
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title GPU Accelerated Adaptive Random Forest

Author(s) 渡邉, 純司

Citation

Issue Date 2023-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/18364

Rights

Description
Supervisor: 井口 寧, 先端科学技術研究科, 修士

(情報科学）



Master’s Thesis

GPU Accelerated Adaptive Random Forest

Junji Watanabe

Supervisor Yasushi Inoguchi

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

Conferment March, 2023



Abstract

The rapid growth of mobile, wearable, and IoT devices is dramatically
increasing the amount of data being generated every moment. Learning from
a high-volume data stream is extremely challenging. Traditional machine
learning methods are not suitable for online data stream applications because
they are designed for offline batch processing, where the entire data set needs
to be kept somewhere in the system. Not many researches has been done on
data stream learning, especially with GPU acceleration.

This thesis examines the effectiveness of GPUs in data stream learning by
accelerating Adaptive Random Forest (ARF) on GPUs. ARF is an ensem-
ble learning method based on Hoeffding Tree, an incremental decision tree
algorithm.

Experimental results show that my GPU ARF implementation outper-
forms the CPU ARF implementation in terms of execution time while main-
taining prediction accuracy. It also studies the trade-offs between GPU and
CPU by experimenting with various learning conditions.
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Chapter 1

Introduction

In the era of Big Data, due to the rapid growth of mobile devices, wearable
devices, IoT devices, etc., the amount of data being generated every moment
is drastically increasing. However, learning from a high-volume and contin-
uous data stream is extremely difficult. Over the past few decades, learning
from big data using machine learning and deep learning has been studied
and widely applied to real-world applications. However, many of these are
designed for offline batch processing, where the entire data set needs to be
kept somewhere in the system, and are therefore not suitable for data stream
applications.

1.1 Problem Statement

Classification is a problem of predicting a class or label y from a data instance
x with multiple attributes. In data stream classification, data instances for
training are not always available. Instead, they are provided as a continuous
stream of data at a fast pace. Prediction requests are expected to arrive at
any time, and the model makes predictions based on the current state.

In this thesis, it is assumed that the target labels are provided at training
time (supervised learning). Unsupervised or semi-supervised learning, in
which no or partial labels are provided, is not covered.

1.2 Data stream classification methods

Algorithms for data stream learning have the following unique requirements
that are not necessary for typical machine learning problems.

• Incremental update: The algorithm needs to update a model incremen-
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tally as it observes a new data instance, since the whole dataset can’t
be retained.

• Fast: To handle a massive volume data stream, the computation needs
to be done very fast.

1.2.1 Hoeffding Tree

Hoeffding tree algorithm [11] is an incremental decision tree algorithm that
can learn from a data stream without having to keep all data instances locally.
As a new data instance arrives, it updates the statistics of the training nodes
and determines the partitioning of the nodes based on the Hoeffding bound,
which probabilistically approximates the optimal split.

1.2.2 ARF: Adaptive Random Forest

Adaptive Random Forest or ARF [14] is a random forest algorithm for data
stream learning based on the Hoeffding tree algorithm. While ARF showed
good accuracy for for many types of data streams, it’s computationally expen-
sive since Random Forest algorithm trains many trees in parallel. Training
Hoeffding trees in multiple CPU cores in parallel achieved speed up ARF
without losing accuracy. However, further speed up would make it possible
to apply ARF for massive volume data streams.

1.2.3 GPU Random Forest

GPUs (Graphics Processing Units) are massively parallel processors and are
widely used to accelerate machine learning and deep learning in offline learn-
ing environments.

GPU Random Forest or GPU RF [18] utilizes GPU to speed up a Ran-
dom Forest technique based on Hoeffding trees. GPU RF showed that GPU
can speed up Random Forest and Hoeffding tree algorithms. However, the
proposed techniques can be applied to limited situations. For example, only
binary attributes are supported. Another example is that the max tree depth
needs to be limited. The detailed reasons will be explained in the later in
this thesis.

It’s important to resolve those limitations to apply GPU to other data
stream learning.
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1.3 Objectives

The mission of this thesis is to improve the throughput of data stream learn-
ing by utilizing GPU. The larger capability for high-volume data stream, the
wider applications it has.

This thesis proposes GPU ARF, a GPU version of ARF. GPU ARF has
the following objectives:

1. Speed up ARF algorithm with GPU.

The speed will be compared with ARF with multi-core CPU.

2. Resolve the max tree depth limitation that GPU RF has.

Without the tree depth limitation, GPU will be applicable to more
complex problems.

3. Keep the accuracy

The speed up should not bring a large penalty on accuracy in compar-
ison to ARF.

1.4 Contributions

The main contribution of this thesis is to apply a memory pool technique
to allocate memory for tree nodes dynamically. Since there are many com-
putations running in parallel, they may conflict with each other to obtain a
memory block from the pool. However, the memory pool successfully handles
parallel accesses and it doesn’t lose performance. With the dynamic memory
allocation, GPU ARF can grow for the data streams used in the experiments
without causing out-of-memory.

Another contribution is that, to the best of my knowledge, other studies
do not take a batching strategy. This thesis examines the trade off between
speed and accuracy loss, and shows that batching data instances brings speed
up while keeping the accuracy reasonably.

GPU ARF follow some parallel implementation techniques that are used
in other studies which include assigning a GPU block for a tree and calcu-
lating split candidates in parallel with parallel reductions.

1.5 Thesis outline

Chapter 2 provides background for this thesis by reviewing related work.
Chapter 3 describes the details of the proposed methods to accelerate ARF
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on GPU. In Chapter 4, I evaluate the performance through experiments using
GPU ARF. Chapter 5 describes the experimental results and future work.
Chapter 6 summarizes this thesis.
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Chapter 2

Background

This chapter explains the background of data stream learning, and related
works. First, I will explain the difference between data stream learning and
traditional batch learning. Second, Hoeffding tree, a foundation of data
stream learning technique, and variants of Hoeffding Tree will be explained.
Lastly, the concept of GPU acceleration will be explained.

2.1 Offline batch learning and online learning

Typical machines learning models are trained with batch learning. Batch
learning generates the best model by learning from the whole data set re-
peatedly. The problem of the batch learning is that the whole data set may
not always be available for training or not feasible due to the limit of storage
or memory. Online machine learning is a learning method in which data
becomes available sequentially and is used to update the best model at each
step. Online machine learning algorithms can learn incrementally from data
streams that generates infinite data instances, and can dynamically adapt
to the new pattern in the data. Most of the time, online machine learning
algorithms can forget the previous knowledge for the adaptation to the new
pattern.

2.2 Decision trees

Decision tree is a traditional machine learning method for supervised classi-
fication problems.

A decision tree consists of intermediate nodes and leaf nodes. An interme-
diate node has conditions for an attribute of data instances. A data instance

5



traverses a decision tree by following the conditions of the intermediate nodes
until a leaf node. The leaf node makes a prediction for the data instance.

Training a decision tree is done with an offline batching algorithm. Given
a initialized root node, the decision tree is trained as follows:

1. Process all data instances to derive the leaf nodes.

2. Derive the best split for each leaf node by calculating all possible splits
and merits.

3. Split the leaf nodes if the merits exceeds the threshold.

4. Repeat the steps above until the tree stops growing.

There are multiple ways to evaluate the merits of decision tree splits. In
this thesis, information gain is used as the split criteria.

Information gain is based on the concept of entropy from information
theory. The entropy for the node N is defined as Equation 2.1, where ntotal

is the total number of data instances, J is the number of classes, nyi is the
number of data instances with the class yi on the node. Given a node Nparent

and a split condition a, the information gain is defined by Equation 2.2.
The information gain is the difference between the entropy before the split
and the entropy after the split, which is the sum of the entropy of all child
nodes. The best split condition can be derived by calculating all possible
split conditions, and choosing the one that maximizes the information gain.

ntotal =
J∑

i=1

nyi , pi =
nyi

ntotal

H(N) = I(ny1, ny2 , ...) = −
J∑

i=1

pi log2 pi

(2.1)

G(Nparent, a) = H(Nparent)−
All children∑

H(Nchild|a) (2.2)

Although the decision tree algorithm is simple, decision tree based al-
gorithms are still used for many machine learning problems because of the
simplicity and the accuracy. For example, Random Forest [8] and Gradient
tree boosting [13] are based on decision trees. XGBoost [9], LightGBM [16]
are often used in machine learning competitions such as Kaggle [3].

However, it’s not possible to use decision trees for data stream learning
because the algorithm requires the whole dataset to calculate information
gain.
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Figure 2.1: Random forest diagram by Venkata Jagannath, under a CC BY-
SA 4.0 license, via Wikimedia Commons [15]

2.3 Random Forests

Random forests [8] is an ensemble learning method for classification and
regressions problems. Figure 2.1 is a diagram of a random forest. A random
forest consists of many decision trees, which are trained with a sub set of
datasets and/or attributes independently each other. For classifications, all
trees make predictions and the majority vote is chosen as the final predict.

For the same reason with decision trees, it’s not possible to use random
forest for data stream learning.

2.4 Hoeffding Tree: Very Fast Decision Tree

Hoeffding Tree or Very Fast Decision Tree (VFDT) [11] is an incremental
decision tree that can learn from data stream, and is widely used in this
area.

Algorithm 1 describes the procedures of a Hoeffding Tree. As opposed to
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traditional decision trees, Hoeffding Trees don’t require the whole data sets
and can learn from data streams incrementally. As a data instance arrives,
a Hoeffding tree processes it as follows:

1. Find the leaf node l for the data instance x by traversing the tree.

2. Increment attribute counters of l for the sets of (y, Xi, xij), where y is
the target class, Xi is an attribute, xij is the value for attribute Xi.

3. Calculate the merits for all possible split candidates of the leaf node l.

4. Choose the best and the second best split candidates ma, mb.

5. Calculate the Hoeffding bound ϵ of the leaf node l.

6. Split the leaf node l, if the difference between ma and mb is greater
than the Hoeffding bound ϵ.

The Hoeffding bound ϵ can be calculated by the equation 2.3 with 1 − δ
confidence where R is a range of split merits and n is the number of observed
instances.

ϵ =

√
R2 ln 1/δ

2n
(2.3)

There are many variants of Hoeffding Tree. Hoeffding Adaptive Tree
(HAT) [5] is proposed to adapt concept drifts. Manapragada et al.[17] made
Hoeffding Tree more efficient. In this thesis, only Hoeffding Tree is consid-
ered since the same GPU parallelization techniques can be applied to those
variants.

2.5 Distributed stream learning

Vertical tree (VHT) [10] is a distributed version of Hoeffding Tree that par-
titions data instances in terms of attributes. The distributed approach is a
different strategy that parallelize computations. However, this thesis assumes
edge computing rather than cloud computing. VHT is designed for central-
ized cloud systems with a cluster that consists of many machines. Therefore,
the comparison between distributed strategies and GPU-based strategies is
out of the scope of this thesis.
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Algorithm 1: Hoeffding Tree

Input:
S is a sequence of data instances
X is a set of attributes.
G(.) is a split criterion function

begin
Initialize HT as a Hoeffding tree.

Let x as attributes of a data instance
Let y as a target class of a data instance
foreach (x, y) ∈ S do

Find a leaf node l from HT for x

/* Update attribute statistics */

foreach attribute value xij ∈ x do
IncrementCounter(l, y, Xi, xij)

end
/* Compute the merits of all possible splits */

foreach attribute Xi ∈ X do
foreach attribute values Xij ∈ Xi do

Let sij be a split condition with (Xi, Xij)
Let mij be a merit for sij from G(l, sij)

end
Let si, mi be the best split and merit for the attribute Xi

end
Let ma, mb be the best and the second best merits for sa and
sb respectively.

Let ϵ to be the Hoeffding bound of the leaf node l.
if ma −mb ≥ ϵ then

Split(l, sa)
end

end

end

2.6 Adaptive Random Forest: ARF

Random Forest [8] is a common technique to make decision tree more robust
by learning many decision trees with different sub sets of data instances or
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attributes. Adaptive Random Forest or ARF [14] applied the Random Forest
technique with rees as base learners so that it can learn from data stream.
Note that training the trees in ARF can be done independently in parallel.

2.6.1 Parallel Adaptive Random Forest

The original research of ARF [14] demonstrated that multi-core CPUs can
speedup ARF with no degradation for the classification performance in com-
parison to a serial CPU implementation. The number of trees in an ARF
can be large. For example, the ARF implementation of MOA [6] uses 100
trees by default. GPU has many streaming multiprocessors (SMs) which are
capable of handling many trees. For example, NVIDIA a100 has 108 SMs.
This is a motivation to parallelize ARF further in GPU.

2.6.2 MOA: Massive Online Analysis

MOA (Massive Online Analysis) [6] is an open source project for data stream
learning written in Java. It includes many online learning algorithms such
as classification, regression, clustering, and is used for scientific evaluation.
This thesis uses the ARF implementation in MOA as a reference.

2.7 GPU acceleration for Decision Trees and

Random Forests

Toby [20] proposed an implementation of decision tree and random forest on
a GPU for image classification tasks using Direct 3D. And Marron et al.[18]
proposed a random forest of Hoofing Tree on GPU (GPU RF) for evolving
data stream. Wu [21] utilizes GPU parallelism for adapting concept drifts in
data stream.

They all allocate memory to all possible tree nodes. This makes a limita-
tion on the tree depth because the number tree nodes increases exponentially
to the tree depth. This is problematic when learning complex problem where
trees need to be large enough to represen the complexity.
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Figure 2.2: Array representation of a binary tree

2.8 Random Forests of Very Fast Decision

Trees on GPU for Mining Evolving Big

Data Streams

As mentioned before, Marron et al.[18] proposed a GPU version of VFDT
based random forest (GPU RF), and is most similar to this thesis. However,
GPU RF has a limitation of the max tree depth because it pre-allocates
memory for all possible tree nodes in advance. GPU RF was compared only
with a serial CPU implementation in Java. Thus, the overhead that comes
from the programming language is unclear. Since it was not compared with
a multi-core CPUs implementation, it is also unclear how large benefit GPU
has over multi-core CPUs.

According to the paper, GPU RF completes the computation for Cover-
type dataset in 0.330 seconds, which is 1000 times faster than the CPU
version of Random Forest. However, I was not able to reproduce this speed
by myself since just reading the data instances and sending them to GPU
take longer than 0.33 sec. Although, I tried to contact with an author to
clarify what was measured as the execution time, I couldn’t get any answer.
Therefore, GPU ARF could not be compare with GPU RF.

The following sub sections summarize the techniques to utilize GPU in
GVFDT and GPU RF.
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2.8.1 Tree Layout

As described in Figure 2.2, GVFDT represents a binary decision tree in an
array so that the offsets of child nodes can be easily calculated from the
parent nodes. Given a node at offset i, its left child will be at offset 2i + 1
and its right child will be at offset 2i + 2. Similar techniques are used in
other GPU accelerations, too [20] [21].

A drawback of this approach is that the memory for all nodes need to be
allocated in advance regardless of whether used or not. The number of nodes
is 2d+1−1, where d is the max tree depth. As the required memory increases
exponentially, the max tree depth needs to be limited to avoid exceeding the
available GPU memory.

2.8.2 Leaf Nodes

The leave nodes in the tree array have IDs which are used to find counters
stored in another array. The classes of leaf nodes are also stored in a different
array. Decoupling the classes and counters of leaf nodes from the tree makes
it easy to compute prediction and calculate information gains in parallel.

2.8.3 Node splits

Calculating information gain is also parallelized by using 2 parallel reduc-
tions. After getting information gain for all leaves, the candidates are sorted
by parallel sort to find best splits to calculate Hoeffding bounds.
This thesis also uses similar techniques.

2.9 GPUs

GPUs are processors for highly parallel tasks, originally designed for graphic
processing. GPUs began to be used for general-purpose processing in the
early 21st century. There are many scientific tasks that are suitable for par-
allel processing such as fluid simulation, protein folding, and so on. GPUs
also work well for machine learning and deep learning. Deep learning re-
quires to train neural networks which consist of a massive amount of nodes
connected with many layers.

2.9.1 GPU Architecture and CUDA Programming model

Figure 2.3 describes a simplified GPU architecture. To process data on a
GPU, the data needs to be transferred from the host CPU memory to the

12



Figure 2.3: GPU Architecture

Figure 2.4: GPU kernel in CUDA

__global__ void SomeKernel(float *inputs, float *outputs) {
...

};

int main() {
...
SomeKernel<<<NumBlocks, NumThreadsPerBlock>>>(inputs,

outputs);
}

GPU memory. After processing, the results need to be transferred to the
host CPU memory. A GPU consists of multiple Streaming Multi-processors
(SMs). For example, A NVIDIA a100 [4] GPU has 108 SMs.

2.9.2 CUDA Programming model

A GPU kernel is a function that gets executed on GPU. A GPU kernel
runs K times where K is the number of CUDA threads. As shown in Fig-
ure 2.4, a GPU kernel is declared with global specifier, and triggered
with <<<NumBlocks, NumThreadsPerBlock>>> that specifies the number of
CUDA blocks and the number of CUDA threads per block.

A CUDA block is a group of CUDA threads. CUDA blocks are grouped

13



Figure 2.5: Mapping between GPU hardware and CUDA programming
model

Figure 2.6: GPU Block dimensions

in to a CUDA grid. A CUDA kernel is triggered as a grid of blocks of
threads. Figure 2.5 illustrates the mapping between GPU hardware and
CUDA programming model. A CUDA blocks run on the same SM. In a
CUDA block, each thread runs on a GPU core runs in parallel.

As described in Figure 2.6, a GPU Block can also have 2 dimensional or
3 dimensional threads. This is convenient when mapping multi dimensional
problems to CUDA program.

2.9.3 GPUs for Random forests construction

cuML is a CUDA library developed by NVIDIA that supports many parallel
algorithms for machine learning. cuML also supports the Random Forest
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algorithm, which is 20 to 45 times faster than the CPU version of Random
Forest for the training [19]. This speedup is achieved by training all trees
independently and computing all candidate partitions in parallel. As men-
tioned above, the original random forest cannot be used for data stream
learning. However, this suggests that accelerating ARF on a GPU can be
effective.

2.10 Summary

In this chapter, the background of data stream learning and relevant works,
the concept GPU acceleration were reviewed.

Decision trees and Random Forest are traditional machine learning tech-
niques. However, they are not suitable for data stream learning because they
require retaining the whole dataset. Hoeffding Trees and Adaptive Random
Forest are algorithms that approximate Decision trees and Random Forest
respectively to be able to learn from data streams.

There are relevant studies where GPU was utilized to accelerate Hoeffding
Trees and Random Forest. However, they all take a strategy to allocate
memory to all possible tree nodes. This makes a limitation on the max tree
depth as the number of nodes increases exponentially to the tree depth.

Lastly, the concept of GPU acceleration and the CUDA programming
model were reviewed.
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Chapter 3

GPU ARF implementation

3.1 Introduction

In this thesis, I propose GPU ARF, a GPU version of ARF, that accelerates
data stream learning by exploiting the massive parallelism of GPUs. In
this chapter, I explain how to utilize a GPU for this algorithm, showing
implementation points of GPU ARF.

First, I will explain an approach to resolve the existing constrains in GPU
RF. Next, I will explain the speed up achieved by GPU’s parallelism.

3.2 Approach to existing constrains

This section explains how GPU ARF resolves the max tree depth limitation,
which exists in GPU RF [18] and other GPU Hoeffding Tree techniques.

3.2.1 Static tree node memory pre-allocation

In the related works with GPU [20] [18] [21], the algorithms pre-allocate the
GPU memory for all possible tree nodes statically.

As Figure 2.2 describes in the previous chapter, a binary tree can be
represented as a single array of tree nodes. This allows Hoeffding Trees to
grow without allocating new memory blocks for child nodes at node splits.

The reason behind this strategy is that GPU is not good at dynamic
memory allocation. Although CDUA has cudaMalloc API to allocate mem-
ory dynamically, it is an expensive operation. GPU applications should avoid
calling cudaMalloc as much as possible. Since Hoeffding Trees need to split
leaf nodes often, using cudaMalloc at every node split would have a substan-
tial overhead. In my preliminary experiments, cudaMalloc didn’t provide a
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practical speed.
The drawback of this strategy is that the number of possible nodes in a

tree increases exponentially 2d+1 − 1, where d is the tree depth. Therefore,
it needs to limit the max tree depth to avoid exceeding the available GPU
memory.

3.2.2 Dynamic memory allocation

In GPU ARF, the memory allocation for tree nodes is done dynamically.

Memory pools

GPU ARF prepares dedicates memory pools that assigns memory addresses
for node splits in parallel. Figure 3.2 are the structures of the memory pools,
and Figure 3.1 is a simplified diagram for the tree node memory pool.

The pools consist of an ID for next allocatable memory address and an
array of pre-allocated memory. Getting a memory address is done by in-
crementing next id atomically. It uses CUDA’s atomicInc API to this
operation. Thanks to the CUDA’s atomic operation, this simple logic allows
multiple GPU threads to take a memory address in parallel without conflicts.

Figure 3.1: Tree node memory pool for parallel requests

GPU ARF Node

Figure 3.3 partially describes the structures of tree node. A Node holds the
pointers to the child nodes. In this case, this is a binary tree. Thus, there
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Figure 3.2: Memory pools for GPU ARF Node

struct LeaningStatePool {
uint32_t next_id_;
LearningState pool_[LEARNING_STATE_POOL_SIZE];

}
struct NodePool {
uint32_t next_id_;
Node pool_[NODE_POOL_SiZE];

}

Figure 3.3: Data structures for GPU ARF Node

struct Node {
LearningState *learning_state_;
Node *child_nodes_[2];
...

};
struct LearningState {
AttributeObserver attr_observers_[NUM_LEARNING_ATTRS];
uint8_t learning_attrs_[NUM_LEARNING_ATTRS];
...

};
struct AttributeObserver {
uint32_t stats_[NUM_CLASSES][NUM_ATTR_VALUES];

}

are two child nodes for a parent node. When splitting the node, it requests
two memory addresses and stores in child nodes .

It also has a pointer to LearningState, which holds multiple AttributeObserver.
AttributeObserver is just a struct that consists of counters to record the
observed class and attribute values.

After node split, LearningState is not necessary anymore. Therefore,
it can be returned to the memory pool. However, the memory pool doesn’t
have this advanced mechanism yet.

Learning attributes

Note that NUM LEARNING ATTRS is not equal to the number of attributes that a
data instance has. In ARF, only a subset of attributes is randomly chosen for
each node independently to improve the robustness. Therefore, the chosen
attributes are stored to learning attrs property when initialized. This
avoids allocating redundant memory to the attributes that are not used for
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training.

3.3 Speed up with GPU parallelism

This sections explain how speed up of ARF can be obtained with GPU by
following the whole routine. Similar techniques are used in the related works
with GPU.

The overview of the GPU ARF implementation is shown in Algorithm 2.
The functions that ends with Kernel refer to GPU kernel launches. After
initialization steps, the following steps repeat as the data stream continues.

1. On CPU, data instances from the data stream are buffered until the
batch size B.

2. The batch of data instances is sent to the GPU memory.

3. On GPU, PredictAndTrainKernel does prediction and training on the
given data instances.

4. On GPU, CalculateSplitMeritKernel calculates split merits for all
the candidates.

5. On GPU, SplitNodeKernel executes node splits when necessary.

The following sections explain the details of them.
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Algorithm 2: GPU ARF

Input:
T is a number of trees
S is a sequence of data instances
B is a batch size of data instances

begin
Initialize b as an empty batch of data instances.
Initialize f as an ARF with T trees.

Let x as attributes of a data instance
Let y as a target class of a data instance
foreach (x, y) ∈ S do

/* Collect data until the batch size */

if Size(b) < B then
/* Append the data instance to the batch */

Append(b, x, y)
continue

end

Send b from CPU memory to GPU memory

/* Do prediction and training */

Initialize p as a list of predictions.
Initialize l as a list of reached leaf nodes.
PredictAndTrainKernel<<<T , B>>>(f , b, p, l)

/* Calculate split merits for all the candidates */

Initialize s as a list of split merits.
CalculateSplitMeritKernel
<<<T , B ×Nattributes ×Nattribute values>>>(l, s)

/* Split nodes based on the calculated merits */

SplitNodeKernel<<<T , B>>>(l, s)

Reset b to an empty batch of data instances

end

end
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3.3.1 Data batching

Data transfer from host CPU memory to GPU memory is a well-known
bottleneck for GPU applications. To reduce this delay, GPU applications
often process large amounts of data at a time. As shown in Algorithm 2, the
proposed method also sends T data instances as a batch, where T is up to
128 in my experiments.

In data stream learning scenarios, concept drifts may occur, and the
model needs to keep updated as fast as possible. A large batch size may cause
a delay in training, which may result in lower accuracy than a small batch
size or no batching. However, the smaller the batch size or no batching, the
slower the computational speed. This trade-off between speed and accuracy
is important in this theme.

3.3.2 Prediction and training

PredictAndTrainKernel in Algorithm 2 is a GPU kernel that does predic-
tions and training with the given data instances.

As introduced in the previous chapter, ARF consists of multiple deci-
sion trees. Since these trees are independent, most training and prediction
steps can be done independently to other trees. As described in Figure 3.4,
PredictAndTrainKernel assigns each tree to one GPU block. On the GPU
block side, each data instance is assigned to one GPU thread.

Figure 3.4: Block and thread assignments for PredictAndTrainKernel

Algorithm 3 shows the details of PredictAndTrainKernel.

21



First, each GPU thread traverses the tree to a leaf node of the given data
instance. Each intermediate node has an evaluation rule to route a data
instance to an appropriate child node. The evaluation result is stored as a
boolean variable to avoid branches.

Next, the thread predicts the class of the assigned data instance based on
the statistics of the leaf node. In this thesis, it uses a majority class strategy
for prediction. That is, the most observed class of the leaf node is selected
as the predicted class. The prediction results are stored to p. Note that
there are other threads in other GPU blocks for the same data instances.
Therefore, updating p is done in an atomic manner. The arrived leaf node
is also stored to l to use in the following kernels.

Lastly, the leaf node updates the statistics with the given instance x and
the true class y, which is provided somehow from the outside of the system.
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Algorithm 3: PredictAndTrainKernel

Input:
f is an ARF
b is a batch of data instances
p is a list of predictions to store prediction result
l is a list of leaf nodes to store tree traversal result

begin
Let b is the GPU block ID
Let t is the GPU thread ID

/* Load the assigned tree from GPU global memory */

tree = GetTree(f , b)

/* Load the assigned data instance from GPU global

memory */

x = GetDataInstance(b, t)

/* Traverse the tree until a leaf node */

Let n to be the root node of tree.
while n is not leaf do

Let r to be a boolean.
r = GoRight(n, x)
n = GetChildNode(n, r)

end
/* Store the leaf node to GPU global memory */

StoreLeaf(n, l, t)

/* Predict a class for x, and stores the results to

GPU global memory */

Predict(n, x, p)

/* Update the statistics of the leaf node. */

Let y to be a true class for x.
UpdateStats(n x, y);

end
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3.3.3 Split candidate calculation

CalculateSplitMeritKernel in Algorithm 2 is a GPU kernel that calculates
split merits for all the possible candidates. That is, it calculates for all pos-
sible attributes and all attribute values of the reached leaf nodes. Algorithm
4 and Figure 3.5 shows the details of CalculateSplitMeritKernel.

Figure 3.5: CalculateSplitMeritKernel

As same as PredictAndTrainKernel, each tree is assigned to one GPU
block. On the other hand, CalculateSplitMeritKernel launches more
GPU threads in a GPU block. As described in Figure 3.5, the number
of threads per block is B × Nattributes × Nattribute values, where B is the num-
ber of data instances in a batch, Nattributes is the number of attributes and
Nattribute values is the number of possible attribute values. In my experiments,
Nattributes is up to 44, and Nattribute values is always 2.

After calculating all the candidates, it chooses the best split candidate
and the second best candidate to make a decision for node split at the next
stage. Choosing the best candidates is done by parallel reductions, which is a
popular parallel technique to derive the max value. There are two phases of
parallel max reduction. One is for deriving the best split for each attribute,
and the other is for deriving the best splits among all the attributes.
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Algorithm 4: CalculateSplitMeritKernel

Input:
l is a list of leaf nodes to store tree traversal result
s is a list of split candidates to store the calculated splits
and merits

begin
Let b is the GPU block ID
Let t is the GPU thread ID

/* Retrieve a leaf node derived by

PredictAndTrainKernel */

n = GetNode(l, b, t)
Let i to be an attribute index assigned to t
Let j to be an attribute value assigned to t

/* Calculate a split merit for attribute i and value j
*/

sij = CalculateSplitMerit(n, i, j)

Let s be a global memory address to store calculated split
candidates.
StoreSplit(s, sij)

/* Parallel reduction to choose the best split for the

attribute i */

ParallelReductionForAttribute(s, i)

/* Parallel reduction to choose the best split among

all attributes */

Let s1 is the best split candidate
Let s2 is the second best split candidate
s1, s2 = ParallelReduction(s)

end

3.3.4 Node splitting

SplitNodeKernel in Algorithm 2 is a GPU kernel that splits the leaf nodes
when applicable. Algorithm 5 and Figure 3.6 describe the details of this
GPU kernel.
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Figure 3.6: SplitNodeKernel

As same as other kernels, each tree is assigned to one GPU block. On
a GPU block, each leaf node is assigned to one GPU thread, and executes
node split.

Note that multiple data instances may arrive to the same data instance.
In this case, only one split operation should happen to the leaf node. As the
best split and the second split for each leaf node are derived in the previous
kernel, it is possible to make a decision whether to split or not. Please refer to
Algorithm 1 for the split decision logic in Hoeffding trees. In the SplitNode

function, it obtains new memory spaces for child nodes from the memory
pool explained earlier in this chapter.
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Algorithm 5: SplitNodeKernel

Input:
l is a list of leaf nodes
s is a list of split candidates

begin
Let b is the GPU block ID
Let t is the GPU thread ID

/* Retrieve a leaf node derived by

PredictAndTrainKernel */

n = GetNode(l, b, t)

/* Atomic operation to reset counter. */

ok = ResetCounter(n)
if not ok then

/* Only one thread per node executes split

operations */

return

end

if MakeSplitDecision(n, s) then
SplitNode(n)

end

end

3.4 Summary

In this chapter, I explained the approach to resolve the max tree depth
limitation, and also explained the speed up of ARF obtained by GPU.

The memory pool strategy allows trees to grow incrementally without a
wasting memory for unused nodes and attributes. Therefore, no tree depth
limitation is necessary.

The routine of GPU ARF was explained to show how to speed up ARF
algorithm. The data batching hides slow data transfer latency. The predic-
tion and training is done independently to other trees with the data instance
batch. Calculating split candidates is done further in parallel by launching
more threads for all possible attributes and attribute values.
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Chapter 4

Experiments

4.1 Introduction

The previous chapter explained how GPU can be utilized to implement ARF.
In this chapter, I will explain the experiments to evaluate the GPU ARF per-
formance in comparison to GPU ARF. The first section explains the experi-
ment settings, and the second section explains the results of the experiments.
The experiments also consist of two parts. The first part is for evaluating
the individual techniques of GPU ARF, and the second part is for comparing
the overall performance between GPU ARF and CPU ARF.

4.2 Experiment Settings

4.2.1 Classification problem for data stream

As mentioned in the chapter 1, I experimented GPU ARF in data stream
classification settings.

In a typical classification problem, a set of data is given, and the dataset
is split into training and validation sub datasets. A classification model is
trained based on the training sub dataset including target classes until the
model converges to the optimal state. And the trained model is evaluated
against the validation sub dataset.

In data stream setting, it is assumed that each data instance is observed
only once, and is not available afterwards. As described in Algorithm 6, a
model needs to predict a target class for a data instance as it arrives. The
true class is given in this scenario. The predicted class and the true class are
stored for evaluation. After the prediction step, the model trains with the
data instance.
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Algorithm 6: Data stream classification

Input:
S is a sequence of data instances
m is a model

begin
Let x as attributes of a data instance
Let y as a target class of a data instance
foreach (x, y) ∈ S do

ŷ = Predict(m, x)
Record(y, ŷ)
Train(m, x, y)

end

end

4.2.2 Evaluation metrics

The evaluation metrics used in the experiments are accuracy and execution
time.

Accuracy is simply calculated by Equation 4.1, where Ncorrect predictions is
the number of correct predictions, and Ntotal predictions is the number of total
predictions or the number of data instances. There are other evaluation
metrics for classification problems such as precision, recall, f1 score. However,
they are omitted since they don’t provide different insights from accuracy in
the experiments.

Accuracy =
Ncorrect predictions

Ntotal predictions

(4.1)

Execution time is measured by wall-clock time to compute a given dataset.
It includes initialization steps where memory pools are prepared.

4.2.3 Hardware

For the experiments, the host machine has AMD 3700X as the CPU. All
procedures of CPU ARF (Java) and CPU ARF (C++) run on the CPU
with 16 threads on 8 cores. Some parts of GPU ARF also run on the CPU,
such as data loading, GPU kernel launches/memory syncing and evaluation.
The machine has a NVIDIA A100, which has 108 SMs. The GPU kernels
explained in the previous chapter run on this GPU.

29



4.2.4 Datasets

In this section, I explain 2 datasets used in the experiments. Those datasets
are hosted in UCI Machine Learning Repository [12].

LED Display Domain Dataset

LED dataset is a dataset used by GVFDT [18] and ARF [14]. The data is
generated synthetically by the generator. In the experiments, I generated
1,000,000 data instances. A data instance has 24 binary attributes and a
target class. There are 10 classes with balanced distributions. 7 attributes
are relevant to the target class and 10% of noise is added to them. 17
attributes are irrelevant. This dataset does not have concept drifts.

Covertype Dataset

Covertype [7] is a dataset used by GVFDT [18] and ARF [14] and other data
stream leaning researches. It has 581,012 data instances. A data instance
has 54 attributes and a target class. There are 7 classes with unbalanced
distributions. This dataset has concept drifts.

4.2.5 CPU ARF implementations

MOA [6] has the original implementation of ARF written in Java. On the
other hand, GPU ARF is written in CUDA C++. I assumed that there is
a considerable overhead on Java in comparison to CUDA C++. Thus, I re-
implemented ARF in C++. Those ARF implementations utilize multi-core
CPUs to train trees in parallel.

Figure 4.1 shows the accuracy and execution time comparison between
CPU ARF written in Java and CPU ARF written in C++. For LED dataset
and Covertype dataset, the C++ implementation is 2.1 times faster and 5
times faster respectively, while keeping the accuracy at the same levels.

Figure 4.1: Performance comparison between Java CPU ARF and C++ CPU
ARF
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For the experiments later in this thesis, only the C++ implementation is
used for the comparison with GPU ARF.

4.3 Experiment Results

The experiments consist of two parts. The first part is for evaluating the
individual techniques of GPU ARF proposed in the previous chapter. The
second part is for comparing the overall performance of GPU ARF with CPU
ARF.

4.3.1 Part1: Evaluations for GPU ARF techniques

In this part, I will experiment with GPU ARF on the following factors to
evaluate the proposed techniques individually.

• Max tree depth

• Scalability for the number of trees

• Batch size

Max tree depth

The limitation of max tree depth was a problem in GPU RF [18] and other
studies that utilized GPU for Hoeffding Trees. GPU ARF avoids this limita-
tion with the dynamic memory allocation explained in the previous chapter.

Figure 4.2 shows the accuracy of GPU ARF for different max tree depths.
For the both of Covertype dataset and LED dataset, the accuracy increases
as the max depth increases.

With the static tree node memory pre-allocation, the max depth was
around 15. It would not be an issue for LED dataset as the accuracy already
converges where max tree depth is under 10. However, this would cause a
substantial regression for Covertype dataset.

With the proposed dynamic tree node memory allocation, it doesn’t ex-
ceed the available GPU memory. This means this strategy doesn’t add any
penalty on the complexity of the mode and the accuracy.

This experiment shows that the dynamic tree node memory allocation
strategy makes GPU ARF applicable for more complicated problems.
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Figure 4.2: Accuracy of GPU ARF for different max tree depths

Scalability for the number of trees

As explained in the previous chapter, the trees of ARF can be trained in-
dependently to each other. Although the both CPU ARF and GPU ARF
train trees in parallel, GPU has more cores than CPU. Therefore, GPU ARF
should be capable of handling more trees than CPU ARF.

Figure 4.3 shows execution time for different number of trees. For the
both of LED dataset and Covertype dataset, GPU ARF shows a capability
to scale out for large number of trees. On the other hand, the execution time
with CPU ARF increases more rapidly than GPU ARF.

Figure 4.3: Execution time for different number of tree

CPU ARF is faster or parity with GPU ARF when the number of trees is
small. The threshold seems to be 16, which is the number of available CPU
threads. This indicates that GPU ARF doesn’t have an advantage in terms
of speed up when the CPU has more threads than the number of trees.
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Batch size

As mentioned in the previous section, the batch size of GPU ARF brings a
trade-off between execution time and accuracy.

Figure 4.4 shows the accuracy and execution time for different batch sizes.
As expected, the execution speed shortens as the batch size increases. On
the other hand, the accuracy decreases as the batch size increases.

However, some results for Covertype dataset don’t align the expectation.
For example, the accuracy at batch size 32 is better than the ones at batch
size 8 and 16. It requires more experiments to understand why this configu-
ration has better accuracy than the expectation.

Figure 4.4: Accuracy and Execution time of GPU ARF for different batch
sizes

4.3.2 Part2: Performance comparison between GPU
ARF and CPU ARF

Lastly, I compare the GPU ARF performance with the CPU ARF perfor-
mance. The GPU ARF performance depends on the batch size as discussed
earlier. I chose 64 for LED dataset and 32 for Covertype dataset as the batch
size. The number of trees is 100 as it’s the default value in MOA [6].

Figure 4.5 shows the accuracy and execution time comparison between
GPU ARF and CPU ARF. For the both of LED dataset and Covertype
dataset, GPU ARF is 7.3 times faster and 3.8 times faster respectively, while
keeping the accuracy at the same levels with CPU ARF.
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Figure 4.5: Performance comparison between GPU ARF and CPU ARF

4.4 Summary

This chapter explained the experiment settings and the experiment results.
For the evaluation metrics, execution speed and accuracy are used. As

same as other data stream learning studies, LED dataset and Covertype
dataset are used in the experiments.

I re-implemented the CPU ARF in C++ to avoid the overhead comes
from Java, which is used for the original ARF implementation. The C++
CPU ARF shows 2 to 5 times faster execution speed with the same accuracy
with the original implementation of ARF written in Java.

In the first part of the experiments, the proposed GPU ARF techniques
were evaluated individually. The dynamic memory allocation allows GPU
ARF to grow enough without being sacrificed by max depth limitation. GPU
ARF shows the higher scalability for the number of trees than CPU ARF.
The trade-off comes from batch size was discussed. And the best batch
sizes were chosen for the datasets. However, in the batch size experiments,
unexpected accuracy regressions were observed, and the root cause is still
unclear.

In the second part of the experiments, the overall performance of GPU
ARF was compared with CPU ARF. It shows that GPU ARF achieves the
3 to 7 times speed up without decreasing the accuracy.
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Chapter 5

Discussions and Future works

5.1 Introduction

The previous chapter shows the experiments of GPU ARF to see how much
speed up it has from the proposed approaches, and compare the performance
with CPU ARF written in C++. Overall, GPU ARF achieved the consider-
able speed up while keeping the accuracy at the same level with CPU ARF.
However, the experiments are done in limited scenarios.

There are some situations where GPU ARF can’t take advantages from
the parallelism of GPU. In this chapter, I discuss in which scenarios GPU
ARF is suitable, or not suitable.

There are other type of problems that are not covered by this thesis, such
as datasets with non-categorical attributes and regression problems. The last
section describes these problems.

5.2 Hardwares

In the previous chapter, I showed that GPU ARF can scale out for the large
number of trees in comparison to the 8 cores/16 threads CPU. However, the
scalability of CPU ARF is limited by the number of CPU cores/threads.
When the CPU has more cores and threads, GPU ARF would not have as
large advantages as in the experiments.

5.2.1 Cloud and High performance computing

As of writing, high-end CPUs for cloud and high performance computing are
capable of serving more threads than the CPU used in the experiments. For
example, Intel© Xeon© Platinum 8380 [2] has 40 cores that can serve 80
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threads. AMD EPYC™ 9654P [1] has 96 cores that can serve 192 threads. If
the situation is in high performance computing or cloud computation, these
high-end CPUs would be sufficient to handle 100 trees.

5.2.2 Embedded systems and mobile devices

On the other hand, a GPU usually has much more cores/threads in an embed-
ded system or a mobile device, where small numbers of CPU cores/threads
are available. It’s also important to utilize all existing computation resources
on the hardware. If the application can utilize a SIMD GPU, the host CPU
can work on other tasks such as receiving data from sensors, networking, file
I/O and so on.

5.3 Complexity of problem

Whether GPU ARF is suitable or not depends on the complexity of the prob-
lem. GPU ARF is suitable more for complex problems that requires many
computations than simple problems for which a simple solution is sufficient.
This section lists up the points related to GPU ARF performance.

5.3.1 Number of trees

For the experiment, I chose 100 as the number of trees. However, the ap-
propriate number of trees depends on the problem: the dataset, the target
accuracy and the required throughput and so on. If the number of trees
can be less than the number of available CPU threads, CPU ARF should be
sufficient.

5.3.2 Number of attributes and classes

LED dataset and Covertype dataset have a large number of attributes and
target classes. These datasets are chosen for the experiments because the
parallelism of GPU can work better for them. When the datasets don’t have
many attributes and target classes, The speedup of GPU ARF would not be
as large as the experiments.

5.3.3 Batch size and concept drift

The speed up of GPU ARF gains from the large batch. If concept drifts
happen quickly, GPU ARF would not be updated as quickly as CPU ARF.
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In this situation, the accuracy would decrease more. GPU ARF is more
suitable for handling large number of data instances at a time with slow
concept drift.

5.4 Robustness for the order of data instances

Since Hoeffding Tree grows as incrementally, the trained model depends on
in which order the model observes the data stream. However, this thesis
experimented with the data streams only in the fixed orders. It would be
important to evaluate how robust the training algorithm is against the order
of the data instances, and identify in which scenarios the training doesn’t
work well.

5.5 Other type of problems

In this thesis, it experiments GPU ARF only with classification problems
with binary attributes. It needs more experiments to apply GPU ARF to
other type of problems.

5.5.1 Non-categorical attributes

As of writing, GPU ARF supports only categorical attributes, and only bi-
nary attributes are used in the experiments. It’s also important to support
numerical attributes to test different type of datasets.

Hoeffding tree for numerical attributes is different from categorical at-
tributes. For categorical attributes, a Hoeffding tree stores the number of
occurrences by attributes and target classes. For numerical attributes, it
needs to store other statistics such as max, min, sum, mean, variance. It also
requires more floating point operations since the observed values themselves
are floating point, while categorical attributes only have integers.

Although it’s feasible to support numerical attributes, mixing categorical
attributes and numerical attributes may cause speed down due to branch di-
vergence. In that case, more advanced GPU block/thread assignment strate-
gies would need to be considered. For example, assigning the same attributes
to the same GPU block would reduce the branch divergence. This is a future
work of this study.
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5.5.2 Regression problems

This thesis discusses only with classification problems. However, there are
many regression problems, where the prediction result is numerical instead
of categorical. The computation required for regression is different from
classification. It needs to study with regression problems to understand how
much speed up GPU ARF can achieve, and what type of regression problems
GPU ARF is suitable.
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Chapter 6

Conclusion

In the chapter 2, I reviewed the background of this thesis. The importance
of data stream learning is explained in the context of the evolution of IoT
devices and mobile devices. It also reviewed the related studies. Although
there are many studies on data stream learning, there are not many studies
with GPU. ARF [14] already showed that multiple CPU cores can parallelize
the computation without sacrificing the accuracy. GPU RF [18] implemented
a stream learning version of random forest using GPU. However, it had a
limitation of the number of tree depth due to memory allocation mechanism.

In the chapter 3, I explained GPU ARF, a GPU version of ARF. Using
memory pool allows GPU ARF to allocate memory for tree nodes at node
splits. In the related works, there is the max depth limitation because the
memory for nodes is allocated statically even for unused nodes. With static
memory allocation, the amount of memory increases exponentially to the
tree depth. GPU ARF removes this limitation. Training trees in parallel
is a natural idea that comes from the multi-core CPU ARF [14]. Batching
data is a common technique for GPU applications to hide the latency of
data transfer between the host CPU and the GPU. However, in the stream
learning scenario, the regression of the accuracy is expected. Calculating all
possible split suggestions is parallelized further by GPU efficiently.

In the chapter 4, I explained the experiment settings, and the results of
the experiments. LED Dataset and Covertype dataset are used in the exper-
iments as other stream learning studies. I re-implemented a C++ version of
ARF because the original implementation in MOA [6] is written in Java, and
the overhead comes from Java was anticipated. The C++ ARF is 2.1 times
and 5 times faster speed than the Java ARF for LED dataset and Covertype
dataset respectively. The relationship between the accuracy and the max
tree depth was measured. This showed that the dynamic tree node memory
allocation allows GPU ARF to be applied to more complicated problem such
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Covertype dataset in this thesis. GPU ARF shows better scalability for the
number of trees than CPU ARF with multi cores. The performance with
different batch sizes is also experimented to find the suite configurations for
LED dataset and Covertype dataset. The experiments with some batch sizes
showed unexpected accuracy regressions. It requires further investigation for
this issues. However, overall GPU ARF achieved the considerable speed up
against CPU ARF written in C++, while keeping the accuracy at the same
level. GPU ARF is 3 to 7 times faster than the CPU ARF written in C++,
and is 15 to 18 times faster than the original CPU ARF written in Java.

In the chapter 5, I discussed with the experiment results, and future
works. With a high-end CPU that has many cores/threads, there is not
large advantage of using GPU for ARF. On the other hand, GPU ARF is
suitable for machines with a CPU that doesn’t have many cores/threads. In
an embedding system, it is also important to utilize all available resources
on the hardware. Therefore, GPU ARF is suitable. There are problems that
are not covered by this thesis. The performance of GPU ARF probably have
different characteristics with datasets with numerical attributes or regression
problems.

Overall, this thesis achieved the objectives set in the chapter 1.

1. Speed up ARF algorithm with GPU

GPU ARF is 3 to 7 times faster than ARF with multiple CPU cores
optimized in C++.

2. Resolve the max tree depth limitation that GPU RF has.

The limitation was resolved by the dynamic memory allocation strategy
with memory pools. While the max tree depth limit was around 15
with the static pre-memory allocation, GPU ARF didn’t need to set
any limitation on tree depth.

3. Keep the accuracy

The speed up was achieved without decreasing accuracy dramatically.
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