
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Few-Shot Learning Framework for Planar

Pushing of Unknown Objects

Author(s) Gao, Ziyan; Elibol, Armagan; Chong, Nak Young

Citation Intelligent Service Robotics, 15: 335-350

Issue Date 2022-05-21

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/18388

Rights

This is the author's version of the work.

Copyright (C) 2022, Ziyan Gao, Armagan

Elibol, Nak Young Chong, under exclusive

licence to Springer-Verlag GmbH Germany, part

of Springer Nature. The version published by

Springer-Verlag is available at

www.springerlink.com,

https://link.springer.com/article/10.1007/s11

370-022-00425-7

Description

Noname manuscript No.
(will be inserted by the editor)

A Few-Shot Learning Framework for Planar Pushing of Unknown
Objects

Received: date / Accepted: date

Abstract Robot planar pushing is one of the primitive ele-
ments of non-prehensile manipulation skills, and has been
widely studied as an alternative solution to complex ma-
nipulation tasks. To transfer this skill to novel objects, rea-
soning the pushing effect on object motion is important for
selecting proper contact locations and pushing directions.
However, complex contact conditions and unknown physi-
cal properties of the object cause difficulties in reasoning.

In this work, firstly, we present a new large planar push-
ing dataset that contains a wide range of simulated objects,
and a novel representation for pushing primitives for the
data-driven prediction model. Secondly, we propose a com-
putation efficient planning method that employs a heuris-
tic to reduce the possibility of making sliding contact be-
tween the pusher and the object. The prediction model and
planning method were evaluated both in simulation and real
experimental settings. The results show that the prediction
model purely trained using our simulation dataset is capa-
ble of predicting real object motions accurately. The push
planning method effectively reduces the number of pushes
required to move unknown real objects to target positions.

Keywords Planar Pushing · Path Planning · Non-prehensile
Manipulation · Data-driven Automation

1 Introduction

Planar pushing gives a simple yet efficient way to change
the state of an object. There are many studies to apply push-
ing in complex tasks such as object placement [9], object
singulation [15], or robotic grasping [7, 10, 12]. However,
it is difficult for robots to efficiently apply this skill to the
scenario where the environment and the manipulated object
are both unknown. To apply pushing manipulation to novel

objects, a prediction model is needed to reason the push-
ing effect on object motion. Recently, Stuber et al. [42] re-
viewed the methods for predicting the motion of the pushed
object with machine learning-based approaches that benefit
from their enhanced performance on modeling complex ob-
ject motions with fewer assumptions. However, there exist
several challenges with machine learning models to gener-
alize to novel object behaviors. Firstly, it is commonly rec-
ognized that the scale and quality of the dataset play an im-
portant role in dealing with the generalization issue. But the
large scale and diverse datasets are difficult to get, as col-
lecting data using a real robot is extremely expensive and
time-consuming. Until now, several pushing datasets have
been presented [5, 51]. However, the datasets contain a lim-
ited number of objects that are mostly similar in shape and
size. In practice, an infinite number of real-world objects and
their unknown physical properties make machine learning
models difficult to generalize. Other than that, an appropri-
ate representation for a machine learning model is also re-
quired in order to scale to objects with various shapes, sizes,
and parameters [5].

This work extends our previous work in [24] to deal
with planar pushing in two aspects: push affordance predic-
tion and push planning. The term push affordance, borrowed
from Kloss et al. [30], refers to the resultant object motion
of robot pushing. The push planning method aims to push a
novel object to the target position with the help of the pre-
dicted push affordances.

There are some studies showing that the knowledge learned
from simulation can be transferred to real settings with (or
without) a small amount of real data [6, 30, 32, 34, 49]. De-
pierre et al. [11] and Byravan et al. [6] presented a large-
scale dataset collected in a simulation environment stress-
ing the advantage in both scale and diversity. Motivated by
these works, we release a large-scale, contact-rich pushing
dataset called SimPush to deal with the push affordance pre-

2

Fig. 1 SimPush: Large-Scale Planar Pushing Dataset available at https://github.com//SimPush

diction problem. The SimPush dataset contains 69 objects
(depicted in Fig. 1) with diverse dimensions and shapes that
appear either convex or concave. A vast variety of physical
properties are considered; surface and contact frictions, the
center of mass (CoM), mass, and moment of inertia of the
object. These properties are arranged in different combina-
tions to change the motion of the object pushed at various
contact points in different directions leading to more than
2 million pushes in total. Then, we adopt a few-shot learn-
ing model to predict push affordances. The few-shot learn-
ing model leverages a small set of pushing priors aiming
to infer pushing affordance for other pushing actions. This
model can help deal with an infinite number of real-world
objects using a limited dataset. Finally, we propose a com-
pact method for representing pushing primitives to preserve
the spatial relationship between the object and the pusher. It
helps the learning model encode the relation between object
state changes and the applied action. We trained the few-
shot learning model integrated with the proposed represen-
tation method using the SimPush dataset, and then empir-
ically evaluate the model performance in simulation and a
real setting. The results show that the proposed method not
only outperforms existing models but also demonstrates the
robust prediction of unknown object motions.

For push planning task, we use the trained push affor-
dance model to predict the push affordances for a set of
sampled pushing actions. After that, we propose to employ
a heuristic method aiming to reduce the possibility of mak-
ing sliding contact between the pusher and the object. Given
a specific task, we design a novel cost function and a small
set of pre-selected efficient pushing actions to evaluate all
pushing actions. The efficiency of the planning method is
measured by the following two aspects; the first one is the

accumulated movement of object, since larger accumulated
movements are most likely a result of sliding contacts be-
tween the pusher and the object during pushing. The second
one is the number of pushing steps. The more pushing steps
executed, the less efficient the planning is. Through exten-
sive simulation and real robot experiments, our method is
demonstrated to be robust against changes in the object’s
pose, size, and shape.

To summarize, the main contributions of this work are:

– A large-scale and diverse planar pushing dataset that con-
tains convex and concave objects with different physical
properties.

– A push affordance prediction model and a compact state
representation for planar pushing.

– A push planning method integrating a push affordance
prediction model to translate the novel object to the de-
sired position efficiently.

– Extensive evaluation and comparison of the proposed
method by conducting a series of experiments in both
simulation and real settings.

2 RELATED WORK

We categorized push-related research under four different
categories; Dataset, Model Identification, Prediction Model
for Planar Object Motion, and Planning.

2.1 Dataset

Learning-based methods are capable of dealing with unseen
objects using various datasets [5, 19, 33, 39, 47] for train-

https://github.com/lingerjp/SimPush

A Few-Shot Learning Framework for Planar Pushing of Unknown Objects 3

ing. Yu et al. [51] made great effort on collecting a pla-
nar pushing dataset using a high fidelity real robot system.
They collected pushing data using 11 objects over 4 dif-
ferent surfaces with different pushing velocities. However,
the number of the objects was limited and the influence of
the physical properties of the objects to the resultant mo-
tion was not fully studied. Recently a pushing dataset called
Ommipush [5] was presented. It contains objects formed by
combining 4 different magnet sides and using extra mass to
change object weight and CoM. However, objects generated
using magnets lacks a variety in shapes due to side-sharing
and limited physical properties. Compared with the afore-
mentioned dataset, our SimPush dataset is characterized by
the large-scale diverse physical responses to pushing action.
There are other push datasets for different purposes. Finn et
al. [18] proposed a pushing dataset that contains 57 thou-
sands pushes to directly model the pixel motion in the im-
age frame. Eitel et al. [17] proposed a pushing dataset for
object singulation task. Pulkit et al. [1] presented a pushing
dataset collected in a self-supervised way for learning in-
tuitive physics. However, these datasets only contain visual
and robot pushing information and the physical properties
of the object are not considered.

2.2 Model Identification

Different studies have been conducted to predict object mo-
tion incorporating system identification methods [21,30,41,
44, 46, 48, 52] or to estimate system parameters through ob-
serving object motion [2, 3, 32, 38, 39, 46]. For the former
studies, the object physical properties are usually either ex-
plicitly estimated [30, 46] or implicitly represented by neu-
ral networks [21, 44, 48, 52]. Specifically, Wu et al. [46] fed
explicitly estimated physical parameters as input to an ana-
lytical model of physical system to estimate object motion.
In [30], the Kalman filter was used to estimate object physi-
cal properties (such as the CoM, friction, mass, and others).
However, the prediction accuracy was related to the qual-
ity of the estimation that is likely to be intractable for the
objects having complicated contact phenomena. In addition,
Song et al. [41] proposed to learn the coupled mass-friction
parameters through minimizing the simulation-reality gap.
This method needs to keep a set of hypothesized mass and
friction models, whereby the local optimality and the ap-
proximation made in the simulator limit its capability. On
the other hand, Fragkiadaki et al. [21] predicted ball motion
under a pushing force by leveraging the most recent glimpse
of the object-centered image patches. Wang et al. [44] pro-
posed to collect the tactile feedback data when executing
predefined motion to implicitly encode physical properties
of novel objects. For the latter studies, Allevato et al. [2, 3]
used a neural network to tune the parameters of the physics
engine based on the difference in observation from the real

object motion, leading to a more accurate simulation. How-
ever, it is limited only to known objects. Mavrakis et al. [38]
proposed to estimate inertial properties for the object by pla-
nar pushing and data-driven models. In our research, instead
of identifying object physical properties, we propose to use
the few-shot learning model leveraging a few pushing priors
to predict object motion for pushing action.

2.3 Forward Model for Planar Object Motion

Mason [37] proposed an analytic model for quasi-static pla-
nar pushing. Goyal et al. [26] introduced the limit surface
reasoning the frictional forces with object motion. Kloss et
al. [31] proposed a hybrid model combining a data-driven
deep learning model and the analytical model adopted in [36].
These studies relied on the assumption that friction is known.
Several studies [14, 16, 18, 43] put predicting action effects
into the video prediction scenario with the self-supervised
learning method. Hermans et al. [28] proposed a regression
model to evaluate the pushing effects for a set of contact
points. On the other hand, Li et al. [34] proposed a data-
driven method utilizing the experience of push interactions
with novel objects to implicitly learn a forward model en-
coding the relationship between the action and object state.
However, the accuracy of the learned model was not inves-
tigated. In this work, we adapt their Push-Net model to ex-
plicitly learn to predict the state of the object pushed. Bauza
et al. [5] and Goo et al. [25] used Attentive Neural Process
(ANP) [29] to learn the object dynamics without consider-
ing object shapes. They predicted the action effect on the
entire state of the object, which might not be easily obtained
in real scenarios.

2.4 Planning

Some studies focus on learning an inverse model which aims
to find the proper action for achieving the target without rea-
soning the action effects [1, 22, 23, 53]. Specifically, Zeng
et al. [53] proposed the transporter network to infer object
displacement and robot action through finding the corre-
spondence of the deep features. However, dealing with out-
of-distributed objects might be difficult because of the un-
known physical properties. Apart from that, Lin et al. [35]
and Arrudaet al. [4] employ the model predictive path in-
tegral approach to optimize the pushing action. The cross-
entropy method is also intensively used in [15, 45, 45, 50].
These methods need roll-out simulation from current state
which is computationally expensive. Cosgun et al. [9] uti-
lized planar pushing to create space for placing objects on
a cluttered surface. Specifically, they propose a heuristic,
which favors less overlap with the object to be placed, to
simplify the push plans. Cosgun et al. [9] and Dogar et al. [12]

4

employ a simulator to predict pushing effect on the objects
that exist in the scene which are assumed to be known. In
contrast, our push planning method deals with unknown ob-
jects. Florence et al. [20] proposed to build the policy model
upon the visual correspondence model to speed up train-
ing. This method seems promising but re-training the pol-
icy model is needed to push a new object. In this work,
different from the aforementioned methods, we propose a
computation-efficient planning method that integrates the pre-
dicted push affordances to reduce the possibility of sliding
contact between the pusher and the object, leading to effi-
cient sequences of pushing novel objects to the target posi-
tions.

3 PUSHING SIMULATION DATASET: SIMPUSH

Fig. 2 Planar pushing simulation environment developed in Cop-
peliaSim.

3.1 Simulation Environment

The simulation environment was created with Cop-
peliaSim [40] as shown in Fig. 2. A spherical pusher with
a diameter of 0.95cm is attached to a cylinder with a length
of 20cm to be the pusher, while a 6-DOF articulated manip-
ulator holds and controls the position of the pusher. We cre-
ated 5 flat floor surfaces with various coefficients of friction.
Each object is pushed across the floor. There are mainly four
physics engines available: Bullet, ODE, Vortex, and New-
ton. We compared the performance of the engines in the as-
pect of stability and repeatability. For the stability test, we
assigned different physical properties to the same objects.
The Vortex engine has proven the most robust against the
assigned physical properties. For the repeatability test, we
applied the same pushing action to the objects a number of
times with low linear velocity causing a change in the state
of the objects. We found that both the mean and standard

deviation of the change were minimum when using the Vor-
tex engine. Therefore, we choose Vortex Studio’s physics
engine [8] to simulate the dynamic interaction between the
pusher and diverse objects.

3.2 Objects

We designed 69 objects that come in a variety of shapes,
either convex or concave. The objects are diverse in size,
ranging from 3.5cm× 6cm to 20cm× 17cm. For each ob-
ject, we make 40 different combinations of physical proper-
ties, including the contact friction of the side surface (µc),
mass (M), inertia (I, calculated by scaling the default iner-
tia tensor given by the simulator), and CoM. The range of
each physical properties are shown in Table 1. The CoM of
the object is defined by taking the following steps: First, the
object mask is segmented from an image captured using a
depth camera. Since the CoM of the object is located inside
the convex hull of the object mask, we randomly sample a
position inside the convex hull as the CoM location. Then,
we specify the CoM location relative to the object frame at
the centroid based on the transformation matrix between the
camera and the object frames.

We then assign specific physical properties and 5 differ-
ent frictional surfaces (µs) to each object. Finally, we have
200 different contact dynamics for each object.

Table 1 Summary of parameters used in SimPush

Surface friction coefficients (µs) 0.2, 0.4, 0.6, 0.8, 1.0
Contact friction coefficients (µc) 0.5, 1.0
Number of center of mass for each object 10
Ratio range of object moment of inertia [0.01, 100]
Range of object mass [50g, 400g]
Number of pushes for each object 180
Number of shapes 69

Fig. 3 Pushing samples for different shapes. For each shape, 17-18
contact points are uniformly sampled across the object perimeter

, each of which has 10 different push directions. The line with
different color represents different pushing direction w.r.t. the contact

normal direction.

A Few-Shot Learning Framework for Planar Pushing of Unknown Objects 5

Algorithm 1 Data Collection Scheme
1: procedure COLLECT(object, µs, CoM, µc, I,M)
2: Set surface friction µs

3: Load object, determine initial object state Oinit, set CoMs,
µc, inertia I , and mass M .

4: Sample m points {cpi}i=1,...m uniformly across the object
perimeter.

5: Calculate n push directions {dij}j=1,...,n in range of
[−75°, 75°] w.r.t. the normal of each contact point {cpi}i=1,...m.

6: cache = []
7: cache.append(Oinit)
8: for cpi in {cpi}i=1,...m do
9: for dij in {dij}j=1,...,n do

10: Reset object to Oinit.
11: ϵ←Random-Sample() ▷ small perturbation
12: Move pusher to cpi ± ϵ.
13: Push object 3cm along dij .
14: Get object state Oij

15: cache.append(cpi ± ϵ, dij , Oij)
return cache

For each object with combinations of physical proper-
ties and µs, push data are collected as given in Algorithm
1. Each run returns around 180 pushes. In this work, we as-
sume quasi-static interactions, where the inertial force is in
the suborder of the frictional forces. The velocity is con-
trolled by the displacement per time step. We set this dis-
placement to be 0.3 mm with the time step of 50 ms, yielding
a pushing velocity of 6 mm/s. We assume that this velocity
is small enough to satisfy the quasi-static condition. In or-
der to verify if this parameter setting produces both reliable
and repeatable object motions, we chose a rectangular object
and selected 18 pushing points uniformly along the object
perimeter. The robot pushed each point 100 times with the
same set of randomly selected directions with 3 cm forward.
We observed that the resultant position and orientation of
the object were all close enough for each pushing point. The
start location of the pusher can be either in contact or not in
contact with the object. Fig. 3 shows the pushing samples
on four example objects in SimPush. We repeat this proce-
dure for each object until the simulation goes through all the
combinations of physical properties and surfaces. We finally
create more than 2 million pushes. For each push sample, the
following information is recorded.

– RGB-D Image: A camera mounted on top of the ta-
ble operates in orthographic projection mode. We obtain
the corresponding mask image by re-projecting the point
cloud to the image plane with 224× 224 resolution.

– CoM: We record the CoM of the object before and after
pushing. Note that all the objects have the same thick-
ness, and the locations of CoM are given in the image
frame in the xy-plane. One-half the thickness is assigned
to the z coordinate of CoMs of the objects.

– Action: Actions are represented by the starting and ter-
minating position of the pusher in the image frame.

– Object Pose: We record the pose of the object before
and after pushing.

– Properties: Mass, inertia, contact friction, and surface
friction are stored for the implementation of the baseline
model.

In Table 2, SimPush is compared with the existing datasets.

Table 2 Comparison with existing push datasets

Dataset objects surfaces pushes Platform Size
SimPush 2760 5 180 Simulation ∼2M
Omnipush [5] 250 1 250 Real ∼63K
Yu [51] 11 4 6000 Real ∼264K

4 METHODS

We formulate the push affordance prediction problem as fol-
lows: given m pushing priors {Ai, ∆Oi}i=1,...,m and n test
data {Aj}j=1,...,n, A is the pushing actions, and ∆O is the
changes in object state represented by ∆x,∆y,∆θ. We as-
sume all the object poses in pushing priors and tests before
pushing are the same. The problem is how to efficiently in-
corporate the pushing priors to predict the ∆O for test ex-
amples. Given the target and initial object pose, and a set of
push actions with the corresponding push affordances, the
push planning problem is how to iteratively select the push
action based on the target direction and the push affordances
to optimize the number of required pushing. In this section,
firstly we introduce the representation for pushing and the
pre-processing for input. Then we introduce the few-shot
learning model. Finally, we explain the method used in push
planning.

4.1 Pushing Primitive Representation

4.1.1 Action maps

The way of describing pushing primitives plays an essential
role in modeling the push affordance. Pushing primitives can
be described by the pusher’s starting and terminating posi-
tions [25,30,31,34], commonly represented by a 4×1 vector
[xs, ys, xt, yt]

⊤ in which the first two dimensions are for the
starting position and the other two dimensions for the termi-
nating position.

However, we found that this simple representation tends
to make the learning model to be overfitting the training
dataset. This might be due to the fact that the total num-
ber of object shapes is still limited even though the number
of collected pushing actions in the dataset is large. In this
work, we propose a representation for the pushing action

6

Fig. 4 Action maps: The first one is the mask image and the applied pushing action, the middle two images are the action maps generated based
on start pushing position and end pushing position respectively. The last image is to visualize the difference between action maps.

that provides better generalization capability to novel object
shapes. Specifically, we use the distance transform formula-
tion defined by Eqs. 1 through 3 to create two images with
the same resolution as mask images called action maps. The
term c in Eqs. 1 and 2 is the normalization term that depends
on the size of the image used. The first action map is created
based on the pushing start position; the closer to the starting
position, the higher pixel value assigned. The second action
map is created based on the pushing end position; the closer
to the ending position, the lower pixel value assigned. The
first action map guides the model to focus on the geometric
features at the contact point. The pushing direction and mag-
nitude can be inferred from the difference between the two
action maps. Fig. 4 shows an example of the generated ac-
tion maps and the visualization between those action maps.

s(x, y, xs, ys) = e−
d(x,y,xs,ys)

c (1)

t(x, y, xt, yt) =
d(x, y, xt, yt)

c
(2)

d(x, y, xp, yp) =
√
(x− xp)2 + (y − yp)2 (3)

4.1.2 Push Embedding Model

To maintain the spatial relation between the applied pushing
action and object state, and to help the learning model focus
on the local contact feature and pushing, we stack the object
mask and action maps along the channel axis to be the one
of the inputs to pushing embedding model. As mentioned at
the beginning of this section, the pushing priors contain ob-
ject mask, applied actions and the resultant object motions.
The pushing tests only contain object mask and the applied
actions. There is a slight difference in embedding between
pushing priors and tests. The proposed pushing embedding
model is shown on the left in Fig. 5. For embedding push-
ing priors, a Convolutional Neural Network (CNN) takes the
stacked object mask and action maps as input and outputs
fd, while ∆O is reshaped to the same dimension as fd by

the Fully Connected Network (FCN). After that, fe is ob-
tained by concatenating them together. Notably, only a CNN
model is needed to embed pushing tests to fd.

For the CNN part, we use 5 pre-trained layers of
ResNet50 [27] to construct the base structure. On top of pre-
trained layers, we build a 1 × 1 2-D convolution layer and
one FCN. CNN outputs a 256-D feature vector fd. FCN for
reshaping ∆O is constructed by two layers with the same
dimension of 256 with ReLU activation function.

4.2 Proposed Learning Model

We develop the push affordance prediction module based
on ANP [29] to model the causality between the applied
pushing action and the resultant object motion. Fig. 5 shows
the proposed push affordance prediction model (middle and
right). The main motivation behind using ANP is that, firstly,
ANP is a powerful model for regression tasks. It can predict
an arbitrary number of test data based on an arbitrary num-
ber of priors while keeping computation complexity linear
w.r.t. the number of priors. Then, it has two self-attention
modules to boost the representation of the priors. Two self-
attention modules boost each isolated prior by integrating
the attentions calculated with all the priors, but the second
one performs the mean operation upon the output to obtain
a permutation-invariant representation. As a result, the first
attention module outputs a representative feature for each
prior, while the second attention module only outputs a sin-
gle representative feature given all priors. In addition, ANP
has a cross-attention module to imitate the functionality of
the kernel in the Gaussian process to compute the similar-
ity between tests and priors to improve fitting performance.
This is also reasonable in our application scenario, since
similar pushing actions should have similar resultant object
motions. Finally, a multi-layer perceptron (MLP) is used to
predict the corresponding label for test data. In our model
architecture, there are also two self-attention modules and
one cross-attention module with the same structure as ANP.
However, we replace the MLP with an attention module
named as cascaded residual attention. The cascaded resid-

A Few-Shot Learning Framework for Planar Pushing of Unknown Objects 7

Fig. 5 Proposed push embedding model (a) and encoder-decoder learning model (b and c). In push embedding, CNN takes the stacked object
mask and action maps as input and encodes the spatial relations between the object state and action. FCN projects ∆O to the same dimensional
space as fd. Residual attention module is utilized to selectively combine them to output fe.

Fig. 6 Cascaded residual attention module. the long gray blocks are
the fully connected layers.

ual attention selectively combines different source inputs to
enhance inference capability.

The cascaded residual attention model consists of two
residual attention modules. For each residual attention, it
takes two feature vectors of the same length to output a rep-
resentative feature vector of two inputs with the same size.
The process can be represented by Eqs. 4 and 5.

Fattn(fin1, fin2) = tanh(concat(fin1, fin2)W
T + b) (4)

fout = Fattn(fin1, fin2) · fin2 + fin1, (5)

where tanh is the activation function. The cascaded residual
attention model in decoder is shown in Fig. 6

Let us assume that there are m pushing priors and only
one test. During encoding, the pushing priors are fed into
the proposed push embedding module and self-attentions to
get {fs}m and fm, where fm is the element-wise mean of
the output of the second self-attention module. During de-
coding, the test is embedded to fd, then the cross-attention
module takes fd and {fs}m as input to output fc. After that,
fc, fd, fm are fed into a cascaded residual attention module
and FCN to output the predicted object motion for the test.

In order to measure the uncertainty of the prediction, we
design the FCN in decoder to predict both object motion and

prediction uncertainty by outputting mean and standard de-
viation. Since the standard deviation must be a non-negative
real number, we add a ReLU layer after the linear layer for
the uncertainty. We use non-negative log-likelihood as the
loss function to minimize the prediction error.

4.3 Planning

Fig. 7 Pushing planning flowchart given the object’s initial and tar-
get poses. A few prior pushes are collected for encoding the object
dynamics. Then, the push affordance map is generated by the trained
model to predict the effect of the representative actions. After that, the
representative actions are ranked based on the translating effect. The
top ranked actions are selected as candidates of the efficient actions.
Finally, the non-maximum suppression method is utilized to get the
efficient actions. The proposed cost function quantifies each represen-
tative actions. Then we sample an action among the top ranked actions
considering uncertainties associated. This procedure will continue un-
til the pose error between the current and target state meets the given
criterion.

8

Planning is to push the object from its initial pose to the
target within pre-specified steps as shown in Fig. 7. Before
starting the planning process, several pushes are executed
to interact with the object and these interactions are fed into
the few-shot learning model to encode object dynamics. The
push affordance map specifies the object pose as well as the
effects associated with the representative actions. It is cal-
culated only one time and will be reused multiple times un-
til the planning task ends. In the phase of push affordance
map generation, we sample multiple points on the outline of
the object mask and take 5 directions w.r.t. the surface nor-
mal (0°,±30°,±60°) as representative actions {ar}n similar
to [30]. Then the push affordance map is generated using the
prediction model to predict the push affordance for all rep-
resentative actions.

In the phase of Efficient Action Selection in Fig. 7, we
select a set of candidates for the efficient actions from the
representative actions. Those candidates efficiently translate
the object, causing small changes in the object’s orienta-
tion. However, in practice, there are many candidates sim-
ilar in contact position as well as pushing direction, which
implies that we can make some calculations unnecessary.
Furthermore, the candidates with a large amount of uncer-
tainty should not be included in the efficient action set. We
therefore sort the action candidates based on the predicted
uncertainties. Then using Non-Maximum Suppression, we
filter out candidates similar in contact position or ones with
large uncertainties. The remained actions are referred to as
the efficient actions denoted by {a∗}m.

In the planning procedure, in each pushing step, an ac-
tion is selected by a greedy planner minimizing the proposed
function defined in Eq. 6. The core idea of the proposed
method is to increase the priority of the actions in efficient
action set {a∗}m in successive pushing steps so as to re-
duce the possibility of sliding contact between the pusher
and the object. Fig. 8 explains the idea of the cost function.
Firstly, we find the action that are most likely translate the
object to the target among {a∗}m using Eq. 7. vp(ai) repre-
sents the predicted object displacement vector for action ai.
tvd is the required object displacement vector calculated by
subtracting the object’s current position vector from its tar-
get position vector. ta∗ is the action that maximizes the dot
product between vp(ai) and tvd. Meanwhile, we calculate
the expected object displacement after executing the push-
ing action ai, represented by t+1vd|ai

in Eq. 8. If the mag-
nitude of t+1vd|ai

is 0, the object can be translated to the
target position exactly by executing ai. After that, we cal-
culate the predicted object displacement vector for ta∗ after
executing ai using Eq. 9. θp(ai) in Eq. 9 represents the pre-
dicted object rotation for ai. R(·) returns a 2 × 2 rotation
matrix. Finally, we compute the cost for each pushing ac-
tion ai in the representative action set {ar}n using Eq. 6.
The first term is the same as Eq. 8. The second term is the

Fig. 8 Illustration of the proposed planning method. ai is the pushing
action applied to the object at the current time step t. vp(ai) and tvd
are the predicted and expected object displacement, respectively, at t.
ta∗ is the action selected based on Eq. 7. t+1vd|ai

is the expected
object displacement at t+1 time step, when applying ai calculated by
Eq. 8. t+1vp|ai

is the predicted object displacement, when applying
ta∗ at t+ 1 time step by Eq. 9.

.

λ weighted cosine similarity between t+1vd|ai
and t+1vp|ai

.
This term plays a core role in adjusting the object’s orien-
tation so as to increase the priority of the selected efficient
action ta∗. If λ is high, the planner will pay much attention
to adjusting the object’s orientation, which turns out to be
inefficient. In this work, we normalize the first term by the
mean magnitude of predicted object displacement and set λ
to 1. The planning procedure will be terminated if the posi-
tion error meets the requirement or the number of pushing
steps exceed the requirement.

ϕ(ai) = ∥t+1vd|ai
∥ − λ

t+1vp|ai
· t+1vd|ai

∥t+1vd|ai
∥∥t+1vp|ai

∥
(6)

ta∗ = arg max
ai∈{a∗}m

vp(ai) · tvd (7)

t+1vd|ai
= tvd − vp(ai) (8)

t+1vp|ai
= R(θp(ai)) · vp(ta∗) (9)

5 EXPERIMENTS

5.1 Training Dataset

As a training step for the few-shot learning model, we create
a dataset that consists of {M,priors, test, label} tuples. For
each tuple, M represents the object mask specifying the ini-
tial object pose. Object mask is obtained by cropping orig-
inal mask image around the object center with (100, 100)

pixels, as it should fully include the biggest object in Sim-
Push. The biggest object occupies around 90 × 90 pixels
in the image frame. The pushing priors contain a series of
pushing actions with known effects on the changes in object
state, while the test contains actions and the label contains
the outcome of test actions. In each tuple, all of the actions
are applied to the same object with the same pose.

A Few-Shot Learning Framework for Planar Pushing of Unknown Objects 9

In SimPush, there are about 180 pushes for each ob-
ject with specific physical property. For generating the train-
ing dataset, We randomly select 30 pushes to form a tuple
from the 180 pushes. For each tuple, the orientation of ob-
ject mask is randomly selected. Twelve of pushes are used
as pushing priors and the remaining ones are the test actions
and the corresponding labels. This procedure is repeated 50

times for each object. Because there are 200 different phys-
ical properties for each object shape, we obtain around 10K
tuples for each object shape. We use 57 shapes for training
and 12 shapes for testing. In total, the training set contains
more than 570K tuples and the test set contains around 120K
tuples.

5.2 Baseline and Ablation Models

5.2.1 Baseline models

We compare our model with the following baseline models.

– NaiveCNN takes all the features containing the object’s
mask image, action maps, a 8-D vector which consists of
position in object mask, location of CoM, surface fric-
tion µs, contact friction µc, mass, and a scale ratio of
pre-specified nominal inertia as input and outputs the
∆O. It consists of three sub-modules: The first one is
a convolution network the same as the one in the push
embedding module. The second one is a fully connected
layer that has 8, 128, 256 dimensions to process low-
dimensional vector. At the end, we use another FCN
with 512, 256, 128, 3 to predict object motion.

– Push-Net takes historical pusher-object interactions into
consideration to encode the transformation of the object
state. We adapt it to explicitly predict object motion, tak-
ing 18 object masks and actions as input and outputting
the action outcome for the current object state. We also
add the loss term of the CoM to the loss function [34].

5.2.2 Model Ablations

We investigate contributions of object mask, action maps,
and attention layers to the proposed model. We implemented
the following three ablation models.

– Model I (feature) is used to find out how much the ob-
ject mask contributes to the object motion prediction. We
replace the push embedding modules with two 3-layer
FCN modules of sizes (7, 128, 256) and (4, 128, 256),
respectively. The input for embedding pushing priors are
7-D vector which consists of 4-D action vector and 3-D
vector representing pose changes in object state. while
the input to the embedding modules of the test only con-
tains action vector. We keep other settings the same as
the proposed model.

– Model II (without action maps) is used to show the
importance of action maps. Actions are represented by
a 4-D vector instead of action maps. In order to reuse
pre-trained layers of ResNet50, we tile the object mask
into 3 channels. Push embedding module takes the tiled
object mask and action vector as input to output a 256-D
vector. We keep other settings the same as the proposed
model.

– Model III (without residual attention module) is used
to show the contribution of residual attention modules of
the decoder. We directly concatenate fm, fq, fc together
and feed them into MLP to predict object motion.

5.3 Training

We implemented all the models using PyTorch. We set the
batch size to 128 for NaiveCNN and 32 for other models.
The Adagrad optimizer [13] was used, where the learning
rate was set to 0.001 with exponential time decay. For the
baseline and ablation models, we used mean squared error
as the loss function, since we only compare the performance
on predicting pushing action effect. We stopped training at
the 20th epoch for all models, as there were no significant
changes in the loss curve thereafter. The training was con-
ducted using an NVIDIA GTX 3090 GPU.

5.4 Real Experiments

Fig. 9 Real experimental setting.

We evaluate the proposed object motion prediction
model in an experimental setting using the XArm 5 Lite
robot as shown in Fig. 9. The robot arm is equipped with the
in-house built pusher and an RGBD camera (Intel RealSense
D450) mounted at the distal end of the arm. We generate a

10

Fig. 10 Different lead block positions ((a)-(d)) and surface frictions
((e) carpet, (f) foam, and (g) cloth)

Fig. 11 Real novel objects used in our experiment.

point cloud from the camera and re-project it to the surface
where the object is placed to get the object mask.

For the first experiment, we 3D printed a CoM control-
lable box of size 14× 7× 6cm, with 4× 8 grids inside the
box as shown in Fig 10. We used 3 different surfaces made of
artificial carpet, foam, and cloth having different friction co-
efficients and textures. We opted 4 different patterns of lead
block positions in the box changing its CoM and pushed the
box across the surfaces. The box has around 200 grams, and
each lead block has approximately 80 grams. For each com-
bination of CoM pattern and surface, the pusher executes a
linear motion with 3cm to push the object 30 times at dif-
ferent contact points and pushing directions. Finally, we col-
lect 30× 3× 4 pushes for all the combinations of CoM set-
tings and surfaces. We select 12 pushes as the pushing priors
and the remaining ones as the test for each CoM setting and
surface combination, using the model purely trained by the
simulated data to predict the pose change of the pushed ob-
ject. For the second experiment, we collected pushes for the
three unknown objects shown in Fig. 11. They are complex
in terms of shape and frictional contact with the floor sur-
faces. We push each object 30 times over the carpet surface,
while keeping other parameters the same as the first experi-
ment.

5.5 Planning

5.5.1 planning in simulation

Fig. 12 Test objects used for planning simulation.

Firstly, we evaluate the proposed planning method in the
simulation environment using 10 different objects shown
in Fig. 12, each of which has 40 different physical prop-
erties including the CoM, inertia, weight, and contact fric-
tion. We conduct 20 push experiments for each object with
specific properties that reach up to 8K push experiments in
total. Each push experiment is defined by the distance be-
tween the initial and target positions of the object and the
direction approaching the target. The initial position and ori-
entation are kept the same and the distance is set to 300

millimeters, while the direction is uniformly sampled from
(−180°, 180°). The pushing task is considered as success if
the position error is less than the threshold within 14 push-
ing steps, otherwise as having failed. We choose 14 steps, as
the mean translation distance per pushing is 22.2 millimeters
when the pushing directions lie in the range of (−60°, 60°)

w.r.t. the surface normal direction of the contact. The thresh-
old was set to 3cm the same as the pushing length of an in-
terval. The accuracy is the ratio of the total number of push-
ing tasks completed with a number of pushing steps lower
than the threshold to the total number of conducted pushing
tasks for each object.

Before the planning procedure, the robot interacts with
the object a few times. Fig. 13 illustrates an example of
the push affordance map generation procedure mentioned
in Fig. 7. The robot pushes the object with unknown phys-
ical properties 12 times at different contact points with a
direction sampled from (−60°, 60°) w.r.t. the surface nor-
mal direction. Each push length is 3cm. Then, the applied
pushing action and the resulting changes in object pose are
used as the pushing priors to infer the resulting object mo-
tion and the prediction uncertainty for the representative ac-
tions {ar}n. As mentioned in 4.3, we used 5 different push-
ing directions w.r.t. the surface normal vector. We used 500

representative pushing actions in total, and the push affor-
dances can be efficiently calculated on GPU in less than 1

second. Based on the push affordances and uncertainty pre-
dicted, and the top 100 representative action candidates, we

A Few-Shot Learning Framework for Planar Pushing of Unknown Objects 11

Fig. 13 Illustration of pushes: (a) encoding object dynamics, (b)-(g) generated push affordance map. Twelve pushes are conducted around the
contour of the object along with a random direction within (-60, 60) w.r.t. the surface normal. (b) to (d) are the prediction object motion (translation
and rotation) for the pushes along with normal direction to the outline. (e) to (f) are the predicted uncertainty w.r.t. the translation along x y axis as
well as the rotation. In general, the predicted uncertainty for rotation tends to be larger than translation.

apply the non-maximum suppression algorithm to get a set
of efficient actions represented by {a∗}m.

In the planning procedure, the proposed cost function in
Eq. 6 quantifies each representative action. We select the top
5 action candidates and use the softmax function to trans-
form uncertainties associated with these candidates into a
probability distribution. Finally, one action can be sampled
from the distribution to be executed.

For the baseline method, prior pushing collection and
push affordance map generation procedure were kept the
same as the proposed method. However, the baseline method
selects the top 5 ranked actions only minimizing the first
term in Eq. 6. In other words, the baseline method only se-
lect actions that can minimize the translation error from the
current to target positions.

5.5.2 planning on real platform

Fig. 14 Test objects used for planning on real experiment setting.

We evaluated the proposed method in real experimen-
tal settings on the foam surface with isotropic friction. We
consider 6 different objects given in Fig. 14. Among them,
the motions of test-object-exp 4 and test-object-exp 5 are
difficult to predict, since test-object-exp 4 is pretty light
(less than 5g) and test-object-exp 5 has high contact friction
across the foam. We conduct 16 pushing experiments for

each object. The initial positions are identical, however the
initial orientation is sampled uniformly in (−180°, 180°).
We followed the same procedure as in simulation.

6 EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Model Prediction Result

The performance of the models implemented on the test set
are given in Table 3. The last two columns represent pre-
diction errors on translation and rotation. We use the 5th

to 95th quantiles to represent the mean, standard deviation,
maximum, and minimum. The average translation and rota-
tion of the objects in SimPush are 19.13mm and 10.65°,
respectively.

The performance of two Push-Nets [34] are provided in
Table 3. Here we only show the performance of the last
time step. These two models perform less accurate than
NaiveCNN. This is mainly due to the fact that NaiveCNN
takes the internal parameters as input so that it also can learn
how the internal parameters affect object motion. On the
other hand, the result shows that the Push-Net trained with
auxiliary CoM target performed similarly to the Push-Net
without auxiliary learning in translation, yet worse in rota-
tion. It can be conjectured that CoM plays a less dominant
role in object motion. This is consistent with our observation
that the motion of an object is slightly affected by the CoM
when it has a much large object moment of inertia. Com-
pared with the proposed model, all of the baseline models
perform less accurately both in translation and rotation.

In the ablation study, we compare the proposed model to
the following alternatives.

– Model I (feature) with other ablations; the models us-
ing object mask images perform better, possibly due to
recent advances in CNN for push embedding. There-
fore, the models have flexibility to encode the relation
between pushing action and object shape.

– Model II (no action maps) with the proposed model;
the action maps greatly helped improve the performance
in predicting both translation and rotation.

– Model III (no residual attention module) with the
proposed model; the cascaded residual attention model

12

Table 3 Prediction error on the test data of all the implemented models.

Models translation (mm) rotation (degree)
mean std max min mean std max min

NaiveCNN 3.94 2.53 11.05 0.72 3.15 2.64 12.37 0.20
Push-Net (without auxiliary) 5.06 3.52 14.34 0.77 4.32 3.60 16.49 0.28
Push-Net 5.05 3.50 14.77 0.89 4.58 3.72 16.87 0.25
Model I (feature) 3.88 2.82 11.68 0.69 3.48 2.96 13.96 0.21
Model II (without action maps) 3.44 2.52 11.04 0.63 2.94 2.68 12.98 0.17
Model III (without residual attention module) 3.47 2.51 10.56 0.61 2.77 2.51 12.27 0.16
Proposed Model 3.08 2.19 10.71 0.48 2.52 2.43 11.64 0.12
Proposed Model(6 cm pushing) 2.81 2.31 11.01 0.39 3.97 4.06 19.61 0.17

Table 4 Translation prediction errors (in mm) for CoM-controllable Box

Carpet Foam Cloth
mean std max min mean std max min mean std max min

CoM1 3.1 1.3 6.4 1.72 3.15 1.78 6.89 0.78 4.98 2.32 9.96 1.71
CoM2 5.29 2.31 8.78 1.55 4.52 1.93 7.53 1.5 4.86 3.25 10.52 1.08
CoM3 3.61 1.29 6.49 1.78 3.85 1.84 6.55 1.21 5.56 3.5 13.19 1.84
CoM4 3.92 1.5 6.29 1.79 3.84 1.88 7.42 1.57 6.24 2.63 11.29 2.6

Table 5 Rotation prediction errors (in degree) for CoM-Controllable Box

Carpet Foam Cloth
mean std max min mean std max min mean std max min

CoM1 4.17 3.38 12.96 1.03 3.36 2.05 7.2 0.4 3.38 2.09 6.63 0.53
CoM2 3.99 2.49 9.57 1.0 3.28 1.94 6.55 0.61 4.46 3.0 11.55 0.47
CoM3 3.02 2.55 9.13 0.2 2.48 1.64 5.68 0.19 3.92 2.53 10.35 0.47
CoM4 2.95 1.63 6.26 0.84 2.89 2.44 8.1 0.61 3.29 2.31 7.83 0.41

Table 6 Prediction errors for objects motion in Fig. 11

translation (mm) rotation (degree)
mean std max min mean std max min

obj1 4.23 1.95 8.88 1.30 4.03 4.08 13.53 0.20
obj2 3.34 1.72 6.30 0.57 2.92 2.23 7.71 0.05
obj3 4.67 2.36 9.28 0.26 3.72 3.07 11.84 0.59

selectively combines them and leads to more accurate
pushing performance, instead of concatenating the input
from a different source and feeding to MLP.

To verify if the proposed model can predict object motion
for pushes with a larger magnitude, we collect a dataset that
contains 6cm pushes using the object shown in Fig. 4 by fol-
lowing Algorithm 1. Then we re-scale the object mask and
pushing lengths by a scale factor of 0.5 since the pushing
magnitude is doubled. After that, we follow the same pro-
cedure as in Section. 5.1 to prepare the test set and evaluate
the proposed affordance models to this test set. The result
is shown in the last row of Table. 3. We observe that ro-
tation prediction error becomes larger, however there is no
difference in the translation prediction error. Table 4 and Ta-
ble 5 show the result of predicting the motion of the CoM
controllable box pushed over different surfaces. Because of
the simulation-reality gap, noisy mask image, and calibra-
tion error, the results are less accurate than the one shown in
Table 3. However, the proposed model purely trained by the
simulation dataset predicted pretty close. The average trans-

lation and rotation of all the combinations are 20.8mm and
11.28°, and the mean prediction errors on translation and
rotation are 4.17mm and 3.43°, respectively. The worst ac-
curacy results were obtained both in translation and rotation
when the object was sliding on the cloth surface, mainly due
to cloth deformation.

We show the performance of our model on real novel
objects in Table 6. The average translation and rotation of
the objects are 23.13mm, 21.41mm, 19.72mm, and 11.71°,
11.28°, 12.93°, respectively. Similarly, compared with the
result in the first experiment, there is no significant differ-
ence both in translation and rotation error.

6.2 Planning Evaluation

The comparative performance of the proposed planning and
the baseline methods is presented in Table 7 with the mean,
standard deviation and accuracy of pushing steps. Fig. 15
shows the accumulated movement of the objects. Ideally,
the accumulated movement will be very close to 0.3m, when
the object approaches the target straight. Lower accumulated
movement means less distance traveled on the plane. Com-
pared with the baseline method, our method achieved lower
accumulated movement on average for the objects shown in
Fig. 12. From the results shown in Table 7, we found that the
proposed planning yields a smaller number of pushes except
for test-object-sim 9 in which both of the methods have rel-

A Few-Shot Learning Framework for Planar Pushing of Unknown Objects 13

Fig. 15 Accumulated movement of objects shown in Fig. 12 for the planning task. The line inside each color box is the mean of the accumulated
movement.

Fig. 16 An example of pushing test-object-exp 3 in Fig. 14 to a new position. (a) the initial and target poses 30cm away. The initial orientation
is randomly selected. (b) pushing action denoted by an arrow and cost denoted as heatmap at each contact point in each step. There are 5 costs
associated with each contact point as there are 5 representative pushing actions. Here only the minimum cost of each contact point is demonstrated.

Fig. 17 Accumulated movement of objects shown in Fig. 14.

atively good performance. Moreover, the proposed planning
shows a lower standard deviation, leading to the fact that the
method is less sensitive to the object’s initial orientation as
well as different physical properties. The baseline method is
sensitive to the object shape than the proposed method, as
it suffered from low accuracy on test-object-sim 1 and test-
object-sim 6.

We found that the baseline model performs obviously
worse than the proposed method for narrow and long ob-
jects with a small number of edges such as test-object-sim1
and test-object-sim6. Especially, in the case that the prin-
cipal axis of this type of object is aligned with the desired
translation direction, the baseline method tends to choose to
push actions that cause sliding contact between the pusher
and the object so that the object motion after each pushing
is small. On the other hand, the proposed method performed
robustly for this type of object, favoring actions to rotate the
object in such a way to make the principal axis of the object
perpendicular to the desired translation direction.

Fig. 17 shows the accumulated movement for the test
objects on the real platform. It can be seen that the accumu-
lated movement of test-object-exp 4 is the largest among the
test objects. This is mainly due to the fact that test-object-
exp 4 is too light resulting that the contact situation between
object and foam surface introduces more randomness in ob-
ject motion. We use the same metric for calculating the ac-
curacy. We found that the accuracy in total is 94.79%. All
the objects were successfully pushed to the target within
14 pushes except test-object-exp 4 and test-object-exp 5 for

14

Table 7 The mean, standard deviation of the pushing steps as well as
the accuracy for objects shown in Fig. 12

Object Method Mean Std Accuracy (in percent)

obj1 proposed 11.33 2.40 90.50
baseline 12.18 3.24 78.12

obj2 proposed 10.77 1.68 97.25
baseline 10.79 1.79 96.50

obj3 proposed 10.68 1.70 96.50
baseline 10.94 2.15 92.50

obj4 proposed 10.90 1.78 95.62
baseline 11.33 2.24 90.75

obj5 proposed 10.99 1.59 96.88
baseline 11.30 1.97 93.62

obj6 proposed 11.60 2.62 87.12
baseline 12.22 3.21 76.75

obj7 proposed 10.53 1.51 98.79
baseline 10.77 1.76 96.21

obj8 proposed 11.07 1.78 96.00
baseline 11.39 2.00 92.38

obj9 proposed 10.83 1.70 97.29
baseline 10.65 1.46 100.00

obj10 proposed 11.09 1.64 97.43
baseline 11.30 1.72 95.14

which 3 and 2 pushing tasks are failed, respectively. Test-
object-exp 5 tends to remain in its position during pushing
because of the high contact friction. Notably, the proposed
method still performed well for test-object-exp 3 even it has
complex contact conditions with the surface.

Fig. 16 shows an example of pushing test-object-exp 3 in
Fig 14. In this example, the robot pushed 10 times to trans-
late the object to the target position. One interesting thing
we found is that, at the steps from 1 to 4, the robot tried
to adjust object orientation choosing several different con-
tact points. After that, the robot focused on translating the
object, while adjusting the object’s orientation by slightly
changing the pushing direction or contact point. Evidently,
this is aligned with our original intention, as we aim to real-
ize efficient pushing by changing the orientation of the ob-
ject, which makes translation efficient.

7 CONCLUSION

Following the recent works in [5, 51], we presented a large-
scale simulation dataset called SimPush containing a vast
variety of objects diverse in shape and size. We simulated
planar pushing under hundreds of varying conditions of con-
tact friction, surface friction, mass, inertia, and CoM. Even-
tually, this dataset has more than 2 million push examples.
Furthermore, we proposed a novel method to encode pushes,
which greatly improved the model performance. Based on
the encoder-decoder structure, we developed cascaded resid-
ual attention modules to combine features from different
sources. Compared with the model that concatenates all fea-
tures together and feeds into MLP, our model efficiently

combined the features and helped the representation learn-
ing. Based on the proposed single-step prediction model, we
proposed a novel planning method that can deal with objects
with unknown physical properties.

We evaluated the proposed model purely trained by Sim-
Push on a real platform. We designed a CoM controllable
box pushed by a robot arm across different surfaces. Due to
the noisy input and the simulation-to-reality gap, our model
was not on a par with the results in simulation. However, our
model predicted object motions with reasonable accuracy.
We pushed three unknown real objects across the unknown
frictional floor surface to challenge our model. Notably, the
proposed model performed encouragingly well. Using the
large-scale dataset, our model efficiently learned to make
use of pushing priors to infer the novel action outcome.
Compared with the model which depends on the quality of
identification system, our model has proven robust in com-
plicated object pushing. We evaluated the proposed planning
method both in simulation and on a real platform. The plan-
ning method not only minimizes the position error, but also
takes the efficiency of pushing into account. It should be
emphasized that the proposed model performs as well in the
unknown real world as in simulations with small samples of
real world evidence.

In this paper, we studied the linear single-point contact
pushing from the aspects of both predicting object motion
and planning pushes to translate the object to the desired
position. As a future direction of this research, a direct ex-
tension would be predicting push affordances when there are
obstacles near the object. The current push planning method
was assumed to use fixed length actions. Push planning with
variable length actions will be an interesting problem for fu-
ture research. For instance, pushing an object for a long dis-
tance initially toward a goal position, then pushing the ob-
ject a short distance to adjust finely the object pose may lead
to an efficient planning approach to reduce the number of
pushes required. In addition, different types of contact (e.g.,
multi-point contact) can also be an extension of this work.
Such types of contact could improve pushing efficiency but
also make prediction model challenging since the dynamics
of contact tends to become more complicated.

References

1. Agrawal, P., Nair, A.V., Abbeel, P., Malik, J., Levine, S.: Learning
to poke by poking: Experiential learning of intuitive physics. In:
Advances in Neural Information Processing Systems, pp. 5074–
5082 (2016)

2. Allevato, A., Pryor, M., Thomaz, A.: Multi-parameter real-world
system identification using iterative residual tuning. In: Proceed-
ings of the ASME International Design and Technical Conference.
St. Louis, MO (2020)

3. Allevato, A., Short, E.S., Pryor, M., Thomaz, A.: Tunenet: One-
shot residual tuning for system identification and sim-to-real robot
task transfer. In: L.P. Kaelbling, D. Kragic, K. Sugiura (eds.)

A Few-Shot Learning Framework for Planar Pushing of Unknown Objects 15

Proceedings of the Conference on Robot Learning, Proceedings
of Machine Learning Research, vol. 100, pp. 445–455. PMLR
(2020). URL http://proceedings.mlr.press/v100/
allevato20a.html

4. Arruda, E., Mathew, M.J., Kopicki, M., Mistry, M., Azad, M., Wy-
att, J.L.: Uncertainty averse pushing with model predictive path in-
tegral control. IEEE-RAS International Conference on Humanoid
Robots pp. 497–502 (2017). DOI 10.1109/HUMANOIDS.2017.
8246918

5. Bauza, M., Alet, F., Lin, Y.C., Lozano-Pérez, T., Kaelbling, L.P.,
Isola, P., Rodriguez, A.: Omnipush: accurate, diverse, real-world
dataset of pushing dynamics with rgb-d video. arXiv preprint
arXiv:1910.00618 (2019)

6. Byravan, A., Fox, D.: SE3-nets: Learning rigid body motion us-
ing deep neural networks. Proceedings - IEEE International Con-
ference on Robotics and Automation (3), 173–180 (2017). DOI
10.1109/ICRA.2017.7989023

7. Chang, L., Smith, J., Fox, D.: Interactive singulation of objects
from a pile. Proceedings - IEEE International Conference on
Robotics and Automation pp. 3875–3882 (2012). DOI 10.1109/
ICRA.2012.6224575

8. CM Labs Vortex Studio Academic. https://
www.cm-labs.com/vortex-studio/software/
vortex-studio-academic-access/. Accessed: 2020-
09-30

9. Cosgun, A., Hermans, T., Emeli, V., Stilman, M.: Push plan-
ning for object placement on cluttered table surfaces. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 4627–4632 (2011). DOI 10.1109/IROS.2011.6094737

10. Danielczuk, M., Mahler, J., Correa, C., Goldberg, K.: Linear
push policies to increase grasp access for robot bin picking. In:
2018 IEEE 14th International Conference on Automation Sci-
ence and Engineering (CASE), pp. 1249–1256 (2018). DOI
10.1109/COASE.2018.8560406

11. Depierre, A., Dellandréa, E., Chen, L.: Jacquard: A large scale
dataset for robotic grasp detection. In: 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp.
3511–3516 (2018). DOI 10.1109/IROS.2018.8593950

12. Dogar, M., Srinivasa, S.: A framework for push-grasping in clutter.
Robotics: Science and systems VII 1 (2011)

13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine
learning research 12(7) (2011)

14. Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A., Levine, S.: Visual
foresight: Model-based deep reinforcement learning for vision-
based robotic control. arXiv preprint arXiv:1812.00568 (2018)

15. Ebert, F., Finn, C., Lee, A.X., Levine, S.: Self-supervised visual
planning with temporal skip connections. In: 1st Annual Con-
ference on Robot Learning, CoRL 2017, Mountain View, Cali-
fornia, USA, November 13-15, 2017, Proceedings, Proceedings
of Machine Learning Research, vol. 78, pp. 344–356. PMLR
(2017). URL http://proceedings.mlr.press/v78/
frederik-ebert17a.html

16. Ebert, F., Finn, C., Lee, A.X., Levine, S.: Self-supervised visual
planning with temporal skip connections. In: CoRL, pp. 344–356
(2017)

17. Eitel, A., Hauff, N., Burgard, W.: Learning to Singulate Ob-
jects Using a Push Proposal Network. Springer Proceedings
in Advanced Robotics 10, 405–419 (2020). DOI 10.1007/
978-3-030-28619-4 32

18. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for
physical interaction through video prediction. arXiv preprint
arXiv:1605.07157 (2016)

19. Finn, C., Levine, S.: Deep visual foresight for planning robot mo-
tion. Proceedings - IEEE International Conference on Robotics
and Automation pp. 2786–2793 (2017). DOI 10.1109/ICRA.2017.
7989324

20. Florence, P., Manuelli, L., Tedrake, R.: Self-supervised correspon-
dence in visuomotor policy learning (2019)

21. Fragkiadaki, K., Agrawal, P., Levine, S., Malik, J.: Learning vi-
sual predictive models of physics for playing billiards. 4th Inter-
national Conference on Learning Representations, ICLR 2016 -
Conference Track Proceedings pp. 1–12 (2016)

22. Gao, Z., Elibol, A., Chong, N.Y.: A 2-stage framework for learning
to push unknown objects. In: Joint IEEE International Conference
on Development and Learning and Epigenetic Robotics, pp. 1–7
(2020). DOI 10.1109/ICDL-EpiRob48136.2020.9278075

23. Gao, Z., Elibol, A., Chong, N.Y.: Non-prehensile manipulation
learning through self-supervision. In: IEEE International Confer-
ence on Robotic Computing, pp. 93–99 (2020)

24. Gao, Z., Elibol, A., Chong, N.Y.: Planar pushing of unknown ob-
jects using a large-scale simulation dataset and few-shot learn-
ing. In: 2021 IEEE 17th International Conference on Automa-
tion Science and Engineering (CASE), pp. 341–347 (2021). DOI
10.1109/CASE49439.2021.9551513

25. Goo, W., Niekum, S.: Local nonparametric meta-learning. arXiv
preprint arXiv:2002.03272 (2020)

26. Goyal, S., Ruina, A., Papadopoulos, J.: Planar sliding with dry
friction part 1. limit surface and moment function. Wear 143(2),
307–330 (1991)

27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770–778 (2016)

28. Hermans, T., Li, F., Rehg, J.M., Bobick, A.F.: Learning contact
locations for pushing and orienting unknown objects. In: IEEE-
RAS International Conference on Humanoid Robots, pp. 435–442
(2013)

29. Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosen-
baum, D., Vinyals, O., Teh, Y.W.: Attentive neural processes.
arXiv preprint arXiv:1901.05761 (2019)

30. Kloss, A., Bauza, M., Wu, J., Tenenbaum, J.B., Rodriguez, A.,
Bohg, J.: Accurate vision-based manipulation through contact rea-
soning. In: IEEE International Conference on Robotics and Au-
tomation, pp. 6738–6744 (2020)

31. Kloss, A., Schaal, S., Bohg, J.: Combining learned and analyti-
cal models for predicting action effects from sensory data. The
International Journal of Robotics Research p. 0278364920954896
(2018)

32. Kumar, K.N., Essa, I., Ha, S., Liu, C.K.: Estimating mass distri-
bution of articulated objects using non-prehensile manipulation.
arXiv preprint arXiv:1907.03964 (2019)

33. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learn-
ing hand-eye coordination for robotic grasping with deep learn-
ing and large-scale data collection. The International Journal
of Robotics Research 37(4-5), 421–436 (2018). DOI 10.1177/
0278364917710318. URL https://doi.org/10.1177/
0278364917710318

34. Li, J.K., Lee, W.S., Hsu, D.: Push-net: Deep planar pushing for ob-
jects with unknown physical properties. In: H. Kress-Gazit, S.S.
Srinivasa, T. Howard, N. Atanasov (eds.) Robotics: Science and
Systems XIV, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, USA, June 26-30, 2018 (2018). DOI 10.15607/RSS.2018.
XIV.024. URL http://www.roboticsproceedings.
org/rss14/p24.html

35. Lin, C., Grner, M., Ruppel, P., Liang, H., Hendrich, N., Zhang, J.:
Self-adapting recurrent models for object pushing from learning in
simulation. IEEE International Conference on Intelligent Robots
and Systems pp. 5304–5310 (2020). DOI 10.1109/IROS45743.
2020.9341076

36. Lynch, K.M., Maekawa, H., Tanie, K.: Manipulation and active
sensing by pushing using tactile feedback. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 416–421
(1992)

http://proceedings.mlr.press/v100/allevato20a.html
http://proceedings.mlr.press/v100/allevato20a.html
https://www.cm-labs.com/vortex-studio/software/vortex-studio-academic-access/
https://www.cm-labs.com/vortex-studio/software/vortex-studio-academic-access/
https://www.cm-labs.com/vortex-studio/software/vortex-studio-academic-access/
http://proceedings.mlr.press/v78/frederik-ebert17a.html
http://proceedings.mlr.press/v78/frederik-ebert17a.html
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364917710318
http://www.roboticsproceedings.org/rss14/p24.html
http://www.roboticsproceedings.org/rss14/p24.html

16

37. Mason, M.T.: Mechanics and Planning of Manipulator Pushing
Operations. International Journal of Robotics Research 5(3), 53–
71 (1986). DOI 10.1177/027836498600500303

38. Mavrakis, N., Ghalamzan E., A.M., Stolkin, R.: Estimating an ob-
ject’s inertial parameters by robotic pushing: A data-driven ap-
proach. IEEE International Conference on Intelligent Robots and
Systems pp. 9537–9544 (2020). DOI 10.1109/IROS45743.2020.
9341112

39. Pinto, L., Gupta, A.: Supersizing self-supervision: Learning to
grasp from 50K tries and 700 robot hours. Proceedings - IEEE In-
ternational Conference on Robotics and Automation 2016-June,
3406–3413 (2016). DOI 10.1109/ICRA.2016.7487517

40. Rohmer, E., Singh, S.P.N., Freese, M.: Coppeliasim (formerly v-
rep): a versatile and scalable robot simulation framework. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (2013)

41. Song, C., Boularias, A.: A probabilistic model for planar sliding
of objects with unknown material properties: Identification and
robust planning. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5311–5318 (2020).
DOI 10.1109/IROS45743.2020.9341468

42. Stüber, J., Zito, C., Stolkin, R.: Let’s push things forward: A sur-
vey on robot pushing. Frontiers in Robotics and AI 7, 8 (2020)

43. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain
future: Forecasting from static images using variational autoen-
coders. In: European Conference on Computer Vision, pp. 835–
851. Springer (2016)

44. Wang, C., Wang, S., Romero, B., Veiga, F., Adelson, E.: Swing-
Bot: Learning physical features from in-hand tactile exploration
for dynamic swing-up manipulation. IEEE International Confer-
ence on Intelligent Robots and Systems pp. 5633–5640 (2020).
DOI 10.1109/IROS45743.2020.9341006

45. Wang, J., Hu, C., Wang, Y., Zhu, Y.: Dynamics learning with
object-centric interaction networks for robot manipulation. IEEE
Access 9, 68277–68288 (2021). DOI 10.1109/ACCESS.2021.
3077117

46. Wu, J., Lim, J.J., Zhang, H., Tenenbaum, J.B., Freeman, W.T.:
Physics 101: Learning physical object properties from unlabeled
videos. British Machine Vision Conference 2016, BMVC 2016
2016-September, 39.1–39.12 (2016). DOI 10.5244/C.30.39

47. Xu, Z., He, Z., Wu, J., Song, S.: Learning 3d dynamic scene repre-
sentations for robot manipulation. CoRR abs/2011.01968 (2020).
URL https://arxiv.org/abs/2011.01968

48. Xu, Z., Wu, J., Zeng, A., Tenenbaum, J.B., Song, S.: Dense-
physnet: Learning dense physical object representations via multi-
step dynamic interactions. In: Robotics: Science and Sys-
tems (RSS) (2019). URL http://www.zhenjiaxu.com/
DensePhysNet/

49. Xu, Z., Yu, W., Herzog, A., Lu, W., Fu, C., Tomizuka, M., Bai,
Y., Liu, C.K., Ho, D.: Cocoi: Contact-aware online context in-
ference for generalizable non-planar pushing. arXiv preprint
arXiv:2011.11270 (2020)

50. Ye, Y., Gandhi, D., Gupta, A., Tulsiani, S.: Object-centric for-
ward modeling for model predictive control. arXiv (CoRL), 1–13
(2019)

51. Yu, K.T., Bauza, M., Fazeli, N., Rodriguez, A.: More than a mil-
lion ways to be pushed. a high-fidelity experimental dataset of pla-
nar pushing. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 30–37 (2016)

52. Yu, W., Tan, J., Liu, C.K., Turk, G.: Preparing for the unknown:
Learning a universal policy with online system identification.
Robotics: Science and Systems 13 (2017). DOI 10.15607/rss.
2017.xiii.048

53. Zeng, A., Florence, P., Tompson, J., Welker, S., Chien, J., Attar-
ian, M., Armstrong, T., Krasin, I., Duong, D., Sindhwani, V., Lee,
J.: Transporter networks: Rearranging the visual world for robotic
manipulation (2021)

https://arxiv.org/abs/2011.01968
http://www.zhenjiaxu.com/DensePhysNet/
http://www.zhenjiaxu.com/DensePhysNet/

	Introduction
	RELATED WORK
	PUSHING SIMULATION DATASET: SIMPUSH
	METHODS
	EXPERIMENTS
	EXPERIMENTAL RESULTS AND DISCUSSION
	CONCLUSION

