2 (physiological model), 9 (acoustic model) and 10 (visual model)
in Table 4.1. The best unimodal model is the physiological EDA subset (PE)
model (row 5 and column 2 in Table 4.1) with the accuracy of 61.6%. Com-
paring the unimodal PE models to the mutimodal models (columns 3 to 8,
11, and 12 in Table 4.1), there is no improvement of estimation accuracy.
Performance of the DNN models: Table 4.2 presents the accuracy of the
binary classification of the DNN models. The unimodal models estimation
accuracy are shown in columns 2, 9 and 10 in Table 4.2 in the same way as
Table 4.1. The best unimodal model is the EDA subset (PE) model (row 5
and column 2 in Table 4.2) with the accuracy of 62.2%, which exhibited an
improvement of 0.6% compared to the highest SVM models. Comparing the
unimodal EDA subset (PE) models to the mutimodal models (columns 3 to
8, 11 and 12 in Table 4.2), there is further improvement was observed in the
EF of the EDA + visual (PE+V) model with the estimation accuracy was
63.2% (row 5 and column 5), which meant that this model outperformed the
highest performing SVM models by 1.6%.
Accuracy of estimating the participant’s sentiment labels by the
annotators: Next, we compared the performance of our machine learning
models to the “human” model as a benchmark. To this end, the average
external sentiment score annotated by five human coders was divided into
high and low classes by considering a threshold of 4. We calculated the ac-
curacy of the binary classification of the participant’s sentiments based on
the external sentiment annotation. The estimation accuracy through human
estimation was 63.0% which is higher than that for the highest performing
SVM model (PE model, 61.6%, Table 4.1). The result (63.2%) of the best
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DNN model (PE+V) was equivalent to that of the human annotators. In the
next section, we discuss these results in depth.
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Table 4.1: Binary classification accuracy based on the SVM. The bold value indicates the highest estimation accuracy.
The majority baseline was 54.7%. (Uni: unimodal features, Multi: multimodal features, A: acoustic features, P:
physiological features, and V: visual features)

Physiological
feature set

Uni Multi Uni Multi
Human
modelP

A+P P+V A+P+V
A V

A+V
EF LF EF LF EF LF EF LF

EDA+HR (PEH) 57.7 57.0 60.3 57.5 58.7 56.8 60.2
57.7 58.2 57.1 58.9 63.0EDA (PE) 61.6 60.4 61.4 60.7 61.2 58.4 61.2

HR (PH) 52.5 57.0 55.0 56.7 54.9 56.9 57.1

Table 4.2: Binary classification accuracy based on the DNN. The bold value indicates the highest estimation accuracy.
The majority baseline was 54.7%. (Uni: unimodal features, Multi: multimodal features, A: acoustic features, P:
physiological features, and V: visual features)

Physiological
feature set

Uni Multi Uni Multi
Human
modelP

A+P P+V A+P+V
A V

A+V
EF LF EF LF EF LF EF LF

EDA+HR (PEH) 60.1 58.9 58.7 60.5 60.0 59.7 60.1
57.3 57.7 58.4 58.1 63.0EDA (PE) 62.2 60.2 59.4 63.2 62.9 60.8 61.0

HR (PH) 48.6 56.1 55.4 53.7 54.3 55.7 56.9
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4.7 Discussion

As shown in Section 4.6, the proposed multimodal DNN model achieved
an estimation accuracy equivalent to the human performance in the pos-
itive/negative sentiment estimation. We further investigated whether the
(mis-)classification trend was similar or different between the human model
which depends on the explicit information and DNN model which based on
implicit biological responses. First, we presented the confusion matrices for
the classification results of all the 2468 exchange samples with the “human”
model and physiological (PE) DNN model and compared the results. Sec-
ond, the classification result of each 26 individuals was considered, and we
discussed the differences in the human and machine classification results.
Finally, to investigate the physiological features related to the specific out-
comes, we performed feature analysis and clarified the physiological factors
related to the estimation performance.

4.7.1 Comparison of Human and Machine

First, to observe the overall classification trend, we evaluated the confusion
matrix for the human and physiological (PE) DNN models (Figure 4.3). The
results showed that there were certain false positives (i.e., misclassified true
low into high class) existed in the human estimation (31% of the total sam-
ple); however, many positive sentiment labels (true high) were classified as a
high class in the human model (38%). In contrast, the DNN model correctly
classified many negative sentiment labels (true low) into the low class (35%).
This result suggests that the humans could distinguish the participant’s posi-
tive sentiment labels during the dialogue. To confirm the differences between
the human and machine estimation, we evaluated the classification results
for each participant. As shown in Figure 4.4, the humans tended to be more
accurate when the participants had a positive sentiment; however, the esti-
mation accuracy was degraded when the participants exhibited a negative
sentiment during the dialogue. In contrast, the DNN model classified many
negative sentiment labels correctly into the low class, which human models
often misclassified. These results suggest that the classification pattern of
the human and DNN models is different, even though the total estimation
accuracy is comparable. When humans perceive emotions in other people,
their perception depends on the explicit acoustic and visual information of
the other people, and they cannot detect the physiological implicit state.
Thus, it is challenging to estimate the negative or neutral implicit responses
of the interactions of the humans. Alternatively, the use of physiological sig-
nals or their fusion with other signals could help detect the implicit aspects
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Figure 4.3: Confusion matrix for binary classification showing the percentage
of the total samples (n = 2468). upper: human model, lower: DNN model.

and estimate the negative sentiment labels for the adaptation of the dialogue
systems.
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Figure 4.4: Estimation results for each participant in the LOUOCV (green
bar: Human model, yellow bar: DNN model). As a reference, the proportion
of the two classes for each participant’s sentiment (grand truth) is also shown
(blue bar: positive sentiment (true high), red bar: negative sentiment (true
low)).

4.7.2 EDA Feature Analysis

Among the modalities used in this study, the DNN model exhibited that
the physiological features are more effective in estimating the participant’s
sentiments, which change dynamically during dialogues. As the EDA has
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Table 4.3: Average correlation coefficient r between the EDA feature and
sentiment score for all the participants. Bold indicates r > 0.1.

Description r

Standard deviation 0.157
Skewness 0.007
Range 0.161
Slope of linear approximation 0.075
GSR number 0.168

more effective features compared to those of the HR among the physiologi-
cal features, we focused on the EDA features and performed an additional
analysis. First, to investigate the EDA features that are effective in estimat-
ing the participant’s sentiment labels, we performed Welch’s t-test to verify
whether there is a difference between the means of feature of the samples
that are classified into high class and the means of those with low class. The
results indicated that the standard deviation, skewness, range, and slope of
linear approximation of the EDA signals and the GSR number were signif-
icantly different for the high and low classes (p < 10−7). Subsequently, a
correlation analysis was performed between each of the five features and the
participant’s sentiment score. The average correlation coefficient r between
the EDA feature and sentiment score for all the participants was calculated,
and it was observed that the GSR number exhibit the highest correlation
(Table 4.3, r = 0.168).

Figure 4.5 presents an example of the time series changes in the sentiment
score and the GSR number during the dialogue. It can be noted that the
sentiment score is not static but dynamic, and these changes co-occur with
the changes in the GSR in this example. This result is reasonable as it is
widely recognized that the GSR is related to the human emotional state in
the affective computing and psychophysiological domain [14, 27, 13]. This co-
occurrence property of the GSR can be applied to estimate the participants’
sentiment labels in the DNN model, which exhibits the same performance as
that of the human model.

To visualize the relationships between the sentiment score and GSR num-
ber, we calculated the quartile of the GSR number, and the samples of the
participants’ sentiment scores were divided into the quartile group of the
GSR number. Figure 4.6 (left) shows the relative frequency of the sentiment
score in each group (Q1: lower quartile, Q4: upper quartile) and indicates
the differences in the sample distribution along with the GSR number. There
was a clear difference between quartile groups in the sentiment score of 6.
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Figure 4.5: Example of dynamic changes in the participant’s sentiment and
GSR number during the dialogue. The sentiment score (blue line, left y axis)
and GSR per exchange (orange line, right y axis) are shown. The red stars
indicate the timing of the system utterance (Participant ID 11 in Figure 4.4,
dialogue data from the start time to 15th exchange).
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Figure 4.6: Relationship between the sentiment score of the participant and
EDA features in each exchange. The samples of the participants’ sentiment
score were divided into quartile groups based on the quantile of the GSR
number (left) or SC range (right). The relative frequency of the sentiment
score in each quartile group is shown.

A similar distribution was observed in the quartile group of the SC range
(Figure 4.6, right). Thus, these EDA features were expected to contribute
to the sentiment estimation.

4.7.3 Limitation and Remaining Works

Although the detection of the implicit responses can help develop natural
and engaging dialogue systems, it needs real-time feedback to the systems.
Therefore, the subsequent objective is to optimize when and how to adapt
the systems and to realize automated dialogue adaptation to provide a novel
user experience. Weber et al. [125] proposed an autonomous real time adap-
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tation approach that was based on social signals and reinforcement learning
in human–robot interaction. A similar feedback approach that can detect the
dynamic implicit responses in real time can help realize a more natural and
interesting interaction between the user–agent or user–robot. Alternatively,
the interbeat interval derived through photoplethysmography is often ana-
lyzed in the affective computing or psychophysiological domain. This aspect
was not implemented in this work; however, this analysis can provide useful
insights regarding ANS. In addition, the presence of individual differences
in physiological signals could lead to a performance degradation. A method
known as covariate shift adaptation [16], which is based on the density ratio
estimation can be used for the domain adaptation in the machine learning
domain. Using these methods, the individual differences in physiological sig-
nals can be compensated, and the model performance can likely be improved.
These aspects will be considered in future work.

4.8 Chapter Summary

In this study, we collected a new multimodal dialogue corpus Hazumi1911,
which included physiological and acoustic/visual signals to investigate the ef-
fectiveness of physiological signals in estimating the participant’s sentiment
at the exchange level. We demonstrated that the SVM model based on
physiological signals outperforms the majority baseline and achieves an esti-
mation accuracy of 60.3% when fused with acoustic features. Furthermore,
a multimodal DNN model based on the EDA and visual features exhibits an
accuracy of 63.2%, which is comparable to the accuracy of sentiment estima-
tion (63.0%) conducted by humans. Although the human and DNN models
have similar estimation accuracies, the classification patterns are different.
According to the results of the feature analysis, the EDA is correlated with
the sentiment score at the exchange level during the dialogue, and thus,
detecting these dynamic implicit responses can help in the adaptation of
multimodal dialogue systems.
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Chapter 5

Different Types of Multimodal
Sentiment Estimation

5.1 Introduction

Unobservable signals, i.e., physiological signals as key information for cap-
turing SS that cannot be detected from only observable information (i.e.,
text, audio, and visual information), should be considered for sentiment
estimation, since such physiological signals could potentially include valu-
able information for estimating SS. In addition, there is a need to clarify
the modalities that can effectively estimate SS, including combinations of
modalities, and investigate the contributions of observable and unobservable
modalities to improving estimation performance. Furthermore, a multimodal
dataset that includes different types of sentiment labels, that is, both SS and
TS labels, and is annotated at a conversational exchange level in naturalistic
human-agent interaction settings is needed. Here, the “exchange” consists of
a system utterance followed by a user utterance.

In this chapter, we investigate effects of physiological signals in multi-
modal sentiment analysis and evaluate all of the fusion models for different
types of sentiment estimation on naturalistic human-agent interaction set-
tings. These analyses provide information on the types of modalities and
fusion methods that are effective in each task to create an adaptive dialogue
system.

For this purpose, we used the multimodal dialogue corpus Hazumi1911,
which contains conversational exchanges recorded in human-agent interac-
tion settings, and is identical to the dataset used in Chapter 4. The entries
in Hazumi1911 consist of sequential sentiment labels (SS and TS) for each ex-
change and textual, audio, visual and physiological information. This dataset
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is the first to enable the construction and evaluation of multimodal fusion
models with physiological signals that can estimate both SS and TS based on
detected short-time multimodal signals during dialogue. Thus, this dataset
also provides new insights on the roles of multimodality with physiological
signals in SS and TS estimation.

Toward creating an adaptive dialogue agent, our study aims to demon-
strate the importance of multimodal signals with physiological signals in
sentiment analysis and evaluate all of the fusion models in human-agent in-
teraction settings. Our main contributions are as follows:

• We tackle SS estimation problems with physiological signals and ex-
tensive baseline in multimodal dialogue settings between humans and
agent for the first time (Section 5.6.1).

• We clarify the effects of physiological signals in exchange level SS and
TS estimation by comparing other modalities (Section 5.6.1 for SS es-
timation and Section 5.6.2 for TS estimation).

• We present a comparison of multimodal language models based on the
Automatic Speech Recognition (ASR) and manually transcribed data
(Section 5.6.3), the effective physiological features for SS estimation
(Section 5.6.4), and a comparison of the SS estimation patterns gener-
ated by the linguistic model and the physiological model (Section 5.6.5).
These analyses provide knowledge for implementing systems and im-
proving performance in multimodal dialogue modeling with physiolog-
ical signals.

The remainder of this chapter is organized as follows: Section 5.2 reviews
research related to our work in the domains of natural language processing
(NLP), affective computing and multimodal analysis. Section 5.3 describes
the data collection methods used for the multimodal dialogue corpus, and
Section 5.4 describes the extraction methods used to obtain the multimodal
features and linguistic representations. The experimental settings, including
the multimodal model architecture and evaluation schema, are described in
Section 5.5. Section 5.6 presents the experimental results, which are further
discussed in Section 5.7. Section 5.8 concludes our work.

5.2 Related Works

5.2.1 Text-based Sentiment Analysis

Text-based approaches play a central role in sentiment analysis. Although
conventional lexicon- or handcrafted feature-based sentiment analysis meth-
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ods and various datasets have been reported, this subsection focuses on re-
cently developed SOTA neural network models in the NLP domain.

Neural network models have recently become a popular approach in sen-
timent analysis [126]. High performance of CNNs, Long Short-Term Memory
(LSTM) networks and their variants has been reported. Kim [127] reported
simple CNN models that achieved SOTA performance on 4 of 7 datasets,
including the Stanford Sentiment Treebank v2 (SST-2, [128]) dataset (88.1%
accuracy). Peters et al. [129] proposed deep contextualized word represen-
tations based on a Bidirectional Long Short-Term Memory (BiLSTM) ap-
proach called embeddings from language models (ELMo) representations.
Using ELMo representations for downstream tasks, new SOTA results were
achieved on six NLP tasks, including sentiment analysis. As an alterna-
tive approach, Vaswani et al. [130] developed a simple new network archi-
tecture, called a transformer, that contains no recurrence or convolutions.
Based solely on an attention mechanism, transformers achieved significant
improvements in computational efficiency through parallelization and im-
proved performance for machine translation tasks. Following [130], Devlin
et al. [131] developed BERT, a language model based on a multilayer bidi-
rectional transformer encoder, which advanced the state of the art on eleven
NLP tasks (94.9% accuracy on the SST-2 dataset). BERT has become the
de facto standard for NLP tasks, but it seems that such powerful tools and
models can contribute to estimation performance during dialogue if the user’s
sentiment is explicitly expressed as textual information. Since many factors
influence sentiment expression and spoken language is noisier and less struc-
tured than written language [132], relying solely on linguistic information
may not be sufficient, and there is a need to consider a multimodal approach
to understanding user sentiment.

5.2.2 Physiological Signal-based Sentiment Analysis

To date, studies on emotion recognition and sentiment analysis have mainly
focused on textual, audio and visual modalities; however, physiological sig-
nals have also been considered. Previous extensive emotion recognition stud-
ies based on physiological signals have provided insights on physiological as-
pects. Soleymani et al. [64] reported a multimodal database recorded in
response to affective stimuli induced by emotional videos, including facial
expressions, audio, eye gaze data, EEG signals and peripheral physiological
signals. Twenty-seven participants were recruited and self-reported their felt
emotions using arousal, valence, dominance, predictability and emotional
keywords. More recently, the AMIGOS dataset, which includes audio, vi-
sual, depth, EEG, EDA and ECG data for 40 participants, was created [56]
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(please see Section 3.2 in Chapter 3). The data were collected during a movie-
watching task, and the levels of arousal and valence were annotated by not
only the participants themselves but also a third party. The Big Five per-
sonality traits [133] and the Positive and Negative Affect Schedule (PANAS)
[134] were also measured. Although the data in these studies were collected
under emotional stimuli, they show the potential uses of physiological signals
in emotion-related research.

The REmote COLlaborative and Affective interactions (RECOLA) cor-
pus [44] was collected under naturalistic (spontaneous) conditions. The par-
ticipants were recorded in dyads while video conferencing for a collaborative
task. The RECOLA corpus includes audio, visual, ECG and EDA data.
Annotations of affective (arousal and valence) and social behaviors were pro-
vided by the participants (3 time points) and by a third party (first 5 min-
utes of interaction). The RECOLA corpus has been extensively used for
benchmarking emotion recognition and reporting the effectiveness of con-
sidering individual modalities, including physiological signals (e.g., [48, 135,
29] evaluated the recognition performance for naturalistic affective states
using peripheral physiological signals (ECG, EDA and EMG) in a human-
agent interaction setting. The participants interacted with a tutoring sys-
tem called AutoTutor. AutoTutor’s dialogues are organized around difficult
questions and evoke naturalistic affective states such as confusion and frustra-
tion. The participants annotated their affect during each 20-second interval.
The researchers focused on the detailed differences between user-independent
and user-dependent models, and classifiers such as support vector machine
and NB classifiers were used for evaluation. The results suggested that the
user-dependent models based on naturalistic physiological data were feasi-
ble, whereas the user-independent models were not accurate, possibly due to
individual differences.

The human-computer interface literature has also explored multimodal
measures of user engagement [136], which are closely related to user sentiment
during dialogue. To obtain more objective data, physiological measures have
been incorporated into approaches for measuring user engagement [137].

Although there may be cases in which the use of naturalistic physiological
signals in a unimodal model is insufficient for estimating SS, the potential of
exploiting complementarity between different modalities, such as linguistic
and physiological information, to improve estimation performance has not
been considered in previous studies.
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5.2.3 Multimodal Dialogue Systems

The multimodal approach has attracted attention as a means of recognizing
the internal states of users during human-agent interactions [3]. McKeown
et al. [43] created a large database dedicated to emotionally colored con-
versations called SEMAINE that includes audiovisual data collected during
interactions between users and an agent. The recordings represent 150 partic-
ipants and were annotated with five affective dimensions, including valence,
by raters. Tomimasu and Araki [41] considered each exchange between a
system and a user as a unit in a chat dialogue and assessed user interest
based on audiovisual information. Tavabi et al. [42] proposed a multimodal
learning framework for identifying opportunities for an agent to express em-
pathetic responses to achieve engaging social interactions. Textual, audio
and visual features were used to construct a multimodal neural network with
Gated Recurrent Units GRUs.

In our previous work, we created two multimodal chat-dialogue corpora
called Hazumi1712 [119] and Hazumi1902 [120] that include user interest la-
bels, user sentiment labels, and topic continuance annotated at the exchange
level. Textual, audio and visual data were recorded in human-agent interac-
tion settings. Considering the relationships among the labels, we applied a
multitask learning technique for binary classification tasks and demonstrated
that a multitask DNN model trained on multimodal features outperformed
a single-task DNN [116]. More recently, we collected another multimodal
dialogue corpus, called Hazumi1911, under almost the same recording set-
tings as for Hazumi1712 and Hazumi1902 except that physiological sensors
were additionally used for Hazumi1911. Using the Hazumi1911 dataset, the
contribution of physiological signals for estimating SS was compared to that
of audiovisual data, and the effectiveness of considering such nonverbal in-
formation for sentiment analysis was demonstrated as reported in [138] and
Chapter 4.

In this study, we extended the work described in Chapter 4) via a multi-
faceted approach using linguistic, audio, visual and physiological information
to obtain a comprehensive understanding of the effects of each modality in
sentiment analysis. We investigated the linguistic contribution to multimodal
user sentiment analysis by using the SOTA language models fastText [139]
and BERT [131]. Then, we used two different types of sentiment labels, that
is, sentiment labels annotated by the users themselves (i.e., SS label) or by
third parties (i.e., TS label), for the sentiment estimation task. These settings
enabled an investigation of the differences in the contributions of “observ-
able” (i.e., linguistic, audio, visual) and “unobservable” (i.e., physiological)
signals on both the “self” and “other” axes for the first time.
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Figure 5.1: Overview of the estimation of SS and TS at the exchange level.

5.3 Data

Our proposed framework is depicted in Figure 5.1. The multimodal dialogue
corpus Hazumi19111 is also introduced in this chapter. We propose that
physiological signals as well as textual, audio and visual data recorded from
a participant during a dialogue serve as multimodal data. An “exchange” is
defined as a segment that begins at the start time of a system utterance and
ends at the start time of the next system utterance. Feature extraction was
performed for each exchange, and the extracted features were fed into each
model, including the multimodal neural network. Then, binary classification
and regression tasks were conducted using SS and TS. This section describes
the Hazumi1911 dataset.

5.3.1 Dialogue Settings

Hazumi1911 was collected in the human-agent dialogue context described
in [119, 46], in which the participants communicated with a virtual agent
known as MMDAgent2 shown on a display. The agent was operated us-
ing the Wizard of Oz (WoZ) method. Specifically, a human operator (the
Wizard) remotely controlled the system and interacted with the participants
from another room. The participants were not informed that the agent was
remotely controlled by a human operator until the end of the experiment. No
specific task was assigned during the dialogue; i.e., the participants simply
chatted with the agent. About a dozen of topics such as food preference,
traveling, and movies were prepared for the dialogue, so no particular edu-

1Hazumi1911 is publicly available [121].
https://github.com/ouktlab/Hazumi1911/

2http://www.mmdagent.jp/
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Table 5.1: Dataset summary.
Number of participants 26
Average dialogue duration 20.5 min
Average number of exchanges 95
Total dialogue duration 534.0 min
Total number of exchanges 2468
Sentiment ratings Discrete values of 1 to 7

cation level was assumed. A well-trained single Wizard-of-Oz operator was
engaged in operating the virtual agent. The Wizard selected an utterance
prepared prior to the study and tried to make participant enjoy the conversa-
tion and want to continue talking. Specifically, the Wizard changed the topic
if a participant seemed bored or took the role of the listener if the participant
seemed to enjoy talking.

The dataset used in this study is summarized in Table 5.1. Thirty partic-
ipants (between the ages of 20 and 70; 15 male and 15 female) were recorded,
and data from 26 of the participants were used for analysis; the data of four
participants were disregarded because of missing values after preprocessing.

This study was reviewed and approved by the Research Ethics Committee
of the Institute of Scientific and Industrial Research, Osaka University. All
participants provided written informed consent to participate in the study.
More details of the dialogue settings are described in [46].

5.3.2 Sensors

EDA, measured as SC, reflects sweat gland activity as part of the sympa-
thetic nervous system and has previously been used to detect changes in
emotional states [14, 27, 140]. EDA data were collected as physiological sig-
nals during the dialogues using a physiological sensor, namely, the Empatica
E4 wristband (Empatica Inc., Cambridge, MA, USA)3 developed by Empat-
ica Inc., which arose from MIT research [24]. This device can detect changes
in SC by means of two electrodes in contact with the skin and has been well
validated4. Furthermore, because the E4 device is wireless and worn like
a wristwatch, it causes neither disturbance nor discomfort, which is a top
priority for naturalistic dialogue. Thus, this device is suitable for investigat-
ing a participant’s sentiment and for comparing the physiological modality

3https://www.empatica.com/research/e4/
4https://support.empatica.com/hc/en-us/articles/203005295-Have-you-done-

comparative-studiesor-validation-on-Electrodermal-activity-sensor-
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with other modalities during naturalistic dialogue. The EDA signals of the
participants were recorded at 4 Hz.

Regarding the textual and audio signals, the vocal utterances of each par-
ticipant were recorded as a 16 kHz waveform audio format (WAV) file using
a Microsoft Kinect V2 sensor. The system’s utterances, which the Wizard
selected during each dialogue, were also logged. Regarding the visual signals,
the facial expressions of the participants were recorded using a video cam-
era at 30 frames per second (fps), and motion data were recorded using the
Kinect sensor at 30 fps. Since the sampling rates of the nonverbal modalities
differed, statistics such as the average and maximum of the features were
calculated in each exchange and used for feature extraction.

5.3.3 Annotation

One of the definitions of engagement is an attitude that determines the qual-
ity of interaction [141]. In contrast, the rating scale that we adopted in
this study includes negative sentiments such as “confusion” or “dissatisfac-
tion”. We defined sentiment as a particular type of affective experience that
is suitable to represent these negative aspects, and the definition was prede-
termined during the planning of this study. Thus, we considered our labels as
positive/negative sentiment labels that represent the emotional aspect of the
participant. Two different types of annotation were performed in this study,
namely, (1) SS annotation and (2) TS annotation, which were performed
by the participants themselves and by third-party coders, respectively. SS
and TS were used for the sentiment estimation task described in Section
5.6.1 and Section 5.6.2, respectively, to investigate the contribution of each
modality to each task. A total of 2468 exchanges from 26 participants were
annotated. We used a 7-point Likert scale for annotation, which is identical
to the method used in multimodal sentiment research for datasets such as
the MOSI and MOSEI datasets [8, 9]. The annotation procedures were as
follows:
(1) Self-reported sentiment annotation: The participants annotated
the labels for each of their own exchanges while watching their own videos
after the experiment. Only one label was annotated by the SS annotation
process in each exchange, and there were not different types of SS labels. The
labels were assigned as scores ranging from 1 (no enjoyment of the dialogue)
to 7 (enjoyment of the dialogue). The positive sentiments included “enjoy
talking”, “want to continue talking”, and “satisfied with the conversation”,
and the negative sentiments included “want to stop talking” and “confused
about the system utterances”.
(2) Third-party sentiment annotation: Five human coders annotated
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Figure 5.2: (left) Distribution of the sentiment scores among the participants
(SS) and five third-party coders (TS). (right) Estimation error of the third-
party coders.

each exchange with labels assigned as scores ranging from 1 (participant
seems to be bored with the dialogue) to 7 (participant seems to enjoy the
dialogue) while watching the recorded videos of the dialogues. The third-
party coders were instructed to assign labels by considering the participants’
linguistic, audio and visual information. They were also instructed not to
assign labels by considering only a part of the exchange and to assign labels
after watching the entire recording of the target participant.

The agreement between the third-party coder ratings was calculated using
Cronbach’s alpha. Generally, a Cronbach’s alpha of > 0.8 indicates high
consistency between the annotated labels. The Cronbach alpha value was
0.83 for the TS annotation, indicating the reliability of the annotation in
this study. Finally, we averaged the values from the five coders for use as the
TS label.

Figure 5.2 (left) shows the distribution of the SS and TS labels. The
third-party coders tended to annotate the participants’ sentiment as positive.
Figure 5.2 (right) shows a box plot of the differences in sentiment scores
between third-party coders (TS) and participants (SS), i.e. human estimation
error. An upward bias is apparent, which indicates that from the viewpoint
of the third parties, the participants seemed to enjoy the dialogue, but the
participants actually had neutral or negative sentiments.

5.4 Features and Representations

5.4.1 Linguistic Feature Extraction

Three linguistic feature sets were prepared for the construction of multimodal
models: a handcrafted feature set based on conventional methods, a set of

64



word representations from fastText, and a set of sentence representations
from BERT. The method used to construct each feature set is presented in
this subsection.

Handcrafted Features

The participants’ utterances were manually transcribed into text data. The
texts were then segmented into words by using the Japanese morphological
analysis tool MeCab [142]. The utterance token distribution with respect
to parts of speech (PoSs) is summarized in Appendix (Table S1). The lin-
guistic features extracted from each participant’s utterances were as follows:
the frequencies of words based on bag-of-words (BoW) representation, the
frequencies of the PoSs of the words (noun, verb, adjective, adverb, and
interjection), the frequency of filler, and disfluency. The polarity of each
participant utterance (positive, negative, or neutral) was also evaluated us-
ing oseti5, a sentiment analyzer for Japanese based on sentiment polarity
dictionaries [143, 144]. The polarity score [-1, 1] of a participant’s utter-
ance and the numbers and proportions of positive and negative words were
additionally used as features.

The utterances of the dialogue system could affect a participant’s senti-
ment. Thus, the system’s utterances were also extracted from the recorded
dialogue log data. The system’s utterances were classified into eight di-
alogue actions (providing information, negative answers, positive answers,
other types of answers, starting new topics, wh-questions (six types of wh-
questions), yes/no questions, and proposals) and represented as eight dimen-
sional one-hot vectors.

The duration of and the number of words in each utterance of the partic-
ipants and the system were also extracted. The differences in these factors
between the participants’ and system’s utterances were also calculated as
features. The data were normalized per participant by means of Z-score nor-
malization to ensure a mean of zero and a standard deviation of one for all
samples from one participant.

FastText word vectors

FastText is a recently developed language model for training word vectors
with subword information on Wikipedia and the Common Crawl corpus [139].
This language model is not restricted to English and is available for 157 lan-
guages, including Japanese. FastText shows strong performance compared
with previous word vector models. Thus, to evaluate other baselines for text

5https://github.com/ikegami-yukino/oseti
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modality, fastText word vectors were used in this study. The utterance se-
quences in each exchange were first tokenized by MeCab and subsequently
represented by using a pretrained Japanese fastText model6. The word vec-
tors in each exchange were averaged, resulting in a single vector with a length
of 300.

BERT Representations

BERT is a language representation model that achieves SOTA performance
on many NLP tasks [131]. Language model pretraining is important for per-
formance improvement [145, 131], and a pretrained Japanese BERT model7

has recently been developed at Tohoku University. The pretrained Japanese
BERT has shown superior performance to conventional models based on the
bag of words in tweet emotion recognition [146]. We used this pretrained To-
hoku BERT model in this study. The participant’s and system’s utterances
in each exchange were separated by a special token ([SEP]). The utterance
sequences were first tokenized by MeCab and split into subwords by the
WordPiece algorithm. Then, the sequences were represented by extracting
the activations from the second-to-last hidden layer of the BERT model and
average pooling, resulting in a single vector with a length of 768 as described
in [131]. Finally, this vector was used as the input feature vector for each
models. This approach does not require the extraction of complicated hand-
crafted features and enables easy fusion with other modalities.

5.4.2 Physiological Feature Extraction

Physiological feature extraction method is identical to Chapter 4. In brief,
the recorded time series SC data were decomposed into the SC level (the
baseline, also known as the tonic component) and the SC response (also
known as the GSR). The baseline SC, which reflects the general activity of
the perspiratory glands due to the ambient temperature [147, 27], was calcu-
lated using polynomial fitting (degree of 10). Then, the GSR was detected
using PeakUtils8 (amplitude threshold of 0.3). Finally, the GSR number per
exchange was extracted as a physiological feature. Moreover, the following
statistics of the SC in each exchange were calculated and used as physiological
features: the mean, standard deviation, skewness, kurtosis, maximum and
minimum values, mean of the first and second differences, range (difference
between maximum and minimum values), slope and intercept of the linear

6https://fasttext.cc/
7https://github.com/cl-tohoku/bert-japanese
8https://pypi.org/project/PeakUtils/
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approximation, and 25th and 75th percentile values. Overall, 14 physiologi-
cal features were extracted from each exchange. The data were normalized
using min-max normalization to a range of zero to one.

5.4.3 Audio/Visual Feature Extraction

The INTERSPEECH 2009 Emotion Challenge feature set (IS09) [122] was
extracted using the OpenSMILE9 software to serve as audio features. The
features were calculated as statistics, and 384 acoustic features in total were
extracted from each exchange. Using the OpenFace library[123], facial land-
marks around the eyes, mouth, and eyebrows were determined, and the ve-
locity and acceleration at each point were calculated for facial feature ex-
traction. The estimated categories of facial action units as proposed by [124]
were also used as facial features. Motion data of the hands, shoulders and
head recorded by the Microsoft Kinect sensor were additionally considered,
and the calculated velocity and acceleration were used as motion features.
In total, 86 visual features were extracted from facial expressions and mo-
tion activity. The data were normalized per participant by means of Z-score
normalization.

5.5 Experimental Settings

In this study, we refer to the estimation task using SS as SS estimation and
to the estimation task using TS as TS estimation. These estimation tasks
were evaluated as both binary classification and regression tasks. For binary
classification, the sentiment labels were divided into positive and negative
classes considering a threshold of 4 (neutral state). The numbers of SS labels
in the positive and negative classes were 1119 and 1349, respectively. Simi-
larly, the TS labels were divided into positive and negative classes containing
1701 and 767 labels, respectively. For regression, the sentiment scores in the
range of 1 to 7 were used for estimation. Each model used for the estimation
task is described in this section.

5.5.1 Machine Learning Algorithms

Support Vector Machines

SVM is a popular and conventional learning algorithm for estimation tasks
[91]. L-SVM and Support Vector Machine with Radial basis function kernel

9https://www.audeering.com/opensmile/
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Figure 5.3: Summary of the multimodal model architecture. The case of
quadmodal models is shown. l i, p i, a i and v i indicate linguistic, physiologi-
cal, audio and visual feature vectors of the ith exchange, respectively. A fully
connected layer is denoted as fc. Brackets indicate the dimension, and we
use d = 64 in this study. k in early fusion indicates the number of modalities
(i.e., k = 4 in quadmodal model).

(R-SVM) were used as baseline models in this study.
(1) Linear SVM: The L-SVM models were optimized using a threefold
cross-validation scheme for the training data set with the penalty parameters
set as {0.01, 0.1, 1, 10} in the classification task and with the insensitivity
parameters set as {0, 0.5, 1, 1.5} in the regression task.
(2) SVM with radial basis function kernel: The R-SVM models were
optimized using a threefold cross-validation scheme for the training data set
with the penalty parameters set as {0.01, 0.1, 1, 10, 100} and with the kernel
parameters set as {0.001, 0.0001} in both the classification and regression
tasks.

Feedforward Neural Networks

The Feedforward Neural Network (FNN) architecture was used to construct
unimodal and multimodal neural networks. Figure 5.3 shows a summary of
the multimodal model architecture used in this study.

For training on a unimodal feature set, the FNN was composed of an input
layer, two intermediate layers with 64 units, two intermediate layers with
32 units, and an output layer. The rectified linear unit (ReLU) activation
function was used. Dropout was applied after each layer to reduce overfitting.
To investigate the contributions of each modality to SS and TS estimation,
we used EF and two kinds of late fusion (LF1 and LF2) [148].
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(1) Early fusion: This is the simplest fusion technique. The feature vectors
from different modalities are concatenated into a single feature vector, which
is then fed to an FNN as the input feature vector. The architecture used in
the EF configuration was similar to that used in the unimodal configuration,
except that it also included two intermediate layers with 128 units for the
bimodal features and a layer with 192 units for the trimodal features.
(2) Late fusion 1: The FNN structure for LF1 consisted of a lower block
and a higher block. For the lower block, a neural network with an input
layer and two intermediate layers with 64 units were prepared to extract
each unimodal feature type. For the higher block, the output units of each
unimodal model were concatenated, and the layer with the concatenated
units was then connected to two hidden layers with 32 units, followed by an
output layer.
(3) Late fusion 2: In LF2, fusion is performed after the calculation of an
output value derived from each unimodal model (i.e., ensemble). The other
hyperparameters were set as follows: a batch size of 32, a dropout rate of
0.3, a learning rate of 0.001 (adaptive moment estimation (Adam) optimizer),
and a number of epochs of 30 (classification) or 100 (regression).

Tensor Fusion Networks

Several multimodal neural networks have been proposed for sentiment anal-
ysis [6, 149]. These models were proposed for TS estimation (sentiment
estimation using opinionated monologue videos) and thus might also work
well in estimation of TS derived from human-agent interactions. It is inter-
esting to investigate whether these models are also effective for SS estimation.
Thus, we implemented the Tensor Fusion Network (TFN) developed in [149].
Following [149], the lower block had an input layer and three intermediate
layers (Figure 5.3). The tensor fusion layer is defined as follows:

zmi =

[
zli
1

]
⊗
[
zpi
1

]
⊗

[
zai
1

]
⊗
[
zvi
1

]
Here, zmi indicates an outer product between linguistic representations zli,
physiological representations zpi , audio representations
textitzai , and visual representations zvi in the ith exchange. Each represen-
tation is derived from the third intermediate layer of the lower block. The
extra constant dimension with value 1 generates the unimodal, bimodal and
trimodal dynamics. The 4-D tensor zmi was flattened and then connected to
two hidden layers with 128 units, followed by an output layer.

69



5.5.2 Evaluation Procedure

To evaluate the models, a cross-validation method (LOUOCV) was applied.
In LOUOCV, the samples corresponding to each exchange between one par-
ticipant and the dialogue system were used as the test data, and the remain-
ing samples were used as the training data. This procedure ensured that the
test data from one participant were completely excluded from the training
dataset, thereby avoiding overestimation. The accuracy and macro F1-score
were calculated for each evaluation. The average accuracy and average F1-
score were reported as the model performance indicators for the binary classi-
fication tasks. Similarly, the average of the Mean Absolute Error (MAE) was
reported for the regression tasks. All experiments were performed five times
with random initialization, and the evaluation values were calculated as aver-
ages across the five repetitions. These evaluation values were then compared
among the models based on each modality or combination of modalities. The
majority baseline for binary classification was 54.7% for the SS labels and
68.9% for the TS labels.

5.6 Results

First, we present the effectiveness of the physiological signals in SS estimation
to compare other modalities in this task. This is shown in Section 5.6.1.
The results indicate that the unobservable signal, i.e., the physiological (P)
modality, is the most effective for SS estimation among unimodal models. It
is also shown that our proposed model fusing linguistic representations with
physiological features outperforms the best previously reported model.

Second, we show the contribution of each modality in different types of
sentiment estimation, i.e., TS estimation, which is contrasted with the SS
estimation result. The TS estimation results are presented in Section 5.6.2.
In contrast to SS estimation, the linguistic model provides the best result
for TS estimation, and the tensor fusion of linguistic representations with
audiovisual features, i.e., fusion of the observable signals, is the most effective
for TS estimation in the regression task.

Third, we present comparisons of multimodal language models based on
ASR and manually transcribed data (Section 5.6.3) to consider the end-to-
end model. We also present effective physiological features for SS estimation
in Section 5.6.4, and finally, to investigate the effects of physiological signals
in the SS estimation task, differences in the SS estimation patterns between
the linguistic model and the physiological model are presented in Section
5.6.5.
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The following feature sets were used as the basis for unimodal models:
La, handcrafted linguistic features; Lb, fastText word vectors; Lc, BERT
representations; P, physiological features; A, audio features; and V, visual
features. The multimodal models were constructed using either an EF, LF
or tensor fusion technique. The plus (+) sign indicates each modality fusion,
for example, Lc+P indicates BERT representations + physiological features;
Lc+A+V indicates BERT representations + audio + visual features; and
Lc+P+A+V indicates all fusion. All of the fusion models with La or with
Lb are listed in Appendix (Tables S2 and S3) to compare the language rep-
resentation methods.

5.6.1 Self-reported Sentiment Estimation

The effectiveness of the physiological signal in SS estimation is evaluated
in this subsection. The results for both classification (Accuracy (Acc) and
macro F1-score (F1)) and regression (MAE) are listed in Table 5.2 for uni-
modal models and Table 5.3 for multimodal models.
(1) Unimodal models: Among the unimodal models, for the classification
task, the physiological (P) FNN model achieves the best accuracy of 0.619,
and L-SVM trained on the BERT representation (Lc) has the best F1-score of
0.541 (Table 5.2). For the regression task, the physiological (P) FNN model
also achieves the best MAE of 1.082. Overall, the physiological (P) modal-
ity seems to be the most effective for SS estimation. The unimodal models
trained on handcrafted linguistic features (La), fastText word vectors (Lb),
audio features (A) and visual features (V) exhibit lower performance than
the physiological (P) model or the BERT representation (Lc) model for both
the classification and regression tasks, except the R-SVM model trained on
La, which shows performance equal to the physiological (P) FNN model in
the regression task.
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Table 5.2: SS Estimation results for unimodal models. La, handcrafted linguistic features; Lb, fastText word vectors;
Lc, BERT representations; P, physiological features; A, audio features; and V, visual features.

Feature

L-SVM R-SVM FNN

Acc F1 MAE Acc F1 MAE Acc F1 MAE

mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD

La 0.571 0.000 0.507 0.000 1.243 0.000 0.404 0.000 0.281 0.000 1.082 0.000 0.584 0.007 0.521 0.008 1.127 0.008

Lb 0.580 0.004 0.527 0.003 1.100 0.000 0.478 0.000 0.364 0.000 1.103 0.000 0.582 0.010 0.523 0.006 1.120 0.014

Lc 0.601 0.005 0.541 0.006 1.162 0.000 0.469 0.000 0.424 0.000 1.102 0.000 0.602 0.004 0.537 0.005 1.111 0.004

P 0.600 0.000 0.491 0.000 1.136 0.000 0.496 0.000 0.392 0.000 1.088 0.000 0.619 0.011 0.499 0.016 1.082 0.017

A 0.561 0.004 0.509 0.004 1.322 0.000 0.531 0.000 0.475 0.000 1.143 0.000 0.567 0.013 0.507 0.010 1.204 0.010

V 0.568 0.001 0.518 0.001 1.342 0.000 0.517 0.000 0.464 0.000 1.103 0.000 0.560 0.002 0.508 0.004 1.175 0.005
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(2) Multimodal models: Since the BERT representation (Lc) model shows
higher performance than the model trained on handcrafted linguistic features
(La) and fastText word vectors (Lb), we report the BERT representation (Lc)
model for further investigation of multimodal neural network models (please
see Table S2 in the Appendix for all of the fusion models with La or Lb).
Among the multimodal models, the Lc+P FNN model with LF2 achieves the
highest classification accuracy of 0.637, outperforming the best unimodal
model by 0.018 (Table 5.3). Furthermore, on the regression task, this fusion
model also yields the best MAE of 1.041. On the other hand, the Lc+P+V
FNN model and L-SVM trained on all modalities achieves the highest F1-
score of 0.557. The TFN model did not outperform FNN with LF2 model.

In summary, the combination of BERT representations and physiological
features is the most effective approach for SS estimation in this experiment.
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Table 5.3: SS estimation results for multimodal models.

Feature
L-SVM R-SVM FNN EF FNN LF1 FNN LF2 TFN

Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE

Lc+P 0.608 0.527 1.151 0.526 0.462 1.100 0.615 0.548 1.088 0.630 0.542 1.087 0.637 0.554 1.041 0.615 0.543 1.089

Lc+A 0.583 0.529 1.206 0.553 0.494 1.094 0.587 0.528 1.141 0.576 0.519 1.150 0.593 0.532 1.094 0.599 0.538 1.143

Lc+V 0.609 0.551 1.264 0.552 0.490 1.095 0.599 0.540 1.129 0.586 0.531 1.143 0.597 0.539 1.085 0.598 0.534 1.112

P+A 0.594 0.517 1.270 0.543 0.480 1.113 0.575 0.507 1.153 0.593 0.515 1.149 0.599 0.524 1.081 0.588 0.514 1.086

P+V 0.613 0.521 1.278 0.531 0.472 1.100 0.587 0.511 1.106 0.625 0.537 1.108 0.618 0.534 1.077 0.603 0.519 1.070

A+V 0.574 0.526 1.228 0.538 0.478 1.106 0.573 0.515 1.162 0.571 0.515 1.169 0.581 0.522 1.131 0.567 0.516 1.115

Lc+P+A 0.607 0.529 1.197 0.519 0.454 1.095 0.580 0.523 1.127 0.611 0.534 1.111 0.627 0.551 1.050 0.602 0.532 1.106

Lc+P+V 0.615 0.541 1.309 0.553 0.489 1.096 0.593 0.532 1.120 0.632 0.550 1.109 0.633 0.557 1.048 0.609 0.539 1.103

Lc+A+V 0.589 0.532 1.221 0.537 0.471 1.131 0.585 0.528 1.120 0.583 0.526 1.145 0.600 0.540 1.082 0.597 0.536 1.139

P+A+V 0.605 0.533 1.235 0.521 0.465 1.102 0.584 0.524 1.145 0.602 0.527 1.138 0.616 0.542 1.075 0.603 0.527 1.095

Lc+P+A+V 0.628 0.557 1.198 0.578 0.517 1.121 0.585 0.528 1.116 0.606 0.535 1.116 0.625 0.554 1.052 0.608 0.537 1.106
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5.6.2 Third-party Sentiment Estimation

The contributions of each modality are evaluated using TS, which is anno-
tated not by “self” but by “others”. The TS estimation results are presented
in this subsection in a similar format as SS estimation.
(1) Unimodal models: In a manner similar to the presentation of the SS
estimation results, Table 5.4 shows the results for TS estimation. Among the
unimodal models, L-SVM trained on the BERT representation (Lc) achieves
the best performance in the classification task (accuracy of 0.845, F1-score
of 0.801), and FNN trained on the BERT representation (Lc) achieves the
best performance in the regression task (MAE of 0.459). The model trained
on fastText word vectors (Lb) shows the second best performance in clas-
sification task. The nonverbal unimodal models (rows 7 to 9 in Table 5.4)
using physiological features (P), audio features (A) and visual features (V)
all exhibit lower performance than the verbal models.
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Table 5.4: TS estimation results for unimodal models. La, handcrafted linguistic features; Lb, fastText word vectors;
Lc, BERT representations; P, physiological features; A, audio features; and V, visual features.

Feature

L-SVM R-SVM FNN

Acc F1 MAE Acc F1 MAE Acc F1 MAE

mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD

La 0.777 0.000 0.734 0.000 0.660 0.000 0.687 0.000 0.407 0.000 0.740 0.000 0.795 0.002 0.756 0.003 0.529 0.010

Lb 0.811 0.002 0.758 0.002 0.783 0.000 0.684 0.000 0.519 0.000 0.844 0.000 0.819 0.003 0.778 0.005 0.509 0.009

Lc 0.845 0.000 0.801 0.001 0.555 0.000 0.742 0.000 0.600 0.000 0.780 0.000 0.836 0.005 0.798 0.007 0.459 0.009

P 0.712 0.001 0.519 0.002 0.716 0.000 0.633 0.000 0.451 0.000 0.822 0.000 0.716 0.005 0.569 0.005 0.640 0.007

A 0.752 0.000 0.686 0.001 0.716 0.000 0.726 0.000 0.597 0.000 0.730 0.000 0.725 0.004 0.665 0.006 0.560 0.002

V 0.756 0.000 0.664 0.000 0.727 0.000 0.687 0.000 0.416 0.000 0.976 0.000 0.743 0.008 0.669 0.010 0.595 0.004
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(2) Multimodal models: Similar to the SS estimation, the BERT repre-
sentation (Lc) model shows higher performance than the model trained on
handcrafted linguistic features (La) and fastText word vectors (Lb) in the
TS estimation. Here, we report the BERT representation (Lc) model for
further investigation of multimodal models (please see Table S3 in the Ap-
pendix for all of the fusion models with La or Lb). Among the multimodal
models, the L-SVM model trained on Lc+P shows the highest performance
in the classification task (accuracy of 0.846, F1-score of 0.803); however, the
improvement was limited compared with the best unimodal model (accuracy
of 0.845, F1-score of 0.801), as shown in Table 5.5. In contrast to the SS
estimation, the TFN model trained on Lc+A+V shows the best performance
in the regression task (MAE of 0.407) and outperforms the best unimodal
model in TS estimation. TFN with BERT representations tended to have
better performance than other architectures. FNN with EF also had better
regression performance compared with the best unimodal model.
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Table 5.5: TS estimation results for multimodal models.

Feature
L-SVM R-SVM FNN EF FNN LF1 FNN LF2 TFN

Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE

Lc+P 0.846 0.803 0.556 0.744 0.588 0.771 0.841 0.801 0.433 0.840 0.802 0.466 0.835 0.787 0.511 0.836 0.796 0.422

Lc+A 0.818 0.768 0.636 0.726 0.596 0.634 0.815 0.768 0.447 0.806 0.755 0.460 0.801 0.747 0.477 0.829 0.788 0.414

Lc+V 0.838 0.793 0.676 0.701 0.573 0.683 0.841 0.801 0.428 0.832 0.792 0.453 0.828 0.780 0.492 0.832 0.792 0.418

P+A 0.752 0.685 0.719 0.712 0.584 0.734 0.745 0.686 0.545 0.726 0.667 0.559 0.734 0.662 0.571 0.761 0.703 0.525

P+V 0.756 0.666 0.790 0.690 0.422 0.985 0.772 0.691 0.564 0.745 0.673 0.584 0.759 0.665 0.593 0.772 0.682 0.558

A+V 0.756 0.694 0.713 0.727 0.604 0.690 0.760 0.701 0.528 0.737 0.676 0.550 0.755 0.691 0.548 0.773 0.713 0.513

Lc+P+A 0.816 0.768 0.637 0.730 0.593 0.628 0.814 0.767 0.451 0.805 0.757 0.456 0.801 0.738 0.507 0.829 0.788 0.415

Lc+P+V 0.838 0.793 0.618 0.732 0.619 0.736 0.840 0.800 0.424 0.828 0.787 0.451 0.816 0.755 0.521 0.832 0.791 0.411

Lc+A+V 0.817 0.768 0.630 0.741 0.629 0.602 0.821 0.774 0.439 0.807 0.758 0.456 0.807 0.753 0.493 0.829 0.788 0.407

P+A+V 0.760 0.700 0.723 0.725 0.606 0.687 0.752 0.693 0.526 0.733 0.674 0.546 0.765 0.689 0.561 0.779 0.714 0.514

Lc+P+A+V 0.814 0.765 0.645 0.736 0.622 0.606 0.816 0.766 0.444 0.808 0.761 0.454 0.807 0.747 0.514 0.831 0.790 0.409
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5.6.3 Estimation with Automatic Speech Recognition

The results of the BERT representation models presented in Tables 5.2-5.5
based on text data manually transcribed by humans evaluate the potential
of physiological signals in error-free text data. However, in an end-to-end au-
tomated system, error-free ASR is not realistic. Thus, we also evaluate the
BERT representation model based on text data obtained by using a Japanese
ASR system. Google speech API was used for ASR. The results are shown in
Table 5.6. The models that achieved the best performance in each regression
task (FNN LF2 for SS estimation and TFN for TS estimation, respectively)
were used for the experiment. In Table 5.6, “diff” means the difference in
MAE between models based on text data from manual transcription and
ASR. Larger “diff” values indicate performance degradation of models based
on ASR. Unexpectedly, the performance of models based on ASR was similar
to that of models using manual transcriptions in SS estimation, as shown in
Table 5.6. This might indicate that the tokens that were difficult for the ASR
system to recognize had only a little information for SS estimation and that
SS estimation might be more dependent on nonverbal information such as
physiological signals. In contrast, the performance of the ASR models in TS
estimation was clearly lower than that of manual transcription (Table 5.6).
This result suggests that the tokens that were difficult for the ASR system
to recognize had important information for TS estimation and that TS es-
timation is more dependent on the linguistic modality than SS estimation.
In addition, the multimodal model with physiological signals is also useful in
SS estimation, and the multimodal model with audiovisual signals is useful
in TS estimation, even under the ASR condition.

5.6.4 Analysis of Physiological Features

We conducted extensive feature analysis to clarify the contribution of each
physiological feature. As depicted in Table 5.2, the physiological modality
is the best for SS estimation among the four modalities. In addition, the
Lc+P model with LF2 achieves the best estimation performance among the
multimodal models. Thus, the Lc+P model with LF2 was used for feature
analysis with backward-forward stepwise selection [96].

Table 5.7 shows the regression performance of the model removing the
physiological features one by one in SS estimation. In step 1, the best MAE
of 1.041 is derived from the result of SS estimation using the Lc+P model
with LF2 (Table 5.3). If the MAE increases after removing a feature from the
model, the removed feature is effective for SS estimation. In contrast, if the
MAE improves, the removed feature is not effective for SS estimation. “diff”
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Table 5.6: Estimation results for models trained on ASR data.

Feature

SS estimation TS estimation

FNN LF2 TFN

MAE diff MAE diff

Lc 1.111 0.000 0.490 0.032

Lc+P 1.044 0.003 0.464 0.042

Lc+A 1.095 0.001 0.449 0.035

Lc+V 1.086 0.001 0.453 0.035

Lc+P+A 1.051 0.001 0.454 0.040

Lc+P+V 1.051 0.002 0.448 0.037

Lc+A+V 1.083 0.001 0.444 0.037

Lc+P+A+V 1.054 0.001 0.443 0.033

(column 3 in Table 5.7) indicates the difference between the best MAE of
the original model and the feature-removed model; thus, “diff” values with
a negative sign (−) indicate that the removed feature is effective for SS
estimation. We set the criteria in stepwise selection using “diff” values: If
there is a feature that has the maximum and positive “diff” value, such a
feature is eliminated and the stepwise selection continues to the next step. If
there is no such feature, stepwise selection is finished. As shown in Table 5.7,
“Mean of the first difference” had the maximum and positive “diff” value of
+0.011 (with an asterisk (∗) in column 3 in Table 5.7); thus, this feature was
eliminated, and the stepwise selection was continued. Finally, in step 4, since
there is no feature that has a positive “diff” value, and simultaneously, re-
entering the eliminated features does not improve performance, so stepwise
selection is finished. Thus, the features used in step 4 could be useful for SS
estimation. In particular, since “GSR number”, “Kurtosis” and “Standard
deviation” have negative “diff” values (< −0.01) in all steps, these features
could be more effective than other features.
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Table 5.7: Analysis of physiological features with the backward-forward stepwise method in SS estimation. The
Lc+P model with LF2 in Table 5.2 is used for evaluation. ∗ indicates the maximum and positive “diff” value in each
step.

Step 1 Step 2 Step 3 Step 4

Best MAE in one step before 1.041 1.030 1.028 1.019

Removed feature MAE diff MAE diff MAE diff MAE diff

Mean 1.042 -0.001 1.032 -0.002 1.038 -0.010 1.030 -0.010

Standard deviation 1.054 -0.013 1.049 -0.019 1.049 -0.020 1.044 -0.025

Skewness 1.044 -0.003 1.028 +0.002∗

Kurtosis 1.067 -0.026 1.049 -0.018 1.045 -0.017 1.035 -0.016

Maximum value 1.046 -0.005 1.038 -0.007 1.019 +0.009∗

Minimum value 1.032 +0.009 1.030 +0.001 1.040 -0.011 1.035 -0.016

Mean of the first difference 1.030 +0.011∗

Mean of the second difference 1.039 +0.002 1.037 -0.007 1.042 -0.014 1.027 -0.007

GSR number 1.053 -0.012 1.049 -0.019 1.043 -0.015 1.035 -0.016

Range 1.045 -0.004 1.044 -0.013 1.044 -0.015 1.047 -0.028

Slope 1.042 -0.001 1.042 -0.012 1.065 -0.036 1.053 -0.034

Intercept 1.047 -0.006 1.044 -0.013 1.048 -0.020 1.043 -0.024

25th percentile value 1.046 -0.005 1.040 -0.010 1.036 -0.008 1.042 -0.022

75th percentile value 1.037 +0.004 1.043 -0.013 1.037 -0.009 1.027 -0.008
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(a) (b)

Figure 5.4: t-SNE visualization with test samples. (a) Lc model. (b) physi-
ological model.

5.6.5 Comparison of Linguistic and Physiological Mod-
els

Figure 5.4 shows the t-distributed stochastic neighbor embedding (t-SNE)
visualization [150] of the example of the learned features (hidden values from
FNN with BERT representations and from FNN with physiological features)
along with the positive sentiment label and negative sentiment label. This
example shows that both models work well in binary classification in this
case. However, these models might differ in the classification pattern.

We focus on the differences in the estimation results between the BERT
representation (Lc) model and the physiological (P) model to investigate
whether each model captures different aspects of sentiment changes. In fact,
these two modalities clearly capture different aspects of human behavior
(i.e., linguistic content and electrical changes in the skin) in human-agent
interactions. In addition, differences between linguistic representations and
physiological features in neural network models are rarely investigated in
the field of affective computing. Thus, we were interested in comparing the
estimation patterns of these models.

Figure 5.5 shows the confusion matrix for classification resulting from the
unimodal Lc model and the physiological model. Many samples (65%) are
classified as having negative sentiment labels by the Lc model. On the other
hand, the samples are almost equally classified as positive and negative by the
physiological model. Therefore, the models based on BERT representations
and physiological features differ in their classification patterns.

To investigate the differences between these models for SS estimation in
more detail, we compared the estimation results for each participant (Fig-
ure 5.6). Figure 5.6(a) shows the top five participants with the greatest
differences in accuracy between the physiological model and the Lb model
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Figure 5.5: Confusion matrix for classification showing percentages of the
total samples.

(gray bars in Figure 5.6(a)). The ratio between the actual positive (blue
bar) and negative (red bar) sentiment labels is also shown for each partic-
ipant. If the accuracy difference is greater than 0, then the physiological
model classifies the sentiment labels more correctly than the Lc model does
for that participant. In contrast, if the accuracy difference is less than 0, then
the Lc model classifies the sentiment labels more correctly than the physi-
ological model does, as in the cases shown in Figure 5.6(b). Figure 5.6(c)
and (d) show the corresponding plots for the MAE differences. The phys-
iological model exhibits higher estimation performance than the Lc model
for participants with positive sentiment, as shown in Figure 5.6(a) and (c).
In contrast, the Lc model seems to offer higher estimation performance than
the physiological model for participants with negative sentiment, as shown in
Figure 5.6(d). These results suggest that there are fundamental differences
between SS estimation models based on language and physiology in human-
agent interactions. These results are discussed in the following section.

5.7 Discussion

In this study, we present multimodal sentiment analysis considering four
modalities, based on linguistic, audio, visual, and physiological features, at
the exchange level in naturalistic human-agent interactions. The dataset used
in our study, Hazumi1911, includes sentiment labels for each utterance anno-
tated both by the participants themselves and by a third party, thus enabling
us to analyze not only one-sided but also two-sided sentiments from the per-
spectives of SS and TS estimation, respectively, on the same dataset. The ex-
periments reveal that physiological features, which are based on signals that
are generally unobservable by humans, are the most effective features for SS
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Figure 5.6: The differences in the estimation results between the BERT
representation (Lc) model and the physiological (P) model for SS estimation.
The top and bottom five participants with the greatest differences in accuracy
(a and b) or MAE (c and d) between the models are depicted (gray bars).
For each participant, the ratio between the actual positive (blue bar) and
negative (red bar) sentiment labels is also shown for comparison.

estimation among the four modalities and that the estimation performance is
improved by fusing physiological features and linguistic representations from
BERT (Table 5.3). The Wilcoxon signed-rank test was performed to com-
pare each evaluation value (accuracy, F1-score or MAE) between the best
unimodal model and the best multimodal model in SS estimation. The best
multimodal model outperformed the unimodal one (statistically significant
for each evaluation value, p < 0.05). The performance of the resulting fusion
model (Lc+P) was comparable to human performance (accuracy of 0.630)
and superior to the best previously reported model (P+V) [138] (also shown
in Chapter 4). In contrast, models based on verbal information showed higher
performance than models based on nonverbal information (audio, visual or
physiological features) on the TS estimation task (Table 5.4). Unlike SS esti-
mation, a TS estimation model fusing linguistic representations from BERT
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and audiovisual features achieved the best estimation performance in the re-
gression task, presumably because these two types of information are easily
perceptible (observable) by humans and also complement each other. Similar
to the SS estimation, this multimodal model significantly outperformed the
best unimodal model (vs Lc unimodal model, p < 0.05). We also report the
effectiveness of each physiological feature by using stepwise selection (Ta-
ble 5.7) and differences in the contributions of linguistic and physiological
features for SS estimation (Figure 5.5 and 5.6). In this discussion section, a
detailed interpretation of our results is presented.

We focus on physiological signals based on the ANS, which regulates the
involuntary functions of the human body, to resolve the limitation of multi-
modal sentiment analysis. Since the physiological features capture emotional
arousal, we expected physiological features to be useful for detecting enjoy-
ment, which is related to emotional arousal. The unimodal physiological
model achieved the best accuracy and MAE in SS estimation, and the multi-
modal fusion of linguistic and physiological features improved SS estimation
performance, resulting in a model that achieved an accuracy comparable to
that of humans (accuracy of 0.630). This implies that physiological responses
can capture different aspects of sentiment changes that cannot be captured
by BERT representations. Indeed, differences in estimation pattern were ob-
served between the BERT representation model and the physiological model,
as shown in Figure 5.5 and 5.6. It seems that physiological signals are supe-
rior in capturing positive sentiment that may not be expressed explicitly in
textual information. These differences between modalities might complement
each other in a corresponding multimodal neural network model, resulting in
higher model performance.

Another aspect of our results that needs to be discussed is the differences
between SS and TS estimation. It is clear that SS estimation is a more
difficult task than TS estimation. Many previous works use TS in multimodal
sentiment analysis [8, 9, 10], and SS and TS estimation have rarely been
considered simultaneously on the same multimodal dataset. Considering the
ultimate goal of sentiment analysis and dialogue system development, the SS
estimation task at the exchange level and the development of a model that
can capture the true SS adaptively require more extensive work, even if the
findings show lower performance than TS estimation.

A previous study D’Mello et al. [151] assessed the contribution of each
modality to the agreement between a user and a third party (observer) in
naturalistic human-agent interactions. Their results suggested that human
perception of others’ affective states partially depends on multimodal ob-
servables. In line with this, although the dialogue situation in our study
is different from that in this previous human study, the machine-based TS
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estimation performance was improved by fusing BERT representations and
audiovisual features, especially for the regression task (Table 5.5). Taken
together with the SS estimation results, these results indicate that the role
of each modality in machine learning differs between SS and TS estimation,
and these differences appear to depend on whether the corresponding signals
are observable by humans. These points need to be considered when design-
ing sentiment studies and interpreting each modality, including physiological
signals.

Although the fusion of linguistic and physiological information improves
sentiment estimation performance, the benefits of the fusion of linguistic fea-
tures and audiovisual features are limited (Table 5.3). From this, it can be
inferred that there may be many redundancies between these modalities, as
BERT is a SOTA language representation model with unparalleled perfor-
mance on numerous tasks in the NLP domain. Moreover, unlike the BERT
model, our audiovisual models do not have the benefit of large-scale pretrain-
ing; thus, there is a need to develop another audiovisual modeling method
or algorithm as a basis for multimodal fusion.

In addition, although the performance of our proposed fusion model
(Lc+P) is comparable to that of humans in SS estimation, further perfor-
mance improvements will be needed to create emotionally intelligent agents
with beyond-human performance to adapt dialogue strategies to provide a
high-quality user experience. One possibility is to develop a nonverbal model
with large-scale pretraining, similar to BERT [131]. However, compared with
verbal information, nonverbal data such as physiological signals are more
difficult to collect in a large-scale and noise-free manner, and appropriate la-
bels are also needed. To this end, extensive data collection methods, dataset
merging or transfer learning need to be considered.

We normalized each feature over all samples observed from a participant
for test data during preprocessing; however, an input sample should be pre-
processed and normalized sequentially in the inference (testing) phase in the
online continuous recognition. That is, normalizing the validation/test data
with the mean and standard deviation which are calculated from training
dataset (without using statistics from the test data) is more appropriate,
and this is one of the limitations of our study.

The feature extraction method in this study was based on statistics or av-
erage pooling at the exchange level. Considering time-dependent changes in
each modality, incorporation and representation of temporal context by us-
ing multimodal LSTMs, GRUs, or Transformer [130] are intriguing strategies
for improving sentiment estimation performance. In addition, the sentiment
labels used in this study were assigned and estimated for each exchange inde-
pendently, i.e., discrete-time levels. Thus, a continuous emotion/sentiment
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recognition task with multimodal signals including physiological signals will
also be needed.

There is a also need to evaluate the usefulness of other sensors, especially
contact-less techniques that cause neither disturbance nor discomfort during
dialogue. One candidate is video-based remote measurements of heart and
respiratory rates [152]. Combining these techniques with multimodal analysis
is an attractive approach to improve performance without physical contact
and expand the applicability of such paradigms.

Since the previous datasets, Hazumi1712 and Hazumi1902, include text
(L) and audiovisual signals (A and V) during dialogue but not physiological
signals (P), and the present study is focused on the physiological signals,
direct comparison of sentiment estimation performance is difficult between
previous datasets and the present study (Hazumi1911). However, we think
physiological signals are effective to complement information of L, A, and V
features for estimating SS even in other datasets. Alternatively, a relevant
line of work that includes physiological signals during human-agent interac-
tion will enable us to compare between multimodal dialogue corpora with
physiological signals directly.

5.8 Chapter Summary

This study demonstrated both SS and TS estimation using multimodal neural
networks and revealed the effects of each modality, particularly the physio-
logical modality, in naturalistic human-agent interactions. The experimental
results suggest that the combination of BERT representations and physi-
ological features is effective for SS estimation. This result appears to be
attributable to the complementarity of the models based on BERT repre-
sentations and physiological features, since these models capture different
aspects of a participant’s sentiment. In contrast, combining BERT represen-
tations and audiovisual features is effective for TS estimation, as textual and
audiovisual features are both signals that are perceptible by humans. These
results can advance the understanding of naturalistic sentiment; neverthe-
less, further research is needed to realize an emotionally intelligent agent
with beyond-human capabilities.
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Chapter 6

Multimodal Transformer with
Physiological Signals

6.1 Introduction

The development of an adaptive dialogue system that can recognize a user’s
state in real time is necessary to ensure enjoyable conversations in human-
agent interactions. During a chat dialogue, the system should behave accord-
ing to the real-time state of the user. For example, if a user is bored with
the current topic, the system should explore other topics, similar to human
behavior. However, there are several reasons why this task is challenging.
For example, SS cannot necessarily be expressed with the linguistic informa-
tion obtained from user utterances. Users may mask their sentiment in their
mind and not express their true sentiment as an utterance or behavior due
to their emotional intelligence [153].

As above-mentioned and presented in Chapter 3 to 5, peripheral physio-
logical signals have been investigated in psychophysiology and affective com-
puting. These signals can potentially reflect emotional changes by capturing
physiological changes in the ANS. For example, a faster phasic component in
the EDA, which is derived from the activity of the sweat glands, can be used
to detect emotional arousal [140, 27]. Since the ANS is involuntary, i.e., it
cannot be controlled consciously, physiological changes during dialogue are
difficult to mask. Therefore, physiological signals may be suitable for captur-
ing SS changes that cannot be represented by linguistic information in user
utterances and can function as complementary information.

However, investigations into the effectiveness of time-series physiological
signals for estimating SS during dialogue exchanges have been limited. Most
studies on the use of physiological signals to estimate emotion/sentiment
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Time-series physiological signal processing

It/ was/ not/ too/ bad.

How/ was/ it? Why/...

exchange

EDA signal

BVP signal

Text
User:

System:

(I’m bored of talking...)

Figure 6.1: Example of capturing SS changes by using linguistic information
and physiological signals at the exchange level. The user token sequences
“not/too/bad” include both neutral and positive sentiments. However, the
true sentiment in his/her mind is “bored” (tentative example). This masked
negative sentiment is accompanied by reduced arousal levels and would be
captured by time-series physiological signals.

have induced emotional stress with visual stimuli over a relatively long time
period (several minutes). Thus, there is a need to investigate whether signals
detected in shorter time periods (approximately 10 seconds) are effective for
online emotion/sentiment estimation.

In addition, although it is assumed that short-time physiological signals
can complement spoken linguistic information in SS detection, there have
been no studies that show an effective method for combining time-series
physiological signals with token sequences represented by SOTA language
models, such as the BERT model [131]. Thus, the exploration of effective
methods for fusing physiological signals and token representations is valuable
for developing adaptive dialogue systems.

The aforementioned issues and the approach presented in this study are
summarized in Figure 6.1. An “exchange” is defined as a segment that begins
at the start of a system utterance and ends at the start of the next system
utterance. In this case, a model based solely on user token sequences is
insufficient for estimating SS. We expect that time-series physiological signals
could be used to capture SS changes that are not expressed in linguistic
information, and a time-series model that combines physiological signals and
language representations can improve the sentiment estimation performance,
as these data are complementary.

In this study, we propose an effective method for processing physiological
signals and combine this method with a language model. We focus on linguis-
tic information and physiological signals since the models based on BERT
representations or physiological signal had dominant performance compared
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to audiovisual models (described in Section 6.5.1). The contributions of our
work are as follows:

• We propose a time-series physiological signal processing method for
exchange-level sentiment estimation. The models based on the time-
series data of the EDA phasic component capture short-time senti-
ment changes during exchanges, showing competitive performance to
a linguistic model based on SOTA computational representations, i.e.,
BERT representations (Section 6.5.1).

• We introduce the Time-series Physiological Transformer (TPTr), which
combines time-series physiological signals with BERT representations
to capture short-time sentiment changes based on both textual aspects
and physiological changes in the user (Section 6.5.2). As a result, our
proposed ensemble model outperforms the previously reported best re-
sult.

• Our proposed model is extended and validated by using a variety of
physiological signals, including the BVP. The performance is further
improved with the ensemble method, as shown in Section 6.5.3.

6.2 Related Works

This section specifically focuses on research related to the Transformer lan-
guage model and multimodal models.

Text-based approaches are critical in sentiment analysis, and neural net-
work models such as LSTM are widely used [126]. However, the Transformer
model, which was developed by [130], has become the de facto standard and
most commonly used language model. The best Transformer-based model is
BERT [131], which achieved numerous successes with sentiment estimation
tasks with datasets such as the SST-2 [128]. When BERT is pretrained with
a large-scale dataset, representations can be extracted from text data (re-
ferred to as BERT representations), and BERT representations can be used
as input feature vectors in other architectures. This method allows BERT
representations to be easily combined with audiovisual features and is often
used in multimodal sentiment analysis.

Although several Transformer-based multimodal models for affective com-
puting and sentiment analysis have recently been proposed [154, 155, 156], a
Multimodal Transformer called MulT was the first model proposed in multi-
modal sentiment analysis research [157]. Language, video and audio modal-
ities, as well as sentiment labels annotated by third parties, were used to
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demonstrate the effectiveness of the proposed crossmodal attention model,
which latently adapts streams from one modality to another. Although
physiological signals were not included in these studies, it has been sug-
gested that Transformer-based models could capture crossmodal attention
between text and audiovisual signals. Multimodal Adaptation Gate (MAG)
was introduced in [155] and is applied to the Transformer architecture of
BERT/XLNet. The CMTr allows to shift the language-only position (rep-
resentation) of the word to the new position by injecting audio-visual in-
formation. The core component of the CMTr is a non-verbal displacement
vector derived from the audio and visual vectors with their respective gat-
ing vectors. Hazarika et al. [156] proposed modality-invariant and -specific
representations, which project language, audio and visual modalities to two
distinct subspaces. The respective representations are stacked into a ma-
trix, and Transformer is used to perform a multi-headed self-attention on
the matrix.

Compared to linguistic and audiovisual modalities, there are very few
publicly available physiological signal datasets for emotion/sentiment re-
search. However, several datasets that include physiological signals have
been created while viewing emotional videos [64, 65, 56] or conversations
[44, 46]. In [46], a multimodal human-agent dialogue corpus that included
linguistic, audiovisual, and physiological information was created. The par-
ticipants interacted with an agent, and sentiment labels were retrospectively
annotated for each exchange by both the participants and a third party. The
collected nonverbal signals (audio, visual, and physiological signals) in this
dataset were used for sentiment estimation with support vector machine or
FNN models, and the results showed that physiological signals, particularly
features based on SC signals, were useful for exchange-level sentiment esti-
mation, as presented in Chapter 4. Chapter 4 was extended by Chapter 5),
which presented a comprehensive analysis of the effectiveness of physiolog-
ical signals in multimodal sentiment analysis. Since our proposal in this
chapter is an effective hybrid algorithm that combines physiological features
and the Transformer language model, this chapter differs considerably from
Chapter 4 and 5, which used conventional neural networks.

To the best of our knowledge, there is no publicly available dataset that
includes textual and physiological information during dialogue exchanges,
except for [46]. As mentioned above, text-based approaches are the most
common sentiment analysis methods, and multimodal language models us-
ing Transformer and BERT have been proposed. Physiological signals are
promising candidates for capturing subtle sentiment changes that cannot be
detected in the speaker’s explicit information, i.e., text and audiovisual infor-
mation. Nevertheless, an effective method that combines a SOTA language
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model and physiological signals has not yet been developed, most likely be-
cause of dataset limitations.

We propose the use of physiological signals with a SOTA language model
to estimate sentiment during human-agent interactions. The Hazumi1911
dataset [46], which is the only publicly available dataset that includes time-
series textual and physiological information, enables us to evaluate the effec-
tiveness of the combination of physiological signals and text. We propose a
time-series physiological signal processing method that effectively combines
physiological signals and token sequences of utterances. We show that our
proposed method is useful for exchange-level sentiment estimation, and our
results are comparable to those of a model based on BERT representations.
Then, we show how the time-series physiological signals can be incorporated
into a SOTA language model, and proposed model were compared with the
previously reported best performing model.

6.3 Proposed Methods

This section presents our proposed methods for incorporating time-series
physiological signals at the exchange level. In this study, the physiological
signals included the EDA, BVP, HR and TEMP. The EDA is a measure of
the electrical activity in human skin and reflects sweat gland activity. The
BVP is based on spectral analyses of the skin (blood vessels) and reflects
physiological changes in cardiovascular activity. In this study, the raw EDA
signal (SC, denoted as EDASC) was decomposed into a fast phasic compo-
nent (EDAfast) and a tonic component (EDAtonic) with the same method as
in Chapter 4. In Section 6.3.1, we describe a physiological signal process-
ing method for calculating fine-segmented physiological changes. Since each
physiological signal has a different sampling rate, a simple segmentation and
averaging method was applied. In Section 6.3.2, to evaluate the effectiveness
of the processed data, time-series machine learning models are introduced.
Specifically, we propose a TPTr model in which the encoder is based on
attention weights from the token representations and corresponding physio-
logical signals. We expect this encoder to capture sentiment changes by using
both linguistic and physiological information, as sentiment changes cannot
be detected with only linguistic information.

6.3.1 Time-Series Physiological Signal Processing

To roughly align physiological signals within the exchanges with the token,
a unit of language models, we divide each physiological signal during each
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exchange by the number of tokens. Let one exchange duration be s, the
sampling rate of the physiological signal in Hz be h, and the number of tokens
in one exchange be n. The number of samples per token m is determined
by rounding sh

n
down to the nearest integer. Then, from the start of the

exchange, the raw sampling data per m are averaged in order (i.e., m is the
variable window size). Thus, the physiological signal p in the ith exchange
is denoted as an n-dimensional vector:

pα
i = (pαi1, . . . , p

α
in)T (6.1)

where α indicates the physiological submodality such as EDAfast, EDAtonic,
EDASC, BVP, HR, TEMP.

We note that our proposed preprocessing method is not the strict word-
level alignment method that has been proposed in prior works [158, 159]. In
contrast to acoustic signals, physiological signals do not necessarily have a
significant co-occurrence property with the uttered words because the phys-
iological changes may relate to words spoken in the past or future. Thus,
physiological signals are not simply weighted with a specific token in this
study. Rather, the aim is to extract representations from fine segments of
physiological signals with token sequences, which could shift the original
representations at the exchange level. More details and examples of our ex-
periment are shown in Section 6.5.4.

6.3.2 Time-Series Modeling of Physiological Signals

(1) Physiological LSTMs: The LSTM and BiLSTM models are applied
to validate whether our proposed time-series preprocessing method performs
comparably to models based on BERT representations, which have deep
bidirectionality [131]. An LSTM [160] model based on physiological signals
p i at time t can be represented as

f t

g t

ιt
o t

 =


σ

tanh
σ
σ

W

(
p t

h t−1

)

ct = f t ⊙ ct−1 + g t ⊙ ιt

h t = o t ⊙ tanh(ct)

(6.2)

where f t, ιt and o t are the forget, input, and output gates, respectively; σ is
the sigmoid function; W is the weighting parameter; ct is the memory cell;
h t is the hidden state; and ⊙ is the Hadamard product. Note that the time
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Figure 6.2: Conventional Transformer [130] (left) architecture, CrossModal
Transformer [157] architecture based on two modalities, β and γ (CMTr, cen-
ter), and our proposed Time-series Physiological Transformer (TPTr, right)
architecture. In our proposed model (right), exchange-level physiological sig-
nals and BERT representations derived from user and system utterances are
combined by applying the Transformer encoder. This model allows physio-
logical information to be continuously linked to linguistic information (per-
forming attention with time-series physiological signal processing) and can
capture physiological aspects that cannot be detected with linguistic infor-
mation alone. The number in the bracket indicates the dimension of the
corresponding matrix. For a detailed description of the Transformer and
CMTr architectures, please see Section 6.4.1.

t corresponds to the number of tokens n, as described in Section 6.3.1. p t is
denoted as a vector in the above equation; however, this variable corresponds
to a scalar when the selected physiological submodality is single.

After the preprocessing methods described in Section 6.3.1 were carried
out, the raw physiological data of each participant were normalized by Z
score normalization. In other words, we normalized each feature over all the
samples collected from a participant in the training or testing data during
preprocessing. Following this, zero padding was performed since the token
length of each exchange differs. Then, the result was fed into the input layer
of the LSTM model. The final LSTM block outputs h t are connected to the
final output layer in a mode known as many-to-one, and finally, the estimated
values are obtained.

(2) Time-Series Physiological Transformer: After the effectiveness
of the physiological LSTM models were confirmed (as described in Sec-
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tion 6.5.1), we extended our proposed method to fuse time-series physiological
signals with SOTA language representations, i.e., BERT representations, by
using the Transformer encoder [130]. A summary of the proposed TPTr ar-
chitecture is shown in Figure 6.2. Exchange-level BERT representations are
extracted with a pretrained BERT model1, which is represented as a matrix
of dimension Rn×d, where d is hidden size of the BERT representations and n
is number of tokens. The time-series physiological signal pα

i was turned into
Pα
i ∈ Rn×d by repeating array along the axis to match the dimension of the

BERT representations. To incorporate the time-series physiological signals
into the linguistic information, a dot-product attention mechanism [130] was
applied. The dot-product attention mechanism is composed of a query Q,
a key K, and a value V . We consider the BERT representation in the ith
exchange as Qi = Ki = Vi, where Qi ∈ Rn×d. The dot product between
Qi and KT

i is computed as the similarity to calculate the attention weight.
To combine the time-series physiological signals with the BERT representa-
tions, we use the Hadamard product between Pα

i and Qi, denoted as Q′
i. We

hypothesize that this modification may shift the attention weight and could
provide representations that differ from conventional BERT representations.
The output of the dot-product attention operation is:

Attention(Pα
i , Qi, Ki, Vi) = softmax

(
Q′

iK
T
i√
d

)
Vi (6.3)

where the scaling factor
√
d is used. The PEs are sinusoidal and identical to

the modules proposed in [130]:

PE(pos,2j) = sin(pos/100002j/d) (6.4)

PE(pos,2j+1) = cos(pos/100002j/d) (6.5)

where pos is the position of the token and j is the dimension of the hidden
layer. The PEs are added to Q′

i, K
T
i and Vi to carry information about the

position of the tokens. The weighting parameters WQ′ ∈ Rn×d,WK ∈ Rn×d,
and W V ∈ Rn×d are also implemented.

Similar to [130], the Transformer encoder is composed of two sublayers.
The first sublayer is the aforementioned dot-product attention mechanism,
and the second sublayer is a fully connected FNN. Each sublayer has a skip-
ping connection [161] and layer normalization [162], denoted as “Add” and
“Norm” in Figure 6.2, respectively.

1https://github.com/cl-tohoku/bert-japanese
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In summary, our proposed preprocessing method converts data, allow-
ing the model to combine physiological signals with BERT representations,
which are both represented as matrices during each exchange. These rep-
resentations are fed into the Transformer model, with the token positions
providing the attention weights, thus allowing physiological changes to be
considered during exchanges.

6.4 Experimental Settings

This section describes the experimental settings for the evaluation of our
proposed model. One of the strengths of our proposed method is that our
method applies short-time episodes (approximately 10 seconds), which en-
ables dialogue systems to adaptively respond to sentiment changes in the
user in a timely manner. Only one publicly available dataset includes both
the time-series physiological signals and linguistic information of the user at
the exchange level: the Hazumi1911 dataset [46]. We use this dataset to
evaluate our proposed methods, and Section 6.4.3 summarizes the dataset.
Section 6.4.1 describes the models used as baselines for comparison, and the
evaluation procedure is described in Section 6.4.2.

6.4.1 Baselines and Hyperparameters

As described in Section 6.3, the proposed time-series physiological signal pro-
cessing method was evaluated by using the LSTM, BiLSTM, or TPTr models
as inputs. This subsection describes the baseline models that were used for
comparisons with our proposed method.
(1) Feedforward Neural Network (FNN): The FNN architecture was
used as one of our baselines. The FNN was composed of an input layer, four
fully connected layers with dropout in each layer, and an output layer. The
FNN has two lower intermediate layers with 64 units and two higher inter-
mediate layers with 32 units. The dropout rate was set to 0.3. The ReLU
function was used as the activation function.
(2) Long Short-Term Memory Models (LSTMs): In the LSTM model,
the number of LSTM blocks was set to 3, with 64 hidden units (in the BiL-
STM model, the number of hidden units was set to 128 in total). No dropout
was applied. The activation functions (sigmoid and hyperbolic tangent) are
described in Section 6.3.2.
(3) Transformer (Tr): A conventional Transformer encoder [130] was used
as a baseline. This model used only linguistic information (i.e., BERT rep-
resentations) for sentiment estimation. As shown in Figure 6.2 (left), the
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Transformer encoder was composed of two sublayers. The first sublayer was
a self-attention mechanism, and the second sublayer was an FNN. Each sub-
layer had a skipping connection and layer normalization. The number of
Transformer encoder blocks and attention heads is 1. The dimensionality
of the input and output is 768, corresponding to the BERT model. The
number of units in the pointwise FNN is 128. The dropout rate was set
to 0.3. The size of the trainable parameters is 2.6M. The Tr×3 model has
three identical parallelized Transformer blocks. FNNL+P (described in Sec-
tion 6.4.3) was used to combine with the Transformer models. CrossModal
Transformer (CMTr) and our proposed TPTr(×3) are described below.
(4) CrossModal Transformer (CMTr): The BERT is a core component
of the MulT and was proposed in [157]. The MulT model captures multi-
modal signals according to crossmodal attention and achieves SOTA results
in multimodal sentiment estimation. The CMTr model applied crossmodal
attention with linguistic, audio, or video modalities, as reported in [157].
The two modalities β and γ, as denoted in Figure 6.2 (center), correspond
to linguistic, audio, or video modalities. The transfer of information from
modality γ to modality β is denoted as “γ → β” in Figure 6.2 (center). The
CMTr model also includes reverse attention, which is denoted as “β → γ”, in
which information is assigned to another Transformer block, allowing modal-
ity γ to receive information from modality β. Thus, the attention direction
is variable. On the other hand, our proposed TPTr model applies attention
with linguistic and physiological modalities and has a fixed attention direc-
tion. Therefore, the CMTr and TPTr models use different modalities, and
the attention mechanism also differs. For a fair comparison, we fuse BERT
representations and physiological signals when using the CMTr architecture
in this study. The CMTr model has two Transformer encoder blocks that
pass information as γ → β and β → γ. The output of each CMTr block was
concatenated (64 units in total) and connected to the final output layer. The
other parameter settings of the CMTr and Transformer models are identical.
(5) Time-Series Physiological Transformer (TPTr): The TPTr and
Transformer models have the same parameter settings. The TPTr×3 model
has three extended parallelized Transformer blocks. The output of each
TPTr×3 block was concatenated (96 units in total) and connected to the
final output layer. Other than these settings, we use the same parameter
settings in the Tr(×3), CMTr, and TPTr(×3) models to facilitate a fair com-
parison.

For late fusion models, each higher intermediate layer in the model is
concatenated and connected to the output layer. For ensemble models, the
output values of each model were averaged and used as the final estimated
value. Late fusion and ensemble methods are both widely used in multimodal
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machine learning [148]. In consideration of the computational cost, the max-
imum token length was set as 64 in this study. The other hyperparameters
were set as follows: a learning rate of 0.001 with the Adam optimizer and
a batch size of 32. The FNN model and models other than the FNN model
were trained with 30 and 3 epochs, respectively. Mean squared error was
used as a loss function in all experiments. All models were implemented in
Keras with TensorFlow backend on NVIDIA GeForce RTX 2060.

6.4.2 Evaluation Procedure

A LOUOCV method was used in our evaluation. In the LOUOCV method,
the samples corresponding to each exchange between a participant and the
dialogue system were used as the test data, and the remaining samples of the
other twenty-five participants were used as the training data. This proce-
dure ensured that the test data of one participant were completely excluded
from the training dataset, thereby preventing leakage and overestimation.
The MAE and Pearson correlation coefficient (Corr) were calculated for each
evaluation. The average MAE and Corr values with the LOUOCV method
are reported. All experiments were performed three times with random ini-
tializations, and the evaluation values were calculated as the average value
across the three repetitions. These evaluation values were then compared
among the models.

6.4.3 Dataset

The Hazumi1911 dataset [46], a multimodal human-agent dialogue corpus, is
also used in this chapter. In brief, the data were collected while participants
chatted with an agent that operated using the Wizard of Oz method. Data
from 26 of the participants and 2468 total exchanges were used in our exper-
iment, and the data are denoted in the same manner as in Chapter 4. The
participants annotated the labels for each exchange while watching videos
of themselves after the experiment. The labels were assigned as sentiment
scores ranging from 1 (no enjoyment of the dialogue) to 7 (enjoyment of the
dialogue) and used in regression tasks.

In the Hazumi1911 dataset, the participants’ utterances were manually
transcribed into text data. The language representations were extracted by
BERT, as described in Section 6.3. In addition, physiological signals were
recorded using an Empatica E4 wristband (Empatica Inc., Cambridge, MA,
USA) developed by Empatica Inc. The E4 device is worn like a wristwatch;
it causes neither disturbance nor discomfort during dialogue and has been
widely used in affective computing research, such as in [163, 164, 165]. Thus,
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this device is suitable for the evaluation of our proposed methods. The
EDA, BVP, HR and TEMP data were recorded at 4, 64, 1 and 4 Hz, respec-
tively. Each time-series physiological signal was preprocessed as described
in Section 6.3.1. Following Chapter 4, statistics such as the mean, stan-
dard deviation and maximum values of the physiological signals were used
for comparisons with baseline models.

Acoustic and visual features were also extracted in the same manner
as described in Chapter 5. In brief, the INTERSPEECH 2009 Emotion
Challenge feature set (IS09) [122] was extracted from participant’s utterances
as acoustic features using OpenSMILE software2. A total of 384 acoustic
features were extracted. Based on the video data, facial landmarks near the
eyes, mouth, and eyebrows were identified with the OpenFace library [123],
and the velocity and acceleration at each point were calculated to use as facial
features. Based on motion data of the hands, shoulders and head recorded
with Microsoft Kinect sensors, the velocity and acceleration were calculated
to use as motion features. In total, 86 visual features were extracted from
the facial expressions and motion activity. These acoustic and visual features
were used for model comparisons based on each modality. Models based on
each feature are as follows:
(1) FNNL: FNN model based on BERT representations
(2) FNNP: FNN model based on EDAfast statistics
(3) FNNA: FNN model based on acoustic features
(4) FNNV: FNN model based on visual features
(5) FNNL+P: FNN model based on BERT representations and EDAfast

statistics
(6) (Bi)LSTMP: (Bi)LSTM model based on time-series EDAfast signals

6.5 Results and Discussion

First, we show the effectiveness of the models based on our proposed time-
series physiological signal processing method. The physiological LSTM and
BiLSTM models perform better than the conventional FNN model based
on the statistics. Furthermore, ensembles with linguistic and physiological
modalities further improve the estimation performance (Section 6.5.1). Sec-
ond, a SOTA language model, namely, the Transformer model, was used
to combine the time-series data derived from the physiological and linguis-
tic information. This novel approach captures representations that depend
on both token sequences and time-series physiological changes, resulting in
further performance improvement with the ensemble model (Section 6.5.2).

2https://www.audeering.com/opensmile/
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Third, to explore other effective time-series physiological signals, the TPTr
model based on various physiological signals was evaluated in our proposed
framework, and its usefulness was demonstrated (Section 6.5.3). This anal-
ysis reveals that the time-series BVP signal is another useful physiological
signal for sentiment estimation. Fourth, to clarify the effect of the physiolog-
ical signals, the differences in the attention weights between the conventional
Transformer and TPTr models was shown (Section 6.5.4). Finally, a qualita-
tive example of the estimation pattern is shown in Section 6.5.5 to visualize
sequential dynamic sentiment changes and the behavior of each model.

6.5.1 Performance of Physiological LSTM Models

Table 6.1 shows the regression performance of the unimodal FNN models
(FNNs trained with BERT representations, EDAfast statistics, acoustic fea-
tures and visual features are depicted as FNNL, FNNP, FNNA and FNNV,
respectively) using the model described in Chapter 5 as baseline (rows 2 to 5
in Table 6.1). Our proposed model, that is, the LSTM models trained
on time-series physiological signals (LSTMP and BiLSTMP), are shown in
rows 6 and 7 in Table 6.1. In the single model results, our proposed physio-
logical LSTM models have higher Corr values than the conventional FNNP

(rows 3, 6 and 7 in Table 6.1). Noted that, FNNP has a relatively low per-
formance regarding Corr (0.091) similar to regarding F1 (0.499) shown in
Table 5.2 in the binary classification task (the row 7 in Table 5.2 in Chap-
ter 5). This problem is improved by our proposed LSTMP (Corr changed
from 0.091 to 0.179). Although the FNNL model has the best Corr value of
0.254, the physiological models (FNNP, LSTMP and BiLSTMP) have lower
MAEs than FNNL (1.086). The FNNs based on conventional acoustic and
visual features (FNNA and FNNV) do not outperform FNNL, LSTMP or
BiLSTMP.

In terms of the MAE, further performance improvement was observed by
combining the linguistic and physiological models (late fusion and ensemble
models). The ensemble model FNNL+P+LSTMP achieved an MAE of 1.041
and a Corr of 0.250.

These results suggest that our proposed physiological signal processing
method is effective for exchange-level sentiment estimation, even if linguis-
tic modalities are not included (LSTMP and BiLSTMP). Compared to the
experimental condition, which uses emotional stimuli, the estimation of SS
in natural dialogue is a difficult task. Nevertheless, our proposed method
achieved competitive performance with an FNN trained on BERT represen-
tations (FNNL). Furthermore, our proposed multimodal models based on
linguistic and physiological information efficiently complement each modal-
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Table 6.1: Sentiment estimation results of physiological LSTM models based
on EDAfast. The experimental results based on the model reported in Chap-
ter 5 [166] and the results of our proposed models (ours) are also depicted.

Model MAE Corr

Single model

FNNL [166] 1.086 0.254
FNNP [166] 1.069 0.091
FNNA [166] 1.196 0.145
FNNV [166] 1.166 0.145
LSTMP (ours) 1.067 0.179
BiLSTMP (ours) 1.069 0.176

Late fusion model
FNNL+P [166] 1.079 0.178
FNNL+P+LSTMP (ours) 1.062 0.184
FNNL+P+BiLSTMP (ours) 1.047 0.191

Ensemble model
FNNL+P [166] 1.047 0.238
FNNL+P+LSTMP (ours) 1.041 0.250
FNNL+P+BiLSTMP (ours) 1.041 0.249

ity. These results indicate that our proposed physiological signal processing
method can potentially capture sentiment changes that cannot be represented
by BERT representations alone.

6.5.2 Performance of TPTr

Table 6.2 shows the regression performance of the conventional Transformer
model, the CMTr model proposed in [157], and our proposed TPTr model.
The single models and late fusion models did not outperform the abovemen-
tioned ensemble model FNNL+P+LSTMP (Table 6.1). However, all of the
ensemble models showed higher performance than the single models. In par-
ticular, ensemble model FNNL+P+TPTr×3 achieved the best results, with
an MAE of 1.033 and a Corr of 0.262. In a previous study that used the
same dataset and machine learning task as we presented here, it was shown
that the ensemble model FNNL+P achieved a better performance than other
multimodal models [166]. We show here that our proposed ensemble model
(FNNL+P+TPTr×3) significantly outperforms the previously reported best
model (FNNL+P, p < 0.05, Wilcoxon signed-rank test), suggesting the effec-
tiveness of our proposed method. In addition, we observed significant per-
formance improvement for the TPTr×3 model compared to the Tr×3 model
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Table 6.2: Sentiment estimation results for the Transformer model and its
variant. Tr, Transformer; CMTr, CrossModal Transformer [157]; TPTr, our
proposed Time-series Physiological Transformer. “×3” means triplicated
Transformer blocks.

Model
Single model

Late fusion Ensemble
with FNNL+P with FNNL+P

MAE Corr MAE Corr MAE Corr

Tr 1.082 0.227 1.057 0.221 1.042 0.259
Tr×3 1.109 0.219 1.069 0.230 1.053 0.257
CMTr [157] 1.083 0.190 1.138 0.198 1.040 0.254
TPTr (ours) 1.114 0.228 1.099 0.223 1.051 0.261
TPTr×3 (ours) 1.068 0.232 1.045 0.240 1.033 0.262

by further experimental repetitions (p < 0.05, Wilcoxon signed-rank test).
These results indicate that incorporation of time-series physiological chan-

ges into the Transformer language model, which was achieved with our pro-
posed TPTr model, can capture different representations that cannot be cap-
tured by using only FNNL or FNNP or the ensemble model FNNL+P. As
shown in Section 6.3, only the dot product of the query and key differs be-
tween the conventional Transformer model and our proposed TPTr model,
and this difference can affect the TPTr estimation result. The details of the
attention weight are analyzed and discussed in Section 6.5.4.

6.5.3 TPTr Based on Other Submodalities

We investigated whether the TPTr model based on other physiological sig-
nals and its ensembles were effective for sentiment estimation. We evaluate
the following models:
(1) Single model: This model is our proposed TPTr×3 model, which was
trained on each preprocessed signal from the physiological submodality α, as
shown in Section 6.3. A total of five single models were constructed.
(2) Ensemble of 3 models: The ensemble was constructed using the
FNNL+P (i.e., FNNL and FNNP), and TPTr×3 models trained on physio-
logical submodalities.
(3) Ensemble of 4 models: The ensemble was constructed using FNNL+P,
and two models selected from Tr×3 or TPTr×3 trained on physiological sub-
modalities. To compare the conventional Tr×3 model with our proposed
TPTr×3 models, two sets of ensembles were evaluated: FNNL+P, TPTr×3
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Table 6.3: Sentiment estimation results of the TPTr model based on physio-
logical submodality to explore other effective submodalities. EDAtonic, tonic
component of EDA; EDASC, skin conductance; BVP, blood volume pulse;
HR, heart rate; TEMP, skin temperature.

Model TPTr submodality MAE Corr

Single model

EDAtonic 1.113 0.225
EDASC 1.115 0.237
BVP 1.080 0.258
HR 1.112 0.232
TEMP 1.100 0.221

Ensemble model
(3 models)

EDAtonic 1.052 0.261
EDASC 1.052 0.264
BVP 1.041 0.269
HR 1.050 0.264
TEMP 1.053 0.259

Ensemble model
(4 models)

EDAfast 1.041 0.268
EDAfast and BVP 1.033 0.276

Human - 1.008 0.406

trained on EDAfast, Tr×3; FNNL+P, TPTr×3 trained on EDAfast, TPTr×3
trained on BVP.

Table 6.3 presents the estimation results of the abovementioned models.
Among the five single models based on each submodality, the TPTr model
based on the BVP signal has the best result (row 4 in Table 6.3). The TPTr
model based on the BVP signal also had the best result for the ensemble of
3 models, with an MAE of 1.041 and a Corr of 0.269 (row 9 in Table 6.3).
Finally, we evaluated the ensemble of 4 models: FNNL+P, TPTr×3 based on
the EDAfast, and TPTr×3 based on the BVP signal (the second row from the
bottom in Table 6.3). This ensemble model achieves the best result in this
study, with an MAE of 1.033 and a Corr of 0.276. The ensemble of 4 models
including Tr×3 has a worse performance in terms of the MAE (1.041) than
the model without Tr×3 (MAE of 1.033, the last row in Table 6.2).

EDAfast is known to be related to emotional arousal, and we have pre-
sented its effectiveness (Tables 6.1 and 6.2); however, the BVP signal could
also be useful for sentiment estimation with our proposed framework. Both
the EDA and BVP signals are related to the ANS; however, the EDA sig-
nal reflects changes in sweat gland activity, while the BVP signal reflects
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physiological changes in the cardiovascular system. Further improvement
was achieved with the ensemble of 4 models by using the TPTr model based
on the BVP signal; thus, different physiological submodalities may reflect
different aspects of sentiment changes that cannot be explicitly represented
by using linguistic information alone, resulting in the ensemble of 4 mod-
els achieving further performance improvement. On the other hand, other
submodalities appeared to have little effect on the estimation performance.
Thus, other time-series processing or feature extraction methods should be
considered for these submodalities to determine whether they contribute to
the sentiment estimation performance.

The last row in Table 6.3 depicts the sentiment estimation performance
by five human annotators (the Cronbach alpha value was 0.83 for the TS
annotation, indicating the reliability of the TS annotation). Our best MAE
of 1.033 is close to the human performance, which had an MAE of 1.008,
although there is still a gap between the correlation coefficients (0.276 vs
0.406). Thus, the preprocessing method and neural network architecture
could be improved. We focused on physiological signals in this study since
physiological signals can capture sentiment changes that cannot be expressed
by textual, acoustic and visual features. The combination of our proposed
method and other nonverbal subnetworks for audiovisual modalities, such
as those proposed in [159], may further improve the sentiment estimation
performance; thus, additional investigations are needed.

6.5.4 Analysis of the Attention Weight

It is assumed that the incorporation of physiological signals into the Trans-
former architecture leads to changes in the attention weights since time-
series physiological signals shift the query from Q to Q′ in our proposed
module (Figure 6.2). Thus, we compared the attention weights between
the Transformer and TPTr models. Test samples were used to extract at-
tention weights from the learned model. Figure 6.3 shows examples of at-
tention weights with negative sentiment (Figure 6.3(a)) and positive senti-
ment (Figure 6.3(b)) derived from the Transformer (left) and TPTr (cen-
ter) models, as well as their difference (right). The example shown in Fig-
ure 6.3(a) has a true SS score of 3.00 (i.e., a negative example), and the
estimated scores of the Transformer and TPTr models are 4.01 and 3.69,
respectively. In this example, the segmented Japanese tokens of the system
are “SO/NA/N/DESU/NE/,” (number of tokens n = 6), which means “I got
it” in English, and the Japanese token of the user is “HAI/,” (n = 2), which
means “Yes” or “Well”, which generally functions as a filler and has a neu-
tral or positive meaning. This ambiguous user utterance makes it difficult
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Figure 6.3: Example of the attention weights extracted from Transformer
(left) and TPTr (center), and the difference between the two (right). Each
square matrix is the attention weight computed from the QiK

T
i (left) or
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T
i (center, please see equation 6.3). The dimension is equal to the total

number of tokens including special tokens in one exchange. (a) Example of
attention weights with true negative SS. (b) Example of attention weights
with true positive SS. [C] and [S] indicate special tokens of BERT [CLS] and
[SEP], respectively.

to estimate negative sentiment using only linguistic information; however,
the TPTr model gives less attention to this neutral/positive token and esti-
mates a value of 3.69, which is close to the true negative sentiment score.
Conversely, the TPTr model pays more attention to user utterances in other
cases, as shown in Figure 6.3(b). This example has the system utterance
“Which do you like better, sweet or spicy?” and the user utterance “I like
both” in English. This example has a true SS score of 5.00 (i.e., a positive
example), and the estimated scores of the Transformer and TPTr models are
4.21 and 4.81, respectively. Thus, the TPTr model may change the attention
weight more flexibly than the Transformer model, which may improve the
ensemble model performance.

Taken together, our proposed TPTr architecture intuitively allows for
shifting BERT representations to the physiology-related subspace, resulting

105



in better estimation performance in the ensemble models. Our proposed
models allow physiological information to be continuously linked to linguis-
tic information and has a fixed attention direction, which is different from
the prior works [154, 157, 155]. In the preliminary experiment, other archi-
tectural designs of the TPTr, such as another attention direction, degraded
(or at least did not improve) the estimation performance. Thus, the time-
series physiological signals play a supporting role to the Transformer based
on the BERT representations (denoted as Q′

i in Section 6.3.2) by capturing
SS changes that cannot be represented by linguistic information, although a
further thorough investigation is needed.

6.5.5 Analysis of the Exchange-Level Estimation Pat-
tern

To visualize exchange-level SS changes and differences in the estimation pat-
terns among the models, an example of the estimation results during a di-
alogue session is shown in Figure 6.4. As shown by the black lines, the
participant’s SS changes dynamically during the dialogue. Thus, SS estima-
tion is a difficult task, and dialogue systems should recognize and adapt to
these sentiment changes at the exchange level. In this example, the con-
ventional FNNL (blue line in Figure 6.4, MAE of 0.954) and FNNP (green
dashed line, MAE of 1.077) models cannot dynamically estimate the partic-
ipant’s sentiment and perform conservatively (estimated scores are almost
neural scores of 4). In addition, the conventional Transformer model (purple
dotted line, MAE of 0.715) is insufficient for estimating positive sentiment,
although some performance improvement is observed. On the other hand,
the TPTr model (red dot-dashed line, MAE of 0.576) is effective in detect-
ing subtle sentiment changes, particularly positive sentiment changes, which
cannot be achieved by any of the other models presented in this example.
Thus, the TPTr model could represent different aspects of sentiment chan-
ges that cannot be captured by using BERT representations or conventional
Transformer.

6.5.6 Limitations and Future Works

There is no publicly available dataset that includes exchange-level SS labels
and linguistic and physiological information except for the Hazumi dataset
used in this study. Thus, we cannot evaluate our proposed model with an-
other dataset, which will be considered in future work. Although our pro-
posed method could contribute toward capturing short-time sentiment chan-
ges during individual exchanges (i.e., intraframe), our methods do not con-
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Figure 6.4: Qualitative example of the estimation pattern of each model.
The black line with open circles indicates the actual sentiment score of a
participant during each exchange in a dialogue session. Each colored line
indicates the estimated score based on each model during each exchange.

sider time-series changes in the overall dialogue data (i.e., inter-utterance).
Thus, the effectiveness of representations based on exchange sequences and
attention mechanisms that capture more context and physiological changes
merit further investigation. Also, there is a need to investigate effective meth-
ods for adding time-series audiovisual signals into TPTr (i.e., four modali-
ties in total), and comparison with other SOTA language models such as
RoBERTa [167] is also needed.

6.6 Chapter Summary

We showed that the model based on our proposed time-series physiological
signal processing method has a comparable performance to linguistic-based
models. Furthermore, the TPTr model, which introduced time-series physi-
ological signals into a SOTA language model, significantly outperforms the
previously reported best result. Furthermore, we presented that adding the
BVP signal into the TPTr model based on the EDAfast signal resulted in fur-
ther estimation performance improvement. It seemed that attention weights
based only on the language modality can be changed by the injection of the
physiological signals into TPTr which capture SS changes that are not ex-
pressed in linguistic information. Thus, our proposed framework could be
valuable for developing novel techniques for extracting representations not
only from linguistic modality but physiological modality.
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Chapter 7

Conclusion

This thesis addressed unresolved issues of physiological signals. Conclusions
and future works are described in this chapter.

First, by considering individual physiological differences as a covariate
shift, IW-LR and IW-SVM, which mitigate the accuracy degradation due to
physiological individual differences in the training data, were created. As
a result, most of the importance-weighted models outperform conventional
models based on ECG and GSR features in emotion estimation. In the
personality estimation, the IW method improves the macroaveraged F1-score
for all SVM models. The best performing model (GSR model) outperformed
the model with the best previously reported macroaveraged F1-score by 1.9%
in personality estimation. Although physiological signals are often used in
affective computing, individual physiological differences have been almost
ignored in previous studies. In this work (Chapter 3), the fundamental issue
is resolved by applying the IW method for the first time.

Second, although Chapter 3 focuses on physiological individual differ-
ences as a fundamental problem, Chapter 4 presented the application of
physiological signals for sensing dynamic changes in user sentiment levels in
human-agent interactions. Online SS estimation is known to be a relatively
challenging task because current emotional states are not always expressed
in a natural setting, but this thesis demonstrated the effectiveness of the
physiological signals collected in a naturalistic human-agent interaction set-
ting for the first time. Finding that exchange-level physiological signals are
useful even under naturalistic human-agent interactions is valuable for the
development of adaptive dialogue systems.

Third, this thesis further demonstrated the effectiveness of physiological
signals and clarified their position in multimodal processing by comprehen-
sive and thorough analysis (Chapter 5). In this work, the effects of physiolog-
ical signals in multimodal sentiment analysis were investigated by evaluating

108



all of the fusion models for different types of sentiment estimation in natural-
istic human-agent interaction settings. The results suggest that physiological
features are effective in the unimodal model and that the fusion of linguistic
representations with physiological features provides the best results for esti-
mating SS labels as annotated by the users. In contrast, the tensor fusion of
linguistic representations with audiovisual features is effective for estimating
sentiment labels as annotated by third-party in regression tasks, which can
be derived from the corresponding signals that are observable by humans.
That is, it was newly revealed that different modalities play different roles in
sentiment estimation during human-agent interaction.

Fourth, new physiological signal processing methods that are robust aga-
inst changes in sentiment state masked by the user are proposed in Chapter 6.
This work proposes an effective fusing algorithm that combines physiological
features and a Transformer language model. Compared with linguistic mod-
els based on BERT representations, physiological LSTM models based on
our proposed physiological signal processing method have competitive per-
formance. Moreover, we extend our physiological signal processing method
to the Transformer language model and propose TPTr, which captures sen-
timent changes based on both linguistic and physiological information. The
ensemble with the TPTr model significantly outperforms the previous best
result. Furthermore, the effectiveness of the proposed approach was also
shown by applying a variety of physiological signals, further improving the
performance with ensemble methods. This novel and unique model promises
to be a powerful tool to realize adaptive dialogue systems and related emo-
tionally intelligent systems.

From a higher perspective than each task (Chapter 3 to 6), further inves-
tigation of multimodal processing with physiological signals is still needed in
future works. First, issues of individual differences are still not resolved in
human-agent interactions, as shown in Figure 4.4 in Chapter 4, although it
is shown that the IW method is effective for movie-watching tasks (Chap-
ter 3). Thus, applying the IW method to sentiment estimation during dia-
logue (Chapter 4 to 6) is one of the most important future works. In this
case, there is a concern that the method for importance estimation used in
this thesis, KuLSIF [95], is applicable only for linear models such as SVM
and LR and is not applicable for nonlinear models such as DNN, including
Transformer. Alternatively, a recently proposed method called dynamic im-
portance weighting can improve IW for deep learning under covariate shift
[168]. Thus, this technique could bring further performance improvement for
sentiment estimation based on physiological signals.

Additionally, it would be interesting to investigate when individual differ-
ences are prominent in sentiment estimation and how to ingeniously comple-
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ment them with each modality. Obviously, human beings also have individual
differences other than physiological differences. Thus, it seems that not only
physiological signals but also dynamic adjustment with other modalities will
be needed for further understanding of human behavior by machines.

Furthermore, there is a need to implement the proposed model in actual
dialogue systems and evaluate the effectiveness of our proposed method for
user satisfaction with the overall dialogue. This is a key evaluation to clarify
the significance of the physiological signals in an actual system. Addition-
ally, the potential of physiological signal modeling is not limited to spoken
dialogue systems. For example, sensing techniques using wearable devices
can be used for sentiment analysis in text-to-text dialogue where audiovi-
sual data are not available. Thus, evaluation of the physiological signals in
text-to-text interaction settings would further clarify the usefulness of the
physiological signals.

Finally, to optimize the machine learning model for each dialogue setting,
such as chit-chat or text-to-text, large-scale pretraining of the physiological
signals may be plausible. The pretraining of the physiological signals can
leverage the optimization for the internal state estimation, such as emotion,
sentiment, attitude and engagement estimation. Similar to BERT [131] and
LaMDA [169], self-supervised learning was used for emotion recognition with
physiological signals, which was proposed recently [170]. Thus, a deeper un-
derstanding of multimodal processing, model architecture and learning de-
sign will lead to the realization of adaptive dialogue systems and emotionally
intelligent agents.
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Appendix

Distribution of parts of speech

We investigated whether the user utterances in the Hazumi dataset include
over/underrepresentation of certain types of words or have a similar distri-
bution as another Japanese spoken language corpus. The distribution of the
types of words is shown in Table S1. The numbers and ratios of tokens and
types in user utterances are depicted. The distribution of the parts of speech
(PoSs) in the total sample is similar to another Japanese spoken language
corpus [171], although the ratios of nouns and symbols are slightly different
since [171] was based on closed captioning. In addition, a similar distribu-
tion was observed by stratified analysis of positive and negative SS labels.
As shown in Table S1, the utterances with positive SS labels had a larger
number of tokens than the utterances with negative SS labels, probably be-
cause the participants enjoyed talking with the dialogue system and talked
with various expressions.
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Table S1: User utterance distribution. PNA, pre-noun adjectival.

PoS

Total sample positive SS label negative SS label [171]

Token Type Token Type Token Type Token

# % # % # % # % # % # % %

Noun 8934 21.5 2050 63.3 5624 22.0 1545 61.7 3310 20.7 1031 59.0 33.7

Verb 4086 9.8 629 19.4 2530 9.9 485 19.4 1556 9.7 350 20.0 12.5

Adjective 967 2.3 160 4.9 576 2.2 127 5.1 391 2.4 81 4.6 1.6

Adverb 1689 4.1 148 4.6 1080 4.2 123 4.9 609 3.8 89 5.1 2.6

Interjection 2242 5.4 38 1.2 1165 4.5 31 1.2 1077 6.7 32 1.8 1.1

Symbol 7872 18.9 12 0.4 4634 18.1 10 0.4 3238 20.3 6 0.3 10.3

Particle 9517 22.9 81 2.5 6165 24.1 73 2.9 3352 21.0 68 3.9 25.5

Auxiliary verb 4736 11.4 43 1.3 2874 11.2 39 1.6 1862 11.6 34 1.9 9.8

Conjunction 224 0.5 27 0.8 141 0.6 25 1.0 83 0.5 19 1.1 0.9

PNA 454 1.1 21 0.6 293 1.1 20 0.8 161 1.0 16 0.9 1.1

Prefix 230 0.6 17 0.5 153 0.6 13 0.5 77 0.5 10 0.6 0.7

Filler 646 1.6 12 0.4 374 1.5 12 0.5 272 1.7 12 0.7 0.2

Total 41597 100.0 3238 100.0 25609 100.0 2503 100.0 15988 100.0 1748 100.0 100.0
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Comparison of Multimodal Language Models

The unimodal BERT representation (Lc) models outperformed models trained
on handcrafted features (La model) and fastText word vectors (Lb model).
However, there is no guarantee that the better unimodal model will be a
better multimodal model. We therefore performed an extensive investigation
to explore the potential of other multimodal language models. The fusion
model with either La or Lb did not outperform the fusion with Lc in the case
of our study (Tables S2 and S3), although there were a few cases in which
the Lb fusion model outperformed the Lc model when the same architecture
and modality were compared (for example, in the SS estimation, the Lb+P
FNN model with EF had an MAE of 1.082 (Table S2), whereas the Lc+P
FNN model with EF had an MAE of 1.088 (Table 3 in the main text)). The
highest estimation performance was achieved by using multimodal models
with Lc in SS and TS estimation (please see the main text).

Confirming the reproducibility of our results, FNN with LF2 of the lin-
guistic (La or Lb) and physiological (P) modalities had good performance in
SS estimation (Table S2). The Lb+P FNN model with LF2 achieved an accu-
racy of 0.627, and the La+P FNN model with LF2 achieved an MAE of 1.051
in the SS estimation. On the other hand, in the TS estimation, the Lb+V
TFN model achieved an accuracy of 0.820, and the Lb+A+V TFN model
achieved an MAE of 0.436 in the TS estimation (Table S3). Thus, the effec-
tive modality and architecture were the same among the three multimodal
language models (fusion of La, Lb or Lc with another non-verbal modality)
for different types of sentiment estimation.
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Table S2: SS estimation results for multimodal models with handcrafted features or fastText word vectors.
La, handcrafted linguistic features; Lb, fastText word vectors; P, physiological features; A, audio features; and
V, visual features.

Feature
L-SVM R-SVM FNN EF FNN LF1 FNN LF2 TFN

Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE

La+P 0.579 0.507 1.320 0.325 0.262 1.083 0.581 0.511 1.105 0.575 0.513 1.135 0.597 0.528 1.051 0.565 0.504 1.110

La+A 0.557 0.503 1.162 0.482 0.406 1.116 0.561 0.504 1.148 0.566 0.507 1.109 0.584 0.523 1.104 0.570 0.515 1.104

La+V 0.566 0.510 1.186 0.467 0.366 1.093 0.571 0.508 1.141 0.584 0.523 1.117 0.584 0.522 1.097 0.577 0.517 1.110

Lb+P 0.600 0.506 1.193 0.538 0.427 1.124 0.604 0.536 1.082 0.616 0.520 1.098 0.627 0.538 1.062 0.587 0.497 1.069

Lb+A 0.567 0.516 1.229 0.524 0.475 1.107 0.562 0.507 1.156 0.568 0.511 1.184 0.577 0.518 1.107 0.581 0.514 1.130

Lb+V 0.573 0.525 1.454 0.542 0.478 1.107 0.562 0.515 1.129 0.568 0.517 1.165 0.581 0.530 1.096 0.547 0.471 1.113

La+P+A 0.577 0.510 1.179 0.494 0.417 1.121 0.566 0.510 1.110 0.562 0.503 1.110 0.617 0.541 1.056 0.567 0.511 1.127

La+P+V 0.577 0.509 1.199 0.497 0.379 1.094 0.570 0.508 1.108 0.586 0.524 1.119 0.611 0.540 1.054 0.577 0.518 1.119

La+A+V 0.559 0.504 1.186 0.498 0.422 1.139 0.566 0.510 1.114 0.574 0.515 1.114 0.599 0.538 1.089 0.584 0.523 1.124

Lb+P+A 0.601 0.528 1.214 0.543 0.474 1.117 0.567 0.512 1.144 0.595 0.518 1.130 0.610 0.537 1.063 0.594 0.518 1.111

Lb+P+V 0.619 0.533 1.337 0.525 0.468 1.104 0.564 0.511 1.134 0.622 0.535 1.132 0.626 0.550 1.062 0.585 0.499 1.101

Lb+A+V 0.579 0.531 1.210 0.560 0.503 1.112 0.577 0.520 1.132 0.567 0.513 1.176 0.588 0.531 1.091 0.579 0.521 1.146

La+P+A+V 0.587 0.519 1.156 0.464 0.403 1.139 0.563 0.505 1.108 0.575 0.515 1.104 0.620 0.550 1.057 0.574 0.517 1.132

Lb+P+A+V 0.611 0.540 1.217 0.553 0.494 1.107 0.581 0.521 1.124 0.599 0.526 1.121 0.616 0.548 1.062 0.616 0.536 1.097
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Table S3: TS estimation results for multimodal models with handcrafted features or fastText word vectors.
La, handcrafted linguistic features; Lb, fastText word vectors; P, physiological features; A, audio features; and
V, visual features.

Feature
L-SVM R-SVM FNN EF FNN LF1 FNN LF2 TFN

Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE Acc F1 MAE

La+P 0.781 0.737 0.656 0.686 0.405 0.770 0.797 0.763 0.502 0.795 0.756 0.558 0.800 0.758 0.548 0.769 0.733 0.655

La+A 0.764 0.716 0.651 0.689 0.417 0.618 0.776 0.727 0.504 0.785 0.743 0.515 0.786 0.735 0.513 0.781 0.734 0.641

La+V 0.783 0.739 0.643 0.683 0.405 0.645 0.784 0.746 0.502 0.798 0.759 0.522 0.803 0.760 0.529 0.785 0.743 0.653

Lb+P 0.808 0.756 0.668 0.704 0.573 0.775 0.819 0.768 0.506 0.820 0.776 0.500 0.813 0.759 0.538 0.809 0.758 0.458

Lb+A 0.759 0.695 0.717 0.727 0.593 0.725 0.765 0.711 0.517 0.771 0.719 0.504 0.777 0.718 0.497 0.810 0.766 0.446

Lb+V 0.797 0.736 0.788 0.691 0.432 0.988 0.806 0.750 0.507 0.809 0.767 0.497 0.811 0.755 0.514 0.820 0.775 0.447

La+P+A 0.770 0.720 0.649 0.687 0.414 0.616 0.777 0.730 0.498 0.786 0.743 0.516 0.788 0.731 0.532 0.783 0.737 0.644

La+P+V 0.790 0.746 0.645 0.682 0.403 0.651 0.790 0.750 0.496 0.800 0.761 0.524 0.801 0.745 0.545 0.789 0.747 0.653

La+A+V 0.767 0.720 0.639 0.686 0.417 0.617 0.780 0.732 0.489 0.789 0.749 0.504 0.798 0.748 0.519 0.789 0.741 0.639

Lb+P+A 0.756 0.691 0.732 0.719 0.578 0.737 0.758 0.701 0.519 0.772 0.721 0.501 0.788 0.720 0.524 0.808 0.763 0.441

Lb+P+V 0.797 0.735 0.768 0.692 0.427 1.010 0.804 0.743 0.508 0.806 0.762 0.494 0.805 0.738 0.537 0.818 0.774 0.451

Lb+A+V 0.764 0.704 0.720 0.723 0.595 0.698 0.775 0.719 0.510 0.775 0.724 0.492 0.801 0.746 0.507 0.809 0.763 0.436

La+P+A+V 0.769 0.720 0.650 0.688 0.415 0.616 0.779 0.729 0.487 0.789 0.747 0.497 0.797 0.741 0.533 0.790 0.742 0.642

Lb+P+A+V 0.766 0.707 0.712 0.722 0.599 0.670 0.781 0.725 0.508 0.773 0.721 0.503 0.800 0.736 0.526 0.815 0.772 0.453
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