
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Generation of Game Stages with Quality and

Diversity by Reinforcement Learning in Turn-

based RPG

Author(s) Nam, SangGyu; Hsueh, Chu-Hsuan; Ikeda, Kokolo

Citation
IEEE Transactions on Games (ToG), 14(3): 488-

501

Issue Date 2022-09

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/18245

Rights

This is the author's version of the work.

Copyright (C) 2022 IEEE. IEEE Transactions on

Games, 14 (3), 2022, 488-501. DOI:

10.1109/TG.2021.3113313. Personal use of this

material is permitted. Permission from IEEE

must be obtained for all other uses, in any

current or future media, including

reprinting/republishing this material for

advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse

of any copyrighted component of this work in

other works.

Description



IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX 1

Generation of Game Stages with Quality and
Diversity by Reinforcement Learning in Turn-based

RPG
Sang-Gyu Nam, Chu-Hsuan Hsueh, Kokolo Ikeda

Abstract—Many recent studies in procedural content genera-
tion (PCG) are based on machine learning. One of the promising
approaches is generative models, which have shown impressive
results in generating new pictures and videos from existing ones.
However, it is usually costly to collect sufficient content for
training on PCG. To address this issue, we consider reinforcement
learning (RL), which does not need to collect training data in
advance but learns from its interaction with an environment. In
this work, RL agents are trained to generate stages, which we
define as series of events in turn-based role playing games (RPG).
It is a challenging task since several events in a stage are usually
highly correlated to each other. We first formulate the stage
generation problem into a Markov decision process. A hand-
crafted evaluation function, which simulates players’ enjoyment,
is defined to evaluate generated stages. Two RL algorithms
are selected in the experiments, which are deep Q-network
(DQN) for discrete action space and deep deterministic policy
gradient (DDPG) for continuous action space. The generated
stages from both models receive evaluation values indicating
good quality. To solve the delayed reward problem and further
improve the quality of the stages, we employ virtual simulations
to give rewards to intermediate actions and get stages with
higher average scores. In addition, we introduce noise to avoid
generating similar stages while trying to keep the quality as high
as possible. The proposed methods succeed in generating good
and diverse stages.

Index Terms—Reinforcement learning, procedural content gen-
eration, turn-based rpg, machine learning, quality, diversity.

I. INTRODUCTION

PROCEDURAL content generation (PCG) has arisen as
one major research field in games. PCG in games implies

the generation of game content with algorithms. Many ele-
ments in games can be the target of content such as levels [1],
textures [2], puzzles [3], items [4], and NPCs [5]. Although
generating content itself is the primary goal of PCG, there are
other usages like training AI players in various environments
to increase their generality [6].

Research in PCG has been conducted on many different
kinds of games, which all have their own unique challenges.
The majority of studies about PCG are mainly focused on
a subset of game genres such as platformer games (e.g.,
Super Mario [7]) [1][8], racing games [9][10], and problems

The authors are with the School of Information Science, Japan Ad-
vanced Institute of Science and Technology, Ishikawa, Japan, e-mail:
(howzen@jaist.ac.jp; hsuehch@jaist.ac.jp; kokolo@jaist.ac.jp)

in puzzle games [3]. However, a well-known classic genre,
turn-based RPG1, is relatively less studied.

In most turn-based RPGs, players control characters aiming
to reach the final goal (e.g., defeating the final boss), though
different games may have different story settings. For example,
players can make their characters stronger by obtaining re-
wards from battles with monsters, and those procedures occur
successively. Such series of events players may encounter
during the game are seen as a stage of RPGs in this paper.
In well-designed and challenging RPGs like Darkest Dungeon
[11] or the Mysterious Dungeon series [12], if players attempt
to defeat all consecutive monsters using all of their resources,
then they may fail to defeat the boss. Alternatively, if players
ignore all enemies, then the characters may not have adequate
strength to defeat the boss. Because of these unique features,
under many circumstances, players need to devise strategies,
such as winning a tough battle using all resources or saving
items for more important battles later. These lead to the
entertainment of turn-based RPGs.

Stages of turn-based RPGs should be well designed so
that players need to consider their strategies carefully, which
makes them feel challenging and entertaining. It is crucial
to make a balance between events in the stages, such as
the locations, frequencies, and statuses of enemies, the lo-
cations and effectiveness of recovery points, and the effects
of items. Game designers have employed constructive PCG
methods (usually hand-designed rules) to generate stages in
many commercial turn-based RPGs, which gives designers
a high level of control on the generated content. However,
it requires experts’ dedication to thoroughly create rules or
decide parameters, which still cannot guarantee adequate game
balance. For example, Disgaea [13] is one of the famous turn-
based RPGs that have parameters in a wide range. Despite that,
many enemies in later phases of the game can be defeated
by only one attack as player characters get stronger rapidly
compared to enemies. Providing diverse stages to players is
another aspect to consider for entertainment. Players need
to develop different strategies under different circumstances,
which usually makes play enjoyable, especially in turn-based
RPGs. Constructive PCG methods also have potential issues
about lacking diversity in that players may somehow find
patterns in the stages. In this research, we aim at generating not

1The definition of turn-based PRG may vary from wide to narrow. In this
work, we consider games like Wizardry and Darkest Dungeon and will present
a simplified implementation in Section III.



2 IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

only high-quality stages of turn-based RPGs but also diverse
ones based on PCG.

Researchers have tried several approaches for PCG. One
example is procedural content generation via machine learning
(PCGML) [14]. In most PCGML studies, models learn how
to generate content using existing content. When it is easy to
obtain substantial content created by human designers, it might
be possible to generate game content based on the distribution
of prepared data using generative models such as variational
autoencoders (VAE) [15], PixelCNN [16], or generative adver-
sarial networks (GAN) [17]. However, concerning actual game
development, it is not easy to collect a sufficient amount of
content for training. Thus, it may result in generating similar
content to existing one and lacking diversity.

There is another approach called search-based PCG [18].
The optimization systems in search-based PCG mainly con-
sist of two parts, the generator and the evaluator. Usually,
game content is represented by parameters and generated by
repeating the following processes, 1) the evaluator grades
content by one or a vector of real numbers instead of a simple
acceptance or rejection, and 2) the generator aims to find better
parameters. Search-based PCG does not require training data;
instead, it requires evaluation functions, usually designed by
humans. Designers can tailor the evaluation functions to their
preference in games, or to some specific players’ skills or taste.
Typically, search-based PCG generates content by optimizing
the evaluation values, and in many cases, the optimization
is based on genetic algorithms (GA). Some efforts may be
required to enable GA to generate diverse content [19].

Another very recent approach is reinforcement learning
(RL) [20][21][22]. The work by Khalifa et al. [20] and by
us [21][22] was undertaken independently, and to our best
knowledge, ours is the first to train RL agents to generate
game levels/stages from scratch. The main reason why we
introduce RL is that there is no need to collect data and
it can do online generation with the potential of getting
diverse content. The general idea on transforming levels/stages
generation into an RL problem in both works are the same. In
more detail, both formulate the problem into Markov decision
processes, where states are generated levels/stages, actions are
to modify the levels/stages, and rewards are the degree of
how good the generated levels/stages are. Khalifa et al. [20]
put more emphases on the generality of the method and on
generating playable games, while we focus more on balance
between events (i.e., quality) in stages of turn-based RPGs
and the diversity of generated stages. In our design, each
stage comprises n events, and the generation of a stage means
deciding the n events in sequence. An evaluation function is
designed to evaluate the completed stages and give rewards.
In addition to generating good stages, we also introduce a
noise selection that selects good but different actions from the
learned policy on purpose in order to generate diverse stages.

This paper is extended from our previous work [22], where
we further introduce virtual simulations for improving the
quality of generated stages (Sections IV-C and V-A) and
conduct more thorough studies on the relation between noise
and the diversity of stages (Section V-C). The structure of
the rest of this paper is as follows. Section II describes the

Fig. 1. Generation of stages using GA. Each stage is represented as an
individual containing three discrete events. An evaluator assesses individuals
(A, B, C, D) in generation G, and good individuals (A, C) are selected.
Through crossover and mutation operations, better genes are passed to the
next generation G’.

background of our work. Section III introduces our target
turn-based RPG. Section IV presents our approach to generate
stages by RL. Section V then shows the experiment results.
Finally, Section IV includes the conclusions and discussions
on future works.

II. BACKGROUND

In this section, we first give an overview on PCG. Next,
Sections II-B and II-C introduce research on search-based
PCG and PCGML, respectively, which are representative PCG
approaches. As a new approach, we adopt reinforcement
learning, where the general concepts of reinforcement learning
are reviewed in Section II-D.

A. PCG Overview

PCG [19] creates game content algorithmically. The gener-
ation process can happen upon players’ demands (online) or
during game development (offline), where the time constraint
usually makes the former more challenging. For both online
and offline generation, the content should have high quality.
In addition, diversity [23][24] is an important factor to keep
players’ long-term enjoyment in terms of freshness. Related
to players’ enjoyment, some studies considered perspectives
such as difficulty [25] [26] [27] [28] and entertainment [29].

In addition to the above, PCG can be categorized based
on various perspectives [30]. When considering methodologies
based on artificial intelligence, two major groups are search-
based PCG and PCG via machine learning (PCGML), which
will be introduced more in the following sections.

B. Search-Based PCG

Search-based PCG [18][9][10][30] is one special case of
generate-and-test algorithms that aims to generate good con-
tent efficiently, even for complex games. Usually, generate-
and-test algorithms involve the repeated processes of gen-
erating content through the stochastic procedure and then
filtering by evaluation functions until good content is obtained.
However, when the target game is complex and some degree of
quality is required, generating good content is quite tough as
the probability of finding good content with random generation
is relatively low whereas search-based PCG can generate good
content in complex games [31][9][10]. Search-based PCG



NAM ET AL.: GENERATION OF GAME STAGES WITH QUALITY AND DIVERSITY BY REINFORCEMENT LEARNING IN TURN-BASED RPG 3

mainly applies genetic algorithms (GAs), which keep evolving
existing content to obtain content with better evaluation values.
Fig. 1 shows an example of the generation of stages in a
turn-based RPG using GA. By repeating the operations of
selection, crossover, and mutation, the GA aims to generate
better stages from previously generated ones. Search-based
PCG can also achieve adaptive generation according to the
design of evaluation functions. For example, Togelius et al.
[9] used entertainment features from player logs and optimize
fitness to specific players.

While search-based PCG is efficient compared to naive
generate-and-test algorithms, still, it has two potential issues,
the diversity of content and online generation. Since GAs tend
to generate similar individuals, search-based PCG may have
issues about generating diverse content. Loiacono et al. [10]
tried to generate diverse content (tracks in racing games) based
on Togelius et al.’s work [9]. Gravina et al. [23] proposed
a new concept, PCG through quality-diversity, as a subset
of search-based PCG that aims to maintain both the quality
and diversity of generated content. For example, Alvarez et
al. [32] used the MAP-Elites algorithm to generate designer-
interactive dungeons. No matter whether diversity is required,
search-based PCG needs a large number of evaluations, in
other words, trials and errors. Thus, online generation may be
difficult, especially when the evaluations are slow.

C. PCGML
PCGML [14] is a framework for generating content using

machine learning. The generation models learn how to gener-
ate content using existing content as training data. Different
from search-based PCG, PCGML generates content directly
from the trained models.

PCGML has been realized by many different approaches
and applied to generate various kinds of game content, mainly
game levels. Summerville and Mateas [1] generated Mario
levels by a kind of neural network called long short-term
memory (LSTM), known to be good at predicting the next
item in a sequence. They represented the 2-dimension levels
as strings, where each character stood for a tile on the map.
Given a seed sequence (i.e., several pre-assigned tiles), the
LSTM generated a level tile-by-tile until reaching an end-of-
level terminal symbol. Lee et al. [33] trained convolutional
neural networks to predict resource locations in StarCraft II
maps, which was considered a potentially useful tool for map
designers. Summerville et al. [34] learned the room-to-room
structures of Zelda dungeons by Bayesian networks and gener-
ated new levels that have similar statistical properties to given
levels. Generative adversarial networks (GANs) and varia-
tional autoencoder (VAE) have become popular approaches
in recent years, which successfully generated similar but new
images from input datasets. The former has been adopted
to PCG for generating Mario levels [8] [35], Zelda levels
[36], Doom levels [37], and an educational game for middle
school students [38]. The latter has been adopted to PCG for
generating Mario levels [39] [40], lode runner levels [41] and
levels of six platformer games [42].

PCGML may have issues such as not having enough data
for learning, determining what features should the generated

content use and what kind of data should be collected. For
example, if the turn-based RPG stages are the target, it is
difficult to say whether the collected stage data are associ-
ated with appropriate difficulty, or whether the stages require
specific strategy patterns. It means that gathering data involves
grasping the characteristics of the content, so it is difficult and
expensive, and noise is likely to be included. In addition to
this problem, it is hard for the content of other games to be
reused for the target games because the content of different
games has a different structure. These are some of the issues
that should be considered when applying PCGML.

D. Reinforcement Learning
We adopt reinforcement learning (RL) as a new approach

aiming to solve the above difficulties. For RL problems, the en-
vironments are usually modeled by Markov decision processes
(MDP), a mathematical formulation widely employed when
studying optimization problems. MDP is usually represented
by (S,A, P,R, γ) where S is state space, A is action space,
Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a) is the probability
of transition from s to s′ by performing action a at time t,
Ra(s, s′) is the immediate reward received from the transition,
and γ ∈ [0, 1] is the discount factor which shows how
much the future cumulative rewards is considered compared
to the immediate rewards. Every next state s′ depends only
on the current state s and the action a. The state transition is
independent of past states, which satisfies the Markov property.

Different from supervised learning and unsupervised learn-
ing, RL does not require training data but does self-learning
by interacting with the environment. When all state-action
pairs can be listed, whose Q-values can be stored in a table,
it is guaranteed that the optimal policy can be learned given
sufficient time. However, this condition is difficult to satisfy in
most of the real-world problems. Thus, function approximators
such as convolutional neural networks (CNNs) are used to
approximate the Q-values. Mnih et al. [43] succeeded in
creating AI that is stronger than humans in about half of the
49 tested Atari2600 games by the proposed deep Q-network.

Some important features of RL for solving problems are
summarized as follows.
• The problems should be able to be modeled by MDP.
• Reward functions should be carefully designed so that

the desired policies can be obtained when the rewards
are maximized.

• States can be represented in many ways, and the represen-
tation is important since it influences the computational
complexity of the problem.

• Depending on the RL models, outputs can be stochastic
or deterministic.

• Learning usually requires time. However, once the learn-
ing is done, selecting actions is often fast.

Guzdial et al. [44] and Sheffield and Shah [45] formulized
level generation as MDP, though their methods were based
on supervised learning. As an independent work of our paper,
Khalifa et al. [20] used RL for generating game levels. They
designed three kinds of representations for two-dimensional
game levels and applied them to three games. Some more
comparisons with our design will be made in Section IV.



4 IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

Fig. 2. An example turn-based RPG battle event and the flow of one turn.
The warrior with the highest speed first attacks the ghost. The next fastest
ghost performs a poison action on the warrior. Next, the dragon uses a fire
skill on the warrior. Finally, the priest heals the damaged warrior.

III. TURN-BASED RPG AND OUR TARGET PROBLEM

In this research, we propose a research platform for turn-
based RPG and aim to generate stages in the platform.
Most turn-based RPGs have unique systems but have sev-
eral common elements. For example, players need to grow
their characters and finally defeat the boss. A stage usually
consists of several events, which can be roughly divided into
battle events and non-battle events. The arrangement of events
greatly influences the enjoyment of playing. Section III-A first
introduces battle and non-battle events, and then Section III-B
discusses elements of desirable stages. A summary of our turn-
based RPG platform is presented in Section III-C.

A. Battle and Non-battle Events

In a battle event, a player’s team and an enemy’s team
fight with each other until one team defeats the other team or
flees from the battle. In most turn-based RPGs, the status of
the characters is preserved after battles. For example, damage
received during a battle is not recovered after the end of the
battle. Thus, selecting a short-term strategy like just winning
the immediate battle is usually not appropriate, and a long-
term strategy considering future battles is required. That is
the most crucial factor in turn-based RPG.

Battles in turn-based RPG proceed based on turns. In each
turn, each character performs one action in order, which is
typically decided by a parameter called speed. Fig. 2 shows
an example of a sequence in one turn in a two-versus-two
battle, including characters’ status information. In the figure,
the square boxes next to the characters show the charac-
ters’ names, health points (HP)/maximum HP, magic points
(MP)/maximum MP, attack (ATK), defense (DEF), speeds
(SPD), and possible actions, from the top and the left.

Non-battle events occur outside battles, such as inns where
players can recover their characters, blacksmiths who reinforce
players’ weapons, item shops providing items for the next
expedition, and treasure chests where players can get weapons
during the expedition. Settings of the non-battle events can
also significantly affect the difficulties or strategies of the
battles. Therefore, it is not advisable to design battle and non-
battle events separately.

Players in turn-based RPGs advance the stories by repeating
non-battle events and battle events while determining their
choices in each event. In this sense, players may prefer

Fig. 3. Four courses in an example turn-based RPG. (a) Base → Level up,
get items and gold in the field → Return to the base, (b) Base → Explore
the field or dungeon → Scout or pick up treasure, (c) Base → Explore the
dungeon preserving items→ Defeat the mid-boss, (d) Base→ Move to field
→ Move to a new base town.

stages requiring them to make various decisions (e.g., focusing
on weak enemies first or trying to defeat all encountered
enemies). Conversely, if all decisions from players produce
similar results, they may get bored with the game.

B. Desirable Stages

Turn-based RPGs usually contain several separated scenes,
such as the base towns, the dungeons in which enemies appear,
and the fields connecting scenes to others. Fig. 3 shows an
example of a simplified turn-based RPG. At the base town,
characters can buy items and heal their wounds. However,
in order to recover damages received in dungeons or fields,
characters need to consume medicine, use magic, or find a
recovery point. The game flow can be roughly grouped into
four courses in general. The four courses, as shown in Fig. 3,
are (a) leveling up and collecting items, (b) exploring the
world, (c) going through dungeons and defeating mid-bosses,
and (d) moving to other base towns. Players play the game
by repeating the four courses as they like, with the goal of
defeating the final boss.

Different designs are required for different courses. In this
study, we skip the designs of the stories, the videos, and the
audio of turn-based RPGs and target the relations between
events for course (c). Usually, when players want to defeat
a mid-boss in a dungeon, their characters need to explore
the whole dungeon from the beginning to the boss without
withdrawing or being defeated. Otherwise, they need to start
from the very beginning of the dungeon next time. Defeating
enemies in the dungeon helps the player characters to level
up so that they may become strong enough to defeat the mid-
boss. However, in order to start the mid-boss battle with a
good condition, they also need to manage the medicine or
magic available to recover damage properly in intermediate
battles. The following are factors that we consider to make
players feel satisfied with the course (c) stages.
• Which strategies are valid is a crucial issue in RPGs. We

consider that stages are not enjoyable when no strategy is
effective or all of them are. Also, for stages with different
designs and settings, it is boring if players can stick to a
single strategy, or some specific strategies are obviously
too good or bad. Stages should be designed so that players
can enjoy thinking about their choices.



NAM ET AL.: GENERATION OF GAME STAGES WITH QUALITY AND DIVERSITY BY REINFORCEMENT LEARNING IN TURN-BASED RPG 5

TABLE I
COMPARISON OF TYPICAL TURN-BASED RPGS AND OUR PLATFORM

Typical turn-based RPG Research platform
Stage

structure diverse stage structures one-way battle
and recovery events

Game
objective

defeating the boss
after a long journey

defeating the boss
after proceeding events

Number of
team members ≥0 0

Character
parameters many parameters HP, ATK, SPD

Order of actions
in battles

by SPD
with unique rules

player character’s
SPD > enemies’

Actions in battles various skills attack, retreat
Reward of

winning a battle
leveling up,

gold, items, etc
increasing ATK

(10%)
Result of

retreating a battle
game over,

nothing happen, etc
losing HP

(15%)

TABLE II
COMPARISON BETWEEN THREE KINDS OF PCG METHODS

training
data

evaluation
function

learning
cost

generation
cost

PCGML necessary – high low
Search-based
PCG (GA) – necessary – high

Reinforcement
Learning – necessary high low

• Enemies should have proper strength according to the
timing of their appearance. Hard to defeat strong enemies
in early stages or too-weak enemies in late stages are
unreasonable.

Game balancing has been known to be crucial but difficult,
and turn-based RPGs are such an example [46]. Even in
simpler designs (e.g., our platform described in the next
section), satisfying the factors mentioned above is not easy, not
even to say more complex designs, e.g., skill-based systems
that players can try all available skills in the skill-spaces
without designer-imposed limitations [47].

C. Research Platform

As mentioned in the previous section, we only focus on the
relations between events in this study, particularly battle events
and recovery in non-battle events. As there was no proper
environment for our research, we designed an extensible
platform that contains the most fundamental elements in turn-
based RPGs. Table I summarizes the comparison between
typical turn-based RPGs and our platform. Depending on the
settings, our platform can be adapted to various types of turn-
based RPGs. Section IV-B formulates the stage generation
problem in our platform into a general MDP problem. We
implemented a simplified version for the experiments.

IV. APPROACH

In this section, we first describe general ideas for applying
RL to PCG in Section IV-A. Next, we present the MDP
formulation of our platform in Section IV-B, which is required

when applying RL for stage generation. The MDP formula-
tion includes state and action representations, state transition
function, and reward function. For the reward function, we
design an evaluation function to rate completed stages. Section
IV-C introduces a method called virtual simulation to help
improve the quality of generated stages, where we give virtual
simulated rewards to non-rewarded actions during training.
Moreover, Section IV-D introduces two methods for increasing
the diversity of generated stages. One is randomized event
initialization, which starts to generate stages from randomly
initialized events. The other is diversity-aware greedy policy,
which tries to generate diverse stages while not degrading the
quality of the stages. Finally, a brief comparison of Khalifa et
al.’s work [20] and ours is made in Section IV-E.

A. Reinforcement Learning Applied to PCG

As a novel AI-based approach for PCG, we proposed to
apply reinforcement learning (RL) [21][22]. Table II com-
pares PCGML, search-based PCG, and RL from different
aspects. For example, PCGML requires training data, while the
other two require evaluation functions to tell how promising
the generated content looks. Both PCGML and RL need a
relatively long learning time. However, once the learning is
finished, the generation costs are low. In contrast, search-based
PCG does not require a learning process but consumes time
when generating content, which is more challenging for online
generation. To sum up, RL’s advantages include low generation
costs and no need to prepare training data.

To apply RL, we need to formulate PCG problems as MDP.
The following explains how MDP elements (i.e., state, action,
transition probability function, and reward function) may look
like using an example shown in Fig. 4, which tries to generate
levels consisting of three sequential events. At the initial state,
the first event has been determined as evx while the rest two
remain blank. An action is to add an event to the next blank
one. For simplicity of discussions, let the state transition be
deterministic. Namely, when adding an event, say evy , the next
blank event always becomes that one. Thus, states in this PCG
problem are levels with different event combinations, including
blank events. After all three events are decided, we can use
an evaluation function to get the quality of the complete level,
which can be used as the reward function in the MDP.

We believe that the ideas of formulating PCG into MDP and
applying RL are general and can handle many game genres.
As long as the MDP formulation of a PCG problem is finished,
RL algorithms can be applied to learn good policy (i.e., what
actions to take for given states) based on the provided reward
function. After the learning, the policy serves as the content
generator at relatively low generation costs.

B. MDP Formulation for Our Turn-Based RPG Stages

In this section, we explain how to formulate stage generation
in our turn-based RPG into MDP.

1) Stage Representation: Each stage in our platform is
represented by a real number matrix, indicating a series of one-
way battle events and recovery events, with a boss event at the
end. An empty stage is represented by a zero matrix filled with



6 IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

Fig. 4. An illustration of the MDP for generating game content using levels
consisting of three sequential events as an example.

Fig. 5. Example of converting the battle-battle-recovery-battle-boss stage to
a 3×4 matrix.

zeros. In the matrices, each column contains three values, i.e.,
enemy’s HP, enemy’s ATK, and player character’s recovery.
In more detail, the former two form a battle event, and the
last one forms a recovery event. Fig. 5 is a simple example
consisting of five events: enemy-enemy-recovery-enemy-boss.

We represent enemies’ HP and ATK values by integers in
some reasonable ranges. In Fig. 5, the second enemy’s HP is
70, while the range is 20 to 120. Similarly, the ATK is 10,
while the range is 5 to 30. For bosses, both lower bounds
and upper bounds for HP and ATK are usually higher than
those of enemies. To make our representation generalize to
any ranges, we normalize the values into [0, 1] according to
the given ranges. For example, HP of 70 in the range of 20
to 120 is normalized to (70-20)/(120-20)=0.5.

As for the third element in a column, the recovery event,
the value ranging from 0 to 1 represents the player character’s
recovery rate relative to max HP. For example, assuming that
the player character’s HP/max HP is 20/100, a recovery rate of
0.7 makes the player character’s HP become 20+0.7×100=90.
The max HP bounds the recovery, i.e., even with a recovery
rate of 1.0, the player character’s HP becomes 100 instead of
120 after the recovery event.

It can be seen that even in the same range of [0, 1], the
values mean quite different things between battle events and
recovery events. Also, battle events require two values, while
recovery events only require one. Considering the topological
structure of stage representation, we attach one recovery event
after every battle event. However, it is unusual that each battle
event follows a recovery event in turn-based RPG stages. For
battles without recovery events (the 1st and 3rd columns of
the matrix in Fig. 5), the recovery values are set to 0. In
this way, a series of battle-recovery events, including battles
without immediate recovery events and the final boss, can be
represented by concatenating columns with three real number
values ranged in [0, 1]. A stage containing b battle events is
represented by a 3× (b+ 1) matrix, the +1 for boss.

2) Action Representation: Actions in our platform are de-
fined to fill in the stage matrices sequentially. In other words,

Fig. 6. DQN for stage generation in this paper.

Fig. 7. DDPG for stage generation in this paper.

an action decides one or some real number values of the given
incomplete stage matrix. Many classical RL algorithms, in-
cluding deep Q-network (DQN) [43], assume discrete actions,
i.e., action spaces being finite sets. Meanwhile, algorithms
coping with continuous actions, such as deep deterministic
policy gradient (DDPG) [48], are also proposed. We define
both discrete and continuous action representations so that our
platform is applicable to both kinds of RL algorithms.

For discrete actions, we divide the range of [0, 1] into k
sections, and thus, there are k+ 1 actions. Each action stands
for the lower bound of the corresponding section, except that
the (k + 1)st action stands for the overall upper bound, i.e.,
1. Assuming k = 100, the 101 actions are 0, 0.01, 0.02, 0.03,
..., and 1. DQN takes an incomplete stage matrix as the input
and outputs k+1 action values (Q-values), as shown in Fig. 6.
The k + 1 Q-values represent how the k + 1 possibilities of
the next parameter look promising for the given stage. The
interpretation of the next may vary in different implementation.
In this paper, we fix the order to 1st enemy’s HP → 1st
enemy’s ATK → 1st recovery rate → ... → the boss’s ATK.
In this manner, one stage parameter is determined at a time
by selecting the one with the highest Q-value or by methods
that introduce exploration such as ε-greedy.

Considering that the three values in the same column may
influence each other, it is more natural to output them at a time.
However, the case of discrete actions falls into the curse of
dimensionality. In the example, the output increases to 1013 =
1030301, an extremely large value that may cause problems
during learning. Continuous action algorithms directly output
numerical values in the given ranges. Thus, it is easy to output
three values at once, representing one column. This is done by
the actor of DDPG, while the Q-value is evaluated by another
model called the critic, as shown in Fig. 7. More specifically,
the actor takes an incomplete stage matrix as the input and
outputs three real number values. For example, (0.5, 0, 0.8)
means a 50% of enemy’s HP in the given range, a minimum
value of enemy’s ATK, and a recovery rate of 0.8. The critic
then takes the same stage matrix and the actor’s action as the
input and outputs the Q-value.



NAM ET AL.: GENERATION OF GAME STAGES WITH QUALITY AND DIVERSITY BY REINFORCEMENT LEARNING IN TURN-BASED RPG 7

Fig. 8. An evaluation based on a winning rate. (x-axis: winning rate, y-axis:
evaluation based on the winning rate)

3) State Transition: Given an incomplete stage matrix as
a state and a real number value (or a column) as an action,
the matrix is always filled in by the given value(s) exactly.
For example, given a zero matrix and a value of 0.5, the first
element in the first column of the matrix becomes 0.5, meaning
that the enemy in the first battle event is assigned an HP of
50% in the given range. Stage generation terminates when the
matrices are fully filled.

4) Reward Function: In this work, our purpose is to cre-
ate stage generators that can generate enjoyable stages. We
define a stage evaluation function and use it as the reward
function of the MDP. The evaluation function focuses on
player engagement from seven perspectives, as explained in
Appendix A, where the major one is the appropriateness of
difficulty. Although there are various possibilities to define the
quality of stages, the difficulty is considered one of the most
important factors that influences player engagement [49] [50]
[51]. Also, the difficulty assessment is different from game
to game. As a simple example, we define a strategy to be a
sequence of action selections from the beginning to the end
of a stage and then use the ratio of winning strategies among
all possible strategies as the difficulty of our turn-based RPG
stages. Generally speaking, good stages should have moderate
ratios of winning strategies to avoid situations like players
cannot win whatever they do or can win whatever they do.

In more detail, players have two available actions, attack
and retreat, for each battle event in our platform. When there
are b + 1 battle events including a boss event, the possible
number of strategies is 2b as it is not allowed to retreat in the
boss battle. In this condition, it is evident and deterministic
whether a boss is beatable or not. We calculate the ratio of
defeating the boss among all strategies as the winning rate to
represent the difficulty of a stage.

Deciding the proper target winning rate on our game setting
could be an issue. However, the preferred difficulty level varies
depending on the games, and it is difficult to say which values
are the most reasonable, which we leave out of the scope
of this paper. In this study, we assume 30% to be the most
favorable winning rate and leave it as a tunable parameter2.
In our evaluation function, as shown in Fig. 8, the scores are
0 when the winning rates are higher than 60% and linearly
increase from 0 to 1 in the range of 0%-60% as the winning
rates go closer to 30%.

2Some readers may consider that a winning rate of 30% results in too
difficult stages. However, our definition of the winning rate implies that the
player selects each action with equal probabilities (i.e., a random player).
Rational players usually do not play randomly, which we expect to have
higher chances to clear the stages.

There are many other entertaining factors in addition to
difficulty, and those factors are different for each player [52].
Accurately predicting the satisfaction of human players is not
the subject of this paper, so we only consider some common
factors, such as dramatic surviving and tough wins. The details
of the evaluation function are explained in Appendix A.
Although this specific evaluation function is applied in our
method, it can be replaced by any other calculable evaluation
functions. Similar to search-based PCG, adaptive generation
can be achieved by adjusting the evaluation function.

C. Method for Improving Stage Quality

With the MDP in the previous section, we can apply RL
to learn to generate stages; however, applying simple RL
algorithms is insufficient to get stages with high quality, i.e.,
stages that make appropriate balances between battle and
recovery events. One problem is that rewards can be obtained
only after whole stages are generated under our evaluation
function. In other words, immediate rewards are all 0 except
for the last actions that complete stages. This is an instance of
the temporal credit assignment problem [53], a long-studied
subfield of RL. Conceptually speaking, the problem aims to
figure out how each action among a sequence of actions
influences the final outcome. When the reward signal is sparse
or delayed, RL may get stuck in local optima, especially for
deep neural networks.

To address the temporal credit assignment problem, various
methods were proposed, which can be roughly divided into
two groups [54]: assigning correct credit based on gradients
and based on extra values or targets. As an example of the
former, Ferret et al. [55] introduced a new transfer learning
approach that used a self-attentive architecture to assign credit
in a backward view. For the latter, the main idea is to use
surrogate rewards for the actions. For example, Arjona-Medina
et al. [56] and Liu et al. [57] decomposed the returns of
episodes back to the actions. Harutyunyan et al. [58] assigned
credits according to the likelihood that the actions led to
the observed outcome. Yu et al. [59] applied a Monte-Carlo
method to estimate the rewards of intermediate actions in
the work of SeqGAN, which aimed to generate sequences of
discrete tokens (e.g., sentences).

In this work, we propose virtual simulation (VS) to provide
intermediate actions with rewards by a Monte-Carlo method,
where the ideas are similar to SeqGAN. For each intermediate
action, the algorithm applies the current policy with an explo-
ration policy, such as ε-greedy, to generate several completed
stages. The average evaluation of these stages then serves as
the immediate reward of the action. The experimental details
and settings are in Section V-A1. By doing this, we do not need
extra efforts to design immediate rewards for intermediate
actions. The method is expected to be more time-consuming
for learning, but the offline cost is not a significant problem in
PCG. One of the major benefits of RL is that even if learning
takes a long time, it is possible to provide content immediately
once the learning is over, i.e., online generation.



8 IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

D. Methods for Increasing Stage Diversity

One primary goal of PCG is to automatically (or semi-
automatically) provide players with diverse content even for
the same game. For example, after clearing a stage, players
may want to try different settings other than the same one,
or they may get bored soon. It is better that the method can
generate several diverse and good stages instead of only the
best one. However, this goal is not considered in the proposed
RL as long as the diversity of stages is not included in the
reward function. Our designed evaluation function indicates
how good one given stage is. To consider diversity, several
stages should be compared at once, which is expected to be
complicated. Instead of revising the evaluation function, we
propose two ways to address the diversity issue.

1) Randomized Event Initialization: We propose to assign
random parameters to several beginning events for each stage
instead of an empty stage as the first method to address
diversity3. In other words, the zero matrices are assigned with
some random values as first elements and then used as the
initial states of stage generation. We consider this method
to be able to balance the quality and the diversity of stages
to some extent in the following senses. For an extreme end,
assume that no events are randomly initialized and a model has
been well trained by RL. When the model is used to generate
stages (for players to play), it is common to select the best
actions (i.e., event parameters). As a result, only one good
stage can be generated. For the other extreme end, when all
event parameters are randomly assigned, the stages will have
a high diversity but are highly likely to have low quality.

A reasonable idea in between is to randomly initialize
several events and make the RL model finish the rest. During
training, RL algorithms are also provided with such randomly
initialized stages as the initial states. We expect that RL
algorithms can learn how to generate good stages from random
initialization. In this way, with diverse initial stages, we can
generate diverse and good stages. However, in some cases,
even if the initial stages are different, the later parts may end
up being similar, especially when long stages are generated.
Lack of diversity can be alleviated by randomly initializing
more events, while this may result in stages with low eval-
uations. For this method, the number of events to initialize
determines the trade-off between the quality and diversity of
stages, and detailed results will be shown in Section V-C.

2) Diversity-Aware Greedy Policy: Getting diversity from
the initial stages is not enough as the diversity only depends
on the initial states. As the second method to address diversity,
we propose to sample not-bad-but-distant actions based on Q-
values, which we call diversity-aware greedy policy (DAGP)4.
Compared to the greedy policy that always takes the best
actions, the proposed method may take worse actions where
stochastic noise is introduced for increasing stage diversity. In
this way, even when the generation starts with the same initial
stage, we can still get quite different stages.

The most critical part of DAGP lies in how to select not-bad-
but-distant actions. If improper noise is introduced, stages with

3The method was called random initial stage in our previous work [22].
4The method was called stochastic noise policy in our previous work [22].

low evaluations are likely to be generated. The method has two
prerequisites: (a) good actions distant from the best-evaluated
ones exist, and (b) the Q-values of those good actions can
be estimated with some accuracy. The experiments in Section
V-B will confirm that the two prerequisites are indeed satisfied.
From the results, we conclude that it is possible to generate
diverse and high-quality stages based on Q-values and present
a noise introduction algorithm to select such not-bad-but-
distant actions as follows.

i) Decide the stage structure and train the model as usual.
ii) Determine where and how noise is introduced (noise

event). The place can be fixed in advance or randomly
selected during generation. Also, determine the number of
candidate stages n and a threshold d for event parameters’
distance to the best. In this paper, the distance between a
given set of event parameters and another set is defined
by the Euclidean distance.

iii) Except for the noise events, greedily decide actions (event
parameters) according to the learned policy. In the case
of noise events, generate n random actions as candidates.
Reject those whose distances to the actions by the greedy
policy are less than d, as it means that they are close to
the best action. Among the remaining candidates, select
the one with the highest Q-value.

E. Comparison with Khalifa et al.’s Work
Khalifa et al. [20] also applied RL to PCG to generate

game levels and formulated the problem into MDP. The two
terms, stage and level, can be used interchangeably to indicate
structural units of games. In the comparison, theirs are referred
to as levels following their paper and ours as stages. Their
levels were represented by 2D integer matrices, indicating
the layouts of the maps where different integers stand for
different objects. The layouts were initialized randomly, and
the actions were to change the objects of tiles in the maps.
We also represent stages by matrices while the meaning is
different, which are the settings of battle and recovery events.
In both designs, the actions modify stages (levels), where their
approach changes existing values and ours assigns new values.
They proposed three ways to locate the value to change, and
one of which following a predefined order is similar to ours.

Their reward functions were manually designed to reflect
whether the levels got closer to the goals of the game. For
example, since PacMan has only one player, adding a player
object when there is none receives positive rewards. Their goal
was to generate playable levels that obey the game rules, while
ours focuses on the balance between events. They required
an additional function to determine whether the goals were
reached so that the generation process could be terminated.

To achieve the diversity of levels, they set a parameter
called change percentage, which limited the numbers of tiles
that could be changed from the initial levels. Smaller change
percentages were suggested since too-high values were ex-
pected to cause the generator to override most of the initial
levels aiming at few optimal solutions. We also set random
initial values, though our approaches differ in terms of theirs.
In addition, we introduce noise to choose not-bad-but-distant
actions to make the generated stages more diverse.



NAM ET AL.: GENERATION OF GAME STAGES WITH QUALITY AND DIVERSITY BY REINFORCEMENT LEARNING IN TURN-BASED RPG 9

(a)

(b)

Fig. 9. Composition of the stage having (a) nine and (b) twelve events, where
each square represents battle (red), recovery (blue), and boss (black) events.

V. EXPERIMENTS AND DISCUSSIONS

In this section, the results of generating stages with high
quality are included in Section V-A. The learned Q-values
are analyzed in Section V-B. Finally, the results of generating
diverse stages are presented in Section V-C.

A. High-Quality Stage Generation

We employed two RL algorithms with different action
spaces to generate turn-based RPG stages by the proposed
PCG approach. More specifically, the two RL algorithms
were DQN [43] for discrete actions and DDPG [48] for
continuous actions. We also included two non-RL methods for
comparison, though different kinds of methods have different
assumptions and advantages, as discussed in Section IV-A,
and might not be directly comparable. The random generation
method decided event parameters by a uniform distribution
within [0, 1]. The supervised learning (SL) method took an
incomplete stage as the input and decided the parameters in
the next column (i.e., enemy’s HP, enemy’s ATK, player’s
recovery rate), similar to the actor of DDPG.

As described in Section IV-B1, we represented turn-based
RPG stages by matrices of three rows and b+1 columns, which
contain b battle events and a boss battle. For the third row, if
there was no recovery event after the battle, the value was fixed
to 0. The number of battles b and the stage structure (i.e., the
arrangement of battle and recovery events) were determined
in advance and then fixed.

1) Experimental Setup: We conducted the experiments un-
der the following settings.
• The execution environment and the network settings are

described in Appendix B.
• The composition of a stage was the one from Fig. 9a,

and a longer stage (Fig. 9b) was used to compare the
effect of virtual simulation. Each stage was represented
by 3×7 and 3×9 matrices, respectively. Among these,
the event parameters in the first one or two columns were
determined randomly, which were initial states.

• As described in Section IV-B2, the significant difference
between DQN and DDPG is the action space. DQN was
for discrete actions, and DDPG for continuous actions.
In our setting, DQN had 101 actions5, each representing
a possible setting (0, 0.01, ..., 1) for the next event
parameter (enemy HP, enemy ATK, or player’s recovery

5When doing discretization, proper settings of granularity (i.e., number of
actions) depend greatly on the ranges of event parameters. In some preliminary
experiments, we obtained poor results if the number of actions was too low
(e.g., 11). Considering that discretization is a general and challenging issue,
detailed investigations are made out of this paper, which we focus more on that
the proposed approach is applicable to both discrete and continuous actions.

(a) (b)

(c) (d)

Fig. 10. The average evaluations of 50 stages: (a) DDPG’s 10-trial training
curve of the 9-event stage, (b) DQN, DDPG, VS-DDPG’s training curves of
the 9-event stage, converging around 0.65, 0.83, 0.87, (c) box plot of the 9-
event stage after training, and (d) DDPG and VS-DDPG’s training curves of
the 12-event stage, converging around 0.65 and 0.75. For training curves, the
action selection involved exploration, such as ε-greedy.

rate). DDPG’s actor output three real values in [0, 1] at
once for the event parameters in the same column. The
designs led to a minor difference in how many times
of input/output were required to complete a stage. For
the example of Fig. 9a, assume that one column of the
stage matrix is initialized. DQN requires 3×6 because it
decides event parameters sequentially one at a time (even
when there is no recovery event). In contrast, DDPG only
requires 6 because it decides one column at a time.

• Virtual simulation presented in Section IV-C was applied
to DDPG (abbr. VS-DDPG). The number of virtual
simulating episodes was 5, and virtual simulation was
applied from the beginning of the training.

• SL had the same network structure as the actor of DDPG,
except that batch normalization layers were added to
prevent overfitting. In practice, preparing training data
with high quality is a critical issue for SL methods. In this
experiment, we simply employed the random generation
method and only collected stages whose evaluations were
over 0.7. It cost 10 hours to obtain 20000 nine-event
stages (Fig. 9a). For more complex games, we expected
the preparation of training data to be more costly.

2) Result: Since randomness was involved in the training,
we investigated how training curves were influenced and
ran DDPG under the same setting for 10 trials. DDPG was
trained for 50×350=17500 episodes to generate 9-event stages.
Fig. 10a shows the mean evaluations and the standard devia-
tions of the 10 trials. Each data point was the average evalu-
ation from 50 episodes, where one episode means generating
one stage from an initial one. Note that the evaluations were
collected from stages generated during training, which means
that the exploration was also involved. The standard deviations
before 50×100 episodes were relatively high, mainly because
of higher exploration (ε-greedy and OU-noise) in the early



10 IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

Fig. 11. Stage examples (top: random generation, bottom: VS-DDPG), where
each column represents event parameters of battle and recovery, i.e., HP, ATK,
and recovery rate from the top.

phases of training. In addition, we tried several network
structures and hyperparameters, obtaining similar results. In
the following experiments, we only show the results of one
trial under the settings described in Section V-A1.

Fig. 10b shows the training curves of DQN, DDPG, and
VS-DDPG on generating 9-event stages. The results showed
that both DDPG and VS-DDPG were better than DQN (under
our experiment settings). Especially, VS-DDPG converged at
the highest evaluation value of 0.87. Fig. 10c shows the box
plot of evaluation values of 50 stages after training, including
two baselines, random generation and SL. Stages made by
the random generation had a wide range of evaluation values,
and most stages were lowly evaluted. As for the remaining
four, (VS-)DDPG generated stages with the highest average
evaluations, though some bad stages were also obtained. SL
could generate highly evaluated stages most consistently, but
the average evaluations were slightly worse than (VS-)DDPG.
Assume that we only want to collect stages whose evaluations
were over 0.9. Taking DDPG and the random generation as
examples, the former could obtain one such stage every 3-4
trials (about 0.2 seconds), while the latter required about 2000
trials (80 seconds). DDPG’s speed was about 400 times faster
than random generation.

We further conducted an experiment to compare DDPG and
VS-DDPG for generating longer stages. The results of the 12-
event stages (Fig. 9b) are shown in Fig. 10d. As expected, VS-
DDPG performed obviously better than DDPG as the problem
of delayed rewards was considered more serious for longer
stages. About the training time of 9- and 12-event stages for
10000 episodes, VS-DDPG took 300 and 2500 minutes, while
DDPG took 60 and 160 minutes. Even under the same training
time, DDPG could not reach the same evaluation values.

Fig. 11 shows two stages generated by random (top) and
VS-DDPG (bottom). The upper stage has strong enemies in the
early phases with low recovery and somewhat weak enemies
in the later phases; hence, it has a lower evaluation value.
In contrast, the bottom one is generated from the first two
columns of the upper one, but it has a better evaluation
value by filling adequate values with implicitly considering
the requested conditions by the reward function.

As described above, if an evaluation function is given,
the RL model can learn a policy that can generate highly
evaluated stages. We have shown that our proposed approach
for generating high-quality stages is promising.

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Distribution of Q-values (a-f left) and evaluation values (a-f right)
for the 2nd-7th battle events (x-axis: HP, y-axis: ATK). Colors closer to red
have higher values.

B. The Relation Between Q-value and Evaluation

In the previous section, generating good stages is the main
goal. In this section, we further shift the goal to generate
diverse stages while maintaining quality. The policy of RL
generally takes the best-evaluated actions, but when con-
sidering diversity, it is better to choose other actions. For
actions other than the best-evaluated ones, two questions about
evaluations arise: (1) whether a distant action from the best-
evaluated one gets an extremely worse evaluation value and (2)
whether the Q-values of distant actions are inaccurate due to
lack of learning. Therefore, we first compare the distributions
of Q-values and evaluation values to confirm the distribution
of good actions and how trustworthy Q-values are.

1) Experimental Setup: From Section V-A, VS-DDPG was
clearly better than others and was thus used in the rest of the
experiments. The stage composition was the same as Fig. 9a,
and the first one battle event was randomly initialized. The
actor of VS-DDPG then completed the stage. The Q-value
distribution for each battle event was collected from the critic.

Unlike the critic of VS-DDPG, which can also evaluate
incompleted stages, our evaluation function requires completed
stages. Thus, we applied the actor of VS-DDPG to finish the
rest of the events by selecting the most promising actions
and then used the evaluations of such completed stages for
incomplete stages. The evaluations were the highest ones the
actor could reach.

2) Distribution of Q-values and Evaluation Values: For
VS-DDPG, we obtained the Q-value distribution by sampling
actions and inputting them into the critic. An action was
represented by a three-dimensional vector of [0, 1] (HP, ATK,
recovery rate). To make the results easier to understand, we
used the recovery rate from the actor and varied HP and ATK.

Fig. 12a (left) shows the distribution of the second battle
event’s Q-values, with the first battle event randomly initial-
ized. The Q-values are the highest around (0.1, 0.55). When
both go too high, which means the enemy is too strong in early



NAM ET AL.: GENERATION OF GAME STAGES WITH QUALITY AND DIVERSITY BY REINFORCEMENT LEARNING IN TURN-BASED RPG 11

(a) (b) (c)

(d) (e) (f)

Fig. 13. Relations between Q-values and evaluation values from Fig. 12
for the 2nd-7th battle events, where the Pearson correlation coefficients are
0.742, 0.787, 0.806, 0.849, 0.383, and 0.884. (x-axis: evaluation values, y-
axis: normalized Q-values)

stages, the Q-values become lower. The scale of the Q-values
is 7.18 to 7.32, which shows the difference gap is small, and
the value is overestimated than the evaluation value. Lillicrap
et al. [48] have pointed out such overestimations of Q-value
when the target problem is complicated.

Fig. 12a (right) shows the distribution of the evaluation
values of the second battle event. It can be seen that multiple
good actions exist. Also, the general trends between Figs. 12a
left and right are similar. The distributions of the Q-values
and evaluation values for the 3rd-7th battle events are drawn
in Fig. 12b-12f in similar ways. The results also demonstrate
that the critic of VS-DDPG learns the general trends.

Fig. 13 shows the relations between the Q-values nor-
malized to [0, 1] and the evaluation values from Fig. 12.
The Pearson correlation coefficients were 0.742, 0.787, 0.806,
0.849, 0.383, and 0.884, respectively. Except for Fig. 13e, all
had highly positive correlations. In other words, the Q-values
by the critic were generally trustworthy.

C. Diverse Stage Generation

In this section, we first define two indicators to evaluate
the diversity of the generated stages and then demonstrate the
effectiveness of our approaches proposed in Section IV-D.

1) Diversity Assessment: The first indicator calculates the
average squared difference (ASD) between the event parame-
ters of two stages. Higher values of parameter ASD mean that
two stages have distant HP, ATK, and recovery rates.

The other is the number of winning strategies that are
different in two stages. As introduced in Section IV-B4,
winning strategies are those that can beat the boss. In the
experiments, the stages contained six enemy events and a boss
event, i.e., Fig. 9a. For each enemy event, two actions, attack
and retreat, were available. Thus, the total number of possible
strategies was 26. A higher difference means that efficient
strategies in one stage do not work in the other, and thus
players need to try different actions for different stages.

2) Result: Our approaches for diverse stage generation
require a well-trained model. In the experiments, we employed
VS-DDPG for generating stages and evaluating actions. The

TABLE III
AVERAGE ASDS AND AVERAGE REWARDS FROM 200 STAGES (FIG. 9A)

GENERATED WHEN THE FIRST c COLUMNS WERE RANDOMLY INITIALIZED.

c 1 2 3
ASD 0.727 (±0.024 ) 1.040 (±0.030 ) 1.290 (±0.020 )

Reward 0.797 (±0.006 ) 0.766 (±0.006 ) 0.711 (±0.015 )
c 4 5 6

ASD 1.443 (±0.028 ) 1.552 (±0.027 ) 1.742 (±0.027 )
Reward 0.667 (±0.013 ) 0.598 (±0.006 ) 0.533 (±0.018 )

stage composition was the one in Fig. 9a. During training,
we randomly selected an integer 1≤ c ≤5 and initialized the
first c columns to random values, where it was 1≤ c ≤2 in
the previous experiments. This modification aimed to explore
more stages and learn Q-values better.

We first experimented on randomized event initialization
(REI) and generated 200 stages for each integer c ∈ [1, 6]
where the first c columns were randomly initialized. Table III
shows the average ASDs and rewards for each c. Note that the
stages contained seven columns, so randomly initializing six
meant that almost all event parameters were randomly decided.
As expected, with more randomly-initialized columns, the
average ASDs increased while the average rewards decreased.

As discussed in Section IV-D and shown in Table III, the
diversity was limited by only employing REI, especially when
high quality was also desired. In the next experiment, our
proposed DAGP (diversity-aware greedy policy) was applied,
where the first column was randomly initialized, and the rest
were set to noise events. We prepared 50 initial stages to see
whether different initial stages influence DAGP’s results. We
tried several values for d (distance threshold) and n (candidate
stage number), and each setting generated 50 stages from each
initial stage. The goal was to investigate how different stages
could be generated from the same initial one. High values of
d prevented actions from being too close to the actor’s action,
and thus, we expected to generate diverse stages. Also, we
expected high values of n (many candidate actions) to increase
the chances of obtaining good stages.

Fig. 14 shows the average reward, the parameter ASD, and
the number of different winning strategies of different d and
n settings. Note that when calculating the parameter ASD
and the number of different winning strategies, a stage was
compared only to another that was generated from the same
initial stage, instead of calculating among all 50×50 stages.
The results in Fig. 14 were the averages over the 50 initial
stages. As expected, higher n indeed led to stages with higher
average rewards, as shown in Fig. 14a, and higher d led to
higher parameter ASD and the number of different winning
strategies, as shown in Figs. 14b and 14c. The only exception
for diversity was the number of different winning strategies
when d was 0.7. The reason was related to the low quality of
stages, either impossible to clear or too easy to clear.

Except the case of d = 0.7 in Fig. 14c, we observed that the
quality (average reward) had an opposite trend to the diversity
(parameter ASD and number of different winning strategies).
We suspected that the phenomenon was related to the Q-values
learned by the critic, as shown in Fig. 12. Even though multiple
actions had high evaluation values (Fig. 12a-12f (right)), the



12 IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

(a) (b) (c)

Fig. 14. Evaluation of DAGP results averaged from 50 initial stages where
each had 50 stages generated. (a) average reward, (b) parameter ASD, (c)
number of different winning strategies. Each blue, orange, and gray bar is for
n = 20, 10, and 5, respectively, and each group of bars represents the result
when d = 0, 0.2, 0.4, 0.7 from the left.

Fig. 15. Stages generated by the actor policy (top) and DAGP with the first
event fixed and the rest set to noise events (bottom).

Fig. 16. The Pareto frontier to average rewards and parameter ASD for RL-
DAGP, SL-DAGP, and random generation.

critic tended to have Q-values centered at one of the actions
(Fig. 12a-12f (left)). Since DAGP selected actions with the
highest Q-values from far-enough actions, when d decreased
or when n increased, it was more likely to get an action closer
to the actor’s action. Thus, increasing n was likely to decrease
the diversity, while decreasing d was likely to increase the
average rewards.

Fig. 15 shows example stages by VS-DDPG (top) and
DAGP (bottom). The former was evaluated as 0.889, and
the later as 0.878. The stage parameter ASD between the
two stages was 1.449, and the number of different winning
strategies was 11. Although the first event was the same, it
could be seen that different good stages were generated by
introducing noise.

Although DAGP was shown to be able to generate diverse
stages, one minor problem remained. Sometimes, DAPG gen-
erated stages with low evaluations (e.g., 0.3), which should
be discarded to keep high quality. We further conducted an
experiment to investigate the influence on quality and diversity
by filtering out bad stages. Since such removal was expected to
increase the cost of online generation, we also investigated the
generation cost. In addition to DAGP with VS-DDPG (abbr.
RL-DAGP), we included two other algorithms for comparison,
DAGP with SL (SL-DAGP) and random generation.

To apply DAGP in SL, we added a network similar to the
critic of DDPG that evaluated given stage-action pairs. The
evaluator network was trained by 10000 randomly generated
stages regardless of their evaluations. Different from the gen-
erator network that only required good stages, the evaluator
network’s training data should also contain bad stages so that
it could predict the evaluations of state-action pairs better. For
the three algorithms, we prepared five initial stages and let
each setting collect 50 stages from each initial stage. DAGP
parameters were n ∈ {5, 10, 20} and d ∈ {0, 0.2, 0.4, 0.7},
and stages with evaluation values lower than v were discarded,
v ∈ {0, 0.5, 0.7, 0.8, 0.85}. Note that a v of 0 meant that no
stages are discarded. We omitted the results of settings that
could not obtain 50 stages within 500 trials since those settings
would require more than 3 seconds to get one stage, which
we considered unsuitable for online generation.

Fig. 16 shows the Pareto frontier to the average rewards
and parameter ASD. RL-DAGP dominated SL-DAGP in most
cases. Random generation could generate diverse stages but the
quality was much lower. As discussed in Section V-A2 (the
2nd paragraph), when the random generation was employed
to collect good stages with evaluations over 0.9, it required
about 80 seconds to get one stage, which was time-consuming.
From the experiments, RL-DAGP was the most promising to
generate high-quality and diverse stages online.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the use of reinforcement learn-
ing with the theme of stage generation in turn-based RPG.
The stage generation problem was formulated into a Markov
decision process, where states were incompleted or completed
stages represented by real-number matrices and actions were
to fill in the matrices. We defined an evaluation function
to consider the difficulty and several entertaining factors of
stages. By using the evaluation function to give rewards
in reinforcement learning, our proposed method successfully
generated highly evaluated stages.

We applied DQN and DDPG for discrete and continuous ac-
tions, respectively. For discrete actions, the range was divided
into a fixed number of sections, and one value in the stage
matrix was decided at a time. In contrast, it was easier for
continuous actions to decide several values (of related events)
at once, which was expected to handle related events more
effectively. DDPG indeed generated better stages than DQN
under our experiment settings. When our proposed method is
used in other PCG problems, action types may be a factor that
affects the performance.

Under our reward design, the delayed rewards made the
model hard to efficiently learn to evaluate actions, especially
when the event sequence was long. To overcome the difficulty,
we introduced virtual simulations to provide intermediate
actions with rewards. Experiments showed that virtual sim-
ulations helped to improve the quality of stages.

Since the primary purpose of this research is to generate
good and diverse stages, we proposed randomized event ini-
tialization that assigns random parameters to several beginning
events and a diversity-aware greedy policy that chooses actions



NAM ET AL.: GENERATION OF GAME STAGES WITH QUALITY AND DIVERSITY BY REINFORCEMENT LEARNING IN TURN-BASED RPG 13

distant but not bad compared to the best actions from the
model’s view. The experiments demonstrated the effectiveness
of the proposed approaches in obtaining good and diverse
stages for online generation.

Future research includes improving each method and show-
ing that it can work in larger, more diverse, and more complex
games. For example, for 2D video games, our design is
expected to be more easily adapted to generate levels in
platformer games (e.g., Mario) in the sense that we can
design the content from left to right. For levels where tiles’
relations in other directions are important (e.g., Sokoban),
some additional efforts are needed. Another possible research
direction is to design evaluation functions that can reflect
human players’ feelings in playing games and then verify
the effectiveness. We expect that our method is able to try
to maximize any given evaluation functions as the current one
is already considerably complicated. For example, we can try
to conduct subject experiments for collecting human players’
evaluations and using supervised learning to approximate those
evaluations. By using the supervised learning model as the
evaluation function, the method should be able to generate
stages that fit the players’ preference.

APPENDIX A
EVALUATION FUNCTION

The employed evaluation function is weighted from seven
sub-functions, f(x) = Σ7

i=1wifi(x), with considering the fol-
lowing features of stage x: The number of events (nevents), the
number of winning strategies (nwin), the number of the strate-
gies that retreat from the ith enemy (nretreati ), the number of
strategies that have dramatic surviving moments (ndramatic),
the number of winning strategies that have monotonous actions
(nmono), character recovery rate at the ith recovery event,
(crecoveri ), the ith enemy’s normalized ATK and HP within
[0, 1] (eATKi

and eHP i
).

• f1: the winning rate soundness. The winning rate should
not be too low nor too high, as shown in Fig. 8, w1 = 0.4.

• f2: bonus for dramatic surviving. Players often feel
pleasant when surviving dramatically from a crisis (when
reaching the ith recovery event with an HP ≤ 0.3×(max
HP) and crecoveri ≥ 0.5). ndramatic/nwin, w2 = 0.1.

• f3: bonus for moderate parameter ranges. Enemies or
recovery events within moderate ranges (enemy pa-
rameters within [0.05, 0.95] and recovery rates within
[0.2, 0.8]) seem more natural. (Σig(crecoveri , 0.2) +
Σi min(g(eATKi

, 0.05), g(eHP i
, 0.05)))/nevent, where

g(x, y) = min(x/y, (1− x)/y, 1), w3 = 0.2.
• f4: bonus for tough wins. If the character after defeating

the boss has a low HP (≤ 0.4×(max HP)), it means
that the stage is challenging. Average of min((1 −
final HP(%))/0.6, 1) in winning strategies, w4 = 0.1.

• f5: penalty on early escapes. If the strategy of escaping
in the early battles are effective, the game flow may
be considered unnatural. 1 − (3nretreat1 + 2nretreat2 +
nretreat3)/6nwin, w5 = 0.05.

• f6: penalty on weak enemies in later phases. It is ir-
rational that later enemies are too weak. 1 − (0.7 −

TABLE IV
USED TOOLS AND VERSION

Tool Spec (version)
gpu NVDIA GeForce GTX 1070
cpu Intel Core i7-7700 3.60GHz
ram 16GB tensorflow-gpu 1.10.0

cuda and cudnn 8.0 and 6.0.21 keras 2.2.2

TABLE V
DQN AND DDPG SETUP

Value
Parameter DQN DDPG & VS-DDPG

layers Conv 36→64→
FC 128→256→256→256

Conv 256→256→256→
FC 128→128→128

memory size 300000

learning rate 0.25× 10−4 Actor: 1× 10−5

Critic: 1× 10−4

target network hard update (3000) soft update (0.001)
batch size 128 64

discount factor 0.9

exploration ε-greedy
(1 → 0.1)

OU noise with
ε-greedy

(1 → 0.1)

min(0.7, (Σi∈{last two enemies}(eATKi
+ eHP i

))/4))/0.7,
w6 = 0.1.

• f7: penalty on monotonous strategies. Winning a stage
with monotonous strategies, i.e., only attacks or only
retreats, can make players boring. 1 − 0.5 × nmono,
w7 = 0.05.

APPENDIX B
NETWORK SETUP

The codes were implemented in Python 3.6, and the used
libraries and the machines for experiments are listed in Table
IV. The network settings of DQN, DDPG, and VS-DDPG are
listed in Table V, where Conv x means a convolutional layer
with x filters of size 1× 3 and FC x means a fully-connected
layer with x nodes.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers JP18H03347, JP17K00506, JP20K12121.

REFERENCES

[1] A. Summerville and M. Mateas, “Super mario as a string: Platformer
level generation via lstms.” in Proc. 1st Int. Joint Conf. DiGRA/FDG,
2016.

[2] J. Dorsey and H. Rushmeier, “Advanced material appearance modeling,”
in ACM SIGGRAPH, 2009.

[3] A. Liapis, C. Holmgård, G. N. Yannakakis, and J. Togelius, “Procedural
personas as critics for dungeon generation,” in Applications of Evolu-
tionary Computation, 2015, pp. 331–343.

[4] D. Gravina and D. Loiacono, “Procedural weapons generation for unreal
tournament iii,” in 2015 IEEE Games Entertainment Media Conference
(GEM), 2015, pp. 1–8.

[5] G. Pickett, F. Khosmood, and A. Fowler, “Automated generation of
conversational non player characters,” in INT/SBG@AIIDE, 2015.

[6] N. Justesen, R. Rodriguez Torrado, P. Bontrager, A. Khalifa, J. Togelius,
and S. Risi, “Illuminating generalization in deep reinforcement learning
through procedural level generation,” NeurIPS Workshop on Deep Re-
inforcement Learning, 2018.



14 IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

[7] Nintendo, Kyoto, Japan, Super Mario Bros., 1985.
[8] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving

mario levels in the latent space of a deep convolutional generative
adversarial network,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2018, p. 221–228.

[9] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic person-
alised content creation for racing games,” in 2007 IEEE Symposium on
Computational Intelligence and Games, 2007, pp. 252–259.

[10] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Automatic track genera-
tion for high-end racing games using evolutionary computation,” IEEE
Transactions on Computational Intelligence and AI in Games, pp. 245–
259, 2011.

[11] Red Hook Studios, Vancouver, Canada, Darkest Dungeon, 2016.
[12] Chunsoft, Tokyo, Japan, Mystery Dungeon series, 1993.
[13] Nippon Ichi Software, Gifu, Japan, Disgaea, 2003.
[14] A. Summerville et al., “Procedural content generation via machine

learning (pcgml),” IEEE Transactions on Games, vol. 10, no. 3, pp.
257–270, 2018.

[15] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd
International Conference on Learning Representations, ICLR, 2014.

[16] van den Oord et al., “Conditional image generation with pixelcnn
decoders,” in Advances in Neural Information Processing Systems 29,
2016, pp. 4790–4798.

[17] I. Goodfellow et al., “Generative adversarial nets,” in Advances in Neural
Information Processing Systems 27. Curran Associates, Inc., 2014, pp.
2672–2680.

[18] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” in Applications of Evolutionary
Computation, 2010, pp. 141–150.

[19] N. Shaker, J. Togelius, and M. J. Nelson, Procedural content generation.
Springer, 2016.

[20] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “Pcgrl: Procedural
content generation via reinforcement learning,” Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, vol. 16, no. 1, pp. 95–101, Oct. 2020.

[21] S. Nam and K. Ikeda, “Automatic generation of states in turn-based rpg
using reinforcement learning,” in 2018 Game Programming Workshop
(GPW), vol. 2018, nov 2018, pp. 160–167.

[22] S. Nam and K. Ikeda, “Generation of diverse stages in turn-based role-
playing game using reinforcement learning,” in 2019 IEEE Conference
on Games (CoG), 2019, pp. 1–8.

[23] D. Gravina, A. Khalifa, A. Liapis, J. Togelius, and G. N. Yannakakis,
“Procedural content generation through quality diversity,” in 2019 IEEE
Conference on Games (CoG), Aug 2019, pp. 1–8.

[24] A. Liapis, G. N. Yannakakis, and J. Togelius, “Enhancements to con-
strained novelty search: Two-population novelty search for generating
game content,” in Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, 2013, p. 343–350.

[25] D. Hooshyar, M. Yousefi, M. Wang, and H. Lim, “A data-driven
procedural-content-generation approach for educational games,” Journal
of Computer Assisted Learning, vol. 34, no. 6, pp. 731–739, 2018.

[26] A. Zook, S. Lee-Urban, M. R. Drinkwater, and M. O. Riedl, “Skill-based
mission generation: A data-driven temporal player modeling approach,”
in Proceedings of the The Third Workshop on PCG’12, p. 1–8.

[27] Y. Liang, W. Li, and K. Ikeda, “Procedural content generation of rhythm
games using deep learning methods,” in Entertainment Computing and
Serious Games, 2019, pp. 134–145.

[28] M. Kaidan, C. Y. Chu, T. Harada, and R. Thawonmas, “Procedural gen-
eration of angry birds levels that adapt to the player’s skills using genetic
algorithm,” in IEEE 4th Global Conference on Consumer Electronics,
2015, pp. 535–536.

[29] T. Oikawa, C.-H. Hsueh, and K. Ikeda, “Improving human players’ t-
spin skills in tetris with procedural problem generation,” 16th Advances
in Computer Games (ACG 2019), 2019.

[30] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, 2011.

[31] M. Stephenson and J. Renz, “Procedural generation of complex stable
structures for angry birds levels,” in 2016 IEEE Conference on Compu-
tational Intelligence and Games (CIG), 2016, pp. 1–8.

[32] A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Empowering quality
diversity in dungeon design with interactive constrained map-elites,” in
2019 IEEE Conference on Games (CoG), 2019, pp. 1–8.

[33] S. Lee, A. Isaksen, C. Holmgård, and J. Togelius, “Predicting resource
locations in game maps using deep convolutional neural networks,” in
Proc. Artif. Intell. Interactive Digit. Entertainment Conf, 2016.

[34] A. Summerville, M. Behrooz, M. Mateas, and A. Jhala, “The learning of
zelda: Data-driven learning of level topology,” in Proc. 10th Int. Conf.
Found. Digit. Games, 2015.

[35] M. Awiszus, F. Schubert, and B. Rosenhahn, “Toad-gan: Coherent style
level generation from a single example,” Artificial Intelligence and
Interactive Digital Entertainment. AAAI, pp. 10–16, 2020.

[36] R. Rodriguez Torrado, A. Khalifa, M. Cerny Green, N. Justesen, S. Risi,
and J. Togelius, “Bootstrapping conditional gans for video game level
generation,” in IEEE Conference on Games (CoG), 2020, pp. 41–48.

[37] E. Giacomello, P. L. Lanzi, and D. Loiacono, “Doom level generation
using generative adversarial networks,” in 2018 IEEE Games, Entertain-
ment, Media Conference (GEM), 2018, pp. 316–323.

[38] K. Park et al., “Generating educational game levels with multistep
deep convolutional generative adversarial networks,” in 2019 IEEE
Conference on Games (CoG), 2019, pp. 1–8.

[39] R. Jain, A. Isaksen, C. Holmgard, and J. Togelius, “Autoencoders for
level generation, repair, and recognition.” In ICCC Workshop on
Computational Creativity and Games, 2016.

[40] A. Sarkar, Z. Yang, and S. Cooper, “Controllable level blending between
games using variational autoencoders,” in Proceedings of the EXAG
Workshop at AIIDE, 2019.

[41] S. Thakkar, C. Cao, L. Wang, T. J. Choi, and J. Togelius, “Autoencoder
and evolutionary algorithm for level generation in lode runner,” in 2019
IEEE Conference on Games (CoG), 2019, pp. 1–4.

[42] A. Sarkar, A. Summerville, S. Snodgrass, G. Bentley, and J. Osborn,
“Exploring level blending across platformers via paths and affordances,”
Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, no. 1, pp. 280–286, 2020.

[43] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, feb 2015.

[44] M. Guzdial, N. Liao, and M. Riedl, “Co-creative level design via
machine learning,” in Proceedings of the EXAG Workshop at AIIDE,
vol. 2282, 2018.

[45] E. C. Sheffield and M. D. Shah, “Dungeon digger: Apprenticeship
learning for procedural dungeon building agents,” ser. CHI PLAY ’18
Extended Abstracts, 2018, p. 603–610.

[46] W. J. Kavanagh, A. Miller, G. Norman, and O. Andrei, “Balancing turn-
based games with chained strategy generation,” IEEE Transactions on
Games, pp. 1–1, 2019.

[47] A. Pantaleev, “In search of patterns: Disrupting rpg classes through pro-
cedural content generation,” ser. PCG’12. Association for Computing
Machinery, 2012, p. 1–5.

[48] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” in 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, 2016, Conference Track Proceedings.

[49] O. Missura and T. Gärtner, “Player modeling for intelligent difficulty
adjustment,” in Discovery Science, 2009, pp. 197–211.

[50] M. Lankes and A. Stoeckl, “Gazing at pac-man: Lessons learned from
a eye-tracking study focusing on game difficulty,” in ACM Symposium
on Eye Tracking Research and Applications, 2020.

[51] B. Bostan and S. Ogut, “Game challenges and difficulty levels: lessons
learned from rpgs,” in International Simulation and Gaming Association
Conference, 2009.

[52] N. Sato, K. Ikeda, and T. Wada, “Estimation of player’s preference
for cooperative rpgs using multi-strategy monte-carlo method,” in 2015
IEEE Conference on Computational Intelligence and Games, pp. 51–59.

[53] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the
IRE, vol. 49, no. 1, pp. 8–30, 1961.

[54] A. P. Badia et al., “Agent57: Outperforming the Atari human bench-
mark,” in Proceedings of the 37th International Conference on Machine
Learning, vol. 119. PMLR, 2020, pp. 507–517.

[55] J. Ferret, R. Marinier, M. Geist, and O. Pietquin, “Self-attentional credit
assignment for transfer in reinforcement learning,” in IJCAI, 2020, pp.
2655–2661.

[56] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brand-
stetter, and S. Hochreiter, “Rudder: Return decomposition for delayed
rewards,” in Advances in Neural Information Processing Systems, 2019.

[57] Y. Liu, Y. Luo, Y. Zhong, X. Chen, Q. Liu, and J. Peng, “Sequence
modeling of temporal credit assignment for episodic reinforcement
learning,” CoRR, vol. abs/1905.13420, 2019.

[58] A. Harutyunyan et al., “Hindsight credit assignment,” in Advances in
Neural Information Processing Systems, 2019, pp. 12 488–12 497.

[59] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” in Proceedings of the Thirty-First
AAAI’17 Conference on Artificial Intelligence, p. 2852–2858.


