
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Analyses of Tabular AlphaZero on NoGo

Author(s)
Hsueh, Chu-Hsuan; Ikeda, Kokolo; Nam, Sang-

Gyu; Wu, I-Chen

Citation

The 2020 Conference on Technologies and

Applications of Artificial Intelligence (TAAI

2020)

Issue Date 2021-03

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/18244

Rights

This is the author's version of the work.

Copyright (C) 2021 IEEE. 2020 International

Conference on Technologies and Applications

of Artificial Intelligence (TAAI). DOI:

10.1109/TAAI51410.2020.00054. Personal use of

this material is permitted. Permission from

IEEE must be obtained for all other uses, in

any current or future media, including

reprinting/republishing this material for

advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse

of any copyrighted component of this work in

other works.

Description

The 2020 Conference on Technologies and

Applications of Artificial Intelligence (TAAI

2020), December 2020

Analyses of Tabular AlphaZero on NoGo
Chu-Hsuan Hsueh∗ ID , Kokolo Ikeda∗†, Sang-Gyu Nam∗, and I-Chen Wu‡§¶

∗School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
Emails: {hsuehch, kokolo, howzen}@jaist.ac.jp

†Division of Transdisciplinary Sciences, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
‡Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

Email: icwu@cs.nctu.edu.tw
§Pervasive Artificial Intelligence Research (PAIR) Labs, Hsinchu, Taiwan

¶Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

Abstract—The AlphaZero algorithm has been shown to achieve
superhuman levels of plays in chess, shogi, and Go. This paper
presents analytic investigations of the algorithm on NoGo, a
variant of Go that players cannot capture the opponents’ stones.
More specifically, lookup tables are employed for learning instead
of deep neural networks, referred to as tabular AlphaZero. One
goal of this work is to investigate how the algorithm is influenced
by hyper-parameters. Another goal is to investigate whether the
optimal plays and theoretical values can be learned. One of the
hyper-parameters is thoroughly analyzed in the experiments. The
results show that the tabular AlphaZero can learn the theoretical
values and optimal plays in many settings of the hyper-parameter.
Also, NoGo on different board sizes is compared, and the learning
difficulty is shown to relate to the game complexity.

I. INTRODUCTION

The AlphaZero algorithm [1] is one of the most important
breakthroughs recently in the development of game-playing
programs. It is a kind of reinforcement learning algorithm
that learns from self-play games and does not need game-
specific knowledge other than game rules. Silver et al. [1]
successfully applied the algorithm to chess, shogi, and Go,
where superhuman levels of plays were achieved.

With the promising results, however, the learning requires
a huge amount of computation resources, making it difficult
to have a thorough investigation of the AlphaZero algorithm.
Especially, the algorithm contains several hyper-parameters,
while Silver et al. [1] did not show how each hyper-parameter
influenced the algorithm. To thoroughly investigate the hyper-
parameters, employing games in smaller scales is a feasible
way. Even more, if the employed game is strongly-solved (i.e.,
knowing the win/loss results of all positions), the knowledge
learned by the algorithm can be directly compared with the
theoretical values and optimal plays to have an objective
evaluation. The analyses on smaller-scaled games may provide
insights about normal-scaled ones.

Hsueh et al. [2] analyzed the algorithm on a strongly-solved
variant of a two-player stochastic game, Chinese dark chess.
They employed lookup tables instead of deep neural networks
to learn each position’s policy (i.e., the probability distribution
of moves) and value. Lookup tables were expected to be able
to avoid the possible information loss from feature extraction,
though the learning was less efficient since even similar
positions were learned separately. Their experiments showed

that the tabular AlphaZero learned the optimal plays and the
theoretical values under many hyper-parameter settings.

Still, it is worthy of studying more different types of games
to understand the influence of hyper-parameters, aiming to pro-
vide insights about the hyper-parameter selection. This paper
targets on a two-player zero-sum deterministic game called
NoGo [3], whose rules are similar to Go. Two players, Black
and White, alternatively place stones at the intersections on the
board, and Black plays first. Two specific rules for NoGo are
(a) moves that capture opponent’s stones are forbidden and (b)
a game ends when a player on his/her turn cannot put stones
on the board, and the player loses. The differences make the
strategy to play NoGo quite different from Go.

In this work, NoGo on different board sizes as different
problem scales is investigated. The experiments study one
hyper-parameter in the tabular AlphaZero called cpuct, which
determines the degree of exploration in tree search for gener-
ating self-play games. The self-play games are then analyzed
to figure out how the quality as learning data is influenced by
cpuct. Besides, different board sizes are compared, showing the
learning difficulty generally relates to the game complexity.

The rest of this paper is organized as follows. Section II
reviews background knowledge, including NoGo and the Al-
phaZero algorithm. Section III presents the application of the
tabular AlphaZero to NoGo with smaller boards. Section IV
describes the experiments and analyses. Finally, Section V
makes concluding remarks.

II. BACKGROUND

This section introduces the game NoGo in Subsection II-A
and reviews the AlphaZero algorithm in Subsection II-B.

A. NoGo

A

(a) (b)

Fig. 1. (a) A capture example and (b) a terminal game of 3×3 NoGo.

NoGo [3] is a two-player zero-sum deterministic game with
perfect information. The game is a combinatorial game variant

https://orcid.org/0000-0001-8888-3116

from Go. The board size can be any m × n rectangles or
squares, usually not bigger than 9×9. The rules generally
follow those of Go where Black and White alternatively place
stones on the board, and Black is the first player. However,
players in NoGo cannot capture the opponent’s stones. For
example, Black in Fig. 1a cannot play at point A to capture
the white stone as in Go. When the player to play cannot
put stones on the board, the game ends and the player loses.
Fig. 1b shows a terminal game on the 3×3 board. It is White’s
turn, but both the top-right corner (capture) and the bottom-left
corner (suicide) cannot be played. Thus, the winner is Black.

Since NoGo remains many similar properties to Go while
the complexity is relatively low, it has been employed as a
test bench for research. For example, Hearn and Müller [4]
adopted an open-sourced Go program based on Monte-Carlo
tree search (MCTS) named Fuego [5] to play NoGo. With
only a few modifications, the program was the strongest one in
2011-2012. Lan et al. [6] proposed a new variant of MCTS and
showed effectiveness through NoGo. They also incorporated
the proposed MCTS into the AlphaZero algorithm.

B. The AlphaZero Algorithm

The AlphaZero algorithm [1] is a kind of reinforcement
learning trained by self-play games. Deep neural networks
(DNNs) were employed to learn good policies (i.e., the
probability distribution of selecting moves) and values for
given positions. DNNs were incorporated into tree search to
get better policies. The search results were then used as the
training data of DNNs. When DNNs got cleverer, the search
also produced better results. By repeating these, the algorithm
learned to play games well with only knowing the rules.

More specifically, the tree search was a variant of MCTS.
The MCTS ran Nsim simulations for each move, where each
simulation contained three phases, selection, expansion, and
backpropagation. In the selection phase, a path was traversed
from the root to a leaf following the PUCT algorithm,

argmax
a

{W (s, a)

N(s, a)
+ cpuct · P (s, a) ·

√∑
bN(s, b)

1 +N(s, a)
}, (1)

where W (s, a) is the total value of move a for node s, N(s, a)
the visit count, P (s, a) the prior probability of selecting a at
s, and cpuct a coefficient influencing the exploration. The ex-
pansion phase expanded the leaf node sL and initialized each
move a to N(sL, a)← 0, W (sL, a)← 0, and P (sL, a)← pa,
where pa is the probability of a obtained from the DNN. In
the backpropagation phase, the traversed nodes were updated
by N(s, a)← N(s, a)+1 and W (s, a)←W (s, a)+v, where
v is the value for the position at sL obtained from the DNN.
After all simulations finished, the MCTS’s policy π for the
moves at the root s0 was calculated, which was in proportion
to the visit counts πa ∝ N(s0, a). The moves to be really
played in the self-play games during learning were sampled
according to π. The policies π’s from MCTS and the game
outcomes (wins, losses, or draws) in the self-play games were
saved and served as the training data for the DNN.

III. ALPHAZERO FOR SMALL NOGO

The methods and the results for solving NoGo on small
boards and the application to the tabular AlphaZero are
introduced in Subsections III-A and III-B, respectively.

A. Solving Small NoGo

NoGo on the 5×5 board was weakly-solved as Black’s
win [7], i.e., knowing the winner and the winning strategy
from the initial position. Other smaller boards can be strongly
solved by retrograde analysis [8], i.e., knowing for each
position whether it is a win or loss assuming both players play
optimally. The algorithm starts from terminal positions such
as Fig. 1b and then gradually updates the win/loss information
toward the initial position. A position is a win if one of the
successive moves leads to a win from the same player’s view;
otherwise, it is a loss since all successive moves have been
proven to lose. In addition to wins and losses, the shortest
wins and longest losses can also be calculated.

TABLE I
THEORETICAL VALUE AND STATE-SPACE COMPLEXITY OF SMALL NOGO

Board size 1×12 2×6 3×4 1×13 1×14
Theoretical value B (9) B (9) W(10) B(9) B(9)
State space 34,747 81,493 87,361 92,996 249,421

This study targets on five board sizes, 1×12, 2×6, 3×4,
1×13, and 1×14. To compare the learning on different prob-
lem scales, the board sizes are selected so that they have
similar numbers of intersections on the boards and numbers
of moves to win. The theoretical value of each board size
and the state-space complexity are listed in Table I. State-
space complexity is the number of possible positions that can
be reached from the initial position, i.e., the empty board. In
the row of theoretical value, B and W mean Black’s win and
White’s win, respectively. The number of moves to win from
the initial position is also included in the parentheses.

B. Tabular AlphaZero

Following the research line as Hsueh et al. [2], this paper
replaces the DNNs in the AlphaZero algorithm with lookup
tables, referred to as the tabular AlphaZero. To make the paper
self-contained, the mechanism is reviewed as follows. Each
position has a unique entry in the lookup table containing the
policy and the value. A policy is a vector of real numbers
p̂. The vector size for NoGo is the same as the board size
m × n, similar to the design for Go except that there is no
pass move. The probability of each move a is calculated by
the softmax function pa = ep̂a/

∑
be

p̂b . A position’s value is
a real number v̂, which is scaled to the range of [0, 1] by the
sigmoid function v = 1/(1 + e−v̂).

The lookup tables are trained by a synchronous version of
the tabular AlphaZero, as shown in Algorithm 1. The first
step is to initialize the policies and values in the lookup table
to random values. The process of generating self-play games
and optimizing policies and values is then repeated for N
iterations. In each iteration, M self-play games are generated

Algorithm 1 Tabular synchronous AlphaZero
1: Initialize the lookup table
2: repeat
3: Collect M self-play games
4: Optimize by the most recent K ×M game (if any)
5: until N iterations

by employing the MCTS as described in Subsection II-B. To
optimize the lookup table, the most recent K ×M games, if
any, are used to collect groups of (s, π, z) as training data,
where s means a position, π the probability distribution of
moves in proportion to the visit counts N(s0, a) in MCTS,
and z the outcome of the self-play game (1 and 0 for a
win and a loss, respectively, from the view of the player to
move). In other words, the self-play games within the recent
K iterations are used. For a position s, let p and v be the
probability distribution and the scaled value in [0, 1] obtained
from the lookup table. The policy p̂ and value v̂ are updated
by p̂a ← p̂a−β · (pa−πa) and v̂ ← v̂−β · (v−z) ·v · (1−v),
respectively, where β is the learning rate. The formulas were
derived based on partial derivatives of the cross-entropy loss
−πT lnp and mean-squared error (v − z)2 [9].

An implementation detail is about W (s, a)/N(s, a)
in Eq. (1) when N(s, a) = 0. Different ways of implementa-
tion are expected to obtain different results. Silver et al. [1]
treated the value as 0, i.e., a loss [10], meaning that the MCTS
was likely to ignore not-visited moves with low selection
probabilities P (s, a). Hsueh et al. [2] also implemented in
the same way. In this paper, different implementation is tried,
treating W (s, a)/N(s, a) as ∞. Under this implementation,
not-visited moves are always selected first. Since the employed
games have relatively few legal moves per state, exploring all
moves for a state is feasible. One more reasonable way of
implementation is to treat the value as 0.5, the middle point
between a win and a loss. Comparing different implementation
is left as a future research direction.

IV. EXPERIMENTS AND ANALYSES

In this section, the experiment settings are described in
Subsection IV-A. The results of different cpuct values and the
analyses of MCTS’s policies and game outcomes in self-play
games are presented in Subsections IV-B and IV-C. Discus-
sions on the influence of cpuct are made in Subsection IV-D.
Finally, Subsection IV-E compares different board sizes.

A. Experiment Settings

In the experiments, the following settings were the same
for all board sizes, selected according to some preliminary
experiments. The lookup tables were initialized by a normal
distribution with the mean of 0 and the variance of 0.01.
The learning lasted for 50 iterations, where each generated
500 self-play games and used the latest 1,000 games to
update the lookup table (i.e., N = 50, M = 500, and
K = 2 in Algorithm 1). In self-play games, the MCTS
ran 800 simulations per move, and the α and the ε for the

Dirichlet noise1 were 1.5 and 0.25, following the settings or
the suggestions by Silver et al. [1]. For the optimization of
lookup tables, the learning rate β was set to 1.

To know how well the learned policies and values were,
two metrics were employed. First, for evaluating policies, the
win rates of 10,000 games against the optimal player were
collected, denoted by WROPT. In more detail, the optimal
player won immediately when reaching winning positions. For
losing positions, since all moves lead to losses, one move
was randomly selected. Because of the randomness, even for
deterministic games such as NoGo, not all games result in
the same ones. WROPT could reflect the robustness of the
policies. The lookup table player (no search) always played
the highest-probability moves based on the policy, regardless
of whether the moves were legal. If illegal moves were played,
the player lost immediately. Also, it only played as the color
of the winner for the initial position. Namely, the lookup table
player played as Black for 1×12, 2×6, 1×13, and 1×14 but
as White for 3×4. Thus, the highest WROPT that could be
reached was 100%, meaning that the learned policies without
search played as good as the optimal player.

Second, for evaluating learned values, only the values of the
initial positions (Vinit) were considered. It was a fair indicator
over different hyper-parameters in the sense that the initial
positions were updated for the same number of times. A Vinit
close to the theoretical value means that the game’s theoretical
value is learned, though the values of other positions are more
important when considering move selection.

� �� 	�
� �� ��
��"� �"���

�����

	�����

������

�����

������

�������

�
��

��
�"

��
$!

���
�"

��
��

��
�"�

�#
"��

��
 �

��

����
×���cpuct=1/4

���" ����
	

�
�

Fig. 2. WROPT in different trials for 3×4 NoGo with cpuct = 1/4.

For each setting, several trials with different random seeds
were conducted, but no much differences were observed.
An example of WROPT training curves for 3×4 NoGo with
cpuct = 1/4 is shown in Fig. 2. Thus, only one trial for each
setting is presented in the following subsections.

B. Results on Policies and Values without Search

In this study, the focuses were put on cpuct, which was
expected more important since it also influenced the effective-
ness of Dirichlet noises. A wide range of values, 0, 1/512,
1/256, ..., 1/2, 1, 2, ..., and 16, were tested. The training
curves of WROPT with some selected cpuct’s for board sizes
of 2×6, 1×14, and 3×4 are depicted in Fig. 3. The results of

1Introduced by Silver et al. [1] to the moves at the root node to ensure all
legal moves might be tried, containing two hyper-parameters α and the ε

� �� 	�
� �� ��
��#�!�#���

�����

	�����

������

�����

������

�������

�
��

�	
×

���
��
��
�#
��
%"
���

 #
��
��

��
�#�
�$

#��
��

!�
��

���cpuct�
����	
���
�
	
�
�
�

(a)

� �� 	�
� �� ��
��#�!�#���

�����

	�����

������

�����

������

�������

�
��

��
×�

��
��

��
��
�#
��
%"
���

 #
��
��

��
�#�
�$

#��
��

!�
��

���cpuct�
����	
���
�
	
�
�
�

(b)

� �� 	�
� �� ��
��#�!�#���

�����

	�����

������

�����

������

�������

�
��

�

×�

���
��
��
�#
��
%"
���

 #
��
��

��
�#�
�$

#��
��

!�
��

���cpuct�
����	
���
�
	
�
�
�

(c)

Fig. 3. Training curves of WROPT for (a) 2×6, (b) 1×14, and (c) 3×4 NoGo
with different cpuct.

1×12 and 1×13 were omitted due to the page limit. From the
results, cpuct < 1 had similar curves. Many settings converged
to WROPT’s of 100%, indicating that the optimal plays were
well learned. Interestingly, cpuct = 0, i.e., no explorations in
MCTS, could also learn the optimal plays, though the curve
was slightly unstable for 1×14 (Fig. 3b). On the other hand,
too-high cpuct’s had worse results and learned much slower.

Fig. 4 shows another view of the WROPT training curves,
namely, learning speeds. More specifically, the learning speed
was defined by the number of iterations needed to achieve a
given WROPT. Smaller numbers mean higher learning speed
and vice versa. For the case that the given WROPT was not
achieved within 50 iterations, the data point was not drawn.
Similar conclusions could be made as to the WROPT training
curves. First, too-high cpuct’s made the learning slow. Second,
cpuct < 1 had similar results, especially for 1×12, 2×6, and
1×13. Third, too-low cpuct’s for 1×14 and 3×4 also learned
slower, especially 3×4.

Fig. 5 depicts the training curves of Vinit with some selected
cpuct’s for the board size 2×6. The theoretical value is 1
(Black’s win). Other board sizes had similar growing trends for

� 1
512

1
256

1
128

1
64

1
32

1
16

1
8

1
4

1
2
� � 	 ��

cpuct

�

��

��

��

	�

�

�
��
��
��
���
���
��
���
�

����WROPT�
�
�
�
�

(a)

� 1
512

1
256

1
128

1
64

1
32

1
16

1
8

1
4

1
2
� � 	 ��

cpuct

�

��

��

��

	�

�

�
��
��
��
	�
��
���
��
���
�

����WROPT�
�
�
�
�

(b)

� 1
512

1
256

1
128

1
64

1
32

1
16

1
8

1
4

1
2
� � 	 ��

cpuct

�

��

��

��

	�

�

�
��
��
�	
���
���
��
���
�

����WROPT�
�
�
�
�

(c)

Fig. 4. Learning speed of different cpuct for (a) 2×6, (b) 1×14, and (c)
3×4 NoGo.

� �� �� 	�
� ��
��!���!���

���

���

��

���

��

���

�
��

��
×�

���
��
"�

��
���
��
!��

���
�

�!�
��

��
�!�

�"
!��

��
��
��

���cpuct�
�����
��

�
�

��

Fig. 5. Training curves of Vinit for 2×6 NoGo with different cpuct.

cpuct, except that Vinit for 3×4 went to 0 (White’s win). With
lower cpuct, the learned values converged to the theoretical
ones. For cpuct ≥ 1, the convergence trend became even
unclearer as cpuct increased. Comparing the results of high
cpuct’s with policies, WROPT’s still gradually approached to
100%, while nothing was learned for Vinit’s.

C. Analyses of Self-Play Games

Since the hyper-parameters of MCTS directly influence
the self-play games and also the learning on policies and
values, it is worthy of studying how MCTS’s policies and the

outcomes of self-play games are influenced. This subsection
takes cpuct as an example and analyzes the self-play games
in each iteration. Different board sizes had similar results,
and only 2×6 is presented. Also, it was expected that search
results would become more accurate as the games got closer
to the ends. In NoGo, since stones are not removed from the
board as long as they are played, the game progress can be
observed by counting the number of stones on the board. In
the following analyses, NoGo positions with k stones on the
board are denoted by k-stone positions.

� �� 	�
� �� ��
��!���!���

������

������

�����

������

������

������

�������

��
�
"�
�!
��
��
��
���

��
��

#

����	×��cpuct=1/4

	�� !��� �

�
�

�
�

(a)

� �� 	�
� �� ��
��!���!���

������

������

�����

������

������

������

�������

��
�
"�
�!
��
��
��
���
��
��

#

����	×��cpuct=16

	�� !��� �

�
�

�
�

(b)

Fig. 6. Simulation efficiency for 2×6 NoGo with cpuct (a) 1/4 and (b) 16.

The first analysis metric for self-play games is
the simulation efficiency in searching best moves of
given positions, which is the proportion of simulations
from the root that are spent on the best moves, i.e.,
(Σs∈SΣa∈A∗

s
N(s, a))/(Σs∈SΣa∈As

N(s, a)) where S is the
set of positions in the self-play games, As the set of legal
moves at state s, and A∗s the set of best moves at state s.
Best moves meant winning moves in winning positions and
all moves in losing positions. The simulation efficiency of the
self-play games for cpuct = 1/4 and 16 are shown in Fig. 6.
The curves of the 0-stone and 1-stone positions are omitted
since all moves in those positions are the best, which made
the simulation efficiency be 100% for all iterations. From the
figures, it could be observed that the simulation efficiency
generally became higher when games were going to end. For
cpuct = 1/4, the simulation efficiency soon converged close
to 100%, while some small portions of simulations were still
spent on non-best moves. Lower cpuct’s had similar results or
converged sooner. For cpuct = 16, too many simulations were
spent on non-best moves, making the learning inefficient.

The second analysis metric is the game outcome correctness,
which is the proportion of positions that the game outcomes
from the positions in the self-play games match the theoretical

� �� 	�
� �� ��
����������

�����

������

������

�����

������

������

������

�������

�
��

��
�
 �
��
�
��
�
��
��
��
��

��

����	×��cpuct=16

	���������

�
�

�
�

Fig. 7. Game outcome correctness for 2×6 NoGo with cpuct = 16.

game outcomes, i.e., |{s ∈ S|zs = vs}|/|S| where S is the
set of positions in the self-play games, zs the outcome from
s in the corresponding self-play game, and vs the theoretical
win/loss of s. The results of game outcome correctness were
similar to those on simulation efficiency. For cpuct = 1/4,
the curves were close to Fig. 6a and were omitted. The
correctness converged close to 100%, where incorrect ones
in later iterations mainly came from exploration. cpuct = 16,
shown in Fig. 7, explored too much and thus failed to provide
useful information for learning values.

� �� 	�
� �� ��
����������

������

�����

������

������

������

�������

��
��
��
��
��
��
�
��
��
��
��

��

����	×��cpuct=1/4

	���������

�
�

(a)

� �� 	�
� �� ��
����������

������

�����

������

������

������

�������

��
��
��
��
��
��
�
��
��
��
��

��

����	×��cpuct=16

	���������

�
�

(b)

Fig. 8. Best action correctness for 2×6 NoGo with cpuct (a) 1/4 and (b) 16.

The third analysis metric is the best action correctness,
which is the proportion of positions that the moves most
visited in the MCTS belong to the best moves, i.e., |{s ∈
S|as ∈ A∗s}|/|S| where S is the set of positions in the self-
play games, as the most-visited move at s in the corresponding
self-play game, and A∗s the set of best moves at s. Fig. 8
depicts the best action correctness for cpuct = 1/4 and 16. For
cpuct = 1/4, the correctness soon converged to 100%, while
cpuct = 16 approached to 100% much slower. The results of
cpuct = 16 were different from the previous two metrics in
that increasing trends could be observed.

D. Discussions on the Exploration Coefficient

Higher cpuct’s mean higher degrees of exploration dur-
ing MCTS. Namely, less-visited moves are more likely to
be selected during search even when the expected value
W (s, a)/N(s, a) is low. With a too-high cpuct, MCTS evenly
divides the simulations to the moves, which makes the search
inefficient, as shown in Fig. 6b. Since moves in self-play
games are selected in proportion to the visit counts, a too-
high cpuct also increases the probabilities to select non-best
moves, which makes the game outcome correctness low, even
after learning, as shown in Fig. 7. The analysis provides an
explanation to Fig. 5 that Vinit has no clear trends when cpuct is
too high. Even so, the MCTS could still successfully identify
(one of) the best move(s), as shown in Fig. 8b. As a result,
high cpuct’s, though learned slower, could still approximate to
the optimal plays, as shown in Fig. 3.

On the other hand, with a too-low cpuct, MCTS may
overlook the best moves due to few simulations of bad results
and finally select sub-optimal moves. Fig. 6a shows that most
simulations are concentrated on best moves with cpuct = 1/4.
Since the employed games have relatively few moves and
small game trees, too-low cpuct’s might still be no problems. It
might also depend on the implementation of W (s, a)/N(s, a)
when N(s, a) = 0, as discussed in Subsection III-B. This issue
requires further studies and is left as future research.

E. Comparison of Different Board Sizes

� �� �� 	�
� ��
��"� �"���

�����

������

�����

������

�����

�������

�
��

��
��

��
��

�"
��

$!
���

�"
��

��
��

�"�
�#

"��
��

 �
��

cpuct=1/4

�×��
�×�
	×

�×�	
�×�

Fig. 9. Training curves of WROPT for different board sizes (cpuct = 1/4).

Fig. 9 shows the training curves of WROPT with cpuct = 1/4
for different board sizes. Other promising cpuct’s had similar
results and are omitted. Considering the learning speed, the
difficulty of learning from the highest to the lowest was: 3×4
> 1×14 > 1×13 ≈ 2×6 > 1×12. Except for 3×4, the order
generally followed their state-space complexity (i.e., 249,421
> 92,996 ≈ 81,493 > 34,747). All these board sizes are
Black’s 9-move win. The state-space complexity of 3×4 is
87,361, between those of 1×13 and 2×6; however, it was the
most difficult one to learn. Since 3×4 is White’s 10-move
win, it was suspected that the result was still reasonable. One
possible explanation is that a 3×4 NoGo can be imagined as
twelve sub-problems that win in nine moves. To learn 3×4
NoGo well, all the twelve sub-problems should be properly
learned, though it does not need as much as twelve times of
self-play games since these sub-problems are dependent.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the tabular AlphaZero is applied and analyzed
on strongly-solved variants of NoGo. The hyper-parameter
cpuct (exploration coefficient in PUCT) is thoroughly investi-
gated through experiments. The results show that the optimal
plays and theoretical values can be learned under relatively
low degrees of exploration (low cpuct), though the phenomena
require further study to clarify whether it relates to the problem
scales, the implementation of Eq. (1) when N(s, a) = 0, or
other reasons. On the contrary, when cpuct goes too high,
the algorithm can learn nothing about the values, though
the policies can still slowly approach the optimal plays. In
addition, five board sizes are compared, where the learning
difficulty is shown to relate to the game complexity generally.

For future research, three promising directions are con-
sidered. The first is to investigate other hyper-parameters
such as α and ε for Dirichlet noises and Nsim (number of
simulations for each move). The second is to compare different
implementation of W (s, a)/N(s, a) when N(s, a) = 0. The
third is to replace lookup tables with neural networks and
investigate whether the optimal plays and theoretical values
can still be learned. The above can be done for games other
than NoGo. By comparing different games, the results are
expected to provide insights or guidelines about the hyper-
parameter selection and different ways of implementation
when applying to other games.

ACKNOWLEDGMENT

This research is partially supported by Japan Society for
the Promotion of Science (JSPS) under contract number
20K19946.

REFERENCES

[1] D. Silver et al., “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play,” Science, vol. 352, no. 6419, pp.
1140–1144, 2018.

[2] C.-H. Hsueh, I.-C. Wu, J.-C. Chen, and T.-s. Hsu, “AlphaZero for a non-
deterministic game,” in Proc. Conf. Technol. and Appl. of Artif. Intell.
(TAAI 2018), Taichung, Taiwan, Nov. 2018, pp. 116–121.

[3] “NoGo — Board Game — BoardGameGeek,” accessed: Oct.
18, 2020. [Online]. Available: https://boardgamegeek.com/boardgame/
151419/nogo

[4] B. Hearn and M. Müller, “The BobNoGo Program,” 2011, accessed:
Oct. 18, 2020. [Online]. Available: https://webdocs.cs.ualberta.ca/
∼mmueller/nogo/BobNoGo.html

[5] M. Enzenberger, M. Müller, B. Arneson, and R. Segal, “Fuego—an
open-source framework for board games and Go engine based on Monte
Carlo tree search,” IEEE Trans. Comput. Intell. AI in Games, vol. 2,
no. 4, pp. 259–270, Dec. 2010.

[6] L.-C. Lan, W. Li, T.-H. Wei, and I.-C. Wu, “Multiple policy value Monte
Carlo tree search,” in Proc. the Twenty-Eighth Int. Joint Conf. on Artif.
Intell., IJCAI-19, Aug. 2019, pp. 4704–4710.

[7] P. She, “The designed and study of NoGo program,” Master’s thesis,
National Chiao Tung University, 2013.

[8] K. Thompson, “Retrograde analysis of certain endgames,” ICGA J.,
vol. 9, no. 3, pp. 131–139, 1986.

[9] C.-H. Hsueh, “On strength analyses of computer programs for
stochastic games with perfect information,” Ph.D. dissertation, Nat.
Chiao Tung Univ., Hsinchu, Taiwan, 2019. [Online]. Available:
https://hdl.handle.net/11296/ku48z7

[10] “Alphazero news - Page 8 - TalkChess.com,” Dec.
2018, accessed: Oct. 18, 2020. [Online]. Avail-
able: http://talkchess.com/forum3/viewtopic.php?f=2&t=69175&start=
70&sid=8eb37b9c943011e51c0c3a88b427b745

https://boardgamegeek.com/boardgame/151419/nogo
https://boardgamegeek.com/boardgame/151419/nogo
https://webdocs.cs.ualberta.ca/~mmueller/nogo/BobNoGo.html
https://webdocs.cs.ualberta.ca/~mmueller/nogo/BobNoGo.html
https://hdl.handle.net/11296/ku48z7
http://talkchess.com/forum3/viewtopic.php?f=2&t=69175&start=70&sid=8eb37b9c943011e51c0c3a88b427b745
http://talkchess.com/forum3/viewtopic.php?f=2&t=69175&start=70&sid=8eb37b9c943011e51c0c3a88b427b745

	Introduction
	Background
	NoGo
	The AlphaZero Algorithm

	AlphaZero for Small NoGo
	Solving Small NoGo
	Tabular AlphaZero

	Experiments and Analyses
	Experiment Settings
	Results on Policies and Values without Search
	Analyses of Self-Play Games
	Discussions on the Exploration Coefficient
	Comparison of Different Board Sizes

	Conclusions and Future Work
	References

