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ABSTRACT The AlphaZero algorithm achieved superhuman levels of play in chess, shogi, and Go by
learning without domain-specific knowledge except for game rules. This paper targets stochastic games and
investigates whether AlphaZero can learn theoretical values and optimal play. Since the theoretical values
of stochastic games are expected win rates, not a simple win, loss, or draw, it is worth investigating the
ability of AlphaZero to approximate expected win rates of positions. This paper also thoroughly studies how
AlphaZero is influenced by hyper-parameters and some implementation details. The analyses are mainly
based on AlphaZero learning with lookup tables. Deep neural networks (DNNs) like the ones in the original
AlphaZero are also experimented and compared. The tested stochastic games include reduced and strongly-
solved variants of Chinese dark chess and EinStein würfelt nicht!. The experiments showed that AlphaZero
could learn policies that play almost optimally against the optimal player and could learn values accurately.
In more detail, such good results were achieved by different hyper-parameter settings in a wide range, though
it was observed that games on larger scales tended to have a little narrower range of proper hyper-parameters.
In addition, the results of learning with DNNs were similar to lookup tables.

INDEX TERMS AlphaZero, board games, Chinese dark chess, EinStein würfelt nicht!, reinforcement
learning, stochastic games, tabular.

I. INTRODUCTION
In 2017, Silver et al. [1] presented a program named AlphaGo
Zero, which achieved a superhuman level in the game of Go.
Starting from random play, the program was trained from
self-play games and did not use domain-specific knowledge
other than game rules. They further generalized the approach
to the AlphaZero algorithm and successfully applied it to
chess and shogi as well as Go [2]. The trained programs
defeated world-champion programs in each of the three
games, which represents a milestone in the field of artificial
intelligence.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

The AlphaZero algorithm employed neural networks
with two output heads, value and policy, to evaluate
board positions and select actions, respectively. The neural
networks were combined into a variant of Monte-Carlo
tree search (MCTS) for both generating self-play games to
learn and playing games. The algorithm contained several
hyper-parameters related to MCTS that might influence the
learning in different aspects, such as speed, stability, and
the quality of the learned policies and values. According to
Silver et al. [2], most of the hyper-parameters followed those
tuned in AlphaGo Zero [1] by Bayesian optimization [3] with
some exceptions. It is interesting to investigate how and how
much hyper-parameters influence the algorithm.

Moreover, it is also worth studying whether the AlphaZero
algorithm learns theoretical values and optimal play even

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 18157

https://orcid.org/0000-0001-8888-3116
https://orcid.org/0000-0003-2535-0587
https://orcid.org/0000-0002-7973-2049
https://orcid.org/0000-0002-3360-9440


C.-H. Hsueh et al.: Analyses of Tabular AlphaZero on Strongly-Solved Stochastic Games

FIGURE 1. An overview of the analyses of tabular AlphaZero on
strongly-solved stochastic games.

in stochastic games. The algorithm has been demonstrated
to achieve world-champion levels in deterministic games,
including chess, shogi, and Go. The theoretical values of
the positions in such games are expected to be a win, loss,
or draw. In contrast, in stochastic games such as Chinese
dark chess (abbr. CDC) [4] and EinStein würfelt nicht! (abbr.
EWN) [5], the theoretical values are expected win rates. It is
interesting to study the ability of the AlphaZero algorithm to
approximate expected win rates.

In this paper, reduced and strongly-solved game vari-
ants [6], [7] are targeted instead of the standard versions for
two main reasons. The first and most important one is that
the learned values and policies can be directly compared with
the theoretical values and the optimal play. By doing so, the
difference between the AlphaZero algorithm and the optimal
strategy can be analyzed. Second, learning games on smaller
scales requires fewer computation resources. Different hyper-
parameter settings can be thoroughly investigated, even for
high numbers of simulations in MCTS, which is infeasible
in games on larger scales. A setting can also be tried several
times to verify the repeatability.

As the first step, lookup tables keep for each position
the policy (the probabilities of selecting actions) and the
estimated value, instead of using neural networks as function
approximators. In this way, it is easier to analyze how and
why the learning succeeds or fails since each position in
the lookup table is independent. The AlphaZero algorithm
employing lookup tables is referred to as the tabular
AlphaZero. Lookup tables are feasible since the state spaces
of the reduced and strongly-solved game variants are small
enough. In addition, neural networks like those used by
Silver et al. [2] are employed to see whether the results match
lookup tables’.

In the experiments, the tabular AlphaZero is applied to
learn strongly-solved variants of CDC [6] and EWN [7]. For
both CDC and EWN, several variants differing in board sizes
or piece numbers are selected, aiming to provide insights
when generalizing the analyses to games on larger scales. The
state spaces of these game variants are around the order of
105 or 106. Several hyper-parameters ofMCTS for generating
self-play games are thoroughly investigated. The algorithm
plays almost optimally against the optimal player in many
tested settings. Fig. 1 shows an overview of the analyses.

In addition, the results of the AlphaZero algorithm with
neural networks are similar to those of tabular AlphaZero,
suggesting that the analyses through lookup tables are worth
referencing in general.

This paper is extended from a preliminary version [8]
by investigating more stochastic games, designing new
metrics for evaluating policies and values learned by the
tabular AlphaZero (policy loss and mean absolute error
in Section IV), analyzing the tabular AlphaZero more
thoroughly (Sections V to VII), and making comparisons
between learning using lookup tables and neural networks
(Section VIII).

The rest of the paper is structured as follows. Section II
describes background knowledge, including the AlphaZero
algorithm and the games of CDC and EWN. Section III then
introduces the tabular AlphaZero applied to the strongly-
solved variants. Section IV proposes metrics for measur-
ing the performance of lookup tables. Section V to VII
then present the experiments on MCTS hyper-parameters.
Section VIII shows the results of learning with neural
networks. Finally, Section IX makes concluding remarks and
discusses future research directions.

II. BACKGROUND
First, Subsection II-A reviews the AlphaZero algorithm.
Subsections II-B and II-C then introduce the games of CDC
and EWN, along with the strongly-solved variants.

A. THE ALPHAZERO ALGORITHM
In the AlphaZero algorithm [2], deep neural networks
(DNNs) were trained by reinforcement learning to get
good policies (i.e., the probability distribution of selecting
actions) and predict positions’ values (i.e., expected win
rates) accurately. The key idea was to make the program
become its own teacher through tree search and self-play. The
policies and the values generated by DNNswere incorporated
into tree search to obtain better policies. The DNNs were
then trained to predict the policies after tree search and
the final winners in the self-play games. In more detail,
the learning algorithm contained two parts, self-play and
optimization, executed asynchronously in parallel in a large-
scale computation system.

Self-play games were generated by a variant of Monte-
Carlo tree search (MCTS) with Nsim simulations per
turn. MCTS in the AlphaZero algorithm contained three
phases in each simulation, which were selection, expansion,
and backpropagation. In the selection phase, the PUCT
algorithm,

argmax
a
{
W (s, a)
N (s, a)

+ cpuct · P(s, a) ·

√∑
b N (s, b)

1+ N (s, a)
}, (1)

was applied to traverse the search tree to a leaf, whereW (s, a)
is the total value of action a for node s, N (s, a) the visit
count, P(s, a) the prior probability of selecting a at s, and
cpuct a coefficient influencing the level of exploration in the
search. During the expansion phase, the DNN was used to
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evaluate the value v of the leaf node sL and obtain the policy
p, the probabilities of legal actions.Without loss of generality,
assume that v ranges in [0, 1] and is from the view of the
player to play. sL was then expanded with each of the actions
initialized to

N (sL , a) ← 0,

W (sL , a) ← 0,

P(sL , a) ← pa, (2)

where pa is the probability of selecting action a from the
DNN.1 Backpropagation updated the traversed nodes s from
the leaf back to the root by

N (s, a) ← N (s, a)+ 1,

v ← 1− v,

W (s, a) ← W (s, a)+ v. (3)

Finally, the action to be actually selected at the root was
chosen in proportion to the visit counts. At the end of a self-
play game, the policiesπ , πa ∝ N (s, a), of all board positions
s and the final outcome z of the game were saved as training
data.

To ensure all legal actions at the root may be tried, Dirichlet
noise was added to the prior probabilities at the root node. The
prior probability P(s0, a) was modified to

(1− ε)pa + εηa, (4)

where η is sampled from a symmetric Dirichlet distribution
Dir(α) with α controlling the level of concentration, and ε is
the weight of the noise. The distribution Dir(α) was sampled
when the root was expanded. Under the same numbers
of samples, lower α generally leads to more concentrated
distributions and thus higher levels of exploration. The hyper-
parameters related to MCTS in the AlphaZero algorithm
generally followed those selected by Bayesian optimization
in AlphaGo Zero [1], except the α in the Dirichlet noise
and the number of simulations per turn for self-play
games.

To optimize policy and value networks, the AlphaZero
algorithm randomly sampled positions from some most
recent self-play games. The DNNs were then optimized
by stochastic gradient descent using the positions and the
corresponding policies and values. The resulting programs
defeated world-champion ones in the games of chess, shogi,
and Go.

As a milestone algorithm that mastered chess, shogi,
and Go without game-specific knowledge, several research
groups have tried to reimplement the algorithm in var-
ious games, e.g., ELF OpenGo [9], Leela Zero [10],
Polygames [11], and CLAP [12]. Silver et al.’s imple-
mentation was also released in an open-sourced project,
OpenSpiel [13], a few years after the paper’s publica-
tion. Among the projects, ELF OpenGo and Leela Zero

1For newly expanded actions a from leaf node sL , theW (sL , a)/N (sL , a)
becomes undefined 0/0. Several ways of interpretation will be discussed and
experimented in Section VII.

FIGURE 2. (a) The initial position and (b) an example of position for 4 × 8
CDC.

were specifically for the game of Go; Polygames, CLAP,
and OpenSpiel were general frameworks that could be
applied to different board games, including stochastic
games.

One major difference between deterministic and stochastic
games is that the search trees of the latter involve chance
nodes. As more general extensions of the AlphaZero
algorithm, Schrittwieser et al. [14] proposed MuZero,
and Antonoglou et al. [15] proposed Stochastic MuZero.
However, none of them investigated whether the algorithms
could learn the optimal policies and theoretical values nor
how hyper-parameters influenced the algorithms. Note that
for imperfect information games such as poker that involve
another aspect of uncertainty, opponent modeling or mixed
strategies [16] may be required. Whether the AlphaZero
algorithm is applicable to imperfect information games is still
an open problem and is out of this paper’s scope.

B. CHINESE DARK CHESS
Chinese dark chess (CDC) is a two-player zero-sum stochas-
tic board game widely played in Taiwan [4], [17], and also
a game played in Computer Olympiad since 2010 [18], [19].
The game is played on a 4 × 8 board with 32 pieces, 16 for
each of the two colors, red and black. The 16 pieces are one
king (K/k), two guards (G/g), two ministers (M/m), two rooks
(R/r), two knights (N/n), two cannons (C/c), and five pawns
(P/p). Red pieces are abbreviated by uppercase letters and
black pieces by lowercase letters.

At the start of a game, all 32 pieces are placed faced-
down, randomly shuffled, and put in the squares on the board,
as shown in Fig. 2a. The first player reveals one piece to
make it face up and owns the set of pieces with the same
color as the revealed one. The second player automatically
owns the other set. In other words, the two players’ colors
are decided after the first action. The two players perform
actions in turn, either revealing one of the faced-down pieces
or moving one of their own pieces. The information conveyed
by revealing or moving pieces can be observed by both
players.

The pieces are moved according to the following rules.
First, a piece other than cannons can be moved to one of
its horizontally or vertically adjacent squares either without
pieces or with an opponent’s piece that it can capture. The
capturing relation is determined by the ranks of the pieces,
which from the highest to the lowest are kings, guards,
ministers, rooks, knights, cannons, and pawns. In general,
a piece can capture the opponent’s pieces with equal or lower
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FIGURE 3. (a) The initial, (b) an example, and (c) another example of
positions for 2 × 4 CDC.

ranks. However, kings cannot capture pawns while pawns
can capture kings. For example, the r at b7 in Fig. 2b can
be moved to a7 (empty) and b8 (capture) but not b6 and c7.
The second rule is for cannons, which move to empty squares
as other pieces do but have a special jumping rule. More
specifically, cannons can capture all types of opponent’s
pieces in the same row or the same column with exactly one
piece in between. For example, the c at d5 in Fig. 2b can
capture the R at a5 or the K at d1.
Two ways for a player to win a game are capturing all

the opponent’s pieces or making the opponent have no legal
actions. A game ends as a draw when both players do not
capture or reveal any piece within 40 plies or repeat the same
position three times.

1) 2 × 4 CHINESE DARK CHESS
Chang et al. [6], [20] introduced and solved a reduced version
of CDC, called 2 × 4 CDC. The board size was reduced to
2 × 4, and only eight pieces were used. The initial position
is shown in Fig. 3a. In 2 × 4 CDC, 24 symmetric and non-
equivalent material combinations (combinations of pieces)
were considered. With symmetric material combinations,
both players have the same set of pieces at the start of a
game. For example, ‘KGGM vs. kggm’ is symmetric while
‘KGGM vs. kggr’ is not. As for equivalence [21], material
combinations with the same capturing relations between
pieces were only counted once. An example is that ‘KGGR
vs. kggr’ is equivalent to ‘KGGM vs. kggm’ and thus is not
counted.

Chang et al. [6], [20] assigned theoretical values to the
positions from the retrograde analysis in an expectiminimax
manner. A position was defined by the set of remaining
pieces, the configuration of the board, and the player to move.
The theoretical values were from the view of the player to
move. For a deterministic position, which has at most one
piece type faced-down, the theoretical value was one of 1
(win), 0 (draw), and -1 (loss). An example is shown in Fig. 3c,
a position from a game of ‘KGCP vs. kgcp.’ The result is
a win for the black player. For a stochastic position, the
game outcomes might vary according to different piece types
revealed. Thus, the theoretical value was a real number in the
range of [−1, 1], where -1 indicated a 100% loss and 1 a
100% win. In this paper, the theoretical values are linearly
scaled to the range of [0, 1] without loss of generality. For
the example of Fig. 3b from ‘KGCP vs. kgcp,’ assuming
the red player’s turn and the unrevealed pieces to be Pc, the
theoretical value is 0.250. The red player has a probability of
50% to draw the game at best and loses otherwise.

FIGURE 4. (a) An initial position, (b) another initial position, and (c) an
example of position for EWN.

FIGURE 5. (a) An initial position, (b) another initial position, and (c) an
example of position for 3 × 3 EWN.

C. EINSTEIN WÜRFELT NICHT!
EinStein würfelt nicht! (EWN) is a two-player zero-sum
stochastic board game designed by Althöfer in 2004 [5],
and also a game played in Computer Olympiad since
2011 [19]. The game is played with a six-sided dice
on a 5 × 5 square board. Two players, colored red
and blue, own six pieces numbered 1 to 6, respectively.
At the beginning of a game, red and blue pieces are
placed in the top-left and bottom-right corners, respectively,
as shown in Figs. 4a and 4b. The initial placements of
pieces are random or decided by the players. For the case
that players simultaneously decide the placements, Nash
equilibrium and mixed strategies should be considered,
which may not be suitable for the AlphaZero algorithm.
For simplicity, this paper only discusses the case of random
placements.

The rules do not specify which player to play first.
Without loss of generality, the red player moves first in
this paper. The two players perform actions in turn, which
consist of rolling the dice and then moving the piece of the
rolled number. A piece can be moved one square vertically,
horizontally, or diagonally toward the opponent’s corner.
More specifically, red pieces can be moved one square to
down, right, or down-right, and the opposite directions for
blue pieces. If the destination of a move contains a piece, the
piece is captured and removed from the board regardless of
the color. For example, the red 2 at b3 in Fig. 4c can capture
the red 6 at b4 or the blue 4 at c3. When a player does not
have the piece with the rolled number, the player can move
a remaining piece with a number either the next-highest or
the next-lowest to the rolled number. For example, when the
dice number is 3, the red player in Fig. 4c can move either
2 or 5. A player wins by moving one piece to the farthest
opponent’s corner or capturing all opponent’s pieces. In other
words, a game always has a winner and never results in
draws.
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1) STRONGLY-SOLVED EINSTEIN WÜRFELT NICHT!
Bonnet and Viennot [7] solved reduced versions of EWN
on different board sizes with up to six pieces by the
expectiminimax algorithm. For variants with k initial pieces,
k-sided dices are used. Figs. 5a and 5b show two initial
positions of 3× 3 EWNwhere each player owns three pieces.
The theoretical value, i.e., the expected win rate, of Fig. 5a
is 0.700. In more detail, the values for dice numbers 1 to
3 are 0.444, 0.827, and 0.827, respectively. For Fig. 5b, where
only red 1 and 2 are swapped compared to Fig. 5a, the
theoretical value becomes 0.588, the average of 0.654, 0.457,
and 0.654 for dice numbers 1 to 3.

As for positions in EWN, since legal actions are different
for different dice numbers, the definition in this paper
includes dice numbers in addition to the configuration of
the board and the player to move. For example, for the
board configuration in Fig. 5c, assuming red’s turn, when
the dice number is 1, legal actions include a1→b1, a1→a2,
and a1→b2. The theoretical value of this position is 0.111 by
taking a1→b2; when taking the other two actions, the player
loses. When the dice number is 2, since red 2 does not
exist, the player can decide to move either red 1 or red 3.
Thus, a total of six legal actions are available, where a2→b2,
a2→a3, and a2→b3 are for red 3. The theoretical value is
0.222 by taking a2→b3, while the expected win rates for
a2→b2 and a2→a3 are 0 and 0.049, respectively.

III. TABULAR ALPHAZERO
As the first step of the investigation, this work replaces the
DNNs in the AlphaZero algorithmwith lookup tables in order
to simplify the analyses, where lookup tables do not perform
feature extraction. Since the state spaces of the employed
game variants are small enough, lookup tables are feasible.
In a lookup table, each position has its own policy and value.
The policy is represented by a vector of real numbers p̂.
Similar to Silver et al.’s design [2], a policy contains all
possible actions of the employed action representation, even
though some actions may be illegal for the corresponding
position. More formally, a policy is a probability distribution
for all actions in the set A =

⋃
{s∈S} A(s), where S is the

state space and A(s) the set of legal actions at position s.
The representation is redundant for lookup tables; however,
it is general and applicable to neural networks. In this paper,
|A| is 40 for 2 × 4 CDC2 and 6 for EWN.3 The probability
distribution p′ of all actions is calculated by the softmax
function [22],

p′a =
ep̂a∑
b∈A e

p̂b
. (5)

22 × 4 CDC action representation: 8 for flipping at a1, a2, . . . , b4 and
the remaining 32 for moving a1→a2, a1→a3, a1→a4, a1→b1, a2→a1, . . . ,
b4→b2, b4→b3.

3EWN action representation: 6 combinations of two possibilities of the
piece to move {≤ dice number,> dice number} and three possible directions
{diagonal, horizontal, vertical}.

When used in MCTS, the probabilities are usually further
normalized for legal actions, i.e.,

pa =
p′a∑

b∈A(s) p
′
b
. (6)

A real number v̂ represents the value of a position, which is
scaled to the range of [0, 1] by the sigmoid function [23],

v =
1

1+ e−v̂
. (7)

From the collected self-play games, one position’s policy
p̂ and value v̂ are updated as follows. Let π be the MCTS’s
policy based on visit counts and z be the outcome of the self-
play game, i.e., 1, 0.5, and 0 for a win, a draw, and a loss of the
player to move. For policy, the goal is to have the estimated
probability distribution p′ (obtained from the lookup table)
similar to π . For value, the goal is to have the estimated value
v close to the expected outcome, i.e., the average of many z.
Therefore, the loss functions for policy and value apply cross-
entropy losses (−πT ln p′) and mean-squared error (v − z)2,
respectively, following Silver et al. [2]. By gradient decent,
the policy and value in lookup tables are updated using

p̂a← p̂a − β · (p′a − πa) (8)

and

v̂← v̂− β · (v− z) · v · (1− v), (9)

respectively, where β is the learning rate. The derivations are
shown by Hsueh [24] (cf. Chapter 4.2). Note that it is possible
for the same position to have several different π and z, which
are updated separately.

A synchronous version of the tabular AlphaZero, as pre-
sented in Algorithm 1, is used to train lookup tables. In the
beginning, the policies and the values in the lookup table
are initialized to random values. The lookup table is then
incorporated into MCTS to collect M self-play games. The
most recent K × M games, if any, are used to optimize the
lookup table. For example, with K = 2, the first iteration
only uses M games generated in that iteration to train, while
the later iterations use 2M . The process of self-play and
optimization repeats for N times in total.

Algorithm 1 Tabular Synchronous AlphaZero
1: Initialize the lookup table
2: repeat
3: Collect M self-play games
4: Optimize by the most recent K × M games (if any)
5: until N iterations

IV. EVALUATION METRICS OF LOOKUP TABLES
This section introduces three kinds of metrics to directly
evaluate the lookup tables trained by the tabular AlphaZero.
By direct, it means that the policies and values are employed
to select actions or evaluate positions directly, without
further incorporated into MCTS during evaluation as other
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AlphaZero-related work often does. Note that MCTS in self-
play and MCTS in evaluation are different, e.g., Dirichlet
noise is not applied during evaluation. Finding promising
hyper-parameters for MCTS in evaluation becomes another
story. Assuming that the quality of MCTS’s search results has
a positive correlation with the quality of policies and values,
the first two kinds ofmetricsmeasure the playing strength and
the accuracy of the lookup tables. In addition, the exploration
level of the state space is measured to investigate how hyper-
parameters influence the diversity of self-play games.

The first kind of metric is the win rate playing against
the optimal player, with players alternating taking the first
turn [25]. The optimal player wins immediately when the
position’s theoretical value is 1 (100% win). Otherwise, the
optimal player randomly selects one of the actions with
the highest theoretical value. As for lookup tables, the policies
are used to select the action with the highest probability
among legal actions.4 Namely, given a position s, the action
to play is argmaxa∈A(s) pa, where A(s) is the set of legal
actions at s and pa the probability of selecting a. The
win rate is denoted by WRp, and those close to 50% are
considered to approximate the optimal play. This metric aims
to evaluate how well the learned policies can tell the best
actions from others when playing against the optimal player.
This paper excludes investigating how weak players can be
defeated.

The second kind of metric aims to evaluate how accurate
the policies and values are compared to the optimal play and
theoretical values. This kind of metric is based on a set of
test positions Stest ⊂ S, where S is the state space. The
positions selected for Stest highly influence the results, and
Subsection V-A will present the details about which positions
are selected in this paper. For policies, the policy error, ERRp,
is defined as

ERRp =

∑
s∈Stest

∑
a∈A(s) pa · (v

∗
a∗ − v

∗
a)

|Stest |
, (10)

where A(s) is the set of legal actions at position s, pa the
normalized probability of legal action a, a∗ the best action,
and v∗a the theoretical value of action a. In other words,
ERRp calculates the drop of expected win rates assuming
actions are selected according to the probability distributions
from policies. Take as an example a position with three legal
actions, where the theoretical values are 0.9, 0.7, and 0.2,
respectively. Perfectly, a policy of (1, 0, 0) has an ERRp
of 0 (i.e., 100% selecting the best action). The error becomes
greater as the probabilities of the second or the third action
increase, especially the third. For values, the mean absolute

4Some readers may consider it better to also evaluate the value part by
creating a player who selects the action with the highest expected value.
Namely, the values serve as heuristics to look ahead one action, just as
policies. However, a problem specific to lookup tables is that if the training
on a position is insufficient, the value of the position remains close to the
initialized 0.5, greatly affecting the action selection, especially when the best
action has a theoretical value lower than 0.5.

error, MAEv, to the theoretical values is calculated, i.e.,

MAEv =

∑
s∈Stest |v

∗
s − vs|

|Stest |
, (11)

where v∗s is the theoretical value of position s and vs the
lookup table’s value.5 ERRp and MAEv close to 0 indicate
that the policies and values approximate the optimal and
theoretical ones, respectively.

WRp and ERRp both evaluate the learned policies, but
their results may not perfectly match (as will be seen in
later experiments). Fundamentally, the two metrics employ
policies in different ways. The player for collecting WRp
selects the legal action that has the highest probability,
focusing on measuring the ability to tell good actions from
others. For ERRp, the probabilities are involved in the
calculation, aiming to measure howwell the policy converges
to the optimal play. WRp naturally evaluates the playing
strength across opening games to endgames, while ERRp
depends on test positions Stest . Both metrics provide useful
information when evaluating the learning results.

The third kind of metric counts the number of positions
that are updated at least k times, where k is a positive integer.
This metric aims to evaluate the exploration level of the state
space, also reflecting the diversity of positions in the training
data. Assume that two different hyper-parameter settings are
trained with the same number of self-play games. The setting
has a higher exploration level of the state space if it has more
updated positions. Different from the previous metrics that
evaluate how good the learned policies/values are, this metric
tries to verify how hyper-parameter settings influence the
exploration during learning.

V. EXPERIMENTS ON PUCT SELECTION
HYPER-PARAMETERS
The following three sections will present three groups of
experiments on hyper-parameters used in self-play games
of the tabular AlphaZero. This section experiments on the
hyper-parameters related to the PUCT algorithm, i.e., MCTS
selection phase, including cpuct in (1) and Dirichlet noise’s
α and ε in (4). The experiment settings are described in
Subsection V-A. The results of different cpuct , α, and ε

settings are shown in Subsections V-B to V-D. Finally,
an overall discussion is made in Subsection V-E.

A. EXPERIMENT SETTINGS
Table 1 lists the selected game variants, including EWN333,
EWN334, and EWN343 for EWN, and CDCPPPP, CDCKPPP,
and CDCGGCC for 2 × 4 CDC. The table also contains
the average number of legal actions at each position, the
average number of chance events at each position, the average
game length, and the number of non-terminal positions. The

5Even when the learned values deviate from the theoretical values, the
player may still be able to play optimally when the expected value of the
best action is higher than other actions. MAEv does not reflect this fact but
is selected to investigate whether the tabular AlphaZero can approximate
theoretical values.
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TABLE 1. Information about experimented game variants, including the average numbers of legal actions and chance events per position, the average
game length, and the number of non-terminal positions, where W, H, #P for EWN mean board width, board height, and the number of initial pieces,
respectively.

former three were calculated from 1,000 self-play games
by an MCTS with an Nsim of 10,000 and random playouts,
which was a reasonably strong player. The number of
non-terminal positions means the total number of possible
positions excluding terminal positions, i.e., positions may
be learned.6 Although EWN variants generally contain more
non-terminal positions, 2 × 4 CDC variants have longer
games and are expected to be more complex. The followings
give some intuitions from the games’ intrinsic properties.
In EWN, pieces can onlymove toward the opponents’ corners
and never go back. For example, an EWN333 game must end
in fifteen actions (at the earliest three actions). In contrast,
2 × 4 CDC variants usually have longer games and require
tactical strategies to capture opponents’ pieces, which is
expected to be more difficult.

For EWN333, EWN334, EWN343, CDCPPPP, CDCKPPP,
and CDCGGCC, the learning lasted for 100, 1,600, 800,
300, 2,000, and 4,000 iterations, respectively (i.e., N in
Algorithm 1).7 In each iteration, 1,000 self-play games were
generated, and the optimization used 2,000 most recent
games (if any), i.e., M was 1,000 and K was 2. The policies
p̂a and values v̂ in lookup tables were initialized by a normal
distribution with a mean of 0 and a standard deviation of
0.01. In this way, for each position, all actions had similar
probabilities (≈ 1/|A|), and the value was close to 0.5 (win
rate≈50%). The learning rate β was set to 1 at the beginning
and then changed to 0.1 at the half (e.g., the 50th iteration
for EWN333) to stabilize the learning. The symmetry of
positions was not exploited in the following experiments as
Silver et al. [2] did, while the previous work on CDCPPPP
made use of symmetry to augment training data [8], [24].
MCTS was single-threaded without parallelization, and the
default values of hyper-parameters cpuct , Dirichlet α and
ε, and Nsim were 1, 1.5, 0.25, and 800, respectively. The
default setting was run for several trials, and no substantial
difference was obtained between different trials, as shown in

6EWN334 has a similar number of legal actions and game length to
EWN333 but has about 17 times non-terminal positions. The reason is that
EWN334 has one more initial piece for both players, resulting in more
variants of gameplay than EWN333.

7The numbers were selected considering each game variant’s complexity
with some preliminary experiments. Such many iterations were sufficient for
good settings to learn, as can be seen in training curves such as Fig. 7.

Appendix A-A. Thus, the later experiments only run one trial
for each setting.

At the end of each iteration, the lookup tables were
evaluated by the metrics described in Section IV. (i) For
WRp, the lookup table player played 10,000 games against
the optimal player, 5,000 games as the first player and the
other 5,000 as the second. (ii) For ERRp and MAEv, the
test positions Stest contained the initial positions for EWN
(EWN333: 108, EWN334: 2,304, EWN343: 108) and the
positions within the first action for 2 × 4 CDC (CDCPPPP:
17, CDCKPPP: 33, CDCGGCC: 33).8 Although many of the
positions are intrinsically identical, the learning on these
positions is independent in this work (as Silver et al. [2] did
not exploit the symmetry of positions either). These positions
were selected since they appeared the most frequently in
self-play games across various hyper-parameter settings.
Errors might come from two totally different sources when
employing lookup tables: too few updates for learning and
wrong policies/values caused by far-from-optimal self-play
games. The former problem may be simply solved by longer
training, but the latter cannot. Thus, the latter is considered a
more serious problem. To only focus on the latter, the opening
positions (i.e., Stest mentioned earlier) were the most feasible
choice. (iii) For evaluating the level of exploration within
the state space, the number of positions that were updated at
least 1, 4, and 16 times were counted.

Two implementation details of MCTS that may influence
the learning results are discussed as follows, though the
issues are not limited to the MCTS in the AlphaZero
algorithm. The first is tree nodes’ initial values, where
W (s, a)/N (s, a) becomes undefined 0/0. Several kinds of
commonly used implementations will be described and
compared in Section VII. If not specified, the initial values
were set to 0 as Silver et al. [2] did, as if the nodes had
100% losses [26]. The other implementation detail to discuss
is chance nodes’ expansion. Fig. 6 illustrates examples of
MCTS expansion. In this work, when expanding a chance

8In more detail, 108 for EWN333 and EWN343 comes from 3! × 3! × 3,
where 3! is for red pieces’ permutation, another 3! for blue pieces, and the
3 for dice numbers 1 to 3; 17 for CDCPPPP comes from 1+8× 2, containing
1 initial position, where all pieces are unrevealed, and 16 positions after the
first flipping action (8 candidate squares and 2 possible outcomes, red and
black pawns); similarly for the remaining.
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FIGURE 6. Examples of MCTS expansion with chance nodes, (a) a
non-chance node with two leaf children where one is a non-chance node
and the other a chance node, (b) expanding the non-chance node with its
legal actions, and (c) expanding the chance node with its chance events,
and further expanding a chance event (left) or all chance events (right).

node, a chance event (e.g., an unrevealed piece for CDC and
a dice number for EWN) was randomly sampled according
to the probability distribution. The child node corresponding
to the sampled chance event was further expanded with legal
actions (Fig. 6c (left)). In this way, each simulation expands
a non-chance node unless the game ends. Another possible
implementation was to expand all chance events in the same
simulation (Fig. 6c (right)), requiring more computation. The
comparison of different implementations is out of this paper’s
scope.

B. RESULTS OF DIFFERENT cpuct VALUES
The first experiment was on cpuct , where Silver et al. [2]
did not specify the value they used, and Tian et al. [9] used
1.5 in their experiments on Go. A wide range of thirteen cpuct
settings was tested, including 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1,
2, 4, 8, 16, 32, and 64. Fig. 7 depicts the WRp training curves
for the six experimented game variants. Only about half of
the cpuct settings are shown for better display. In the six game
variants, except for two extreme ends of cpuct , WRp got close
to 50%, meaning that the learned policies could generally
distinguish good actions. In addition, it was observed that
higher cpuct , meaning higher levels of exploration, tended to
learn slower.

Fig. 8 shows the WRp of the last iteration with 95%
confidence intervals (all within ±1%). The maximum WRp
during training is also included.9 Generally, the last and
the max did not differ too much, and cpuct values around
1 obtainedWRp close to 50% in the six game variants, though
the proper ranges of cpuct seemed to become narrower for

9When applying the AlphaZero algorithm to more complex games with
DNNs, it is computationally expensive to sample DNNs periodically during
training and evaluate the DNNs thoroughly. Thus, in this paper’s analyses,
the performance of the last iterations was considered more important.

more complex game variants. The reasons for having poor
performances with too-high and too-low cpuct were different.
For too-low ones, it was related to the implementation of
tree node initialization and will be discussed in more detail
in Section VII. For too-high ones, the PUCT algorithm put
too much emphasis on exploring less-visited actions, making
each action have a close number of visits. Note that for the
policies to learn and for action selection in self-play games,
the probability distributions were in proportion to the visit
counts N (s0, a). Thus, too-high cpuct made the policies and
self-play games close to random play and failed to learn well.

Fig. 9 shows the last iterations’ ERRp and MAEv calcu-
lated on the test positions Stest for EWN333 and CDCPPPP.
The y-axis has different ranges for each game variant, which
are best to show the tendencies. The results of the remaining
four game variants have similar tendencies and are put
in Appendix A-B. Such a presentation will be applied to
the rest of this paper unless there are discussions on the
six game variants. For low and high values of cpuct , both
ERRp and MAEv went high. On the one hand, when cpuct
was too low, the MCTS in self-play games often wrongly
concentrated the simulations on non-optimal actions, which
will be explained in Section VII. Thus, the learned policies
gave high probabilities to non-optimal actions, making the
ERRp high. Also, the outcomes of self-play games were
wrongly biased by the non-optimal actions, resulting in high
MAEv. On the other hand, when cpuct was too high, MCTS
distributed the simulations almost evenly to the actions. The
resulting policies and self-play games were close to random
play, making the ERRp and MAEv high.

Fig. 10 plots the numbers of positions updated ≥1, ≥4,
and ≥16 times during the whole training for EWN333 and
CDCPPPP with different cpuct . The curves of≥1,≥4, and≥16
showed similar tendencies. Generally, with a higher cpuct ,
the number of updated positions went higher, which was as
expected since higher cpuct led to higher levels of exploration
during search and thus more diverse positions in self-play
games. Appendix A-B will make more detailed discussions
on exceptional behaviors (low cpuct for EWN333 and high
cpuct for CDCPPPP) that were game-specific.

C. RESULTS OF DIFFERENT DIRICHLET α VALUES
For Dirichlet noise, the hyper-parameter α determines the
concentration level of the distribution, and lower α leads
to more exploration, as discussed in Subsection II-A.
Silver et al. [2] specially adjusted α for different games
according to the average number of legal actions. The values
they used for Go, shogi, and chess were 0.03, 0.15, and 0.3,
respectively. Games with fewer legal actions received higher
α. Since all the experimented game variants in this paper have
much fewer legal actions, six higher α, 0.75, 1.5, 3, 6, 9,
and 12, were also tried. In the six game variants, different α

settings did not differ too much. All had the last WRp close to
50% and relatively low ERRp and MAEv. Thus, the detailed
results are omitted. The reason was suspected to be the low
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FIGURE 7. WRp training curves with different cpuct for the six selected game variants (left: EWN, right: 2 × 4 CDC).

numbers of legal actions in the experimented game variants
compared to Go, shogi, and chess.

D. RESULTS OF DIFFERENT DIRICHLET ε VALUES
For Dirichlet noise, the hyper-parameter ε determines the
weight of the noise (4). A total of nine values were tested
for ε, including 0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, and 0.5.
Among these values, 0 meant ignoring the Dirichlet noise,
and 0.25 was used by Silver et al. [1], [2]. Fig. 11 plots the
last and the maximum WRp for the six experimented game
variants. With an ε greater than 0, the WRp was close to 50%
in the six game variants, showing that the weight of the noise
did not influence too much. An ε of 0 learned well in EWN333
and EWN334 but got relatively bad results in the remaining
four game variants. The results of EWN333 and EWN334 were
considered exceptions, explained as follows. These two game
variants had the shortest average game length, and the average
numbers of legal actions and chance events at each position
were relatively low. It is possible for MCTS to reach terminal
positions and find good actions without the assistance of

Dirichlet noise, which is not the case for most of the other
games that are more complex.

Fig. 12 shows EWN333 and CDCPPPP’s ERRp and MAEv
of the last iterations. Except for the settings that failed to learn
the optimal play (e.g., an ε of 0 for CDCPPPP), the ERRp
and MAEv were relatively low, meaning that the policies and
values were accurately learned to some extent. Fig. 13 depicts
the numbers of positions with ≥1, ≥4, and ≥16 updates for
EWN333 and CDCPPPP. As expected, the numbers increased
as ε increased.

E. SUMMARY
The experimented hyper-parameters in this section, cpuct and
Dirichlet noise’s α and ε, all related to the exploration term
in the PUCT algorithm, i.e., the second term in (1). Dirichlet
noise was added only to the root’s actions, while cpuct was
used by all nodes. Higher cpuct , lower α, and higher ε led
to higher levels of exploration. Generally, with higher levels
of exploration, the numbers of updated positions increased
(Figs. 10 and 13).
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FIGURE 8. Last and max WRp with different cpuct for the six selected game variants (left: EWN, right: 2 × 4 CDC).

In the experiments, the ranges of hyper-parameter settings
were designed to be wide in order to find the ranges in which
the tabular AlphaZero could learn near-optimal actions and
accurate policy and value outputs. The influence of each
individual hyper-parameter was investigated in this study.
How the hyper-parameters might influence each other was
not in the scope.

Many of the tested settings had WRp close to 50%
(Figs. 8 and 11), demonstrating the robustness of the
tabular AlphaZero on learning near-optimal actions. Such
settings included cpuct between 1/2 to 4, Dirichlet α between
0.03 to 12, and Dirichlet ε between 0.1 and 0.5 for
all the six game variants. For these settings, the ERRp
and MAEv roughly increased as the levels of exploration
increased (Figs. 9 and 12). As the discussions on Fig. 9
in Subsection V-B (the 3rd paragraph), higher levels of
exploration made MCTS select actions more evenly. Thus,
the action selections in self-play games and the policies in
training data got closer to random play, resulting in higher
ERRp and MAEv.

VI. EXPERIMENTS ON SIMULATION NUMBERS
This section investigates how the learning of tabular Alp-
haZero is influenced by the number of simulations (Nsim)
in the MCTS for self-play games. On the one hand, many
studies in the past have shown that more simulations made
theMCTS players stronger [9], [17], [25], [27]. However, too-
high numbers are not only extremely costly, especially in real-
world games such as Go and chess, but also not guaranteed
to generate proper self-play games for learning. On the other
hand, too-low numbers are less computationally consuming
but are expected to make the MCTS players weak, playing
many bad actions during self-play. The role of the MCTS
in self-play games of the AlphaZero algorithm is more to
generate proper training data in a reasonable time than just
play well or quickly. Subsections VI-A and VI-B present the
experiment settings and results, respectively.

A. EXPERIMENT SETTINGS
A wide range of Nsim settings were tested, including 6,
12, 25, 50, 100, 200, 400, 800, 1,600, 3,200, and 6,400.
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FIGURE 9. ERRp and MAEv of the last iterations with different cpuct for
(a) EWN333 and (b) CDCPPPP.

FIGURE 10. The number of positions updated ≥1, ≥4, and ≥16 times
during training for (a) EWN333 and (b) CDCPPPP with different cpuct .

For EWN333, EWN343, and CDCPPPP that required fewer
computation resources, 12,800 and 25,600 were also tried.
Among the values, Silver et al. [1] and Tian et al. [9] used
1,600 for Go. Silver et al. [2] further reduced it to 800 when
applying to Go, shogi, and chess.

Two experiments were conducted to analyze Nsim from
different aspects. One had the same number of self-play
games per iteration, and the other had the same computation
time to do self-play. In more detail, the former played 1,000
games in each iteration, as in Section V. Although higher
Nsim took more time, this experiment aimed to exclude the
factor of computation resources. The latter experiment tried
to make the computation resources even and spent the same
time doing self-play (i.e., Tself seconds per iteration). Two
game variants were selected for this experiment, EWN333 and
CDCPPPP, whose Tself were 2.143 and 18.418, respectively.
The time settings were determined by the average of all
iterations playing 1,000 games with an Nsim of 800 on
machines equippedwith Intel (R) Core (TM) i9-10900KCPU
@ 3.70 GHz.

For both experiments, games from the two most recent
iterations (K = 2) were used in optimization. This
experiment was expected to provide insights into practical
training with limited computation resources. The remaining
settings of the two experiments, including the evaluations,
were the same as the default values in Subsection V-A.

B. EXPERIMENT RESULTS
Fig. 14 shows the WRp training curves for EWN333 and
CDCPPPP with differentNsim under 1,000 games per iteration.
The results of the remaining four game variants are put in
Appendix A-B. With too-low Nsim, the tabular AlphaZero
failed to approximate the optimal play, which will be
discussed more thoroughly in Section VII. With higher Nsim,
the curves grew more drastically and soon converged to 50%.
The results were reasonable in that higher Nsim was expected
to produce better policies and play self-play games closer to
the optimal play.

Fig. 15 contains EWN333 and CDCPPPP’s WRp of the
last iterations and the maximum, trained using different
Nsim under 1,000 games per iteration. The 95% confidence
intervals were within ±1%. The results suggested that an
adequateNsim (e.g., 25 for EWN333 or 50 for CDCPPPP) could
already learn approximately optimal play. Compared to chess,
shogi, or Go, the experimented game variants have smaller
game trees, so it was unsurprising that an Nsim of 50 worked
well.

As for the results of fixing the self-play time to Tself per
iteration, first, Fig. 16 plots the average numbers of games
played per iteration with different Nsim. When Nsim was as
low as 6 or 12, the number of played games was lower than
expected compared to other Nsim settings. A possible reason
was that the overhead for creating new search trees or games
was non-negligible. Another possible reason was that the
MCTS was more likely unable to select good actions, making
the games longer. For Nsim higher than 12, the decreasing
tendencies for the average number of played games were
stable. When Nsim was 25,600, only about 40 games were
played in each iteration.

TheWRp training curves (Tself self-play time per iteration)
are depicted in Fig. 17. Too-low Nsim (e.g., 6) still failed to
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FIGURE 11. Last and max WRp with different ε for the six selected game variants (left: EWN, right: 2 × 4 CDC).

learn, even with more played games. When Nsim was high,
the learning was slow as expected since only a few self-play
games could be generated within the limited time, making
the training data insufficient.10 When considering both the
learning speed (wall-clock time) and the final win rates, Nsim
between 50 and 400 seemed promising for EWN333 and
CDCPPPP.
Fig. 18 shows the last iterations’ ERRp and MAEv calcu-

lated on the test positions Stest for EWN333 and CDCPPPP
with different Nsim under 1,000 games per iteration. Those
under the same self-play time are omitted since different Nsim
had different numbers of played games, introducing more
influencing factors. Generally, ERRp and MAEv decreased
as Nsim increased, showing that more simulations helped the

10In addition to fixing the self-play time, another way to reduce
computation resources for highNsim was to remain 1,000 games per iteration
but decrease the total iterations. For example, CDCPPPP had the final WRp
of 50.1% when trained for 300 iterations with an Nsim of 800. For an Nsim
of 25,600, 13 iterations cost about the same time, but the WRp was 41.7%.
The results again showed that too-high Nsim obtained worse WRp under a
similar cost of computation resources.

tabular AlphaZero learn policies and values more accurately,
especially policies.

Fig. 19 plots the numbers of positions updated ≥1, ≥4,
and ≥16 times during the whole training for EWN333 and
CDCPPPP with different Nsim under the same number of
self-play games. With sufficient Nsim (say ≥ 100), the
numbers steadily decreased as Nsim increased, explained
as follows. When MCTS had more simulations, the visit
counts usually went to the most promising actions (from
its view). Since actions in self-play games were selected in
proportion to the visit counts, the probabilities of selecting
less-visited actions were decreased, lowering the level of
exploration.

To sum up, the experiments demonstrated that a moderate
Nsim was sufficient for tabular AlphaZero’s learning (e.g.,
50 to 400 when fixing self-play time). With a too-low
Nsim, it was as expected that learning failed because good
actions were hardly found. With a too-high Nsim, it took
a very long time to generate self-play games, making
the learning inefficient. In addition, it was observed that
high Nsim tended to have lower levels of exploration in
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FIGURE 12. ERRp and MAEv of the last iterations with different ε for
(a) EWN333 and (b) CDCPPPP.

FIGURE 13. The number of positions updated ≥1, ≥4, and ≥16 times
during training for (a) EWN333 and (b) CDCPPPP with different ε.

the state space. It remains an open question how such
a phenomenon influences the learning of the AlphaZero
algorithm on complex games with feature extractors such
as DNNs.

VII. EXPERIMENTS ON TREE NODE INITIALIZATION
Tree node initialization is an important topic for MCTS, not
limited to the AlphaZero algorithm nor related to whether

FIGURE 14. WRp training curves with different Nsim under 1,000
games/iteration for (a) EWN333 and (b) CDCPPPP.

FIGURE 15. Last and max WRp with different Nsim for (a) EWN333 and
(b) CDCPPPP under 1,000 games/iteration.

the game is deterministic or stochastic. The question is, what
values should be assigned toW (s, a)/N (s, a) when the action
has not been tried? A possible implementation was to select
untried actions first [28], equivalent to setting the initial
W/N to +∞. However, when applying to games with many
legal actions such as Go, the search is inefficient in trying
many unimportant actions. Some other implementations tried
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FIGURE 16. EWN333 and CDCPPPP’s average #games/iteration with
different Nsim.

FIGURE 17. WRp training curves with different Nsim for (a) EWN333:
2.143 s/iteration and (b) CDCPPPP: 18.418 s/iteration.

to focus more on a few promising actions at each node.
Silver et al. [2] set the initialW/N to+0, meaning a loss [26].
An author of the paper suggested that +0 seemed to work
the best for the AlphaZero algorithm [29]. Another possible
tree node initialization was to assume each state to be an
even game and assign W/N to +0.5 [30]. Using heuristic
evaluation functions to initializeW/N was also proposed [30]
but might not be suitable for the AlphaZero algorithm,
explained as follows. The algorithm does not assume the use
of additional heuristics. Although the value network can serve
as such heuristics, using it to initialize theW/N of all untried
actions is computationally expensive.

This section experiments on four possibilities, +0 (loss),
+0.5 (even), +1 (win), and +∞ (untried first), investigating
how the learning of tabular AlphaZero is influenced.11 The
comparisons were made using different Nsim and cpuct .
The experiment settings were the same as those described

11The results may be different for the MCTS in evaluation and are out of
this paper’s discussions, as mentioned in the 1st paragraph of Section IV.

FIGURE 18. ERRp and MAEv of the last iterations with different Nsim
under 1,000 games/iteration for (a) EWN333 and (b) CDCPPPP.

FIGURE 19. The number of positions updated ≥1, ≥4, and ≥16 times
during training for (a) EWN333 and (b) CDCPPPP with different Nsim under
1,000 self-play games/iteration.

in Subsection V-A except for the initial W/N and the
corresponding Nsim or cpuct . It was observed that the
results of low Nsim and low cpuct differed considerably
between different ways to initialize tree nodes, discussed in
Subsections VII-A and VII-B, respectively.
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FIGURE 20. Last WRp of different initial W /N for (a) EWN333 and
(b) CDCPPPP with different Nsim.

A. COMPARISON BASED ON Nsim
In the experiments, eight Nsim settings were tested, includ-
ing 6, 12, 25, 50, 100, 200, 400, and 800. Fig. 20 shows
the WRp of the last iterations for EWN333 and CDCPPPP.
With sufficiently high Nsim (say 25 for EWN333 and 100 for
CDCPPPP), the last WRp did not differ too much, and all were
close to 50%. When further looking into the WRp training
curves, i.e., the right-most plots in Fig. 21, different settings
of initialW/N did not differ too much, either.

With an Nsim of 6, the last WRp failed to reach 50%.
In more detail, an initial W/N of +0.5 was the closest
(43.05% for EWN333 and 16.72% for CDCPPPP), +1 and
+∞ slightly worse (about 34% for EWN333 and about
5% for CDCPPPP), and +0 clearly the worst (10.62% for
EWN333 and 1.90% for CDCPPPP), also shown in the
training curves in Fig. 21 (left-most). Interestingly, different
implementations had different reasons for the inability to
learn well. Although Nsim of 6, 12, etc. may seem obviously
bad settings, especially when considering complex games
such as Go, it is still worth investigating the reasons behind
the failure, explained as follows. It is suspected that the
minimum required Nsim relates to the number of legal actions
and the portion of good actions among legal ones. Thus,
when applying to other games, higher Nsim (e.g., 100) may
still fail to learn well for similar reasons discussed in this
subsection.

For +∞ and +1, the reasons were related to trying all
actions exhaustively. In the case of +∞, MCTS always
selected untried actions first. WhenNsim was just sufficient to
try legal actions at the root once, each of the actions had the

same probability of being selected.12 With a slightly higher
Nsim (e.g., 6 for EWN333 and 12 for CDCPPPP), the MCTS
could gradually spend more simulations on better actions.
Note that the probabilities of selecting actions in self-play
games were in proportion to the visit counts. Even if an
actionwas selected only once, with a lowNsim, the probability
was still high. Although the action selection mechanism was
originally introduced to increase the diversity of self-play
games, in this case, the action selection was closer to random
play similar to too-high cpuct , which also failed to learn
well, as shown in Fig. 7. When the initial W/N was +1,
the effect was similar to +∞, i.e., likely to select untried
actions first. A slight difference occurred when winning
actions were found. Since a winning action’s W/N after
update became +1, equal to those of untried actions, the
action would be selected again if its exploration term was still
the highest, making the implementation of +1 slightly better
than +∞.
For +0.5 and +0, the reasons were related to the initial

policies and values, e.g., the normal distribution with a
mean of 0 and a standard deviation of 0.01 described in
Subsection V-A. Since neural networks are usually initialized
in similar ways, the following discussions are suspected to
be applicable to the general AlphaZero algorithm, which will
be confirmed by the results in Section VIII. Consider the
self-play games in the first iteration that used the randomly
initialized lookup tables (or neural networks). For a tree node
s that none of the actions have been visited yet, the actions’
PUCT scores (1) only differed in the prior probability P(s, a).
After an action awas selected and updated, the action’sW/N
became v ≈ 0.5 from the lookup table.13

In the case of+0.5, almost all actions were selected evenly
during searches in the first few iterations since different
actions had close PUCT scores, no matter tried or untried.
More specifically, the +0.5 did not differ too much from
the randomly initialized v ≈ 0.5, and all actions had similar
initial probabilities. For example, the EWN333 position in
Fig. 4a with a dice number of 2 has three legal actions ↘
(b1→c2), → (b1→b2), and ↓ (b1→c1), whose theoretical
values are 0.827, 0.193, and 0.144, respectively. The three
actions’ initial probabilities were all close to 1/3, as can be
seen in the plots in Fig. 22. The left-most plot of Fig. 22
shows the learned policies for this position with an Nsim of
6 during training. In the first few iterations, the three actions
had similar probabilities, and then the best action ↘ soon
surpassed the other two and converged to almost 100%. This
was because the tabular AlphaZero already found action ↘
to be advantageous (better than 0.5) and could concentrate on
this action. The behavior was suspected of making +0.5 the
best setting when Nsim was extremely low.

12Although an Nsim of 6 was higher than the average number of legal
actions in Table 1, it was still insufficient to try all actions in some positions.
For example, the initial position in 2 × 4 CDC has 8 legal actions, requiring
8+1 simulations to try all actions once (1 for expanding the root).

13Silver et al. [2] shifted the networks’ estimated values in [−1, 1] to [0, 1]
in the search [26]. Thus, 0 ∈ [−1, 1] is equivalent to 0.5 ∈ [0, 1].
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FIGURE 21. WRp training curves of different initial W /N for (a) EWN333 and
(b) CDCPPPP with selected Nsim.

FIGURE 22. The position Fig. 4a assuming red’s turn with a dice number
of 2 and the learned policy with different Nsim and initial W /N .

Finally, in the case of +0, for the same EWN333 example
with an Nsim of 6, almost all probabilities went to action
↓, which was the theoretically worst action. The following
explains why this could have happened. With a randomly
initialized lookup table, once an action (in this case ↓) was
selected during search, its W/N was updated to v ≈ 0.5,
while others remained+0. To select other actions at the root,
the exploration term (the second term in (1)) alone needed to
exceed the PUCT score of the already-selected action (v ≈
0.5 + its exploration term), which was difficult in a few
simulations unless very high cpuct . When Nsim was 6, the
learned policies might be wrongly biased by the randomly
initialized policies and values (and Dirichlet noise), as shown
in the center plot of Fig. 22. The self-play games were also
wrongly biased, and thus the learning failed. The problem
was alleviated soon as Nsim increased. The right-most plot
of Fig. 22 depicts the results of the same EWN333 example
with an Nsim of 12. In the first few iterations, the three actions
had similar probabilities, learned from the similar simulation
numbers of the MCTS in self-play games. As the learning
progressed, the probability of selecting the best action soon
converged close to 100%.

When applying to more complex games, one more thing
worth discussing is that Silver et al. [1], [2] employed multi-
threaded MCTS and a technique called virtual loss [31] to
ensure different threads traverse the search tree differently.
With virtual losses, each action upon traversal increased its
N (s, a) by a given number, subtracted back in backpropaga-
tion. It is suspected that virtual losses also helped overcome
the potential problem caused by randomly initialized policies
and values under the implementation of +0. In contrast, for
+0.5, virtual losses may make untried actions more likely
to be selected. This may be one of the reasons why +0 was
reported to be the best [29].

B. COMPARISON BASED ON cpuct
In the experiments, the thirteen cpuct settings as
Subsection V-B were tested. Fig. 23 depicts the WRp of
the last iterations for EWN333 and CDCPPPP. Considerable
differences were observed when cpuct was extremely low (say
≤1/16), where +0 was the worst and the remaining three
were all close to 50%. The reason that +0 failed to learn
with too low cpuct was also related to the initial policies and
values. Consider the first iteration searching with randomly
initialized lookup tables. When an action a at a node s
was selected and the rest not, a was the only action having
W/N ≈ 0.5 while the rest +0. When cpuct was too low,
MCTS kept selecting a even with an Nsim of 800. Similar
to Fig. 22 (center plot), the self-play games were wrongly
biased by randomness, making the learning fail.

When W/N was +0.5, +1, or +∞, each action at the
root was tried at least several times so that the searches did
not get stuck in the first selected action at each node. For
an initial W/N of +∞, Hsueh et al. [32] reported similar
results on NoGo, a deterministic game. Their experiments
also suggested that extremely low cpuct still learned well
when the initialW/N was+∞. Since Section VIII continues
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FIGURE 23. Last WRp of different initial W /N for (a) EWN333 and
(b) CDCPPPP with different cpuct .

to experiment on initial W/N , an overall discussion on
promising settings of initial W/N will be made at the end
of that section.

VIII. EXPERIMENTS WITH NEURAL NETWORKS
In order to investigate whether there are gaps between the
learning based on lookup tables and DNNs, some preliminary
experiments on DNNs were conducted. In more detail, the
CLAP framework [12] was employed, which was slightly
extended to support stochastic games. CLAP implemented
an asynchronous version of the AlphaZero algorithm, but the
MCTS in self-play games was single-threaded and did not use
the virtual loss technique discussed in Subsection VII-A.

In the experiments, the settings were similar to Section VII
(i.e., different initialW/N with a wide range of Nsim or cpuct )
and to Subsection V-D (i.e., different Dirichlet ε), and the
game variant CDCPPPP was selected. Each setting was trained
for 50 iterations on a server equipped with Intel (R) Xeon
(R) Silver 4210R CPU @ 2.40GHz and NVIDIA Quadro
RTX 8000 GPU. The training used all 40 CPU threads and
the GPU on the server, taking about 5 hours for settings with
an Nsim of 800. The DNN structure and some more detailed
settings are presented in Appendix B.
Fig. 24 shows the results of last WRp for settings similar to

Section VII. Compared to Figs. 20b and 23b, the tendencies
were generally similar. A minor difference was that an initial
W/N of +∞ obtained slightly worse results (i.e., Nsim
between 25 to 200 and cpuct of 4 and 8). As for Dirichlet
ε, it was the same that the last WRp was close to 50% for
ε ≥ 0.15. Several trials for ε = 0 and 0.1 were run, where

FIGURE 24. Last WRp of different initial W /N for CDCPPPP with different
(a) Nsim and (b) cpuct trained using the CLAP framework.

some had the last WRp close to 50% and some a bit lower
(e.g., 42.0%), showing that the learning was unstable. To sum
up, from the WRp results of CDCPPPP with different initial
W/N , cpuct , Nsim, and Dirichlet ε, analyses based on lookup
tables were generally applicable to DNNs.

From the experiments on both lookup tables and DNNs
and on both Nsim and cpuct (under the case of single-threaded
MCTS), an initialW/N of+0.5 seemed the most promising,
especially when Nsim was extremely low (note again that
high or low depends on factors such as the number of legal
actions). As for why an initialW/N of+0.5 could learn well
with extremely low Nsim but others could not, the reasons
were considered to be related to randomly initialized policies
and values, as discussed in the 4th and 5th paragraphs in
Subsection VII-A. One thing to note for +0.5 is that it
may have the problem of trying all actions exhaustively
in disadvantageous positions (i.e., all actions leading to
positions whose estimated values <0.5). It is expected that
the problem will have more negative influences on games
with more legal actions. For low Nsim settings, a potentially
promising idea is to pre-train lookup tables or DNNs with an
initialW/N of +0.5 and then switch to +0 for the rest of the
learning. As for multi-threadedMCTSwith virtual losses,+0
seemed the best choice, as discussed in the last paragraph in
Subsection VII-A.

IX. CONCLUSION AND FUTURE WORK
Regarding the milestone algorithm AlphaZero that mastered
deterministic games such as chess, shogi, and Go without
game-specific knowledge, this paper thoroughly investigated
the algorithm on strongly-solved stochastic games: three
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variants of EinStein würfelt nicht! (EWN) and three variants
of 2 × 4 Chinese dark chess (CDC) on different scales.
Different from deterministic games, positions’ theoretical
values are expected win rates in stochastic games instead
of simply wins, losses, and draws. In addition, the search
trees for stochastic games involve chance nodes. In order to
distinguish good actions or positions from bad ones, it may
be more important for stochastic games to learn values close
to theoretical ones than deterministic games. Since strongly
solved variants of games were employed, the experiments
could compare the learning results with the optimal play
and the theoretical values. Lookup tables were employed
at first so that it would be easier to figure out why the
learning succeeded or failed and less computationally costly
to evaluate the learning results.

The experiments thoroughly studied hyper-parameters
and some implementation details in the Monte-Carlo tree
search (MCTS) for self-play games to see how the learning
of the AlphaZero algorithm is influenced. The first was
investigating the three hyper-parameters related to the action
selection of the PUCT algorithm (1), including cpuct and
Dirichlet noise’s α and ε. Policies learned by many tested
settings played almost optimally against the optimal player,
where some settings also learned values close to theoretical
ones in opening positions. For hyper-parameters leading to
higher levels of exploration in the PUCT algorithm, the
ability to explore the state spaces was also higher. Second,
the number of simulations per turn (Nsim) was investigated.
The results suggested that a moderate number of simulations
were sufficient for learning near-optimal actions. Although
MCTS are usually stronger with higher Nsim, too-high
Nsim was unnecessary for the MCTS in self-play games.
Third, different implementations of tree node initialization
for MCTS were investigated. The experiments showed that
different implementations made differences when cpuct or
Nsim values were low, though the differences were limited
in other cases. Finally, a preliminary experiment on a
variant of 2 × 4 CDC (CDCPPPP) was conducted, where
lookup tables were replaced with deep neural networks
(DNNs). The results showed that learning using lookup tables
and using DNNs had similar tendencies, suggesting that
the analyses through lookup tables could be generalized
to DNNs.

In addition to showing promising ranges of hyper-
parameters, another contribution of this paper was a thor-
ough investigation of the reasons why the learning failed
under some hyper-parameter settings. This could be done
because strongly-solved game variants and lookup tables
were employed so that each position could be checked
individually and the results could be compared with the
optimal play and the theoretical values. For example, when
initializing tree nodes’ W/N to losses (+0), a low Nsim
(e.g., 6 for EWN333) failed to learn the optimal play and
theoretical values. The reasons were related to the random
initialization of lookup tables and the PUCT algorithm. In the
first iteration of learning, an action’s W/N was updated to

v ≈ 0.5 from the lookup table when it was selected during
MCTS. For other actions, the W/N was still the initialized
+0, making them difficult to be selected within a few
simulations by the PUCT algorithm. Thus, the learning was
wrongly biased by randomness. When the initial W/N was
+0.5 (draws), such biases were greatly reduced. Although the
investigation was done on small-scaled games with lookup
tables, the phenomenon was expected to occur in larger-
scaled games with DNNs since DNNs are also usually
randomly initialized and the PUCT algorithm behaves in the
same way.

The following discusses insights and suggestions to select
or tune hyper-parameters obtained from the experiments in
this paper. Considering the required computational resources
and the learning results, it is practical to start by trying
relatively low Nsim such as 50 or 100, though games that
have higher complexity are expected to require higher Nsim.
When using single-threaded MCTS, this paper suggests that
initializing tree nodes’ W/N to draws (+0.5) instead of
losses (+0) can further lower the minimum required Nsim
to learn well. When using multi-thread MCTS with virtual
losses, following Silver et al. [2] to initialize W/N to losses
(+0) is considered better. As for hyper-parameters related
to the PUCT algorithm, the experiments have shown that a
wide range exists for each hyper-parameter. For cpuct , the
range of promising settings seems to decrease as games
become complex, and settings around 1 to 2 can be tried
first. For Dirichlet α, when the average number of legal
actions is relatively low, the experiments have shown that
different α settings do not influence too much. How α

influences learning in games with more legal actions remains
an open question. For Dirichlet ε, 0.25, the setting used
by Silver et al. [2], is a promising one to start with. The
experiments have shown that the range of [0.15, 0.5] does
not differ too much and that ε too low may make the learning
unstable.

For future work, promising directions are discussed as fol-
lows. The first is to use DNNs to learn more complex games,
such as the standard versions of EWN and CDC, and analyze
how good the learned policies and values are. Although the
standard versions have not been strongly-solved, endgame
tables [21], [33] can be employed to investigate positions in
endgames. Also, it is worth investigating hyper-parameters by
approaches such as Bayesian optimization [3] and population
based training [34], [35] other than grid search. In addition,
it is worth investigating successors of the AlphaZero
algorithm, such asMuZero [14], StochasticMuZero [15], and
Gumbel AlphaZero/MuZero [36].

APPENDIX A
ADDITIONAL EXPERIMENT RESULTS
This appendix presents additional experiment results, where
Appendix A-A shows the results of multiple trials with
the default setting and Appendix A-B shows the results of
EWN334, EWN343, CDCKPPP, and CDCGGCC that were not
included in Sections V to VII.
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FIGURE 25. WRp training curves of different trials for the six selected game variants (left: EWN, right: 2 × 4 CDC).

A. RESULTS OF MULTIPLE TRIALS
Fig. 25 shows the six game variants’ WRp training curves of
running the default setting five times with different random
seeds. During learning, randomness was involved in the
games themselves, the initialization of lookup tables, the
Dirichlet noise, and the selection for actions to be played in
self-play games (probabilities proportional to visit counts).
The differences were very limited between different trials,
demonstrating the repeatability of the tabular AlphaZero in
stochastic games.

B. SUPPLEMENTARY RESULTS AND DISCUSSIONS
Fig. 26 corresponds to Fig. 9, showing similar tenden-
cies that too low and too high cpuct both resulted in
higher ERRp and MAEv. Fig. 27 corresponds to Fig. 10,
plotting the numbers of positions updated ≥1, ≥4, and
≥16 times with different cpuct settings. EWN variants and
2× 4 CDC variants themselves had similar tendencies, while
the two groups of plots looked different. Since the game
rules of EWN are different from 2 × 4 CDC, the game
trees cover the state spaces in different ways. Thus, it is

reasonable that the tendencies were not well-matched. Still,
when cpuct was in a moderate range (say 1/8 to 8), the number
of updated positions increased as cpuct increased as expected.
Two exceptions were observed, EWN with too-low cpuct and
2 × 4 CDC with too-high cpuct , discussed as follows.
For EWN, one of the victory conditions is to move a

piece to the opponent’s corner. For most positions in the
experimented board sizes (3 × 3 and 3 × 4), the diagonal
moves are the optimal actions if available, and moving pieces
diagonally usually leads to shorter games. With too-low
cpuct , the tabular AlphaZero might be wrongly biased by
randomness and failed to learn the optimal actions. The self-
play games were relatively long since diagonal moves were
seldom played. Longer games were the major reason for
having more updated positions for these extremely low cpuct
settings.

As for 2× 4 CDC, too-high cpuct made the action selection
of MCTS in self-play games close to random. Playing
randomly in 2 × 4 CDC increased the probability of just
repeating the same positions and finally ending as draws due
to the repetition rule. Within the same number of games,
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FIGURE 26. ERRp and MAEv of the last iterations with different cpuct for (a) EWN334, (b) CDCKPPP, (c) EWN343, and
(d) CDCGGCC.

FIGURE 27. The number of positions updated ≥1, ≥4, and ≥16 times during training for (a) EWN334, (b) CDCKPPP, (c) EWN343, and
(d) CDCGGCC with different cpuct .

it was suspected that the diversity increased by exploring the
state space was somewhat canceled by the increasing number
of draw games due to repetition.

Fig. 28 corresponds to Fig. 12, depicting the ERRp and
MAEv of the last iterations with different Dirichlet ε settings.
As discussed in the 2nd paragraph of SubsectionV-D, settings

failed to learn well (an ε of 0 for 2 × 4 CDC variants
particularly) had high ERRp and MAEv, while the rest had
relatively low ERRp and MAEv compared to bad settings of
cpuct (Figs. 9 and 26). Fig. 29 corresponds to Fig. 13, where
the tendencies were similar that higher ε led to more updated
positions as expected.
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FIGURE 28. ERRp and MAEv of the last iterations with different ε for (a) EWN334, (b) CDCKPPP, (c) EWN343, and (d) CDCGGCC.

FIGURE 29. The number of positions updated ≥1, ≥4, and ≥16 times during training for (a) EWN334, (b) CDCKPPP, (c) EWN343, and
(d) CDCGGCC with different ε.

Figs. 30 and 31 correspond to Figs. 14 and 15, respectively,
showing the WRp results with different Nsim settings (1,000
self-play games/iteration). In all game variants, extremely
low Nsim (say 6 and 12) could not learn the optimal play.
When Nsim was sufficiently high (say 100), WRp was not
significantly improved as Nsim increased, where the WRp
was close to 50%. From the results, a tendency was also
observed that the minimal Nsim to obtain WRp close to 50%

was higher in more complex games in terms of the number of
legal actions and game length. As a future research direction,
it is interesting to investigate whether there are some relations
between the minimal required Nsim of a game and the game’s
state-space complexity, game-tree complexity, etc.14

14Danihelka et al. [36] proposed Gumbel AlphaZero/MuZero, able to
learn well even with low Nsim, which is also worth investigating.
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FIGURE 30. WRp training curves with different Nsim under 1,000 games/iteration for (a) EWN334, (b) CDCKPPP, (c) EWN343,
and (d) CDCGGCC.

FIGURE 31. Last and max WRp with different Nsim for (a) EWN334, (b) CDCKPPP, (c) EWN343, and (d) CDCGGCC under 1,000
games/iteration.

Fig. 32 corresponds to Fig. 18, showing the ERRp and
MAEv with different Nsim settings under 1,000 self-play
games per iteration. The tendencies were the same in that
when Nsim was sufficiently high to learn the optimal play,
the ERRp and MAEv were relatively low compared to bad
settings. Particularly, ERRp went close to 0 asNsim increased.
Fig. 33 corresponds to Fig. 19, showing similar tendencies

where the number of updated positions decreased as Nsim
increased for Nsim settings that were sufficiently high to
learn the optimal play (as discussed in the 6th paragraph of
Subsection VI-B).

Fig. 34 corresponds to Fig. 20, presenting the WRp of the
last iterations with different initial W/N and Nsim settings.
Different game variants had similar tendencies: (i) when
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FIGURE 32. ERRp and MAEv of the last iterations with different Nsim under 1,000 games/iteration for (a) EWN334,
(b) CDCKPPP, (c) EWN343, and (d) CDCGGCC.

FIGURE 33. The number of positions updated ≥1, ≥4, and ≥16 times during training for (a) EWN334, (b) CDCKPPP, (c) EWN343, and
(d) CDCGGCC with different Nsim under 1,000 self-play games/iteration.

Nsim was sufficiently high, different initial W/N did not
differ too much in terms of the final WRp, and (ii) when
Nsim was extremely low, an initial W/N of +0.5 worked
the best, +1 and +∞ got similar results, and +0 was the
worst, as discussed in Subsection VII-A. Fig. 35 corresponds
to Fig. 23, showing similar results that a great difference
between an initial W/N of +0 and the others were obtained
when cpuct was extremely low.

APPENDIX B
CLAP EXPERIMENT SETTINGS
This appendix presents detailed settings of the experiments
employing the CLAP framework in Section VIII. The inputs
to the DNNs consisted of 33 planes of size 2 × 4, as listed in
Table 2. Features A–C represented the pieces on the board
by a one-hot encoding using 15 binary planes. Features
D and E counted the numbers of unrevealed pieces for
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FIGURE 34. Last WRp of different initial W /N for (a) EWN334, (b) CDCKPPP, (c) EWN343, and (d) CDCGGCC with different Nsim.

FIGURE 35. Last WRp of different initial W /N for (a) EWN334, (b) CDCKPPP, (c) EWN343, and (d) CDCGGCC with different cpuct .

each type and each player, filling the corresponding plane
by repeating the same integer. Feature F represented the
repetition count by 2 binary planes, and feature G represented
by a binary plane whether it is the turn of the first player
or the second player, similar to Silver et al. [2]’s design.
Feature H represented the ratio of actions without flipping
and capturing to the number leading to a draw game, filling

the plane by repeating the same real number value. The
inputs were then followed by a 5-block ResNet [37]. The
outputs contained two heads, policy and value. The policy
output was a 40-dimensional vector, the same as that for
lookup tables explained in Section III. The value output was
a 2-dimensional vector, estimating the two players’ expected
outcomes in [−1, 1].
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TABLE 2. The input planes of DNNs for CDC.

The training for CDCPPPP lasted for 50 iterations. In each
iteration, 1,000 self-play games were played, which was the
same as the experiments on lookup tables. In the tabular
AlphaZero (Algorithm 1), the 1,000 games were played
sequentially one by one, while in CLAP, several games
were played in parallel at the same time. The optimization
mechanism was slightly different. CLAP had a replay buffer
of size 40,000 to keep the latest games and updated the
DNN by sampling batches of size 256 from the replay buffer.
As a comparison, the tabular AlphaZero could be imagined
to have a flexible size of replay buffer and a batch size
of 1. The optimization algorithm in CLAP was based on
stochastic gradient descent with momentum (0.9), weight
decay (0.0001), and Nesterov’s accelerated gradient [38]. The
initial learning rate was 0.1 and was changed to 0.01 at the
25th iteration.
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