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Abstract

Evaluation of sound quality and listening difficulty in an auditory space at-
tracts attention in the field of room acoustics since the evaluation guides the
design of the listening space and helps the acoustic engineers have a picture
of the room acoustic characteristics (RAC) of a sound field. Different sound
fields have different RACs, resulting from the different designs of the audi-
tory spaces for different purposes. In the concert hall, the auditory space is
designed for spacious and transparent sound to create a sense of ethereality
and mystery. The lecture hall specifies clear and intelligible sounds to con-
vey an accurate speech message. The acoustic design that meets the different
purposes requires a grasp of the physical properties of auditory space to carry
out corresponding acoustical treatments.

The RAC in an auditory space is strongly related to daily life since it
affects the sound transmission in a sound field. When sound waveforms
transmit in an auditory space, the walls and ceilings reflect the waveforms,
and other sound sources infer the waveforms, resulting in reverberation and
noise. The reverberation and background noise deteriorates intelligibility
and clarity of the sound. Intelligible and accurate sound transmission is
fundamental to the functionality of communication in an auditory space,
especially for the emergency announcement system when suffering disasters
(e.g., earthquakes or shootings) and public addresses. From the perspective
of the system, the premise for achieving an intelligible sound transmission
system is to understand the RAC of a sound field.

Room impulse response (RIR) fully describes the RAC of a sound field
in the time domain. The modulation transfer function (MTF), from an-
other perspective, represents the RAC in the frequency domain. A few room
acoustic parameters (RAPs), which are derived from the RIR and MTF, have
been investigated and standardized to predict the subjective perception of a
sound field in spite of speech intelligibility, sound quality and listening diffi-
culty. IEC 60268-16:2020 specifies the definition and calculation of the STI
based on the concept of the MTF. ISO 3382:2009 specifies the definition and
measurements of five RAPs, including reverberation time (T60), early decay
time (EDT), clarity (C80), Deutilichkeit (D50) and center time (Ts). Hence,
measuring the RIR of a sound field is essential. However, since it is difficult
to measure RIR in daily occupied spaces, blind estimation of RIR and further
STI and RAPs without measurement must be resolved as it is an imperative
and challenging issue.



Blind estimation is de facto the inverse problem to deduce the system
from the observed signal only. In general, using some parameters models the
system. Thus, the issue of how blindly estimating the system is converted
into the issue of how to estimate the parameters of a model, lowering con-
straints of the inverse problem and making the system become deductible.
Here, the RIR model is used to approximate an unknown RIR. There are
two common-used RIR models. The one is the image-source RIR model that
mimics the reflect paths when the sound waves transmit another in an en-
closure. Another is the stochastic RIR model that modulates the RIR as
the temporal amplitude envelope (TAE) and temporal fine structure (TFS).
The former has limitations in modeling the RIR of a sound field where the
people are included and of modeling the RIR in an irregular-shape auditory
space. Hence, in the blind estimation of the RIR and further RAPs, this work
chose to use the stochastic RIR model to approximate an unknown RIR. Sev-
eral stochastic RIR models have been proposed to approximate an unknown
RIR, including Schroeder’s RIR model, the generalized RIR model, and the
extended RIR model. Although existing blind methods can estimate RIR,
the mismatch of the RIR model limits their performance due to the poor ap-
proximation of an unknown RIR. Additionally, the learning-based previous
work is absent for traceability and hard to tune when the real environments
differentiate from training data used to derive the model.

This paper proposes a deterministic method to blindly estimate an un-
known RIR and further the STI and five RAPs from an observed speech
signal in which the extended RIR model approximates RIR. The proposed
method formulates the temporal power envelope (TPE) of an observed re-
verberant speech signal to obtain the optimal parameters for the RIR model
based on the concept of MTF. Assuming the sound field as a linear time-
invariant system, the TPE of the input signal is modeled according to the
superposition principles. Then, the reverberation process is formulated by
using the modeled TPE of the input signal and the modeled RIR. Here, it
is clarified how the parameters of the RIR affect the sound waveforms when
transmitting in a sound field and what kind of waveforms are observed at
the receiver position (reverberant signals). Furthermore, the dereverberation
process is modeled via constructing the formulae of the restored TPE based
on the concept of the inverse filtering process. It is found that when the
parameters controlling the RIR model used in dereverberation are identical
to the parameters that control the RIR model used in the reverberation, the
envelopes of the restored TPE are invariant with time. Instead, when the
parameters used in dereverberation are not equal to the parameters in the
reverberation, the envelopes are time-varying, which can be approximated by
the slopes of the envelopes. Thus, the relationship between the parameters
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of the RIR model and the observed signal was created. Then, the author
proposed the blind estimation method by using the aforementioned relation-
ship, called the alternating estimation strategy (AES) since the parameters
controlling the RIR model alternate to be blindly estimated. The proposed
method utilizes some basic tools from signal processing, including the Hilbert
transform, filter design and linear prediction. The idea behind the proposed
method is to cover all possible parameters to carry out the inverse filtering
process to find the optimal parameters at which the slopes of the envelopes
of the restored TPE are minimized.

Simulations evaluate the proposed method in reverberant environments.
The AM signals and speech signals were used for evaluations. The reverber-
ant environments come from the RIR dataset. The root-mean-square errors
and Pearson correlation coefficients between the estimated and authentic re-
sults were used to evaluate the proposed method with the previous method
comparatively. Evaluation results indicated that the proposed method could
blindly estimate the parameters that model the RIR and the STI and RAPs
effectively without any training.
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Chapter 1

Introduction

1.1 Background

Speech communication underlies the world’s connection to maintain the re-
lationship between people via listening and speaking. We communicate daily
in venues, such as train stations, office rooms, concourses, and lecture halls.
In such enclosures, people talk with each other, hold the conference, listen to
addresses, appreciate the music, and deliver their thoughts to the world. The
world is linked by communication to consist of the community and further the
society. Speech communication and recognition are fundamental for interac-
tion and collaboration between people and people and people and machines,
such as public broadcasting, speech translation, and car navigation systems
by voice. On this level, human society is composed of communication. In
addition, we humanity also live in the physical world, i.e., the enclosures,
consisting of walls, floors, and ceilings. Almost all communications occur in
these kinds of acoustical spaces (venues as mentioned above). We, humans,
convey our thoughts via the articulatory system to produce the speech sig-
nals and the listeners receive the signals using the auditory system, as well
as the machines radiate the music or speech signals through the loudspeak-
ers and the microphones gather the sounds The speech signals between the
speakers and listeners transmit in the enclosures in the form of waveforms
from sound sources (speakers) to sound receivers (listeners) via the vibration
of air molecules. From the system engineering’s perspective, the enclosure
in which the sound signals transmit is abstracted as a sound field, a system
connecting the input (speakers) and the output (listeners).

Since people live and work in enclosures surrounded by walls and ceil-
ings, the physical properties of the sound field affect people’s lifestyles in
many aspects. The sound signals reflect and diffuse when encountering the
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surface during the transmission within the enclosures, causing reverberation
and reflections across the sound field [1]. Moreover, the sound from the
other sources interferes to cause unwanted noise. Inappropriate echo and
noise occurring in a sound field degrade the intelligibility of speech and clar-
ity of sound when the sound reaches the position of listeners, resulting in
miscommunication and affecting the enjoyment of music [2, 3]. Clear sound
transmission is the basis of the functionality of communication, especially
for emergency announcements and public addresses. Intelligible speech is
essential to convey speech messages accurately, avoiding miscommunication.

The sound fields of different architects are designed for different purposes
so that the acoustic quality of each of them is considered differently. For
example, a conference room is designed for clarity and intelligible sound,
while a concert hall is designed for clear and transparent sound. Thereby,
different sound fields have different expectations of acoustic effects, but they
all have one objective: intelligible sound and avoidance of miscommunication.

To achieve this objective, many researchers focused on designing the
physical space of the architecture to accomplish the intelligible sound in a
sound field [4, 5, 6]. A good sound field design can ensure intelligible speech
transmission by reducing reverberation and absorbing noise via architectural
acoustic treatment. For instance, architectural acoustics in concert halls and
church buildings are specifically designed to ensure an excellent listening and
communication experience. Furthermore, signal processing-based methods
are massively applied to achieve reverberation reduction and noise suppres-
sion by employing pre- or post-processing in the speaker location or listener
location to make the sound robust against the reverberation and noise or to
offset the effects of them. Compared to architectural treatment, these kinds
of methods are economic and flexible, ignoring the limitation of the geometry
of the sound field, which is widely accepted.

Additionally, the acoustic characteristic of a sound field hauls some at-
traction since having a systematic picture of present room acoustics promises
further de-reverberation and de-noise to a sound field. With regard to the
research issues, the related works included quality and intelligibility of sound
measures, echo cancellation, noise suppression, sound source localization,
and source separation. The works related to these research issues are widely
applied in automatic speech recognition, speech enhancement, speaker detec-
tion and verification, hearing aids, and entertainment (sound reproduction
systems). Principally, acquiring the room acoustics of a sound field is the
basis for solving the issues above and predicting the listening experience in
a sound field.

Subjective listening experiments are generally conducted to acquire the
characteristics of room acoustics and predict the listening experience, i.e., the
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perception of the sound quality (clarity and transparency) and speech intel-
ligibility in a sound field [1]. The attendees are required to score the sound
they hear at each iteration in a specific auditory space. Statistics process
the scores to conclude the subjective evaluation representing the listening
experience in this space. However, the listening experiment is expensive and
tedious, taking much time to experiment as well. Subjective scores are also
unreliable and ambiguous in describing the room acoustics, bringing difficulty
in giving an effective response to guide the architectural design or acoustical
treatment of a sound field or diagnose the acoustic problems.

Instead of subjective feelings about a sound field, the characteristics of
room acoustics can be described by objective measures of the physical at-
tributes of room acoustics of a sound field. Commonly, an impulse signal
is excited in a sound field to generate the corresponding impulse response
that records the direct and reflected waveforms transmitted in a sound field
originating from the impulse signal source. The impulse response signal is
called room impulse response (RIR), fully reflecting the physical properties
of room acoustics, including the geometry and surface characteristics such as
volume, shape, and absorption coefficient [7, 8].

From the points of view of signal and system theory, RIR can be regarded
as a transfer function between the source location and the receiver location in
a sound field in the time domain, i.e., abstracting a sound field as the trans-
mission system. This transfer function could be represented in the frequency
domain as the modulation transfer function (MTF) [9, 10].

Many objective parameters and indices are widely used to predict the sub-
jective perception of the sound quality and speech intelligibility of a sound
field, called room acoustic parameters (RAPs) [1, 11, 12]. These RAPs can be
calculated from RIR or MTF directly, which is fast and responsive compared
to subjective listening experiments. The measurements and calculation of
RAPs have been investigated and standardized by IEC and ISO [13, 14].
The RAPs can be used to analyze a sound field of an auditory space to
provide a guidebook for optimizing this sound field via architectural treat-
ments or signal-processing algorithms to achieve clear and intelligible sound
for architects, artists, and acoustic engineers [15].

1.2 Motivation

The motivation for this study stems from my curiosity about room acoustics,
especially for elucidating how humans perceive a sound field and whether it
is possible to extend the boundary of human perception by utilizing the
characteristics of a sound field. Furthermore, it is explicated how to model
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the system of a sound field by what indices and parameters. Then, is it
possible to use the model to actualize blind estimation of the room acoustic
characteristics (RAC) of a sound field from an observed signal? The premise
that we control and utilize the RAC of a space is the physical properties of
this auditory space and the clarification of human perceptions in it.

Since RIR fully represents the RAC of a sound field and underlies the
computation of the RAPs, measurement of RIR is essential for having a
systematic picture of a sound field and predicting the sound quality and
speech intelligibility.

Commonly, broadband excitation signals are used to be excited in a sound
field to obtain the corresponding RIR because impulse signals in realistic en-
vironments are hard to realize. The measurement needs the space where the
people are excluded. However, it is difficult to measure in a space where
people, such as common-used public spaces, cannot be excluded. Hence, es-
timating RIR and RAPs from an observed signal is imperative. The recorded
sound (speech or music) in space is used to derive the RIR and RAPs without
measurement of RIR and RAPs, which is called blind estimation.

Blind estimation can be applied in the spaces where people are either
excluded or included. Additionally, the blind estimation can be realized
as real-time or quasi-real-time processing, which extends its application for
adaptive estimation. For instance, the RAC of the sound field differs follow-
ing the changes in people’s location and numbers in an enclosure during the
day. Direct measurement is challenging to handle this situation. Instead, the
blind estimation can adaptively estimate the RAC. Because of the immense
adaptability of blind estimation, it not only prevails in room acoustics but
also in other fields, such as system identification [16], input recovery [17],
and adaptive system control [18, 19].

1.3 Objective

Blind estimation is a challenging issue since it, in essence, is an ill-positioned
inverse problem that derives a system from the output only without the
constraints from the input. The common way is to model the system to create
the mapping between the output and the system by either mathematics-based
explicit schemes or learning-based implicit schemes.

With regard to this challenging issue, some blind estimation methods with
corresponding parameters and indices have been proposed, which are detailed
in Chapter 2, are insufficient to describe the RAC of an auditory space or
lack the explicit explanation of the relationship between the observed signal
and the sound field. In addition, the concept of MTF mentioned earlier can
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regard the sound field as a transfer function from the original signal (speaker)
to the observed signal (listener), which lowers the difficulty of modeling the
whole system. Does it work to incorporate the concept of MTF into building
the relationship between the observed signals and the sound field? This study
attempts to solve the issues above, i.e., proposes a deterministic method, on
the basis of the concept of MTF, to blindly estimate the RIR and several
useful RAPs and indices that can describe the RAC comprehensively.

1.4 Thesis outline

The thesis is organized as illustrated in Figure 1.1. The whole organization
is composed as follows.

Chapter 1 introduces the background related to the topic discussed in
the thesis, including a brief introduction to room acoustics, its definition
and importance, and the basic concepts used in this field. Moreover, the
motivation of this study is discussed, and the current challenging issues are
presented.

Chapter 2 reviews the related works in blind estimation in room acoustics,
which include the measurement and modeling of room impulse response, the
modulation transfer function and its concept, the room acoustic parameters,
and the blind estimation methods for RIR and RAPs.

Chapter 3 proposes a blind estimation strategy for blindly estimating RIR
and RAPs, starting from modeling the relationship between the observed
reverberant signals and the sound field to the proposed method’s details.

Chapter 4 gives the verification and evaluation of the proposed method,
including the dataset used for evaluation, evaluated conditions, and estima-
tion results for the parameters of the RIR and RAPs.

Chapter 5 summarizes the whole work conducted during the master’s pro-
gram, points out the significance and contributions of this work and presents
the remaining works left.
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Introduction
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2.1 Room acoustics and stochastic impulse-

response model

Room acoustics is the research field that studies computation, modeling, and
simulation in spite of sound fields in enclosures, leading to acoustical design of
the auditory spaces and materializing the auralization of the virtual auditory
spaces [1]. An illustration of room acoustics in an enclosure is shown in Figure
2.1. In this section, the measures of RAC, i.e., the RIR of a sound field and
the corresponding stochastic model, are introduced.

2.1.1 Measures of room impulse response

In an enclosure, the sound waves radiate across all directions from the source
to the receiver position. This process can be formulated as the convolution
of the source signals and the room impulse response (RIR), which is defined
as:

y(t) = ∫
∞

0
x(t − τ)h(τ)dτ ≜ x(t) ∗ h(t) (2.1)

where x(t) and y(t) denote the original and the observed reverberant sig-
nal, respectively. h(t) denotes an RIR, and “ ∗ ” denotes the convolution
operation, respectively.

The RIR is the essential and full representation of the RAC of a sound
field, recording paths of direct and reflected sound waves transmitted in the
enclosures as the time-delayed impulse train. Figure 2.2 shows a conceptual
illustration of how a sound field generates the RIR and which part the RIR
consists of.

Literally, RIR can be obtained by gathering the impulse response signal
from an impulse excitation signal. However, in realistic measurements, it is
difficult to produce an ideal impulse response, and also gathering an impulse
response is so challenging that modern recording techniques are limited to
having a precise and excellent-resolution recorded signal of impulse response
since the elapsed time of impulse response is short and sensitive to the back-
ground noise. Therefore, instead of using impulse signals, broadband signals
are used as excitation to measure the RIR, such as sine sweep signals or
maximum length sequences, as shown in Figure (2.3) [20, 21].

For these specific excitation signals, the measurement is specified via
cross-correlation-based methods. Suppose a sound field, i.e., a physical room,
is excited by arbitrary signal s(t).

sr(t) = ∫
∞

−∞
s(τ)h(t − τ)dτ = ∫

∞

−∞
s(t − τ)h(τ)dτ (2.2)
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where sr(t) denotes the received signal in measurement. The cross-correlation
function of s(t) and sr(t) is given by:

Φs,sr(t
′) = ∫

∞

−∞
h(τ)
⎡⎢⎢⎢⎢⎣
lim
T0→∞

1

T0
∫
+T0/2

−T0/2
s(t)s(t + t′ − τ)dt

⎤⎥⎥⎥⎥⎦
dτ (2.3)

= ∫ h(τ)Φs,s(t
′ − τ)dτ (2.4)

where Φ(t) represents the cross-correlation function. Eq. (2.4) implies that
the measurement yields the RIR if the autocorrelation of the excitation signal
s(t) is equal to or at least approximated to the delta function. Sweep sine
signal and maximum length signal are appropriate to the requirement.

Rewrite Eq. (2.2) as the discrete-time form as, of which the length is l:

sr =
l−1
∑
j=0
sjhk−j (2.5)

or as the matrix form
sr = S ⋅ h, (2.6)

where S is a cyclic arrangement as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 ⋯ 1
1 s0 s1 ⋯ sl−1
⋮ ⋮ ⋮ ⋮ ⋮
1 sl−1 s0 ⋯ sl−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)

The solution is given by:

S ⋅ sr = S ⋅ S ⋅ h = (l + 1)h (2.8)

h = 1

l + 1
S ⋅ sr (2.9)

by using the fact that S ⋅S = (l+1)I. Then the correlation function of a room
excited from excitation, i.e., S, can be measured by the play-back method
[1]. Figure 2.4 shows the block diagram of the measurement.

2.1.2 Schroeder’s model

Blind estimation of the RIR prerequires the modeling of the RIR to create
the mapping between the observed reverberant signal and the RIR. There
are two schemes of RIR models. The one is based on image-source method
to simulate an unknown RIR by regarding a reflection path as a direct-sound
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path from the image source. Another is to use the statistical model to acquire
the stochastic model of the RIR, viewing the RIR as the modulation of the
temporal envelope and the stochastic carrier signal.

Here, the author focuses on the stochastic RIR model only since the
stochastic RIR model can be used to assess quality of sound and intelligi-
bility of speech in room acoustics, such as clarity and speech transmission
index (STI) [22, 10]. Several applicable stochastic RIR models have been
investigated [23, 24].

With regard to the stochastic RIR model, the most well-known model is
Schroeder’s RIR model, which approximates the exponential decay envelope
of a realistic RIR. It uses a single parameter to control this decay envelope.

The main limitation of Schroeder’s model is its shortage of approximation
for the onset transition of a realistic RIR, causing the mismatch of RIR
approximation. Schroeder’s RIR model is defined as:

hSch = eh,Sch(t)c(t) = a exp(−6.9t/TR)c(t) (2.10)

where TR is reverberation time, controlling the exponential decay envelope of
RIR, eh,Sch(t) is the temporal amplitude envelope (TAE) of the RIR, c(t) is
the white Gaussian noise (WGN) carrier signal [25], and a is the gain factor.

2.1.3 Generalized model

The generalized RIR model [24], is modified based on Schroeder’s RIR model
to assuage the limitation of Schroeder’s model by introducing another param-
eter to approximate the onset transition of a realistic RIR additionally. The
generalized RIR model is defined as:

hgen(t) = eh,gen(t)c(t) = at(b−1) exp(−6.9t/TR)c(t) (2.11)

where TR and b are the parameters that control the exponential decay side
and exponential rise envelope, i.e., the onset transition, respectively. eh,gen is
the TAE of RIR, and a is gain factor. Figure 2.5 shows a comparison between
the fits of Schroeder’s RIR model and the generalized RIR model with the
measured realistic RIR in terms of temporal power envelope (TPE).
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Maximum length sequence with n=3Sine sweep signal

Figure 2.3: Sine sweep signal and maximum length signal as the excitation
signals.

𝑠!(t)

𝜏 func

xs(t) h(t)

Figure 2.4: Measurement of the RIR by cross-correlation.
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Figure 2.5: Results for fitting measured RIRs with three RIR models,
Schroeder’s RIR, generalized RIR, and extended RIR models.

2.2 Concept of the modulation transfer func-

tion

In this section, the modulation transfer function (MTF), which fully repre-
sents the RAC of a sound field in the frequency domain, is briefly reviewed,
and the concept of the MTF, which is helpful for modeling the system, is
introduced.

2.2.1 Overview of the modulation transfer function

The MTF is a concept widely applied in physical, acoustic, and optic fields
[26, 27]. M. R. Schroeder defined the MTF in room acoustics to quantify the
reverberation effect and noise level of a sound field. He also extended the
definition of MTF to develop the concept of MTF, proving that the MTF is
a useful representation of the RAC in an auditory space and abstracting a
sound field in this space as the transmission system, which can be quantified
as the MTF, the transfer function of a system as a function of modulation
frequencies.

Then, Houstgast and Steenken proposed the objective index, i.e., the
speech transmission index (STI), to evaluate the subjective perception of
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speech intelligibility in an auditory space based on the concept of MTF [9].
Furthermore, a brand-new objective index, the speech intelligibility index
(SII), has been developed, which is correlated significantly with the intelligi-
bility of speech under the conditions of background noise and reverberation
based on the concept of the MTF [28].

The RAC of a sound field containing the reverberation and background
noise can be described as the MTF of this sound field, as shown in Figure 2.6.
The MTF builds up the relationship between the signals from the speaker
and the listener by the modulation depth of their modulation spectrums.
The formula of the MTF can be derived as the ratio of the power envelope
spectrum (modulation spectrum) of an RIR and its total energy, which is
determined as:

m(fm) = ∫
∞
0 h2(t)e−j2πfmtdt

∫
∞
0 h2(t)dt

⋅
⎡⎢⎢⎢⎢⎣

1

1 + 10−(SNR
10
)

⎤⎥⎥⎥⎥⎦
(2.12)

where m(fm) denote the MTF at modulation frequency fm. The bracketed
second term accounts for noise level represented as the signal-and-noise ratio
(SNR). Figure 2.6 shows the concept of the MTF.

2.2.2 Temporal envelope

The speech or music signals consist of two portions, the temporal envelope
(including temporal amplitude envelope, TAE, or temporal power envelope,
TPE) and the temporal fine structure (TFS), from the points of view of
psychoacoustics and the psychology of the auditory system. The normal
healthy cochlea decomposes the speech and music signals into narrowband
signals that can be regarded as the slowly varied temporal envelope and the
TFS with rapid oscillations.

The temporal envelope carries the most important information for the
understanding and recognition of speech, especially in a quiet environment
[29, 30]. Rather in a noisy environment, the TFS also plays an essential role
in the recognition of speech [31]. B. C. J. Moore clarified that the temporal
envelope information is conveyed in the auditory nerves as the short-term rate
of action potentials, as the roles of auditory perception for pitch perception,
sound localization, and the perception of speech in background noise [32].
The temporal envelope is significant for the auditory perception of signals.
In the frequency domain, the temporal envelope can be transformed into the
MTF which is highly related to speech intelligibility.

Hence, it is believed that the temporal envelopes convey important infor-
mation for the perception of speech and music signals, which can be widely
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Figure 2.7: Example of a clean speech signal with its temporal envelope and
corresponding spectrum.
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used in room acoustics. The temporal envelope (TAE) of a signal y(t) can
be extracted as:

ey(t) = LPF[∣y(t) + j ⋅Hilbert(y(t))∣] (2.13)

where ey(t) represents the temporal envelope and Hilbert denotes Hilbert
tranform. LPF is a Butterworth lowpass filter to smooth the extracted
signal. There are different ways to extract the temporal envelope, which yield
similar results [32]. Figure 2.7 shows an example of the temporal envelope
of a clean speech and the corresponding spectrum.

2.3 Room acoustic parameters

Subjective perception of a sound field, such as speech intelligibility and music
clarity, can be evaluated by objective indices and parameters. Several room
acoustic parameters (RAPs) are investigated and standardized [1, 13, 14].
These RAPs can reveal the physical properties of auditory space.

2.3.1 Speech transmission index

The speech transmission index (STI) was first proposed by Houstgast and
Steeneken, based on the concept of MTF, to predict speech intelligibility
when speech signals transmit in a sound field [9, 33, 34]. The MTF regards
the sound field as the sound transmission system to convey the sound signals
from the speaker position to the listener position under the condition of
reverberation and noise, as shown in Figure 2.1 and Figure 2.6. The MTF
quantifies the reverberation effect and noise level of a transmission system
by Eq. (3.20). The measurement of STI has been standardized in IEC60268-
16:2020 [13]. Figure 2.8 shows the block diagram to calculate the STI. First,
the RIR passes through the seven-octave filterbank to calculate the MTF at
each band by Eq. (3.20), then SNR at each band is calculated as follows:

N(k, i) = 10 log 10[
mk(fm,i)

1 −mk(fm,i)
] (2.14)

where k = 1,2,⋯,7 and i = 1,2,⋯,14. The transmission index (TI) is deter-
mined as follows:

T (k, i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 N(k, i) < 15,
N(k,i)+15

30 −15 ≤ N(k, i) ≥ 15,
0 N(k, i) < 15.

(2.15)
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The modulation transmission index (MTI) is calculated from the TI as fol-
lows:

M(k) = 1

14

14

∑
i=1
T (k, i) (2.16)

Finally, the STI is derived from the MTI:

STI =
7

∑
k=1

Wgt(k)M(k) (2.17)

where Wgt(k) represents the weighting factor at each octave band, listed as
Wgt(1) = 0.129, Wgt(2) = 0.143, Wgt(3) = 0.144, Wgt(4) = 0.114, Wgt(5) =
0.186, Wgt(6) = 0.171 and Wgt(7) = 0.143. The scale of STI is within [0,1].
A higher score indicates higher speech intelligibility.

2.3.2 Reverberation time

Reverberation time (T60) is the most essential RAP in room acoustics, char-
acterizing the physical characteristics of a sound field in which energy is
transmitted and distributed.

T60 can be calculated from the RIR directly via employing Schroeder’s
back integral method [35], which has been standardized in ISO 3382-1:2009.
First, the early decay curve (EDC) of an RIR is calculated by the equation
as follows:

EDC = 10 log 10[∫
∞

0
h2(t)dt] (2.18)

The least-square curve-fitting is used to fit the EDC at -20 dB, i.e., T20, and
then the fitted curve is extrapolated to -60 dB to obtain T60. Figure 2.9
shows an example of calculating T60 using an RIR.

2.3.3 Clarity

Clarity (C80) is the RAP to characterize the transparency of music signals
transmitted in a sound field, representing the subjectively auditory response
to sound clarity. C80 is the ratio of early-to-late arrival reflections, which is
defined as:

C80 = 10 log 10∫
80ms

0 h2(t)dt
∫
∞
80ms h

2(t)dt
(2.19)

where 80 ms denotes the time boundary between the early reflections and
late reverberations. The calculation of C80 has also been standardized in ISO
3382-1:2009 [14].
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2.3.4 Early decay time

Early decay time (EDT) is the RAP characterizing the duration of sound
decay within an initial -10 dB that makes the more important contribution
of direct sound and early reflection for the perception of reverberation. Sim-
ilarly, EDT has been standardized in ISO 3382-1:2009 [14]. The calculation
of EDT is similar to the calculation of T60. Instead of fitting to -20 dB, EDC
is fitted to -10 dB and extrapolated to -60 dB to obtain EDT.

2.3.5 Deulitchkeit

Deulitchkeit, also known as D50, is the RAP that characterizes speech in-
telligibility in a sound field, representing the subjective response to speech
intelligibility in a sound field. D50 has been standardized in ISO 3382 [14],
which is the ratio of early-to-total sound energy. D50 is defined as follows:

D50 = ∫
50ms

0 h2(t)dt
∫
∞
0 h2(t)dt

× 100 (2.20)

where the 50ms is the boundary of the early sound energy. The measurement
of D50 has also been standardized in ISO 3382 [14].

2.3.6 Center time

The last RAP is the center time (Ts), which characterizes the balance between
clarity and reverberation related to speech intelligibility, representing the
center of gravity time of decaying energy in a sound field. Ts has been
standardized in ISO 3382 and is defined as [14]:

Ts = ∫
∞
0 h2(t)tdt
∫
∞
0 h2(t)dt

(2.21)

2.4 Blind estimation methods of RIR and RAPs

Blind estimation can be realized by either analytical methods or learning-
based methods. The former is to create the mapping between the observed
reverberant signals and the parameters of the RIR model that approximates
an unknown RIR by the mathematical derivation and formulation [24, 36,
37, 38, 39, 40]. The latter is to learn the mapping depending on the training
data to derive the implicit model [41, 42, 43, 44, 45, 46].
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2.4.1 Analytical methods

M. Unoki et al. proposed two analytical methods to blindly estimate the STI
based on Schroeder’s RIR model and the generalized RIR model, respectively
[24, 36]. These methods utilized the relationship between the MTF of a sound
field and the modulation spectrum of the observed reverberation signals.

R. Ratnam proposed a method by using the energy decay curve of a re-
verberant signal and combined with maximum likelihood estimators (MLE)
to blindly estimate reverberation time (TR or T60) [38]. P. Kendrick et al. de-
veloped and revised the method Ratnam proposed to realize blind estimation
of reverberation time from the speech or music signals [39].

L. Courveur et al. proposed a method to blindly estimate reverberation
time by modeling the speech sequences and applied the MLE to optimize to
derive the results [40]. Similarly, A. Keshavarz proposed the speech-model-
based method based on the similarity between the autocorrelation of the
reverberant speech signals and of the original speech signals [37].

2.4.2 Learning-based methods

P. Kendrick et al. proposed a method based on artificial neural network
(ANN) to blindly estimate the reverberation time, EDT, clarity, Deulitchkeit
and center time from speech signals [42]. F. Li also proposed the method
based on the ANN to blindly estimate the STI [41].

J. F. Santos et al. proposed a method by using recurrent neural networks
(RNN) to learn the features that appear in the modulation spectrum to
blindly estimate the STI [43]. P. Callens proposed a blind estimation method
for reverberation time, clarity and direct-to-reverberation ratio based on long
short-term memory (LSTM) [45]. Convolution neural networks (CNN) are
widely used in blind estimation. P. Seetharamen et al. proposed a blind
method for the STI by using CNN. C. J. Steinmetz et al combined filter
noise shaping and CNN to develop a method for blindly estimating rever-
beration time [47]. Recently, Suradej et al. proposed the MTF-based CNN
scheme to simultaneously estimate the STI, reverberation time, clarity, EDT,
Deulitchkeit and center time.

2.5 Remaining issues

However, the current works remain some issues. The current methods can
estimate only a single parameter [24, 36, 37, 38, 39, 40, 41, 43]. Although the
MTF-based CNN method could estimate multiple parameters, it is limited
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to the training data used to derive the model, the same as the other learning-
based methods [41, 42, 43, 44, 45, 46]. The efficiency of the trained models
naturally decreases when the real environments differ from the training data.
The models are also difficult to optimize because they are untraceable im-
plicit models and have a vast number of trainable parameters. Additionally,
the mismatch of the RIR model for an actual RIR limits the performance
due to poor approximation. Therefore, the author proposes an analytical
method for blindly estimating the STI and five RAPs, T60, EDT, C80, D50,
and Ts, simultaneously. We incorporate a stochastic RIR model, namely an
extended RIR model, into the relationships between the temporal power en-
velope (TPE) of an observed signal and the RIR model to derive the method.
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Chapter 3

Proposed method

A blind estimation method is proposed, namely the alternating estimation
strategy (AES), shown as a block diagram in Figure 3.3. The details are
given as follows.

3.1 Extended model

This section introduces a new stochastic RIR model called the extended RIR
model [48, 46]. The extended RIR model, modified based on Schroeder’s RIR
model, presents the two mutually independent parameters to control the rise
and decay sides of the envelope of an RIR. Instead of using a parameter
without physical significance to control the onset transition of the RIR, the
extended RIR model approximates the onset transition as the exponential
rise energy envelope, enabling the modeling of the onset transition to be
interpretable. Figure 3.2 shows the fit of the extended RIR model to a
measured RIR and the comparison with the fit of Schroeder’s RIR model.
The extended RIR model is defined as:

h(t) = eh,ext(t)c(t) =
⎧⎪⎪⎨⎪⎪⎩

a exp(6.9t/Th)c(t) t < 0
a exp(−6.9t/Tt)c(t) t ≥ 0,

(3.1)

hext(t) = h(t − t0), t0 ≥ 0 (3.2)

where Th and Tt are the parameters controlling the rise and decay expo-
nential envelope of the RIR, respectively. eh,ext is the TAE of the RIR. t0
is introduced to promise the causality of the RIR model. Since its scale is
close to Th, t0 is assumed to be equal to Th without resulting in noticeable
deviations.
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3.2 Temporal power-envelope model

As mentioned in Chapter 2, the prerequisite of proposing the blind estimation
is to model the transmission system blind estimation as the inverse problem
so that the reverberant signal is only observed. In this section, the transmis-
sion system from the original signal to the observed signal is modeled on the
level of the temporal power envelope (TPE).

3.2.1 Reverberation process

Eq. (2.1) presents the relationship between the original signals and the ob-
served reverberant signals. Then, Eq. (2.1) derives the connection between
the TPE of the original signal and of the reverberant signal. Assuming the
original signal and RIR can be modeled as the modulation of the TAE and
temporal fine structure (TFS) that is regarded to follow the white Gaussian
noise (WGN) carrier:

x(t) = ex(t)cx(t) (3.3)

h(t) = eh(t)ch(t) (3.4)

where ex(t) and eh(t) denote the TAE of the original signal and the RIR,
respectively. cx(t) and ch(t) are mutually independent WGN. Then, it is
simple to derive that:

⟨c(t)c(t − τ)⟩ = δ(τ) (3.5)

where δ(τ) is the Dirac delta function and ⟨⋅⟩ denotes the ensemble average
operation [49]. The ensemble average of y2(t) is determined as:

⟨y2(t)⟩ = ⟨[∫
∞

−∞
x(τ)h(t − τ)dτ]

2

⟩ (3.6)

= ∫
∞

−∞
ex(τ1)eh(t − τ1)dτ1∫

∞

−∞
ex(τ2)eh(t − τ2)dτ2 (3.7)

× ⟨cx(τ1)cx(τ2)⟩⟨ch(t − τ1)ch(t − τ2)⟩ (3.8)

= ∫
∞

−∞
e2x(τ)e2h(t − τ)dτ (3.9)

= e2y(t) (3.10)

Hence, the following equation is determined:

e2y(t) = e2x(t) ∗ e2h(t) (3.11)

where e2y(t), e2x(t) and e2h(t) are the TPE of the reverberant signal, the orig-
inal signal and the RIR, respectively.
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Given the TPE of the input signal e2x(t) according to superposition prin-
ciples as:

e2x(t) =
K

∑
k=0

Ck cos(2πfm,kt + ϕk), t ∈ [0, T ] (3.12)

where k is the index ofK components, fm,k is modulation frequency at k, ϕk is
phase, Ck is constant gain, and T is the time interval. Substituting Eq. (3.12)
and Eq. (3.1) into Eq. (3.11), corresponding TPE of the reverberant signal is
determined as:

e2y(t) =
K

∑
k=0

Cka2Tt√
13.82 + (2πfm,kTh)2

⎡⎢⎢⎢⎢⎣
cos(2πfm,kt + ϕk)

− exp[−13.8(t − Th
Tt
)] cos(2πfm,kTh + ϕk + θk)

⎤⎥⎥⎥⎥⎦
(3.13)

where θk = tan−1(
−2πfm,kTt

13.8 ) and t ∈ [Th, t−Tt). Eq. (3.13) can model the TPE

of any reverberant signal, which reveals how the RIR model parameters affect
the waveform of the TPE of a reverberant signal. Figure 3.3 illustrates an
example of TPE of a reverberant signal using Eq. (3.12), compared to the
TPE of the same signal generated by convolution.

3.2.2 De-revereberation process

In this section, the de-reverberation process builds up the relationship be-
tween the parameters of the RIR model and observed reverberant signals.
We spotlight the envelopes of TPE restored from the TPE of the reverberant
signal modeled by Eq. (3.13) via an inverse filtering process.

First, the envelope of the restored TPE is constructed based on the con-
cept of the inverse filtering process, with a set of T̃h and T̃t to obtain the
corresponding e2x(t). The upper and lower envelopes of e2x(t) are determined
as:

e2x,upr(t) =
K

∑
k=0

CkTt
T
′
t

¿
ÁÁÁÁÁÀ

1 + (2πfm,kT
′
t

13.8 )

1 + (2πfm,kTt

13.8 )

u(t) −ψ(t, Th, Tt)
u(t) −ψ(t, T̃h, T̃t)

(3.14)

e2x,lwr(t) =
K

∑
k=0

CkTt
T
′
t

¿
ÁÁÁÁÁÀ

1 + (2πfm,kT
′
t

13.8 )

1 + (2πfm,kTt

13.8 )

−u(t) −ψ(t, Th, Tt)
u(t) +ψ(t, T̃h, T̃t)

(3.15)
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Figure 3.3: Example of TPE of a reverberation signal with discarding mean
TPE (direct-current component): (a) TPE of original signal, (b) TPE of
RIR, TPE of reverberant signal generated from (c) Eq. (3.13) and (d) con-
volution. Burnt-orange and deep-blue dashed line denote the envelopes of
TPE, respectively.
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where ψ(t, Th, Tt) = exp[−13.8 (t−Th)
Tt
] cos(2πfm,kTh+ϕk+θk) and e2x,upr(t) and

e2x,lwr(t) are upper and lower envelopes, respectively. u(t) is the unit-step

function. Eqs. (3.14) and (3.15) reveal that when Th = T̃h and Tt = T̃t hold,
e2x,upr(t) = ∑K

k=0Ck and e2y,lwr(t) = ∑
K
k=0 −Ck hold. In this case, the envelopes

are invariant to time, whereas when Th ≠ T̃h and Tt ≠ T̃t, the envelopes are
time-varying. Thus, these time-varying envelopes can be approximated by
first-order polynomials as:

e2x,upr(t) = Suprt + bupr (3.16)

e2x,lwr(t) = Slwrt + blwr (3.17)

where Supr and Slwr are slopes of the envelopes, and bupr and blwr are constant
factors.

Until now, it has been created that the relationship between the param-
eters of the RIR model approximating an unknown RIR and the observed
reverberant signal. It is found that the feature is related to the slope of
the envelope of the restored TPE, which can be used to develop a blind
estimation strategy.

3.3 Blind estimation strategy

This section proposes the blind estimation strategy based on the temporal
power envelope model (TPEM) mentioned above. The block diagram of the
proposed method is shown in Figure 3.3, namely, the alternating estimation
strategy (AES) since the proposed method alternates to estimate the two
parameters (Th and Tt) of the extended RIR model.

First, the parameters of the extended RIR model are blindly estimated
to synthesize the RIR by using the parameters. Then, using the synthesized
RIRs blindly and simultaneously estimate the STI and RAPs according to
the IEC 60268-16:2020 and ISO 3382:2009 standards [13, 14].

3.3.1 Blind estimation of parameters of RIR model

The proposed method estimates the parameters of the RIR model by uti-
lizing the aforementioned slope-related feature. The TPE of an observed
reverberant signal is extracted by:

e2y(t) = LPF[∣y(t) + j ⋅Hilbert(y(t))∣]2 (3.18)
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where LPF is a Butterworth lowpass filter at a cut-off frequency 30 Hz.
Hilbert denotes the Hilbert transform. The observed signal y(t) is demod-
ulated and smoothed by Hilbert transform and a lowpass filter. Eq. (3.1) is
discretized and transformed into the z-domain to obtain the corresponding
infinite-impulse-response filter as:

Eh(z) =
a2 (α − β)

(1 − αz−1) (1 − βz−1)
(3.19)

where α = exp(−13.8/Ttfs), β = exp(13.8/Thfs) and fs is sampling frequency.
According to the definition of the MTF in Eq. (3.20), the MTF of the

extended RIR model is determined as:

m(fm, Th, Tt) =
a2

√
[1 + (2πfmTh

13.8 )
2

][1 + (2πfmTt

13.8 )
2

]
(3.20)

According to Eq. 3.19, the inverse filter is formulated as:

Eh,inv = E−1h (z) =
(1 − αz−1)(1 − βz−1)

a2(α − β)
(3.21)

The next section is about the frame-based whitening process, the key
of the proposed method. The whitening transforms a complex waveform of
the signal into a pulse train that consists of the even envelope to calculate
the slopes, for the sake of utilizing the slope-related feature demonstrated in
Section 3.2.2. Figure 3.4 illustrates how the whitening process works.

The restored TPE e2x[n] is regarded to be autoregressive (AR) at each
frame, of which frame length is n, and is rewritten as:

e2x[n] = −
p

∑
i=1
σie

2
x[n − i] +w2

x[n] (3.22)

w2
x[n] =

p

∑
i=0
σie

2
x[n − i], W (z) =

p

∑
i=0
σiz

−i (3.23)

where σi is the optimal predictor, σ0 = 1, p is the number of predictor order,
w2

x[n] is the whitened restored TPE and W (z) is the frame-based whitening
filter [50, 51]. The optimal predictor σi can be obtained via the normal
equations [50, 51, 52]. Defining Re2x

[p] to be the autocorrelation sequences
of e2x[n], that is,

Re2x
= E[e2x[n]e2x[n − p]

⋆] (3.24)

where starry symbol “⋆” denotes conjugate operation. The optimal predictor
is given by

Rσ = −r, σ = −R−1r (3.25)
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R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E[∣e2x[1]∣2] E[e2x[1]e2x[2]⋆] ⋯ E[e2x[1]e2x[p]⋆]

E[e2x[2]e2x[1]⋆] E[∣e2x[2]∣2] ⋯ E[e2x[2]e2x[p]⋆]

⋮ ⋮ ⋮ ⋮

E[e2x[p]e2x[1]⋆] E[e2x[p]e2x[2]⋆] ⋯ E[e2x[p]e2x[p]⋆]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.26)

σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

⋮

σp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.27)

where R is Toeplitz matrix of Re2x
, which is Hermitian, i.e., R† = R. “†”

denotes Hermitian conjugate operation. r = [Re2x
[1] ⋅ ⋅ ⋅ Re2x

[p]]T , is the
cross-correlation vector, and σ is the column vector of σi. “T” denotes the
transpose operation.

The optimal T̂t and T̂h are specifically obtained. All possible Th and Tt
sets are covered to seek out the optimal set that minimizes the slopes of en-
velopes of whitened TPE w2

x(t). Eq. (3.28) is derived to determine T̂t, where
“med” denotes the median operation. Then, substitute T̂t into Eq. (3.19) to
perform inverse filtering so that the T̂h can be obtained by using Eq. (3.29).

T̂t = med
Tt

{argmin
Th,{T̃t}

[log10(∣Supr∣) + log10(∣Slwr∣)]}. (3.28)

T̂h = argmin{log10(∣Supr∣) + log10(∣Slwr∣)}. (3.29)

3.3.2 Blind estimation of RAPs

After proposing the estimation of the parameters of the extended RIR model.
Then, the estimated parameters were used to synthesize the RIR according
to Eq. (3.1) and Eq. (3.2) (assuming t0 = Th). Figure 3.5 shows an example
of synthesized RIR by the proposed method and the measured RIR from the
real environment, respectively.

The synthesized RIR is used to calculate the STI and RAPs simulta-
neously. The STI calculation has been standardized in IEC 60268-16:2020
[13]. The block diagram of the STI calculation is shown in Figure 2.8. The
corresponding mathematical formulae are given in Eq. (2.14) - Eq. (2.17).
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Figure 3.5: Example of realistic and reconstructed RIR by using the proposed
method

The calculations of five RAPs, T60, EDT, C80, D50 and Ts have been
standardized in ISO 3382:2009 [14]. The calculation of T60 and EDT are
given in Section 2.3.2 and Section 2.3.4, respectively. C80 and D50 can be
calculated by Eq. (2.19) and Eq. (2.20), respectively. Ts can be calculated by
Eq. (2.21).
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3.4 Optimization

The section discusses the technical details of the important signal process-
ing techniques, including how to extract the envelope properly and how to
calculate the slope.

3.4.1 Envelope extraction

The envelope extraction is of paramount importance for the proposed method,
which is strongly relevant to slope calculation and further the estimation ac-
curacy of the parameters of the RIR model and RAPs. The inverse filter
and whitening filter introduce unwanted noise and outliers since designing
the whitening filter is based on the linear prediction coding techniques [50].
These outliers affect severely the approximate extraction of the envelopes
and further result in the inaccuracy of the calculated slopes.

Commonly, the local-extrema detection algorithm is applied to detect
the local maximum and minimum of the signal to extract the upper and
lower envelopes, respectively. However, this algorithm is fairly sensitive to
noise and outliers, which is not the optimal choice. Hence, instead of the
common-used local-extrema detection algorithm, the envelopes of a TPE
are extracted using the specific peak-detection algorithm. This algorithm
utilizes the alternating nature of the derivation to identify local extrema
along with user-defined threshold [53]. This algorithm is robust and fast
against introduced noise and outliers.

3.4.2 Slope calculation

Slope calculation is another key to the proposed method since the slope is
the evaluation metric to find out the optimal Th and Tt set. An accurate
calculation of the slope is required.

As mentioned in Eq. (3.16) and Eq. (3.17), the slope is the first-order
slope from the first polynomial approximation. It is intended to employ the
L2-norm least-square and L1-norm least-absolute deviation (LAD) [54] with
regularization to optimize the slope calculation, to be robust against noise.

With regard to the L2-norm method, optimize the objective function as
follows:

(benv, Senv) = argmin
N

∑
m=1
∣w2

env[m] − [
t[m]
λ
] [Senv benv]∣

2

(3.30)

where benv and Senv are the envelopes of whitened TPE w2
env, i.e., bupr and bupr

in Eq. (3.16), blwr and Slwr in Eq. (3.17 ). λ is the regularization coefficient.
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m is the m-th index of the total length N . The closed-form of benv and Senv

are given by vector form as:

Penv = (HT
envHenv + λI)−1HT

envw
2
env (3.31)

Penv = [
Senv

benv
] (3.32)

Henv =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t1 1
t2 1
⋮ ⋮
tN 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(3.33)

where w2
env is the vector form of w2

env[m].
With regard to L1-norm method, the objective function is formulated as:

(benv, Senv) = argmin
N

∑
m=1
∣∣w2

env[m] − [
t[m]
λ
] [Senv benv]∣∣ (3.34)

Instead of a closed-form solution, the numerical solution is given by the
Iteratively ReWeighted Least Squares (IRWLS) algorithm [54].

We denote [Senv benv] as β. Considering the initial start of β(0), the
IRWLS updates β at n iteration by

β(n+1) = (HT
envW

(n)Henv)−1HT
envW

(n)w2
env (3.35)

r(n) =w2
env −Henvβ

(n) (3.36)

W(n) = diag(ω(n)1 , ω
(n)
2 ,⋯, ω(n)N ) (3.37)

where

ω
(n)
m =

⎧⎪⎪⎨⎪⎪⎩

1/∣r(n)m ∣, ∣r(n)m ∣ > 10−6

1/10−6, ∣r(n)m ∣ ≤ 10−6
(3.38)

and diag represents the diagonalization operation.
The IRWLS converges until

∣∣β(n+1) −β(n)∣∣2
∣∣β(n)∣∣2

< ϵ (3.39)

where ϵ denotes the infinitesimal. In general, the L2-norm method is chosen
since it can handle almost situations to give a relatively accurate result of
the slope without over-regularization. However, when encountering a noisy
environment, the L1-norm method can gain more robustness of calculation.
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Chapter 4

Verifications and Evaluations

4.1 Verifications

The built-up TPEM model and the proposed method were verified by using
the amplitude-modulation (AM) signal as the input signal to confirm the
correctness of the TPEM and the proposed method.

4.1.1 AM signals

There are two types of AM signals used in verification. The first type is the
single-tone AM signal used for verification of the TPEM model. The second
type is the complex-tone AM signal used for verification of the proposed bind
estimation strategy.

The signal-tone AM signal is the cosine AM signal at the modulation
frequency 5 Hz because the modulation frequencies around 5 Hz are the
most important cues for human perception of the speech signals [55, 56].
The complex-tone AM signal was synthesized by overlapping some harmonic
tones from 0 to 20 Hz. The complex-tone AM signal was convolved with
the RIR to obtain the corresponding reverberant AM signal. Since all the
harmonic tones have identical amplitude, the synthesized complex-tone AM
signal has even upper and lower envelopes, we omitted the whitening filter
displayed in Figure 3.1. On the other hand, this implementation helps us to
exclude the effect of whitening.

4.1.2 For proposed reverberation process of TPEM

The single-tone AM signal with the time elapsing 5 seconds was used as the
original signal. Then, the corresponding reverberant signal was obtained in
two ways. The one was by the convolution with the TPE of a synthesized
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Figure 4.1: Example of envelopes of restored TPE with inappropriate restora-
tion and appropriate restoration, respectively
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Figure 4.2: Estimated results of parameters of extended RIR model from
observed reverberant speech signals: (a) Th and (b) Tt. “◻” denote the
estimated value of the proposed method using AM signal.
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artificial RIR by the extended RIR model in Eqs. (3.1) and (3.2) to obtain the
reverberant signal. Another one was to synthesize the reverberation signal
by using Eq. (3.13).

Figure 3.3 shows a verification example for the reverberation process in
the TPEM. It is obvious that the TPE of the reverberant signal by using
the TPEM is extremely similar to the TPE from the convolution, which
indicates the built-up TPEM model can model the TPE of the reverberant
signal appropriately. The Eqs. (3.13) prerequires the derivation of Eqs. (3.14)
and (3.15), i.e., the derivation of the slope-related feature.

Then, the Eqs. (3.14) and (3.15) were verified by using the similar way.
Figure 4.1 shows an example of the envelopes calculated using Eqs. (3.14)
and (3.15) and calculated from the restored TPE using the inverse filter in
Eq. (3.19), respectively. Hence, it is asserted that the TPEM model can
model the reverberation and dereverberation process properly.

4.1.3 For proposed blind estimation strategy

This section verifies the proposed blind estimation strategy employing the
complex-tone reverberant signal. Figure 4.2 shows the estimation results of
parameters of the extended RIR model, Th and Tt. The symbol “◻” denotes
estimated values of parameters. The horizontal and vertical axes indicate
the parameters calculated from the RIR and parameters estimated from the
AM signals, respectively. The estimation results indicate that the model the
author built up is effective and the proposed method can be used for blind
estimation.

4.2 Evaluations

4.2.1 Preliminaries

We evaluated the proposed method using reverberant speech signals to con-
firm whether or not the proposed method can estimate the parameters of the
RIR model and the RAPs appropriately.

The speech signals were ten long Japanese sentences uttered by ten speak-
ers (five males and five females) from ATR dataset [57]. We carried out
simulations using reverberant speech signals synthesized by the convolution
between speech signals and RIRs from the SMILE dataset, containing 43
measured RIRs [58]. The details of SMILE dataset are shown in Appendix
A. We used root-mean-square error (RMSE) and Pearson correlation coeffi-
cient as the evaluation metrics. We implemented the comparative evaluations
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Table 4.1: Estimation accuracy of parameters of extended RIR model by
proposed and previous methods (RMSE) [46].

Th Tt
TAE-CNN 0.087 0.193
Proposed 0.006 0.081

with the previous works [36, 46].

4.2.2 Evaluating parameters of RIR model

Figure 4.3 shows the estimated results of parameters of the extended RIR
model from speech signals in realistic reverberant environments. The symbol
“○” represents the estimated parameters by the proposed method. The hor-
izontal and vertical axes indicate the parameters calculated from the RIRs
and estimated from the speech signals. The results show that the proposed
method can effectively estimate the parameters of the extended RIR model.
With regard to Th, the RMSE was 0.006 and for Tt, the estimated results
closely approach the ground-truths.

Table 4.1 shows the estimation accuracy of Th and Tt using the proposed
and previous method [46]. The results show that the proposed method can
appropriately estimate the parameters of the extended RIR model.

4.2.3 Evaluating room-acoustic parameters

Figure 4.4 - 4.9 show the results of estimating STI and five-room acoustic
parameters from speech signals in realistic reverberant environments. The
symbols “ ◽ ”, “ ○ ” and “ ☆ ” represent the parameters estimated by the
proposed and previous methods [36, 46], respectively. The horizontal axis
indicates the parameters calculated from the RIRs, and the vertical axis
indicates the parameters estimated from the speech signals.

Table 4.2 shows the estimation accuracy of the proposed and previous
methods. The RMSEs of estimated parameters reveal that the proposed
method outperforms (STI and T60) or maintains the same level as the pre-
vious methods (EDT, C80, D50 and Ts). Table 4.3 shows the correlation
coefficient between the estimated and calculated results of the proposed and
previous methods. However, the noticeable outliers exist for C80, D50, and
Ts, presumably resulting from the mismatching of the carrier signal as the
WGN to the realistic RIRs.
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Table 4.2: Comparison between previous methods and proposed method in
terms accuracy (RMSE) [36, 46].

STI T60 EDT C80 D50 Ts
MTF-based 0.060 – – – – –
TAE-CNN 0.040 0.393 0.259 2.038 12.143 0.037
Proposed 0.037 0.067 0.256 2.309 14.303 0.052

Table 4.3: Pearson correlation coefficients between the estimated values and
ground-truths.

STI T60 EDT C80 D50 Ts
TAE-CNN 0.913 0.918 0.873 0.943 0.903 0.836
Proposed 0.908 0.993 0.945 0.794 0.680 0.797
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Figure 4.3: Estimated parameters for the extended RIR model using speech
signals: (a) Th and (b) Tt.
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Figure 4.4: Results of estimating STI from reverberant speech signals. “ ◽ ”,
“ ○ ”, and “ ☆ ” denote the estimated value of the proposed and two previous
works, respectively, including the TAE-based CNN method (TAE-CNN) [46]
and MTF-based method (MTF-based) [36]. The black dashed line represents
the ground-truths calculated from the RIRs.
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Figure 4.5: Results of estimating T60 from reverberant speech signals. “ ◽ ”
and “○” denote the estimated value of the proposed and two previous works,
respectively, including the TAE-based CNN method (TAE-CNN) [46]. The
black dashed line represents the ground-truths calculated from the RIRs.
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Figure 4.6: Results of estimating EDT from reverberant speech signals. “ ◽”
and “○” denote the estimated value of the proposed and two previous works,
respectively, including the TAE-based CNN method (TAE-CNN) [46]. The
black dashed line represents the ground-truths calculated from the RIRs.
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Figure 4.7: Results of estimating C80 from reverberant speech signals. “ ◽ ”
and “○” denote the estimated value of the proposed and two previous works,
respectively, including the TAE-based CNN method (TAE-CNN) [46]. The
black dashed line represents the ground-truths calculated from the RIRs.
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Figure 4.8: Results of estimating D50 from reverberant speech signals. “ ◽ ”
and “○” denote the estimated value of the proposed and two previous works,
respectively, including the TAE-based CNN method (TAE-CNN) [46]. The
black dashed line represents the ground-truths calculated from the RIRs.
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Figure 4.9: Results of estimating Ts from reverberant speech signals. “ ◽ ”
and “○” denote the estimated value of the proposed and two previous works,
respectively, including the TAE-based CNN method (TAE-CNN) [46]. The
black dashed line represents the ground-truths calculated from the RIRs.
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Chapter 5

Conclusions and outlooks

5.1 Summary

A deterministic method was proposed for blindly estimating the parameters
of the extended RIR model, as well as the STI and five RAPs, i.e., T60, EDT,
C80, D50, and Ts, simultaneously.

Using the extended RIR model to approximate an RIR mitigates the
limitation of the common-used Schroeder’s model and makes the RIR model
physically interpretable. Furthermore, instead of relying on training data,
the relationship between envelopes of the TPE of an observed reverberant
signal and the RIR was created as a function of the parameters of the RIR
model. This relationship was used to estimate the optimal parameters of the
RIR model. Then, the STI and five RAPs were blindly estimated by using
the estimated RIR synthesized using these optimal parameters.

The evaluation results concluded that the proposed method could blindly
the parameters of the extended RIR model effectively. The evaluation results
also indicated that the proposed method could blindly and simultaneously
estimate the STI and RAPs effectively.

5.2 Contributions

This work contributes to room acoustics and audio signal processing research.
The contributions can be listed as follows:

• Clarifying how the RIR affects the waveform of the signals, via mod-
eling the RIR and reverberation/dereverberation process in the time
domain based on the concept of the MTF.
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• Proposing a deterministic blind estimation strategy to effectively es-
timate the RIR by blindly estimating the parameters of the extended
RIR model.

• Blindly and simultaneously estimating the RAPs that can be used to
comprehensively describe the room acoustic characteristics of a sound
field.

• Providing an alternative idea to understand the room acoustic charac-
teristics of a sound field without measuring the RIR of a sound field.

5.3 Remaining works

The following issues are recommended to be contemplated in the future:

• Possibility of real-time or quasi-real-time implementation of the pro-
posed blind estimation strategy. The current work is still limited to de-
pend upon the long-time speech signal, taking an overwhelming amount
of time to process.

• Although the researchers have an overall picture of the room acoustics
of a sound field, it is still not clear what cues that appear in the RIR
or MTF are related to speech intelligibility and sound clarity.

• The effects of the variations of the distance between the estimation and
sound source position should be considered since the different distances
result in different sound pressure levels, which may affect the estimation
accuracy.

• The proposed method needs to be evaluated in real environments where
people are included because the positions and numbers of the people
cause the changes in room acoustics.

• Application of the proposed method for speech enhancement and hear-
ing aids.

• Blind estimation from the music signals attracts some interest since all
the current works cannot achieve the accurate estimation of the RIR
and RAPs.
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Appendix A

Room Impulse Response
Dataset - SMILE

Table A.1: SMILE dataset of room impulse response used in evaluation

No. ID Measured Condition T60

1 301 Multi-purpose hall 1 (with reflex board) 1.09

2 302 Multi-purpose hall 1 (without reflex board) 0.80

3 303 Multi-purpose hall 2 (with reflex board) 1.44

4 304 Multi-purpose hall 2 (without reflex board) 1.04

5 305 Multi-purpose hall 3 (with reflex board) 1.93

6 306 Multi-purpose hall 3 (without reflex board) 1.35

7 307 Multi-purpose hall 3 (with absorption board) 1.42

8 308 Multi-purpose hall 4 (with absorption board) 1.54

9 319 Multi-purpose hall 5 (14,000 m3) 1.47

10 321 Multi-purpose hall 6 (19,000 m3) 2.16

11 309 Classis concert hall 1 (5600 m3) 2.35

12 310 Classic concert hall 1 (d = 6 m3) 2.34

13 311 Classic concert hall 1 (d = 11 m3) 2.35

14 312 Classic concert hall 1 (d = 15 m3) 2.39

15 313 Classic concert hall 1 (d = 19 m3) 2.38

16 314 Classic concert hall 2 (6,100 m3) 1.14

Continued on next page
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Table A.1: SMILE dataset of room impulse response used in evaluation
(Continued)

17 315 Classic concert hall 3 (20,000 m3) 1.96

18 316 Classic concert hall 4 (with absorption curtain) 1.92

19 317 Classic concert hall 4 (without absorption curtain) 2.55

20 323 Classic concert hall 5 (17,000 m3) 2.32

21 324 Classic concert hall 6 (1F front) 1.77

22 325 Classic concert hall 6 (2F side) 1.74

23 326 Classic concert hall 6 (3F) 1.69

24 201 Lecture room with flatter echoes 1.36

25 318 Theatre hall (3,900 m3) 0.85

26 401 Meeting room (130 m3) 0.62

27 402 Lecture room (400 m3) 1.12

28 403 Lecture room (2,400 m3) 1.09

29 404 General speech hall (11,000 m3) 1.54

30 405 Church 1 (1,200 m3) 0.71

31 406 Church 2 (3,200 m3) 1.30

32 407 Event hall 1 (28,000 m3) 3.03

33 408 Event hall 2 (41,000 m3) 3.62

34 409 Gym 1 (12,000 m3) 2.82

35 410 Gym 2 (29,000 m3) 1.70

36 411 Living room (110 m3) 0.36

37 412 Movie theatre (560 m3) 0.38

38 413 Atrium (4,000 m3) 1.57

39 414 Tunnel (5,900 m3) 2.72

40 415 Concourse in train station 1.95

41 416 General speech hall 2 (1F front) 1.52

42 417 General speech hall 2 (1F center) 1.57

43 418 General speech hall 2 (1F balcony) 1.40
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