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Abstract

Recently, researches about machine translation have reached impressive re-
sults and can be applied in practical, thank to the development of deep learn-
ing model, especially the Transformer model. The Transformer model allows
us to build an end-to-end translation system straight from the datasets. How-
ever, there are some issues that still exist even with the participation of the
Transformer. Those issues are the lack of dataset in minor language and the
loss of information while translating long sentences. There is one approach
to face with this issue which is incorporating syntactical information into
the Transformer model to enrich information from the small dataset in mi-
nor language and also help the model to get more information in translation
step.

In this research, we proposed the methods to inject the syntactical informa-
tion such as TF-IDF score for pair of words and Part of speech tags into
the Transformer model. With each type of information, we have designed
different type of attention mechanism to incorporate those information into
Transformer effectively. Our target is to highlight the relationship between
the tokens inside the input sequence, since then, enhance the quality of trans-
lation process.

To evaluate the methods, we did experiments on two benchmark dataset
which are IWSLT 2015 English-Vietnamese and IWSLT 2014 English-Germany
and the results is quite positive.

Keywords: Deep Learning, Machine Translation, Transformer, Syntac-
tical information.
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Chapter 1

Introduction

Machine Translation (MT) is a natural language processing (NLP) topic that
aims to automatically map sentences or words from the current human lan-
guage to other human languages with the minimum change in the meaning or
the content of those sentences. There are three approaches to machine trans-
lation methods which are Rule-based Machine Translation (RMT), Statis-
tical Machine Translation (SMT), and Neural Machine Translation (NMT).
Rule-based Machine Translation exploits the stability in the syntax of lan-
guages to map the 2 sentences of each language together. While SMT fo-
cuses on statistical relationships between original texts and their existing
human translations, NMT applies Deep Learning (DL) models to analyze
the relationship between the sentences in the source language and the tar-
get language. Recently, both approaches have achieved impressive results in
popular languages that are applied in many systems, services, and applica-
tions. These applications and services are used widely by people around the
world.

1.1 Problem statement

SMT exploits the statistical information from the monolingual dataset or
multilingual dataset to predict the sentences in the target language which
are similar to the sentences in the source language about meaning. On the
other hand, NMT can analyze the hidden meaning between the words in
the source sentences and then map that meaning to the target language to
generate the “translated sentence”. With the improvement of DL architec-
tures, such as Long-Short Term Memory (LSTM), Recurrent Neural Net-
works (RNN), Transformer, and so on, NMT models can analyze the more
complex relationship between the tokens in a sentence, a paragraph, and



even a whole document. Thanks to that, NMT models are getting better
results when compared to SMT and can be used in real life. However, there
are several issues that exist in NMT models.

e The main challenge of NMT is the lack of data. The performance of
the model relies on the coverage of the dataset. So, with the minority
language, which is used by small groups of the population all over the
world, NMT may not reach the same accuracy as the popular language.
The cost for a multilingual labeled dataset in those languages is usually
high, and it also takes so much time to create such a dataset.

e The second difficulty of NMT is processing long sentences. Almost all
NMT models can generate short and medium sentences effectively but
when processing long sentences, some NMT models usually miss a part
of the information or translate the source document wrongly. Long
sentences may contain too much syntactical information to resolve and
the relation between the phrases and tokens in the long sentences may
be more complex than in short and medium sentences.

e One of the approaches to deal with the lack of data is exploiting addi-
tional information along with the input sentences. The connections be-
tween tokens in a sentence can be found in syntactical information such
as the appearance frequency of tokens, the dependency relationship be-
tween each token or the semantic role of each token. The injection of
this information into NMT models helps the model to understand the
sentence more clearly. However, the cost for labeling dependency data
is very high and the tags generated by dependency parser usually con-
tain errors that may cause bad effects on translation process. Finding a
new type of information and suitable method to inject that information
to NMT model is still promising.

1.2 Objective

The main purpose of our research is to find a method to inject syntactical
information into the NMT model so that the model can have better perfor-
mance while working with minority languages. As the first step, we want to
check the types of information that may help to improve the performance of
the model. After that, we develop the technique to inject suitable informa-
tion into the model. Then, we test the model on the benchmark datasets and
observe the results to adjust the current method. For further development,
we aim to complete a translation system that can work well on minority
languages.



1.3 Originality

In this research, we proposed new methods to inject the syntactical infor-
mation into the Transformer model. For this research, we chose the TF-IDF
score for pair of words and POS tags as the additional information to inject
into the Transformer model. With each type of information, we designed a
suitable method to inject them into the Transformer model. We did exper-
iments with two methods on the IWSLT2015 English-Vietnamese and the
IWSLT2014 German-English datasets to measure the performance of our de-
sign in the translation task. The results we achieved are promising and show
the improvement in the quality of the translation task. Since then, the paths
to incorporate other different kinds of information into the translation model
are opened to us.

1.4 Thesis outline

The thesis is organized into 5 chapters. Chapter 1 is the introduction, and
the main contents of the next 4 chapters are summarized as follows:

Chapter 2 presents some background knowledge of NMT and related
works about injecting additional information into the NMT model

Chapter 3 describes the information we added to the DL model and the
method we applied in our experiments.

Chapter 4 shows the dataset we used for experiments and the settings
of experiments as well as the results we archived. We will also give some
analysis of the experiment results in this chapter.

Chapter 5 is the discussion about the result we achieved and the effec-
tiveness of the method as well as the further development in the future.



Chapter 2
Related Works

2.1 Machine Translation

The concept of a system that can express the same meaning in many different
languages was proposed by Rene Descartes in the 17th century. However,
until the 1950s, specific research about MT began to appear when Yehoshua
Bar-Hillel started his research on MT at MIT in 1951. Since then, there have
been many researches and ideas that have contributed to the fast development
of MT. From 1951 until now, we can categorize the research of MT into 3
groups based on the architecture of systems: rule-based Machine Translation,
Statistical Machine Translation, and Neural Machine Translation.

2.1.1 Rule-based Machine Translation

Rule-based Machine Translation (RMT) is the first design for MT. The main
idea of this approach is that every language will have a set of symbols to rep-
resent the same meaning. Such as we can usually find a word in a language
that is similar to some words in other languages. For example, the word “dog”
in English has the same meaning as the word “inu” in Japanese. Thanks to
this correspondence between each language we can consider the translation
process as a word-replacing process in which we replace the phrases in the
source sentence with the phrases of the target language that have the same
meaning. This idea is simple and effective in major situations. However, it
has several issues that make it unsuitable for application in real situations.
RMT depends heavily on the grammar rules that it is built on. However,
grammar rules are also hard to organize and there are too many syntax rules
in one language. Besides, some syntax rules can conflict with each other and
cause mistakes in translation progress. Therefore, rule-based machine trans-
lation ignores the context information while translating, which is the most

4
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Figure 2.1: Rule-based machine translation

critical drawback. Because in different contexts, the meaning of a word or a
phrase of words can be different. For example, in the sentence “He is going
to the bank for a loan” the word “bank” should be understood as an orga-
nization or a building where people are supported in the financial domain.
But in the sentence “He went to the bank for fishing”, the meaning of the
word “bank” in this case is the land alongside or sloping down to a river or
lake. So in the two examples above, we should translate the word “bank”
in two different ways because of the contrast in the meaning of the context.
However, the system of RMT cannot cover all the situations like these exam-
ples. Even in most languages, there are strict grammar structures and rules,
but the flexibility of how people use the languages and the flexibility of the
languages themselves make it almost impossible to build a set of rules that
can cover all of the cases. And even when the rules are organized then which
rule should have higher priority might be a hard issue.

2.1.2 Statistic-based Machine Translation

Statistical Machine Translation (SMT) uses a separate approach from RMT
to handle the translation task. The key idea of SMT is using statistical
information between words and phrases of words to find the same meaning
through a bilingual dataset. To translate a sentence, SMT also replaces
the words or phrases in the source language with the corresponding words



and phrases in the target language, but, unlike RMT, SMT use statistic
as the baseline instead of rules to choose suitable words or phrases in the
target language to fill in the place of the old ones in the source language.
This approach allows the SMT models to translate more flexibly than RMT
models and also the cost for SMT seems to be lesser than RMT models.
The main reason is that SMT does not depend on the rules, so to improve
the performance of translation models, we just need to improve the statistic
and the datasets. That makes models more simple and easier to use in real
situations. However, SMT models depend heavily on the datasets that they
are trained on. So if the datasets contain a considerable amount of noise,
the performance of SMT models can be affected. Besides, the performance
of SMT models is weaker when they have to deal with long sentences which
have complex contexts.

Since then, we can see that noisy data and long sentence processing are the
two major issues of SMT models. Many sub-tasks, techniques, and new SMT
models have been proposed to cope with those issues. Many techniques such
as pre-processing, sentence alignment, word alignment, phrase extraction,
phrase feature preparation, and language model training, are proposed along
with Phrased-based Statistical Machine Translation (PBSMT). The PBSMT
model generates the translated sentence using the relations between phrases
in the source language and phrases in the target language. These relations
are not produced by any specific rules but by the statistic learned by the
model from bilingual data sets. Therefore, PBSMT achieved an impressive
result that overcome word-to-word translation models.

Another factor that helps SMT models outperform the RMT methods is
the word embedding technique. The very first idea of word embedding is
how to map a word into numbers to serve the statistical operation behind it.
The numbers that represent each word must be unique and in some aspect,
must reflex the meaning of the represented word. One of the first embed-
ding methods is using the Term Frequency - Inverse Document Frequency
(Tf-IDF) score of each word to represent them in calculations. However, TF-
IDF did not show all the aspects of a word such as the relationship between
that word and the others. So, language models are proposed to solve this
problem. The target of language models is to represent the relations be-
tween the words in vocabulary and to do that, each language model creates
a multi-dimensional new vector space of its own to measure the words in the
vocabulary. After that, before being processed by SMT models, the input
tokens will be embedded into those vector space to generate a representa-
tion vector for each token and the SMT models will do calculations of those
representation vectors. The popular language models are word2vec, doc2vec,
Glove, fastText, and so on.
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2.1.3 Neural Machine Translation

Even though achieved promising results, SMT could not completely under-
stand the context of the input sentence to generate the sentence in the target
language with the closest meaning. Besides, SMT models cannot handle the
noise in training data totally. Therefore, many researchers proposed to apply
deep learning architectures in translation tasks to face those issues. Since
then, Neural Machine Translation (NMT) begin to develop and achieved
many impressive results. Many variations of the deep neural networks were
designed, but almost of NMT models can be categorized into 2 major ar-
chitectures: Convolution Neural Network-based NMT and Recurrent Neural
Network-based NMT.

Recurrent Neural Network-based NMT.

Before being applied to the translation task, Recurrent Neural Network
(RNN) is well-known in other NLP topics. The structure of RNN models
allows processing the input documents sequentially and reserving the order
of each token inside the input. Since then, RNN models can capture the
information inside input documents better than other Deep Learning models
and soon become dominant in the machine translation field.

RNN models compute the hidden state representation for each step based
on the input vector of the current token and the hidden state representation
of the previous step. So that the final hidden representation will have the
information of the whole sentence as well as the information on the order of
each token inside input sentences.

There were many researchers who used the approach that applied RNN
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structure in machine translation, Sutskever et. al proposed a full RNN model
for the translation task and achieved an impressive result when compared
with the SMT models [2]. The model used RNN structure in both the en-
coding and decoding steps to generate the target sentences. With the final
representation of the source sentence and the ”start sentence” token, the
RNN model will compute the first token of the target sentence. Then, the
next hidden state representation of the target token will be computed using
the currently hidden state representation and the embedded vector of the
newly generated token. However, traditional RNN models have a drawback
which is the loss of information occurs while translating long sentences. This
happens when encoding too many tokens, the representation at the final step
does not contain any information about the tokens that lie in the head of sen-
tences. To solve this problem, Long-short Term Memory (LSTM) has been
proposed by Hochreiter et. al [3]. LSTM is a variation of RNN in which,
each unit is a Gated recurrent unit (GRU) that helps the model select which
information needs to reserve and which information needs to forget to retain
the expression of the sentence. In 2016 [5], the Fast-Forward Connection for
RNN was designed by Zhou et al. based on the LSTM structure. This design
allows to construct a deeper neural network for the LSTM model.

In [4], Badanau et. al proposes the attention mechanism that allows RNN
models to pay attention to important information to express the meaning of
the source sentence. Also, in [10], Luong et al. design an attention mechanism
as well. These attention mechanisms both aim to highlight the importance
of every token to the expression of the input sentences. However, there is



some slight divergence between them. The Badanau attention mechanism
calculates a unique context vector at each step based on the previous decode
hidden state representation h’ ' and encoder hidden state representation
hi. With previously hidden state decode representation hl; !, we can get the
alignment vector e, ; at step t by feeding forward the previous decoder hidden
state representation h’; ' and the hidden state representation Al into a neural
network or any activation function F. Then we can calculate the attention
weight a,; by feeding alignment vector e;; through softmax function. The
context vector ¢; the is computed as follow:

ery = F(RI7Y RL) = F(Wahi™t + W, h!) (2.1)
at; = softmaz(e,;) (2.2)

T
Cy = Z Qg s hé (23)

i=1

The context vector is then fed together with the embedded vector of the pre-
vious decoder output to the RNN unit to generate the hidden state represen-
tation for decoding the output of this step. In Luong’s attention mechanism,
there is a small difference in the computation of the alignment vector. There
are 3 methods to compute the alignment vector according to [11] as below:

e Dot

This method is the most simple of the three methods. The alignment
vector is the result of dot product multiplication between the encoder
hidden representation and the decoder hidden representation.

et = hithl) (2.4)

e (GGeneral

In this method, we add a weight matrix to the dot product between the
encoder hidden representation and the decoder hidden representation.

ers = bt Wo(hL) (2.5)

e Concatenate

In this method, the encoder hidden representation is concatenated with
the decoder hidden representation and the combined vector is multi-
plied by the weight matrix W5 to get a combined representation. The
combined representation is then fed to a tanh function and is multiplied
with the weight matrix W, to get the final alignment vector

eri = Wi - tanh(Wo([h 2 A1) (2.6)
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Figure 2.5: Demonstration of attention mechanisms proposed by Badanau
et al. (figure on the left) and attention mechanism proposed by Luong and
Manning (figure on the right). iS; is the start sentence token, h is the hidden
state representation of each step, A is the attention weight compute from the
hidden state representation.

In all of the methods above, the hidden encoder representation and hid-
den decoder representation are combined together first before being fed into
a neural network or activation function, unlike Badanau’s attention mech-
anism. This makes the hidden encoder representation and hidden decoder
representation in Luong’s attention mechanism share the same weight matrix
instead of two separate weight matrices in Badanau’s attention mechanism.

The context vector is calculated as in Badanau’s attention mechanism.
However, later the context vector is concatenated with the hidden decoder
representation of this step and is fed forward a linear layer to get the output
of the current step.

Convolution Neural Network-based NMT

Convolution Neural Network (CNN) is well-known in many computer
vision topics such as object detection, document layout detection, object
segmentation and so on. In the other aspect, CNN is also applied in some
NLP topics especially machine translation but the performance of the CNN
models in MT field seem to be overcome by RNN models for a long period.
In the effort to implement CNN architecture into MT task, Kalchbrenner
and Blunsom tried to use CNN as the encoder of the translation system and
implemented RNN as the decoder.

A full CNN model is used for the translation task performed by Lukasz
Kaiser and Samy Bengio[7], they applied Extended Neural GPU on the
CNN model so that it can reach the result of RNN models. Concurrently,
Kalchbrenner et al. also proposed ByteNet (a kind of CNN) based NMT,

11
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Figure 2.6: demonstration of MT model with CNN encoder and RNN decoder

which show great performance when reaching current state-of-the-art result
in character-level translation at that time by the result of models in word-
level translation is quite poor [8]. Generally, CNN-based NMT models have
the advantage in training speed when compare with RNN-based NMT mod-
els. Because CNN models process the whole input sentence with their filters
at the same time while RNN models handle tokens in input sequentially.
Besides, the structure of the CNN model allows it to deal with the gradient
vanishing better than RNN models. However, some critical issues still ex-
ist in the translation quality of CNN-based NMT models. First of all, the
CNN models extract features of input by convolution filters, so they can only
capture the relation information between tokens within the range of their fil-
ters. With the tokens that lie further than the width of their filter, CNN
can only find relation information between them in the high-level convolution
layer. This causes the concrete expression in translated sentences generated
by CNN models and reduces the translation quality of CNN-based NMT
models. Secondly, compressing a sentence to a vector may cause information
loss during computation steps, this drawback exists in both RNN-based mod-
els and CNN-based models and is later solved by the attention mechanism
partly.

12
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Figure 2.7: Architecture of the ByteNet model. The target decoder (blue)
is stacked on top of the source encoder (red). The decoder generates the
variable-length target sequence using dynamic unfolding.[8]
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Figure 2.8: demonstrate of greedy search for NMT model with RNN-based
decoder

2.1.4 Inference method

The inference is using a trained RNN-based model in practical application.
In this section, the model has information on the source input sequence only.
So to decode the target sentence all we have is the encoder’s hidden repre-
sentation. There are several methods were proposed to serve for decoding
target sentences in the inference section such as Greedy search and Beam
search. Greedy search The idea of greedy search is to choose the output
word with the highest predicted probability as the next word. The step of
the greedy search algorithm include:

e Step 1: The decoder starts to decode when the model receives the
iEOS;, (end of sequence; token. The decoder then starts to receive
hidden encoder representation as the input to predict output words

e Step 2: The decoder predicts the probability of each word in the vocab-
ulary to become the next word of the sentence in the target language.

e Step 3: The decoder chooses the word with the highest probability as
the next word of the sentence in the target language and the input for
the next time step also.

e Step 4: Continue the loop until reach jEOS;, token.

Beam Search The Greedy search algorithm provides an impressive result
in generating the sentence in the target language. However, the greedy search

14



does not give us a chance for reconsidering in case there are 2 or more words
that have approximate probabilities. In this aspect, beam search has proven
to be much more better than greedy search we can choose a more suitable
output with beam search than greedy search. Beam search is proposed in
[12] in other tasks, however, it is an effective method for MT and is usually
used for the decoding steps of ML models. In the beam search algorithm,
the model will keep n words with the highest probabilities and then treat
all n words as the input for the next time step. For each word that is
retained, we will obtain the next n words. Then each branch of the tree
now will continue looping until reaching the jEOS; token. In the end, to
determine the final output, the model will compute the total probability of
each branch and choose the branch with the highest total probabilities as
the final translation. Thank to this method, we can have more choice when
decoding the output of MT models. On the other hand, this method also
makes the model consume more time while translating. To prevent the model
consume too much time for decoding, the number of words to be retained is
often set to be a small number to reduce the number of possible results. In
[13], the best performance of the beam search algorithm occurs with n lie
between 5 to 10.

2.2 Transformer Architecture

Although the Deep learning models, especially RNN-based models, achieved
many impressive results in the MT topic, there are some issues that still
exist. In 2017, a new architecture called Transformer [9] has been proposed
by Vaswani et al. and it solved almost all of the problems that remain in
other deep learning models at that time. With impressive achievements,
Transformer and its variations soon reach state-of-the-art results in many
other NLP topics, not only machine translation. So the following, we will
break down Transformer to understand the idea of the Transformer and how
the Transformer works.

2.2.1 Encoder-Decoder Structure

Transformer architecture follows the Encoder-Decoder structure. The Encoder-
Decoder for a long while has been accepted by most machine translation re-
searchers as an original structure to build a translation model. The Encoder-
Decoder structure was first time proposed by Kalchbrenner and Blunsom
[6]. Even though there were many variations with separate details and cus-
tomization added by researchers, the main structure is maintained. This

15
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Figure 2.9: Beam search algorithm
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model structure involves two connected components, the Encoder, and the
Decoder. The Encoder transforms the input sentence in the source language
into a vector representation then the Decoder will transform the vector repre-
sentation of input into the sentence in the target language. Each component
of the structure is a neural network but they can be designed with different
architecture, such as in the research of Kalchbrenner and Blunsom [6], the
Encoder was a CNN encoder and the decoder was an RNN decoder. Ba-
sically, the concept of this structure is using the representation vector in
semantic space to map two sentences in two different languages together.
The middle process is hard to visualize so we can say this structure is an
end-to-end translation.

In the case of the Transformer, the encoder is a stack of N identical layers
(N=6 as in [9]) and the decoder also is a stack of M identical layers (M=6 as
in [9]). Each encoder layer contains two sub-layers which are the multi-head
self-attention layer and a fully connected feed-forward network. Following
each sub-layer is a normalization layer so with the input x that layer receives,
the output of layer should be LayerNorm(z + SubLayer(z)). The encoder
will encode the input sentence under the self-attention mechanism to get
a final representation that retains most of the semantic information of the
input sentence.

The decoder layers have two sub-layers as the encoder layers and one addi-
tional multi-head self-attention layer for the previous output of the decoder.
Especially, the multi-head self-attention sub-layers in the decoder layers have
a slight divergence from the multi-head self-attention in the encoder. Before
the embedded vector of the input source sentence is fed toward the encoder,
they are added the positional encoding, but in the decoder, the multi-head
self-attention sub-layers prevent the positional encoding to make sure that
the output of encoding only gets affected by the previous output tokens.

To reserve the information of the position of each token, the Transformer
model adds the positional encoding to the input embedding vectors [9]. The
positional encoding has the same length as the embedding vector, represent-
ing for absolute position of each token inside the sentence. The creating of
positional encoding is shown in Figure 2.11, ”n” is the number of embed-
ding dimensions. For the position i in the input sequence and dimension j
(0j=ji=n/2), P,j is calculated by the formula:

l

Pa,j) = sin(———; 2.7

i2d) = sin ) .7
1

P, j) = cos(——7 2.8

( ) (1000()%) (2.8)
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Figure 2.12: self-attention layer

2.2.2 Self-Attention mechanism

As mentioned before, every layer of the Transformer model uses the self-
attention mechanism in encoding and decoding progress. This attention
mechanism is totally different from the mechanism that is proposed by Badanau
et al.[4] and Luong et al.[11] we mentioned before. It is considered that the
self-attention mechanism is the core of Transformer architecture.

When the input vector x is fed to the self-attention layer, the input is
split into three presentations which are ,K,V matrix, and then the context
vector C" is computed as in Figure 2.12. We have:

e X: input vector

e T length of input sequence
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e d.mb: number of dimension of embedding vector

e d : number of dimension of hidden representation

e Q" : Query matrix

o K" : Key matrix

e V" : Value matrix

o Wh Wh, Wg : weight matrix corresponding to V, K, Q
e softmax(): softmax function

o A" : attention weight matrix

e C" : context vector
The formula to compute context vector C* at the current step is :

Q" x KhT
Vi
Besides that, multi-head attention is also applied in the Transformer layer.

The multi-head attention involves many heads of attention ( in [9], number

of heads is 8), each head is a different set of weight matrices of Q" K", V",

each head will produce a different context vector. To obtain the final context
vector, we concatenate all the context vectors in all heads like in Figure 2.13.

C" = V'softmax( (2.9)

2.3 Inject additional information approach

Almost NMT models take the input that only contains the source language
sequences and generate the corresponding sentence in the target language
directly from the input source sequences. Even though this method achieved
many impressive results, raising the quality of translation results produced
by the NMT model is still a main target in the ML field. One of the ap-
proaches to this problem is providing additional information to the model so
we can highlight some linguistic information that the model can learn. Many
researches [19] [20] [14] [21] have proven the effectiveness of this approach.
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2.3.1 Syntactical information

TF-IDF
TF-IDF score of a word reflects the importance of that word to the corpus
and is computed by Term Frequency (TF) and Inverse Document Frequency

(IDF).

TF(t,d) = _ Jua (2.10)
Zt’ed t'd
IDF(t, D) = log—— (2.11)
lde D:ted|
TF — IDF(t,d,D) = TF(t,d) - IDF(t, D) (2.12)

ft.a: number of times that t appear in document d

N : total number of documents in corpus D

|d € D :t € d|: number of document d that contains term t
Dependency tags
Dependency parsing has been a key NLP task in analyzing grammar struc-
ture for a long time. Dependency tags are natural and flexible representations
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Figure 2.14: Dependency tree

of semantics. Their generality over trees, for instance, allows them to rep-
resent relational semantics while handling phenomena like co-reference and
coordination [16].

For example, with the sentence "My family was not poor, and I had never
experienced hunger myself.” we can get a dependency tree as in Figure 2.14.
This dependency tree helps us to understand more about the dependency
relationship between the tokens inside the sentence, such as we can see that
the word "my” depends on the word ”family” in Figure 2.14. To simplify the
tree structure of the dependency, we can transform the tree format to the
matrix format as in Figure 2.15. In this matrix element at line i, column j
will represent the probability that if token i depends on token j inside of the
source sequence. The value of each element inside the matrix lies between 0
and 1. If the value is 1, it means that token i depends on token j.

Part of speech

The Part-of-speech(POS) tag of a word is the category of that word such as
noun, verb, adjective, adverb, and so on. Based on the definition and context
of sentences or documents, a word can have multiple POS tags. POS tags
play an important role in many NLP tasks [18] such as speech recognition,
information retrieval, question answering, and so on. The POS tags provide
a lot of information about the words.
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Figure 2.15: Dependency Matrix

2.3.2 Tree-LSTM

As mentioned before, the LSTM model encodes the input sentence following
a sequential order since then reserving the information about the position of
tokens inside the input sentence. However, this method of encoding also has
a drawback, the gradient vanishing may occur with long sentences and make
the hidden representation of the tokens at the ends of the sequence lose in-
formation about the relationship with the tokens in the head of the sequence.
Besides, the LSTM model does not exploit the syntactical information inside
the sequence directly and this may be a waste of information. To cope with
this problem, Akiko Eriguchi et al.[14] proposed the Tree-LSTM model which
encodes the input sequence following the order of the phrases inside the sen-
tence. The phrase structure is usually constructed as a tree with the node
as the phrase of the sentence and the leaves is the single words, especially,
since the root will be the full sentence. The encoder’s hidden representation
of a node in the tree is generated bottom-up by the hidden presentation of
its children. Hidden representation for the leaves will be the embedding vec-
tors of words in those leaves. The hidden representation of a node hfhr is
computed from hidden representation of two child nodes h} and hj, as:

W hr = free(hl, hy) (2.13)
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firee is a non-linear function.
The LSTM cell is also modified a bit to fit the tree structure. More specific,
we will have the memory cel ¢, hr and hidden state representation of a node
will be calculated as:

ir, = o(U/h, + Uk, +b")

(2.14)

Ji = o (U] i + Ufihy + o) (2.15)
fi = o(U" by, + Ul by + ) (2.16)
o = o(UFhl, + UCh, + b°) (2.17)
¢, = tanh(UFhS, + UChy, + %) (2.18)
Ghr =iy - cx + fi - e+ fi - (2.19)
Ry hr = oy, - tanh(chr) (2.20)

Where iy, fi, fr, o, ¢, are the input gate, the forget gates for left and right
child units, the output gate, and the state for updating the memory cell. ¢,
and cj, are the memory cell of the left and right child nodes. The initially
hidden representation for the decoder is the hidden state representation of
the root hjoot. And because the number of hidden state representations in
the encoder is not the same as the length of the sequence so the attention
mechanism in this mode is also modified. The context vector at j-th step in
decoding is computed as:

n 2n—1
djzzla;-hi-f— > ahihr (2.21)
1= i=n-+1

2.3.3 Incorporating Dependency tags into Transformer

Parent-scaled self-attention Incorporating syntax information into Trans-
former to improve translation performance is a promising approach that has
been proven by many research [23] [24] [21]. Almost researchers used depen-
dency tags to inject into the Transformer model. One of the most effective
methods proposed is using Parent-scaled self-attention(PACAL)[21]. They
customized the attention layer to incorporate the source syntax by adding
the weight matrix, which is based on the dependency relationship between
each token, to the attention weights. Since then, the model now will pay
more attention to the dependency relation between the tokens inside the in-
put sequence. The distance weight between token j to a token t is computed
as:

nyg" = s,.5"d, 5P (2.22)
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s,5" is the distance from j to t. d,jP is the distance from j to parent of t, we
have d;j? = dist(py, j) and is computed as:

2
dist(pr, j) = fn(jlpe, 0%) = et (2.23)

Where o2 is a fixed variance. The distance between token j to parent of t is
he value of the probability density of a normal distribution centered at p [21].

Linguistic-Information Self-Attention
Linguistically-Informed Self-Attention (LISA) is another method that incor-
porates the dependency tags into the Transformer model to improve the
overall performance of this model [22]. However, LISA has a better mecha-
nism to prevent the bad effects of the errors that occur in the dependency
parsing step, while the PASCAL model cannot improve the dependency ma-
trix through training steps because PASCAL does not interfere with the
dependency tags generated by external tools. LISA provides a method to
adjust the dependency tags to fit the translation purpose and also covers the
errors inside the labels generated by external tools. LISA was designed for
multi-task learning for semantic role labeling, dependency parsing, and POS
tagging. So when it is applied in machine translation, it is trained for trans-
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lating and dependency parsing as well. The LISA model receives the parsed
dependency tags from external tools as a part of the input and generates
the dependency tags for itself. A deep bi-affine model Upqgrse [25] is used to
replace an attention head of the encoder to predict syntactic dependencies.
We have the parse attention weights A,,,s. computed as:

Aparse = QparseUparserarse (224)

Then the parse attention weights Ap,-se is encouraged to attend to each
token’s parent in a syntactical tree [22]. The probability that a token t
having parent ¢ is modeled as:

P(q = head(t)|X) = Aparse[t, q| (2.25)

With input dependency tags X,.s. the loss of predicting dependency tags is
modeled as:
Lossparse = log(P(head(t)| Xparse) (2.26)

The total loss of the LISA model will be computed as :
Loss = LoSSiansiation + ALOSSparse (2.27)

Where A is the penalty of dependency predicting loss.

2.4 Prepossessing

Prepossessing is a useful step before feeding the data to translation models.
This step helps us to clean up the data, remove noise that exists in training
or testing data, and more important, tokenize the data so that model can
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learn from it as much as possible. Byte Pair Encoding(BPE) is one of the
prepossessing methods which are used the most that actually help to improve
the quality of the NLP models. In 2016, Senrich et al. [26] proposed to apply
BPE to prepossessing data before feeding it to translation models to resolve
the rare word problem in the translation task. They achieved impressive
results.

BPE is a data compression algorithm in which the pair of consecutive
bytes of data with the highest appearance frequency will be replaced with an
unknown token that did not exist in the vocabulary at the beginning. For
example, given the data ”gghuhhugghug”, the byte pair "hu” appear with
the highest frequency so we replace it with token A which did not exist in
the data at the beginning. Now, we have data ggAhAggAg, we see that ”B”
is the next byte pair that is most common in data, so we replace ”gg” with
B, and the data is "BAhABAg” now. Even now, we can replace "BA” with
a new token Z when "BA” appear most in the data. The final form of data
should be "ZhAZg” where Z = BA, B = gg, A = hu when all the byte pairs
now only appear once, and the data cannot be compressed anymore.

When this algorithm is applied to the NLP topics, it will help to break
down the rare words into smaller sub-words that appear more often in the
vocabulary. Maybe in some cases, the number of rare words remains but the
number of common words will increase under the encoding of BPE. That is
why BPE is often used in translation models to face out-of-vocabulary and
rare word problems. Of course, it cannot handle the problems completely
but BPE helps us to reduce the size of problems and let the model learn
better with cleaner data.
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Chapter 3

Proposed method

Even though incorporating the dependency tags as the source syntax to the
Transformer model has achieved many impressive results, it remains a prob-
lem. Almost dependency tags are generated from external tools because the
cost to label all dependency tags for translation data is really expensive.
However, even though the accuracy of dependency parsing of the tool is high
but the tags still contain errors that can misguide the translation model.
Since that, finding other types of syntactical information to help the NMT
model, in this case, the Transformer model, improve its translation quality
is necessary.

3.1 Statistical information injection

In this approach, we chose to use TF-IDF to inject into the Transformer
model. We use TF-IDF to measure the importance of a pair of words to
the whole corpus. The TF-IDF score is computed by the term frequency
and inverse document frequency for pairs of words. For example: with the
sentence "I know I am wrong”, we will have 8 pairs of words to calculate
TF-IDF for pair instead of 5 words as in the regular method to calculate
TF-IDF for single words. The pairs are: “I - know”, “I — ", “I — am”, “I —
wrong”, “know — I”, “kmow — am” ”know - wrong”,”am - wrong”. Specially,
the order of each word in the pair is reserved, so that pair "I - know” and
pair "know - I” are two different pairs.

The term frequency of pair p is computed below:

fp,d

AT (3.1)

tf(p,d) =
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Figure 3.1: TF-IDF matrix for the sentence "I know I am wrong”

fp.a: Taw count of p in document d

Then the inverse document frequency for pairs of words is computed as :

N

df (p, D) =1 3.2
N: total number of document in corpus D
After that, we have the TF-IDF score for pair of words calculated as:
TF —IDF =tf(p,d) x idf (p, D) (3.3)

To inject the TF-IDF score for the pair of words into the Transformer model,
we compute the TF-IDF scores of all the available pairs all over the training
dataset. Since then, we can summarize a TF-IDF matrix with size (S, S),
While S is the length of the input sequence. For example, with the sentence "1
know I am wrong” we will get the TF-IDF matrix as in Figure 3.1. To inject
the TF-IDF score for pair into the Transformer model, we have adjusted the
self-attention layer in the first encoder layer. The detail of the customized
encoder layer is shown as in Fig 3.2

3.2 POS tags injection

POS tags of a sentence contain information about the role of each token in
the expression of the total sentence. The words with different POS tags will
have different relationships with the words that have the same relationship.
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Figure 3.2: Self-attention layer with injection of TF-IDF matrix

For example, with the sentence "My family was not poor, and myself, I had
never experienced hunger .” we will have the POS tags as: "PRP NN VB
RB JJ , CC PRP , PRP VB RB JJ NN .”. So we can see that with the
POS tag, we know the relationship between the pair of words ”family” and
"was” is different between the pair of words "my” and ”family”. Because the
relationship between ”family” and ”was” is the relationship between "NN”
(Noun) and "VB” (verb) but the relationship between "my” and ”family”
is the relationship between "PRN”(Personal Pronoun) and "NN” (Noun).
Knowing this kind of relationship may help the model to adjust the self-
attention among the tokens more suitably.

To inject the POS tags into the Transformer model, first, we collect the
POS tags of the input sentence by using the CoreNLP POS tagger. Then we
built a separate embedding layer just for the input POS tags that come along
with the input sequences. After the embedding process of the POS tags, we
also add the Positional Encoding to the embedded vectors of the POS tags
indices. The Query matrix Q¥ and Key matrix K of the POS tags input
will then be computed by multiplying the input with two separated weight
matrices that are W) andWf. The attention score of POS tags is computed
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Figure 3.3: Self-attention layer with injection of POS tags

as: .
P . KP
S S (3.4)
Vd
d is the number of hidden dimension of Q and K
The final attention score of the input will be computed as :

AP =

A=A+ AP (3.5)

Then the attention is feed forward to a softmax function and multiplied

with the Value matrix (V) to get the attention weight. The detail of the
customized self-attention layer is shown as in Figure 3.3.
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Chapter 4

Experimentation and Results

To examine the performance of our method, We used Transformer as the
baseline model and do experiments on 2 datasets, IWSLT2014 Germany-
English and IWSLT2015 Vietnamese - English. We used the BLEU score to
evaluate the results. The parameters of the dataset are shown in table 4.1.

To collect the POS tags of German and English data, we used the CoreNLP

POS parsers and Stanza parser for Vietnamese. During the experiments pe-
riod, we tried to inject the TF-IDF on the first encoder layer of the Trans-
former model, 3 first encoder layers, 3 last encoder layers, and finally all
of the encoder layers to measure the effect of TF-IDF on the Transformer
model.
With the POS tags injection, we implemented a filtering step to control the
number of relations that will occur between 2 tokens. For more clarity, we
observed the appearance frequency of each tag in the total valid POS tags.
We see that there are many tags that have less appearance than other tags
but their role is similar to other tags. So we decided to change those tags
to the tags with higher covering according to the POS tags structure of the
Penn tree bank [29] for English and Negra corpus for Germany. For exam-
ple, words with the tag "VBG” will be changed to ”VB” because "VBG” is
a sub-tag of VB in Penn Treebank. We tried different thresholds to set the
filter.

We used the Bilingual Evaluation Understudy (BLEU) to evaluate the
results of our methods and compare them with related works. BLEU was
proposed by Kishore et al.[17] to measure the performance of the transla-
tion systems. It is easy to implement and independent of language but most
importantly, the BLEU score has a high correlation with the evaluation of
humans. That is the reason why the BLEU score is widely adopted in many
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dataset

IWSLT2014 de - en

IWSLT2015 vi - en

Training sentences
Validating sentences
Testing sentences

160239
7283
6750

133317

1553
1268

Table 4.1: Components of dataset.

IWSLT2015| IWSLT2015| IWSLT2014| IWSLT2014
vi-en en - vi en-de de-en
Transformer 30.06 31.61 29.53 36.13
TF-IDF injection 30.41 32.12 29.66 36.07
POS tags injection 30.24 31.75 29.61 36.31

Table 4.2: Results of the Transformer model, Tranformer model with the
injecttion of TF-IDF and Transformer model that incorporate POS tags.

IWSLT2015| IWSLT2015| IWSLT2014| IWSLT2014
vi - en en - vi en-de de-en

Firs encoder layer 30.41 32.12 29.66 36.07

3 first encoder layers | 30.21 31.92 29.39 35.7

3 last encoder layers 30.5 31.7 29.42 35.92

all encoder layers 30.67 31.73 29.2 35.56

Table 4.3: Result of Transformer model with the different number of pair

TF-IDF injected layers.

IWSLT2015| IWSLT2015] IWSLT2014| IWSLT2014
vi - en en - vi en-de de-en
non-filter 30.24 31.75 29.61 36.31
filter tags which have
less than 0.03 proba- | 30.61 31.82 29.46 36.29
bility appear
filter tags which have
less than 0.02 proba- | 29.76 31.75 29.61 36.22
bility appear
filter tags which have
less than 0.01 proba- | 29.75 31.73 29.42 35.94
bility appear

Table 4.4: Result of POS tags injected Transformer model with the different

filter of POS tags.
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researches for comparing the candidate between translation systems.

By adding TF-IDF into the Transformer model, we boosted the perfor-
mance of the model in Vietnamese-English translation, but it seems this
method did not improve too much in the German-English translation task.
On the other hand, embedding POS tags along source sentence improve the
performance of the model in all dataset but the improvement is not strong
as the TF-IDF injecting method.

This contrast may be caused by the difference in word organization in
Vietnamese and Germany. In Vietnamese, a word does not have any trans-
formation while in Germany, transformations of a word are many, and com-
bining single words to create a new word often happens, so TF-IDF shows
less effect in Germany.

However, both languages have clear grammar structures, and their struc-
tures have many common so the POS tag embedding method can improve
the related information in both languages.

To see more about the effects of our methods on the translation quality,
we will analyze some random translations from English to Vietnamese. For
short sentences, we get the example:

e source sentence: " Because the final step in the domestic violence pattern

s kil her "

e target sentence: "Bdi vi budc cudi cing trong kich bdan(pattern) bao
hanh gia dinh la giét(is kill) chét co ta ."

e Transformer translation: " Bdi vi budc cudi cung trong mé hinh(model)
bao luc gia dinh dang giét(is killing) co dy"

e Translation with injection of pair TD-IDF: " Bdi vi budc cudi ciing trong
quy ludt(rules) bao luc gia dinh dang giét(is killing) chét co dy ."

e Translation with POS tags injection: "Bdi vi budc cudi cing trong
mau(pattern) bao luc gia dinh la giét(is kill) co dy ."

e POS tags: "Because(IN) the(DT) final(JJ) step(NN) in(IN) the(DT)
domestic(FW) violence(JJ) pattern(NN) is(VBZ) kill(VB) her(PRP)

"

In the example above, almost all of the models translated the wrong words
in the first highlighted word, Transformer with the injection of POS tags
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translated right as the word "pattern"in English but the model chose the
wrong word in Vietnamese for that meaning. With the second highlighted
word, only Transformer with POS tag injection gives the matching transla-
tion with the target sentence.

For another short sentence translation:

e source sentence: " We were scared , but still , school was where we wanted
to be ."

e target sentence: " Chiing toi da rat so , nhung du vay(but still) , ching
toi van muon tdi truong ."

e Transformer translation: "Ching toi sg hdi , nhung van(but still)
truong hoc la noi chiing toi muon dén ."

e Translation with injection of pair TD-IDF: " Chiing toi rat s¢o , nhung
van con truong hoc(but stil there is school) la noi ching toi muon
dén ."

e Translation with POS tags injection: "Ching toi van s¢g , nhung ,
truong hoc van(still) la noi ching toi muon dén ."

e POS tags: "We(PRP) were(VBD) scared(VBN) , but(CC) still(RB) ,
school(NN) was(VBD) where(WRB) we(PRP) wanted(VBD) to(TO)
be(VB) ."

In the example above, the Transformer model gave an almost matched trans-
lation with the target sentence. The TF-IDF injection version generated a
sentence that has a slightly different meaning than the target sentence. The
POS tags injection model shuffled some words in the translated sentence. So
we see that in a short sentence, POS tags injection helps the Transformer
model focus on some difficult words and chose the suitable word in the target
language to generate suitable translated sentences. However, there is some
noise they can give to the Transformer model but it seems does not affect
too much on the overall expression of the sentence.

For the long sentence, the effects of TF-IDF injection and POS tags in-
jection may be seen more clearly. So, we will analyze some long sentence
translation examples below:

e source sentence: "Many have been tricked by false promises of a good
education , a better job , only to find that they 're forced to work without
pay under the threat of violence , and they can not walk away ."
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o target sentence: "Rat nhicu nguoi bi lita bdi nhimg loi hia diéu ngoa
ve gido duc tot , cong viéc tot hon , chi dé thay minh bi bdt lam viéc
khong cong dudi ach bao lic , va khong thodt ra duoc ."

e Transformer translation: " Nhiéu nguoi da bi danh lita bdi nhiing l0i hiia
sai lam vé mot nén gido duc tot , mot cong viéc tot hon , chi dé thay
rang ho bi ép budc phdi lam viéc ma khéng phdi chiu dung su de
doa cta bao luc(without being under the threat of violent)
va ho khong thé b6 di "

e Translation with injection of pair TD-IDF: "Nhiéu nguoi da bi am dnh
bdi nhitng loi hiia sai lam vé mot nén gido duc tot , mot cong viéc tot
hon , chi dé tim ra ring ho bi budc phdi lam viéc ma khoéng phdi chiu
s de dog bao luc(without being under the threat of violent)
. va ho khong thé di lai duoc ."

e Translation with POS tags injection: "Nhiéu nguoi da bi lia bip bdi
nhiing 10i hita sai lam vé gido duc tot , mot cong viéc tot hon , chi dé
nhan ra rang ho bi budc phdi lam viéc ma khong phdi trd tién cho
moi de doa bao luc(without paying for the threat violent) , v
ho khong thé bo di ."

e POS tags: "Many(JJ) have(VBP) been(VBN) tricked(JJ) by(IN) false(JJ)
promises(NNS) of(IN) a(DT) good(JJ) education(NN) , a(DT) bet-
ter(JJR) job(NN) , only(RB) to(TO) find(VB) that(IN) they’re(PRP)
forced(VBN) to(TO) work(VB) without(IN) pay(NN) under(IN) the(DT)
threat(NN) of(IN) violence(NN) , and(CC) they(PRP) cannot(MD)
walk(VB) away(RB) ."

In the example above, both the Transformer model and TF-IDF injected
model missed the word "pay". Hence, the sentence only mentions "without
being under threat, "which leads to a very different expression. The POS-tag
injected model did pay attention to the word "pay". The POS tags let the
Transformer model know that there is a noun(NN) between 2 preposition
(IN) tokens which are "without"and "under"so the model focus on the word
pay more than normal Transformer model. But the relation is not very clear
so the meaning is different too.

So we can see that both injection help model to pay attention to keywords
that have an important role in expressing the meaning of the source sentence,
however, the pair TF-IDF score seems to work better than the POS tags in
the cases of short sentences and the POS-tags work better in the cases of
long sentences.
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Chapter 5

Conclusion

We have demonstrated the method to incorporate syntactical information, in
this case, TF-IDF score for pair of words and POS tags, into the Transformer
model to improve the translation quality. Our methods have achieved some
promising results against the Transformer model. The methods helped the
Transformer model to pay attention to suitable tokens by highlighting the
relation between the tokens inside the input sequences. This has proved that
we can improve the performance of the translation task when improving the
power of the model in representing the relation between each word in the
input sentence.

However, our method is not very stable when compared with the Trans-
former model. The relations are highlighted in the source sentence thanks
to the syntactical information of source sentences but during the translation
process, the highlighted relations are not mapped exactly to the relations in
the generated sentences in the target language. So, in the future, we plan to
also inject syntactical information in the decoder to map the relation of the
source sentence to the target sentence to generate better translation.
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