
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Equational Reasoning by Maximal Ordered

Completion

Author(s) 齊藤, 哲平

Citation

Issue Date 2023-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/18314

Rights

Description
Supervisor: 廣川 直, 先端科学技術研究科, 修士

(情報科学）

Master’s Thesis

Equational Reasoning by Maximal Ordered Completion

Saito Teppei

Supervisor Hirokawa Nao

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

March 2023

Abstract

This thesis studies equational theorem proving based on ordered comple-
tion. It is known that a reduction order is a critical parameter for ordered
completion. To improve the capability of ordered completion, we present
a new class of reduction orders, dubbed generalized weighted path orders.
While the original weighted path order (Yamada et al. 2013) is a complete
characterization of simplification orders including Knuth–Bendix orders and
lexicographic path orders, the new class not only subsumes the original one,
but also instantiates non-simplification orders. For instance, provided equa-
tional axioms for round-up division

0− y ≈ 0 x− 0 ≈ x

s(x)− s(y) ≈ x− y
0÷ s(y) ≈ 0 s(x)÷ s(y) ≈ s((x− y)÷ s(y))

refutation of a non-theorem (e.g. s(s(s(0)))÷ s(s(0)) ≈ s(0)) by ordered com-
pletion fails if a simplification order is employed. In contrast, ordered com-
pletion with a generalized weighted path order is capable of giving refutation
to such a non-theorem. However, the generalized weighted path order forces
us to revisit a classical problem of ordered completion, namely selection of a
reduction order: given an equational system, we do not know an appropriate
reduction order in advance. The problem is even worse in the case of the
generalized weighted path order since the powerfulness of the ordering relies
on vast search space of its input parameters. As a solution to this prob-
lem, we integrate the generalized weighted path order into maximal ordered
completion by Winkler and Moser (2018), in which we encode selection of
a reduction order into MaxSMT constraints. Furthermore, to improve the
efficiency, we propose a new variant of maximal ordered completion, which
incorporates ordered completion without deduce, namely simplification, fol-
lowing the approach of Hirokawa (2021). The new ordering and the new
ordered completion have been implemented in the equational theorem prover
Toma, and experimental results show potential of our approach.

Contents

1 Introduction 1
1.1 Equational Reasoning . 1
1.2 Limitation of Simplification Orders 3
1.3 Selection of a Reduction Order 5
1.4 An Outline and Contributions 6

2 Preliminaries 8
2.1 Abstract Rewriting . 8
2.2 Term Rewriting . 10
2.3 Ordered Rewriting . 19

3 Generalized Weighted Path Order 24
3.1 The Weighted Path Order . 24
3.2 A Generalization of the WPO 28
3.3 Simulation . 34
3.4 Implementation . 36
3.5 Experiments . 39

4 Maximal Ordered Completion with Simplification 41
4.1 Abstract Ordered Completion 41
4.2 Extending Maximal Ordered Completion 43
4.3 Implementation of Toma . 46
4.4 Experiments in Ordered Completion 49
4.5 Experiments in Theorem Proving 52

5 Conclusion 56

Chapter 1

Introduction

First we introduce equational reasoning, and its problems together with our
approach. Next we give an overview of our contributions and the structure
of the thesis.

1.1 Equational Reasoning
Throughout the thesis we discuss equational reasoning. In particular, we
consider the word problem:

instance: an equational system E and an equation s ≈ t

question: does E entail s ≈ t?

For instance, consider the following equational system E−:

(1) : 0− y ≈ 0 (2) : x− 0 ≈ x

(3) : s(x)− s(y) ≈ x− y

Here numbers are represented as Peano numbers: 0 denotes zero, s(0) denotes
one, s(s(0)) denotes two, and so on. So this system can be taken as an
axiomatization of cut-off minus. Informally, we have 2 − 1 = 1 but 1 − 2 =
0 in this system. More formally, we can derive s(s(0)) − s(0) ≈ s(0) and
s(0) − s(s(0)) ≈ 0 by simply rewriting the left-hand sides to the right-hand
sides using the axioms. For example, we can derive s(s(0)) − s(0) ≈ s(0) as
follows:

s(s(0))− s(0) ≈ s(0)− 0 by (3)
≈ s(0) by (2)

1

Therefore, E− entails s(s(0))−s(0) ≈ s(0). In other words, s(s(0))−s(0) ≈ s(0)
is valid under the axioms. Similarly, we have s(0)− s(s(0)) ≈ 0 as follows:

s(0)− s(s(0)) ≈ 0− s(0) by (3)
≈ 0 by (1)

So E− entails s(0)− s(s(0)) ≈ 0.
Ordered completion [4] is a method to solve the word problem automati-

cally. The approach is to transform an equational system into a complete set
of rewrite rules, namely a complete term rewrite system (TRS). Once such
a TRS R is obtained, the word problem on the original equational system is
decidable; the complete TRS R decides the word problem in the following
way:

1. Given an equation s ≈ t, the procedure rewrites the terms s and t by
using the rules in R from left to right, until no rule is applicable to the
terms.

2. Let s′ and t′ be the terms obtained by the first step. If s′ and t′

are syntactically identical, then the problem is affirmatively solved.
Otherwise, the problem is negatively solved.

For instance, by using ordered completion we obtain the following TRS R−
from the equational system E−:

0− y → 0 x− 0→ x

s(x)− s(y)→ x− y

There is no difference between E− and R−, except for the separator symbols,
≈ and →. Intuitively, the equations in E− are not oriented, but the rules in
R− are oriented. This means that the direction of rewriting are restricted in
R− as opposed to E−, but the power of R− is still sufficient to solve word
problems on E−. This difference shows up when we consider an equation with
the negative answer. Suppose that we are asked if E− entails 0 ≈ s(0). We
know that this equation is wrong by intuition, but how can we prove this?
The difficulty comes from the fact that we can use equations in E− either
from left to right, or from right to left. For instance, we can rewrite 0 to
0 − s(0) using the equation 0 − y ≈ 0 by instantiating y with s(0). How
can we guarantee that 0 never reaches to s(0), even if we cleverly instantiate
variables in equations? This is why the complete TRS R− is helpful. We can
prove that 0 ≈ s(0) does not hold in E− using the decision procedure via the
complete TRS R−.

2

1. We cannot rewrite 0 and s(0) using the rules in R− from left to right.

2. The terms 0 and s(0) are not syntactically identical. Thus, the answer
to the word problem 0 ≈ s(0) is negative.

This is how we can solve the word problem using ordered completion; it tries
to find a complete TRS that gives a decision procedure. In the subsequent
sections we introduce two problems in ordered completion, namely

• limitation of simplification orders and

• selection of a reduction order,
together with our approach to these problems.

1.2 Limitation of Simplification Orders
Let us give a further detail of ordered completion. In addition to an equa-
tional system E and a goal, the procedure takes an ordering > on terms,
which is called a reduction order. Informally, the reduction order > deter-
mines the proof strategy, such as how equations are oriented. Consider the
following equational system E÷, made of E− plus two additional equations:

(1) : 0− y ≈ 0 (2) : x− 0 ≈ x

(3) : s(x)− s(y) ≈ x− y
(4) : 0÷ s(y) ≈ 0 (5) : s(x)÷ s(y) ≈ s((x− y)÷ s(y))

This system axiomatizes round-up division. Informally we have 2÷2 = 1 but
3÷2 = 2. Formally we have the following derivation of s(s(0))÷s(s(0)) ≈ s(0):

s(s(0))÷ s(s(0)) ≈ s((s(0)− s(0))÷ s(s(0))) by (5)
≈ s((0− 0)÷ s(s(0))) by (3)
≈ s(0÷ s(s(0))) by (1)
≈ s(0) by (4)

Similarly we have the following derivation of s(s(s(0)))÷ s(s(0)) ≈ s(s(0)):
s(s(s(0)))÷ s(s(0)) ≈ s((s(s(0))− s(0))÷ s(s(0))) by (5)

≈ s((s(0)− 0)÷ s(s(0))) by (3)
≈ s(s(0)÷ s(s(0))) by (2)
≈ s(s((0− s(0))÷ s(s(0)))) by (5)
≈ s(s(0÷ s(s(0)))) by (1)
≈ s(s(0)) by (4)

3

Observe that the derivations above use equations only from left to right.
As we expect, we can obtain the following complete TRS by orienting the
equations from left to right:

0− y → 0 x− 0→ x

s(x)− s(y)→ x− y
0÷ s(y)→ 0 s(x)÷ s(y)→ s((x− y)÷ s(y))

The TRS gives a decision procedure for the word problem of E÷. For example,
the answer to s(s(s(0))) ÷ s(s(0)) ≈ s(s(0)) is affirmative: by rewriting the
left-hand side and the right-hand side to maximum, we obtain the same
term s(s(0)). For another example, the answer to s(s(s(0))) ÷ s(s(0)) ≈
s(0) is negative: by rewriting the left-hand side and the right-hand side to
maximum, we obtain the different terms s(s(0)) and s(0).

Unfortunately, current equational theorem provers based on ordered com-
pletion cannot perform the inferences shown above. This is not a problem of
their implementations, but a problem of reduction orders they use. To obtain
the complete TRS, we need to supply ordered completion with a reduction
order satisfying the following orientation:

0− y > 0 x− 0 > x

s(x)− s(y) > x− y
0÷ s(y) > 0 s(x)÷ s(y) > s((x− y)÷ s(y))

But it is known that this orientation is impossible for the class of reduction
orders, so-called the simplification order. The class subsumes the Knuth–
Bendix order [19] and the lexicographic path order [17], which most im-
plementations only support. At best a run of ordered completion with a
simplification order orients s(x)÷ s(y) ≈ s((x− y)÷ s(y)) from right to left.
As a result the run diverges, generating infinitely many rewrite rules:

0− y → 0 x− 0→ x

s(x)− s(y)→ x− y
0÷ s(y)→ 0 s(x)÷ s(y)← s((x− y)÷ s(y))

s(0)÷ s(y)→ s(0) s(s(x))÷ s(s(y))← s((x− y)÷ s(s(y)))

s(s(0))÷ s(s(y))→ s(0)
...

s(s(s(0)))÷ s(s(s(y)))→ s(0)
...

... ...

4

Still the run answers affirmatively to s(s(0))÷ s(s(0)) ≈ s(0) and s(s(s(0)))÷
s(s(0)) ≈ s(s(0)) using generated rewrite rules such as s(s(0)) ÷ s(s((y))) →
s(0) and s(s(s(0)))÷ s(s(s((y))))→ s(0) respectively, paying the cost of pro-
ducing auxiliary rules. Even worse is that it is unable to answer negatively
to s(s(s(0))) ÷ s(s(0)) ≈ s(0) as an infinite TRS cannot be used to give a
refutation automatically. As we can see in the example above, a class of re-
duction orders used in ordered completion can restrict its power. Therefore,
it is reasonable to develop reduction orders located beyond the realm of the
simplification order.

In this thesis, we develop an extension of the weighted path order (WPO)
[34], dubbed the generalized weighted path order (GWPO). As well as the
WPO, the GWPO takes two parameters: a precedence as a syntactic com-
ponent, and an algebra as a semantic component. In contrast to the original
WPO, algebras of the GWPO need not be simple. Thanks to the flexibility
of algebras, the GWPO is located beyond the realm of the simplification or-
der, and now we can orient s(x)÷ s(y) ≈ s((x− y)÷ s(y)) from left to right.
However, this give rise to another problem, selection of a reduction order.

1.3 Selection of a Reduction Order
Selection of a reduction order is a critical factor that determines success of
ordered completion. Let us revisit the example of round-up division. We can
choose parameters so that the GWPO >gwpo orients s(x)÷ s(y) ≈ s((x−y)÷
s(y)) from left to right.

s(x)÷ s(y) >gwpo s((x− y)÷ s(y))

As we see in the previous section, a run with the reduction order >gwpo

eventually generates the complete TRS that gives a decision procedure for
the word problem. However, the GWPO is so flexible to be able to orient
the equation from right to left, depending on a choice of a precedence and
an algebra.

s((x− y)÷ s(y)) >gwpo s(x)÷ s(y)

If we choose such a reduction order >gwpo, then the run diverges, and we are
not able to give the negative answer to a problem such as s(s(s(0)))÷s(s(0)) ≈
s(0). As we can see in the example, choice of a reduction order matters in
ordered completion. But how can we know which reduction order gives a
complete TRS in advance? In fact, selection of a reduction order has been
an open problem in theorem proving research [27, Open problem 3].

An approach to this problem is maximal completion [18]. In maximal
completion, selection of a reduction order is encoded as a constraint solving

5

problem, which reflects high-level heuristics. Later a variant of maximal com-
pletion was developed, maximal ordered completion by Winkler and Moser
[33]. They also developed the equational theorem prover MædMax, based
on maximal ordered completion. As high-level heuristics, MædMax focuses
on reducibility; it tries to find a reduction order that maximizes the power
to rewrite the goal and the equations, namely the reducibility of the rewrite
system.

To unleash the potential of the GWPO in ordered completion, we em-
ploy maximal ordered completion. Unlike typical simplification orders, such
as the Knuth–Bendix order and the lexicographic path order, the parame-
ters of the GWPO is highly flexible, which results in a vast search space.
Therefore, it is reasonable to find actual parameters of an ordering by encod-
ing high-level heuristics (e.g. maximization of reducibility) as a constraint
solving problem, rather than using a fixed strategy. For instance, the state-
of-the-art ordered completion tool Twee uses the Knuth–Bendix order with
a fixed strategy [30], which does not pay off when we use the GWPO. More-
over, we integrate a new variant of maximal completion [13] into maximal
ordered completion. This allows us to eliminate redundant equations using
a variant of the Knuth–Bendix completion [19], namely simplification, which
is not allowed in the original maximal ordered completion. The integration
of simplification enhances performance on problems which contain numerous
equations.

1.4 An Outline and Contributions
The thesis is organized as follows: Chapter 2 serves as preliminaries. Chap-
ter 3 introduces the generalized weighted path order. Chapter 4 introduces
a new theorem proving procedure, maximal ordered completion with simpli-
fication. Chapter 5 concludes the thesis. The contributions of this thesis are
given in the following paragraphs:

The generalized weighted path order. We introduce a new class of
reduction orders, the generalized weighted path order (GWPO), which gives a
way to construct non-simplification orders. The relation between the GWPO
and existing classes of reduction orders, including the weighted path order
(WPO), the Knuth–Bendix order (KBO) and the lexicographic path order
(LPO), are shown together with experimental results.

Maximal ordered completion with simplification. We introduce a
new equational theorem proving procedure, which integrates simplification

6

into maximal ordered completion [33] by following the existing approach [13]
for the standard completion. A correctness proof of the procedure is given.
Also, the performance is evaluated in various settings, including cases of the
GWPO.

Toma. The reduction orders and theorem proving procedures proposed in
the thesis have been implemented in the equational theorem prover Toma,
available at:

https://www.jaist.ac.jp/project/maxcomp/

Settings for experiments are accessible via command line options. The thesis
uses Toma 0.3.

7

Chapter 2

Preliminaries

Throughout the thesis, we assume familiarity with term rewriting [3].

2.1 Abstract Rewriting
Definition 1 (proper orders). Let > be a binary relation on a set X. We
call > a proper order if > satisfies irreflexivity and transitivity:

• irreflexivity: x 6> x for all x ∈ X

• transitivity: for all x, y, z ∈ X, if x > y and y > z, then x > z

Definition 2 (well-foundedness). We call a binary relation R is well-founded
if there exists no infinite sequence x0 R x1 R x2 A set equipped with a
well-founded proper order is called a well-founded set.

We recall two ways to extend well-founded orders, lexicographic extension
and multiset extension.

Definition 3 (lexicographic extension). Let A be a set equipped with a
proper order > and let n ∈ N. For elements a1, . . . , an, b1, . . . , bn ∈ A we
write (a1, . . . , an) >

lex (b1, . . . , bn) if a1 = b1, . . . , ak−1 = bk−1 and ak > bk
for some k ∈ {1, . . . , n}. The relation >lex on An is called the lexicographic
extension of >.

Proposition 4. Let n ∈ N. If (A,>) is a well-founded set, so is (An, >lex).

Definition 5 (multisets). Let X be a set. A function M : X → N is called a
multiset on X if there is only finitely many elements x ∈ X with M(x) > 0.
The set of all multisets on X is denoted by M(X). Next we extend the
notions for sets ∈,⊆,∅,∪ and \ to multisets. Let M1,M2 ∈ M(X). We

8

write x ∈ M1 if M1(x) > 0. We also write M1 ⊆ M2 if M1(x) ≤ M2(x) for
all x ∈ X. The empty multiset ∅ is the constant function: ∅(x) = 0 for all
x ∈ X. The union M1 ∪M2 is the multiset defined by the point-wise sum:
(M1 ∪M2)(x) =M1(x)+M2(x) for all x ∈ X. The difference M1 \M2 is the
multiset defined by cut-off minus:

(M1 \M2)(x) =

{
M1(x)−M2(x) if M1(x) ≥M2(x)

0 otherwise

for all x ∈ X.

Definition 6. Let X be a set equipped with a proper order >, and let
M1,M2 ∈ M(X). We write M1 >

mul M2 if there exists multisets M3,M4

that satisfies the following conditions:

• M3 6= ∅ and M3 ⊆M1.

• For every x ∈M4, there exists y ∈M3 with y > x.

• M2 = (M1 \M3) ∪M4.

Proposition 7. If (X,>) is a well-founded set, so is (M(X), >mul).

Definition 8 (abstract rewrite systems). A set A equipped with a binary
relation→ is called an abstract rewrite system (ARS). The symbol A is used
for the ARS (A,→). We write →1 · →2 for the composition of relations →1

and →2. We introduce the following notations:

• ← denotes the inverse relation of →.

• →= denotes the symmetric closure of →.

• →∗ denotes the symmetric and transitive closure of →.

• →+ denotes the transitive closure of →.

• ↔ denotes the reflexive closure of →.

• ↔∗ denotes the symmetric, transitive, and reflexive closure of →. A
sequence s0 ↔ s1 ↔ . . .↔ sn is called a conversion between s0 and sn.

• We write a ↓ b if a→∗ · ∗← b, and we say that a and b are joinable.

• An element a ∈ A that has no element b ∈ A with a → b is called
a normal form. The set of all normal forms is denoted by NF(A). If
a→∗ b ∈ NF(A), we say b is a normal form of a, or equivalently a has
a normal form b.

9

We are ready to define basic properties of abstract rewrite systems.

• The ARS is terminating if → is well-founded.

• The ARS is confluent if the inclusion ∗← · →∗ ⊆ ↓ holds.

• The ARS is complete if it is terminating and confluent.

• The ARS is locally confluent if the inclusion ← · → ⊆ ↓ holds.

• The ARS has the Church–Rosser property if the inclusion ↔∗ ⊆ ↓
holds.

Confluence and the Church–Rosser property coincide:

Proposition 9. Every ARS is confluent if and only if it has the Church–
Rosser property.

Proposition 10 (Newman’s Lemma [26]). Every terminating and locally
confluent ARS is confluent.

If an ARS is confluent, every element has unique normal forms. So the
normal form of an element a is unambiguously denoted by a↓ provided that
a has a normal form.

Proposition 11. Let A be a confluent ARS, and a be an element of A. If
a has normal forms b, c, then b = c.

2.2 Term Rewriting
Definition 12 (terms). The set of variables V is an arbitrary infinite set.
The signature F is an arbitrary set such that a unique natural number n is
given to each f ∈ F . The number n is called the arity of f . An element in
F is called a function symbol. A function symbol with the arity 0 is called a
constant. The set T (F ,V) of all terms is defined inductively:

• Every variable is a term.

• Let n be a natural number, f a function symbol with the arity n, and
t1, . . . , tn terms. Then f(t1, . . . , tn) is a term.

Note that the set of variables V and the signature F are fixed when terms
are involved. The set of variables appears in a term t is denoted by Var(t).
The number of occurrence of a variable x in a term t is denoted by |t|x.
A term that has no variable is called a ground term. For a non-variable
term s = f(s1, . . . , sn), the function symbol f is called the root symbol of s,
denoted by root(s).

10

Definition 13 (substitutions). A substitution σ is a function from V to
T (F ,V) that has only finitely many variables x ∈ V satisfying σ(x) 6= x.
The application tσ of a substitution σ to a term t is defined by recursion:

• xσ = σ(x) for each variable x.

• σ(f(t1, . . . , tn)) = f(t1σ, . . . , tnσ) for all n-ary function symbols f and
terms t1, . . . , tn.

A variable substitution σ is a substitution such that σ(x) ∈ V for all x ∈ V .
A bijective variable substitution is called a renaming.

Definition 14 (ground substitutions). Let s and t be terms. A substitution
σ is a ground substitution for s and t if sσ and tσ are ground. If the terms
s and t are clear from the context, we may simply say that σ is a ground
substitution.

Definition 15 (contexts). The hole � is a fresh constant symbol with � /∈ F .
A context C is a term that contains exactly one hole. For each term t and
context C the term C[t] is defined by recursion:

• x[t] = x for all variables x

• �[t] = t

• f(t1, . . . , tn)[t] = f(t1[t], . . . , tn[t]) for all n-ary function symbols f and
terms t1, . . . , tn

Definition 16 (positions, subterms). Let t be a term. The set of all positions
Pos(t) of t is a set of strings over N, defined by recursion:

• Pos(x) = {ε} for all variables x.

• Pos(f(t1, . . . , tn)) = {ε}∪
n⋃

k=0

{k · p | p ∈ Pos(tk)} for each function sym-

bol f with arity n and terms t1, . . . , tn.

The subterm t|p of a term t at a position p ∈ Pos(t) is defined by recursion
t|ε = t and f(t1, . . . , tn)|k·p = tk|p. We write s � t if t is a subterm of s at
some position p. In particular, we write s � t if p 6= ε, and call t a proper
subterm of s. We write t[]p for the context obtained from t by replacing the
subterm t|p by the hole. Formally, we define t[]p by recursion t[]ε = � and
f(t1, . . . , tn)[]k·p = f(t1, . . . , tk[]p, . . . , tn). We write t[u]p for (t[]p)[u].

Definition 17 (rewrite relations/rewrite orders/reduction orders). Let R be
a binary relation on terms.

11

• R is closed under substitutions if sσ R tσ for all substitutions σ and
terms s, t with s R t.

• R is closed under contexts if C[s] R C[t] for all contexts C and terms
s, t with s R t.

• R is a rewrite relation if it is closed under substitutions and contexts.

• R is a rewrite order if it is a proper order and a rewrite relation.

• R is a reduction order if it is a well-founded rewrite order.

Definition 18 (encompassment). A term s encompasses a term t if s = C[tσ]
for some context C and substitution σ, and we write s ·D t. The strict
encompassment ·B is the difference ·D \ ·D−1.

Proposition 19 ([14, Lemma 2.3]). If R is a well-founded rewrite relation
then ·D∗· (R ∪ ·B) · ·D∗ is well-founded.

Definition 20 (algebra). Let F be a signature. An F -algebra A consists of

• a set A (carrier) and

• an interpretation fA : An → A for each f (n) ∈ F .

A function α : V → A is called an assignment for the algebra A. The
assignment α is extended to the valuation [α] : T (F ,V)→ A by recursion:

• [α]A(x) = α(x) for each x ∈ V .

• [α]A(f(t1, . . . , tn)) = fA([α]A(t1), . . . , [α]A(tn)) for all f (n) ∈ F and
terms t1, . . . , tn.

Definition 21 (well-foundedness, simplicity and weak monotonicity of alge-
bras). Let A be an algebra equipped with a proper order > on its carrier A.
Here ≥ denotes the reflexive closure of >.

• The algebra A is well-founded if > is well-founded.

• The algebra A is simple if

fA(a1, . . . , an) ≥ ai

for all f (n) ∈ F , and a1, . . . , an ∈ A, and i ∈ {1, . . . , n}.

12

• The algebra A is weakly monotone if

fA(a1, . . . , ai, . . . , an) ≥ fA(a1, . . . , b, . . . , an)

for all f (n) ∈ F , and a1, . . . , an, b ∈ A, and i ∈ {1, . . . , n} with ai > b.

• The algebra A is simple monotone if A is simple and weakly monotone.

Definition 22. Let A be an algebra equipped with proper order >. We
define the binary relations >A, ≥A and =A as follows:

• s >A t if [α](s) > [α](t) for all assignments α.

• s ≥A t if [α](s) ≥ [α](t) for all assignments α.

• s =A t if [α]A(s) = [α]A(t) for all assignments α.

Definition 23 (equational systems). A pair (s, t) of terms is called an equa-
tion, denoted by s ≈ t. An equational system (ES) E is a set of equations.
We write E−1 for the set {t ≈ s | s ≈ t ∈ E}. We write s→E t if there exist
an equation ` ≈ r ∈ E , a context C, and a substitution σ such that s = C[`σ]
and t = C[rσ]. An algebra A is a model of E if ` =A r for all ` ≈ r ∈ E . An
equation s ≈ t is valid in E if s =A t for all models A of E .

Proposition 24 (Birkhoff’s completeness theorem). Let E be an equational
system. An equation s ≈ t is valid in E if and only if s↔∗

E t.

Definition 25 (the word problem). The word problem is given in the fol-
lowing scheme:

instance: an equational system E and an equation s ≈ t

question: does E entail s ≈ t?

Example 26. Now we are ready to revisit an example in the introduction
with formal knowledge of rewriting. We consider word problems under the
following equational system E÷ for round-up division:

(1) : 0− y ≈ 0 (2) : x− 0 ≈ x

(3) : s(x)− s(y) ≈ x− y
(4) : 0÷ s(y) ≈ 0 (5) : s(x)÷ s(y) ≈ s((x− y)÷ s(y))

13

The equation s(s(0))÷ s(s(0)) ≈ s(0) is valid in E÷ as we admit the following
conversion:

s(s(0))÷ s(s(0))→E÷ s((s(0)− s(0))÷ s(s(0))) by (5)
→E÷ s((0− 0)÷ s(s(0))) by (3)
→E÷ s(0÷ s(s(0))) by (1)
→E÷ s(0) by (4)

Similarly we have the following conversion, which proves the validity of
s(s(s(0)))÷ s(s(0)) ≈ s(s(0)):

s(s(s(0)))÷ s(s(0))→E÷ s((s(s(0))− s(0))÷ s(s(0))) by (5)
→E÷ s((s(0)− 0)÷ s(s(0))) by (3)
→E÷ s(s(0)÷ s(s(0))) by (2)
→E÷ s(s((0− s(0))÷ s(s(0)))) by (5)
→E÷ s(s(0÷ s(s(0)))) by (1)
→E÷ s(s(0)) by (4)

On the other hand, the system has a semantic counterpart of round-up
division, namely a model. Define an algebra A as follows: set N as its carrier,
and let 0A = 0, sA(x) = x+ 1, −A cut-off minus, and ÷A round-up division.
More formally, −A and ÷A are defined as follows:

x−A y =

{
x− y if x ≥ y

0 otherwise

x÷A y =

{
dx/ye if y > 0

0 otherwise
Here dxe denotes the smallest natural number greater than a real number
x. It is easy for us to see that A is a model of E÷, and we have s(s(0)) ÷
s(s(0)) =A s(0) and s(s(s(0))) ÷ s(s(0)) =A s(s(0)) from the completeness
theorem. In particular, models are useful for disproofs. For instance, the
equation s(s(s(0))) ÷ s(s(0)) ≈ s(0) is invalid, as A interprets the left-hand
side as 2 but the right-hand side as 1. This also means that there is no
conversion between s(s(s(0)))÷ s(s(0)) and s(0), thanks to the completeness
theorem. However, disproof via a model is difficult to automate because
generally it is not easy to find a model, and even verify that it is a model:
suppose that we are asked to prove that A is a model of E÷. We need to
verify s(x)÷ s(y) =A s((x− y)÷ s(y)), but this requires d(x+ 1)/(y + 1)e =
1+d(x−Ay)/(y+1)e, which is a lemma to be found and proved automatically.

14

Notion of term rewrite systems plays an important role in mechanically
solving the word problem. In particular, termination and confluence of term
rewrite systems are of special interest, as they guarantee decidability of the
word problem.

Definition 27 (term rewrite systems). An equation ` ≈ r is a rule if ` /∈ V
and Var(r) ⊆ Var(`). An equational systemR is a term rewrite system (TRS)
if every equation in R is a rule. A term rewrite system is terminating/con-
fluent/complete if →R is terminating/confluent/complete.

Example 28 (continued from Example 26). The equational system E÷ is
a term rewrite system, so we also write R÷ for E÷ in subsequent examples.
Moreover, R÷ is actually terminatinjg even though we postpone the proof of
termination until Chapter 3.

How can we prove termination of a term rewrite system? A major method
is finding a suitable reduction order for a term rewrite system.

Definition 29. A term rewrite system R is compatible with a reduction
order > if R ⊆ >.

Proposition 30. A term rewrite system is terminating if and only if it is
compatible with some reduction order.

The lexicographic path order is a well-known class of reduction orders.

Definition 31 (precedence). A proper order on a signature is called a prece-
dence.

Definition 32 (lexicographic path order). Let � be a precedence. We de-
fine the binary relation >lpo on terms as the smallest relation satisfying the
following conditions:

(subterm) f(s1, . . . , sn) >lpo t if si >=
lpo t for some term si.

(lex) f(s1, . . . , sn) >lpo f(t1, . . . , tn) if

– (s1, . . . , sn) >
lex
lpo (t1, . . . , tn), and

– f(s1, . . . , sn) >lpo tj for all j ∈ {1, . . . , n}.

(precedence) f(s1, . . . , sn) >lpo g(t1, . . . , tm) if

– f � g, and
– f(s1, . . . , sn) >lpo tj for all j ∈ {1, . . . , n}.

15

Informally >lpo is given by the following inference system:

∃i(si >=
lpo t) (subterm)

f(s1, . . . , sn) >lpo t

(s1, . . . , sn) >
lex
lpo (t1, . . . , tn) ∀j(s >lpo tj) (lex)

s = f(s1, . . . , sn) >lpo f(t1, . . . , tn) = t

f � g ∀j(s >lpo tj) (precedence)
s = f(s1, . . . , sn) >lpo g(t1, . . . , tm) = t

The inference system is especially convenient when we give a proof of s >lpo t
for given terms s, t.

Definition 33. A rewrite order > is a simplification order if it has the
subterm property: s > t for all terms s� t. A TRS is simply terminating if
it is compatible with some simplification order.

The following proposition is well-known, which is useful to establish well-
foundedness of reduction orders. For a reference, see e.g. [3].

Proposition 34. Every simplification order over a finite signature is well-
founded.

In this thesis we only consider finite signatures. Thus simplification orders
in this thesis are reduction orders.

Proposition 35 ([17]). Every instance of the lexicographic path order is a
simplification order.

We give another class of the simplification order, the Knuth–Bendix order
[19].

Definition 36 (weights). A weight (w,w0) is a pair of a function w : F → N
and a natural number w0 such that w(c) ≥ w0 for all constants c. Given a
weight (w,w0), the weight w(t) of a term t is defined by recursion:

• w(x) = w0 for all variables x.

• w(f(t1, . . . , tn)) = w(f) +
n∑

k=0

w(tk) for all n-ary function symbols f

and terms t1, . . . , tn.

16

Definition 37 ([19]). Given a weight (w,w0) and a precedence�, the Knuth–
Bendix order >kbo is the smallest relation such that s >kbo t if and only if
|s|x ≥ |t|x for all variables x, w(s) ≥ w(t), and one of the following conditions
holds:

• w(s) > w(t)

• t is a variable and s = fn(t) for some unary f ∈ F and positive natural
number n

• f � g where s and t are in the form of s = f(s1, . . . , sn) and t =
g(t1, . . . , tm)

• (s1, . . . , sn) >lex
kbo (t1, . . . , tn) where s and t are in the form of s =

f(s1, . . . , sn) and t = f(t1, . . . , tn)

The Knuth–Bendix order is admissible if f is maximum with respect to the
precedence � for all unary function symbols f with w(f) = 0.

Proposition 38 ([19]). Every admissible Knuth–Bendix order is a simplifi-
cation order.

Definition 39 (the embedding rules). Let F be a signature. The TRS Emb
consists of rules f(x1, . . . , xn)→ xi for all f (n) ∈ F and i ∈ {1, . . . , n}.

Proposition 40 ([25, Lemma 4.6]). LetR be a TRS and Emb a simplification
order. The following statements are equivalent:

• The TRS R is simply terminating.

• The TRS R∪ Emb has no cycle: i.e. t→+
R∪Emb t for no term t.

This characterization is useful when we show that a TRS R is not simply
terminating; it suffices to give a cyclic rewrite sequence in R∪ Emb.

Example 41 (continued from Example 28). The TRS R÷ is not simply
terminating because R÷ ∪ Emb has a cycle:

s(x)÷ s(s(x))→R÷ s((x− s(x))÷ s(s(x)))

→Emb (x− s(x))÷ s(s(x))

→Emb s(x)÷ s(s(x))

Therefore, the TRS is not compatible with the KBO nor the LPO.

17

For confluence of a term rewrite system, we have a useful notion, namely
critical pairs. It is well-known that confluence of a terminating term rewrite
system is characterized by its critical pairs.

Definition 42 (most general unifiers). A substitution ρ is a unifier for s
and t if sρ = tρ. In particular, ρ is a most general unifier (called a mgu for
short) if for all unifiers σ for s and t, there exists τ such that ρτ = σ. Here,
ρτ is the substitution given by (ρτ)(x) = (xρ)τ for all variables x.

Definition 43 (variants). Equations `1 ≈ r1 and `2 ≈ r2 are variants if there
is a renaming σ such that `1τ = `2 and r1τ = r2.

Definition 44 (critical overlap/peak/pair). Let R be a TRS, and `1 →
r1, `2 → r2 rules, and p ∈ Pos(`2). The triple (`1 → r1, p, `2 → r2) is a
critical overlap if all the following conditions are satisfied:

• There exist renamings τ1 and τ2 such that `1τ1 → r1τ1, `2τ2 → r2τ2 ∈ R.

• The equality Var(`1 → r1) ∩ Var(`2 → r2) = ∅ holds.

• The position p is a function position of `2.

• If p = ε, then `1 → r1 and `2 → r2 are not variants.

• The terms `1 and `2|p are unifiable.

Each critical overlap (`1 → r1, p, `2 → r2) gives its critical pair (`2σ)[r1σ]p ≈
r2σ. The set of all critical pairs of R is denoted by CP(R).

The next well-known lemma is attributed to Huet [15].

Lemma 45 (the Critical Pair Lemma). A terminating TRS is confluent if
and only if its all critical pairs are joinable.

Example 46 (continued from Example 28). The term rewrite system has
only one critical pair 0 ≈ 0 from the overlap (0− y → 0, ε, x− 0→ x). The
critical pair is illustrated by the peak:

0← 0− 0→ 0

The peak is trivially joinable, and thus R÷ is confluent, and moreover it is
complete.

Now we are ready to give a sufficient condition for decidability of the
word problem of an equational system.

18

Definition 47. A term rewrite system R is called a complete presentation
for an equational system E if R is complete, and ↔∗

R and ↔∗
E coincide.

Proposition 48. The word problem of an equational system E is decidable
if there is a finite complete presentation R for E.

Proof. The following algorithm gives a decision procedure: let s ≈ t be an
equation given as an input.

1. Compute normal forms of s and t, say s↓ and t↓.

2. Answer affirmatively if s↓ and t↓ are identical, or negatively otherwise.

Termination of the algorithm is guaranteed by the termination of R. We
show completeness: s↔∗

E t and s↔∗
R t are equivalent since R is a complete

presentation for E . By the Church–Rosser property, s and t eventually join
at their normal form if and only if s↔∗

R t.

Example 49 (continued from Example 46). The equational system E÷ has
a complete presentation R÷. Now we can disprove the invalid equation
s(s(s(0))) ÷ s(s(0)) ≈ s(0) without finding a model. The left-hand side
s(s(s(0))) ÷ s(s(0)) has a normal form s(s(0)) with respect to →R, but the
right-hand side s(0) is already a normal form. Hence, the equation is invalid
under E÷.

2.3 Ordered Rewriting
We introduce the notion of ordered rewriting [23].

Definition 50 (ordered rewriting system). Let E be an equational system
and > a context-closed proper order on terms. The pair O = (E , >) is called
an ordered term rewrite system (OTRS). The relation→O is defined on terms
as follows: s →O t if there exist an equation ` ≈ r ∈ E ∪ E−1, a context C,
and a substitution σ such that s = C[`σ], t = C[rσ], and `σ > rσ.

Example 51. Let E be the equational system of the four equations:

0+ y ≈ y x+ s(y) ≈ s(x+ y)

(x+ y) + z ≈ x+ (y + z) x+ y ≈ y + x

and let >lpo be the lexicographic path order induced by the precedence + >
s > 0. The pair O = (E , >lpo) is an OTRS and admits a sequence s(0)+0→O
0+ s(0)→O s(0) ∈ NF(O). In contrast, x+ y →E y + x is not a step by →O
as x+ y >lpo y + x does not hold.

19

Definition 52. Let O be an OTRS and E an ES.

• The OTRS O is ground-terminating if the restriction of→O to ground
terms is terminating.

• The OTRS O is ground-confluent if the restriction of →O to ground
terms is confluent.

• The OTRS O is ground-complete if →O is ground-terminating and
ground-confluent.

• The OTRS O is ground-equivalent to E if the restrictions of ↔∗
O and

↔∗
E coincide.

• The OTRS O is a ground-complete presentation for E if O is ground-
complete and ground-equivalent to E .

• A reduction order > is ground-total if every two different ground terms
s, t satisfy either s > t or t > s.

The following proposition states that, given a ground equation s ≈ t and
an equational system E , validity of s ≈ t under E is decidable if E admits a
ground-complete OTRS.

Proposition 53. Let O = (E ′, >) be a ground-complete presentation for E,
and let s, t be ground terms. Then s↔∗

E t if and only if s↓O = t↓O.

How can ground completeness of OTRSs be verified? Usually OTRSs
employ reduction orders and such OTRSs fulfil ground termination.

Proposition 54. Every OTRS is terminating if its ordering is a reduction
order.

Ground confluence of terminating OTRSs is characterized by ground join-
ability of extended critical pairs.

Definition 55 (extended critical overlap/peak/pair). Let O = (E , >) be
an OTRS, `1 ≈ r1 and `2 ≈ r2 equations, and p ∈ Pos(`2). The triple
(`1 ≈ r1, p, `2 ≈ r2) is an extended overlap if all the following conditions are
satisfied:

• There exist renamings τ1 and τ2 such that `1τ1 ≈ r1τ1, `2τ2 ≈ r2τ2 ∈
E ∪ E−1.

• The equality Var(`1 ≈ r1) ∩ Var(`2 ≈ r2) = ∅ holds.

20

• The position p is not a function position of `2.

• If p = ε then `1 ≈ r1 and `2 ≈ r2 are not variants.

• The terms `1 and `2|p has an mgu σ.

• Neither r1σ > `1σ nor r2σ > `2σ holds.

The set of all extended critical pairs is denoted by ECP(O). Each ex-
tended critical overlap (`1 ≈ r1, p, `2 ≈ r2) gives extended critical pair
(`2σ)[r1σ]p ≈ r2σ where σ is an mgu of `1 and `2|p.

Example 56 (continued from Example 51). The OTRS admits the extended
critical pair s(x + y) ≈ s(y) + x, which originates from the extended over-
lap (x+ s(y) ≈ s(x+ y), ε, x+ y ≈ y + x). The overlap is illustrated by the
following conversion:

s(x+ y) E← x+ s(y)→E s(y) + x

Definition 57. Given an OTRS O, we say that s and t are ground-joinable
if sσ ↓O tσ for all ground substitutions σ for s and t, and we write s ⇓O t.

Lemma 58 (the Extended Critical Pair Lemma [23]). Let O be an OTRS
equipped with a ground-total reduction order. The OTRS O is ground-
confluent if and only if ECP(O) ⊆ ⇓O.

The Extended Critical Pair Lemma demands ground-totality.

Example 59. Let E = {f(x) ≈ a, b ≈ c}, and let >lpo be the LPO induced by
the precedence b � a, c. The OTRS O = (E , >lpo) have no extended critical
pair, and thus the condition ECP(O) ⊆ ⇓O is vacuously satisfied. However,
O is not ground-confluent: f(c) O← f(b)→O a but f(c), a ∈ NF(O) as a and
c are not comparable with respect to >lpo.

A major problem when testing ground joinability is that there are in-
finitely many ground substitutions in general. Martin and Nipkow [23] sug-
gest extending ordered rewriting by variable orders. We define an extension
of LPO.

Definition 60 (extended lexicographic path orders). Let > be a precedence
and � a strict order on variables. We define the binary relation >elpo on
terms as the smallest relation satisfying the following conditions:

• f(s1, . . . , sn) >elpo f(t1, . . . , tn) if there exists i such that

– s1 = t1, . . . , si−1 = ti−1,

21

– si >elpo ti, and
– s >elpo ti+1, . . . , s >elpo tn.

• s = f(s1, . . . , sn) >elpo g(t1, . . . , tm) if f > g and s >elpo ti for all i.

• f(s1, . . . , sn) >elpo t if there exists i such that si >=
elpo t.

• x >elpo y if x � y.

When � = ∅, the extended LPO coincides with the standard LPO.

Theorem 61 ([23]). Let O = (E , >lpo) be an OTRS. The relation s ⇓O t
holds if sρ ↓(E,>elpo)

tρ for all variable substitutions ρ and total orders � on
variables, where >elpo is the extended LPO induced by > and �.

Example 62 (associativity and commutativity). Consider the OTRS O con-
sisting of the equational system E over the signature {∗(2), a(0), b(0)}:

(1) (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)
(2) x ∗ y ≈ y ∗ x
(3) x ∗ (y ∗ z) ≈ y ∗ (x ∗ z)

and the LPO with the total precedence ∗ > a > b. Note that (1) is oriented
from left to right by LPO >lpo and (2) (3) are just a renaming. Therefore,
we can omit some cases to calculate extended critical pairs. For example,

• We obtain (x ∗ y) ∗ (z ∗ w) ≈ (x ∗ (y ∗ z)) ∗ w by embedding (1) into
itself.

• We obtain z ∗ (x ∗ y) ≈ x ∗ (y ∗ z) by embedding (1) into (2).

• We obtain y ∗ (x ∗ z) ≈ x ∗ (z ∗ y) and y ∗ (x ∗ z) ≈ (y ∗ z) ∗ x by
embedding (2) into (3). Note that there are two ways to embed (2)
into (3).

The ordered rewriting system admits 8 distinct extended critical pairs:

x ∗ (y ∗ z) ≈ (y ∗ x) ∗ z x ∗ ((y ∗ z) ∗ w) ≈ (y ∗ (x ∗ z)) ∗ w
(x ∗ y) ∗ (z ∗ w) ≈ (x ∗ (y ∗ z)) ∗ w z ∗ (x ∗ y) ≈ x ∗ (y ∗ z)

(y ∗ z) ∗ x ≈ y ∗ (x ∗ z) (y ∗ z) ∗ (x ∗ w) ≈ x ∗ (y ∗ (z ∗ w))
y ∗ (x ∗ (z ∗ w)) ≈ x ∗ (z ∗ (y ∗ w)) y ∗ (x ∗ z) ≈ (y ∗ z) ∗ x

and all of them are ground joinable. For example, x ∗ (y ∗ z) and (y ∗ x) ∗ z
are ground joinable: (y ∗ x) ∗ z −→O y ∗ (x ∗ z) and

22

• if x � y then x ∗ (y ∗ z) −→E,>elpo
y ∗ (x ∗ z).

• if x = y then the terms x ∗ (y ∗ z) and y ∗ (x ∗ z) are identical.

• if y � x then y ∗ (x ∗ z) −→E,>elpo
x ∗ (y ∗ z).

Here, for simplicity, a variable x denotes xρ.

23

Chapter 3

Generalized Weighted Path
Order

First we introduce the weighted path order [34] and prove that the weighted
path order is a monotonic semantic path order [11]. Based on this observation
we give a generalization of the weighted path order, dubbed the generalized
weighted path order (GWPO). In addition, we give several ways to instantiate
the GWPO, which is useful to construct non-simplification orders. Next
we identify the relationships between the GWPO and well-known classes of
reduction orders, such as the Knuth–Bendix order and the lexicographic path
order. For the rest of this chapter we discuss implementations of the GWPO
and experiments.

3.1 The Weighted Path Order
We introduce the weighted path order [34] and prove that the weighted path
order is a monotonic semantic path order [11].

Definition 63 (the weighted path order). Let A be a well-founded algebra
and � a precedence. The weighted path order (WPO) >wpo is defined on
terms as follows: s >wpo t if

1. s >A t, or

2. s ≥A t, s = f(s1, . . . , sm), and one of the following conditions holds.

(a) si >
=
wpo t for some 1 ≤ i ≤ m.

(b) t = g(t1, . . . , tn) and s >wpo tj for all 1 ≤ j ≤ n, and moreover
• f � g, or

24

• f = g, and (s1, . . . , sm) >
lex
wpo (t1, . . . , tn).

Theorem 64 ([34]). Every weighted path order is a simplification order if
its algebra is simple monotone.

We show that the weighted path order characterizes the simplification
order.

Lemma 65. If s >wpo t then s ≥A t.

Proof. The claim follows immediately from the definition.

Proposition 66. Given a simplification order >, there is a simple monotone
algebra and a precedence such that the induced weighted path order coincides
with >.

Proof. Given a simplification order > consider>wpo induced the term algebra
A equipped with the ordering >, and the empty precedence. Obviously > is
simple monotone as it is a simplification order. If s > t, then immediately
s >wpo t as s >A t. Conversely, suppose s >wpo t. With an appeal to
Lemma 65 we obtain s ≥A t, which yields s > t or s = t in this setting. The
latter is impossible as s >wpo t.

Next we introduce the monotonic semantic path order.

Definition 67. A pair (&,=∼) is a quasi-rewrite pair if

• & is a rewrite preorder,

• =∼ is a quasi-order on non-variable terms that is closed under substitu-
tions, and

• (&,=∼) has the harmony property:

si & t =⇒ f(s1, . . . , si, . . . , sn) =∼ f(s1, . . . , t, . . . , sn)

for all n ∈ N, n-ary function symbols f , terms s1, . . . , sn, t and argu-
ment positions i.

A quasi-rewrite pair (&,=∼) is a quasi-reduction pair if the strict part = of =∼
is well-founded and closed under substitutions.

Definition 68 (the monotonic semantic path order). Let (&,=∼) be a quasi-
reduction pair. The semantic path order >spo is defined on terms as follows:
s >spo t if s = f(s1, . . . , sm) and one of the followings holds.

25

1. si >=
spo t for some 1 ≤ i ≤ m.

2. t = g(t1, . . . , tn) and s >spo tj for all 1 ≤ j ≤ n, and moreover

• s = t, or
• s =∼ t, f = g, and (s1, . . . , sm) >

lex
spo (t1, . . . , tn).

We define the monotonic semantic path order >mspo as follows: s >mspo t if
s & t and s = t.

Proposition 69 ([17]). Every semantic path order is a well-founded order
closed under substitutions.

Theorem 70 ([11]). Every monotonic semantic path order is a reduction
order.

We prove that every weighted path order is a monotonic semantic path
order. Let >wpo be a weighted path order induced by a weakly monotone
algebra A and a precedence �. Define the relation =∼ on non-variable terms
as follows: s =∼ t if s >A t, or s ≥A t and root(s) �= root(t). First we analyze
the strict part = of =∼.

Lemma 71. The relation s = t holds if and only if s >A t, or s ≥A t and
root(s) � root(t).

Lemma 72. The pair (&,=∼) is a quasi-reduction pair.

Let >spo be the semantic path order induced by (&,=∼).

Lemma 73. Suppose A is simple. If s >wpo t, then s >spo t.

Proof. We show the claim by induction on the sum |s| + |t|. Let s =
f(s1, . . . , sm). We analyze the derivation of s >wpo t, and distinguish the
four cases.

• Suppose that s >wpo t is derived from s >A t. The case when t is a
variable is trivial. Let t = g(t1, . . . , tn). From s >A t we have s = t.
Since A is simple monotone, for all j ∈ {1, . . . , n} we have t ≥A tj.
Thus, for all j ∈ {1, . . . , n} we have s >A tj and moreover s >wpo tj.
Now we have the following derivation of s >spo t:

s = t

∀j(s >wpo tj) I.H.∀j(s >spo tj)

s >spo g(t1, . . . , tn) = t

26

• Suppose s >wpo t is derived from s ≥A t and si >
=
wpo t for some

i ∈ {1, . . . ,m}. By the induction hypothesis we have si >=
spo t, and

thus s >spo t.

• Suppose that s >wpo t is derived as follows:

s ≥A t f � g ∀j(s >wpo tj)

s = f(s1, . . . , sm) >wpo g(t1, . . . , tn) = t

From s ≥A t and f � g we have s = t. Thus, we have the following
derivation of s >spo t:

s = t

∀j(s >wpo tj) I.H.∀j(s >spo tj)

s >spo g(t1, . . . , tn) = t

• Suppose that s >wpo t is derived as follows:

s ≥A t ∀j(s >wpo tj) (s1, . . . , sm) >
lex
wpo (t1, . . . , tm)

s = f(s1, . . . , sm) >wpo f(t1, . . . , tm) = t

From s ≥A t and that s and t have the same root symbol, we have
s =∼ t. Thus, we have the following derivation of s >spo t:

s =∼ t

∀j(s >wpo tj) I.H.∀j(s >spo tj)

(s1, . . . , sm) >
lex
wpo (t1, . . . , tm) I.H.

(s1, . . . , sm) >
lex
spo (t1, . . . , tm)

s = f(s1, . . . , sm) >spo f(t1, . . . , tm) = t

This case concludes the proof.

Lemma 74. Suppose A is simple. If s >spo t, then s >wpo t.

Proof. We show the claim by induction on the sum |s| + |t|. Let s =
f(s1, . . . , sm). We analyze the derivation of s >spo t, and distinguish the
three cases.

• If si >=
spo t for some i ∈ {1, . . . ,m}, by the induction hypothesis we have

si >
=
wpo t. From the simplicity and Lemma 65 we have s ≥A si ≥A ti

and thus s >wpo t.

• Suppose that s >spo t is derived as follows:

27

s = t ∀j(s >spo tj)

s = f(s1, . . . , sm) >spo g(t1, . . . , tn) = t

We analyze s = t and further distinguish two cases:

– If s >A t then immediately s >wpo t.
– Otherwise, we have s ≥A t and f � g. In this case we have the

following derivation:

s ≥A t f � g

∀j(s >spo tj) I.H.∀j(s >wpo tj)

s = f(s1, . . . , sm) >wpo g(t1, . . . , tn) = t

This concludes the analysis of the subcases.

• Suppose that s >spo t is derived as follows:

s =∼ t ∀j(s >spo tj) (s1, . . . , sm) >
lex
spo (t1, . . . , tm)

s = f(s1, . . . , sm) >spo f(t1, . . . , tm) = t

From s =∼ t we have s ≥A t. Thus, we have the following derivation:

s ≥A t

∀j(s >spo tj) I.H.∀j(s >wpo tj)

(s1, . . . , sm) >
lex
spo (t1, . . . , tm) I.H.

(s1, . . . , sm) >
lex
wpo (t1, . . . , tm)

s = f(s1, . . . , sm) >wpo f(t1, . . . , tm) = t

This case concludes the proof.

Theorem 75. Let >wpo be a weighted path order induced by a simple mono-
tone well-founded algebra and a precedence. There is a quasi-reduction pair
such that the induced monotonic semantic path order coincides with >wpo.

3.2 A Generalization of the WPO
Observe that Theorem 75 requires a simple monotone algebra. However, the
construction of the reduction pair is still valid even if the algebra is no longer
simple. Based on this observation, we give an alternative definition of the
weighted path order, which coincides with the original weighted path order
when its algebra is simple. Moreover, by the knowledge of the monotonic
semantic path order, we obtain a generalization of the weighted path order.

28

Definition 76 (the generalized weighted path order). Let A be a weakly-
monotone well-founded algebra and � a precedence. We define the binary
relation >wpo′ on terms as the smallest relation satisfying the following con-
ditions:

(subterm) f(s1, . . . , sn) >wpo′ t if si >=
wpo′ t for some term si.

(algebra) s >wpo′ g(t1, . . . , tm) if

– s >A g(t1, . . . , tm), and
– s >wpo′ tj for all j ∈ {1, . . . ,m}.

(lex) f(s1, . . . , sn) >wpo′ f(t1, . . . , tn) if

– f(s1, . . . , sn) ≥A f(t1, . . . , tn),
– (s1, . . . , sn) >

lex
wpo′ (t1, . . . , tn), and

– f(s1, . . . , sn) >wpo′ tj for all j ∈ {1, . . . , n}.

(precedence) f(s1, . . . , sn) >wpo′ g(t1, . . . , tm) if

– f(s1, . . . , sn) ≥A g(t1, . . . , tm),
– f � g, and
– f(s1, . . . , sn) >wpo′ tj for all j ∈ {1, . . . ,m}.

Informally >wpo′ is given by the following inference system:

∃i(si >=
wpo′ t) (subterm)

f(s1, . . . , sn) >wpo′ t

s >A t ∀j(s >wpo′ tj) (algebra)
s >wpo′ g(t1, . . . , tn) = t

s ≥A t (s1, . . . , sn) >
lex
wpo′ (t1, . . . , tn) ∀j(s >wpo′ tj) (lex)

s = f(s1, . . . , sn) >wpo′ f(t1, . . . , tn) = t

s ≥A t f � g ∀j(s >wpo′ tj) (precedence)
s = f(s1, . . . , sn) >wpo′ g(t1, . . . , tm) = t

In particular, the inference system is convenient when we give a proof of
s >wpo′ t for given terms s and t. The generalized weighted path order >gwpo

is defined as follows: s >gwpo t if s ≥A t and s >wpo′ t.

29

Theorem 77. For every simple monotone algebra and precedence, the in-
duced relations >wpo′, >gwpo and >wpo coincide.

Proof. Construct the quasi-reduction pair (≥A,=∼) in the same manner as
the proof of Theorem 75. From Lemmata 73 and 74 the semantic path order
>spo induced by the reduction pair coincides with >wpo. It is easy to verify
that >spo and >wpo′ coincide by the definitions. With an appeal to Lemma 65
and Theorem 75 it is easy to verify that >wpo and >gwpo coincide.

Theorem 78. For every weakly-monotone well-founded algebra and prece-
dence, the induced generalized weighted path order is a reduction order.

Proof. Construct the quasi-reduction pair (≥A,=∼) in the same manner as
the proof of Theorem 75. It is easy to verify that the induced monotonic
semantic path order >mspo coincides with >gwpo.

The following example show that the orientation by ≥A in the definition
of >gwpo cannot be dropped. In other words, it shows that >wpo′ is not a
reduction order by itself if its algebra is not simple.

Example 79. Consider the non-terminating TRS R taken from [32]:

f(a, b, x)→ f(x, x, x) g(x, y)→ x

g(x, y)→ y

Take the empty precedence and the following weakly-monotone well-founded
algebra:

• carrier: {0, 1} × N

• order > on carrier: (x, y) > (z, w) if x = z and y >N w.

• interpretation: aA = (0, 1), and bA = (1, 1), and gA(x, y) = (0, 0), and

fA((x1, y1), (x2, y2), (x3, y3)) =

{
(0, y1 + y2 + y3) (x1 = x2)

(0, y1 + y2 + 3y3) (x1 6= x2)

Note that A is not simple because of gA(x, y) = (0, 0). It is readily verified
that f(a, b, x) >A f(x, x, x) by computation: we have

fA(aA, bA, (n,m)) = (0, 3m+ 2) > (0, 3m) = fA((n,m), (n,m), (n,m))

for all n ∈ {0, 1} and m ∈ N. Hence f(a, b, x) >wpo′ f(x, x, x):

30

f(a, b, x) >A f(x, x, x)
x = x

f(a, b, x) >wpo′ x · · ·
f(a, b, x) >wpo′ f(x, x, x)

By using the subterm rule, we have g(x, y) >wpo′ x and g(x, y) >wpo′ y. Thus,
the system has the compatibility with >wpo′ , but it is not terminating:

f(a, b, g(a, b))→ f(g(a, b), g(a, b), g(a, b))

→ f(a, g(a, b), g(a, b))

→ f(a, b, g(a, b))

Therefore, compatibility with >wpo′ does not imply termination if the algebra
of >wpo′ is not simple. Note that, in this case, g(x, y) ≥A x and g(x, y) ≥A y
are not satisfied.

For the rest of this section, we introduce three subclasses of the GWPO
with polynomial interpretation over N.

Definition 80. The subclass gwpoN is the subclass of the GWPO that uses
polynomial interpretation over N as its algebra. Formally, its algebra is given
as follows:

carrier: the set of all natural numbers N equipped with the standard
ordering on N.

interpretation: linear polynomials in the form fA(x1, . . . , xn) = a0 +
a1x1+ . . .+anxn where f is an n-ary function symbol and a0, . . . , an ∈
N.

The subclass wpoN is the subclass of gwpoN that only uses positive natural
numbers for its coefficients. Formally its algebra is given as follows:

carrier: the set of all natural numbers N equipped with the standard
ordering on N.

interpretation: linear polynomials in the form fA(x1, . . . , xn) = a0 +
a1x1 + · · · + anxn where f is an n-ary function symbol, a1, . . . , an are
positive natural numbers, and a0 ∈ N.

The subclass gwpo01 is the subclass of gwpoN that only uses {0, 1} for its
coefficients. Formally its algebra is given as follows:

carrier: the set of all natural numbers N equipped with the standard
ordering on N.

31

interpretation: linear polynomials in the form fA(x1, . . . , xn) = a0 +
a1x1 + · · · + anxn where f is an n-ary function symbol, a1, . . . , an ∈
{0, 1}, and a0 ∈ N.

Search space of parameters for gwpo01 is restricted so that its implementa-
tion works efficiently. We discuss the efficiency in Section 3.4 and Section 3.5.

Example 81. Now we are ready to prove termination of the TRS of round-
up division, given in Example 28. The rewrite rules are given as follows:

0− y → 0 0÷ s(y)→ 0

x− 0→ x s(x)÷ s(y)→ s((x− y)÷ s(y))

s(x)− s(y)→ x− y

Recall that the TRS is not simply terminating as shown in Example 41, but
we can show termination via the GWPO, in particular via gwpo01. Consider
the following algebra A on N with precedence ÷ � s:

0A = 0 sA(x) = x+ 1 x−A y = x x÷A y = x

Note that this algebra A is not simple but weakly-monotone. First, we verify
` ≥A r for each rule `→ r. Each rule is interpreted as follows:

0 ≥ 0 0 ≥ 0

x ≥ x x+ 1 ≥ x+ 1

x+ 1 ≥ x

This shows the orientation by ≥A. Next we verify ` >wpo′ r for each rule
`→ r. It is easy to verify 0−y >wpo′ 0, and x−0 >wpo′ x, and 0÷s(y) >wpo′ 0
using the rule (subterm). We can derive s(x)− s(y) >wpo′ x− y as follows:

x+ 1 > x

...
s(x)− s(y) >wpo′ x

...
s(x)− s(y) >wpo′ y

s(x)− s(y) >wpo′ x− y

The omitted parts are easily done by the rule (subterm). To handle the final
rule s(x)÷ s(y)→ s((x− y)÷ s(y)), we show s(x)÷ s(y) >wpo′ (x− y)÷ s(y):

x+ 1 > x
x+ 1 > x · · ·

s(x)÷ s(y) >wpo′ x− y
s(y) = s(y)

s(x)÷ s(y) >wpo′ s(y)

s(x)÷ s(y) >wpo′ (x− y)÷ s(y)

Now s(x)÷ s(y) >wpo′ s((x− y)÷ s(y)) is easily done:

32

x+ 1 ≥ x+ 1 ÷ � s

...
s(x)÷ s(y) >wpo′ (x− y)÷ s(y)

s(x)÷ s(y) >wpo′ s((x− y)÷ s(y))

Thus we have the compatibility with >gwpo, which yields the termination of
the system.

An instance of the GWPO is not necessarily ground-total, even if its
precedence is total and its algebra is equipped with a total order.

Example 82 (continued from Example 81). We show that the terms s(0) and
0− s(0) are not comparable with respect to >gwpo. We have s(0) >A 0− s(0),
and thus 0−s(0) >gwpo s(0) is impossible. However, we have 0−s(0) >wpo′ s(0)
using the rule (subterm). Hence, s(0) >gwpo 0 − s(0) is also impossible, as
>wpo′ is a semantic path order, and thus a proper order.

By construction, gwpoN subsumes wpoN and gwpo01, but gwpo01 and wpoN
are not comparable as shown in Example 81 and the subsequent examples:

Example 83. The termination of SK90_2.04 in TPDB 11.0 is shown by
wpoN:

f(x+ 0)→ f(x) x+ (y + z)→ (x+ y) + z

For instance, take the following simple monotone algebra A:

fA(x) = x 0A = 1 x+A y = x+ 2y + 1

It is easy to verify ` >gwpo r for each rule ` → r. In contrast, the TRS
is not compatible with gwpo01. This is because of the associativity rule
x+ (y + z)→ (x+ y) + z. We cannot apply the (lex) rule of the GWPO to
this since x >wpo′ x+ y does not hold. The only choice is the (algebra) rule,
which requires x + (y + z) >A (x + y) + z. This is only possible by using a
polynomial with coefficients greater than 1.

Example 84. The termination of AProVE_04_rta2 in TPDB 11.0 cannot
be shown by gwpo01.

f(s(x), y)→ f(x, s(x)) f(x, s(y))→ f(y, x)

Let fA(x, y) = ax+by+c and sA(x) = dx+e. To orient f(x, s(y))→ f(y, x), a
variant of commutation, the only choice is the (algebra) rule, which requires
f(x, s(y)) >A f(y, x). Thus, we obtain the constraints:

a ≥ b bd ≥ a

be+ c > c

33

By solving these constraints where a, b, d, e ∈ {0, 1}, we obtain a = b =
d = e = 1. Under this condition, f(s(x), y) ≥A f(x, s(x)) is impossible since
fA(sA(x), y) = x + y + (c + 1) and fA(x, sA(x)) = 2x + (c + 1). In contrast,
the termination is shown by wpoN. For instance, take the empty precedence
and the following algebra on N:

fA(x, y) = 3x+ 2y + 1 sA(x) = 4x+ 4

The compatibility with >wpo is easily verified, as we have f(s(x), y) >A
f(x, s(x)) and f(x, s(y)) >A f(y, x).

3.3 Simulation
Yamada, Kusakari and Sakabe [34] showed that the weighted path order
subsumes the Knuth–Bendix order and the lexicographic path order. The
fact that the generalized weighted path order subsumes the weighted path
order yields the following result:
Corollary 85. The generalized weighted path order subsumes the Knuth–
Bendix order and the lexicographic path order.
Proof. This is an immediate consequence of Theorem 77.

From now on, we further analyze relationships between gwpoN, wpoN,
gwpo01, the KBO, and the LPO by following the construction due to [34].

The Knuth–Bendix Order. Both wpoN and gwpo01 subsume the KBO:
Proposition 86. For every weight and precedence for a Knuth–Bendix order
>kbo, there are a simple monotone well-founded algebra and a precedence such
that the induced generalized weighted path order >gwpo satisfies the following
conditions:

• >gwpo is an instance of wpoN and gwpo01

• >kbo ⊆ >gwpo

Proof. Let (w,w0) be a weight, � a precedence for >kbo. We follow the con-
struction of [34]; for each n-ary function symbol f , define its interpretation
fA as follows:

fA(x1, . . . , xn) = w(f)− w0 +
n∑

k=1

(xk + w0)

The generalized weighted path order >gwpo induced by A and � satisfies the
conditions.

34

Example 87. Consider the following term rewrite system [19]:

x+ 0→ x x+ (−x)→ 0 (x+ y) + z → x+ (y + z)

0+ x→ x (−x) + x→ 0 −(x+ y)→ (−x) + (−y)
−(−x)→ x x+ ((−x) + y)→ y

−0→ 0 (−x) + (x+ y)→ y

The term rewrite system is compatible with the Knuth–Bendix order induced
by the weight w(0) = w(+) = w0 = 1 and w(−) = 0, and the precedence
− � + � 0. For instance, −(x + y) >kbo (−x) + (−y) is derived from
w(−(x+ y)) = w((−x) + (−y)) and − � +. The corresponding algebra A is
given by:

x+A y = x+ y + 2 −A(x) = x 0A = 0

For instance, −(x+ y) >wpo (−x) + (−y) is derived as follows:

−(x+ y) ≥A (−x) + (−y) − � +

−(x+ y) >A −x
−(x+ y) >wpo −x · · ·

−(x+ y) >wpo (−x) + (−y)

As shown in Example 81, the class gwpo01 is strictly larger than the KBO.
Also, wpoN is strictly larger than the KBO.

Example 88 (continued from Example 84). The termination of the TRS is
shown by wpoN but not by the KBO due to the duplicating rule f(s(x), y)→
f(x, s(x)).

The lexicographic path order. Even the subclass gwpoN does not sub-
sume the LPO. This is because the simulation of the LPO via the WPO
requires max-interpretation [34]: fA(x1, . . . , xn) = max(x1, . . . , xn) for each
n-ary function symbol f . On the other hand, the subclasses gwpoN uses
polynomials. The fact that polynomials cannot simulate max-interpretation
is witnessed by the following example:

Example 89. The termination of SK90_4.23 in TPDB 11.0:

if(true, x, y)→ x if(false, x, y)→ y

if(x, y, y)→ y if(if(x, y, z), u, v)→ if(x, if(y, u, v), if(z, u, v))

if(x, if(x, y, z), z)→ if(x, y, z) if(x, y, if(x, y, z))→ if(x, y, z)

Consider linear polynomial interpretation A over N, and let ifA(x, y, z) =
ax+by+cz+d. To show the termination by gwpoN, we need if(true, x, y) ≥A x

35

Figure 3.1: A hierarchy chart of classes of reduction orders.

and if(false, x, y) ≥A y, which yields b, c ≥ 1. On the other hand, we also need
if(if(x, y, z), u, v) ≥A if(x, if(y, u, v), if(z, u, v)). By comparing the coefficients
of u we obtain the constraint b ≥ b2 + bc, which is impossible under b, c ≥ 1.
Thus, we cannot show the termination by gwpoN. Observe that, due to the
presence of the embedding rules if(true, x, y) → x and if(false, x, y) → y,
polynomials are forced to be strictly monotone. However, the termination is
easily shown by the LPO with the empty precedence.

3.4 Implementation
Before we proceed to experimental results, we introduce three subclasses of
the GWPO and their implementation details implemented in Toma. Also,
the implementation of the LPO in Toma is briefly discussed. In examples of
each option, its input problem.trs is given the CoCo TRS format [24].

36

Encoding gwpoN. Orientation via gwpoN is encoded in a naive way, fol-
lowing the recursive definition of >wpo′ . In particular, the relations >A and
≥A via an algebra A are encoded using the following quantifier elimination
for linear polynomials:

Proposition 90. Let n ∈ N and a0, . . . , an, b0, . . . , bn ∈ N. The following
statements are equivalent:

• a0 + a1x1 + · · ·+ anxn > b0 + b1x1 + · · ·+ bnxn for all x1, . . . , xn ∈ N.

• a0 > b0 and ak ≥ bk for all k ∈ {1, . . . , n}.

Similarly, the following statements are equivalent:

• a0 + a1x1 + · · ·+ anxn ≥ b0 + b1x1 + · · ·+ bnxn for all x1, . . . , xn ∈ N.

• ak ≥ bk for all k ∈ {0, . . . , n}.

Example 91. We explain how to encode the constraint for f(f(x)) >A
f(g(f(x))). Let fA(x) = f0 + f1x and gA(x) = g0 + g1x. Here f0, f1, g0 and g1
are unknown constants over N. We have fA(fA(x)) = (f0 + f1f0) + f1f1x and
fA(gA(fA(x))) = (f0 + f1g0 + f1g1f0) + f1g1f1x by calculation. By using the
quantifier elimination, the orientation f(f(x)) >A f(g(f(x))) is encoded into
the following constraints:

for the constant part: f0 + f1f0 > f0 + f1g0 + f1g1f0

for x: f1f1 ≥ f1g1f1

In the SMT-LIB language [6], the constraints are encoded into S-expressions
as follows:

for the constant part:

(> (+ f0 (* f1 f0)) (+ f0 (* f1 g0) (* f1 g1 f0)))

for x: (> (* f1 f1) (* f1 g1 f1))

where f0,f1,g0, and g1 have the type Int.

The termination checker using gwpoN is available via:

toma --termination problem.trs --gwpoN

37

Encoding gwpo01. A problem of gwpoN is that the constraints for orienta-
tion >A and ≥A are based on non-linear arithmetic, such as:

(> (* f1 f1) (* f1 g1 f1))

As a result, SMT solvers do not solve constraints efficiently. In particular,
the efficiency for finding a reduction order matters in the setting of theorem
proving. This is why we introduce gwpo01. For instance, Z3 offers if-then-
else expressions in the form of (ite e1 e2 e3), which evaluates e2 if e1
evaluates to true, or evaluates e3 otherwise. We utilize this feature to encode
>A and ≥A in linear arithmetic. An example of encoding >A is given below:

Example 92 (continued from Example 91). For instance, the multiplication
(* f1 g1 f0) is encoded to:

(ite (and f1 g1) f0 0)

where f0, g0 have the type Int but f1 and g1 have the type Bool. Here,
we associate 1 and 0 with true and false, respectively. By this idea, the
orientation f(f(x)) >A f(g(f(x))) are encoded into the following SMT-LIB
expressions:

for the constant part:

(> (+ f0 (ite f1 f0 0))
(+ f0 (ite f1 g0 0) (ite (and f1 g1) f0 0)))

for x:

(> (ite (and f1 f1) 1 0)
(ite (and f1 g1 f1) 1 0))

Now Z3 can solve the constraints efficiently, using its linear arithmetic solver.

The termination checking by gwpo01 is available via:

toma --termination problem.trs --gwpo01

Encoding wpoN. The encoding of wpoN follows the way of gwpoN. The
termination checker via wpoN is available via:

toma --termination problem.trs --wpo

38

The LPO. The LPO is also implemented in Toma. If we implement the
LPO in a naive way following its recursive definition, the time complexity
is exponential with respect to the size of the two terms compared. Thus,
we use bottom-up construction of constraints described in [21] to achieve
polynomial-time comparison. The termination checker using the LPO is
available via:

toma --termination problem.trs --lpo

3.5 Experiments
Now we are ready to discuss experimental results. We run the tools on
the TPDB problems 11.0 [1] setting 60 seconds time limit on the machine
equipped with the processor Intel Core i5-8365U CPU @ 1.60GHz and 8 GB
memory. First we explain how to read the tables Table 3.1. The meaning of
each status on an input TRS file is explained as follows:

yes the tool successfully showed termination.

maybe the tool gave up proof of termination before the 60 seconds
time limit, including the case when there is no proof via
the ordering.

timeout the tool exceeded the 60 seconds time limit.

error the tool quitted due to an exception, such as an out-of-
memory error.

For comparison, we use the KBO option of TTT2 [20] version 1.20 via

ttt2 -C "" -t -s 'kbo' problem.trs

and referred to as kbo in the experiment table Table 3.1. The complete
results are available at:

https://www.jaist.ac.jp/~s2110079/termination/termination.html

Finally, we are ready to discuss the experimental result.

Simulation. The theoretical subsumption relations shown in Section 3.3
are almost observed in the experimental result. However, proper subsump-
tion may not hold due to the 60 seconds time limit. For instance, the problem
Transformed_CSR_04_PALINDROME_nokinds_Z is solved by the KBO
in a second, but neither gwpoN nor wpoN is not able to solve the problem in
60 seconds. In contrast, gwpo01 subsumes the KBO even in the experiment,
and the average time is slightly better than that of the KBO.

39

Table 3.1: Termination analysis on TPDB 11.0 (time in seconds).
status gwpoN gwpo01 wpoN lpo kbo

yes 316 286 174 144 79
average time 1.09 0.15 0.65 0.02 0.22

maybe 1077 1196 1258 1353 1419
average time 3.15 0.54 1.92 0.06 0.22

timeout 101 12 63 1 0
average time 60.00 60.00 60.00 60.00

error 4 4 3 0 0
average time 19.77 31.28 18.92

Comparison between gwpoN and gwpo01. The subclass gwpo01 works
more efficiently than gwpoN, with a small cost of losing its power as a termi-
nation checker. For instance, the problem TCT_12_sat is solved by gwpo01,
so theoretically instances of gwpoN with the same parameters prove the ter-
mination of the TRS. But the implementation of gwpoN is not able to find
such a parameter in 60 seconds. This is thanks to its encoding to linear
arithmetic, where Z3 has an efficient solver. In particular, gwpo01 gives up
maybe problems earlier, exhausting whole search space of the constraints.
The results also show that competence of the ordering of gwpo01 in variants
of maximal completion, where constraint solving of the ordering is called for
each iteration of the procedure. However, we note that a typical constraint
is described as a MaxSMT problem in maximal completion, in contrast to a
constraint for termination checking, described as a pure SMT solving prob-
lem. The comparison in theorem proving is included in Chapter 4.

A memory issue of the GWPO. The implementations of gwpoN, gwpo01
and wpoN exit with the status error running out of available memory.
For instance, such an issue is observed in the problem MNZ_10_5, which
contains deeply nested terms, such as s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))) →
k(s(s(0))). Because of their native implementations which simply follow the
recursive definition, size of a constraint for nested terms exponentially ex-
plodes. This does not happen for the LPO, since it is carefully implemented
to avoid the explosion. This issue implies necessity of an efficient encoding
method for the GWPO.

40

Chapter 4

Maximal Ordered Completion
with Simplification

In this chapter we extend maximal ordered completion by Winkler and Moser
[33]. The extension allows simplification of equations during a run, which is
only allowed after critical pair generation in the original maximal ordered
completion. On the other hand, it is also an extension of standard ordered
completion by Martin and Nipkow [23] in the sense that every run of standard
ordered completion can be simulated by the new procedure. In other words,
the extension is also considered as a variant of standard ordered completion
that allows change of reduction orders during a run. Moreover, a new equa-
tional theorem proving procedure is obtained as a variant of the extended
maximal ordered completion. These new procedures are implemented in an
equational theorem prover Toma.

4.1 Abstract Ordered Completion
The following formalization of abstract ordered completion is due to [23].

Definition 93 ([23]). Let > be a reduction order. We define the binary
relation ` on equational systems via the following inference rules:

deduce: E ` E ∪ {s ≈ t} if s↔E · ↔E t

delete: E] {s ≈ t} ` E if s and t are ground-joinable in (E , >)

simplify:

– E] {s ≈ t} ` E ∪ {u ≈ t} if s→(E,>) u

– E] {s ≈ t} ` E ∪ {s ≈ u} if t→(E,>) u

41

We call the fragment of the inference rules without deduce simplification,
and write `s for the induced binary relation.

Example 94. Consider the equational system E÷

0− y ≈ 0 0÷ s(y) ≈ 0

x− 0 ≈ x s(x)÷ s(y) ≈ s((x− y)÷ s(y))

s(x)− s(y) ≈ x− y

plus another equation s(0) ÷ s(y) ≈ s(0). The additional equation is redun-
dant, as we can simulate reasoning by other rules. Simplification removes
such an equation; consider the GWPO >gwpo of Example 81, and it orients
every equation in E÷ from left to right. So the following rewrite sequence via
the ordered rewrite system (E÷, >gwpo) is valid:

s(0)÷ s(y)→ s((0− y)÷ s(y))→ s(0÷ s(y))→ s(0)

Applying the simplify rule three times, and then the delete rule that removes
s(0) ≈ s(0), we obtain E÷] {s(0)÷ s(y) ≈ s(0)} `4s E÷.

We prove that abstract ordered completion preserves conversion equiva-
lence on ground terms. The following is a convenient lemma.

Lemma 95. Let E1 and E2 be equational systems. Suppose that every ground
instance of each equation in E1 is convertible in E2, and every ground instance
of each equation in E2 is convertible in E1. Then E1 and E2 are conversion
equivalent on ground terms.

Proof. If the signature contains no constant, there is no ground term. In
this case, the conversions on ground terms collapse to the empty relation,
and thus the equivalence is vacuously satisfied. So for the rest of proof, we
assume that the signature contains a constant symbol. Let s and t be ground
terms, and suppose s ↔∗

E1 t. Substituting each variable in the conversion
with a constant, we obtain another conversion between s and t such that
only ground terms appear in the conversion. At this point, each one-step
conversion in the new conversion is a ground instance of an equation in E2.
Applying the assumption, we obtain s↔∗

E2 t. The same argument applies to
the other direction.

Proposition 96. If E1 `∗ E2, then ↔∗
E1 and ↔∗

E2 coincide on ground terms.

Proof. It suffices to show the claim for an arbitrary one-step derivation E1 `
E2. Analyzing the applied inference rule, we obtain the following inclusions:

42

deduce: E1 ⊆ E2 and E2 ⊆ E1 ∪ (↔E1 · ↔E1)

delete: E1 ⊆ E2 ∪ ⇓(E2,>) and E2 ⊆ E1

simplify:

– E1 ⊆ ↔=
E2 · E2 and E2 ⊆ ↔=

E1 · E1
– E1 ⊆ E2 · ↔=

E2 and E2 ⊆ E1 · ↔=
E1

Thus the claim follows immediately from Lemma 95.

The relation `s is well-founded for all reduction orders.

Proposition 97. The relation `s is well-founded for all reduction orders.

Proof. The rule delete decreases the number of equations |E| and the rule
simplify decreases the multiset

⋃
{{s, t} | s ≈ t ∈ E} with respect to the

multiset extension of the reduction order. Combine these two measures lex-
icographically.

4.2 Extending Maximal Ordered Completion
Definition 98. The procedure P1, maximal ordered completion with simpli-
fication, takes a set of equations E as an input, and returns an OTRS as an
output, and its algorithm is given by Procedure 1. Here C denotes a set of
equations and > denotes a reduction order. The procedures O(C), ψ(C, >)
and S(C, >) are described below:

• The procedure O(C) is an arbitrary procedure that returns a reduction
order.

• The procedure ψ(C, >) performs simplification `∗s on the set C of equa-
tions using the reduction order >, and returns the simplified version of
C.

• The procedure S(C, >) is an arbitrary procedure that returns a set of
equations in ↔∗

E .

To obtain a concrete procedure from Definition 98, we need to instan-
tiate O, ψ S, ground joinability testing ⇓, and ground confluence testing.
The procedure P1 does not fall into deadlock due to simplification because
the termination of simplification is guaranteed by Proposition 97. For the
correctness proof, we need a lemma for ground-equivalence.

43

Procedure 1 Maximal Ordered Completion with Simplification
1: procedure P1(E)
2: C := E
3: loop:
4: > := O(C)
5: C ′ := ψ(C, >)
6: if E ⊆ ⇓(C′,>) and (C ′, >) is ground-confluent then return (C ′, >)
7: C := C ′ ∪ S(C ′, >)
8: goto loop

Lemma 99. Let E and E ′ be ground-equivalent equational systems, and >
be a reduction order. If E ⊆ ⇓(E ′,>), then the equational system E and the
OTRS (E ′, >) are ground-equivalent.

Proof. By the same argument as Lemma 95, without loss of generality we can
assume that there is a constant in the signature. The inclusion↔∗

(E ′,>)⊆ ↔∗
E

on ground terms follows from the trivial inclusion ↔∗
(E ′,>)⊆ ↔∗

E ′ and the
ground equivalence of E and E ′. For the other direction, suppose s ↔∗

E t
for ground terms s, t. Substituting every variable in the conversion we have
another conversion between s and t such that every term in the conversion is
ground. Now we apply the assumption E ⊆ ⇓(E ′,>), and obtain a conversion
s↔∗

(E ′,>) t.

The following example shows why E ⊆ ⇓(E ′,>) in Lemma 99 cannot be
dropped.

Example 100. Let E = {a ≈ b}, and >lpo be the LPO induced by the
empty precedence. The OTRS O = (E , >lpo) is not ground-equivalent to E ,
as a→E b but a, b ∈ NF(O).

Proposition 101. Let E be an equational system. Suppose that the run P1(E)
terminates and returns an OTRS (E ′, >). Then (E ′, >) is a ground-complete
presentation for E.

Proof. Let E be an input ES and (E ′, >) the output. The ground termination
is guaranteed by the reduction order >, and the ground confluence follows
from the termination condition. For the ground equivalence of E and the
OTRS (E ′, >) first we show ground equivalence of the equational systems E
and E ′. We appeal to Lemma 95. We have E ⊆ ⇓(E ′,>) from the termination
condition. The other direction is easily shown by following the algorithm
using Proposition 96 and S(C, >) ⊆ ↔∗

E . Now ground equivalence of E and
the OTRS (E ′, >) follows from lemma 99 and the termination condition.

44

The procedure P1 can simulate ordered completion Definition 93 by tak-
ing O that returns a fixed reduction order.

Proposition 102 (simulation). Let E `∗ E ′ be a run of abstract ordered
completion with a reduction order >. If (E ′, >) is ground-confluent, then
there is an instance of the procedure P1 such that P1(E) = E ′.

Proof. We can achieve P1(E) = E ′ by programming O, ψ and S as follows:
O always returns >. For ψ and S, factorize E `∗ E ′ into deduce and `s, and
program ψ and S to perform each consecutive steps at each iteration. The
other termination condition E ⊆ ⇓(E ′,>) follows from the ground equivalence
and ground confluence.

Next we give an equational theorem proving procedure based on Proce-
dure 2.

Definition 103 (theorem proving via maximal ordered completion). The
procedure P2, a theorem proving procedure via maximal ordered completion,
takes a set of equations E and a ground equation s ≈ t as an input, and
returns true or false as an output, and its procedure is given by Procedure
2. The procedures O(C, s ≈ t), ψ(C, >) and S(C, >) are given in the same
way as definition 98.

Procedure 2 Theorem Proving Variant of P1
1: procedure P2(E , s ≈ t)
2: C := E
3: loop:
4: > := O(C, s ≈ t)
5: C ′ := ψ(C, >)
6: if s ↓(C′,>) t then return true
7: if E ⊆ ⇓(C′,>) and (C ′, >) is ground-confluent then return false
8: C := C ′ ∪ S(C ′, >)
9: goto loop

In contrast to P1, the procedure O additionally takes the goal s ≈ t as
an input to make the procedure more goal-oriented. The next proposition
states that the theorem proving procedure P2 is correct.

Proposition 104. If P2 returns true, the ground equation s ≈ t is valid in
E. If P2 returns false, the ground equation s ≈ t is invalid in E.

Proof. The statement is shown in the same manner as Proposition 101 using
Proposition 53.

45

4.3 Implementation of Toma
Note that the definitions Definition 98 and Definition 103 do not specify O
and S in the definition. In this section, we describe how to instantiate O
and S, and give further details of the implementation of Toma, an equational
theorem prover based on maximal ordered completion with simplification. At
the moment Toma only supports the LPO and the GWPO as its reduction
order.

Finding a Reduction Order. The procedure O returns a reduction order
given an ES C, and a goal s ≈ t in the case of P2. To implement O, we
follow the approach of MædMax [33], namely maximization of the reducibility
of the ES C as an ordered rewrite system. The reducibility of an ordered
rewrite system (C, >) is, for instance, measured by the set of reducible terms
{t ∈ T (F ,V) | t /∈ NF(C, >)}. However, for practical reasons, we use the
following finite approximation proposed by Winkler and Moser [33]: firstly
we limit T (F ,V) to a finite set of terms. In case of P1, we use T =

⋃
{{`, r} |

` ≈ r ∈ C} instead of T (F ,V), as a test set of reducibility. In case of P2,
we add the terms s and t in the goal to the test set T , to archive more goal-
oriented search of a reduction order. Secondly the reducibility condition
t /∈ NF(C, >) is approximately encoded to the formula R(t):

R(t) ≡ ∃`∃r(` ≈ r ∈ C ∪ C−1 ∧ t ·D ` ∧ ` > r)

In contrast to the directly encoded formula of t /∈ NF(C, >)

∃`∃r∃u∃σ(` ≈ r ∈ C ∪ C−1 ∧ u E t ∧ `σ = u ∧ `σ > rσ)

the size of the constraints is feasibly small, thanks to the elimination of the
quantifications ∃u and ∃σ. Using the approximations above, we solve the
maximizaton problem of the number |{t ∈ T | R(t)}| via Z3 [12], which
provides maxSMT solving. Encoding of the LPO and the GWPO follows
the description in Chapter 3. In particular, Toma imposes ground-totality
to precedences of the LPO so that induced LPOs are ground-total. This
requirement is essential when we use the Extended Critical Pair Lemma in
ground-confluence testing, as discussed later.

Critical Pair Selection. The procedure S(C, >) returns a set of critical
pairs:

{s ≈ t ∈ ECP(C, >) | s ≈ t /∈ C ∪ C−1, s and t are not joinable in (C, >)}

Currently we do not restrict the maximum number of equations in S(C, >).

46

Ground Joinability Testing. Given an equation s ≈ t and an ordered
rewrite system (C, >), check the ground joinability s ⇓(C,>) t in two steps:

1. If the equation is joinable s ↓(C,>) t, obviously it is ground-joinable.

2. Otherwise, additionally the tool uses Martin and Nipkow’s ground join-
ability testing when > is an LPO.

Currently, Toma has no additional ground joinability testing for the GWPO.

Ground Confluence Testing. For ground confluence of an OTRS equipped
with an LPO, Toma uses the Extended Critical Pair Lemma. The require-
ment for ground-totality is satisfied as Toma only considers total precedences.
In contrast, we cannot use the Extended Critical Pair Lemma for the GWPO
since an instance of the GWPO is not necessarily ground-total. For this case,
we utilize the Critical Pair Lemma as confluence trivially implies ground con-
fluence. We say an OTRS (E , >) is a TRS if every s ≈ t ∈ E satisfies s > t
or t > s. Toma checks ground confluence an OTRS (E , >) in two steps. It
first verify that (E , >) is a TRS, and every extended critical pair of (E , >) is
joinable in (E , >). The correctness of this test is shown by combination of
the Critical Pair Lemma and the following proposition.
Proposition 105. Let (E , >) be an OTRS. Suppose that the OTRS (E , >)
is a TRS. Then the TRS E> = {s → t | s ≈ t ∈ E ∪ E−, s > t} satisfies
ECP(E , >) = CP(E>), and →(E,>) and →E> coincide.

The Goal Transformation. The procedure P2 only takes a ground equa-
tion as a goal. We transform an arbitrary goal s ≈ t to a ground goal a la
Waldmeister [22]: add equations eq(x, x) = T and eq(s, t) = F to the initial
ES, and set T = F as a goal. Here eq,T and F are fresh function symbols.
This transformation is known to be complete: s ≈ t is valid in the initial ES
if and only if T ≈ F is valid in the transformed ES.

Let us illustrate how Toma works by an example.
Example 106. We follow how Toma complete the equational system E÷

0− y ≈ 0 0÷ s(y) ≈ 0

x− 0 ≈ x s(x)÷ s(y) ≈ s((x− y)÷ s(y))

s(x)− s(y) ≈ x− y

using P1 with gwpo01. First it finds an instance of gwpo01 that maximizes
its reducibility. The reducibility is measured upon the set T1 of all terms in
E÷. For this case we have nine terms:

T1 = {0−y, 0, x−0, x, s(x)− s(y), x−y, 0÷ s(y), s(x)÷ s(y), s((x−y)÷ s(y))}

47

We orient each equation in E÷ so that maximize the number of reducible
terms in T1. One solution is the parameter in Example 81, which orients
every equation from left to right. In this solution, five terms in T1 is reducible,
and this choice yields a complete presentation for E÷. Another solution is to
orient s(x)÷ s(y) ≈ s((x− y)÷ s(y)) from right to left, and other equations
from left to right.

0− y > 0 0÷ s(y) > 0

x− 0 > x s(x)÷ s(y) < s((x− y)÷ s(y))

s(x)− s(y) > x− y

This orientation is possible by choosing the precedence ÷ � s � − � 0 and
the algebra:

0A = 1 sA(x) = x+ 1 x−A y = x+ 2 x÷A y = 1

For instance, s((x−y)÷ s(y)) >gwpo s(x)÷ s(y) holds; let ` = s((x−y)÷ s(y))
and r = s(x) ÷ s(y). We have ` >A r as ` evaluates to 2 and r to 1, and
` >wpo′ r is shown as follows:

` >A r

x− y >A s(x)
x = x

x− y >wpo′ x

x− y >wpo′ s(x)
...

` >wpo′ s(x)

...
` >wpo′ s(y)

` >wpo′ r

So we have ` >gwpo r. Let us proceed with this GWPO >gwpo. The simplifica-
tion step with ψ does nothing, as every equation is already simplified. In this
case, the OTRS (E÷, >gwpo) does not satisfy the termination condition be-
cause it has non-joinable extended critical pairs, as we see in the next step.
So Toma proceeds to critical pair generation. The admits seven extended
critical pairs.

s(x)÷ s((y − z)÷ s(z)) ≈ s((x− ((y − z)÷ s(z)))÷ (s(y)÷ s(z)))

x− ((y − z)÷ s(z)) ≈ s(x)− (s(y)÷ s(z))

((x− y)÷ s(y))− z ≈ (s(x)÷ s(y))− s(z)

s(s(x))÷ s(s(y)) ≈ s((x− y)÷ s(s(y)))

0÷ (s(x)÷ s(y)) ≈ 0

s(x)÷ s(0) ≈ s(x÷ s(0))

s(0)÷ s(y) ≈ s(0÷ s(y))

48

For instance, the second critical pair x− ((y−z)÷ s(z)) ≈ s(x)− (s(y)÷ s(z))
is generated from the extended overlap:

(s((x− y)÷ s(y)) ≈ s(x)÷ s(y), 2, s(x)− s(y) ≈ x− y)

This extended overlap yields the following peak:

s(x)− (s(y)÷ s(z))← s(x)− s((y − z)÷ s(z))→ x− ((y − z)÷ s(z))

Toma proceeds to the next iteration, and finds a reduction order for the
twelve equations (five from the original ES, and seven from the extended
critical pairs). One possible choice is the precedence 0 � ÷ � s � − and the
algebra B given by:

0B = 30869 sB(x) = x+ 1 x−B y = x+ 1 x÷B y = x+ y + 1

In fact, these parameters are mechanically found by Toma. Next the tool
runs simplification on the equational system using the GWPO. As a result,
all the generated extended critical pairs are eliminated, and Toma obtains
the original equational system E÷. For this case, the OTRS satisfies the
termination condition because this GWPO orients E÷ as follows:

0− y >gwpo 0 0÷ s(y) >gwpo 0

x− 0 >gwpo x s(x)÷ s(y) >gwpo s((x− y)÷ s(y))

s(x)− s(y) >gwpo x− y

Completeness of this OTRS is shown in Example 46. Finally, Toma termi-
nates and returns the OTRS.

4.4 Experiments in Ordered Completion
We evaluate the ordered completion procedure P1 using the mkbTT prob-
lems, which are used in the evaluation of maximal completion tools [18][33][13].
The result for this problem set is Table 4.1. In addition, we arrange another
problem set containing non-simply terminating TRSs from the TPDB prob-
lems [1], such as ones with the label AG. The problems are from the collec-
tion of term rewrite systems by Aarts and Giesl [2]. In this experiment, tools
run completion on TRSs by considering them as equational systems. Next
we give configurations used in the experiments. In the following examples,
problem.trs is given in the CoCo TRS format [24]. Tools are run on the
machine equipped with the processor Intel Core i5-8365U CPU @ 1.60GHz
and 8 GB memory.

49

• The configuration lpo is an implementation of P1 with ψ(C, >) = C and
O that returns an LPO, which is available via:

toma --ordered-completion problem.trs --lpo
--no-inter-reduction

• The configuration lpo + ψ is an implementation of P1 with ψ that
performs simplification, and O that returns an LPO, which is available
via:

toma --ordered-completion problem.trs --lpo

• The configuration gwpo01 is an implementation of P1 with ψ(C, >) = C
and O that returns an instance of gwpo01, which is available via:

toma --ordered-completion problem.trs --gwpo01
--no-inter-reduction

• The configuration gwpo01 + ψ is an implementation of P1 with ψ that
performs simplification, and O that returns an instance of gwpo01,
which is available via:

toma --ordered-completion problem.trs --gwpo01

• MædMax is run as a pure ordered completion tool, available via:

maedmax --complete-if-no-goal problem.trs

We are not aware of an option to execute Twee as a pure ordered completion
tool. The meaning of each status is described as follows:

completed: a ground-complete presentation for the input is successfully
obtained.

timeout: the run exceeded the 60 seconds time limit.

error: the run quitted due to an exception, such as an out-of-memory
error or a parse error.

The complete result for Table 4.1 is available at
https://www.jaist.ac.jp/~s2110079/ordered-completion/

ordered-completion.html

and one for Table 4.2 is available at:
https://www.jaist.ac.jp/~s2110079/AG01/AG01.html

Now we are ready to discuss on the results.

50

Table 4.1: The mkbTT equational systems (time in seconds).
status lpo lpo+ ψ gwpo01 gwpo01 + ψ MædMax
completed 46 61 31 52 88
average time 2.60 2.23 2.09 2.33 0.93

timeout 69 54 81 53 27
average time 60.00 60.00 60.00 60.00 60.00

error 0 0 3 10 0
average time 16.48 25.67

Table 4.2: A collection of TRSs from [2] (time in seconds).
status lpo lpo+ ψ gwpo01 gwpo01 + ψ MædMax
completed 15 14 18 19 20
average time 0.45 0.05 2.27 4.22 0.11

timeout 35 36 31 28 30
average time 60.00 60.00 60.00 60.00 60.00

error 0 0 1 3 0
average time 25.64 12.14

51

Comparison to MædMax. The numbers of completed equational systems
by MædMax are the highest for the both problem sets. However, several prob-
lems are solved by Toma, which are not solved by MædMax. Such problems
require use of non-simplification orders to find complete TRSs. For instance,
the problem AG01_#3.1, another equational system for round-up division, is
completed by gwpo01, but not by MædMax. The problem is given as follows:

x− 0 ≈ x 0÷ s(y) ≈ 0

s(x)− s(y) ≈ x− y s(x)÷ s(y) ≈ s((x− y)÷ s(y))

By orienting each equation from left to right by gwpo01 we obtain a complete
presentation, which cannot be obtained by any simplification orders. This
example show uniqueness of ordered completion by the GWPO. However,
configurations with the GWPO quit on a couple of problems due to a memory
error, exhausting available memory.

Improvement of performance by simplification. Generally, simplifi-
cation improves average time required to complete systems, and the numbers
of completed equational systems. However, it is to be noted that a config-
uration without ψ can solve a problem that is not solved by one with ψ.
For instance, the problem AG01_#3.6a is completed by gwpo01, but not by
gwpo01 + ψ. This is due to incompleteness of Toma’s heuristics to find a
reduction order. Given a word problem, Toma encode choice of a reduction
order to a MaxSMT problem so that maximizes reducibility, but solutions of
such an optimization problem may not be unique. This means that choice
of a reduction order can depend on constraints generated by Toma which is
highly influenced by presence of ψ, and on which reduction order is found
by an employed MaxSMT solver. This shows limitation of the heuristics,
maximization of reducibility.

4.5 Experiments in Theorem Proving
In this section, we evaluate the theorem proving procedure P2 for the word
problem using the TPTP problems version 7.5.0 [31]. We build the set of
word problems with the affirmative answer by the utility script tptp2T:

./tptp2T UnitEquality Status Unsatisfiable Form CNF

Similarly, we build the set of word problems with the negative answer by:

./tptp2T UnitEquality Status Satisfiable Form CNF

52

Next we give configurations used in the experiments. In the following ex-
amples, problem.p is given as a TPTP UEQ problem, which is interpreted
as a word problem of an equational theory. Tools are run on the machine
equipped with the processor Intel Core i5-8365U CPU @ 1.60GHz and 8 GB
memory.

• The configuration lpo is an implementation of P2 with ψ(C, >) = C and
O that returns an LPO, which is available via:

toma --waldmeister problem.p --lpo --no-inter-reduction

• The configuration lpo + ψ is an implementation of P2 with ψ that
performs simplification, and O that returns an LPO, which is available
via:

toma --waldmeister problem.p --lpo

• The configuration gwpo01 is an implementation of P2 with ψ(C, >) = C
and O that returns an instance of gwpo01, which is available via:

toma --waldmeister problem.p --gwpo01 --no-inter-reduction

• The configuration gwpo01 + ψ is an implementation of P2 with ψ that
performs simplification, and O that returns an instance of gwpo01,
which is available via:

toma --waldmeister problem.p --gwpo01

• MædMax is run with the default option, available via:

maedmax problem.p

• Twee is run with the TSTP option, available via:

twee problem.p --tstp

The results of the options above are given in Table 4.3 and Table 4.4 The
meaning of each status is described as follows:

solved: the problem is successfully solved by the configuration.

timeout: the configuration exceeded the 60 seconds time limit.

53

error: the configuration quitted due to an exception, such as an out-
of-memory error or a parse error.

The complete result for Table 4.3 is available at
https://www.jaist.ac.jp/~s2110079/ueq-unsat/ueq-unsat.html

and one for Table 4.4 is available at:
https://www.jaist.ac.jp/~s2110079/ueq-sat/ueq-sat.html

Now we are ready to discuss on the results.

Comparison with MædMax. For problems with the affirmative answer,
almost all problems solved by Toma are solved by MædMax, except for a few
problems. Such a problem is, for instance, the problem ALG030-10, which is
solved by the configuration gwpo01 + ψ but not by MædMax. For problems
with the negative answer, the configuration lpo + ψ outperforms MædMax,
thanks to simplification ψ. In particular, simplification works effectively
for problems with many axioms, such as problems with the label NLP. For
instance, the problem NLP002-10 with 55 axioms is not solved by MædMax,
but the problem is solved by lpo+ψ, producing a complete TRS with almost
one hundred rules.

Table 4.3: Word problems with the affirmative answer (time in seconds).
status lpo lpo+ ψ gwpo01 gwpo01 + ψ MædMax Twee
solved 158 177 151 171 625 794
average time 7.74 4.70 7.64 7.04 5.02 1.64

timeout 898 879 900 856 387 264
average time 60.00 60.00 60.00 60.00 60.00 60.00

error 2 2 7 31 46 0
average time 0.01 0.01 31.12 15.28 2.97

Comparison with Twee. Every problem solved by Toma is also solved
by Twee, which implements the standard ordered completion with the KBO.
The huge difference between the numbers of solved problems is attributed
to the difference of its implementation; while Toma is currently naively im-
plemented, Twee implements several optimization techniques such as term
indexing [28] and its own redundancy criteria [30]. The implementation
Toma need to be refined for fair comparison between ordered completion
and maximal ordered completion with simplification.

54

Table 4.4: Word problems with the negative answer (time in seconds).
status lpo lpo+ ψ gwpo01 gwpo01 + ψ MædMax Twee
solved 38 61 34 35 40 115
average time 0.84 9.96 1.03 0.10 1.11 0.86

timeout 219 196 223 218 183 144
average time 60.00 60.00 60.00 60.00 60.00 60.00

error 2 2 2 6 36 0
average time 0.01 0.01 0.01 24.36 0.02

Improvement of performance by simplification. In most cases sim-
plification increased the numbers of solved problems, while the combination
gwpo01 + ψ ties the configuration gwpo01 for problems with the negative an-
swer. In particular, as discussed in comparison with MædMax, simplification
improves performance for large problems. However, it is to be noted that a
configuration without ψ can solve a problem that is not solved by one with
ψ. For instance, LCL645-10.001 is solved negatively by gwpo01, but not by
gwpo01+ψ. This is due to incompleteness of the heuristics to find a reduction
order, as discussed in Section 4.4.

The GWPO. For problems with the negative answer, every problem
solved using the GWPO is also solved by the LPO. However, for problems
with the positive answer, configurations with the GWPO solve problems that
is not solved by the LPO. For instance, both gwpo01+ψ and gwpo01 solve the
problem BOO001-1, which is not solved by lpo + ψ nor lpo. However, con-
figurations with the GWPO quit on a couple of problems due to a memory
error, running out of memory.

55

Chapter 5

Conclusion

In the thesis we presented a new class of non-simplification orders, namely
the GWPO, and integrated the ordering into equational theorem proving by
maximal ordered completion. We conclude the thesis suggesting two future
works.

The GWPO in superposition calculus. Jakubuv and Kaliszyk [16] im-
proved the performance of the E prover [29], which implements superposi-
tion calculus [5], by integrating the WPO. They also proposed the relaxed
weighted path order (RWPO) as an approximation of the WPO to improve
the performance, even though the RWPO is not reduction orders in gen-
eral. As a consequence, the approach need to bound the number of rewrite
steps, as termination is not guaranteed by the ordering. Another potential
approach is superposition calculus with the GWPO, and the performance
is to be compared. In particular, the performance of superposition calculus
on translated problems from higher-order logics of proof assistants is known
to be not as desired [7]. This is why new term orderings for superposition
calculus are actively studied, such as the recursive path order for applicative
terms [10], the transfinite Knuth–Bendix order for applicative terms [7], its
extension for combinator equations [9], and the embedding path order [8].
Relationship between these classes and the GWPO is to be investigated in
theory and in practice.

Refutational completeness for non-ground-total reduction orders.
Refutational completeness is a desired property for theorem proving proce-
dures. If axioms entail a goal, a refutationally complete procedure eventually
finds a proof. In particular, refutational completeness of ordered completion
[4] and superposition calculus [5] demands ground-total reduction orders.
However, the GWPO is not necessarily ground-total. The first step is to

56

investigate a modular proof of completeness for ordered completion [14], and
apply obtained techniques to superposition calculus.

Acknowledgment
The thesis is written under the supervision of Hirokawa Nao Sensei. The
author is indebted to his indispensable support. Ogawa Mizuhito Sensei
supported the author as his second supervisor. Ishihara Hajime Sensei and
Yokoyama Keita Sensei supervised his minor research project, which pro-
vided a cross-training opportunity. Ishii Daisuke Sensei and Ogata Kazuhiro
Sensei gave the author valuable comments at the midterm defense in Septem-
ber 2022. Also, he is thankful to participants in TRS Meetings and group
seminars of Hirokawa Laboratory for many stimulating conversations.

57

References

[1] Release 11.0 · termcomp/tpdb, 2020.

[2] Thomas Aarts and Jurgen Giesl. A collection of examples for termina-
tion of term rewriting using dependency pairs. Technical Report AIB-
2001-09, 2001.

[3] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cam-
bridge University Press, 1998.

[4] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion
without failure. In Rewriting Techniques, pages 1–30. Elsevier, 1989.

[5] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. J. Log. Comput., 4(3):217–247,
1994.

[6] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[7] Heiko Becker, Jasmin Christian Blanchette, Uwe Waldmann, and Daniel
Wand. A transfinite Knuth-Bendix order for lambda-free higher-order
terms. In Leonardo de Moura, editor, Automated Deduction - CADE 26
- 26th International Conference on Automated Deduction, Gothenburg,
Sweden, August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes
in Computer Science, pages 432–453. Springer, 2017.

[8] Alexander Bentkamp. The embedding path order for lambda-free
higher-order terms. FLAP, 8(10):2447–2470, 2021.

[9] Ahmed Bhayat and Giles Reger. A Knuth-Bendix-like ordering for ori-
enting combinator equations. In Nicolas Peltier and Viorica Sofronie-
Stokkermans, editors, Automated Reasoning - 10th International Joint
Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part I, volume 12166 of Lecture Notes in Computer Science, pages
259–277. Springer, 2020.

58

[10] Jasmin Christian Blanchette, Uwe Waldmann, and Daniel Wand. A
lambda-free higher-order recursive path order. In Javier Esparza and
Andrzej S. Murawski, editors, Foundations of Software Science and
Computation Structures - 20th International Conference, FOSSACS
2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10203 of Lecture Notes in Computer Science, pages
461–479, 2017.

[11] Cristina Borralleras, Maria Ferreira, and Albert Rubio. Complete mono-
tonic semantic path orderings. In David A. McAllester, editor, Auto-
mated Deduction - CADE-17, 17th International Conference on Au-
tomated Deduction, Pittsburgh, PA, USA, June 17-20, 2000, Proceed-
ings, volume 1831 of Lecture Notes in Computer Science, pages 346–364.
Springer, 2000.

[12] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 14th Inter-
national Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Bu-
dapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of
Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[13] Nao Hirokawa. Completion and reduction orders (invited talk). In
Naoki Kobayashi, editor, 6th International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2021, July 17-24, 2021,
Buenos Aires, Argentina (Virtual Conference), volume 195 of LIPIcs,
pages 2:1–2:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[14] Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah Win-
kler. Abstract completion, formalized. CoRR, abs/1802.08437, 2018.

[15] Gérard P. Huet. Confluent reductions: Abstract properties and appli-
cations to term rewriting systems: Abstract properties and applications
to term rewriting systems. J. ACM, 27(4):797–821, 1980.

[16] Jan Jakubuv and Cezary Kaliszyk. Relaxed weighted path order in
theorem proving. Math. Comput. Sci., 14(3):657–670, 2020.

[17] Sam Kamin and Jean-Jacques Lévy. Two generalizations of the recursive
path ordering. Unpublished manuscript, 1980.

59

[18] Dominik Klein and Nao Hirokawa. Maximal completion. In Manfred
Schmidt-Schauß, editor, Proceedings of the 22nd International Confer-
ence on Rewriting Techniques and Applications, RTA 2011, May 30 -
June 1, 2011, Novi Sad, Serbia, volume 10 of LIPIcs, pages 71–80.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

[19] Donald E. Knuth and Peter B. Bendix. Simple word problems in uni-
versal algebras. In Automation of Reasoning, pages 342–376. Springer,
1983.

[20] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp.
Tyrolean termination tool 2. In Ralf Treinen, editor, Rewriting Tech-
niques and Applications, 20th International Conference, RTA 2009,
Brasília, Brazil, June 29 - July 1, 2009, Proceedings, volume 5595 of
Lecture Notes in Computer Science, pages 295–304. Springer, 2009.

[21] Bernd Löchner. Things to know when implementing lpo. Int. J. Artif.
Intell. Tools, 15(1):53–80, 2006.

[22] Bernd Löchner and Thomas Hillenbrand. A phytography of WALD-
MEISTER. AI Commun., 15(2-3):127–133, 2002.

[23] Ursula Martin and Tobias Nipkow. Ordered rewriting and confluence.
In Mark E. Stickel, editor, 10th International Conference on Automated
Deduction, Kaiserslautern, FRG, July 24-27, 1990, Proceedings, volume
449 of Lecture Notes in Computer Science, pages 366–380. Springer,
1990.

[24] Aart Middeldorp, Julian Nagele, and Kiraku Shintani. Confluence com-
petition 2019. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and
Bernhard Steffen, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as
Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Pro-
ceedings, Part III, volume 11429 of Lecture Notes in Computer Science,
pages 25–40. Springer, 2019.

[25] Aart Middeldorp and Hans Zantema. Simple termination of rewrite
systems. Theor. Comput. Sci., 175(1):127–158, 1997.

[26] Maxwell Herman Alexander Newman. On theories with a combinatorial
definition of” equivalence”. Annals of mathematics, pages 223–243, 1942.

[27] Robert Nieuwenhuis. Invited talk: Rewrite-based deduction and sym-
bolic constraints. In Harald Ganzinger, editor, Automated Deduction

60

- CADE-16, 16th International Conference on Automated Deduction,
Trento, Italy, July 7-10, 1999, Proceedings, volume 1632 of Lecture Notes
in Computer Science, pages 302–313. Springer, 1999.

[28] I. V. Ramakrishnan, R. Sekar, and Andrei Voronkov. Term indexing.
In John Alan Robinson and Andrei Voronkov, editors, Handbook of Au-
tomated Reasoning (in 2 volumes), pages 1853–1964. Elsevier and MIT
Press, 2001.

[29] Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, higher,
stronger: E 2.3. In Pascal Fontaine, editor, Automated Deduction -
CADE 27 - 27th International Conference on Automated Deduction,
Natal, Brazil, August 27-30, 2019, Proceedings, volume 11716 of Lecture
Notes in Computer Science, pages 495–507. Springer, 2019.

[30] Nicholas Smallbone. Twee: An equational theorem prover. In André
Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28 -
28th International Conference on Automated Deduction, Virtual Event,
July 12-15, 2021, Proceedings, volume 12699 of Lecture Notes in Com-
puter Science, pages 602–613. Springer, 2021.

[31] Geoff Sutcliffe. The CADE ATP system competition - CASC. AI Mag.,
37(2):99–101, 2016.

[32] Yoshihito Toyama. Counterexamples to termination for the direct sum
of term rewriting systems. Inf. Process. Lett., 25(3):141–143, 1987.

[33] Sarah Winkler and Georg Moser. Mædmax: A maximal ordered comple-
tion tool. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani,
editors, Automated Reasoning - 9th International Joint Conference, IJ-
CAR 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture
Notes in Computer Science, pages 472–480. Springer, 2018.

[34] Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. Unifying the
Knuth-Bendix, recursive path and polynomial orders. In Ricardo Peña
and Tom Schrijvers, editors, 15th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’13, Madrid, Spain,
September 16-18, 2013, pages 181–192. ACM, 2013.

61

