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Abstract

Wireless Multihop Network (WMN) has been considered as the possible
technology of Device-to-Device (D2D) to provide the services for increasing
the traffic in beyond 5th Generation mobile network (5G). In WMN, these
devices are all wirelessly connected to each other in a mesh and forward
data to target device over the network using other devices as relay nodes.
Data hops from device to device until it reaches its destination. Due to the
advantages of carrying many users and having high throughput, WMN can
meet the high demand of next-generation wireless communication and has
been actively studied.

But there are still some issues that need to be studied and resolved in
WMN, like due to the uncertainty of source node choosing a path to send
the message and the nature of multihop fashion, the performance of network
capacity can degrade drastically. To solve this problem, a appropriate path
selection algorithm is needed for the device to determine the path composed
of relay nodes when sending data.

There are many achievements in Machine Learning (ML) for path se-
lection problems. With the development of hardware equipment, the high
computational complexity of ML has also been solved. Among them, Deep
Reinforcement Learning (DRL) can solve the path selection problem most
effectively and has been applied to wireless networks. However, the delay
caused by the computation time of DRL still cannot meet the low-latency
requirements of the future communication, and other methods are needed to
solve it. The high latency problem is solved from the transport layer using
network coding.

To solve these two problems in WMN, the purpose of this research is to
propose a novel Factor Graph-based Deep Reinforcement Learning (fDRL)
scheme with two learning path selection algorithms for the Q-Learning called
SNR-based Learning Path Selection (NLPS) algorithm and SINR-based Learn-
ing Path Selection (INLPS) algorithm. These two algorithms train the model
using DRL to select best multihop path from source device to target device
with highest transmission rate to increase total network capacity in WMN.
The difference is that INLPS algorithm considers interference by using SINR
as reward while NLPS algorithm using SNR as reward. In NLPS and INLPS,

i



Factor Graph (FG) representation is used to reduce the heavy iteration of
training phase in DRL. For latency problem, Nested Lattice Code (NLC) is
used in Compute-and-Forward (CoF) strategy to reduce the time slots when
data is transmitting.

According to the theoretical and numerical studies with the assumption of
the system model, simulation results reveal that FG can reduce computation
time up to 99% for DRL. As for two proposed algorithms, NLPS and INLPS
increase the network capacity. When there are 50 nodes, the average network
capacity of INLPS (2.52 Mbps) is about 3.19 times higher than NLPS (0.79
Mbps) and 6.46 times higher than use FG and NLC (0.39 Mbps). When
the number of nodes is 100, the values become 1.83 Mbps, 0.43 Mbps and
0.36 Mbps respectively and INLPS algorithm is about 4.26 times higher than
NLPS and about 5.08 times higher than use FG and NLC. For number of
iterations, NLPS uses 101 iterations to reach 98% of highest throughput
and INLPS uses 185 iterations when the number of nodes is 50. These two
algorithms use 156 iterations and 263 iterations respectively when the number
of nodes is 100.

Based on the result, the thesis concludes that FG can reduce the compu-
tation time for DRL before training. With the ad of FG, NLPS and INLPS
can find best path for each node in a shorter time. Both NLPS and INLPS
can increase network capacity. The difference is that INLPS increase more
but NLPS cost a small number of iterations. With the aid of NLC, the
network capacity is increased further.

Keywords: Deep Reinforcement Learning; Factor Graph; Nested Lattice
Code; Learning Path Selection Algorithm; Wireless Multihop Networks

ii



Acknowledgement

Foremost, I would like to express my deepest appreciation to my supervisor,
Associate Professor Yuto LIM for his patient guidance and support for this
study. His sincerity and motivation have deeply inspired me a lot and his
generosity helped my time in JAIST enjoyable. As my second supervisor, I
would also like to extend my deepest gratitude to Professor Yasuo TAN for
his support and constant encouragement to continue my study.

I also sincerely thank Professor KURKOSKI, Brian Michael for his pa-
tient instruction in my minor research. With his guidance and sharing, I
have acquired the concepts and knowledge about the new research area, In-
formation Theory.

I would like to express my deep appreciation to researchers from TAN
Laboratory and WiSE Laboratory (LIM Laboratory) for their help and shar-
ing in collaboration meetings. With their friendliness, I enjoyed my student
very much during these two years.

What is more, I would like to extend my sincere thanks to Dr KHUN
Aung Thura Phyo, seniors in my lab, for his knowledge sharing and guidance
for this thesis through my Master’s program.

Finally, I would like to thank unknown significant others (USO) who help
me directly or indirectly to complete my masters’ degree. Last but not least,
I am always thankful to my family for their love and letting me decorate my
brighter future by myself.

iii



Contents

Abstract i

Acknowledgement iii

List of Figures vii

List of Tables ix

List of Symbols x

List of Abbreviations xiii

1 Introduction 1
1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related Works and Motivation . . . . . . . . . . . . . . . . . . 4
1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Research Methodology . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11
2.1 Device-to-Device Communication . . . . . . . . . . . . . . . . 11
2.2 Wireless Multihop Network . . . . . . . . . . . . . . . . . . . 12
2.3 Airtime Link Metric . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Factor Graph and Sum-Product Algorithm . . . . . . . . . . . 14

2.4.1 Factor Graph . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Sum-Product Algorithm . . . . . . . . . . . . . . . . . 16

iv



2.5 Lattice Coding Theory . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Nested Lattice Code . . . . . . . . . . . . . . . . . . . 17
2.5.2 Compute-and-Forward Strategy . . . . . . . . . . . . . 19

2.6 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . 21
2.6.1 Reinforcement Learning . . . . . . . . . . . . . . . . . 21
2.6.2 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Proposed Path Selection Schemes 26
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Network Model . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Interference Model . . . . . . . . . . . . . . . . . . . . 28
3.1.4 Network Capacity Model . . . . . . . . . . . . . . . . . 30

3.2 Proposed FG-based DRL Scheme . . . . . . . . . . . . . . . . 31
3.3 Factor Graph Approach . . . . . . . . . . . . . . . . . . . . . 31
3.4 SNR-Based Learning Path Selection Algorithm . . . . . . . . . 37

3.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.4 Network Topology Formation . . . . . . . . . . . . . . 42

3.5 SINR-Based Learning Path Selection Algorithm . . . . . . . . 46
3.6 Compute-and-Forward . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Simulation Studies and Results 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Simulation Parameters and Settings . . . . . . . . . . . . . . . 57
4.3 Simulation Scenarios, Results and Discussion . . . . . . . . . . 61
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion 66
5.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

v



Bibliography 69

List of Publications 74

vi



List of Figures

1.1 Timeline of 6G wireless networks [1] . . . . . . . . . . . . . . . 2
1.2 5-step research methodology . . . . . . . . . . . . . . . . . . . 9

2.1 Example of a multihop wireless network . . . . . . . . . . . . 13
2.2 Example of a factor graph . . . . . . . . . . . . . . . . . . . . 15
2.3 A modified FG for the product lAB + (lAC · lCD) . . . . . . . . 16
2.4 Illustration of nested lattice code . . . . . . . . . . . . . . . . 19
2.5 System model of L transmitters reliably communicate to M

relay nodes over an AWGN channel . . . . . . . . . . . . . . . 20
2.6 Linear combination of codewords on the lattice points . . . . . 20
2.7 Diagram of the loop recurring in reinforcement learning algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 An example of WMN model . . . . . . . . . . . . . . . . . . . 27
3.2 Illustration of signal to interference and noise ratio . . . . . . 29
3.3 Proposed fDRL scheme . . . . . . . . . . . . . . . . . . . . . . 31
3.4 SPST computation for node A by Dijkstra’s algorithm . . . . 33
3.5 Applying FG and sum-product algorithm on SPST of node A 34
3.6 Best-metric path selection of a SPST . . . . . . . . . . . . . . 34
3.7 Flowchart of FG algorithm . . . . . . . . . . . . . . . . . . . . 36
3.8 Nodes layered by transmission range in WMN . . . . . . . . . 38
3.9 Steps of updating Q1(n0

1, n1
1) . . . . . . . . . . . . . . . . . . . 41

3.10 Forming the best network topology . . . . . . . . . . . . . . . 42
3.11 Flowchart of NLPS algorithm . . . . . . . . . . . . . . . . . . 45
3.12 Flowchart of INLPS algorithm . . . . . . . . . . . . . . . . . . 50
3.13 Apply CoF strategy in transmission phase . . . . . . . . . . . 51
3.14 Flowchart of CoF . . . . . . . . . . . . . . . . . . . . . . . . . 53

vii



4.1 Block diagram of simulation program . . . . . . . . . . . . . . 55
4.2 Floor map of Makuhari Messe [2] . . . . . . . . . . . . . . . . 56
4.3 Learning rate comparison . . . . . . . . . . . . . . . . . . . . 57
4.4 Discount factor comparison . . . . . . . . . . . . . . . . . . . 58
4.5 Threshold comparison . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Comparison of network capacity and computation time of FG 61
4.7 Comparison of no. of iterations between NLPS and INLPS . . 63
4.8 Comparison of network capacity and computation time of NLPS

and INLPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



List of Tables

3.1 Reward table for mth layer . . . . . . . . . . . . . . . . . . . . 38
3.2 Q-table for mth layer . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Simulation Parameters and Settings . . . . . . . . . . . . . . . 60

ix



List of Symbols

The following list describes several symbols that are used within the body of
this document:

α Learning rate

β Attenuation constant

ϵ Threshold [bps]

η Noise level [dBm/Hz]

γ Discount factor

τ Transmission time of node i

a
′
m The best action in mth layer

am Action of mth layer

B Channel Bandwidth [Hz]

Bt Number of bits in test frame [bits]

Cm The mth layer

D Destination node

d0 Decorrelation distance [m]

dij Distance between node i and node j [m]

ef Frame Error Rate

F (A) Global function of root node A

x



Gij Power ratio between node i and node j

k Number of nodes in the corresponding layer

Km Total number of nodes in mth layer

L Size of data packet [bytes]

l Airtime cost [µs]

M Total number of layers

N Total number of wireless nodes

nkm
m The kth node in mth layer

O Channel access overhead [µs]

Pi Transmit power of node i [dBm]

PL0 Pathloss under Friis free space model

PLij Channel gain between node i and node j [dB]

Qm(i, j) Q-value of mth layer from node i to node j

R0 Basic rate of test frame [bps]

rij Reward between node i and node j

S Source node

sm State of mth layer

SINRij Signal to interference plus noise ratio at node j from node i

SNRij Signal to noise ratio at node j from node i

t Number of iterations

Tv Transmission time of vth time slot [s]

U End-to-end throughput [bps]

V Total number of time slots

xi



Wij Wall attenuation from node i to node j [dB]

Xσ Gaussian random variable with zero mean, shadowing attenuation
caused by flat fading [dB]

xii



List of Abbreviations

5G 5th Generation mobile network

AI Artificial Intelligence

ALM Airtime Link Metric

APs Access Points

AWGN Additive White Gaussian Noise

BS Base Station

CoF Compute-and-Forward

D2D Device-to-Device

DRL Deep Reinforcement Learning

fDRL Factor Graph-based Deep Reinforcement Learning

FER Frame Error Rate

FG Factor Graph

INLPS SINR-based Learning Path Selection

LPS Learning Path Selection

ML Machine Learning

NLC Nested Lattice Code

xiii



NLPS SNR-based Learning Path Selection

RL Reinforcement Learning

SINR Signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise Ratio

SP Sum-Product

SPST Shortest Path Spanning Tree

WMN Wireless Multihop Network

xiv



Chapter 1

Introduction

Wireless communication is a system of communication that supports the
transmission of information (voice, video, data, etc) over large distances us-
ing free space as the communication medium. As the latest step in how wire-
less communications is connecting to the Internet, 5th Generation mobile
network (5G) is well known to the computer networking era. As a promising
technology for 5G and future wireless networks, it has been attractive as an
active research field for decades. To cope with the growth of mobile data
traffic and devices, the later generation of the wireless system such as 5G or
beyond 5G (B5G/6G) is expected to be developed with the standard for the
dense environment. Therefore, it is crucial to take into consideration how to
improve the technology that brings advanced wireless systems like 5G.

This chapter will introduce the background environment of the research,
the research problem that degrades the performance of the wireless network
systems. And them, the research motivation with objectives and how the
research is going to conduct for solving the research problem will be discussed.

1.1 Research Background
According to Mohammed H. Alshari [3], by 2026, it is expected that approx-
imately 65% of the world’s population will be on 5G networks. It means the
number of people using mobiles devices such as smartphones, smartwatches
and so on, will have great growth. As next generation, 6G communication
is expected to provide better services for users than 5G, such as a larger
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network coverage, high throughput and to accommodate large numbers of
users and low latency communication at the same time. Some novel tech-
nologies will be applied to 6G, including extremely large bandwidth (more
than 1,000MHz waves) and high Artificial Intelligence (AI), including net-
work services, business and network environment. Figure 1.1 [1] presents the
timeline of 6G communication.

Figure 1.1: Timeline of 6G wireless networks [1]

6G system is expected to attend a remarkable revolution of internet.
This revolution will completely differentiate 6G from previous networks and
evolve wireless communication from the “Internet of Things” to “Internet of
Intelligence”. Particularly, 6G need to support ubiquitous AI services from
the cloud network to edge devices and surpass the mobile networks. AI will
promote the development of 6G in designing and optimizing architectures,
protocols, and operations. 6G communication will support the following
three expected scenarios of applications in future wireless network systems:

• Enhanced Mobile Broadband-Plus (eMBB-Plus): In 6G, eMBB-Plus
will replace eMBB in 5G. eMBB-Plus can provide users with high data
rates, large network coverage area and high-quality of experience (QoE)
in data utilization and standards;

• Secure ultra-reliable low-latency communications (SURLLC): Vehicu-
lar communications in 6G could also largely benefit from SURLLC [4].
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SURLLC in 6G is an advancement of the URLLC and the mMTC in
5G It has more stringent demands on latency and reliability;

• Unconventional data communications (UCDC): Currently, the actual
meaning and composition of UCDC [5] lack proper definition. But
some of the following facets should be addressedi n 6G communication:
holographic, tactile, and human-bond communications.

6G is a research field for serving data transmitting services with applying
all new techniques. These various techniques are expected to be apply in 6G
in the future like Distributed Massive Multi-Input Multi-Output (MIMO)
system and Reconfigurable Intelligent Surface (RIS). Also, G. Trivedi [6]
explained that Wireless Multihop Network (WMN) is also one of the main
technologies in 6G, which can decentralize the calculations, organize network
automatically,reach high network capacity and be deployed in a short time.

However, there are still many problems that degrade the overall network
performance. Although WMN brings the attractive feature of increasing
network capacity, there are still many problems that degrade the overall
network performance. Without careful planning each relay nodes for every
data packet, it is difficult to efficiently utilize all nodes and increase network
capacity. Some of the challenges include high interference, overhead problem,
and highly susceptible to link failure.

We will briefly introduce and identify some of the problems of the WMN
wireless communication in this chapter by following the motivation, objec-
tives and approach through the research.

1.2 Problem Statement
With the development of society and the progress of technology of 6G, people
demand more higher requirements for wireless data transmission, especially
in terms of user experienced capacity, power consumption, ultra-low latency,
and so on. 6G wireless networks should increase the network spatial spectrum
and energy efficiency as much as possible while increasing the number of
users. WMN meets requirements by using other nodes as the relay nodes
and transmit messages from a source node to a destination node over longer
distance. Thus, WMN only can extend the network coverage, but it can
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degrade the network capacity drastically due to the uncertainty of source
node choosing a path to send the message and also the nature of multihop
fashion. In particular, the first problem is happened when the number of
nodes in the network is increasing, there are many data transmission paths
to be selected from a source node to the corresponding destination node by
an efficient path selection algorithm. Since the criteria and conditions of
each path are different, the result of the path selection has a great influence
on the entire network capacity. Second problem is occurred when a node
has to send not only its own message, but also other nodes’ messages in the
network, in which it can lead to high latency for the sent message to reach
its destination node. Besides that, the queuing time and processing time will
increase drastically when when the number of nodes is large.

Therefore, the problems addressed in this thesis are to use AI to select the
path for each source node to destination node and form the network topology
with the highest throughput in WMN. Besides that, it is also necessary to
solve the high latency problem caused by traffic congestion and the long
training time brought by AI.

1.3 Related Works and Motivation
This section elaborates the existing related works of this thesis into two
main parts. First, we investigate the network capacity analysis in the WMN.
Second, we summarize the studies of Factor Graph (FG), Nested Lattice
Code (NLC) and Deep Reinforcement Learning (DRL) in the WMN.

A plethora of research works on the network capacity in the wireless net-
works. These research works can be mainly divided into three categories, i.e.,
analytical modelling, network routing, transmit power control. In the analyt-
ical modelling, C. Fujimura et al. [7] proposed an analytical expressions for
maximum end-to-end throughput varying number of hops and payload length
in the string-topology network. Besides that, S. Rezaei et al. [8] considered
a routing policy and nodes’ distribution as well as medium access control
(MAC) layer together into analytical modeling of end-to-end throughput. In
the viewpoint of network routing, W. Lee et al. [9] and J. Gui et al. [10] are
jointly considered the node fairness and the energy saving when the routing
policy of wireless networks is designed, respectively. Some researchers also
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look into the routing problem in the tree-based structure topology. For exam-
ple, D. Eliiyi et al. [11] proposed a parallel algorithm to find all root nodes of
a network in which the root node can considerably reduce the overall energy
consumption and increase the network lifetime. Through this algorithm, the
root node can greatly reduce the computation time as well. Meanwhile, Y. Yu
et al. [12] studied the consensus transmit power control (CTPC) algorithm to
maximizing end-to-end throughput in the highly dense WMN environment.
The proposed CTPC algorithm is extended into the investigation of full-
duplex system for WMN environment. [13]. More specifically, A.T.P. Khun
et al. [14] presented an optimal achievable transmission capacity (OATC)
scheme that enables the transmission modes of mixture of concurrent and
sequential transmissions (MCST) scheme or concurrent transmission (CT)
only in the full-duplex WMN environment. This novel OATC scheme reveals
high transmission capacity with low transmit power and low interference
power regardless of the number of nodes is increasing.

For FG, Y. Mao et al. [15] studied the low complexity algorithmic frame-
work of FG for link loss monitoring in the centralized manner of wireless
sensor networks. The proposed algorithm iteratively updates the estimates
of link losses upon receiving or detecting the loss of recently sent packets by
the sensors. Similarly, W. Li et al. [16] focused on the nonparametric variant
of sum-product algorithm, called sequential particle-based SPA (SPSPA), for
FG to infer the multi-sensor target states over time in the distributed manner
of wireless sensor networks. Both studies show the great achievement of FG
in wireless networks. In recent year, C. Jiang et al. [17] applied the FG into
the real smartphone navigation system, i.e., Pedestrian dead reckoning ex-
ploring human walking gaits, in which the FG can effectively solve practical
application problems in the wireless communication.

A few of research works on the network capacity analysis using both
coding theory and factor graph representation. In the coding theory, X. Bu et
al. [18] applied the network coding in the WMN to solve maximum-minimum
optimization problem of cooperative communication. Their research work
can significantly increase the capacity of wireless networks. Besides that, they
also considered to jointly optimize relay node selecting, scheduling and flow
routing for the cooperative communication in the WMN environment. As for
the lattice coding theory, there are no studies that apply to the WMN. But
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according to J. Xue et al. [19], the lattice decoder can achieve low word error
rate (WER) for power-constrained wireless communications. On the other
hand, Y. Mao et al. [15] studied the low complexity algorithmic framework
of FG for link loss monitoring in the centralized manner of wireless sensor
networks. The proposed algorithm iteratively updates the estimates of link
losses upon receiving or detecting the loss of recently sent packets by the
sensors.

In 1959, the concept of Machine Learning (ML) was first proposed by
Arthur Samuel in [20]. However, limited by the technology at the time,
hardware equipment could not meet ML’s demand for high computation. In
1970s, ‘AI winter’ happened caused by pessimism about machine learning
effectiveness. In recent years, with the development of hardware technology,
the computing power of processors has become stronger and stronger, and
ML has gradually become popular. With the popularity of ML, there have
been many studies combining it with wireless networks in recent years. J.
Rosenberger et al. [21] apply DRL Multi-Agent System (MAS) in different
devices to decentralize the calculation to locate the resources in Industrial
Internet of Things (IIoT). Even the systems and resources are keep changing,
there method runs very well and time is very low, which inspired us to use
DRL to reduce computation time.

Among all kinds of ML, Reinforcement Learning (RL) is the most suit-
able for solving path selection problems and some researchers have applied it
to the WMN. D. A. Dugaev et al. [22] presented an application of RL-based
algorithms to the routing task in wireless multihop topologies and a flexi-
ble, reliable, adaptive packet forwarding scheme has been developed, which
showed significantly better results in packet loss ratio and route recovery
time values, compared to the classical routing approach, widely used in the
current ad hoc multihop networks.

RL has many derivative algorithms. Among them, Q-learning, as a model-
free RL algorithm, processes data without environment model and adapta-
tion, is widely used in the path selection problem of wireless networks. Re-
searchers have applied Q-learning to various situation. Some of them focus on
the interference channel like T. Wongphatcharatham et al. [23], who propose
the multi-agent Q-learning to optimize the transmit power of transmitters
within interference channel by maximizing Signal-to-Interference-plus-Noise
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Ratio (SINR). There results shows that transmitters are able to allocate own
transmit power and get better sum-rate than the traditional methods such
as the maximum power allocation and the random power allocation. Some
of them focus on the end-to-end transmission rate like X. Wang et al. [24],
who propose a Q-learning-based relay selection algorithm to decentralized
the computation of nodes in the multihop clustered networks based on the
Q-learning and resulting a near-optimal E2E rate and better performance
than traditional decentralized solutions from one source node to one destina-
tion node. But they ignore the interference and the situation where multiple
users transmit data at the same time. With these research results, we de-
cided to use Q-learning to solve the path selection problem proposed in this
thesis.

Through these related research works, we realize that the study of using
NLC design, FG approach and AI, especially Q-Learning in Reinforcement
Learning (RL) on the influence on the network capacity of a WMN is not
enough and needs more investigate. Thus, our motivation of this thesis is to
further investigate the breakthroughs of network capacity improvement by
using Q-Learning, NLC design and FG approach in the WMN environment.

1.4 Research Objectives
The objectives of this thesis are:

• Examine the performances of network capacity and computation time
in WMN with FG and NLC;

• Propose novel fDRL scheme with two learning path selection algorithms
for the Q-Learning to achieve better network capacity while reducing
the computation time with the aid of FG.

1.5 Research Approach
To mitigate the problems addressed in this thesis, we consider DRL with
both FG and NLC approaches in our research study. For first aforementioned
problem, we apply FG-based DRL (fDRL) scheme to select a relay node for
each hop and find best path to the destination node. With these paths, a
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resultant of network topology that can achieve a better network capacity can
be established. For the second problem, NLC that is used to reduce the link
error probability of a channel can correct the errors through the integration
of Compute-and-Forward (CoF) strategy. By the way, the entire network ca-
pacity can be improved more by reducing the required number of time slots.
Besides that, We also propose two novel learning path selection algorithms,
i.e., SNR-based Learning Path Selection (NLPS) algorithm focuses on in-
creasing the end-to-end throughput from source node to destination node
considering SNR as reward of DRL; and SINR-based Learning Path Selec-
tion (INLPS) algorithm uses the results obtained from NLPS and considers
SINR as reward during the training phase of DRL to find the appropriate
path for any source node.

After reviewing the basic study of WMN, NLC and FG, we first evaluate
the performance of the network capacity and computation time using FG
and NLC to select the best network topology and compare it with not using
these two tools as the first objective to define the research methodology of the
research. Then, two novel path selection algorithms based on Q-Learning in
WMN called NLPS algorithm and INLPS algorithm is proposed to obtain the
maximum achievable capacity of the network. NLPS algorithm tries to find
the best path with highest SNR for each node to the root node considering
there are no interference in the channel. INLPS consider the interference of
channel as SINR and mitigate the influence from interference by selecting
the path with highest SINR for each node to the root node. Therefore, our
main methodologies for this research are applying the NLPS algorithm and
INLPS algorithm to find the best network topology in the WMN to optimize
network capacity. And then, in the transmission layer, we apply NLC and
Compute-and-Forward (CoF) to encode and decode for information and send
data packet to increase the network capacity further by reduce the number
of time slots.

1.6 Research Methodology
The research methodology is defined to revise the performance of FG, NLPS,
INLPS adn NLC in WMN as the following workflow shown in the following
Figure 1.2.
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Figure 1.2: 5-step research methodology

After reviewing the related research in the literature reviewing section as
the very first step of the methodology, in the system model step, the WMN
model with D2D communication is considered as network model. Also, other
models like interference model are defended in this step.

After defining the system model, the theoretical and numerical simulation
is conducted to evaluate the netwprk capacity, computation time and number
of iterations in WMN model with several scenarios: applying FG, applying
FG and NLPS and applying INLPS. NLC is also used in transmission phase
of each scenario. The capacity means the total time required to send all
packets that each node needs to transmit to the root node divided by the
total size of data packets that have been transmitted. The computation time
is defined as the time spent to run the algorithm programs in each scenario.
Depending on the hardware on which the program is running, the calculation
time will change. The evaluation of number of iterations is only considered in
the scenarios of NLPS and INLPS algorithms, including the performance of
changes in parameters of RL (learning rate, discount factor and threshold).

The simulation results got from numerical simulation is analyzed and
made into figures to analyze the performances of proposed algorithms. By
comparing it to other results of related works, the system models are revised
and reviewed. After simulating again, the results and performances is ana-
lyzed until get optimal one. The research report and program are written
after that as a thesis.
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1.7 Thesis Organization
The thesis of the research is organized with three main sections with a liter-
ature review to in-deep understand the background of the research, defining
the research methodology to study the trade-off between NLPS algorithm
and INLPS algorithm in the WMN, and formulating the research problem.
The detail of the thesis is organized by the following:

In chapter 1: as the brief introduction section, the background introduc-
tion of the research, some of the challenge problems of WMN and the focus
research problem of the research followed by the research motivation and ob-
jectives of the study are described. Besides that, the methods or approaches
to investigate for solving the problem the research are briefly explained.

In chapter 2: the literature review of the fundamental knowledge related
to wireless networks and basic theory of WMN, FG, NLC and DRL, including
some methods used in this thesis to apply FG, NLC and DRL to WMN to
achieve the objectives.

In chapter 3: this chapter details of fDRL scheme, system models, how
to apply FG and NLC to the WMN. Besides that, two novel path selection
algorithms, NLPS and INLPS, are proposed. The formulas and algorithms of
NLPS and INLPS which improved by Q-Learning and applying to the WMN
for path selection are also described in detail to achieve the two objectives
of this thesis and propose a possible solution to the research problem.

In chapter 4: this chapter shows the parameters and settings of the nu-
merical simulations. Also, the results of simulations are included in this
chapter. The simulation results are discussed in detail to show the perfor-
mance gain of the research in terms of network capacity, computation time
and some other performance matrices.

In chapter 5: this chapter is the conclusion of the thesis to summarize the
research and is concluded with the advantages of the proposed algorithms.
And then, the contributions and further works for additional investigation of
future wireless communication are discussed in this chapter.
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Chapter 2

Background

The reviews of the prerequisites fundamental knowledge for this research are
evaluated in this chapter. First, a brief introduction about D2D network and
WMN is explored and then the related works and principles of FG and NLC
are illustrated. Next part is the basic knowledge of DRL. Application of each
technology in WMN are also reviewed and discussed.

2.1 Device-to-Device Communication
D2D communication is a type of wireless communication technology that en-
able direct communication between the nearest wireless devices rather than
through the infrastructure. With D2D communication, the data between a
device pair can be transmit without going through the main network such
as Access Points (APs) or Base Station (BS) as long as they are close. D2D
communication is a concept for improving the device performance by allow-
ing direct transmission between very close pairs of users. However, with the
development of hardware technology, longer-distance D2D communication
has also been gradually realized. As 5G promises more devices to be con-
nected faster in a small cell, direct communication with the infrastructure
mode of D2D communication become one of the essential technologies to
support 5G wireless networks [25]. Therefore, current research trends have
shown that D2D will be one of the technologies of the new next-generation
mobile network.

Although D2D communication offers many benefits over LTE systems,
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there are several problems in terms of interference mitigation, device dis-
covery and synchronization, mode selection, security, and Quality of Serves
(QoS). To realize the potential of D2D communication, intensive research
has been carried out by both academia and industry to address these issues.
In the survey paper, [26], the authors categorize D2D communication based
on spectrum reuse and provide the-state-of-art based on the classification in
terms of performance metrics studied and conclude with the advantages and
disadvantages of the spectrum sharing schemes, common assumptions and
the maturity of D2D communication in the real world.

2.2 Wireless Multihop Network
A wireless network is a network that consists of several nodes that commu-
nicate via wireless channels. Depending on the architecture, wireless net-
works can be divided into two categories. Before the use cases with ad hoc
paradigm, the traditional wireless system in the cellular paradigm is with the
static infrastructure with Access Points (APs) and Base Station (BS). Two
users require to go through the BS for communications in the infrastructure
network. However, centralizing at the APs or BS in infrastructure mode can-
not fulfil and have some demand to serve the increasing number of devices
because of the long-distance communication.

A Wireless Multihop Network (WMN) is set of wirelessly connected nodes
without an aid of centralized infrastructure that all the nodes process cooper-
atively and forward any packet via relaying nodes by multihop fashion. With
the direct communications of the multihop fashion, D2D communication can
extend the range of the transmissions. Using other nodes as the relay nodes,
the packets can be transmitted from a source node to a destination node over
longer distance. Thus, WMN not only can extend the network coverage, but
also can achieve better network capacity by using the relay nodes strategy.
Compared with traditional wireless networks, the WMN can use each user
in the network as an AP to transmit data without a BS. This will greatly
reduce the cost of building BS for the operating company. Figure 2.1 shows
an example of a wireless multihop network.

Although the WMN has advantages such as decentralization, high net-
work capacity, and long transmission distance, it also has many problems.
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Figure 2.1: Example of a multihop wireless network

The first problem is that, because the increasing number of nodes in the net-
work, there are many data transmission paths to be selected from the source
nodes to the corresponding destination nodes by an efficient path selection
algorithm. Since the criteria and conditions of each path are different, the
results of path selection have great influence on the entire network capacity
problem. Therefore, it is necessary to design a path selection algorithm for
WMN that can effectively select path for each nodes and optimize network
capacity, which is one of objectives of this research. Second problem is oc-
curred when too many nodes send messages to a single node, in which it
can lead to high latency for the sent message to reach its destination node.
Besides that, the queuing time and processing time will increase drastically
when when the number of nodes is large.

13



2.3 Airtime Link Metric
Airtime reflects the amount of channel resources consumed by transmitting
the frame over a particular link and the extensively framework allows this
metric to be overridden by any path selection metric as specified in the mesh
profile. The IEEE802.11s mesh WLAN specification of Airtime Link Metric
(ALM) [27] can capture the link quality as a function of the estimated frame
loss probability as follows:

l =
(

O + Bt

R0

) 1
1 − ef

(2.1)

where l is airtime cost, O is channel access overhead, which includes frame
headers, training sequences, access protocol frames, and so on. Here O equals
to the sum of physical (PHY) header, MAC header, acknowledgement (ACK),
distributed coordination function inter-frame space (DIFS), short inter-frame
space (SIFS), slot time and minimum of contention window (CWmin). Bt is
number of bits in test frame, R0 is basic rate for test frame and ef is Frame
Error Rate (FER). ALM can use a numerical value to express the quality of
the link. l is small means the quality of the link is better. For example, a
node send test frames (8192 bits) through a link with data rate of 1 Mb/s.
the channel access overhead is 65 µs, PHY header is 192 µs, ACK is 304 µs
and slot time is 9 µs. The total time is 570 µs. This airtime and overhead
value is converted to units of 0.01 TU (10.24 µs), i.e., 855.66 (rounded to
856). If the frame error rate is 80%, the airtime cost (l) is 4280. In this
thesis, airtime cost is used by FG to identify an efficient radio-aware path.

2.4 Factor Graph and Sum-Product Algorithm
This section introduce the basic knowledge of factor graph and sum-product
algorithm. The application of factor graph in the WMN also included in this
section.

2.4.1 Factor Graph

A Factor Graph (FG) is a bipartite graph representing the factorization struc-
ture of a global function into a product of smaller local functions, each local
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function contains the product from other factor. FGs have two types of
nodes:

• Variables, which can be either evidence variables when their value is
known, or query variables when their value should be predicted;

• Factors, which define the relationships between variables in the graph
and represent functions on subsets of the variables.

Figure 2.2 is an example of FG. From X1 to X4 is variables and from f1

to f3 is factors. Each factor can be connected to many variables and comes
with a factor function to define the relationship between these variables. Each
factor function has a weight associated with it, which describes how much
influence the factor has on its variables in relative terms. In other words, the
weight encodes the confidence we have in the relationship expressed by the
factor function. If the weight is high and positive, we are very confident in
the function that the factor encodes; if the weight is high and negative, we
are confident that the function is incorrect. The weight can be learned from
training data, or assigned manually.

Figure 2.2: Example of a factor graph

There are three main advantages to using factor graphs when designing
algorithms:

• FG can represent a wide variety of problems. By laying bare the compo-
sitional structure of the problem, they expose opportunities to improve
computational performance.
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• FG is beneficial in designing and thinking about modelling your prob-
lem, even aside from performance considerations.

Because many optimization problems in robotics have the locality prop-
erty, FGs can model a wide variety of problems across AI and robotics.

2.4.2 Sum-Product Algorithm

Sum-Product (SP) is an algorithm to compute the global function of FG.
According to the structure of FG, it calculates the local function at each
factor and variable as the products of them, and then combines the local
functions by multiplication and addition them together, Finally at the root
factor/variable, the global function is obtained.

Figure 2.3: A modified FG for the product lAB + (lAC · lCD)

In this thesis, to apply FG to WMN, SP is modified. Figure 2.3 is an
example of modified FG. In this FG, each factor is represented as a node.
All the nodes are equal to each other in WMN environments and the factor
value of a node can be neglected. Each variable is only connected to two
nodes, and its value is denoted as l, which is airtime cost and is calculated
by ALM. For root node A, the relation between node C and node D is parent
node and child node, so the product of node E is multipling them together,
which is lAC · lCD. Similarly, node B and node C are sibling nodes, so the
product from them is sum them together, which is
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F (A) = lAB + (lAC · lCD) (2.2)

where F (A) is the global function of root node A. The global function
is small means good performance of this network structure. Compared with
other algorithms, the advantage of the SP algorithm is that it considers the
structure of the tree-based graphs to calculate the weights, which makes the
global function better reflect the state of the network topology and is more
suitable for the WMN environment.

2.5 Lattice Coding Theory
This section introduces the basic formulation of lattice coding theory [28] for
an additive white Gaussian noise (AWGN) channel of the wireless communi-
cations.

2.5.1 Nested Lattice Code

A lattice Λ is an infinite structure with no power constraint [28]. A lattice
code (LC) is a finite codebook designed to satisfy a power constraint. In
other words, LC is an error-correcting code. The messages are represented
as real numbers and transmit through lattice points. With the help of these
points, the messages can be encoded and decoded correctly even some bits
of codewords are changed by noise. The encode function of LC is given by

x = G · b (2.3)

where x is codeword, G is generator matrix, and b is messages (informa-
tion integers). With different generator matrix, the codeword is different.
A vector x is a lattice point if it can be formed as a linear combination of
the basis vectors scaled by positive integers b. For decoding, the function is
written as

x̂ = argmin
λ∈Λ

∥ y − λ ∥2 (2.4)

and this equation is frequently expressed using quantizer function, x̂ =
QΛ(y). Lattice decoding tries to find the lattice point x̂ ∈ Λ, which is closest
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to an arbitrary y in the Euclidean distance. The y is the received messages
through the channel model.

Nested Lattice Code (NLC) is defined using two lattices: the coding
lattice and the shaping lattice. The coding lattice gives the lattice code
its error-correcting properties. Whereas, the shaping lattice enforces the
power constrain for the lattice code. In this thesis, we use the NLC with
8-dimensional LC (E8 lattice code) and generator matrix G is

G =



1/2 0 0 0 0 0 0 0
1/2 1 0 0 0 0 0 0
1/2 −1 1 0 0 0 0 0
1/2 0 −1 1 0 0 0 0
1/2 0 0 −1 1 0 0 0
1/2 0 0 0 −1 1 0 0
1/2 0 0 0 0 −1 1 0
1/2 0 0 0 0 0 −1 2


NLC can control the transmit power level by mapping the original power at
the lattice point of the shaping lattice to the constrained power at the lattice
point of the coding lattice.

As shown in Figure 2.4, in this lattice example, Λc is the coding lattice
and Λs is the shaping lattice. If a codeword is transmitted with the original
power, the distance between this point and zero point is very far. It is
highly recommended to be shaped back into the area of the shaping lattice
Λs. With this, the transmit power is constrained and saved even though
the lattice decoding will result the same. In NLC, the decoding function is
different with normal LC, which is given by

x = G · b − K · QΛs(
G · b

K
) (2.5)

Since we consider the NLC with 8-dimensional LC (E8 lattice code), i.e.,
A8/4A8, so the positive integer, K = 4 and b is chosen from 0 to K − 1
randomly.
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Figure 2.4: Illustration of nested lattice code

2.5.2 Compute-and-Forward Strategy

A compute-and-forward (CoF) strategy that enables relay node to decode
linear equations of the transmitted message using the noisy linear combina-
tions provided by the channel. In other words, CoF is used to reduce the
number of time slots when two nodes send messages to one node at the same
time. The codewords are combined linearly and sent though the channel. At
receiver, those codewords can be decoded by lattices correctly even with the
presence of noise. Figure 2.5 shows the system model of CoF strategy.

In the figure, w is messages and can be encoded to the corresponding
codewords x. Upon transmitted over an AWGN channel H with thermal
noise z, they become the receiving codewords y, which are decoded to the
receiving messages u. Because CoF strategy relies on codes with a linear
structure, NLC can be used in it [29]. In this thesis, we combine two x to
one y, which is shown in Figure 2.6. In particular, the NLC is used to reduce
the error on the messages, whereas the CoF is used to reduce the number of
time slots when transmitting messages.

In Figure 2.6, two codewords x1 and x2 are sent through channel and
become h1x1 and h2x2 scaled by channel coefficients vectors h1, h2. Since

19



Figure 2.5: System model of L transmitters reliably communicate to M relay
nodes over an AWGN channel

Figure 2.6: Linear combination of codewords on the lattice points
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the linear combination y is not on a lattice point, to decode it correctly, y
needs to be scaled by a1, a2 to a proper lattice point, which is y′. Because
the thermal noise is also scaled at the same time, it is important to find a
suitable set of a1, a2. It can be calculated by

a = PhTa
1 + P ∥ h ∥2 , ∥ a ∥2< 1 + P ∥ h ∥2 (2.6)

where P is the transmit power. The decoder will decode correctly knowing
a1, a2.

2.6 Deep Reinforcement Learning
This section introduces the basic knowledge of deep reinforcement learning,
including principles, methods and practical applications in WMN.

2.6.1 Reinforcement Learning

Reinforcement Learning (RL) is a research field of machine learning in which
an agent learns via trial and error. This problem is often modeled mathe-
matically as a Markov decision process (MDP).

Figure 2.7: Diagram of the loop recurring in reinforcement learning algorithm

In Figure 2.7, RL algorithm contents several elements: agent, environ-
ment, state s, action a and reward r. The learning process of agent start by
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receiving the current state sm from the environment. Agent is the main part
of RL, which is AI and decides to do which action depending on the current
state sm and reward rm . After the agent makes a decision, the action am he
makes are sent to the environment. The environment calculate reward rm+1

this action am earned and sent it to the agent with next state sm+1. Then
agent do decision again based on this state and reward. With looping this
algorithm continuously, the agent tries to find a near-optimal policy, the best
action at state, by maximizing the expected cumulative reward.

2.6.2 Q-Learning

Q-learning that is known as an independent model of the RL algorithm is
able to learn the action value for a particular state in the defined environment
or system. The independent model of Q-learning does not rely on the model
of the environment or system. Besides that, the model can not only deal with
the problem in the stochastic conditions, but also its reward does not depend
on the dynamically change of adaptations or adjustments. F. S. Melo [30]
explained that Q-learning is used to obtain an optimal state by maximizing
the expected value of the total reward over any and all successive iteration
from the origin of the current state for any Finite Markov Decision Process
(FMDP). In other words, Q-learning can search an optimal action as the best
selection policy for any given FMDP with the given infinite exploration time
and in the case of a fully-random policy or a partly-random policy. In the
Q-learning, “Q” is a function that is also called Q-function. This Q-function
computes the expected value of the instantaneous reward for an action to be
taken in the given state. In general, the Q-function can be written as:

Qnew(sm, am) = (1 − α)Q(sm, am) + α(rm + γQmax(sm+1, a)) (2.7)

where sm and sm+1 are current state and next state, am and rm are action
and reward, α and γ are learning rate and discount factor. The learning rate
determines to what extent newly acquired information overrides old informa-
tion. A factor of 0 makes the agent learn nothing (exclusively exploiting prior
knowledge), while a factor of 1 makes the agent consider only the most recent
information (ignoring prior knowledge to explore possibilities). In fully deter-
ministic environments, a learning rate α = 1 is optimal. When the problem
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is stochastic, the algorithm converges under some technical conditions on the
learning rate that require it to decrease to zero. The discount factor deter-
mines the importance of future rewards. A factor of 0 will make the agent
shortsighted by only considering current rewards rm, while a factor approach-
ing 1 will make it strive for a long-term high reward. If the discount factor
meets or exceeds 1, the action values may diverge. Starting with a lower
discount factor and increasing it towards its final value accelerates learning
[31].

In Q-function, updated Q-value Qnew(sm, am) is the sum of three factors:

• (1−α)Q(sm, am): the current value (weighted by one minus the learning
rate)

• αrm: the reward rm = r(sm, am) to obtain if action am is taken when
in state sm (weighted by learning rate)

• αγQmax(sm+1, a): the maximum reward that can be obtained from the
next state sm+1 (weighted by learning rate and discount factor)

The Q-values form the Q-table and are updated with each training. Agent
decided the next action according to the Q-values in the Q-table.

There are generally two ways to break out of the loop of Q-learning and
terminate training. One is to preset a target reward value. When the agent’s
reward reaches this value, it means that the training is completed and the
training is terminated. But it is difficult to set an appropriate reward value
when the training results are completely unpredictable. Another way is to set
a threshold. When the reward obtained by the agent changes less than the
threshold within several iterations, the training is terminated, and the policy
at this time is regarded as a near-optimal one. This approach maximizes
reward and leads to better results and it is used in this thesis.

Q-learning is widely used in path selection problems. In the path selection
problem, users need to choose the next path according to their own situation
until they reach the destination, which is very consistent with the operation
method of Q-learning. In WMN, the selection of multihop relay nodes from
the source node to the destination node is a path selection problem. Here
each node acts as an agent and action refer to the next selected multihop relay
node. In each selection of multihop, nodes need to make choices based on
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their own network environment and get reward according to the choices they
make to learn and optimize the policy, which is to maximize the objective
parameters of WMN. The Q-learning algorithm used in this thesis will be
discussed in detail in Chapter 3.

2.6.3 Deep Learning

Deep learning is a machine learning technique that teaches computers to do
what comes naturally to humans: learn by example. Deep learning is a key
technology behind driverless cars, enabling them to recognize a stop sign, or
to distinguish a pedestrian from a lamppost. It is the key to voice control in
consumer devices like phones, tablets, TVs, and hands-free speakers. Deep
learning is getting lots of attention lately and for good reason. It’s achieving
results that were not possible before.

In deep learning, a computer model learns to perform classification tasks
directly from images, text, or sound. Deep learning models can achieve state-
of-the-art accuracy, sometimes exceeding human-level performance. Models
are trained by using a large set of labeled data and neural network architec-
tures that contain many layers.

Most deep learning methods use neural network architectures, which is
why deep learning models are often referred to as deep neural networks.
Figure 2.8 shows a neural network. The term “deep” usually refers to the
number of hidden layers in the neural network. Traditional neural networks
only contain 2-3 hidden layers, while deep networks can have as many as
150. Deep learning models are trained by using large sets of labeled data
and neural network architectures that learn features directly from the data
without the need for manual feature extraction.

2.7 Summary
This chapter has described the fundamental research background of wireless
communications, including Device-to-Device (D2D) and Wireless Multihop
Network (WMN). Besides that, the explanation of ALM and its calculation
are elaborated. Furthermore, the basic knowledge of three used techniques
in this thesis, i.e., Factor Graph (FG), Nested Lattice Code (NLC) and rein-
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Figure 2.8: Neural network

forcement learning to the WMN environment in order to solve the problem
statements, which has been presented in the previous chapter.
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Chapter 3

Proposed Path Selection
Schemes

This chapter mainly introduces Factor Graph-based Deep Reinforcement
Learning (fDRL) scheme with two novel path selection algorithms proposed
in this thesis: SNR-based Learning Path Selection (NLPS) algorithm and
SINR-based Learning Path Selection (INLPS) algorithm, including Princi-
ples, formulas, algorithms and other details. Besides that, the system model
used in this thesis is also described.

3.1 System Model
The system model of the research methodology is described in this section,
including network model, channel model, interference model and link capac-
ity model.

3.1.1 Network Model

In this thesis, the Wireless Multihop Network (WMN) is considered as net-
work model. Device-to-Device (D2D) communication is applied, which means
user in wmn works as an Access Points (APs) to connect to each other with
wireless links and transmits data to other users directly without using Base
Station (BS). Here we assume that the network topology of a WMN can be
modelled as a graph network model. In this model, all nodes have same trans-
mit power, bandwidth, antenna gain and received signal strength indicator
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(RSSI). Also, nodes are stationary and each node must have a connection
to other node(s). For transmitting data, a node can send to or receive from
only one other node in a single time slot. An example of WMN model used
in this thesis is shown in Figure 3.1 of 6 nodes with full-duplex node and
half-duplex node. In this thesis, we assume that all nodes are working in
full-duplex mode. Among these nodes, one node will be selected as the root
node and connected to the Ethernet. Other nodes link with the root node
using multihops and access the Ethernet.

Figure 3.1: An example of WMN model

3.1.2 Channel Model

The network topology influences the network capacity. In this thesis, the
wireless nodes are random uniformly distributed in the coverage area and
the distance between two wireless nodes i(xi, yi) and j(xj, yj) is computed
for the use of Physical Layer (PHY) model as introduced below.
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dij =
√

(xi − xj)2 + (yi − yj)2 (3.1)

The transmit power of each node is fixed in the network model of this
thesis, therefore the received power at the receiving node j based on the
distance between two nodes and the shadowing result from objections. By
consideration, the wall attenuation among two nodes, Wij, the shadowing
attenuation from objections, Xσ, and the channel gain between two nodes is
considered on the Log-distance Fading model with the following pathloss:

PLij = PL0 + 10 · β · log10(
dij

d0
) − Wij + Xσ (3.2)

where PL0 is assumed as Friis free space model, PL0 = 20 · log10(d0), β is
attenuation constant or pathloss exponent and d0 is decorrelation distance by
considering instantaneous fading as a Gaussian random variable (Xσ) with
zero mean and standard deviation of σ and Wij is the wall attenuation.

The power ratio at the receiving node j with the signal attenuation be-
tween wireless node i and node j according to the pathloss PLij is

Gij = 1

10
(

P Lij
10

) (3.3)

Gij · Pi is the receive power at receiving nodes

3.1.3 Interference Model

After computing the channel gain, the Signal-to-Interference-plus-Noise Ra-
tio (SINR) of link can be obtained. SINR is calculated based on the receive
power, interference during transmission and noise in the channel.

The interference model in this thesis is defined as the ratio between the
receiving signal power of the on-going transmission to the total interference
power of all other active transmitting nodes and thermal noise of the receiving
system, which manifest itself in the calculation of SINR. Figure 3.2 depicts
the illustration of signal to interference and noise ratio.

Node i is sending messages to node j. At the same time, node 1 to k are
also sending messages to other nodes besides node i and node j, where K

will be the total number of active interfering nodes in the network of WMN.
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Figure 3.2: Illustration of signal to interference and noise ratio

The SINR at the receiving node j with the transmit power Pi is

SINRij = Gij · Pi

Noise + Interference
(3.4)

and
Noise = ηj · B (3.5)

where ηj is noise level at receiving node j. In this thesis, all nodes are in the
same channel and the bandwidth and noise level is the same. The noise is
defined as Additive White Gaussian Noise (AWGN). B is the bandwidth of
the channel.

The interference power is

Interference =
∑

k∈K,k ̸=i

Gkj · Pk (3.6)

where k denotes the interfering nodes and P is the transmit power.
In addition, the Signal-to-Noise Ratio (SNR) in this thesis is defined as

the ratio of receive power and noise, which is

SNRij = Gij · Pi

ηj · B
(3.7)
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3.1.4 Network Capacity Model

The link rate (bps) between sending node i and receiving node j is computed
under the level of SINR with AWGN channel model by applying Shannon’s
capacity theorem.

Rij = B · log2 (1 + SINRij) (3.8)

The network capacity is computed based on the link rate of on-going
transmission and time slot in the networks. For each link, the transmission
time is the size of data packet L divided by link rate, which is

τi = L

Ri

(3.9)

A required time slot (Tv) is defined as the maximum time for data trans-
mission of the number of active transmitting nodes at vth time slot, which
is

Tv = max
i∈I

{τi} (3.10)

where v is the number of time slots and I is the set of nodes sending data
packets in this time slot.

Network capacity (Ca) is defined as the total number of sent packets from
all the nodes to a root node is divided by the total of required time slots,
which is

Ca = (N − 1) · L
V∑

v=1
Tv

(3.11)

where N is total number of nodes in WMN and V is total of required time
slots. We assume that each node has only one data packet to send to the
destination node in this thesis.

The E2E throughput U from the source node S to the destination node
D is defined as the sum of the link rates of all links on the path, which is

U =
M∑

m=0
Rnm nm+1 , n = {1, 2, · · · , N, n ∈ S, n ∈ D} (3.12)
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3.2 Proposed FG-based DRL Scheme
Factor Graph-based Deep Reinforcement Learning (fDRL) scheme proposed
in this thesis is shown in Figure 3.3. It consists of five parts. DRL core
combines with Factor Graph (FG), Learning Path Selection (LPS) algorithm,
and Nested Lattice Code (NLC). In FG, Shortest Path Spanning Tree (SPST)
is used to transfer WMN to a tree-based network topology and sum-product
algorithm calculates and selects best root node. Next, two LPS algorithm
based on Q-learning, which are NLPS and INLPS algorithm are proposed.
NLPS is modified from [24] for multiple sources (including relay nodes) to
single destination and INLPS is proposed by me. At last, Compute-and-
Forward (CoF) with NLC is applied to reduce time slots in transmitting
phase. The constraint of fDRL scheme is that it can be only applied to tree
network topology.

Figure 3.3: Proposed fDRL scheme

3.3 Factor Graph Approach
A Factor Graph (FG) is a bipartite graph representing the factorization struc-
ture of a global function into a product of smaller local functions, each local
function contains the product from other factor. The global function can rep-
resent the whole FG. Using the sum-product algorithm, the global function
can represent the whole FG, which can determine the best network capacity
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from a tree-based structure topology.
In the NLPS algorithm, the role of FG is to prepossess the nodes in the

WMN, and filter out the root nodes which is most likely to generate high
network capacity for the NLPS algorithm, thereby reducing the number of
iterations amount of the NLPS algorithm.

FG prepossesses the nodes through the following three steps:

1) Use Dijkstra’s algorithm to find the SPST;

2) Calculate total link weight of SPSTs;

3) Compare the total link weight and Select the best-metric path.

In step 1, the nodes and links in WMN can be represented into the undi-
rected graph. As shown in Figure 3.4, for each node in WMN as the root
node, Dijkstra’s algorithm is used to find the path from root node to all other
nodes. Dijkstra’s algorithm is an algorithm for finding the shortest paths be-
tween nodes in a graph. If the link is selected by the Dijkstra’s algorithm,
it becomes logical connected link with a weight calculated by ALM. Whit
this algorithm, the shortest path from the root node to all other nodes is
selected to form a tree-based topology. This topology is called Shortest Path
Spanning Tree (SPST), which has minimum weight paths from root node to
all the other network nodes. Each node in WMN can be used as the root
node and generate its own SPST, so the number of nodes is consistent with
the number of SPSTs.

Next, in step 2, The total link weight of each SPST is calculated. The
weight of each link is represented by airtime cost, which is calculated by
ALM and the lower the value, the better the quality of the link.

In general, the total link weight is obtained by adding the weight of each
link and this is also done in the Dijkstra’s algorithm. But this way is diffi-
cult to distinguish which SPST is better. Besides that, in the actual network
environment, the structure of the network will also have a great impact on
the performance of the entire network. Therefore, simple summation method
cannot accurately and completely represent the quality of the network. In-
stead of this method, in this papaer we regard the SPST as a FG, and use the
sum-product algorithm to calculate its total link weight. The sum-product
algorithm performs addition and multiplication according to the relationship

32



between nodes, therefore the total link weight is also affected by the network
topology. Compared to simple summation method, sum-product algorithm
can better distinguish SPSTs.

Figure 3.4: SPST computation for node A by Dijkstra’s algorithm

Figure 3.5 is applying FG and the sum-product algorithm on SPST of
node A is shown. l is ALM cost of the link and can be calculated by ALM.
In FG, we assume all the nodes are equal in the WMN environment and
the factor value of a node can be neglected. For root node A, the relation
between node E and node B is parent node and child node, so the product of
node E is multiplied them together, which is lAE · lEB. Similarly, the product
of node F is lAF · lF D. Node C, node E, and node F are sibling nodes, so the
product from them is summing them together, which is

F (A) = lAC + (lAE · lEB) + (lAF · lF D) (3.13)

where F (A) is the global function of root node A. This global fucntion rep-
resents to the totak link weight. The total link weight is small means good
performance of this network topology.

At last, in step 3, After the link weights of each node are calculated by
sum-product algorithm, these SPSTs are compared to each other with their
own total link weights and the smallest one is selected as the best one. As
shown in Figure 3.6, by comparing the total link weight of SPST for different
root nodes, the best-metric path is selected.

33



Figure 3.5: Applying FG and sum-product algorithm on SPST of node A

Figure 3.6: Best-metric path selection of a SPST

With FG, the best network topology is selected more efficiently and this
kind of routing structure can optimize the overall network capacity. The
root node of this best network topology is passed to the NLPS algorithm as
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the preprocessing result of FG and is used as the root node in the NLPS
algorithm for learning phase. The algorithm and flowchart of FG is shown
in Algorithm 1 and Figure 3.7

Algorithm 1 Factor Graph Algorithm

Definition: l is airtime cost, F is global function, ALM is airtime link metric
Input: Position of nodes
Output: Root node D

1: Calculate l of each link using ALM (2.1)
2: for each node n do
3: Set D = n

4: Find the SPST of n by applying Dijkstra’s algorithm with l as weight
5: Calculate F of SPST using sum-product algorithm
6: end for
7: Select the best F as output root node D
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Figure 3.7: Flowchart of FG algorithm
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3.4 SNR-Based Learning Path Selection Al-
gorithm

SNR-based Learning Path Selection (NLPS) algorithm is a derivative al-
gorithm based on Q-learning. Same as Q-learning, the objective of NLPS
algorithm is to maximize the reward. In NLPS, the reward r for using the
link between node i and node j is equal to the SNR of this link, which is

rij = SNRij (3.14)

Since SNR is used, not SINR, as reward, NLPS algorithm will look for the
path with the highest SNR and ignore the effect of interference between links.
Having the highest SNR on this path means having the highest E2E rate.
When the network topology is initialized, it is not yet possible to determine
the links for transmission, the interference and SINR cannot be calculated.
Therefore, the NLPS algorithm has practical significance in establishing net-
work topology.

To apply NLPS algorithm, the nodes in WMN need to be layered ac-
cording to the root node provided by FG and transmission range calculated
by RSSI. As shown in Figure 3.8, all nodes are divided into M layers. m is
the number of layers and km is the number of nodes in the mth layer. Cm

means the mth layer and nm
km

means the kth node in mth layer. In layer m,
the total number of nodes is Km. Nodes are layered by transmission range.
According to the system model of this thesis, all nodes send messages to the
root node D, forming to a tree-based topology. Nodes can only send data to
nodes in adjacent layers. They cannot send across layers or to nodes in the
same layer.

Next, NLPS algorithm is applied to select path. The algorithm is com-
posed of three phases: initialization, training, and selection.

3.4.1 Initialization

During initialization phase, reward tables is generated by Km−1 × Km first.
Each pair of adjacent layers has one reward table containing the rewards of all
possible pairs of state and action, which is sending nodes and receiving nodes.
Because in NLPS algorithm, the reward is equal to SNR, these reward tables
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Figure 3.8: Nodes layered by transmission range in WMN

can be obtained before the training phase. The reward table is described by
Table 3.1. In this table, m is the layer of receiving nodes and sm and am

means states and actions, respectively. The position of the nodes has been
determined, so the SNR will not change again, and the reward table does
not need to be updated with training.

Table 3.1: Reward table for mth layer

sm\am nm
1 nm

2 ... nm
Km

nm−1
1 rm

11 rm
12 ... rm

1Km

nm−1
2 rm

21 rm
22 ... rm

2Km

... ... ... ... ...
nm−1

Km−1 rm
Km−11 rm

Km−12 ... rm
Km−1Km

Same as reward table, each pair of adjacent layers has one Q-table. Q-
table stores the Q-value of all possible pairs of state and action and will be
updated after each iteration in training phase. As for the initialization of
Q-table, we set every Q-values in every Q-tables is 0 to let agent select its
first action randomly, which is fair to every node. The Q-table is shown
in Table 3.2. Here Qm(i, j) is Q-value of node i and node j in the mth
layer(Cm). For example, Qm(nm−1

1 , nm
2 ) means the Q-value of the first node

in Cm−1 and the second node in the mth layer, and this Q-value is stored in
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the Q-table of the mth layer.

Table 3.2: Q-table for mth layer

sm\am nm
1 nm

2 ... nm
Km

nm−1
1 Qm(nm−1

1 , nm
1 ) Qm(nm−1

1 , nm
2 ) ... Qm(nm−1

1 , nm
Km

)
nm−1

2 Qm(nm−1
2 , nm

1 ) Qm(nm−1
2 , nm

2 ) ... Qm(nm−1
2 , nm

Km
)

... ... ... ... ...
nm−1

Km−1 Qm(nm−1
Km−1 , nm

1 ) Qm(nm−1
Km−1 , nm

2 ) ... Qm(nm−1
Km−1 , nm

Km
)

3.4.2 Training

The main task of the training phase is to update the Q-value according to the
Q-function until the agents jump out from the training loop, which means
the best path is find out. Q-function is the key part of training phase, which
calculates the Q-value depend on the current values and future values. The
standard Q-function (2.7) only considers the current reward, i.e. SNR of
current hop. This will cause agents to only focus on the reward of current
hop, while ignoring the status of the entire path. This is similar to the greedy
search, which is inefficient. If the SNR of current hop is very large but after
this hop, the SNRs of all multihops are small, the agent will still choose
this hop, resulting a very bad E2E rate. Therefore, the Q-function should
consider all hops. However, it leads to the heavy computation, even it has
been reduced by FG. To get better result, we make a compromise choice.
In this thesis, we make the Q-function to select the larger one between the
reward of current hop and next hop. This makes the agents to consider the
reward it will get further. The modelled Q-function is given by

Qm(sm, am) =



(1 − α)Qm(sm, am)
+α(rm(sm, am) + γQmax(m + 1)), m≤M, rm(sm, am) > rm+1

(1 − α)Qm(sm, am)
+α(rm+1 + γQmax(m + 1)), m≤M, rm(sm, am) < rm+1

rm(sm, am), m = M + 1
(3.15)

where
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sm: state represents the relay node in Cm−1 that want to send data packet
to a node in Cm.

am: action represents the relay node in Cm selected by agent to send data
packet. Possible actions for sm include all possible relay nodes in Cm.

rm(sm, am): reward represents the evaluation of choosing a link to send
data packet. Each link has its own reward, which reflects it is good or bad to
do this action in this state. In NLPS algorithm, reward is equal to the SNR.

α: The learning rate determines the proportion of current hop’s Q-value
and next hop’s Q-value. α is large means that agent pays more attention to
the Q-value of the next hop and reward. In this thesis, 0 ≤ α ≤ 1

γ: discount factor determines the weight of the next hop’s Q-value. γ is
large mean that agent pays more attention to the Q-value of the next hop.

rm+1: reward of next hop in Cm+1. rm+1 is calculated by

rm+1 = rm+1(am, a′
m+1) (3.16)

where
a′

m+1 = argmax
am+1

Qm+1(am, am+1) (3.17)

As in equation (3.17), a′
m+1 is the best action at the state am in Cm+1 with

maximum Q-value. As the reward of best action in next hop, rm+1 is com-
pared with the reward of current hop rm(sm, am) and larger one is used in
the update of Q-value. Through this method, users can not only be limited
to the reward of current hop, but also take a long-term view and consider
the next step to choose the path.

Qmax(m + 1): the maximum Q-value in Cm+1 and is calculated by

Qmax(m + 1) = Qm+1(am, a′
m+1) (3.18)

Qmax(m + 1) represents the Q-value of the best action in Cm+1 and par-
ticipate in the updating of Q-value as a new information.

Here we use the example in Figure 3.8 to explain how the Q-function
works in training phase. As shown in Figure 3.9, n0

1 is set as a source node
S. S needs to send data packets to destination node (root node) D. s1 = S,
m = 1. First, a1 is randomly selected from C1. Here we assume that node n1

1
is selected. a1 = n1

1. Next, SNR of this link is calculated by equation (3.7)
as the reward r1(S, a1) of doing the action a1. From the Q-table of C1 and
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C2, we can find the best action at a1 by equation (3.17) and assume that
a′

2 = n2
1. The SNR of this link is calculated as r2. Also, Qmax(2) is calculated

by equation (3.18). the rewards of current hop r1(S, a1) and next hop r2 is
compared to each other to decide which equation will be used to update in
equation (3.15). At last, the Q-value of n0

1 and n1
1 is updated and stored in

the Q-table. Then, for next layer C2, action node is set as state, s2 = n1
1,

(a) Random selection (b) Reward comparison (c) Update Q-value

Figure 3.9: Steps of updating Q1(n0
1, n1

1)

m = 2, and repeat the same step as C1, and Q-value in Q-table of C2 is
updated. This training phase is repeat for each layer until m = M +1, which
means it have reached to the destination node D and one iteration is finished.
If the changes of E2E rate from S to D is lower than threshold ϵ, the training
is stopped and completed. Otherwise, another iteration of training begins.

As the number of iterations increases, the Q-table is gradually updated.
When the training is completed, each layer has its own complete Q-table,
including the updated Q-value between all nodes in the adjacent two layers.

3.4.3 Selection

Agent needs to find the best path from S to D through Q-tables after the
training of all layers in WMN is completed. First, set s1 = S, C1 searches
all Q-values in the row of s1 in the Q-table of C1 and finds the maximum
Q-value and select it as the best relay node a′

2 from s1. Next, set s2 = a′
2,
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C2 repeat the step above to find best relay node. After all layers find their
own best relay node, the best multihop path from S to D is built.

3.4.4 Network Topology Formation

After completing the three phases of initialization, training and selection, the
best multihop path of one node is selected. Except the root node, all other
nodes have data packets that need to be sent to the root node according
to the system model. Start with the furthest layer, each node applies these
three phases to find its path as source node. Combining all best path of
all nodes, a tree-based network topology with highest network capacity in
WMN is established, which is shown in Figure 3.9.

Figure 3.10: Forming the best network topology

The algorithm and flowchart of NLPS is shown in Algorithm 2 and Fig-
ure 3.11.

42



Algorithm 2 SNR-Based Learning Path Selection Algorithm

Definition: N is total number of nodes, t is number of iterations, m is
the number of layers, k is the number of nodes in the corresponding
layer, U is E2E throughput

Input: Position of nodes, root node D

Output: Topology information of nodes
1: Determine m of nodes based on the transmission range

Phase 1. Initialization
2: Set all Q-values in Q-tables to zero
3: Calculate SNRij of each link and store to reward table

Phase 2. Training
4: Set S is marked as visited node
5: while all the relay nodes are not visited do
6: Set nm−1

km−1 = S, U0 = 0, t = 1
7: while true do
8: for m = m : M do
9: sm = nm−1

km−1

10: sm randomly selects a relay node as am from Cm

11: Calculate rm+1 from equation (3.16)
12: Calculate Qmax(m + 1) equation (3.18)
13: Update Qm(sm, am) equation (3.15)
14: sm+1 = a′

m as the best relay node
15: end for
16: Calculate Ut

17: if |Ut − Ut−1| ≤ ϵ then
18: break
19: else
20: t = t + 1
21: end if
22: end while
23: if S has visited all the relay nodes then
24: break
25: else
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26: Select another relay node as S

27: end if
28: end while
Phase 3. Selection
29: for m = m : M do
30: for km−1 = 1 : Km−1 do
31: Select a′

m in the Q-table of Cm

32: end for
33: end for
Phase 4. Network Topology Formation
34: Combine all paths into a tree-based topology
35: Broadcast topology information to all nodes
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3.5 SINR-Based Learning Path Selection Al-
gorithm

In NLPS algorithm, interference between links is ignored. This is because it
is impossible to determine which links will be used to transmit data packets
without planning the transmission paths of each node first. According to the
interference model in this thesis, the specific value of the interference cannot
be obtained. Besides that, when planning the transmission path for the first
time, ignoring interference can allow nodes to find their own best path more
efficiently.

However, in the real world, interference has a great influence on the trans-
mission rate of the link and it has to be taken into account when calculating
the transfer rate. Therefore, it is necessary and fit the reality to incorporate
interference into the path selection algorithm.

To find a high throughput path and increase the network capacity, we pro-
pose SINR-based Learning Path Selection (INLPS) algorithm. The INLPS
algorithm is improved based on the NLPS algorithm. The goal of INLPS
algorithm is to find the best path with high E2E throughput for each node.
INLPS algorithm is applied after NLPS algorithm. A network topology com-
bining multiple pest path of nodes is established by NLPS algorithm. With
interference model and network capacity model defined in this thesis, the
SINR of each link in each time slot is obtained. The SINR of a link is the
average of the SINR of this link for each time slot. All SINRs are stored in
a table.

In INLPS algorithm, the policy is to find the path with high SINR, reward
r need to be changed, which decides the action and lead the agent to reach
the goal. Agent will tend to choose the path with higher rewards. Therefore,
setting SINR as reward can find the path with high throughput, which is

rij = SINRij (3.19)

Also, SINR table is equal to the reward table in INLPS algorithm.
The INLPS algorithm is as follows: First, apply the NLPS algorithm.

After it finished, save the root node and all Q-tables. Use the network
topology obtained by the NLPS algorithm to calculate the SINR table and
use it as a reward table and use the root node of the NLPS algorithm as D
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for INLPS algorithm. After that, enter initialization phase, training phase
and selection phase. In the initialization phase, the Q-table after completely
updated in NLPS algorithm is used instead of setting all Q-values to 0. The
training phase and selection phase are the same as the NLPS algorithm.
With INLPS algorithm, the resulting network topology has high capacity.

The INLPS algorithm is similar to applying the NLPS algorithm twice,
and the computation time is doubled. In order to reduce the computation
time, in the INLPS algorithm, instead of using FG approach to preprocess
nodes in the WMN again, the previous result is used as the root node to
skip the preprocess phase. Besides that, the Q-tables of the NLPS algorithm
is used to instead of the initialization of the Q-tables, therefore the actions
made by the agent are more directional, and the best path can be found
faster, thereby reducing the number of iterations, and the data of the NLPS
algorithm will not be wasted, saving storage space.

The algorithm and flowchart of INLPS is shown in Algorithm 3 and Fig-
ure 3.12.
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Algorithm 3 SINR-Based Learning Path Selection Algorithm

Definition: N is total number of nodes, t is number of iterations, m is
the number of layers, k is the number of nodes in the corresponding
layer, U is E2E throughput

Input: Position of nodes, root node D, topology information of nodes by
NLPS algorithm

Output: Topology information of nodes
1: Determine m of nodes based on the transmission range

Phase 1. Initialization
2: Store all Q-values of NLPS algorithm to Q-tables
3: Calculate SINRij of each link and store to reward table

Phase 2. Training
4: Set S is marked as visited node
5: while all the relay nodes are not visited do
6: Set nm−1

km−1 = S, U0 = 0, t = 1
7: while true do
8: for m = m : M do
9: sm = nm−1

km−1

10: sm randomly selects a relay node as am from Cm

11: Calculate rm+1 from equation (3.16)
12: Calculate Qmax(m + 1) equation (3.18)
13: Update Qm(sm, am) equation (3.15)
14: sm+1 = a′

m as the best relay node
15: end for
16: Calculate Ut

17: if |Ut − Ut−1| ≤ ϵ then
18: break
19: else
20: t = t + 1
21: end if
22: end while
23: if S has visited all the relay nodes then
24: break
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25: else
26: Select another relay node as S

27: end if
28: end while
Phase 3. Selection
29: for m = m : M do
30: for km = 1 : Km−1 do
31: Select a′

m in the Q-table of Cm

32: end for
33: end for
Phase 4. Network Topology Formation
34: Combine all paths into a tree-based topology
35: Broadcast topology information to all nodes
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3.6 Compute-and-Forward
Although LPS algorithm increase the E2E throughput in path selection, in
the transmission stage, due to the high node density, it is necessary to in-
crease network capacity by arranging information transfer in network coding.
Nested Lattice Code (NLC) and Compute-and-Forward (CoF) strategy with
NLC is used to reduce time slots when two nodes send data packet to a same
node.

Figure 3.13: Apply CoF strategy in transmission phase

As shown in Figure 3.13, in a single time slot, nodes A, B try to send
data packets to node C and X tries to send data packets to node Y . Before
applying CoF, the latency can be very large if they try to send at same time,
which means it needs more time slots to finish all data transmissions. In this
situation, the network capacity will be very low based on system models.
Applying CoF strategy, data packets sent from node A and node B at the
same time can be encoded at the sending node separately and can be decoded
at the receiving node C. With the help of NLC, these two encoded packets
including codewords are decoded together at the receiving node C, therefore
the resultant of SINR becomes better. As a result, the transmission rate is
increased. Furthermore, the total number of time slots is reduced.
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In Figure 3.13, the SINR at node C applying CoF strategy is calculated
by

SINRAC&BC = GAC · PA + GBC · PB

ηj · B + GXY · PX

(3.20)

If more than two nodes try to send data packets to the same node in a
time slot, the receiving node will randomly select two of the sending nodes to
establish a connection and transmit data packets, and the remaining nodes
need to wait until the next time slot to try to send again.

The algorithm and flowchart of pairing node is shown in Algorithm 4 and
Figure 3.14

Algorithm 4 Pairing Node Algorithm

Definition: x is number of time slots, m is number of layers, k is
the number of nodes in the corresponding layer

Input: Position of nodes, topology information of all nodes
Output: Total number of time slots, information of pairing nodes

1: x = 0
2: while D does not receive all data packets do
3: for m = 1 : M + 1 do
4: for each node in layer Cm do
5: y = number of transmitting nodes to the same receiving node
6: if y ≥ 2 then
7: Select two nodes randomly
8: Set the remaining nodes to wait
9: end if

10: end for
11: end for
12: x = x + 1
13: end while
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Figure 3.14: Flowchart of CoF
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3.7 Summary
This chapter has introduced the system models, including network model,
channel model, interference model and network capacity model. Besides
that, fDRL scheme with NLPS algorithm and INLPS algorithm is proposed.
NLPS algorithm uses FG approach to preprocess the nodes to find root node
and use Q-learning to find the best network topology with optimal network
capacity ignoring the interference. This algorithm is very suitable for use
when establishing a network topology for the first time. Based on the results
of FG approach and NLPS algorithm, the INLPS algorithm selects the path
with the highest E2E throughput for each node and establishes the network
topology, which can further improve the network capacity and reduce the
computation time. CoF strategy is introduced into the transmission stage to
further increase network capacity through network coding.
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Chapter 4

Simulation Studies and Results

4.1 Introduction
The objective of this thesis is to explore the influence of Factor Graph (FG),
SNR-based Learning Path Selection (NLPS), SINR-based Learning Path Se-
lection (INLPS) and Nested Lattice Code (NLC) on Wireless Multihop Net-
work (WMN). Specifically, it is manifested in two aspects: network capacity
and computation time. The numerical simulation in this thesis is divided
into four parts as shown in Figure 4.1: FG, NLPS, INLPS and NLC.

Figure 4.1: Block diagram of simulation program

Several years ago, P. Alevizos [32] has proved that FG can be applied
to coding theory, cooperative localization and time scheduling in multihop
networks. FG has also been used to solve path selection problems in recent
years. H. Alghafari et al. [33] propose a algorithm based on FG and solve
the problem of resource allocation and path selection in WMN. Their result
shows that the algorithm can give better partitioning results than other load-
based methods. Therefore, it is feasible to apply FG to the path selection
algorithm and can get good results. In this thesis, FG is used to preprocesses
the nodes for the algorithms and select the best root nodes. One of the
possible network topologies formed by this root nodes are expected to have
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the largest network capacity. Second, the computation time of FG needs to
be as small as possible. These two points are proved in this chapter.

As for NLPS algorithm and INLPS algorithm, the network capacity of
network topology generated by these two algorithms may not be able to reach
the maximum value. Instead of that, these two algorithms are expected to
achieve optimum network capacity while greatly reducing computation time
to meet the low latency requirements in real network environments.

There is currently no research on the use of NLC for network capacity
increasing in WMN. This thesis attempts to combine NLC and CoF strategy,
to encode and decode messages in the transmission phase, expecting to reduce
the number of time slots and further increase network capacity.

So far, there is no research on the combination of FG, Q-learning, and
NLC applied to the path selection problem of WMN. Therefore, the numerical
simulation in this thesis is completely new and uncharted and can provide
certain reference value for society and researchers.

Figure 4.2: Floor map of Makuhari Messe [2]

The application of the scheme in this thesis is expected to the network
system of the exhibition hall and stadium with roof, such as the WiFi system
of Makuhari Messe [2] in Japan, which is shown in Figure 4.2. If the area
of the exhibition hall is very large, it is expected to use 4 to 6 network
systems proposed in this thesis to cover the entire area. The simulation
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parameters are set according to the application in the real situation, including
user density, occlusions, size of the exhibition hall and stadium, etc.

4.2 Simulation Parameters and Settings
This numerical evaluation is to study the performance of network capacity
and computation time with/without FG, NLPS, INLPS and NLC under the
IEEE802.11ax standard specification [34]. In this thesis, we assume that each
relay node has only one packet to send to the destination node and nodes
can send one signal or receive up to two signals with CoF at the same time.
The simulation program is MATLAB R2022a and the desktop environment
is Apple Mac mini (2018) with Intel Core i7 3.2 GHz, 64GB DDR4 RAM.

(a) 50 nodes (b) 100 nodes

Figure 4.3: Learning rate comparison

For Q-learning, the default value for learning rate is 1. However, the
Q-function used in this thesis has been modified, so it is necessary to re-
investigate the appropriate value for simulation. Figure 4.3 shows the com-
parison of different learning rate at 50 nodes and 100 nodes with same dis-
count factor and threshold.
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The result shows that the best learning rate for our Q-function is 1, how-
ever, according to equation (3.15), α = 1 means that only new information
is considered when updating the Q-value, and the influence of current infor-
mation is completely ignored. In future work, the movement of nodes will be
considered, which is included in the current information. It is necessary to
give some weight to current information. Also, there is not much difference
between α = 1 and α = 0.9 according to the result. Thus, in this thesis we
set α = 0.9.

According to equation (3.15), the discount factor in Q-learning decided
the importance of the Q-value of the best action. The discount factor is larger
means that agent’s vision is more long-term, considering the next action more
important. We investigate the most suitable value of discount factor for our
simulation. The result is shown in Figure 4.4.

(a) 50 nodes (b) 100 nodes

Figure 4.4: Discount factor comparison

Through the simulation result, when γ = 0.5, the performance of average
E2E throughput is better, which means setting the importance of Qmax(m+
1) as 0.5 is the best for our training. Thus, the discount factor of Q-learning
in this thesis is set to 0.5.
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The threshold of Q-learning determines when training stops and finishes.
In general, the smaller the threshold, the better the results. But at the same
time the number of iterations will also increase. In some cases, if the threshold
is too small, it may lead to endless training. To avoid this, it is necessary
to investigate an appropriate threshold for our simulation. Figure 4.5 is the
result of comparison of different thresholds with 50 nodes and 100 nodes.

(a) 50 nodes (b) 100 nodes

Figure 4.5: Threshold comparison

Through this result, we can conclude that the lower the threshold, the
higher the average E2E throughput. When the threshold is set to minimum
(1bps), the training works fine and almost reaches the maximum value before
300 iterations. In subsequent iterations, the throughput is almost unchanged.
Thus, if endless training occurred, we could stop the training after 300 iter-
ations and use this value as the training result. For other threshold, because
the results is worse, we set ϵ = 1 bps in this thesis.

The parameters and values are listed in Table 4.1. The attention constant
and shadowing attenuation of log-distance pathloss model is set as 3.5 and 4.0
dB to fit the real situation of the application set by this thesis. The values of
other parameters are set with reference to other papers using IEEE802.11ax
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standard specification and similar network models as this thesis.

Table 4.1: Simulation Parameters and Settings

Parameter Value
Network coverage size 500 m × 500 m
Number of nodes 50∼100 nodes
Number of simulations 10,000 times
Transmit power 19 dBm
Attenuation constant 3.5
Wall attenuation 0 dB
Shadowing attenuation 4 dB
Decorrelation distance 10 m
PHY header length 39.2 µs

MAC header size 320 bits
Channel bandwidth 20 MHz
Test payload size 8192 bits
Noise level -174 dBm/Hz
FER 10−4

DIFS 34 µs

SIFS 16 µs

CWmin 15 µs

ACK size 112 bits
Slot time 9 µs

Basic rate 6 Mbps
Learning rate 0.9
Discount factor 0.5
Threshold 1 bps
Data packet size 1000 bytes
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4.3 Simulation Scenarios, Results and Dis-
cussion

The numerical simulation mainly investigates the performance of network ca-
pacity and computation time by comparing different scenarios and consists
of two parts. In the first part, we investigate the performance of network
capacity and computation time with/without FG and NLC to prove that
when FG preprocesses data, it can find the root node to improve network
capacity and reduce computation time. There are three kinds of scenarios.
The network capacity of ‘Original’ is obtained by calculate the average net-
work capacity of all kinds of possible routing in WMN. For scenarios of ‘FG
only’ and ‘FG with NLC’ are using FG to select path and using FG and NLC
to select path a at the same time, respectively. In the second part, NLPS
algorithm and INLPS algorithm is applied to find best network topology in
WMN. The scenarios ‘NLPS only’ and ‘INLPS only’ are using NLPS algo-
rithm and INLPS algorithm to select best path respectively. Based on this,
‘NLPS with NLC’ and ‘INLPS with NLC’ means NLC with CoF strategy is
also used in transmission phase to increase network capacity further.

(a) Network capacity comparison (b) Computation time comparison

Figure 4.6: Comparison of network capacity and computation time of FG
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Figure 4.6 shows the results of first part. In Figure 4.6 (a), the average
network capacity using FG is 0.267 Mbps, which is about 9.0 times higher
than without using FG (0.030 Mbps) when the number of nodes is 50. If
NLC is also applied, the average network capacity reach to about 13.2 times
higher, which is 0.397 Mbps. As for computation time in Figure 4.6 (b),
when the number of nodes is smaller than 6, applying FG and NLC will cost
more computation time. If there are more than 6 nodes, the computation
time of ‘Original’ becomes higher. When the number of nodes is 50, it costs
about 4.22 × 107 s (16 months), while FG with NLC only costs 3.44 × 10−3 s.
When there are more than 50 nodes, the simulation is only run to 50 nodes
due to the excessive time it takes to calculate all possible paths.

Through these simulation results, we can conclude that the network topol-
ogy selected by FG can increase the average network capacity and greatly
reduce the calculation time. Also, NLC can further increase network capacity
by combining the two signals to reducing time slots. Although the computa-
tion time will increase slightly, it is also within an acceptable latency in the
real network environment. The network capacity is still very low though it
is increased by FG and NLC. It is because most network topologies are star-
type, which means most nodes choose to send data packets directly to the
root node. Also, nodes select the path through the weight of the path, which
does not mean that the entire network capacity will reach the maximum. In
this situation, it needs large number of time slots to finish the transmission.
According to the system model in this thesis, the network capacity becomes
very low. It is necessary to use algorithms to plan paths for each nodes.

In the second part of numerical simulation, we investigate the perfor-
mance of number of iterations, network capacity and computation time.
Figure 4.7 shows the results of comparison of number of iterations between
NLPS and INLPS when number of nodes is 50 and 100. These results depict
that INLPS algorithm can reach higher average E2E throughput than NLPS
algorithm. Here number of settling iterations is defined as the number of
iterations for the response to reach, and stay within, 2% of its final value. In
Figure 4.7 (a), When there are 50 nodes, the number of settling iterations
of NLPS (101) is smaller than INLPS (185), which means NLPS cost less
iterations to complete the training than INLPS. In Figure 4.7 (b), we get
the same result with 100 nodes, which is 156 iterations and 263 iterations
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(a) 50 nodes (b) 100 nodes

Figure 4.7: Comparison of no. of iterations between NLPS and INLPS

respectively. Therefore, we can conclude that from 50 nodes to 100 nodes,
the average E2E throughput of the path selected by the INLPS algorithm is
higher than that of the NLPS algorithm, but it takes more iterations.

This is because the INLPS algorithm uses the Q-values obtained by the
NLPS algorithm to initialize its Q-tables and uses them to train based on the
results of the NLPS algorithm, so that the average E2E throughput of INLPS
algorithm is higher. Since the initialized Q-table of the INLPS algorithm has
been updated many times by the NLPS algorithm, it is difficult to find a
better path based on it, so the number of iterations spent by INLPS algorithm
is more than that of the NLPS algorithm.

The results of the network capacity are shown as Figure 4.8 (a). The
number of nodes is from 50 nodes to 100 nodes and five scenarios is compared
in this result. This simulation result show that with the increase of nodes,
the network capacity decreases non-linearly. This is because the density of
nodes is too high and the interference between links causes the SINR to drop.
Also, when there are 50 nodes, the average network capacity of INLPS (2.52
Mbps) is about 3.19 times higher than NLPS (0.79 Mbps) and 6.46 times
higher than use FG and NLC (0.39 Mbps). When the number of nodes is
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(a) Network capacity comparison (b) Computation time comparison

Figure 4.8: Comparison of network capacity and computation time of NLPS
and INLPS

100, the values become 1.83 Mbps, 0.43 Mbps and 0.36 Mbps respectively and
INLPS algorithm is about 4.26 times higher than NLPS and about 5.08 times
higher than use FG and NLC. The reason why the INLPS algorithm performs
better is that the INLPS algorithm is trained based on the results of the NLPS
algorithm and tries to find a better path. Also, the INLPS algorithm uses
SINR as a reward to avoid using links with low SINR when selecting paths.
Therefore, the resulting network topology has a higher capacity than NLPS
algorithm.

Moreover, if NLC is applied, the When apply NLC, the average network
capacity is further increased, which is about 1.93 times higher. This is be-
cause NLC and CoF encode and decode two signals together, reducing the
number of time slots in half. According to equation (3.11), the network
capacity becomes higher.

About the computation time in Figure 4.8 (b), the INLPS algorithm is
about 2 times higher than NLPS algorithm because INLPS needs to run
NLPS first to get results as its input. Also, FG takes very little time to find
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root node. If FG is not applied, NLPS needs to be run on all nodes. While it
is possible to find a network topology that maximizes network capacity, the
computation time is N times higher, which is unacceptable in a real network
environment. To sum up, the NLPS algorithm and the INLPS algorithm can
find the network topology that can make the network capacity close to the
maximum under the premise of greatly reducing the computation time.

4.4 Summary
This chapter first introduces the parameters and settings of the numerical
simulation and its application in the real world. Second, the simulations
results are evaluated, discussed and compared in this chapter. All these
results can show that:

• FG can find the root node that increases the network capacity and
greatly reduces the computation time;

• NLPS algorithm and INLPS algorithm can achieve optimum network
capacity by selecting path for each node. With the aid of FG, the
training time is greatly reduced;

• NLC and CoF can reduce the number of time slots to increase network
capacity further.

These simulation results can prove that we have achieved the research
objectives set in this thesis and provide a feasible solution to the proposed
problems in chapter 1.
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Chapter 5

Conclusion

5.1 Concluding Remarks
This research has focused on optimizing network capacity through Factor
Graph-based Deep Reinforcement Learning (fDRL) learning path selection
scheme in Wireless Multihop Network (WMN). Moreover, reducing the com-
putation time is also one of the research objectives of this thesis. Two Q-
learning-based path selection algorithms are proposed: SNR-based Learning
Path Selection (NLPS) algorithm and SINR-based Learning Path Selection
(INLPS) algorithm. These two algorithms use the root node selected by Fac-
tor Graph (FG), which uses sum-product algorithm with airtime cost calcu-
lated by Airtime Link Metric (ALM) as weight, to select best path for each
node using modified Q-function and form a network topology. This network
topology has optimized network capacity. Since the nodes are preprocessed
with FG. The training times of the algorithms are greatly reduced, which
meets the latency requirements of the real network world. In addition, this
thesis uses NLC to encode and decode messages and uses CoF strategy to
send them, which reduces the number of time slots and increase the network
capacity further. The simulation results prove that the scheme of this thesis
has achieved the preset research objectives.
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5.2 Contributions
First, the method of converting WMN to FG and using sum-product algo-
rithm to calculate its weight to select the best tree-based network topology
proposed in this thesis proves that it is feasible to apply FG to solve the net-
work capacity problem of WMN. Secondly, this thesis innovatively applies
NLC to WMN and obtains experimental results. This is of certain reference
value to other studies.

The two algorithms in this thesis, NLPS and INLPS, are proposed accord-
ing to the real network environment. In the WMN environment, the initial
network topology can be established in a short period of time by applying the
NLPS algorithm. Because in the real network environment, the SINR of the
link can be directly obtained, so the INLPS algorithm can be implemented
without NLPS. This will greatly shorten the computation time of the INLPS
algorithm, and greatly reduce the network delay caused by it. For studies
applying Reinforcement Learning (RL) to wireless network in 6G, this thesis
presents a method and demonstrates its feasibility by numerical simulation.

5.3 Future Works
The future directions of the research can be extended as the following:

• Node pairing: This thesis randomly select nodes pair to apply CoF.
One of the future work is to apply a pair selection algorithm for CoF
to choose nodes to increase network capacity

• Fairness, Overhead and Energy saving: In NLPS and INLPS, algo-
rithms focus on optimizing the network capacity. In future work, al-
gorithms will be designed to take into account multiple aspects like
consider fairness to reduce nodes’ waiting time, consider to reduce the
overhead to implement into real networks easier and consider to adjust
transmit power depend on the distance to the receiving node to save
energy.

• Moving nodes: The nodes in this thesis are set as static nodes. But
in reality, nodes are constantly moving, such as mobile phones and
vehicles. Learning rate α is set to consider the information brought by
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the moving node when updating the Q-value. Therefore, optimizing
network capacity in the presence of node mobility will be a research
goal in future studies.

• Deep learning (DL): To apply the scheme in this thesis to the complex
network environment in reality, in future works, DL will be applied
to select path in the neural network with hidden layers to solve more
complex path selection problems in WMN.

• Least Absolute Shrinkage and Selection Operator (LASSO): LASSO is
a regression analysis method that performs both variable selection and
regularization to enhance the prediction accuracy and interpretability
of the resulting statistical model. LASSO has been used to find stars
in space by their light. According to this method, LASSO is expected
to be applied in path selection problems in this thesis.
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[31] Vincent François-Lavet, Raphaël Fonteneau, and Damien Ernst. How to
discount deep reinforcement learning: Towards new dynamic strategies.
CoRR, abs/1512.02011, 2015.

[32] Panagiotis Alevizos. Factor Graphs: Theory and Applications. PhD
thesis, TECHNICAL UNIVERSITY OF CRETE, 2012.

[33] Hadeel Alghafari and Mohammad Sayad Haghighi. Decentralized joint
resource allocation and path selection in multi-hop integrated access
backhaul 5g networks. Comput. Netw., 207:108837, 2022.

[34] ANSI/IEEE Standard 802.11. Part II: Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications enhancements

72



for high-efficiency WLAN. IEEE Standard Specification 802.11ax, 19
May 2021.

73



List of Publications

1. CUI Zhihan, Khun Aung Thura Phyo, LIM Yuto, and TAN Yasuo. Study of
Network Capacity in Wireless Multihop Networks with Factor Graph. In Joint
Conf. of Hokuriku Chapters of Elect. and Inf. Soc. (JHES), 2022.

2. CUI Zhihan, Khun Aung Thura Phyo, LIM Yuto, and TAN Yasuo. Study
of Network Capacity in Wireless Multihop Networks with Nested Lattice and
Factor Graph. In IEICE Tech. Committee on Inf. Netw. (IEICE-IN), 2022.

3. CUI Zhihan, Khun Aung Thura Phyo, LIM Yuto, and TAN Yasuo. Study of
Deep Reinforcement Learning for Wireless Multihop Networks. In IEICE Tech.
Committee on Sensor Netw. and Mobile Intell. (IEICE-SeMI), 2023 (To be
submitted).

74


