
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 作用項書換えのための解釈順序

Author(s) 田中, 哲平

Citation

Issue Date 2023-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/18319

Rights

Description
Supervisor: 廣川 直, 先端科学技術研究科, 修士

(情報科学）



Interpretation Orders for Applicative Term Rewriting

2110100 Teppei Tanaka

Term rewriting is a computation model that is based on pattern match-
ing with directed equations, called rewrite rules. In this model, we regard
sets of rewrite rules, called term rewrite systems, as declared programs. In
particular, term rewrite systems over constant symbols and a unique binary
function symbol are called applicative term rewrite systems.

Consider the following applicative term rewrite system.

add 0 y → y map f nil → nil

add (s x) y → s (add x y) map f (: x `) → : (f x) (map f `)

double x → add x x

The term map double (: 0 (: (s 0) nil)) is rewritten as follows:

map double (: 0 (: (s 0) nil))

→ : (double 0) (map double (: (s 0) nil))

→ : (add 0 0) (map double (: (s 0) nil))

→ : 0 (map double (: (s 0) nil))

→ : 0 (: (double (s 0)) (map double nil))

→ : 0 (: (add (s 0) (s 0)) (map double nil))

→ : 0 (: (s (add 0 (s 0))) (map double nil))

→ : 0 (: (s (s 0)) (map double nil))

→ : 0 (: (s (s 0)) nil)

The last term cannot be rewritten any more. Such a term is called normal
form, that is regarded as a computational result. Applicative Term rewrite
systems underlie functional programming languages and automated theorem
provers that handle higher-order logic.

Termination is the property that any term can reach normal forms even-
tually. In order to show termination, reduction orders are employed. If all
rules orient from left to right for some reduction order then its system is
terminating. For example, suppose that the above ATRS is oriented by some
reduction order > as follows:

add 0 y > y map f nil > nil

add (s x) y > s (add x y) map f (: x `) > : (f x) (map f `)

double x > add x x

1



Then we have the system is terminating. Reduction orders are the basis of
not only termination proofs, but also automated theorem provers.

However, it is hard for existing reduction orders to orient the direction
that variables are duplicated, therefore map f (: x `) > : (f x) (map f `) and
double x > add x x are difficult. The aim of this research is to find a new
reduction order that can handle variable duplication.

In this thesis we introduce the reduction order by combining interpreta-
tion order with uncurrying (Hirokawa et al. 2013). Uncurrying is a powerful
transformation method for termination proof. Here we illustrate our method
by using the above example. Our method allows us to uncurry and interpret
at the same time. For termination of the original systems, we just have to
find an interpretation order > that orient as follows:

add2(0, y) > y map2(f, nil) > nil

add2(s1(x), y) > s1(add2(x, y)) map2(f, :2(x, `)) > :2(f x,map2(f, `))

double1(x) > add2(x, x)

Actually, a few conditions are added for the algebra, but it is easier to find
interpretations than the original one.

In addition to the definition of new interpretation order, we found an
automatable termination criterion by using polynomial interpretation (Lank-
ford, 1979). Here we list the contributions of the thesis:

• a new reduction order and

• its automation technique.

Experiments on the Termination Problem Database (TPDB) show effective-
ness of our new reduction order.

2


