
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Position Control and Production of Various

Strategies for Deep Learning Go Programs

Author(s)
Fan, Tianwen; Shi, Yuan; Li, Wanxiang; Ikeda,

Kokolo

Citation

2019 International Conference on Technologies

and Applications of Artificial Intelligence

(TAAI 2019), Kaohsiung, Taiwan, China

Issue Date 2019-11-21

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/18207

Rights

This is the author's version of the work.

Copyright (C) 2019 IEEE. 2019 International

Conference on Technologies and Applications

of Artificial Intelligence (TAAI 2019). DOI:

10.1109/TAAI48200.2019.8959895. Personal use

of this material is permitted. Permission

from IEEE must be obtained for all other

uses, in any current or future media,

including reprinting/republishing this

material for advertising or promotional

purposes, creating new collective works, for

resale or redistribution to servers or lists,

or reuse of any copyrighted component of this

work in other works.

Description

2019 International Conference on Technologies

and Applications of Artificial Intelligence

(TAAI 2019), Kaohsiung, Taiwan, China, 21st

November 2019.

Position Control and Production of Various
Strategies for Deep Learning Go Programs

Tianwen Fan∗, Yuan Shi∗, Wanxiang Li∗, and Kokolo Ikeda∗
∗School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

Email: {fantianwen,shiyuan,wanxiang.li,kokolo}@jaist.ac.jp

Abstract—Computer Go programs have exceeded top-level
human players by using deep learning and reinforcement learning
techniques. On the other hand, “Entertainment Go AI” or
“Coaching Go AI” are also interesting directions which have not
been well investigated. Several researches have been done for
entertaining beginners or intermediate players. Position control
or producing various strategies are important tasks, and some
methods have been proposed and evaluated using a traditional
Monte-Carlo tree search program. In this paper, we try to
adapt the method to LeelaZero, a program based on AlphaGo
Zero. There are some critical differences between the previous
program and the new program. For example the new program
does not use random simulations to the ends of games, then
the previous method for producing various strategies cannot
be used. In this paper we summarized the differences and
some expected problems, and proposed several approaches to
solve the problems. It was shown that the modified LeelaZero
could play gently against weaker players (48% won against a
program Ray). Through experiments using human subjects, it
was shown that the average number of unnatural moves per game
was 1.22, where that by a simple method without considering
naturalness was 2.29. Also we evaluated the proposed method for
training “center-oriented” and “edge/corner-oriented” players,
and it was confirmed that human players could identify the
produced strategy (center or edge/corner) with a probability of
71.88%.

Index Terms—Computer Go, Position Control, Various Strate-
gies, Entertainment, Coaching, Deep Learning, AlphaGo Zero

I. INTRODUCTION

The game of Go requires an outstanding ability of decision
making, and has been treated as an important goal of artificial
intelligence (AI) for a long time. Recently, with the devel-
opment of deep learning techniques, AlphaGo [1], introduced
by DeepMind, beat a top-level professional player for the first
time. Moreover, the advanced version AlphaGo Zero [2] is
much stronger than the original one, by using self-training.

Now the strength of Go programs have surpassed top-
level human players, so it becomes even worthier conducting
researches on entertaining and teaching human players [3],
[4]. There are many requirements to entertain and/or coach
human players, and one of the most important things is to
control the game position, in other words, to keep a good
balance between Black and White. If the computer player is
strong, then intermediate players can be easily beaten. So,
entertaining computer players should select gentle or weak
moves intentionally. At the same time, such moves should

not be too unnatural. Using handicap stones is a good way
to balance the game of Go. However, on one hand, handicap
stones may harm the enjoyment. On the other hand, even nine
stones are not enough for intermediate players to win against
the state-of-the-art programs.

A successful method was proposed for natural position
control and production of various strategies [5]. However,
the paper used a traditional Monte Carlo tree search (MCTS)
program named Nomitan. We find some problems when ap-
plying this method to the state-of-the-art programs because
their strength and mechanisms are all different from traditional
MCTS programs.

In this paper, at first, we introduce existing strength control
methods in Section II, and in Section III we summarize the
differences between traditional and new programs, with some
expected problems caused by the differences. Then, in Section
IV we propose several ways for adapting the existing method
to programs based on AlphaGo Zero, such as LeelaZero [6]
(abbr. Leela for the rest of the paper) and ELF OpenGo
[7] (abbr. Elf for the rest of the paper). Next we evaluate
the performance (gentleness and naturalness), and discuss the
remaining or newly raised problems in Section V. Finally, in
Section VI, we propose a completely new method to produce
various strategies, because the previous method cannot be used
in programs based on AlphaGo Zero. The players with center-
oriented or edge/corner-oriented strategy were evaluated by
using human subjects.

II. RELATED WORK

A. Strong Go programs

The game of Go is regarded as one of the toughest problems
for AI. The progress of the strength of Go programs was slow
for a long time, but Monte-Carlo Tree Search (MCTS) made
significant progress [8]. The level of MCTS Go programs
reached high amateur levels, such as KGS-6d in 2015.

In 2016, “AlphaGo” [1], which combined multi-level con-
volutional neural networks and MCTS, beat a top-level player
Lee Sedol and became the first program to defeat a top-
level professional Go player. The successor of AlphaGo is
“AlphaGo Zero” [2]. There are many differences, but both
programs use the “selection probabilities” of moves (policy)
and the “expected winning probability” (value) by inputting
board statuses into neural networks, trained by supervised
learning or reinforcement learning.978-1-7281-4666-9/19/$31.00 ©2019 IEEE

B. Position control

Generally, there are two major kinds of approaches to
control the strength of Go programs. One is trying to produce
a “static” weakness, for example, by decreasing the number of
simulations or thinking time. Another is a “dynamic” way, to
determine the proper degree of strength control according to
current statuses on the boards. For example, if the computer
player has a big advantage against a weaker human player,
then some bad moves are intentionally played. We call this
“position control”.

The two kinds of approaches have their own advantages and
disadvantages. The static approach has consistent strength, this
is usually a good aspect. However, the estimation of opponent
levels should be done before the games. Further, even when
the strength of the two players is similar, sometimes one-
sided games happened. On the contrary, the dynamic approach
can control the game position (advantage) without knowing
opponent levels. Good moves or bad moves are selected
according to the degree of advantage of the computer player,
so sometimes the inconsistent strength may be problematic.

In the both cases of static/dynamic approaches, bad moves
were sometimes selected. However, too bad moves should
be avoided because such moves harm the enjoyment. Soft-
max selection is such an approach for MCTS programs [9].
Each candidate move mi is selected with a probability of
nzi /

∑
j n

z
j , where ni is the number of visits of move mi, and

z is a parameter. When z = 0, all candidates are selected
randomly, while the most visited move is selected when
z → ∞. Wu et.al. [10] applied this approach to the game of
Go on Elf, and showed the strength can be well controlled by
z. Also they proposed a new technique to remove less visited
moves from candidates, to avoid selecting too bad moves.

In our previous paper [5], naturalness of moves was explic-
itly considered to entertain intermediate players, with using
a traditional MCTS program. The degree of naturalness of
a move was calculated by “selection probability”, which was
trained from human game records. When the expected winning
probability (of computer player) was too high, a bad but not
too unnatural move is intentionally selected.

C. Playing various strategies

Human Go players have widely varied strategies or pref-
erences, such as favoring edge/corner territory, favoring cen-
ter territory, pessimistic, optimistic, offensive, or defensive.
Such variety is a seed of entertainment, so it is valuable
to implement such strategies in computer Go programs. In
the previous paper [5], a simple trick was employed and
partly succeeded to let human subjects identify each strategy,
while with only a slight loss of strength. Simply speaking,
the method changed the definition of wins/losses in MCTS
simulations. For example, for players favoring center territory,
a center territory was counted as 1.2 points, and a corner/edge
territory was counted as 0.8 points.

III. DIFFERENCES IN NEW PROGRAMS

The existing methods of position control and producing
various strategies [5] were proposed for traditional MCTS
programs. Recent programs based on AlphaGo Zero are much
stronger than traditional ones, and have different mechanisms.
Then, some of the existing methods cannot be directly applied,
or may produce bad performance. In this section, we summa-
rize the differences and several expected or known problems.
In this paper, we employ two open-sourced programs, Leela
[6] as a recent program, and Ray [11] as a traditional program,
and 13× 13 board is used for experiments.

The main difference lies in the state evaluation mechanism.
To evaluate a leaf node, traditional MCTS programs run some
(biased) random simulations to the ends of games. Win or loss
is judged by the rules of Go. On the contrary, recent programs
use value networks to evaluate leaf nodes. As a result, our
previous method for producing various strategies (described
in Section II-C) cannot be used, because the trick modifies
the definition of wins/losses at the ends of games.

Also it is well known that winning probabilities predicted by
recent programs are somewhat sharp or drastic. Fig. 1 shows
winning probabilities of moves, predicted by Ray and Leela,
in 50 testing games. Red triangular points were sampled at
the 30th move, green circular at the 60th, and black square at
the 100th. The height of red triangle/green circle distribution
is greater than the width, which means small dis/advantage
for Ray may be judged big by Leela. In traditional MCTS,
long random simulations are done especially in early stages
of a game, so small dis/advantage may not be well reflected
to winning ratios. Our previous method is based on winning
probabilities and their differences among candidate moves, so
some tuning will be needed.

Another difference is whether human game records are
used. Recent programs do not involve human game records,
then their trained policy networks are sometimes different
from human players’ senses. Especially, recent programs tend
to play far from the opponent moves more frequently. For
example, when Leela and Ray play against each other, the
average Euclidean distance between a Leela’s move and the
last Ray’s move (100 games, from the second to the 60th
moves) is 3.16 ± 0.10. This is significantly bigger than that
between Ray’s moves and the last Leela’s moves, 2.65±0.08.
Usually it seems natural to react directly when the opponent
tries to attack or invade. This tendency is strong especially for
beginners. So, playing far from the last move is sometimes
risky for entertainment, because beginners may think “my
move was ignored, it’s a strange play”. Fig. 2 is an example.
Black played C3, which aims to invade the territories of the
White corner. For beginners, it is natural to play at D3 (A).
However, here Leela selected L11 (1). In fact, this move is not
bad, but may seem to be strange from beginners’ viewpoints.

IV. APPROACHES

A. Position control
About the position control, basically the original procedure

[5] is employed, but some new methods are newly introduced

Fig. 1. Predicted winning ratio by
Ray (x-axis) and Leela (y-axis)

Fig. 2. A move far from the
opponent move

to deal with problems introduced in Section III.
The detailed procedure is described in the previous paper

[5]. For simplicity of discussion, assume that moves mi are
sorted by their winning ratios, m1(w1, p1), m2(w2, p2), ...,
where wi represents the winning ratio, and pi shows the
selection probability (we assume this value can approximate
naturalness to a certain degree, even without human game
records). Briefly speaking, (1) if w1 is much higher than w2,
the best move m1 is played. (2) When w1 is low, i.e., the
program is losing, the best move m1 is played. (3) When w1

is moderate (around 50%), the most natural move is selected
among moves whose winning ratios are not low. (4) When w1

is high, i.e., the program is winning, then a worse move such
as m2 or m3 is intentionally selected, with considering the
balance of selection probability and winning ratio.

There are three expected/observed problems when using
Leela, (a) some candidate moves have few visits, then their
winning probabilities are not reliable, (b) Leela tends to move
far from the last opponent moves, and (c) naturalness is often
sacrificed for decreasing winning probabilities.

About problem (a), it is reasonable to ignore bad moves after
few visits for strong play. However, since we intentionally
select bad moves for position control, they should also be
well searched. Thus, we employ a high exploration coefficient,
10. Also, we exclude moves with visits less than 100 from
candidates. We call this modification method-A. Problems (b)
and (c) are discussed in the following subsections.

B. Method-B: decreasing distance from last opponent moves

In many traditional MCTS programs, the distances to the
last opponent moves are explicitly considered to calculate the
selection probabilities [8]. Namely, if a candidate move is near
the last opponent move, its selection probability is increased.

So we propose to modify the policy network output accord-
ing to the distances from the last opponent moves. Let mi be
a candidate move, pi be the original selection probability, and
di be the Euclidean distance from the last opponent move to
mi. New selection probability p′i is calculated as follows:
• if di ≤ 2, p′i = pi × 1.50
• if 2 < di ≤ 3, p′i = pi × 1.25
• if 3 < di ≤ 4, p′i = pi × 1.00
• if 4 < di ≤ 5, p′i = pi × 0.75
• if 5 < di ≤ 6, p′i = pi × 0.50

• if 6 < di ≤ 7, p′i = pi × 0.25
• otherwise, p′i = pi × 0.10

One exception is the case that the program has no stones
around the last opponent move (Euclidean distance ≤ 3),
which means that the opponent move does not intend to attack
or invade. In such case, selection probabilities are not changed.

C. Method-C: avoiding big sacrifice

In our original method, when the best winning probability
w1 is higher than a threshold 0.55, a bad move is intentionally
selected. At first, each candidate mi is tested whether it
satisfies one of four conditions: (i) w1 − wi < 0.03c and
pi > 0.05, (ii) w1 − wi < 0.04c and pi > 0.10, (iii)
w1 − wi < 0.06c and pi > 0.20, and (iv) w1 − wi < 0.08c
and pi > 0.40, where c is a parameter to control the degree
of gentleness. When c is high, worse moves can be played,
and then naturalness is usually sacrificed. Let M+ be a set
including m1 and moves satisfying one of the conditions,
which can be considered as candidates “not so bad, and
relatively natural”. From M+, the move which has the lowest
wi is selected to decrease the advantage.

Fig. 2 is also a good example. After a search by Leela,
the winning probability of D3 was 0.697 and the selection
probability was 0.400. Meanwhile, the winning probability
of L11 was 0.690 and the selection probability was 0.139.
Our original method selected L11 to decrease the winning
ratio, but naturalness was sacrificed. This selection seems to
be unreasonable, since the winning ratio does not decrease too
much but naturalness is almost sacrificed.

So, we propose to consider not only wi but also pi when
selecting the move from candidates M+. More specifically,
the move which has the lowest w′i = wi − α× pi is selected,
where α is a positive parameter. For the above example, w′

of D3 is 0.657 when α = 0.1, and that of L11 is 0.676, thus
D3 is selected.

D. Playing various strategies

Production of various strategies was also proposed in the
previous paper [5]. It changed the definition of wins/losses
for random simulations of MCTS, which needs to play games
to the ends. However, since random simulations to the ends
of games are not done in programs such as Leela or Elf, the
same method cannot be applied. So, we propose to train new
networks to produce various strategies in an offline manner,
while the previous method is done in an online manner.

Since Leela open-sourced the codes, we can customize the
training of new Leela networks, e.g., with our own definition of
wins/losses, or in different board sizes. Usually, when training
value networks, the pairs (game state, result) are saved as
training data. The result is determined by the rules of Go,
by comparing the territories of Black and White (+Komi).

In this paper, we tried to make a center-oriented network,
by giving higher weights to center territories:
• From the first line to the third line (i.e., corner or edge),

the weight is 1− β.
• On line 4, the weight is 1.

• Starting from line 5 (i.e., center), the weight is 1 + β.
When β is positive, center-oriented network are trained. With
negative β, which gives lower weights to center territories,
edge/corner-oriented networks are trained. Note that if such
networks are used solely, they may not play well for standard
games of Go.

Simply by modifying the definition of wins/losses, networks
with different preference can be trained, such as optimistic,
pessimistic, offensive or defensive. For example, if one cap-
tured stone is counted as -2 points, defensive networks may
be trained. We remain such experiments as future work.

V. EXPERIMENTS ON POSITION CONTROL METHODS

In this section, we compare the original and the modified po-
sition control methods when implemented in a recent program,
Leela. Our experiments were done in a board size of 13× 13,
Leela’s policy network and value network were trained from
zero for two weeks, using a server with two Titan-X GPUs.
On the other hand, Ray, a traditional MCTS program served
as a weaker player. The numbers of simulations per move for
Leela and Ray were 16,000 and 60,000 respectively. Leela
always played White side.

A. Evaluation of position control ability

At first, we evaluated the strength of the trained Leela. Pure
Leela was much stronger than Ray. Ray could win no game
against Pure Leela in 30 games. Next, we evaluated Leela with
original position control method. All parameters were set to
the recommended values as the original paper, especially, the
important parameter c was set to 1.5. The only difference
was to apply method-A (shown in Section IV-A). We call
this setting LeelaA15. Ray won 183 out of 500 games against
LeelaA15, which means position control was performed, but
the degree was insufficient.

To make Leela weaker, c should be increased, but it is
expected that naturalness is sacrificed. So, we tried c = 2.5,
and included methods-B and -C, shown in Sections IV-B and
IV-C, to compensate the sacrificed naturalness. α = 0.25 was
used for method-C. We call this setting LeelaABC25. Ray won
238 out of 500 games against LeelaABC25, so LeelaABC25

was significantly weaker than LeelaA15. When c = 3.5, Ray
won with a probability of 73%.

B. Evaluation of naturalness

Generally, it is easy for stronger human/computer players
to lose intentionally, if regardless of the naturalness of moves.
Valueless moves or even suicidal moves can be played to
lose the advantage. But weaker players do not want such
unnatural position control. So, it is very important to know
how many moves seem to be unnatural from the viewpoints
of human players. The previous paper [5] reported that 5.2
White moves seemed to be unnatural per game when using
naive control method, and only 1.9 White moves when using
the proposed method. The Black player was a weaker player
and its unnatural moves were not counted.

TABLE I
POSITION CONTROL PERFORMANCE BY FOUR VERSIONS OF LEELA

Leela version Winning ratio of Ray number of unnatural moves
Pure Leela 0.00 -
Leelanaive - 2.29 ± 0.53
LeelaA15 0.37 ± 0.04 1.27 ± 0.41

LeelaABC25 0.48 ± 0.04 1.22 ± 0.25

So, we conducted a similar experiment, though the hu-
man subjects and their strength were different. We pre-
pared three versions of Leela, LeelaA15, LeelaABC25, and
Leelanaive. For Leelanaive, candidate moves were collected
using method-A, and the move with a winning probability
nearest to 0.5 was selected, without explicitly dealing with
the naturalness of moves.

In the experiments, we asked nine human subject, ranks
from 8k to 8d, to review games played by the three versions.
A total of 15 games were generated by the three versions,
which played against Ray five games for each. 15 games were
given in random order and in a blind manner. Each person was
given two hours to review the records from the first moves to
the 60th moves.

The average numbers of unnatural moves per game is listed
in Table I. One may note that the numbers of unnatural
moves by gentle Leela programs (LeelaA15 and LeelaABC25)
were smaller than the that of our previous paper. However,
the experiment settings (programs and human subjects) were
totally different, thus, it is hard to compare. The difference
between Leelanaive and our two methods was statistically
significant. The results showed that position control methods
were also effective for programs based on AlphaGo Zero.
Furthermore, LeelaABC25 had almost the same naturalness as
LeelaA15, while the strength was significantly weakened. The
results suggested that method-B and method-C are effective.

In addition, the average Euclidean distance between
LeelaABC25’s moves and the last Ray’s moves (100 games,
from the second to the 60th moves) was 2.33 ± 0.06. The
value was significantly lower than those of Ray (2.65± 0.08)
and LeelaA15 (3.16±0.10). This tendency is as we expected,
and the degree can be controlled by tuning parameters of
method-B, according to players’ preference. Fig. 3 shows a
game between Ray (Black) and LeelaABC25 (White). White
played gently without obviously bad moves. Finally, Black
won 0.5 points.

C. Remaining problems

It was shown that the number of unnatural moves from the
viewpoints of human players was low, still there are some
remaining problems.

1) Ladder: Ladder is a well-known sequence of moves in
which an attacker pursues a group in a zigzag pattern across
the board. If there are no intervening stones, the group will hit
the edge of the board and be captured [12]. Fig. 4 is a game
between Elf (White) and a human player (KGS-3d, Black).
Black played G14 (97), and threatened three white stones by
ladder. However, Elf ignored this risk and played E18 (98),

Fig. 3. A game between Ray
(Black) and LeelaABC25 (White)

Fig. 4. Example of “Ladder”
(White 98)

then the white stones were captured and Elf resigned soon.
Such “unnatural” moves cannot be avoided by our position
control method, since it is an issue of the original program.

2) Early stage: As mentioned in Section III, very high
(such as over 80%) or low winning probability can be easily
observed even in early stages when using recent programs. For
example, Leela often thinks the advantage is big and tries to
lose by strange moves. Usually, strange moves in early stages
are easily detected by human players, which should better to
be avoided. For this problem, it may be valuable to disable
strong position control in early stages.

3) Terminal stage: The problem in terminal stages may
be a bit more complex, which Leela often wins by 0.5 or
1.5 points. When the difference of territories is small, human
coaches often try to lose by 0.5 or 1.5 points. It is easy
for human players but not for Leela, because +0.5 points
can mean almost a winning ratio of 100%, and −0.5 points
almost a winning ratio of 0%. When there is a move with 0.5
points, Leela is almost impossible to select a move with −0.5
points, because difference of winning ratio is too big. For this
problem, it may be valuable to consider expected points of
territories instead of winning ratios. It was easy when using
traditional MCTS programs, but additional learning may be
needed when using recent programs.

VI. EXPERIMENTS OF PLAYING VARIOUS STRATEGIES

In Section IV-D, a new approach for producing various
strategies was proposed. For each strategy or preference,
some period of self-training is needed. We trained center-
oriented Leela network (Netcenter) and edge/corner-oriented
Leela network (Netedge) about two weeks from scratch. The
parameter β was set to +0.2 for Netcenter, and −0.2 for
Netedge respectively.

A. Pure strategies

Netcenter and Netedge were trained not for playing solely.
Both won no game against the standard Leela in 60 games
for checking their behaviors. Fig. 5 shows a game between
Netcenter (Black) and the standard Leela (White). Moves
1, 9, and 11 are very strange from the viewpoint of the
standard rules of Go, but does fit the goal of Netcenter. Fig.
6 shows a game between Netedge (Black) and the standard
Leela (White). Moves 13 and 15 are far from hot area, and

Fig. 5. Netcenter (Black) vs
standard Leela

Fig. 6. Netedge (Black) vs
standard Leela

finally the left-bottom black stones are in danger. The results
confirmed that Netcenter and Netedge had clear preference to
the center and the edge/corner territories respectively.

B. Mixed approach

Both center- and edge/corner-oriented network had clear
preference, but too weak when used solely. In this section, we
introduce a way to combine the trained network, Netcenter
or Netedge, with the original Leela, in order to balance
the strength and strategy preference. The decision making
procedure is as follows:
• Search. The current board status is given to both networks

(the original Leela and the biased one), and two lists of
candidate moves, Mo and Mb, are obtained. Let wo(m)
be the winning ratio of move m from the original Leela,
and pb(m) be selection probability of the biased Leela .

• Mix. From the move list Mb, some moves are re-
moved: (1) when its winning ratio wo(m) is less than
maxi{wo(i)} − paramgap, or (2) when its selection
probability pb(m) is less than paramsp. After that, if Mb

is not empty, the most visited move in Mb is selected.
Otherwise, the most visited move in Mo is selected.

This mix procedure means that when and only when there
are several acceptable moves from the viewpoint of the original
Leela, the best one from the viewpoint of the biased (center-
or edge/corner-oriented) Leela is selected. paramgap was set
to 0.05, and paramsp to 0.1. We call the mixed players
Leelacenter and Leelaedge respectively. Fig. 7 shows a game
between Leelacenter (Black) and the original Leela (White).
Fig. 8 shows a game between Leelaedge (Black) and the
original Leela (White). While there are still several unexpected
moves, we can recognize the preference.

We conducted experiments to evaluate the strength of the
mixed versions. Each of Leelacenter and Leelaedge played
300 games against the original Leela. The number of wins
were 135 and 129 respectively. We can say that the mixed
versions were not weak, because they only selected acceptable
moves from the viewpoint of the original Leela.

C. How well strategies can be identified

We mentioned that mixed Leela seems to have a strategy
or preference, and not so weak. Finally, we conducted an

Fig. 7. Leelacenter (Black)
vs standard Leela

Fig. 8. Leelaedge (Black)
vs standard Leela

TABLE II
EVALUATION RESULT OF CENTER, EDGE/CORNER, AND STANDARD LEELA

Actual Evaluated a b c d e Total Average
Leelacenter 36 19 20 3 2 80 −1.05
Leelaedge 3 4 13 14 46 80 1.20

Original 37 22 48 25 28 160 −0.09

experiment using human subjects, to evaluate how the strategy
can be identified from the viewpoints of human players.

We tested three versions of Leela, (A) the original Leela, (B)
Leelacenter, and (C) Leelaedge. Four groups of game records
were generated, A vs A, A vs B, A vs C, and B vs C. In
each group, five game were played. Totally, 20 game records
were given to eight human subjects (ranks 6k to 8d) in random
order and in a blind manner. Each person was given one hour
to review the records.

Human subjects were asked to judge which preference can
be identified for Black player and White player respectively
in each game. Options were (a) center-oriented, (b) slightly
center-oriented, (c) nothing, (d) slightly edge/corner-oriented,
and (e) edge/corner-oriented. For averaging the results, we
assigned −2 to (a), −1 to (b), 0 to (c), +1 to (d), and +2
to (e). The number of answers and average values are listed
in Table II.

We can claim that both center- and edge/corner-oriented
strategies could be produced and recognized with a high
probability. In 115/160 answers, the strategies of programs
were correctly judged, and there were only 12 opposite
answers. Average scores were also close to expected, and
indeed different from each other. It is interesting that when the
original Leela played against center- (or edge/corner-) oriented
Leela, the original Leela tended to be judged as edge/corner-
(or center-) oriented.

In this paper, the training and experiments were done on
13× 13 board. The early stage is shorter than 19× 19 board
case, and thus human players had less chances to identify
strategies. So, we expected it to be easier to produce various
strategies in 19 × 19 board case, while the required training
cost will be much higher.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we adapted existing methods for position
control and producing various strategies to Go programs based

on AlphaGo Zero. There are several differences between such
programs and traditional programs. We summarized the dif-
ferences and proposed methods to solve the raised problems.

Next we employed three methods for natural position con-
trol, for example avoiding moves far from the last opponent
moves. From experiments, it was confirmed that we can con-
trol the winning ratio of a very strong program, Leela, against
a traditional MCTS program, Ray. Through experiments using
human subjects, it was shown that the proposed method can
reduce the numbers of unnatural moves, compared to a naive
method regardless to naturalness.

Also we proposed a way to produce various strategies. By
self-training with using a modified definition of wins/losses,
it is possible to obtain center-oriented or edge/corner-oriented
network. Experiments on human subjects successfully showed
that the mixture of such biased networks and the original
networks was effective to produce specific strategies while
keeping the strength.

Some promising future researches include (1) training on
19×19 board and comparing to other existing work, (2) imple-
menting optimistic/pessimistic/offensive/defensive strategies,
and (3) solving remaining problems about naturalness.

ACKNOWLEDGMENT

This research is financially supported by Japan Society
for the Promotion of Science (JSPS) under contract number
17K00506.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[3] H. Iida, K.-i. Handa, and J. Uiterwijk, “Tutoring strategies in game-tree
search,” ICGA Journal, vol. 18, no. 4, pp. 191–204, 1995.

[4] K. Ikeda, S. Viennot, and N. Sato, “Detection and labeling of bad
moves for coaching go,” in 2016 IEEE Conference on Computational
Intelligence and Games (CIG). IEEE, 2016, pp. 1–8.

[5] K. Ikeda and S. Viennot, “Production of various strategies and position
control for monte-carlo goentertaining human players,” in 2013 IEEE
Conference on Computational Inteligence in Games (CIG). IEEE, 2013,
pp. 1–8.

[6] “LeelaZero,” https://github.com/leela-zero/leela-zero, last accessed:
2019-02-10.

[7] Y. Tian, Q. Gong, W. Shang, Y. Wu, and C. L. Zitnick, “Elf: An ex-
tensive, lightweight and flexible research platform for real-time strategy
games,” in Advances in Neural Information Processing Systems, 2017,
pp. 2656–2666.

[8] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72–83.

[9] N. Sephton, P. I. Cowling, and N. H. Slaven, “An experimental study
of action selection mechanisms to create an entertaining opponent,” in
2015 IEEE Conference on Computational Intelligence and Games (CIG).
IEEE, 2015, pp. 122–129.

[10] I.-C. Wu, T.-R. Wu, A.-J. Liu, H. Guei, and T. Wei, “On strength
adjustment for mcts-based programs,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 1222–1229.

[11] “Ray,” http://computer-go-ray.com, last accessed: 2019-02-10.
[12] “Ladder of go,” https://en.wikipedia.org/wiki/Ladder (Go), last ac-

cessed: 2018-07-27.

