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Abstract

The Covid-19 pandemic has caused a worldwide health crisis, leading to
significant disruptions and challenges for public health professionals. With
the rise of the pandemic, the use of artificial intelligence (AI) technologies,
such as convolutional neural networks (CNNs), has increased as a promising
tool for aiding diagnosis and treatment. CNNs are a type of deep learning
algorithm that has been effectively used in various imaging tasks, including
image classification and object detection.

In this paper, we present a comprehensive survey of the current literature
on the application of CNNs in the diagnosis of Covid-19. We begin by intro-
ducing medicine-related concepts such as X-rays and lung infection diseases,
with a specific focus on Covid-19. This provides the necessary background
information for understanding the significance of using CNNs for Covid-19
diagnosis.

We then systematically present a summary of the CNN architecture and
mechanism, including its technical aspects such as convolutional and pooling
layers, activation functions, and loss functions. This provides a comprehen-
sive understanding of the workings of CNNs, which is crucial for understand-
ing their application in the diagnosis of Covid-19.

We also reproduce a Covid-19 chest X-ray image classification experiment
using an open-source model and dataset. The experiment provides practical
insights into the performance of CNNs in the diagnosis of Covid-19 and high-
lights their potential as an effective tool. With the help of saliency maps, we
also explore the implications of CNNs-based Covid-19 diagnosis, specifically
the areas that the model considers important. This analysis provides valu-
able insights into the workings of CNNs and highlights the need for further
research in this area.

We conclude the paper by discussing the current research trends in using
CNNs for Covid-19 diagnosis and the contribution of we to this survey. Based
on the previous, we provide suggestions for future directions in this field.

The survey presented in this paper demonstrates the potential of CNNs
as an effective aid to Covid-19 diagnosis. The advantages of CNNs include
their ability to classify images and detect objects accurately, as their speed
and flexibility. However, the accuracy of CNNs depends on the availability
of high-quality training data, and further research is needed to improve the
accuracy and robustness of the models.

In conclusion, we provide a comprehensive overview of the current lit-
erature on the application of CNNs in the diagnosis of Covid-19. The sur-
vey highlights the potential of CNNs as an effective tool in aiding Covid-19
diagnosis while also pointing out the need for further research to improve
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their accuracy and robustness. This paper serves as a valuable resource for
researchers, practitioners, and students interested in the application of AI
technologies in the diagnosis of Covid-19.

Keywords: covid-19, convolutional neural network, saliency map
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Chapter 1

Introduction

1.1 Research Background

Nowadays, medical imaging has become an indispensable part of disease di-
agnosis and treatment. However, due to the impact of coronavirus disease
2019 (COVID-19), it is necessary to improve medical image screening and
clinical management. As we all know, the symptoms of COVID-19 patients
are mainly fever, sore throat, and cough. These symptoms can also be seen in
patients with influenza and pneumonia. This creates challenges for physicians
to diagnose COVID-19 patients early. Studies prove that disease classifica-
tion from chest X-ray images has become an inexpensive and reliable option
to aid medical diagnosis. However, a radiologist will need 5 to 15 minutes to
analyze a suspected patient’s chest X-ray images and make a clinical diagno-
sis, and sometimes the scan includes more than 300 images. Such efficiency
cannot cope with the situation of significant population infections. In this
background, convolutional neural networks (CNNs) can be a great helpful
tool for physicians in medical image analysis [2].

With the increasing computing power and data volume, as well as the
continuous development of medical imaging technology, the use of artificial
intelligence (AI) to assist medical image analysis has played an essential role
in clinical diagnosis and treatment. John McCarthy coined the term AI at
a conference held in 1956. However, the possibility of modern computers
achieving human intelligence was raised earlier by Alan Turing [3]. AI is a
broad branch of computer science that involves building intelligent machines
able to perform tasks that normally require human intelligence. A lot of
artificial intelligence is already being used in the medical field.

In recent years, deep learning (DL), especially CNNs, has rapidly de-
veloped into a research hotspot in medical image analysis [4]. Conventional
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medical image analysis uses edge detection, texture analysis, and other meth-
ods to extract image features manually. In contrast, deep learning is a data-
driven approach that can automatically learn the relevant model and data
features from large-scale data sets for specific problems [5]. Because there is
a big difference between medical image and natural image analysis, it is vital
to independently analyze the application of CNN in medical images.

1.2 Research Motivation

Research from medicine filed [6, 7] has already pointed out the increasing
workload of radiology. On the other hand, The statistical analysis result
[8] from an anonymized, self-administered questionnaire carried out among
radiology residents enrolled in the Saudi Board of Radiology, Saudi Arabia,
reveals approximately 60% of participants consider AI technology will first
contribute to breast-related radiological subspecialties.

Inspired by the previous study, in this survey, we aim to investigate the
applications of AI technology in medical image analysis, especially chest X-
ray images. In addition to introducing medical and CNN knowledge, we
test the AI model’s performance by reproducing a chest X-ray classification
experiment. We adopt and slightly modify a CNN-based classification model
and collect a new dataset containing 33,920 chest X-ray images from the open
data source. We further enhance our model by tuning the hyperparameters
to provide better generalization capabilities during the model training phase.
As the initial performance after the training, 90% of COVID-19 cases were
successfully identified using our re-trained CNN model based on chest X-ray
images. We also implemented a 5-fold cross-validation to reduce variability.
Normal, COVID-19, and Non-COVID infections were classified with similar
accuracy to the initial performance.

1.3 Thesis Outline

The rest structures of the paper are organized as follows. Chapter 2 shows
the information on medical imaging and lung infection. It also presents
previous medical image analysis and classification studies via deep learning.
The methodology details will be introduced in Chapter 3. In Chapter 4, we
will explain our datasets and the model architecture used in this study. Then,
we will show the experiment results. Last but not least, we will summarize
the paper and future work for medical image analysis in Chapter 5.

2



Chapter 2

Background and Literature
Review

2.1 Medical Imaging

Medical imaging technologies have played an important role in healthcare and
have become indispensable to disease diagnosis and treatment. It referred
to server types of machines and devices used to view human body parts
or organs. Most medical imaging procedures are non-invasive and painless
ways to detect foreign objects early or ensure everything in the body is nor-
mal. Because medical imaging offered faster and more reliable information,
it drastically improved patient outcomes and helped physicians achieve bet-
ter results. Each type of technology provides different information about
the area of the body related to possible injury or disease. Different types of
medical imaging procedures include X-rays, Computerized tomography (CT
scan), Magnetic resonance imaging (MRI), and Ultrasounds, etc. In this
article, we mainly focus on X-rays images.

X-rays imaging X-rays are a form of electromagnetic waves with high en-
ergy that can pass through objects, including the human body. It can
create images of the internal body. The images show the body parts
in different colors because different tissues absorb different amounts of
radiation. Calcium in bones absorbs the most X-rays, so bones appear
white on the X-ray image. Fat and other soft tissues absorb less and
appear gray. The lungs are filled with air and air absorbs the least,
so the lungs appear black. X-rays imaging is used for many purposes.
The common use of X-rays is to check for fractures. In addition, chest
X-rays can look for mass, pneumonia and COVID-19, etc.
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Computerized tomography (CT scan) A CT scan uses a computer con-
nected to an X-ray machine to take X-rays images from different angles
of your body. After that, computer processing is used to create cross-
sectional images of the soft tissues, blood vessels and bones inside the
body. CT scan images provide more detailed information about struc-
tures than plain X-rays. A CT scan can be used to visualize almost
all parts of the body. It is particularly suitable for quickly examining
those who may have internal injuries or internal bleeding due to car
accidents or other types of trauma. CT scans are usually not used for
screening if you don’t have any symptoms.

Ultrasounds Ultrasounds also known as sonogram, is an imaging procedure
that uses sound waves to create images of structures inside the body.
Most ultrasound examinations are done using a small device called an
ultrasound probe outside the body. The probe emits high-frequency
sound waves. When sound waves bounce off different body parts, they
create “echoes” that are picked up by the probe and turned into a
moving image. Ultrasound scan is mainly used to monitor an unborn
baby’s growth, diagnose a disease, or guide a surgeon during certain
procedures.

Magnetic resonance imaging (MRI) MRI is a medical imaging tech-
nique that uses a magnetic field and radio waves to produce detailed
images of the organs and structures in the human body. It produces
cross-sectional images of the internal of the body that helps diagnose
various problems. Most MRI scanners are large magnets tubes requir-
ing the patient to lie inside during the scan. Healthcare professionals
use MRI scans to examine almost any part of the body. It is very use-
ful testing of the brain and spinal cord. The results of an MRI scan
can be used to help diagnose, plan treatments and assess how effective
previous treatments have worked.

2.1.1 The history of X-rays

German physicist Wilhelm Konrad Röntgen (1845-1923) discovered X-rays
in 1895. While investigating the effects of cathode-ray tubes in his lab,
Röntgen uncovered a glow from a screen coated with fluorescent a few feet
away from the tube, even though the tube is shielded with black paper from
ultraviolet and direct visible light. The cathode-ray tube consisted of a glass
bulb with positive and negative electrodes encapsulated. The tube produces
fluorescence when the air in the tube is evacuated and a high voltage is
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applied. Röntgen deduced that the invisible radiation from the discharge
tube passes through the air and causes the screen to glow. He proved that
transparent objects were the new form of ray. He called them “X-rays”
to indicate that the observed radiation differed from previously recorded.
The X-ray could pass through substances like human tissue and paper and
cast shadows on solid objects like bone or metal. Röntgen dramatically
demonstrated this by producing a photograph of the bones in his wife’s hand
and the ring on her finger. His discovery of X-ray has caused excitement in
the scientific community and the public worldwide. This has given rise to
new possibilities in physics and the study of the structure of matter. Besides,
there is great enthusiasm for the potential application of X-rays to aid medical
and surgical procedures.

X-rays became an important medical diagnostic tool, allowing doctors to
see inside the human body for the first time without surgery. In the month
following the announcement of this discovery, surgeons used medical radio-
graphs to guide their work. In June 1896, only six months after Roentgen
announced his discovery, doctors used X-rays on the battlefield to locate the
bullets of wounded soldiers. X-ray technology is used in many areas, such as
medicine, materials analysis and airport security scanners.

2.1.2 The types of X-rays

When examining a patient’s health, many different types of X-rays are needed
for various reasons. For example, blood tests and physical exams don’t give
your doctor enough clues to discover what’s causing your symptoms. The
doctor will use image-generating diagnostic tools such as X-rays. Common
examples of X-rays used in radiology include:

• Chest X-rays take images of the lungs, heart, arteries, and ribs. The
doctor will look for pneumonia, COVID-19, tuberculosis, lung cancer,
heart size problems, broken ribs ,or spine with a chest X-ray. Abdom-
inal X-rays can visualize organs and structures within the abdomen,
including the stomach, spleen ,and intestine. This will help the doctor
to identify conditions that might cause abdominal discomforts, such as
kidney stones or any damage to abdominal tissues.

• Skeletal X-rays are used to detect fractured or inflammation bones in
the body. Only the damaged joint will be scanned such as knees, ankles,
shoulders, wrists, or hips.

• Dental X-rays provide images of the teeth and mouth to examine oral
health. Structures such as teeth, tissues, and fluids will appear shades
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of gray on the X-ray.

2.2 Lung Infection

Lung infection can be understood as an infection in the lung area. It will
happen when a virus, fungus or bacteria enters your lungs and causes inflam-
mation. There are many types of lung infections.

2.2.1 Pneumonia

One of the most common lung infections is pneumonia. It inflames the tissue
in one or both lungs. The air sacs may be filled with fluid or pus causing
coughing, fever, and difficulty breathing. It is most often caused by bacteria
but may also be caused by viruses or fungus. The severity of pneumonia
ranges from mild to life-threatening. It is most serious in infants, children,
the Elderly, and people with low immune systems. A chest X-ray is often
used to diagnose pneumonia and look for lung inflammation.

2.2.2 COVID-19

Coronavirus disease 2019 (COVID-19) is one of the major lung infection dis-
eases that almost everyone knows about. It is a highly contagious respiratory
disease that originated from the SARS-CoV-2 virus. Since the beginning of
the pandemic, the virus that causes COVID-19 has constantly been changing.
We have seen some variants such as Alpha, Beta, Delta, and Omicron. It will
spread from person to person through coughs, talks, or sneezes. The symp-
toms caused by COVID-19 include fever, sore throat, shortness of breath,
etc. COVID-19 can cause pulmonary complications, such as pneumonia. In
most severe cases, it can lead to inflammation and fibrosis of the lung. These
COVID-19 survivors often have persistent abnormalities on lung imaging for
six months to a year after infection.

By January 2023, the confirmed cases of COVID-19 were 657,977,736,
including 6,681,433 deaths reported to WHO. Therefore, early and accurate
diagnosis of COVID-19 is important to control the spread of the disease and
reduce its mortality rate. A commonly used method to detect COVID-19 is
reverse transcription polymerase chain reaction (RT-PCR). Besides, The use
of X-ray images is also a common way to detect how the virus affects the
lungs [9].
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2.3 Literature Review

The field of medical image analysis encompasses the utilization of computer
algorithms to process and evaluate medical images. This can include tech-
niques such as image segmentation, registration, and visualization. Com-
mon applications include diagnostic imaging, treatment planning, and image-
guided surgery. A significant area of research in medical image analysis is
the advancement of deep learning algorithms for image segmentation and
classification. These methods, built on convolutional neural networks, have
demonstrated exceptional performance in various medical imaging tasks. An-
other area of research is the employment of medical images for diagnosis and
disease detection. This includes using machine learning algorithms to cat-
egorize images based on features such as texture, shape, and intensity and
natural language processing techniques to extract information from radiologic
reports. Furthermore, research in medical image registration, which aligns
and combines multiple images of the same body structure or organ, is widely
used in image-guided surgery, radiotherapy and other clinical applications.

Medical image analysis can be used in many areas of healthcare, such as
neurology, cardiology, oncology and orthopedics. Medical imaging technology
has been helpful in the early detection, diagnosis, and treatment of diseases.
Medical imaging is used not only for diagnostic purposes but also for guid-
ing. Medical images guide physicians in procedures to improve precision and
accuracy. In clinical practice, medical images interpretation has mostly done
by human experts, such as physicians and radiologists. However, due to the
impact of COVID-19 and the potential fatigue of physicians, which results
in conventional artificial methods challenging to satisfy the growing social
needs. In addition, physicians may misinterpret diseases because of inexpe-
rience, leading to missed diagnosis. Thus, physicians and researchers have
recently benefited from computer-aided diagnostic approaches. Although
the progress of computational medical image analysis is belated compared
to medical imaging technologies, it has been significantly improved with the
application of machine learning techniques.

The common method to analyze and classify of X-ray images relies on
radiologists. Healthcare professionals generate and collect large numbers of
X-ray images and deliver them to radiologists for analysis. This conventional
artificial method requires substantial effort from the radiologist, which is
highly subjective and misinterpreted diseases. Another method is to use
automated technology for identification to help the diagnosis process. As
soon as scanning medical images and loading them into a computer was
possible, the researchers had already set up a system for automatic analysis.

Since the 1960s, papers describing automatic abnormality detection sys-
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tems for chest X-ray images have been published. Lodwick et al. developed
a coding system to transfer radiographs of lung cancer to an electronic data
processing system. This made it possible to explore the use of computers as a
helpful tool for radiological diagnosis [10]. From the 1970s to the 1990s, med-
ical image analysis was done by converting visual images on radiographs into
digital sequences and mathematical modeling to construct rule-based image
processing systems that can then be manipulated and evaluated by digital
computers [11]. Kruger et al. described a computer algorithm that aims to
automatically detect feature extraction and normal-abnormal diagnosis for
chest radiographs [12]. After the 1990s, supervised techniques became pop-
ular for image analysis. The approach uses a set of graphs that fit the data
to constitute the training data, feature extraction, and statistical classifiers
to develop the system [13].

In recent years, machine learning has been designed and used to ana-
lyze medical datasets. Deep learning has become the technique of choice for
image analysis and greatly impacts medical imaging. Especially in recent
years, the development of computers has provided inexpensive and variety of
means to store and share data. It forms the basis of successful commercial
medical image analysis systems. Model-based image analysis and computer-
aided diagnosis systems have played a role in helping the doctor by providing
accurate and rapid results. To automate disease detection, the classification
of X-ray images should be automated as an initial step. When we look at a
picture, we can easily describe and recognize what is shown. However, this
is not an easy task for the computer. Image classification is the task of clas-
sifying and assigning labels to images. In simple terms, we want a computer
to analyze an image and determine what “category” the image belongs to,
such as food, animals, buildings, etc. In the early stage of image classifica-
tion, the computer decomposes the image into individual pixels or vectors
for classification. Two pictures of the same thing may look very different
on different backgrounds, and the computing power was quite limited at the
time. This makes it a challenge to get high correct rates on classified images.
Thus, deep learning is a key technique for image classification. It can be an
effective tool for X-ray image classification.

Figure 2.1 shows a taxonomy of traditional machine learning-based medi-
cal image analysis algorithms. Traditional machine-learning techniques have
been widely used in medical image analysis. Some common traditional ma-
chine learning approaches used in the literature include:

• Support Vector Machines (SVMs) have been used to classify breast
masses in mammography images as benign or malignant.

• Random Forest (RF) have been used for image classification and seg-
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Medical image
analysis algorithms

Traditional methods

Support Vector Machines

de Oliveira Martins et al. [14]

Chang et al. [15]

Nascimento et al. [16]

Random Forest

Geremia et al. [17]

Maree et al. [18]

Lepetit et al. [19]

k-Nearest Neighbors

Rajini et al. [20]

Zhuang et al. [21]

Gupta et al. [22]

Naive Bayes

Khatami et al. [23]

Luo et al. [24]

Jasti et al. [25]

Decision Trees

Yoo et al. [26]

Zhou et al. [27]

Criminisi et al. [28]

Artificial Neural Networks

Jiang et al. [29]

Lorencin et al. [30]

Ren et al. [31]

Vishnuvarthanan et al. [32]

Figure 2.1: A taxonomy of traditional machine learning-based medical image
analysis algorithms

mentation, such as classifying brain tumors in magnetic resonance
imaging (MRI) images and segmenting the left ventricle in cardiac mag-
netic resonance images.

• k-Nearest Neighbors (k-NN) have been used for image retrievals, such
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as retrieving similar X-ray images from a large database for comparison
and diagnosis.

• Naive Bayes (NB) have been used for feature selection, such as selecting
the most relevant imaging features for diagnosing a specific disease.

• Decision Trees (DTs) have been used for feature extraction, such as
extracting features from ultrasound images to diagnose liver diseases.

• Artificial Neural Networks (ANNs) have been used for image regis-
tration, such as aligning pre-operative and post-operative images for
image-guided surgery.

In addition, unsupervised learning algorithms such as clustering [33–35]
are also commonly applied in medical analysis.

Deep learning, specifically Convolutional Neural Networks (CNNs), has
been widely used in medical image analysis in recent years. Figure 2.2 shows
a taxonomy of deep learning-based medical image analysis algorithms. Some
examples of deep learning approaches used in the literature include:

• U-Net is a popular CNN architecture for image segmentation, such
as segmenting brain tumors in MRI images and lung nodules in CT
images.

• ResNet is a CNN architecture for image classification, such as classify-
ing skin lesions as malignant or benign.

• DenseNet is a CNN architecture for image classification, such as clas-
sifying chest X-rays as normal or abnormal.

• Mask R-CNN is a CNN architecture used for object detection and seg-
mentation, such as detecting and segmenting tumors in CT images.

• Generative Adversarial Networks (GANs) have been used for image
synthesis and enhancement, such as generating synthetic CT images
from MRI images and enhancing low-dose CT images.

• Attention-based CNNs have been used for image captioning, such as
generating captions for radiology images to help radiologists in their
diagnostic tasks.

• 3D CNNs have been used for volumetric image segmentation and anal-
ysis, such as segmenting the heart and vessels in cardiac MRI images.
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Medical image
analysis algorithms

Deep learning-based methods

Generative Adversarial Networks

Mahapatra et al. [36]

Zhang et al. [37]

Alamir et al. [38]

Attention-based CNNs

Chen et al. [39]

Kaul et al. [40]

Rao et al. [41]

U-Net

Zhou et al. [42]

Siddique et al. [43]

Du et al. [44]

ResNet

Sarwinda et al. [45]

Ayyachamy et al. [46]

Chen et al. [47]

DenseNet

Zhou et al. [48]

Riasatian et al. [49]

Huang et al. [50]

Mask R-CNN

Shu et al. [51]

Zhu et al. [52]

Anantharaman et al. [53]

3D CNNs

Xie et al. [54]

Zhu et al. [55]

Yu et al. [56]

Figure 2.2: A taxonomy of deep learning-based medical image analysis algo-
rithms

Deep learning is a machine learning technique that allows computers to
learn from data. Most deep learning methods use computer systems known
as neural networks. This concept has gained the interest of researchers for
its good performance and has become the best solution for many problems
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in medical image classification. Basha. et al. proposed a system using
neural networks, back propagation neural networks and support vector ma-
chine classifiers to classify the X-ray images. The overall accuracy of the
X-ray image classification system was 92.3% [57]. Ozturk et al. proposed
a new model for automatic COVID-19 detection from X-rays images using
deep learning methods [58]. Hemdan et al. introduce a new deep-learning
framework called COVIDX-Net which can assist radiologists in diagnosing
COVID-19 [59]. The authors also evaluate the performance of deep neural
network models proposed over the recent years for medical image classifica-
tion [60]. Z. Karhan. et al. use the ResNet50 model to classify Covid-19 and
non-Covid-19 Chest X-ray images with 99.5% accuracy [61]. Deep neural
networks are widely used for classification and have been successful in the
medical field.
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Chapter 3

Methodology

3.1 Computer Image

An image is a visual representation of objects, while a digital image consists
of an array of elements called pixels. It can be stored and processed by a
computer. Each of these pixels can be represented by a single number or
a small set of numbers that describe some property of this pixel such as
the colors or brightness. The numbers are arranged in an array of rows and
columns corresponding to the vertical and horizontal positions of the pixels in
the image. A grayscale image can be represented as a 2-dimensional matrix
of numbers. A color image normally has three colors. The RGB image is
a color image made of red, green and blue, so the pixels of a color image
can be made into a three-dimensional vector. There are also non-optical
images, such as ultrasound or x-ray, in which the intensity of the sound or
X-ray is recorded. One of the advantages of digital images over traditional
images is the ability to transmit them electronically almost instantaneously
and to change easily from one medium to another, such as from a web page
to a computer screen to a printer. Another even greater advantage is the
ability to change them to suit your needs. Digital images often produce large
files and are often compressed to make the files smaller. Compression takes
advantage of the fact that many nearby pixels in an image have similar colors
or brightness [62].

Image processing describes digitally transforming an image and perform-
ing specific operations to obtain useful information. In applying some pre-
determined signal processing methods, image processing systems typically
treat images as two-dimensional signals. There are many types of image pro-
cessing. Pattern recognition measures various patterns around objects in an
image. Recognition means detecting or distinguishing objects in an image.
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Retrieval is browsing or searching an extensive image database for images
that resemble the original image. image enhancement is used to create an
enhanced image from the original image. Visualization aims to identify ob-
jects that are not visible in the image.

3.2 Neural Networks

Neural networks are networks or circuits composed of artificial neurons or
nodes. Their names and structures are inspired by the human brain and
mimic how biological neurons signal to each other. Human brain cells are also
known as neurons. They form a complex, highly interconnected network and
transmit electrical signals to each other to help humans solve problems [63].
Similarly, artificial neural networks are composed of artificial neurons that
work together to process information. Artificial Neural Networks (ANNs)
are a type of Neural Network. ANNs are the subset of machine learning and
are at the core of deep learning.

3.2.1 Neuron

Figure 3.1: Neuron1

Artificial neural networks consist of many neurons, which are also called
nodes. It receives input data from other neurons or external environments
and calculates the output. As shown in Figure 1 below, each neuron contains
three parts: weight (w), bias (b), and activation function (f). Each input
into a neuron is associated with weights and biases. All initial weights are

1https://levelup.gitconnected.com/a-review-of-the-math-used-in-training-a-neural-
network-9b9d5838f272
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random, while biases are 0. Figure 3.1 demonstrates a neuron computes a
weighted sum with biases of the inputs first, and then an activation function
is applied to determine the final output.

The activation functions play a role in transforming linear input values
to non-linear ones to enable the modeling of complex tasks. Figure 3.2 shows
two activation functions used in our experiment: ReLU and softmax. The
ReLU activation function in a CNN rectifies negative values to zero while the
softmax activation function outputs a probability distribution over classes in
multiclass classification.

(a) ReLU2

(b) softmax3

Figure 3.2: Activation function

2https://tungmphung.com/rectifier-linear-unit-relu/
3https://medium.com/@AbhiramiVS/softmax-vs-logsoftmax-eb94254445a2

15

https://tungmphung.com/rectifier-linear-unit-relu/
https://medium.com/@AbhiramiVS/softmax-vs-logsoftmax-eb94254445a2


3.2.2 Layers

ANNs consist of an input layer, one or more hidden layers, and an output
layer, as shown in Figure 3.3. Each artificial neuron is connected to another
neuron and has an associated weight and threshold.

Input Layer There is no computation performed in the input layer. The
input dataset enters from the input layer into the artificial neural net-
work. Neurons in the input layer process and analyze the dataset and
feed it into the hidden layer.

Hidden Layer Artificial neural networks can have more than one hidden
layer. Each hidden layer analyzes and calculates the output from the
previous layer (input layer or hidden layer). The output from the hid-
den layer will enter the output layer.

Output Layer The output layer takes the input from the hidden layer and
performs the computation, giving the final result of all data processing
in the artificial neural network. The output layer can have single or
multiple neurons based on whether it is a binary classification problem
or multiple class classification problem. If there is a binary classification
problem (yes/no), the output layer will have an output neuron that will
give a result of 1 or 0. However, if there is a multi-class classification
problem, the output layer may include more than one output neuron.

Figure 3.3: Three types of layers4

4https://www.tibco.com/reference-center/what-is-a-neural-network
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3.3 Convolutional Neural Networks

CNNs are a class of ANNs commonly used in recommender systems, image
and video recognition, medical image analysis and classification with supe-
rior performance [64]. CNNs can extract relevant features from images that
are useful for identifying objects in images [65]. This new approach is eas-
ier to handle without losing the features that are essential to making good
predictions. There is a standard structure of the CNN model that consists
of alternating convolutional and pooling layers. The last layer of the CNN
model is a fully connected layer as shown in Figure 3.4. In this section, we
will briefly review how CNNs work.

Figure 3.4: CNN structure[1]

3.3.1 Convolutional layer

The convolutional layer is the first layer and the core building block of CNNs.
This layer of the process involves input images, kernels, and feature maps
[66]. Let’s assume that the input will be a black-and-white image made up of
a matrix of pixels between 0-255. As shown in Figure 3.5, the small square in
green represents a pixel. The number 0 means black color and the number 1
means white. The square in orange is often called a feature detector, kernel,
or filter. It will move through the receptive domain of the image and check
for the presence of features. This process is called convolution. Although
the size of the kernel can vary, the kernel size is usually a 3*3 matrix. The
kernel is applied to a region of the image and the dot product between the
input pixels, and the kernel is calculated. This dot product is an element
value input to a new matrix. The formula used for the calculation is shown
in Equation 3.1.
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J(x, y) = K ∗ I =
∑
n,m

K(n,m)I(x− n, y −m) (3.1)

where J is the feature map, K is the kernel, I is the input images, and
n,m is the kernel index. From the equation, we know that the sum of the
products of the individual elements of I and the individual elements of K is
calculated to obtain each element of J . Each element of J is calculated by
multiplying the sum of the elements of I and K.

Figure 3.5: Convolutional layer5

The kernel is then shifted by a span and repeated until the entire image
is swept. The final output of all dot products is called the convolved feature.
The feature map contains feature values and relative position information.
For example, in face detection from an image, the eyes, nose, and mouth
are arranged from top to bottom, so the corresponding feature values are
extracted in this order. After each convolution operation, the CNN performs
a ReLU transformation of the convolved feature, introducing nonlinearity
to the model. Convolutional layers are not only applicable to the input
image but also follow the output of other convolutional layers. The stacking
of convolutional layers allows for a hierarchical decomposition of the input
image. In this case, filters that operate on the first level of convolved features
may extract combinations of low-level features, such as features consisting of
multiple lines to represent object shapes.

5https://glassboxmedicine.com/2020/08/03/convolutional-neural-networks-cnns-in-5-
minutes/
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3.3.2 Pooling Layer

To reduce the computational burden and avoid overfitting, the pooling layers
are used to reduce the spatial size of the feature map. The method uses the
value of one neuron to represent a region until all the neurons are represented,
which implements the compression of the feature map as shown in Figure 3.6,
where the filter size equals 2x2. The pooling operation sweeps a filter over
the entire feature map, but the difference is that this filter does not have any
weights compared to the kernel. There are two common types of pooling:
Max pooling and Average pooling. In this study, we only use Max pooling.

Max pooling: As the filter moves over the feature map, it returns the
maximum value from each pooling region and sends it to the output ar-
ray. It completely discards noisy activations and performs denoising while
dimensionality reduction.

Assuming that the pooling region is R, the max pooling Pm is expressed
as:

X = [xi|i ∈ R] (3.2)

Pm = max(XR) (3.3)

Figure 3.6: Max pooling layer6

Although much information is lost in the pooling layer, it also has many
benefits for CNNs. It helps reduce complexity and improve efficiency.

3.3.3 Fully connected layers

The fully Connected Layer is the last in the convolutional neural network. In
the partially connected layer mentioned above, the pixel values of the input
image are not directly connected to the output layer. However, in the fully

6https://computersciencewiki.org/index.php/Max-pooling / Pooling
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connected layer, each neuron in the output layer connects to every neuron in
the previous layer, as shown in Figure 3.7. We can add multiple layers as we
want, depending on the depth of the classification model [67].

Figure 3.7: Fully connected layers7

Compared to other image classification algorithms, CNNs use relatively
less preprocessing. This means that the neural network optimizes the kernels
by automatic learning. However, these filters are designed manually in tradi-
tional algorithms. This feature extraction independent of a priori knowledge
and human intervention is a major advantage.

7https://medium.com/@tecokids.monastir/fully-connected-layer-with-dynamic-input-
shape-70c869ae71af
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Chapter 4

Experimentation

In the previous sections, we have introduced medical imaging and the archi-
tecture of CNN. This chapter will use chest X-rays images as a representative
and report the utility of CNN on a chest X-ray dataset named “COVID-QU-
Ex”, a dataset that includes normal, COVID-19, and other lung infection
images. We first introduce the COVID-QU-Ex baseline dataset for showing
the accuracy of the CNN-based X-ray classification model in Section 4.1.
Next, we introduce the model we used in this reproduce experiment and list
details of our configurations and experimental settings in Section 4.2 and
4.3. We also explain our evaluation metrics in Section 4.4. The classifica-
tion accuracy and a 5-fold cross-validation result are demonstrated in Section
4.5. Lastly, we visualize the predictions using saliency maps to explore our
comprehension of the implementation of CNN.

4.1 Baseline dataset

In our experiment, we adopt the COVID-QU-Ex1 dataset consisting of
33,920 chest X-ray images up to February 2022, compiled by researchers of
Qatar University. This dataset contains the following:

• 10,701 Normal cases

• 11,956 COVID-19 infections

• 11,263 Non-COVID infections (viral or bacterial pneumonia)

The detail of this dataset is shown in Table 4.1:

1https://www.kaggle.com/datasets/anasmohammedtahir/covidqu
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Table 4.1: Distribution of the experimental datasets

#Datatset Normal COVID-19 Non-COVID

Train 6,849 7,658 7,208
Val 1,712 1,903 1,802
Test 2,140 2,395 2,253
Total 10,701 11,956 11,263

Besides, corresponding ground-truth lung segmentation masks are pro-
vided for the entire dataset so medical doctors can better detect, localize,
and quantify COVID-19 infection from X-ray images.

4.2 Model Architecture

We use the model proposed by Ahmed et al. [68] as the COIVD classifica-
tion model. The model structure is shown in Figure 4.1. It contains five
convolutional layers, followed by batch normalizations, max-pooling layers,
and dropouts. All chest X-ray scans are resized to (200 * 200) before in-
putting into the model. We process the Dense layer with 512 neurons as a
fully connected layer. Following it is the last prediction, with three neurons
representing each class of chest X-rays. We process ReLU in each layer as
the activation function and softmax in the final dense layer.

Figure 4.1: CovID Model Archtutre.
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Additionally, Table 4.2 lists the details of each layer, including layer types,
output shapes, and the parameter amount of each layer.

Table 4.2: Description of Each Layer in the Model

Layer (type) Output Shape Param #

conv2d 1(Conv2D) (None, 198, 198, 32) 896
batch normalization 1(BatchNormalization) (None, 198, 198, 32) 128
max pooling2d 1(MaxPooling2D) (None, 99, 99, 32) 0
dropout 1(Dropout) (None, 99, 99, 32) 0

conv2d 2(Conv2D) (None, 97, 97, 64) 18496
batch normalization 2(BatchNormalization) (None, 97, 97, 64) 256
max pooling2d 2(MaxPooling2D) (None, 48, 48, 64) 0
dropout 2(Dropout) (None, 48, 48, 64) 0

conv2d 3(Conv2D) (None, 46, 46, 128) 73856
batch normalization 3(BatchNormalization) (None, 46, 46, 128) 512
max pooling2d 3(MaxPooling2D) (None, 23, 23, 128) 0
dropout 3(Dropout) (None, 23, 23, 128) 0

conv2d 4(Conv2D) (None, 21, 21, 64) 73792
batch normalization 4(BatchNormalization) (None, 21, 21, 64) 256
max pooling2d 4(MaxPooling2D) (None, 10, 10, 64) 0
dropout 4(Dropout) (None, 10, 10, 64) 0

conv2d 5(Conv2D) (None, 8, 8, 32) 18464
batch normalization 5(BatchNormalization) (None, 8, 8, 32) 128
max pooling2d 5(MaxPooling2D) (None, 4, 4, 32) 0
dropout 5(Dropout) (None, 4, 4, 32) 0

flatten(Flatten) (None, 512) 0
dense(Dense) (None, 512) 262656
batch normalization 6(BatchNormalization) (None, 512) 2048
dropout 5(Dropout) (None, 512) 0

predictions(Dense) (None, 3) 1539

4.3 Experiment Configuration

The original model was coded under TensorFlow and Kears. Thus, our im-
plementation was under the same platform. However, due to the change of
some source packages, we reprogrammed some parts to be compatible with
the latest version of Python and Kears. We list the version of the Python
environment and some key packages we used in this experiment:

(1) python == 3.10.8; (2) keras == 2.10.0; (3) tf keras vis == 0.8.4;
(4) numpy == 1.23.5; (5) pandas == 1.5.2; (6) scikit-learn == 1.2.0
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Simultaneously, considering the chest X-ray images amounts have in-
creased from 1,389 to 33,920, we adjust the hyperparameters with the fol-
lowing settings:

- image size: (200, 200)
- epoch: 25
- batch size: 64
- learning rate: 0.001
- dropout rates: 0.25 (convolutional layers) / 0.50 (dense layer)
- optimizer: RMSProp2

- loss: categorical cross-entropy3

The whole experiment was conducted on JAIST High-Performance Com-
puter (HPC) named Kagayaki. We set the queue class as GPU-S, which
contains 2 NVIDIA A40 GPUs for every node. All our programs ran under
the container environment called jupyter/tensorflow-notebook4 from Docker.
Because of the scattered sources, we also renamed and sorted all images of
the COVID-QU-Ex dataset from 1 to end. Thanks to the powerful Kagayaki
with its GPU nodes, the training and cross-validation stages only cost ap-
proximately 2 and 8 hours per round.

4.4 Evaluation Metrics

To evaluate our sentiment classification performance, we used a three classes
confusion matrix commonly used to describe the data classification result as
shown in Table 4.3. Generally, for data prediction results, there are 4 cases,
including True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). True (T) and False (F) denote the predicted result is
right and wrong, respectively. In contrast, Positive (P) and Negative (N)
denote the positive and negative cases of the predicted samples, respectively.

In our model, we denoted three classes T = {Norm,Cov,Non} for Nor-
mal, COVID-19, and Non-COVID. The formulations of TP, FP, TN, and FN
under each label are defined as in Equation 4.1, 4.2, and 4.3, respectively.

• For label is Norm:

TPNorm = a TNNorm = e+ f + h+ i

FPNorm = d+ g FNNorm = b+ c
(4.1)

2https://keras.io/api/optimizers/rmsprop/
3https://www.tensorflow.org/api_docs/python/tf/keras/losses/

CategoricalCrossentropy
4https://hub.docker.com/r/jupyter/tensorflow-notebook
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Table 4.3: Confusion matrix for three sentiment labels.

Confusion Matrix
Actual

Norm Cov Non

Predicted
Norm a d g
Cov b e h
Non c f i

• For label is Cov:

TPCov = e TNCov = a+ c+ g + i

FPCov = b+ h FNCov = d+ f
(4.2)

• For label is Non:

TPNon = i TNNon = a+ b+ d+ e

FPNon = c+ f FNNon = g + h
(4.3)

Macro Performance To obtain Precision, Recall, and F1 score under
macro criteria, we first calculated the precision and recall for each label
t ∈ T as follows:

Precisiont =
TP t

TP t + FP t

Recallt =
TP t

TP t + FN t

(4.4)

And the F1 score under label t is defined as the following Equation:

F1t =
2 ∗ Precisiont ∗Recallt
Precisiont +Recallt

(4.5)

Thus, the Macro F1 is defined as:

Macro F1 =

∑
t∈T F1t

3
(4.6)

Accuracy We use a general evaluating indicator, accuracy, to describe how
the model performs across all classes. It refers to the ratio of correctly pre-
dicted samples to the total number of predicted samples without considering
whether they are positive or negative cases. The definition of an average
accuracy across all classes T is described in Equation 4.7 and 4.8:

Accuracyt =
TP t + TN t

TP t + TN t + FP t + FN t

(4.7)

Accuracy =

∑
t∈T Accuracyt

3
(4.8)
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4.5 Experiment Results

In this section, we present our experimental results from different perspec-
tives. The changing of loss and accuracy during training are shown in Section
4.5.1. After training, we implement the 5-Fold cross-validation result and
summarize them in Section 4.5.2. Finally, to better understand the result
and the mechanism of how CNN works, we prepare visualized results in the
last Section 4.5.3.

4.5.1 Initial Model Performance

For the initial step, Figure 4.2a and 4.2b shows the reproduced model suc-
cessfully converged and reached high accuracy on the new dataset based on
our settings.

(a) loss (b) accuracy

Besides, Table 4.4 has proven the model still achieved an accuracy of
88.60% on the testing set, with a Macro F1-score of 88.52%.

Table 4.4: Initial model performance (%)

Precision Recall F1

Normal 80.60 91.45 85.68
COVID-19 95.42 91.44 93.39
Non-COVID 90.41 82.87 86.48
Macro avg 88.81 88.59 88.52

Figure 4.3 shows the confusion matrix of the initial model performance,
which indicates that the model on the large-scale dataset can also distinguish
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different infections (COVID-19 and viral & bacterial pneumonia) with high
accuracy for each category of chest X-ray.

Figure 4.3: Conftusion matrix

4.5.2 5-fold cross-validation

In addition, we implemented an extra 5-fold cross-validation in our model
to better measure the performance. Table 4.5 reflects a similar result to the
initial F1-score and accuracy, with an average F1-score of 86.06% and an
accuracy of 86.30%. Besides, we plot the accuracy of each class for each fold
into Figure 4.4 to monitor the accuracy changing between each fold. The
average accuracy indicates the model can successfully detect lung infections,
especially when identifying COVID-19.

Table 4.5: 5-fold cross-validation performance (%)

Fold Precision Recall Macro F1 Accuracy

Fold-1 88.80 88.69 88.66 88.78
Fold-2 84.08 82.03 82.21 82.52
Fold-3 86.98 86.37 86.14 86.42
Fold-4 86.14 85.30 85.25 85.47
Fold-5 88.39 88.08 88.04 88.30
Average 86.88 86.09 86.06 86.30
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(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure 4.4: 5-flod confusion matrices.
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4.5.3 Result Visualzation

In order to better understand the chest X-ray classification results, we visual-
ize the outputs of our reproduced model. Two chest X-ray images were ran-
domly selected from the test set under each category, and the corresponding
prediction results near image names are demonstrated in Figure 4.5. These
predictions will help radiologists quickly obtain the initial conclusions about
patients’ situations.

(a) Normal (b) COVID-19 (c) Non-COVID

Figure 4.5: Chest X-ray images with corresponding predictions.

Despite the above results that can satisfy radiologists’ primary demands,
it is essential to figure out how the model makes these predictions. The
saliency map [69], a visualization technique used to identify the areas in an
image that are most important for a given classification task, can help us
better understand the feature of CNN and tell us what area impacts the
predictions of the model. We believe the highlighted areas may provide
insight into the most important features of chest X-ray images. Following
the previous step, Figure 4.6 shows the visualized chest X-ray images using
saliency maps, summarizing the original images with corresponding saliency
maps for comparison. Apparently, the location, area, and color lightness
under each category are significantly different.
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(a) Normal (b) COVID-19 (c) Non-COVID

Figure 4.6: Saliency maps highlighted areas for chest X-ray images.
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We infer the highlighted areas in Figure 4.6 have the greatest impact on
the prediction results of the model. From analyzing all saliency maps, it is
evident that:

Normal
few and insignificant highlighted areas are found for Normal cases.

COVID-19
for COVID-infected patients, the highlighted areas are scattered over
most of the patient’s lungs.

Non-COVID
for non-COVID-19 infected patients (bacterial or viral pneumonia), the
highlighted areas are concentrated in the lungs and the cardiophrenic
angle area.

(a) COVID-19 misclassed as Normal.

(b) COVID-19 misclassed as Non-COVID.

Figure 4.7: Misclassed COVID-19 X-ray images.

We also observe some misclassed cases in this experiment as shown in
Figure 4.7. In these misclassed examples, the model still utilizes the same
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logic and pattern for image classification in chest X-ray images. These ex-
amples of classification errors can support the model’s interpretability, but
the classification results still need to be discussed with the physician.
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Chapter 5

Conclusion

5.1 Summary

The image classification problem is a classical and highly practical value
research topic in the field of computer vision. Its applications are also very
wide, from autonomous driving to face recognition. It is no exaggeration to
say that the application of deep learning on image classification has attracted
the public’s attention, thus leading us to an era of “AI everywhere”.

In the era of machine learning, image classification relied on the accu-
racy of feature extractors. However, with the popularity of deep learning
represented by neural networks, especially the application of convolutional
neural networks to image classification problems, its accuracy has surpassed
the previous manual feature extraction simultaneously, and the end-to-end
learning mode has saved a lot of workloads.

On the other hand, as the science of the human body, any breakthrough
in medical research needs to be discussed and validated seriously. This poses
three major challenges for expanding the application of deep learning to the
medical field:

Accuracy Even though the model can predict 99.9% correct and 0.1% in-
correct, the incorrect classification results consequently lead to misdi-
agnosis and delayed treatment, ultimately endangering patients’ lives.
A correct classification result is crucial for the next treatment, which
is the fundamental requirement.

Reliability The current models are proven to perform outstandingly in
clean images while poor performance in noisy data. However, it is
impossible to input clean images at all times. Therefore, we want the
classification model to perform equally well on cleaned and noisy im-
ages.
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Interpretability Although deep learning models can predict correct classifi-
cation results, their “black-box” operation mechanism makes it difficult
for doctors to trust and accept them.

To clear the above problems, we not only introduce medical knowledge,
including medical image analysis and lung infection, but deep learning mod-
els for classification problems such as convolutional neural networks in this
survey. Moreover, we reproduce a chest X-ray image classification experiment
to show the cutting-edge study of image classification on COVID-19 diagno-
sis. Since the revolution AlexNet brought in 2012, many studies have proven
the amount of data significantly impacts the performance of neural networks
[70, 71]. The larger, more comprehensive dataset is our major improvement
to the original work of Ahmed et al. [68]. Therefore, our contributions to
this work are concentrated as follows:

1. As the dataset size increase by over 24 times, we believe our experi-
mental results can better reflect the model performance when used in
practice, although our average accuracy is 4.34% lower than the original
work.

2. With more species of lung infection added (Lung Opacity → Non-
COVID), the application of this model will be widely expanded to
more scenarios.

3. Thanks to the continuous updates of saliency map techniques, the vi-
sualized results compared to the original work are more intuitive, espe-
cially the normal cases are obviously difference from lung-infected cases.
Without any medical background, we can easily distinguish between a
normal and lung-infected saliency map.

The results demonstrate that the classification model can still achieve
high accuracy and partially explain the basis of prediction. We hope that
this system will assist radiologists in reducing their burden.

5.2 Future Work

We will first collect more data on lung infections in our future work. In addi-
tion to COVID-19 and pneumonia, we expect other X-ray images with similar
symptoms, such as influenza. We believe these new images will significantly
expand the application of classification models.

Besides, we also noticed that some state-of-the-art models, such as ViT
(Vision Transformer), are becoming increasingly popular in computer vision.
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In future experiments, we will use ViT instead of CNN as the model substrate
to test whether the classification accuracy can be improved.

Finally, we hope to collaborate with radiologists to analyze the high-
lighted areas considered important in the classification model, so that we
may discover new diagnostic methods and fix some potential defects in the
model.

To summarize, our future work focuses on improving the generalizability
and performance of the model and trying to contribute to the interpretability
of the deep learning model for the Chest X-ray images classification problem.
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