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Abstract

This paper aims to clarify the folding/unfolding relation between polygons
and polyhedra. A polyhedron Q is called unfoldable into a polygon P if we
obtain P by cutting a certain set of line segments (not limited to edges) on
the surface of Q. Inversely, a polygon P is called foldable into a polyhedron
Q if Q is unfoldable into P .

The first part of the thesis is a folding problem that inquires whether a
polygon P is foldable into a polyhedron Q for given P and Q. An efficient
algorithm for this problem when Q is a box was recently developed. We
extend this idea to a class of convex polyhedra. We develop two algorithms
for the problem. The first algorithm solves the folding problem for a certain
class of convex polyhedra, with a unit length and a unit angle, except for
tetramonohedra. The second algorithm handles the exceptional case for the
class of tetramonohedra. Combining these algorithms, we can conclude that
the folding problem can be solved in pseudo-polynomial time when Q is a
polyhedron in a certain class of convex polyhedra, which includes Platonic
solids.

The second part of this thesis is a reconfiguration problem on refolding.
We show that any pair of polyhedra in several classes of polyhedra is joined
by a sequence of O(1) refolding steps, where each refolding step unfolds the
current polyhedron into a polygon that is foldable into the next polyhedron.
In other words, a polyhedron is refoldable into another polyhedron if they
share a common unfolding. Specifically, we prove that (1) any two tetra-
monohedra are refoldable into each other, (2) any doubly covered triangle is
refoldable into a tetramonohedron, (3) any tetrahedron has a 3-step refold-
ing sequence to a tetramonohedron, (4) any (augmented) regular prismatoid
and doubly covered regular polygon are refoldable into tetramonohedra, and
(5) the regular dodecahedron has a 4-step refolding sequence to a tetramono-
hedron. In particular, we obtain a ≤ 6-step refolding sequence between any
pair of Platonic solids, applying (5) for the dodecahedron and (1) and/or (2)
for all other Platonic solids.

The third part of this thesis is about the nonexistence of common unfold-
ings. We show that the existence of common unfoldings can be reduced to the
existence of standard-form common unfoldings under a certain condition. We
also develop an algorithm that checks the existence of standard-form common
unfoldings, and we implement it on some specific polyhedral class. We obtain
the fact that there is no common unfolding with k vertices within k < 300
between any strongly-independent and algebraic doubly covered triangles.



Keywords: Computational geometry, Computational origami, Unfolding of
polyhedra, Common unfolding, Refolding, Reconfiguration problem.
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Chapter 1

Introduction

1.1 Background

To make some objects from paper, we draw its development view on the
paper, punch it out, and construct it by gluing its boundary. If we can obtain
a connected and non-overlap development view, it is useful to make or figure
out the object. The origin of this idea is back to the German painter Albrecht
Dürer. In 1525, he published his masterwork on geometry [10], in which he
presented each polyhedron by drawing the development of the surface of the
polyhedron to a planar layout without overlapping when cutting along its
edges. This representation is known under different names; net, development,
or unfolding and has been mainly studied in discrete geometry. In this paper,
we use the terms unfolding or edge-unfolding depending on whether we allow
cutting lines to cross the faces or restrict cutting lines on the edges of the
polyhedron. We do not care whether unfoldings overlap unless otherwise
noted.

One of the most significant results of unfoldings is a characterization of
the unfoldings of tetramonohedra by Akiyama et al. [1, 2]. Tetramonohedra
is the class of tetrahedra with four congruent faces. In [1, 2], Akiyama et
al. characterize the unfoldings of tetramonohedra by using tiling theory and
show that a polygon is an unfolding of a tetramonohedron if and only if P
satisfies a condition called Conway criterion (see Section 2.4 for details). This
result illustrates the potential of the research on the relationship between
polyhedra and these unfoldings.

Nowadays, unfoldings have been well studied in computational geome-
try, forming a research field called computational origami. Demaine and
O’Rourke systematically summarize results and open problems in the field
in [9].
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In [9], there are two open problems that are simple but quite difficult. The
first is ”Does every convex polyhedron have a non-overlap edge unfolding?
(Open Problem 21.1)”. It is a natural extension of Dürer’s result and has
been studied from negative and positive expectations with some corroborative
results (see [9] for details). The second is ”Is any Platonic solid refoldable
into a different Platonic solid? (Open Problem 25.6)”. A polyhedron Q is
refoldable into a polyhedron Q′ if we can unfold Q into a polygon and fold
the polygon into Q′. In other words, Q is refoldable into Q′ if they share a
common unfolding. This question is also natural but open.

To get a foothold of Open Problem 21.1, the authors of [9] propose a
framework called “bipartite space of foldings and unfoldings” (hereinafter
called “FUB-space”). FUB-space has two vertical sets; all convex polyhedra
and all polygons. A pair of a polyhedron Q and a polygon P is connected
by an edge if P can be folded to Q, or equivalently Q can be unfolded to P
(see Figure 1.1).

All polygons

Unfold

All polyhedra

Bipartite space of foldings and unfoldings

Fold

Figure 1.1: Bipartite space of foldings and unfoldings

FUB-space has been studied mainly under the restriction that we cut only
the edges of polyhedra. Specific results can be found in [5, 6, 12]. This is
because the polygons that can be developed from a single polyhedron would
exist continuously (see Figure 1.2), which is difficult to handle especially on
a computer. However, where the edges has no clear meaning for the surface
structure of a polyhedron. Thus, dealing only with edge unfolding is far from
enough to understand the relationship between polyhedra and polygons.

1.2 Purpose of the research

This study considers how to deal discretely with the relationship between
polyhedra and unfoldings without restrictions on the way to unfold and fold
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Figure 1.2: An example of continuous transformation of an unfolding by
moving the cut line

them. We focus on discrete structures that appear in the folding and un-
folding operations through the extension of established problems and the
development of new ones.

In Chapter 3, we consider a folding problem. This problem asks whether
a polygon P and a polyhedron Q are connected by an edge in FUB-graph
for fixed P and Q (see Figure 1.3).

Bipartite space of foldings and unfoldings

Q

The unfoldings of  Q P
?

×

Figure 1.3: Folding Problem

What we show is that ways to fold a polygon into a polyhedron exist
discretely except in special cases and that the number of ways to fold can
be bounded by a pseudo-polynomial of geometric parameters under certain
conditions. The folding problem was investigated where Q is a box. Some
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special cases were investigated in [11] and [15], and the problem for a box
Q was generally solved in [14]. In this research, we develop a more efficient
algorithm that can be applied more generally. What we focus on is that
an unfolding of a polyhedron Q has some “trace” of Q on its boundary if
Q is not a tetramonohedron (Lemma 14). Using this fact, we develop an
algorithm that solves the folding problem where Q is not a tetramonohedron
but a commensurate convex polyhedron; a polyhedron with a unit length
and angle. To compensate for this result, we also develop an algorithm in
the case where Q is a tetramonohedron by using the results of [1, 2].

In Chapter 4, we consider a reconfiguration problem on refolding. This
problem asks whether a pair of polyhedra Q and Q′ is connected by a finite
length path in FUB-graph for fixed Q and Q′ (see Figure 1.4).

Bipartite space of foldings and unfoldings

Q Q′
Q1 Q2 Q3

Figure 1.4: Reconfiguration Problem on Refolding

What we show is that there exists a continuous set of polyhedra connected
to each other by finite lengths and that some polyhedra can be reduced to
the class by choosing a path from discrete choices. Specifically, we consider
a sequence of convex polyhedra Q = Q0, Q1, . . . , Qk = Q′ where Qi−1 is re-
foldable into Qi for each i ∈ {1, . . . , k} for a given pair of polyhedra Q and
Q′. As we mentioned above, a polyhedron Q is refoldable into a polyhedron
Q′ if Q can be unfolded to a polygon that can be folded to Q′. We consider
the reconfiguration by a refolding sequence between convex polyhedra. A
reconfiguration problem is one of the important topics in theoretical com-
puter science. It is well studied from wide perspectives, e.g., (im-)possibility
of reconfiguration, the time complexity of an algorithm to find a path and
the shortestness of a path. First, we show that any two tetramonohedra are
1-step refoldable into each other. Next, we show that any polyhedra with
≤ 4 vertices (they exist continuously) can be reduced to tetramonohedra by
≤ 4 steps. Finally, we show that a polyhedron in several polyhedral classes
is connected into a tetramonohedron by a O(1) refolding sequence. All Pla-
tonic solids are included in these results, and we obtain a ≤ 6-step refolding
sequence between any pair of Platonic solids via tetramonohedra.
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In Chapter 5, we discuss the non-existence of common unfoldings. This
problem asks whether a pair of polyhedra Q and Q′ is not connected by a
2-step path in FUB-graph for fixed Q and Q′ (see Figure 1.5).

Bipartite space of foldings and unfoldings

The unfoldings of  Q

ϕ

Q Q′

The unfoldings of  Q′

Figure 1.5: Non-existence of Common Unfolding Problem

What we show is that the existence of common unfolding can be reduced
to a discrete structure called standard-forms under a certain condition. First,
we focus on the relation between points on the boundary of a common un-
folding. If two polyhedra Q and Q′ have a common unfolding P , P can be
folded into Q and Q′. In general, a point p in ∂(P ) is attached to different
points when folded one way or the other. We show that this relation induces
a tree structure on the boundary of the polygon called spreading trees. We
define standard forms of common unfoldings using the spreading trees. We
investigate an algorithm to enumerate the possible standard forms. We im-
plement this algorithm in a class of restricted doubly covered triangles and
check that no k-gon is a common unfolding within k < 300.

1.3 Relationship among the results

This research aims to characterize the relationship between polyhedra and
their unfoldings. In particular, we aim to find the criteria that two polyhedra
have a common unfolding or not. To reach this goal, we clarify the positive
and negative aspects of the existence of common unfolding while adjusting
the class of polyhedra on each result.

In Chapter 3, we introduce the class called “commensurate convex”. This
class consists of widely many polyhedra, which include most of the polyhedra
we normally deal with. In fact, all of Platonic solids and Archimedean solids
are commensurate convex. We show that, for widely many polyhedra, an
unfolding of a polyhedron has a “trace” of the original polyhedron, and it
can be used for an efficient recognition algorithm for unfoldings.
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The existence of the trace makes it difficult to make a common unfolding
between a given pair of polyhedra. In Chapter 4, we introduce a new idea
of “multistep refolds” and show that we can create and erase the traces by
repeating the several refoldings among a certain polyhedra class with few
vertices or some symmetry.

Even though the above two results imply the difficulty of making a com-
mon unfolding, it is difficult to show that there is no common unfolding
between a pair of polyhedra. In Chapter 5, we define the polyhedral classes
called “strongly independent” and “algebraic”. These are a technical and
tight class, with very few conformable polyhedra. Actually, when two poly-
hedra are commensurate, each is not algebraic, and the pair is not strongly
independent. Under these restrictions, we show the nonexistence of a com-
mon unfolding with the condition that unfoldings have few vertices.
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Chapter 2

Preliminaries

2.1 Polygons and polyhedra

A polygonal line P is defined by a sequence (p0, p1, . . . , pn) of distinct
points in R2. A point pi is called vertex of P , and V (P ) denotes the set
of those. We call the open interval ei between pi and pi+1 by an edge , and
E(P ) denotes the set of them. We denote the set of all vertices and the
points on the edges by ∂(P ). A polygon is a polygonal line that satisfies
p0 = pn. A polygon is called simple if any edge has no intersection with
other edges or vertices except at its endpoints. A simple polygon divides R2

into two regions: a finite one and an infinite one. Let ∠(pi) be the angles at
pi on the interior side.

We define a (convex) polyhedron Q as the surface of a convex region
of R3 that is bounded by finitely many polygons F (Q) = {f0, f2, . . . , fm−1},
which are called faces . For any fi, fj ∈ F (Q), ∂(fi) ∩ ∂(fj) is ∅ or a vertex
or an edge. The vertices shared faces are called vertices of Q, denoted
by V (Q). Similarly, the edges shared two faces are called edges of Q and
denoted by E(Q). We denote the set of the points included in faces, edges,
or vertices by ∂(Q) and call it by a surface of Q. Every edge e joins two
adjacent faces with some angle. The angle on the interior side is called a
dihedral angle at e.

For q ∈ ∂(Q), a curvature κ(q) is the angle defined by the value 2π −
σ(q), and a co-curvature at q is the angle σ(q), where σ(q) is the total
summation of the angles on the faces of Q adjacent to q. If q /∈ V (Q),
σ(q) = 2π and κ(q) = 0. Any convex polyhedron has positive curvatures at
the vertices.

We will use the following theorem:

Theorem 1 (Descartes Theorem (Discretized Gauss-Bonnet Theorem))
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For any convex polyhedron Q, ∑
v∈V (Q)

κ(v) = 4π.

See [9, Sec. 21.3] for the details.

2.2 Polyhedral classes

Here, we introduce polyhedral classes that are commonly used in this thesis.

2.2.1 Classification by smooth vertices

If a vertex v of a polyhedron satisfies κ(v) = σ(v) = π, we call v smooth .
We define Πk as the class of polyhedra with exactly k smooth vertices. By
Theorem 1, the number of smooth vertices of a convex polyhedron is at most
4. Therefore, the classes Π0,Π1,Π2,Π3, and Π4 give us a partition of all
convex polyhedra.

2.2.2 Doubly covered polygon

A doubly covered polygon is a polyhedron made by gluing the corre-
sponding edges of two copies of a convex polygon; see Figure 2.1. It can be
regarded as a kind of polyhedron whose volume is zero.

Figure 2.1: Doubly covered triangle

2.2.3 Platonic solids

Platonic solids form a class of polyhedra whose all faces are congruent
regular polygons, and all vertices are congruent. It is known that the set of
Platonic solids consists by five polyhedra; regular tetrahedron, regular hexa-
hedron, regular octahedron, regular dodecahedron, and regular icosahedron.
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2.3 Folding and unfolding

For a simple polygon P , crease lines CL are defined by a set of non-crossing
lines on F (P ) whose both endpoints are on ∂(P ). For a given CL, we can
obtain a folded 3-dimensional surface by assigning a dihedral angle for each
crease line and folding them along the dihedral angles. If the resulting sur-
face makes a polyhedron Q without overlap or gaps, we say that we can fold
P into Q. Inversely, we can unfold a polyhedron Q into a (not necessar-
ily simple) polygon by cutting the surface. We call the resulting polygon
unfolding .

The following theorem, shown in [9, Sec. 22.1.3], is important in consid-
ering unfoldings.

Theorem 2 When we unfold a convex polyhedron Q into a polygon, the
cutting line segments form a tree structure on the surface of Q and span all
vertices of Q.

This theorem holds because the resulting polygon is divided into two pieces
if the cutting lines contain a circle and because a vertex that the cutting tree
does not pass through is not flattened. From this fact, we call the cutting
line segments cutting tree , and denote by T . We assume that any cut ends
at a point with a less than 2π curvature. Otherwise, because Q is convex,
it makes a redundant cut on P , which can be eliminated (the proof can be
found in [13, Theorem 3]). For a point q ∈ T , let deg(q) be the number of
the line segments of T incident to q.

When a polyhedron Q is unfolded into a polygon P with a cutting tree T ,
the points on ∂(P ) correspond to points on T . We call this correspondence
folding map and write it by fT : ∂(P ) → T ⊂ ∂(Q).

For q ∈ T , the inverse image f−1
T (q) is the set of the points gathering at

q when we fold P . The following holds.

Observation 3 ∑
p∈f−1

T (q)

∠(p) = σ(q)

Especially, ∠(p) = σ(q) holds if deg(q) = 1.

The following theorem is useful for constructing a polyhedron from a
polygon.

Theorem 4 (Alexandrov’s Theorem [3, 9]) If we fold a polygon P in a
way that satisfies the following three Alexandrov’s conditions, then there
is a unique convex polyhedron Q realized by the folding.
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1. Every point on ∂(P ) is used in the gluing.

2. At any glued point on the surface, the co-curvature is at most 2π.

3. The obtained surface is homeomorphic to a sphere.

This theorem gives no information about the specific shape of the polyhedron
but guarantees the existence of the polyhedron when we glue the boundary
of a polygon.

2.4 Tetramonohedron

A tetramonohedron is a tetrahedron that consists of four congruent acute
triangles. The following lemma, shown in [4, p. 97], characterizes tetramono-
hedra.

Lemma 5 A polyhedron is a tetramonohedron if and only if it is in Π4.

A polygon P is a Conway tile if it has six points, A, B, C, D, E, and F
in ∂(P ) in a counterclockwise direction that satisfy the following conditions
(see Figure 2.2). Let [p, q] denote the part of the boundary ∂(P ) starting
from p to q in a counterclockwise direction for two points p and q.

• [A,B] can be moved to [D,E] through translation τ with τ(A) = E
and τ(B) = D.

• each of [B,C], [C,D], [E,F ], and [F,A] has rotational symmetry with
respect to its midpoint.

• at least three of these six points are distinct.

Akiyama et al. [2, 1] characterize unfoldings of tetramonohedra by the
following theorem.

Theorem 6 A polygon P is an unfolding of a tetramonohedron if and only
if P is a Conway tile.

10
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B
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D

E
F

Figure 2.2: Conway tile
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Chapter 3

Folding problem

This chapter focuses on a folding problem that asks whether a polygon P
can be folded into a polyhedron Q for given P and Q. More precisely, P can
fold onto Q if and only if there is a set of crease lines on P such that we
obtain Q by folding P along the crease lines and gluing P without overlap or
gaps on Q. We assume that P and Q have the same (surface) area without
loss of generality as a trivial necessary condition.

3.1 Settings

We assume the real RAM model for the computations; each coordinate is
an exact real number, and the running time is measured by the number of
mathematical operations. See [7] for the details of the basic operations, which
can be applied in O(1) time for this data structure.

To describe a polyhedron Q, we use the doubly-connected edge list in [7]
with some trivial extensions.

We introduce a new class of convex polyhedra: a convex polyhedron Q is
a commensurate convex polyhedron with respect to �min and θmin if Q
has a unit length �min and a unit angle θmin in the sense that each edge is a
multiple of �min and each angle of a face of Q is a multiple of θmin. (That is,
�min and θmin are the great common divisors of the lengths of the edges and
the angles of the faces on Q, respectively.) We define a constant c by the
minimum integer for which cθmin is a multiple of π. Here, we provide proof
of the existence of c.

Observation 7 We assume that a convex polyhedron Q is a commensurate
convex polyhedron with respect to �min and θmin. There then exists an integer
c such that cθmin is a multiple of π.

12



Proof. Because Q is a convex polyhedron, each face is a convex polygon.
Let f be a face of Q. Then, f is a convex k-gon for some k > 2, and the
summation of angles of f is (k−2)π. Based on the assumption, this (k−2)π is
a multiple of θmin. Therefore, an integer c exists such that cθmin is a multiple
of π. �

We define diameter DP and perimeter LP for a given polygon P as
follows:

DP = max
p,p′on ∂(P )

|pp′|

LP =
∑

0≤i<n

|pipi+1|,

where |pq| is the distance between two points p and q. When polygon P is
clear, the subscript P is omitted. We also denote by �max the length of the
longest edge of P defined by max0≤i<n |pipi+1|. We observe that �max ≤ D
and 2D < L for any simple polygon P .

3.2 Results and framework

Here, we state our results.

Theorem 8 Let P be a polygon with n vertices and Q be a commensurate
convex polyhedron with m vertices that is not a tetramonohedron.

There is a pseudo-polynomial time algorithm that solves the folding prob-

lem in O
(
n2m3

(
dL+ n+ 2π

θmin
n
)c)

.

Theorem 9 Let P be a polygon with n vertices and Q be a tetramonohedron.
There is a pseudo-polynomial algorithm that solves the folding problem in

O((L+ n)2n2) time.

These algorithms are commonly based on the outline of Algorithm 1.
To explain the framework, we focus on what happens when a polygon P

can be folded into a polyhedron Q. Let T be the cutting tree T and fT be
the folding map. We take a point p on ∂(P ) such that fT (p) is a vertex q
of Q. Let ε be a smallness value and pε be the point that is moved ε from p
counter-clock-wisely on ∂(P ). The point fT (pε) should be on a face f around
q on Q. We set Q onto the xy-plane such that q meets the origin and its edge
of f meets the x-axis (see Figure 3.1). We also set P on the xy-plane and fix
p to the origin. By adjusting the direction of P , we can match pε and fT (pε)

13



Algorithm 1: Outline of our folding algorithm

Input : A polygon P and a polyhedron Q
Output: All ways of folding P onto Q (if one exists)
Enumerate the initial positions of P and Q by EnumPosi .
foreach combination of initial positions of P and Q do

Set Q and P on the xy plane according to the initial positions.
Wrap the surface of Q by P by Stamp.
if all vertices of Q are touched by ∂(P ) then

Check whether the wrapping is without overlap or gaps by
GlueCheck .
if there is no overlap or gap then

Output: the way of folding

(see Figure 3.2). After the positions of P and Q are determined, we would
wrap P onto the surface of Q: we fold P along the edge with its dihedral
angle whenever P overhangs an edge of Q. As a result, we obtain the folding
way such that ∂(P ) is glued doubly covered and makes T . Inversely, if P can
be folded into Q, at least one pair of positions of P and Q must achieve the
above wrapping.

Our algorithms use this process inversely: enumerating the possible ways
to locate P and Q on the xy plane, wrapping P onto the surface Q, and
checking whether ∂(P ) is glued successfully.

The enumerating process is summarized as EnumPosi , given in Section
3.5. First, we choose a face f of Q and a vertex q of f and fix Q on the xy
plane such that q is on the origin, the edge e injecting to q counter-clock-
wisely is on the x axis, and f is on the xy plane. To fix a position of P on
the xy plane, we choose a pair (p, p′) of the points in ∂(P ) and decide the
coordinate ((px, py), (p

′
x, p

′
y)). Therefore, what we enumerate in this process

is the possible combinations of f ∈ F (Q), q ∈ V (Q), p, p′ ∈ ∂(P ), and
(px, py), (p

′
x, p

′
y) ∈ R2. We show that we can bound the number of the possible

combinations discretely although both ∂(P ) and R2 are uncountable sets in
Lemma 14 and Theorem 15.

Here we note that the number of ways of folding P onto Q would be
infinite in a special case that Q is a tetramonohedron and the form of the
cutting tree is an ”H-shape”. However, we can also handle this case because
either there is one infinite series such that every folding way is feasible or no
one is feasible. We give the details in Section A.

After EnumPosi , we try to wrap Q by P for each initial position. This
process is done by an algorithm called Stamp. We give the details in Section
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q

f

e

q
e f

Figure 3.1: The way to fix a position of Q

p

pϵ

fT(p)

fT(pϵ)

Figure 3.2: Correspondence of (p, pε) and (fT (p), fT (pε))
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3.3. After this process, if a vertex of Q is not touched by ∂(P ), the combi-
nation of the initial positions is rejected because it does not give a cutting
tree by Theorem 2.

Finally, we check whether the folded boundary of P makes overlaps or
gaps. This process is done by an algorithm called GlueCheck . We give the
details in Section 3.4.

3.3 Stamping

We first give the details of Stamp.
We note that each point inside of a face fk of Q has a unique local coordi-

nate; a point on an edge of fk except its endpoints has two local coordinates
(fk; x, y) and (fk′ ; x

′, y′), where fk′ is the face sharing the edge; and each
vertex of the polygon fk has d local coordinates, where d is the number of
the faces sharing the vertex on Q.

We assume that each initial position of P and Q is fixed; a vertex q of
Q, a vertex f of Q, a pair p, p′ of ∂(P ), and a coordinate (px, py), (p

′
x, p

′
y) of

p, p′ are determined, and P and Q are settled according to them. As we see
later in Section 3.5, we can assume that fT (p) = q and (px, py) = (0, 0). By
re-labeling, we assume q = q0, p0 = p, f = f0, and p0, p1, . . . , pn are lined up
counter-clock-wisely. The local coordinate of q0 on f0 is (f0; 0, 0).

Next, we trace ∂(P ) from p0 and find the first point c intersecting with
the boundary of f0. While tracing between p0 to c, we record the local
coordinates of the vertices p1, p2, . . . at f0. If any point that is moved a little
from p0 counter-clock-wisely goes outside of f0, then let e be the edge that
incidents to p0 counter-clock-wisely on f0. Otherwise, we can obtain the
intersection c. Here, there are two possible cases depending on whether c is
a vertex of f0 or not. If c is not a vertex, we also record its local coordinates
and add it to the sequence of the vertices of P as a vertex whose interior
angle is π. Also, if c is on an edge of f0, let e be the edge. Otherwise, if c is
a vertex, let e be the edge that incidents to c clock-wisely on f0. Let f1 be
the face that shares e with f0.

Next, we rotate Q on e such that f1 becomes the base face. We trace
∂(P ) again and repeat the same process until we return to p0.

Using an array of the elements of V (Q), we record whether each vertex
is touched by ∂(P ) during the stamping process. After stamping, we check
whether all vertices are touched by tracing the array.

As a result, we obtain a peace-wised P by the intersections of ∂(P ) and
edges of Q. We denote it by P ′ = (p′0, p

′
1, . . . , p

′
n′−1, p

′
n′ = p′0). For each of

the points of P ′, a local coordinate of a face of Q is defined.
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Figure 3.3: A triangle lattice is made by stamping a tetramonohedron.

We note that the faces made by stamping form a triangle lattice during
stamping when Q is a tetramonohedron (Figure 3.3). The details are given
in [1].

To estimate the time complexity of the process, we give the following
lemma.

Lemma 10 If P is unfolded into Q that is a commensurate convex poly-
hedron, an edge e goes through at most d|e| + 1 faces on Q where d =

c
(1+c sin θmin)�min

.

When Q is a tetramonohedron, the upper bound is 3|e|+ 1.

Proof. Let e be an edge of length |e| of P , which penetrates faces f0, f1, . . . ,
of Q when Q is rolling on e. We note that each face f is a convex polygon
because Q is a convex polyhedron. When the edge e intersects a face f , the
edge e enters a point p on an edge eQ of f and goes out at another point p′

on an edge e′Q of f .
When eQ and e′Q do not share a vertex of f , |pp′| > (�min sin θmin). There-

fore, the face f consumes (�min sin θmin) from e.
On the other hand, we cannot bind it when eQ and e′Q are consecutive on

f . Namely, the edge e penetrates many faces when e passes through points
close to a vertex of Q shared by many faces (Figure 3.4). However, in this
case, consecutive c faces consume at least length �min from e, where c is the
minimum integer for which cθmin is a multiple of π.

Therefore, the edge e of length � can go through at most
(

|e|
(�min sin θmin+�min/c

+ 1
)

faces, which is simplified to d|e|+ 1, where d = c
(1+c sin θmin)�min

, in total.
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Figure 3.4: An edge ep may penetrate many different faces.

When Q is a tetramonohedron, the number of penetrates faces sharing a
vertex is at most three because triangle faces make a triangle lattice during
the stamping of a tetramonohedron. Therefore, an edge e of length |e| of P
goes through at most 3|e|+ 1 faces. �

Theorem 11 Let Q be a commensurate convex polyhedron with respect to
�min and θmin. The number of rollings in the stamping process is (dL + n +
2π
θmin

n), where d = c
(1+c sin θmin)�min

. Moreover, the stamping process can be done

in O
(
(dL+ n+ 2π

θmin
n)m

)
time.

When Q is a tetramonohedron, the number of rollings is O (L+ n), and
the process can be done in O (L+ n) time.

Proof. The stamping process is applied along ∂(P ) by rolling Q. Therefore,
we can use Lemma 10 on each edge e of P . To cover each edge e of P , we
need (d|e| + 1) rollings. Moreover, there are extra rollings on each vertex P
that do not cover the edges. When a vertex q of Q is placed on a vertex p of
P , Q may turn around the vertex p by rolling to cover the next edge of P .
Because the angle at p can be close to 2π, the number of turns is bounded
above by 2π/θmin. Thus, the total number of rollings can be bounded by
dL+ n+ 2π

θmin
n because

∑n
i=0(d|pipi+1|+ 1) = dL+ n.

In each rolling step, we compute the intersection of a face f of Q and
∂(P ), and it takes O(m) time to traverse the vertices in f . Therefore, we

can do stamping process in O
(
(dL+ n+ 2π

θmin
n)m

)
.

For the case that Q is a tetramonohedron, we can show the claim by
Lemma 10. We note that m is a constant number in this case. �
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3.4 Check of gluing

During this phase, the algorithm checks if P can fold onto Q by folding along
the crease lines given in Stamp. That is, the algorithm checks whether the
surface of Q is made by gluing P without overlap or gaps.

This can be achieved by checking the new polygon P ′ = (p′0, p
′
1, . . . , p

′
n′−1, p

′
n′ =

p′0), which is constructed using the stamping. Based on Theorem 2, when
P is an unfolding of Q, the set T of cut lines on Q forms a spanning tree.
Therefore, each line segment � in T appears twice as �′ and �′′ on P ′ (ex-
cept for its endpoints), and the pairs of �′ and �′′ form a nested structure
on P ′. The algorithm can find each pair of line segments in the polygon
P ′ = (p′0, p

′
1, . . . , p

′
n′−1, p

′
n′ = p′0) by using their local coordinates.

We maintain P ′ by a doubly linked list; each item corresponds to p′i which
stores p′i−1, p

′
i+1,

∣∣p′ip′i−1

∣∣, |�′i| = ∣∣p′ip′i+1

∣∣, and ∠(p′i) = ∠p′i−1p
′
ip

′
i+1.

We also inherit the set S of gluing points in P ′ from the stamping step
such that each gluing point p has angle σ(q) at the point on ∂(P )′ that
corresponds to a vertex q of Q. Intuitively, each gluing point should be
zipped up from the point to fold onto Q. In other words, each gluing point
corresponds to a leaf of the spanning tree T of the vertices of Q to cut and
unfold into P .

Therefore, our gluing starts from any gluing point. We first pick up
arbitrary gluing point p′i in S and glue two line segments �′i−1 and �′i from
p′i. We then have two cases. The first case is

∣∣�′i−1

∣∣ �= |�′i|. Without loss of
generality, we assume that

∣∣�′i−1

∣∣ < |�′i|. In this case, we glue up to p′i−1 from
p′i. That is, we remove p′i from S and P ′, replace p′i in p′i−1 by p′i+1 with
length |�′i|−

∣∣�′i−1

∣∣, and replace p′i in p′i+1 by p′i−1 with length |�′i|−
∣∣�′i−1

∣∣. The
angle ∠(p′i−1) at p

′
i−1 is replaced by ∠(p′i−1) + π.

The second case is
∣∣�′i−1

∣∣ = |�′i|. In this case, we glue �′i−1 and �′i com-
pletely, remove p′i from S and P ′, and merge p′i−1 and p′i+1 into a new vertex
p′ on P ′ such that

∣∣p′i−2p
′∣∣ = ∣∣p′i−2p

′
i−1

∣∣, ∣∣p′, p′i+2

∣∣ = ∣∣p′i+1p
′
i+2

∣∣, and the angle
at p′ is given by ∠(p′) = ∠(p′i−1) + ∠(p′i+1). If the angle at p′ is equal to the
co-curvature at the corresponding point on Q, which can be checked with
the corresponding local coordinate within a constant time, p′ is placed into
S as a new gluing point. Otherwise, p′ is simply a new vertex on P ′.

From the viewpoint of the spanning tree T , each gluing step from a gluing
point in S corresponds to the removal of one leaf from T . Therefore, it is not
difficult to see that the algorithm operates correctly.

Theorem 12 Let P ′ = (p′0, p
′
1, . . . , p

′
n′−1, p

′
n′ = p′0) be the polygon given by

the stamping. Then, the gluing check can be done in O(n′) time.

Proof. Each gluing process decreases at least one edge from P ′ within a
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constant time. Therefore, the running time of the gluing check is O(n′)
time. �

3.5 Initial positions

In this section, we give the way to determine initial positions of P and Q.
By the discussion in Section 3.2, to determine initial positions of P and

Q can be reduced into choices of q ∈ V (Q), f ∈ F (Q), p, p′ ∈ ∂(P ) and
(px, py), (p

′
x, p

′
y) ∈ R2. The detail on how to enumerate the pairs of (p, p′)

is given in Section 3.5.1. The detail for (px, py), (p
′
x, p

′
y) is given in Section

3.5.2. The framework of EnumPosi is summarized in Algorithm 2.

Algorithm 2: EnumPosi

Input : A polygon P and a polyhedron Q
Output: All possible initial positions of P and Q
foreach q ∈ V (Q) do

foreach f ∈ F (Q) such that q is a vertex of f do
Enumerate possible pairs (p, p′) in ∂(P ).
foreach (p, p′) do

Decide the coordinate of p, p′ by DetermineDirection .
Output: the pair of the initial positions of P and Q

3.5.1 Choice of p, p′

In order to use later in Section 3.5.2, we require that p, p′ satisfy fT (p), fT (p′) ∈
V (Q), and fT (p) �= fT (p).

Specifically, we use different ways depending on whether Q is a tetra-
monohedron. We first clarify the difference between tetramonohedron and
the others as the following lemma.

Lemma 13 Let Q be a convex polyhedron. When Q is not a tetramonohe-
dron, Q has at least two vertices of curvature not equal to π.

Proof. Let q0, . . . , qk be the vertices ofQ. BecauseQ is a convex polyhedron,
k ≥ 3. When k = 3, the only possible solid is a doubly covered triangle. Thus
Q satisfies the claim. If k > 4, by Theorem 1, at least two vertices have a
curvature not equal to π. Thus, we focus on the case of k = 4. Through
Lemma 5, because Q is not a tetramonohedron, four vertices cannot have
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curvatures equal to π. Based on the Gauss-Bonnet Theorem, it is impossible
for three vertices to have a curvature of π except one.

Thus, Q has at least two vertices q and q′ whose curvature is not equal
to π. �

Combining Lemma 5 and Theorem 1, we have the following corollary.

Lemma 14 Let Q be a convex polyhedron that is not a tetramonohedron,
and P be an unfolding of Q. Then, P has at least two vertices of an angle
not equal to π that correspond to distinct vertices of Q. Moreover, if Q has
no vertex of curvature π, P has at least two vertices such that each vertex on
P is glued to the corresponding vertex of Q without an extra angle from P .

Proof. By Lemma 13, Q has at least two vertices q and q′ whose curvature
is not equal to π. Then, q and q′ correspond to distinct vertices of P . Now,
consider the set Sq of the vertices of P that are glued together to form q.
Then, because the curvature of q is not equal to π and less than 2π, at least
one of the elements in Sq has an angle unequal to π. Thus, q produces at
least one vertex on ∂(P ) of an angle not equal to π. Based on the same
argument, we have another vertex on ∂(P ) produced by q′.

Now, we assume that Q has no vertex of curvature π. Each leaf of the
cutting tree corresponds to a vertex of Q, and this vertex forms a vertex of
P because the curvature is not π. Because any tree has at least two leaves,
we have the claim of this lemma. �

Therefore, when Q is not a tetramonohedron, it is sufficient that we
consider each pair of the vertices of P as (p, p′). Thus, we can check all
combinations in O(n2) time.

By contrast, when Q is a tetramonohedron, we may be unable to find
any vertex of Q in the set of vertices of P . We can find a pair (p, p′) in ∂(P )
by special tricks in Appendix A. For a given polygon P , we apply three
Algorithms 5, 6, and 7 individually. These algorithms also take O(n2) time.

In both cases, we can choose (p, p′) such that fT (p) = q, fT (p
′) = q′ for

some q, q′ ∈ V (Q).

3.5.2 Determining coordinates of p and p′

By the discussion in Section 3.5.1, we can assume (px, py) = (0, 0) because
fT (p) = q and (qx, qy, qz) = (0, 0, 0).

We have the following theorem about (p′x, p
′
y).
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Theorem 15 Let pi, pi′ be two vertices of P , and qj, qj′ be two vertices of
a commensurate convex polyhedron Q with respect to �min and θmin. It is

then sufficient to check O

((
dL+ n+ 2π

θmin
n
)c−1

)
combinations of (p′x, p

′
y)

by Algorithm 3, where d = c
(1+c sin θmin)�min

.
Moreover, we can modify the algorithm for the case that Q is a tetra-

monohedron, and the number of combinations is reduced into O (L+ n).

Proof. In the process of Stamp, we focus on the part of steps starting at
pi = qj and ending at pi′ = qj′ (Figure 3.5).

pi = qj pi′ = qj′

Figure 3.5: Rolling Q starting at point pi = qj to the point pi′ = qj′ on P in
2D and 3D

We then obtain the sequence of edges e0, e1, . . . , ek of Q such that the
corresponding vectors satisfy 
e0+ 
e1+ · · ·+ 
ek = 
pipi′ . It is sufficient to check
all possible vectors.

Let 
us = (�min cos sθmin, �min sin sθmin) for s = 0, 1, . . . , c − 1, where c is
the minimum integer that cθmin is a multiple of π.

Then, based on the assumption of Q, we can observe that each vec-
tor 
et can be represented by a linear equation

∑c−1
w=0 bw 
uw for some integers

b0, b1, . . . , bc−1.
Thus, through the commutativity of vectors, we have


pipi′ = 
e0 + 
e1 + · · ·+ 
ek =
c−1∑
w=0

Bw 
uw

for some integers B0, B1, . . . , Bc−1. Now, we can see that |Bw| < S, where
S is the number of rollings achieved during the stamping process. Based on
the analysis, we can use the following algorithm to enumerate all possible
coordinates (p′x, p

′
y).
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Algorithm 3: DetermineDirection

Input : A polygon P , a polyhedron Q, two vertices pi and pi′ of P ,
and a vertex qj of Q

Output: All possible combinations of (p′x, p
′
y)

for B0 ← −S to S do
for B1 ← −S to S do· · ·

for Bc−1 ← −S to S do

if | �pipi′| = |
∑c−1

w=0 Bw �uw| then
(p′x, p

′
y) =

∑c−1
w=0 Bw 
uw

⃗v

⃗u
⃗u

⃗v ⃗v ⃗v

Figure 3.6: Two vectors u, v along the two edges of f

The number of iterations of the main loop of this algorithm is O (Sc).
However, the last parameter Bc−1 can be determined within a constant time
when the values of integers B0, B1, . . . , Bc−2 are fixed. Thus, the last loop
for Bc−1 can be reduced. We, therefore, have the claim of the theorem. The
number S is bounded by Theorem 11.

When Q is a tetramonohedra, the faces of Q make a triangle lattice. We
can modify the algorithm by replacing 
us into the two vectors u, v along the
two edges of f that incident to v (Figure 3.6).

�

3.6 Time complexity

We summarize the time complexity of the algorithms. The time complexity
depends on whether Q is a commensurate convex polyhedron or a tetramono-
hedron.

In the process of EnumPosi , we first choose a vertex q of Q, a face f ,
and a pair (p, p′) of points of ∂(P ). It causes O(m2n2) or O(n2) combinations.
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After then, we determine the coordinate (p′x, p
′
y) of p′. By Theorem 15, it

cause O

((
dL+ n+ 2π

θmin
n
)c−1

)
or O(L+ n) combinations.

For each initial position, we do Stamp. it takes O
((

dL+ n+ 2π
θmin

n
)
m
)

or O (L+ n) time by Theorem 11.
Then, we do GlueCheck . By Theorem 12, it takes O(n′) time. By the

proof of Theorem 11, n′ < dL+ n or n′ < L+ n.
Therefore, the total running time is

O

(
n2m2 ×

(
dL+ n+

2π

θmin

n

)c−1

×
((

dL+ n+
2π

θmin

n

)
m+ (dL+ n)

))

or
O
(
n2 × (L+ n)× ((L+ n) + (L+ n))

)
which is simplified into O

(
n2m3

(
dL+ n+ 2π

θmin
n
)c)

or O(n2(L+n)2) time.
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Chapter 4

Reconfiguration problem on
refolding

In this chapter, we focus on a sequence of refolding steps. A polyhedron is
refoldable into another polyhedron if we can unfold the original polyhedron
into a polygon and fold the polygon into the target polyhedron. In other
words, Q is refoldable into Q′ if they share a common unfolding.

We show that several classes of polyhedra are connected by sequences of
O(1) refolding steps. In this chapter, we assume that any polyhedra have
the same surface areas. More precisely, we prove that (1) any two tetra-
monohedra are refoldable into each other, (2) any doubly covered triangle is
refoldable into a tetramonohedron, (3) any tetrahedron has a 3-step refold-
ing sequence to a tetramonohedron, (4) any (augmented) regular prismatoid
and doubly covered regular polygon are refoldable into a tetramonohedron,
and (5) the regular dodecahedron has a 4-step refolding sequence to a tetra-
monohedron. In five platonic solids, the regular tetrahedron is included in
tetramonohedra. Moreover, the regular hexahedron, regular octahedron, and
regular icosahedron are included in augmented regular prismatoids. Thus,
we obtain a ≤ 6-step refolding sequence between any pair of Platonic solids
via tetramonohedra, applying (5) for the dodecahedron and (1) and/or (2)
for all other Platonic solids.

4.1 Settings

We define a (k-step) refolding sequence from Q to Q′ to be a sequence of
convex polyhedra Q = Q0, Q1, . . . , Qk = Q′ where each Qi−1 is refoldable into
Qi. We refer to k as the length of the refolding sequence. To avoid confusion,
we use “1-step refoldable” to refer to the previous notion of refoldability.
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4.2 Connectivity of tetramonohedra

In this section, we show that any pair of tetramonohedra can be refolded to
each other. Specifically, we show the following theorem.

Theorem 16 For any Q,Q′ ∈ Π4, Q is 1-step refoldable into Q′.

Proof. Let T be any triangular face of Q. Let a be the length of the longest
edge of T and b be the height of T for the base edge of length a. We define
T ′, a′, and b′ in the same manner as Q′; refer to Figure 4.1. We assume
a > a′ without loss of generality. Now we have a′ > b′ because a′ is the
longest edge of T ′, and a′b′ = ab because T and T ′ are of the same area.
Thus, (a′)2 = a′b′ a

′
b′ > a′b′ = ab, and 2a′ > a′ > b by a > a′.

a

b
b′

a′

Q

2a′

2a

2a′

2a
2a′

2a

Q′
a′

a′

a

a

2a

2a′

2a′
2a

Figure 4.1: A refolding between two tetramonohedra

We cut two edges of Q of length a, resulting in a cylinder of height b
and circumference 2a. Then we can cut the cylinder by a segment of length
2a′ because 2a′ > b. The resulting polygon is a parallelogram such that two
opposite sides have length 2a and the other two opposite sides have length
2a′(Figure 4.1). Now we glue the sides of length 2a and obtain a cylinder
of height b′ and circumference 2a′. Then we can obtain Q′ by folding this
cylinder suitably (the opposite of cutting two edges of Q′ of length 2a′). �

4.3 Polyhedral classes with a small number of

vertices that have a finite step refolding

sequence to a tetramonohedron

In this section, we show that any pair of polyhedra with ≤ 4 vertices have a
finite step refolding sequence.
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4.3.1 Doubly covered triangles

First, we focus on doubly covered triangles.

Theorem 17 Any doubly covered triangle Q is 1-step refoldable into a doubly
covered rectangle. Thus, Q has a refolding sequence to any doubly covered
triangle Q′ of length at most 3. If doubly covered triangles Q and Q′ share
at least one edge length, then the sequence has a length of at most 2.

Q

b

h

Q′ ′

h

p
q

p
q

p′

q′

p

p′

q

q′

Figure 4.2: A refolding from a doubly covered triangle to a doubly covered
rectangle

Proof. Let Q consist of a triangle T and its mirror image T ′. We first cut Q
along any two edges and unfold along the remaining attached edge, resulting
in a quadrilateral unfolding as shown in Figure 4.2. Let b be the length of
the uncut edge, which we call the base , and let h be the height of T with
respect to the base. Let p and q be the midpoints of the two cut edges. Then
the line segment pq is parallel to the base and of length b/2. In the unfolding
of Q, let p′ and q′ be the mirrors of p and q, respectively. Then we can draw
a grid based on the rectangle pp′q′q as shown in Figure 4.2. By folding along
the crease lines defined by the grid, we can obtain a doubly covered rectangle
Q′′ of size b/2 × h (matching the doubled surface area of Q). (Intuitively,
this folding wraps T and T ′ on the surface of the rectangle pp′q′q.)

Because Q′′ is also a tetramonohedron, the second claim follows from
Theorem 16. When Q has an edge of the same length as an edge of Q′, as
in the third claim, we can cut the other two edges of Q and Q′ to obtain the
same doubly covered rectangle, resulting in a 2-step refolding sequence. �

The technique in the proof of Theorem 17 works for any doubly covered
triangle Q, even if its faces are acute or obtuse triangles.
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4.3.2 Tetrahedra

In this section, we prove that any tetrahedron can be refolded to a tetra-
monohedron.

Prior to the proof, we give the following two lemmas. Let Qk denote the
class of polyhedra with exactly k vertices.

Lemma 18 Any polyhedron Q′ ∈ Π2 ∩Q5 is 1-step refoldable into a polyhe-
dron Q′′ ∈ Π3 ∩ Q5.

Proof. Let λ0, λ1 be the two smooth vertices ofQ′. We cutQ′ by the shortest
line segment l joining λ0 and λ1 and denote the obtained surface by C. By
making crease lines from each of the other vertices to l perpendicularly and
embedding the cut end of C to xy plane, we can form C as a triangular
prism sliced (Figure 4.3). Let h(t) be the height of a point t on the side of
Q′. Let v0, v1, v2 be the other vertices of Q′ clockwise from the viewpoint
of the outside of Q′, and li be the shortest line segments from vi to v0. We
assume that h(v0) ≤ h(v1), h(v2) without loss of generality. Let θi denote
the angle from the perpendicular line of v0 to li. Then, since

π
2
≤ θ1, θ2 and

θ1 + θ2 < σ(v0), we have κ(v0) < π.

v0

v2

v1

v0

θ1 θ2

v2

v1

l1 l2

Figure 4.3: A triangular prism sliced diagonally

Since κ(v0)+κ(v1)+κ(v2) = 2π from Theorem 1, at least one of κ(v1), κ(v2)
is less than π. Thus we assume κ(v1) < π. Let l′ be the line where the
counter-clockwise angle from l1 to l′ at v0 is π (Figure 4.4). Note that the
clockwise angle from l1 to l′ at v0 is σ(v0)− π = π − κ(v0).

By h(v0) ≤ h(v1), h(v2), l
′ and l have an intersection point m. Let θ be

the counter-clockwise angle from l′ to l at m. l1 and l′ do not intersect except
at v0 because ∀t1 ∈ l1,

∀ t2 ∈ l′ and h(t2) < h(v0) < h(t1). Then we cut C by
l1, l

′(Figure 4.5).
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Figure 4.4: A side view of C
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×
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Figure 4.5: A way of cutting and gluing

On the obtained boundary, there are four points whose interior angles are
not π: Let pv0 , pv1 correspond to v0, v1 and the both of pm, p

′
m correspond tom

such that ∠(pv1) = σ(v1),∠(pv0) = π−κ(v0),∠(pm) = θ, and ∠(p′m) = π− θ.
Let c0 be the center point of (pv1 , pv0), and s be the point that has the same
distance with p′m from c0. Let c1 and c2 be the center point of (pm, pm′)
and (pm, s). We glue each of pv0 , pv1 and p′m, pm, s. Let Q′′ be the resulting
polyhedron. Since ∠(pv0)+∠(pv1) = π−κ(v0)+σ(v1) = 3π−(κ(v0)+κ(v1)) =
3π − (2π − κ(v1)) = π + κ(v1) < 2π, Q′′ satisfies Alexandrov’s conditions.
That is, Q′′ is a convex polyhedron in Π3 ∩ Q5. �

Lemma 19 Any polyhedron Q′′ ∈ Π3 ∩ Q5 is 1-step refoldable into a poly-
hedron Q′′′ ∈ Π4.

Proof. Let λ0, λ1, λ2 be the three smooth vertices of Q′′ and v0, v1 be the
other vertices. In the proof of Lemma 18, the vertex v3 of Q′ remains as the
vertex of Q′ without cutting, and v0, v1 are chosen such that κ(v0), κ(v1) < π
holds. Thus, we can apply the proof of Lemma 18 to a proof of Lemma 19
by replacing v2 to λ2. As a result, we obtain a polyhedron Q′′′ of Π4. �

Under the above preparation, we show the subject theorem.

Theorem 20 For any Q ∈ Q4, there is at most 3-step refolding sequence
from Q to some Q′′′ ∈ Π4.
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Proof. There are three possible cases of Q: Q ∈ Π0, Q ∈ Π1, or Q ∈ Π2

(the case of Q ∈ Π3 never happens by Theorem 1). First, we consider the
case of Q ∈ Π0 and Q ∈ Π1. In each case, there are two vertices v, v′ such
that σ(v), σ(v′) ≤ π by Theorem 1. We cut along the segment vv′ and glue
the point v to v′. On the resulting polyhedron, there is a new vertex of a
co-curvature σ(v) + σ(v′) ≤ 2π and two new smooth vertices. Thus, we can
obtain a convex polyhedron Q′ ∈ Π2 by Theorem 4. That is, we can reduce
these two cases to the case of Q ∈ Π2 by the 1-step refolding. Q′ ∈ Π2

is 2-step refoldable into a polyhedron Q′′′ ∈ Π4 by Lemma 18 and Lemma
19. �

4.4 Polyhedral classes that have a multi-step

refolding sequence to a tetramonohedron

In this section, we show specific ways of unfolding and folding between some
polyhedral classes and tetramonohedra.

4.4.1 Regular prismatoids

We focus on a polyhedral class called regular prismatoids. We extend the
approach of Horiyama and Uehara [12], who showed that the regular icosa-
hedron, the regular octahedron, and the regular hexahedron (cube) could
be 1-step refolded into a tetramonohedron. As an example, Figure 4.6
shows their common unfolding for the regular icosahedron. A polygon P =
(p0, c1, p1, c2, p2, . . . , p2n, c2n, p2n+1, p0) is called a spine polygon if it satisfies
the following two conditions (refer to Figure 4.7):

1. Vertex pi is on the line segment p0pn for each 0 < i < n; vertex pi is
on the line segment pn+1p2n+1 for each n + 1 < i < 2n + 1; and the
polygon B = (p0, pn, pn+1, p2n+1, p0) is a parallelogram. We call B the
base of P , and require it to have a positive area.

2. The polygon Ti = (pi, ci+1, pi+1, pi) is an isosceles triangle for each
0 ≤ i ≤ n − 1 and n + 1 ≤ i ≤ 2n. The triangles T0, T1, . . . , Tn−1 are
congruent, and Tn+1, Tn+2, . . . , T2n are also congruent. These triangles
are called spikes .

Lemma 21 Any spine polygon P can be folded to a tetramonohedron.
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Figure 4.6: A common unfolding of a regular icosahedron and a tetramono-
hedron, from [12]

p0 p1 p2 pn−2 pn−1 pn

p2n+1 p2n p2n−1 pn+3 pn+2 pn+1

c1 c2 cn−1 cn

c2n c2n−1 cn+2 cn+1

Figure 4.7: A spine polygon with 2n spikes
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Proof. By Theorem 6, a polygon P can be folded into a tetramonohedron if
the boundary of P can be divided into six parts, two of which are parallel and
the other four of which are rotationally symmetric. We divide the boundary
of a spine polygon P into l1 = (p0, c1, . . . , cn); l2 = (cn, pn), l3 = (pn, pn+1);
l4 = (pn+1, cn+1, . . . , c2n), l5 = (c2n, p2n+1); and l6 = (p2n+1, p0). Then l3 and
l6 are parallel because the base of P is a parallelogram. Each of l2 and l5 is
rotationally symmetric on its own as line segments, centering its midpoint.
Each of l1 and l4 is rotationally symmetric because each spike of P is an
isosceles triangle. �

Now we introduce some classes of polyhedra; refer to Figure 4.8.
A prismatoid is the convex hull of parallel base and top convex poly-

gons. We sometimes call the base and the top roofs when they are not
distinguished. We call a prismatoid regular if (1) its base P1 and top P2

are congruent regular polygons and (2) the line passing through the centers
of P1 and P2 is perpendicular to P1 and P2. (Note that the side faces of a
regular prismatoid do not need to be regular polygons.) The perpendicular
distance between the planes containing P1 and P2 is the height of the pris-
matoid. The set of regular prismatoids contains prisms and antiprisms ,
as well as doubly covered regular polygons (prisms of height zero). A pyra-

Figure 4.8: A regular prismatoid and an augmented regular prismatoid

mid is the convex hull of a base convex polygon and an apex point. We
call a pyramid regular if the base polygon is a regular polygon, and the
line passing through the apex and the center of the base is perpendicular to
the base. (Note that the side faces of a regular pyramid do not need to be
regular polygons.) A polyhedron is an augmented regular prismatoid if
it can be obtained by attaching two regular pyramids to a regular prismatoid
base-to-roof, where the bases of the pyramids are congruent to the roofs of
the prismatoid, and each roof is covered by the base of one of the pyramids.

Theorem 22 Any regular prismatoid or augmented regular prismatoid of
positive volume can be unfolded to a spine polygon.
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Proof. Let Q be a regular prismatoid. Let c1 and c2 be the center points
of two roofs P1 and P2, respectively. Cutting from ci to all vertices of Pi for
each i = 1, 2 and cutting along a line joining between any pair of vertices of
P1 and P2, we obtain a spine polygon. For an augmented regular prismatoid
Q, we can similarly cut from the apex ci of each pyramid to the other vertices
of the pyramid, which are the vertices of the roof Pi of the prismatoid. �

When the height of the regular prismatoid is zero (or it is a doubly cov-
ered regular polygon), the proof of Theorem 22 does not work because the
resulting polygon is not connected. In this case, we need to add some twists.

Theorem 23 Any doubly covered regular n-gon is 1-step refoldable into a
tetramonohedron for n > 2.

Proof. First suppose that n is an even number 2k for some positive integer
k > 1. We consider a special spine polygon where the top angles are 2π

k
; the

vertices p0, p2n+1, p1 are on a circle centered at c1; and the vertices p2n+1, p1, p2
are on a circle centered at c2n; see Figure 4.9. Then we can obtain a doubly
covered n-gon by folding along the zig-zag path p2n+1, p1, p2n, p2, . . . , pn+2, pn
shown in Figure 4.9. Thus when n = 2k for some positive integer k, we
obtain the theorem.

p0

p1

p2n

p2n+1

c1

c2n

2π
k

2π
k

cn

cn+1

pn
pn+1

Figure 4.9: The case of a doubly covered regular 8-gon

Now suppose that n is an odd number 2k + 1 for some positive integer
k. We consider the spine polygon whose top angles are 4π

2k+1
; the vertices

p0, p2n+1, p1 are on a circle centered at c1; and the vertices p2n+1, p1, p2 are
on a circle centered at c2n. From this spine polygon, we cut off two triangles
c1, p0, c2n+1 and cn+1, pn+1, pn, as in Figure 4.10. Then we can obtain a doubly
covered n-gon by folding along the zig-zag path p2n+1, p1, p2n, p2, . . . , pn+2, pn
shown in Figure 4.10. Although the unfolding is no longer a spine polygon,
it is easy to see that it can also fold into a tetramonohedron by letting
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l′1 = (c1, p1, . . . , pn), l
′
2 = (pn, pn), l

′
3 = (pn, cn+1), l

′
4 = (cn+1, pn+2 . . . , p2n+1),

l′5 = (p2n+1, p2n+1), and l′6 = (p2n+1, c1) in the proof of Lemma 21. �

p0

p2n+1

c1

cn+1

pn+1

pn

c2n

p1

Figure 4.10: The case of a doubly covered regular 5-gon

The proof of Theorem 23 is effectively exploiting that a doubly covered
regular 2k-gon (with k > 1) can be viewed as a degenerate regular prismatoid
with two k-gon roofs, where each of the side triangles of this prismatoid is
on the plane of the roof sharing the base of the triangle.

Because the cube and the regular octahedron are regular prismatoids and
the regular icosahedron is an augmented regular prismatoid, we obtain the
following:

Corollary 24 Let Q and Q′ be regular polyhedra of the same area, neither
of which is a regular dodecahedron. Then there exists a refolding sequence
of length at most three from Q to Q′. When one of Q or Q′ is a regular
tetrahedron, the length of the sequence is at most 2.

4.4.2 A regular dodecahedron

In this section, we show that there is a refolding sequence of the regular
dodecahedron to a tetramonohedron of length 4.

Demaine et al. [8] mention that the regular dodecahedron can be refolded
to another convex polyhedron. Indeed, they show that any convex polyhe-
dron can be refolded to at least one other convex polyhedron using an idea
called “flipping a Z-shape”. We extend this idea.

Definition 25 For a convex polyhedron Q and n, k ∈ N, let p = (s1, s2, . . . , s(2k+1)n)
be a path that consists of isometric and non-intersecting (2k + 1)n straight
line segments si on Q. We cut the surface of Q along p. Then each line
segment is divided into two line segments on the boundary of the cut. For
each line segment si, let s

l
i and sri correspond to the left and right sides on the

boundary along the cut (Figure 4.11). Then p is a Z-flippable (n, k)-path
on Q, and Q is Z-flippable by p, if the following gluing satisfies Alexandrov’s
conditions.
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Figure 4.11: Z-flip

• Glue sl1, s
l
2, . . . , s

l
n to sl2n, s

l
2n−1, . . . , s

l
n+1.

• Glue sr1, s
r
2, . . . , s

r
n to sl2n+1, s

l
2n+2, . . . , s

l
3n.

• Glue srn+1, s
r
n+2, . . . , s

r
2n to sr3n, s

r
3n−1, . . . , s

r
2n+1.

...

• Glue sr2(k−1)n+1, s
r
2(k−1)n+2, . . . , s

r
2kn to sr(2k+1)n, s

r
(2k+1)n−1, . . . , s

r
2kn+1.

Figure 4.12 gives an example of a refolding by a Z-flippable (1, 1)-path.
If there are Z-flippable paths p1, p2, . . . , pm inducing a tree structure on the

surface of Q, we can flip them all at the same time (see Figure 4.13). Then
we say that Q is Z-flippable by p1, p2, . . . , pm. This method also works when
the obtained structure is disconnected trees with no intersections because we
can flip each tree independently.
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Figure 4.12: An example of Z-flippable (1, 1)-paths
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Figure 4.13: An example of Z-flippable paths that form a tree structure

Theorem 26 There exists a 4-step refolding sequence between a regular do-
decahedron and a tetramonohedron.

Proof. Let D be a regular dodecahedron. To simplify, we assume that each
edge of a regular pentagon is of length 1. We show that there exists a
refolding sequence D,Q1, Q2, Q3, Q4 of length 4 for a tetramonohedron Q4.
All co-curvatures of the vertices of D are equal to 9π

5
. For any vertices v,

there are 3 vertices of distance 1 from v and 6 vertices of distance φ = 1+
√
5

2

from v. Hereafter, in figures, each circle describes a non-flat vertex on a
polyhedron, and the number in the circle describes its co-curvature divided
by π

5
. Each pair of vertices of distance 1 is connected by a solid line, and

each pair of vertices of distance φ is connected by a dotted line. Figure 4.14
shows the initial state of D in this notation. We note that solid and dotted
lines do not necessarily imply edges (or crease lines) on the polyhedron.

First, we choose p1 = (s11, s
1
2, . . . , s

1
6), p

2 = (s21, s
2
2, s

2
3), p

3 = (s31, s
3
2, . . . , s

3
6),

and p4 = (s41, s
4
2, s

4
3) on the surface of D on the left of Figure 4.15. Then,

p1 and p3 are Z-flippable (2, 1)-paths, and p2 and p4 are Z-flippable (1, 1)-
paths. Thus, D is Z-flippable by p1, p2, p3, p4 to the polyhedron on the right
of Figure 4.15. Let Q1 be the resulting polyhedron.

Second, we choose p1 = (s11, s
1
2, . . . , s

1
5) on the surface of Q1 on the left of

Figure 4.16. Then, p1 is a Z-flippable (1, 3)-path. Thus, Q1 is Z-flippable by
p1 to the next polyhedron Q2 on the right of Figure 4.16.

Third, we choose p1 = (s11, s
1
2, s

1
3) and p2 = (s21, s

2
2, s

2
3) on the surface of

Q2 on the left of Figure 4.17. Then, p1 and p2 are Z-flippable (1, 1)-paths.
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Figure 4.14: The initial regular dodecahedron
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Figure 4.15: A refolding from D to Q1
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Figure 4.16: A refolding from Q1 to Q2
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Figure 4.17: A refolding from Q2 to Q3
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Figure 4.18: A refolding from Q3 to Q4

Thus, Q2 is Z-flippable by p1 and p2 to the polyhedron Q3 on the right of
Figure 4.17.

Fourth, we choose p1 = (s11, s
1
2, . . . , s

1
5), p

2 = (s21, s
2
2, . . . , s

2
5), and p3 =

(s31, s
3
2, s

3
3) on the surface of Q3 on the left of Figure 4.18. Then, p1 and p2

are Z-flippable (1, 3)-paths, and p3 is a Z-flippable (1, 1)-path. Thus, Q3 is
Z-flippable by p1, p2, and p3 to the polyhedron Q4 on the right of Figure 4.18.

Finally, we obtain a tetramonohedron Q4 from a regular dodecahedron
D by a 4-step refolding sequence. In this proof, we use partial unfolding
between pairs of polyhedra in the refolding sequence.

We give the (fully unfolded) common unfoldings in Figures 4.19, 4.20,
4.21, and 4.22, which show the common unfoldings of each consecutive pair
of polyhedra in the refolding sequence from the proof of Theorem 26. Thus,
a 4-step refolding sequence exists between a regular dodecahedron and a
tetramonohedron. �
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Figure 4.19: A common unfolding of D and Q1

Figure 4.20: A common unfolding of Q1 and Q2

Figure 4.21: A common unfolding of Q2 and Q3
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Figure 4.22: A common unfolding of Q3 and Q4
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Chapter 5

Nonexistence of common
unfolding

In this chapter, we consider the nonexistence of common unfoldings. We fo-
cus on relations of the interior angles of common unfoldings if they exist and
introduce a notion called spreading trees. As a result, we give an algorithmic
method for checking the existence of common unfoldings of a pair of poly-
hedra weakly-independent. Finally, we implement this algorithm and show
that there is no common unfolding with k vertices within k < 300 between
any strongly-independent and algebraic doubly covered triangles.

5.1 Settings

Let Q0 and Q1 be a pair of polyhedra with the same surface areas. We
denote the set of the vertices of Qi by V (Qi) = {vi0, vi1, . . . , vini−1} where
ni is the number of the vertices. We assume that Qi can be unfolded to
a polygon P i by the cutting tree T i and the folding map f i. We define
Dk(T

i) := {q ∈ T i; deg(q) = k}.
Here, we obtain the following maps gli called gluing maps , which rep-

resent the correspondence on the boundary ∂(P i).

Definition 27 We define a gluing map gli : ∂(P i) → ∂(P i) by the map
returns the point to which is glued by the mapping as follows (Figure 5.1).

• If p ∈ Di
2(P

i), gli(p) := p′ such that f i(p) = f i(p′); p′ is determined
uniquely.

• Otherwise, gli(p) := p.
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Qi

Ti

∂(P)

p1

gli(p1)

p3 = gli(p3)p2

gli(p2)

p4 = gli(p4)

p5 = gli(p5)

p6 = gli(p6)

p7 = gli(p7)

p0 = gli(p0)

Figure 5.1: A schematic diagram of a gluing map

5.2 Spreading structures

If there is a common unfolding P of Q0, Q1, two gluing maps gl0, gl1 are
defined on ∂(P ). For a point p ∈ ∂(P ), applying gli+1 and gli alternately as
gli(p), gli+1(gli(p)), . . ., we obtain a sequence. In this section, we analyze the
relationship that is induced by these sequences.

We define Li(P ) := {p ∈ ∂(P ); f i(p) ∈ D1(T
i)}. Let take any point

p ∈ L0(P ), which is folded to a vertex v0j when we fold P to Q0. When
we fold P to Q1, we have three cases about f 1(p). The first is the case of
f 1(p) ∈ D1(T

1). In this case, p makes a vertex also when we fold P to Q1.
The second is the case of f 1(p) ∈ D2(T

1). In this case, p is glued to a point
on ∂(P ) and makes a point on the surface of Q1. The last is the case of
f 1(p) ∈ D>2(T

1). In this case, p is glued to more than two points on ∂(P ).
In the second case, by the definition of gli, we obtain a different point gl1(p)
by applying gl1 to p. Applying gl0 to gl1(p), a similar division of case occurs.
We can repeat the process until a point not in D2(P ) is obtained. We define
the points obtained in this process by a spreading path of p (Figure 5.2).
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p1
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b0
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3

p4

p5

p6

Q0

b0
1

Q1

b0
0

v1
0

v1
1 v1

3

v1
2

Figure 5.2: A spreading path spr(p4) = (p4, p6, p2)

More precisely, a spreading path is defined by the following.
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Definition 28 For a point p ∈ Li(P ), we define the spreading path spr(p)
by the sequence of points of ∂(P ) obtained by alternative iterations of the
map gli+1 or gli,

(p, gli+1(p), gli(gli+1(glij(p))), gl
i+1(gli(gli+1(p)), . . . ),

until the map returns the same value as the input. In other words, a spreading
path ends at a point in Dk �=2(P ). The endpoint is called a frontier of spr(p)
and denoted by frtspr(p). Let S

i(spr(p)) be the set of the points in T i that is
spanned by spr(p) except the frontier. Here we remark that Si(spr(p)) would
includes both a vertex and a point on the surface of Qi; the co-curvature of
a point in Si(spr(p)) would be 2π or less.

A spreading sequence has the following property about the interior angle
of its frontier.

Lemma 29 Let spr(p) be a spreading path that has frontier frtspr(p) on T i.

∠(frtspr(p)) = (
∑

q∈Si+1(spr(p))

σ(q))− (
∑

q∈Si(spr(p))

σ(q))

Proof. The point p, which is the first element of spr(p), satisfies ∠(p) =
σ(vij) where p is folded into a vertex vij because of Observation 3. The
point gli+1(p), which is the second element of spr(p), satisfies ∠(gli+1(p)) =
σ(f i+1(p))−σ(vij) because of Observation 3. To repeat that, the angle at the
frontier can be represented by the alternate sum of the co-curvatures at the
points spanned by spr(p). �

We compute the spreading sequences for all of L0(P )∪L1(P ). By defini-
tion, each frontier is around a point in Dk �=2(T

0)∪Dk �=2(T
1). Inversely, each

element of Dk �=2(T
0) ∪ Dk �=2(T

1) with degree k can be classified into three
cases (1) with no frontiers, (2) at which (< k − 1) frontiers are gathering,
(3) at which exactly (k − 1) frontiers are gathering, or (4) filled by k fron-
tiers. In Case (3), we can consider a new spreading path beginning from the
rest point which is not a frontier. We repeat this operation until no more
points of Case (3). As a result, we obtain some connected components of
spreading paths that are connected by added spreading paths ; each compo-
nent forms a tree structure. We call them by spreading trees and denote
by st(Λ) where Λ is the set of the sub spreading paths that begin from an
element of L0(P ) ∪ L1(P ). For a spreading tree st(Λ), we call the points of
Case (4) by internal vertices, and the points of Case (2) by frontiers .
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A spreading tree is complete if it has no frontier. Let Si(st(Λ)) be the
union of

⋃
λ∈Λ S

i(λ) and all internal vertices of st(Λ). Si(st(Λ)) would in-
clude both vertices and points on surface of Qi. We define Ei(st(Λ)) := {v ∈
Si(st(Λ)); v ∈ V (Qi)} and M i(spr(p)) := {v ∈ Si(st(Λ); v /∈ V (Qi)}.

By Lemma 29, the following holds.

Observation 30 For any complete spreading tree st(Λ),

(
∑

q∈Si+1(st(Λ))

σ(q))− (
∑

q∈Si(st(Λ))

σ(q)) = 0.

To clarify the structure of the spreading trees, we introduce the following
restriction on the co-curvatures of the vertices. Here we note that, for the
co-curvatures, (

∑
v∈V (Qi) σ(v)) = 2π(ni − 2) holds by Theorem 1.

Definition 31 A pair of polyhedra Q0 and Q1 is weakly-independent if
∀mi

j ∈ {0, 1}, (∑vj∈V (Q0) m
0
jσ(vj))− (

∑
vj∈V (Q1) m

1
jσ(vj)) is not a multiple of

π unless mi
0 = mi

1 = . . . = mi
ni−1 for each i.

We can determine the structure of spreading trees if a pair of polyhedra
is weakly-independent by the following lemmas.

Lemma 32 If there is a common unfolding of Q0 and Q1 which are weakly-
independent, just two complete spreading trees st(Λ0) and st(Λ1) are defined
such that Ei(st(Λi))) = V (Qi).

Proof. Let st(Λ0), st(Λ1), . . . , st(Λs) be the spreading trees. By the defini-
tion of weakly-independence and Observation 30, a spreading tree st(Λ) is
complete if and only if [Ei(st(Λ)) = V (Qi)] ∨ [Ei(st(Λ)) = ∅] for each i.
Therefore, there are three possible cases; (1) V (Q0) and V (Q1) are spanned
by one complete spreading tree, (2) V (Q0) and V (Q1) are spanned by differ-
ent complete spreading trees, and (3) there are incomplete spreading trees.
We show that only case (2) is possible.

Prior to consider the proof, we introduce a notation for tree graphs. For
a tree graph G, let l(G) be the number of leaves and D(G) be the set of
the vertices with ≤ 3 degree. Here, it is easy to see that the followings hold
where G0, G1, G2 are tree graphs.

• If there exists a one to one map d : D(G0) → D(G1) such that deg(v) =
deg(d(v)), l(G0) = l(G0) holds.

• D(G2) = D(G0) ∪D(G0) =⇒ l(G2) = l(G0) + l(G1)− 1
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• D(G0) ⊂ D(G1) =⇒ l(G0) ≤ l(G1)

We consider Case (1). Let st(λ) be the complete spreading tree such
that satisfies [Ei(st(Λ)) = V (Qi)] for each i = 0, 1. By the definition of
L0(P ) ∪ L1(P ), l(T 0) + l(T 1) = l(st(Λ)). An internal vertex of st(λ) with
degree k is realized on a degree k point of the cutting trees T 0 or T 1. It
means that there exists a map d : D(st(λ)) → D(T 0) ∪ D(T 1) such that
deg(v) = deg(d(v)). Thus, l(st(λ)) < l(T 0) + l(T 1). It contradicts too
l(st(λ)) = l(T 0) + l(T 1). Therefore, we can conclude Case (1) is infeasible.

It is easy to see Case (3) is also infeasible because an incomplete spreading
tree consumes more degrees at internal vertices than a complete one. �

As a corollary, the following also holds.

Lemma 33 If Q0 and Q1 are weakly-independent, ∀p ∈ L0(P )∪L1(P ), frtspr(p) /∈
L0(P ) ∪ L1(P )

Proof. We assume that there exist two points p, p′ ∈ L0(P )∪L1(P ), frtspr(p) =
p′. Two spreading paths spr(p) and spr(p′) are identical as a spreading tree
st(λ). By Lemma 32, p and p′ are included on the same side of L0(P )
or L1(P ). We assume that p, p′ ∈ L0(P ) and p, p′ are folded into ver-
tices v0j , v

0
j′ without loss of generality. Here, st(λ) satisfies [V 0(st(λ)) =

E0(st(λ))] ∧ [V 1(st(λ)) ∩ E1(st(λ)) = ∅]. When we consider the value of
(
∑

q∈S1(st(λ)) σ(q)) − (
∑

q∈S0(st(λ)) σ(q)), it is reduced to (2π · |M1(st(λ))|) −
(2π(n0 − 2)+ 2π · |M0(st(λ))|) because σ(q) = 2π for any q ∈ M i(st(λ)) and
Theorem 1.

Because st(λ) is a path whose both end points are in L0(P ), |M1(st(λ))| >
|M0(st(λ))| and the difference of them is n0−1. As a result, (

∑
q∈S1(st(λ)) σ(q))−

(
∑

q∈S0(st(λ)) σ(q)) = 2π. It contradicts to Observation 30. �

Here, we introduce a class of common unfolding called a standard-form
using spreading trees.

Definition 34 A common unfolding between Q0, Q1 is a standard-form if all
vertices of P are included in

⋃
i st(Λ

i).

The following lemma shows that any standard-form common unfolding is
an equilateral polygon.

Lemma 35 If there is a standard-form common unfolding of Q0 and Q1

which are weakly-independent, the points in
⋃

i st(Λ
i) appear in ∂(P ) at even

intervals. Moreover, the elements of st(Λ0) and st(Λ1) appear alternately.

45



Proof. For a point u ∈ ⋃i st(Λ
i), we define d+(u) and d−(u) by the coun-

terclockwise and clockwise distances between u and the nearest point in⋃
i st(Λ

i). We show that d+(u) = d−(u) = c for any u where c is a con-
stant value. Let p be a leaf point of st(Λi) for a fixed i = 0, 1. The point p
is cut by a leaf l of T i. Obviously, d+(p) = d−(p) holds because the nearest
point l′ of l on T i makes both side nearest points p+, p− of p on ∂(P ) (Fig-
ure 5.3). Along spr(p), the interval (p+, p, p−) is glued to another interval
on ∂(P ) by gli+1, and the distances are kept (Figure 5.4). Therefore, we can
confirm by induction that d+(u) = d−(u) = c holds.

The rest is to show that the points of st(Λi) are not adjacent for each i.
We can see this by comparing the distances between the points in st(Λ0) and
st(Λ0).

p

p−

p+

d+(p)

d−(p)

l

l′

T i

Figure 5.3: The both sides nearest points of p

gli+1( p−)

gli+1( p+)

p−

p

gli+1( p)

p+

Figure 5.4: Spreading nearest distances

�

We can reduce the existence of common unfoldings to the existence of
standard-form common unfoldings by the following lemma.

Lemma 36 If there is a common unfolding of Q0 and Q1 that are weakly-
independent, Q0 and Q1 have a standard-form common unfolding.
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Proof. By Lemma 35, the points in the spreading trees are lined up al-
ternately on ∂P . Let take a pair of adjacent points and m be the inter-
val between them. Let (p0, p1, p2, . . . , pk) be the vertices of P on m′. Be-
cause m is glued to another interval m′, (p0, p1, p2, . . . , pk) make vertices
(p′0, p

′
1, p

′
2, . . . , p

′
k) such that ∠(pi) = 2π−∠(p′i). In the same way as the proof

of Lemma 35, it spreads into all intervals. On the boundary of P , except
for the points in the spreading trees, the interior angles are ∠(p0), . . . ,∠(pk)
and 2π − ∠(pk), . . . , 2π − ∠(p0) alternately; see Figure 5.5. We focus on the
cutting tree T into one side polyhedron. Let T ′ be the cutting tree replacing
each interval of T with a straight line segment. T ′ has kept the interior angles
at the points in the spreading trees; see Figure 5.6. Let P ′ be the unfolding
by T ′. Then P ′ is a standard-form common unfolding of Q0 and Q1. �

p0

p1
p2

p′0

p′1

p′2

p′0

p′1p′2p0

p1

p2

m
m′

Figure 5.5: (p0, p1, . . . , pm) on the interval m

v

α(v)

v′

α(v′) = α(v)

Figure 5.6: The reduction of a common unfolding into a standard-form com-
mon unfolding

From Lemma 35 and Lemma 36, we can conclude as the following theo-
rem.
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Theorem 37 If there is a common unfolding of Q0 and Q1 that are weakly-
independent, Q0 and Q1 have an equilateral common unfolding.

5.3 Discretization of the existence of com-

mon unfoldings

In this section, we consider the existence of standard-form common unfold-
ings.

A standard-form common unfolding is an equilateral polygon whose in-
terior angles are included in spreading trees. It means that a standard-form
common unfolding can be represented by a sequence φ = (φ0, . . . , φn) of inte-
rior angle where each φi is a summation of co-curvatures σ(vij) and a multiple
of 2π. Inversely, we consider restoring an equilateral polygonal line from a
sequence of angles. For a sequence of interior angle φ = (φ0, . . . , φn), we
define the polygonal line Polyφ = (p0, p1, . . . , pn) in the complex plane C by
the following.

p0 = 1, p1 = 0 ∈ C,

pi+1 − pi = (pi−1 − pi)e
√−1φi .

Here, we remark that e
√−1 θ = cos θ +

√−1 sin θ holds by Euler’s Formula.
If there is a standard-form common unfolding, there must exist a sequence

φ such that Polyφ satisfies p0 = pn.
We consider a condition that Polyφ satisfies p0 = pn. Here, we introduce

more restricted polyhedral classes.

• A pair of polyhedra Q0 and Q1 are strongly-independent if ∀mi
j ∈

Q, (
∑

vj∈V (Q0) m
0
jσ(vj)) − (

∑
vj∈V (Q1) m

1
jσ(vj)) is not a multiple of π

unless mi
0 = mi

1 = . . . = mi
ni−1 for each i.

• A polyhedron Qi is algebraic if σ(vij) ∈ Q∗ for any vij ∈ V (Qi)− {vi0}
where Q∗ is the algebraic closure on Q.

We define that a polygonal line Polyφ is parallel if there exists a permu-
tation τ on ( 
w0, 
w1, . . . , 
wn−1) such that (τ( 
wi) = 
wj =⇒ 
wi = − 
wj) ∧
(τ 2( 
wi) = 
wi) where 
wi is the vector along the edge (pi, pi+1).

Here, we state the condition that Polyφ satisfies p0 = pn.

Lemma 38 If φ is generated by a standard-form common unfolding of strongly-
independent and algebraic polyhedra Q0 and Q1, Polyφ satisfies p0 = pn if
and only if Polyφ is parallel.
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Proof. If Polyφ is parallel, p0 = pn holds because each pair of 
wi and τ( 
wi)
is canceled when we trace the Polyφ. We show that its inverse holds. Here,
p0 = pn is equivalent to

∑
i 
wi = 0. We should show that the vectors 
wi are

linearly independent on Z except that two vectors are the same or inverse.
Let 
w′

0, 
w
′
1, . . . , 
w

′
k be the subset of 
w0, 
w1, . . . , 
wn−1 choosing without the

same or inverse ones. We use a classical result on transcendental numbers:

Theorem 39 (Lindemann’s Theorem) For any distinct algebraic num-
bers a0, a1, . . . , am, the numbers ea0 , ea1 , . . . , eam are linearly independent on
Q∗, where Q∗ is the algebraic closure on Q.

Let ψi be the slope of 
w′
i; 
w′

i is represented by e
√−1ψi . The slope ψi is

φ0 + φ1 + · · · + φi or φ0 + φ1 + · · · + φi − π depending on whether i is odd
or even. Because we choose 
w′

0, 
w
′
1, . . . , 
w

′
k without the same or inverse ones,

ψ0, . . . , ψk are distinct algebraic numbers. Similarly,
√−1ψ0, . . . ,

√−1ψk are
distinct algebraic numbers. By Lindemann’s Theorem, e

√−1ψ0 , . . . , e
√−1ψk

are linearly independent on Q∗. On Z, they are also linearly independent.
Therefore, 
w′

0, 
w
′
1, . . . , 
w

′
k are linearly independent on Z. �

For a sequence φ generated by a pair of strongly-independent and alge-
braic polyhedra Q0 and Q1, the shape of Polyφ depends on the concrete
values of σ(vij). In contrast, the following holds because two vectors along
edges of Polyφ satisfy 
wi = − 
wj only when φ0 + φ1 + · · · + φi = 0, and it is
not depend on the concrete values of σ(vij) by the strongly-independence.

Remark 40 If φ is generated by a standard-form common unfolding of strongly-
independent and algebraic polyhedra Q0 and Q1, whether Polyφ is parallel
does not depend on the concrete values of σ(vij).

We conclude what we can say if there is a k-gon P that is a standard-form
common unfolding of a pair of strongly-independent and algebraic polyhedra.
The boundary of P is glued in two ways by two gluing maps gl0, gl1. These
gluing maps define on ∂(P ) two spreading trees are defined. Moreover, Polyφ
would be parallel where φ is the sequence of the interior angles of P .

Inversely, we can check the nonexistence of common unfoldings with k
vertices for fixed k by enumerating all possible ways of gluing. We give a
specific algorithm for a certain polyhedral class.

5.4 The case for doubly covered triangles

We show that there is no common unfolding with k vertices within k <
300 between two doubly covered triangles that are strongly-independent and
algebraic.
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The topology of a cutting tree T of a doubly covered triangle can be
classified into two cases, as illustrated in Figure 5.7: a Y-form is a tree
with a single point bi of degree 3 (and with leaves at the vertices of Q), and
a V-form is just a path (through all vertices of Q).

V-formY-form

 bi

 vi
0

 vi
2

 vi
1

 vi
0

 vi
2

 vi
1

Figure 5.7: Topologies of cutting trees of doubly covered triangles

By Corollary 33, only the case that both the cutting trees are Y-form is
possible. Therefore, there are three points li0, l

i
1, l

i
2 such that f i(lij) = vij and

three points mi
0,m

i
1,m

i
2 such that bi = f i(mi

0) = f i(mi
1) = f i(mi

2).
By Remark 40, we do not care about the concrete values of σ(vij) and

treat each σ(vij) as a symbol θij.
First, we prepare a cyclic array C of length k. Next, we enumerate all

possible forms of T i by determining the values ofmi
j. Then, we check whether

the two spreading trees are defined well. Finally, we check whether the ob-
tained sequence of the interior angles makes a parallel polygon. Details of
the algorithm are given in Algorithm 4. It requires O(k7) time theoretically.
We implemented them and checked that there is no common unfolding with
k vertices in a range k < 300. It takes 1.5 hours in a normal laptop environ-
ment (CPU: 1.4GHz Intel Quad-Core i5, OS: mac OS 12.4, Memory: 16GB,
compiler: GCC 11.3.02, optimize: -O3).
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Algorithm 4: Checking algorithm for doubly covered triangles

input : The number of vertices k
output: Whether there is a common unfolding with k vertices

between two doubly covered triangles that are
strongly-independent and algebraic.

Let C be a cyclic array of length k and m0
0 := 0.

forall m0
1,m

0
2,m

1
0,m

1
1,m

1
2 such that

0 = m0
0 < m0

1 < m0
2 < n, 0 < m1

0 < m1
1 < m1

2 < n do
for i = 0, 1 and j = 0, 1, 2 do

if mi
j+1 −mi

j are odd then
Return to line 2.

lij := mi
j +

1
2
(mi

j+1 −mi
j) mod n

Define gl0, gl1.
for i = 0,1 and j = 0, 1, 2 do

p := lij
k := (j + 1) mod 2
C[lij] := θij.

while p �= glk(p) do
p := glk(p)
if C[p] is not yet defined then

if k = 1 then
C[p] := θij

else

C[p] := θij

else
Return to line 2.

k := (k + 1) mod 2

if {C[mi
0], C[mi

1], C[mi
2]} = {θi+1

0 , θi+1
1 , θi+1

2 } for each i then
Let S be the stack of the numbers 0 to k.
while S �= ∅ do

for i ∈ S do
if there is (i <)j ∈ S such that
C[i] + C[i+ 1] + · · ·+ C[j] is a multiple of 2π then

Remove i, j from S.

else
Return to line 3.

output: true

output: false
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Chapter 6

Conclusion

In Chapter 3, we provided a pseudo-polynomial time algorithm for solving
the folding problem for the given simple polygon P and convex polyhedron
Q. To bind the running time of our algorithm, we introduced a new notion
of a commensurate convex polyhedron with a unit length and a unit angle
such that each edge has a length multiple of the unit length, and each angle
of a face is a multiple of the smallest angle. The set of commensurate convex
polyhedra includes wide classes of polyhedra; for example, Platonic solids,
convex polyhedra formed by regular polygons (i.e., the 13 Archimedean and
92 Johnson solids), rational boxes, the 13 Catalan solids (also known as
Archimedean dual), and so on. In fact, we can use our algorithm for a general
convex polyhedron. However, in this case, we cannot bind the running time
so we may need a different approach.

In Chapter 4, we gave a partial answer to Open Problem 25.6 in [9]. For
every pair of regular polyhedra, we obtain a refolding sequence of length at
most 6. Although this is the first refolding result for the regular dodeca-
hedron, the number of refolding steps seems a bit large. Finding a shorter
refolding sequence is an open problem. The notion of refolding sequence
raises many open problems. Which pairs of convex polyhedra are connected
by a refolding sequence of finite length? Is there any pair of convex polyhedra
that are not connected by any refolding sequence? At the center of our results
is that the set of tetramonohedra induces a clique by the binary relation of
refoldability. Is the regular dodecahedron refoldable into a tetramonohedron?
Are all Archimedean and Johnson solids refoldable into tetramonohedra? Is
there any convex polyhedron that is not refoldable into a tetramonohedron?

In Chapter 5, we proved the nonexistence of common unfoldings limited in
the number of vertices between two elements in a restricted polyhedral class.
The main next step is to remove the limitation on the number of vertices of
an unfolding. As we can see from the computational experiments, Lemma 38
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requires a strong condition to have a common unfolding. This condition
does not seem to be satisfied by any sequence obtained by Algorithm 4.
If we can prove this conjecture, then we will obtain nonexistence without
limiting the number of vertices. The notion of spreading structures gives us
a reason why it is difficult to make a common unfolding for a given pair of
polyhedra. Another next step is the extension of a spreading structure into
non-independent pairs of polyhedra. Applying to Platonic solids would help
to give the negative answer to Open Problem 25.6 in [9].
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Appendix A

Special tricks for the case of
tetramonohedra

Here, we show special tricks to find a pair (p, p′) of points on the boundary
of an unfolding of a tetramonohedron Q that is corresponded to a vertex of
Q.

When a tetramonohedron Q is unfolded by a cutting tree T into a polygon
P , leaves of T make π on ∂(P ) because each vertex of a tetramonohedron Q
has a curvature π (Lemma 5). Thus, we cannot directly find the vertex of Q
on a straight line of ∂(P ).

Let V (Q) = {v1, v2, v3, v4}. Because T is a tree, T contains at least two
leaves in v1, v2, v3, and v4.

According to the case analysis in [2], T has one of the following topological
structures, i.e., an X-shape, a Y-shape, a U-shape, an F-shape, or an H-shape
(Figure A.1).

For these trees, we introduce certain notations. For each leaf � of a cutting
tree T , the associated edge e(�) of � is the unique edge incident to �. When
e(�) = {u, �}, u is the parent of �. On T , aR(�) and aL(�) are the angles
made by e(�) with its neighbor edges sharing the parent of � in clockwise and
counterclockwise directions, respectively (see Figure A.2).

Here, we introduce the following property.

Property (∗): Both aR(�) �= π and aL(�) �= π.

If a leaf � of T has Property (∗), the neighbor points on ∂(P ) are vertices
of P . That is, for the parent u of �, we have an edge (or straight line) u′u′′

on ∂(P ) such that u′ and u′′ are vertices of P and are glued together to
make the vertex u on Q, and the midpoint of the line segment u′u′′ in ∂(P )
corresponds to � on T . In other words, when the curvatures at u′ and u′′ are
both unequal to π, it is easy to find the corresponding vertex � of T , or a
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X-shape

v1

v2v3

v4

Y-shape

v1

v2v3

v4

U-shape

v1

v2v3

v4

r

F-shape

r1

v1

v2v3

v4

r2

H-shape
Figure A.1: X-shape, Y-shape, U-shape, F-shape, and H-shape.

�

u

aR(�)

aL(�)

Figure A.2: Two angles aR(�) and aL(�) for a leaf �.
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vertex vi on Q of curvature π.
We classify the figure of the cutting trees of a tetramonohedron into Type

1, Type 2, or Type 3.

A.1 Type 1

In Type 1, T has at least two leaves that satisfy Property (∗). Let � be a
leaf satisfying Property (∗) and v be the parent of �. It is then easy to see
that there is a line segment made from two copies of the edge v� of T on
∂(P ). In other words, ∂(P ) has two consecutive vertices pi and pi+1 such
that the midpoint of the line segment pipi+1 will be folded into �, which is
one of among v1, v2, v3, and v4, and pi and pi+1 are glued together to make
the vertex v on Q. Because T has two leaves, we can obtain two of among
v1, v2, v3 and v4. Thus, we obtain Algorithm 5.

Algorithm 5: Folding algorithm for Type 1

Input : A polygon P = (p0, p1, . . . , pn−1, p0)
Output: All possible pairs (p, p′) of two points of P that correspond

to vertices of a tetramonohedron in Type 1(if one exists)
foreach pair of two edges {e, e′} of P do

take the midpoints m of e and m′ of e′;
Output: (p, p′) = (m,m′)

A.2 Type 2

In Type 2, the set of cut lines of Q contains two independent line segments,
say, v1v2 and v3v4 as in Figure A.3. When T is Type 2, we cut along these
lines and obtain a cylinder, which is called a “rolling belt” in [9]. After
that, the cylinder is cut and unfolded, and P is obtained. Therefore, there
are two edges e and e′ in ∂(P ) corresponding to v1v2 and v3v4. Inversely,
when we glue the boundary of P except e, e′, we obtain a cylinder. We can
obtain Q from the cylinder by gluing their boundary suitably in infinitely
many distinct ways. These ways contain the case that e is folded in half.
Therefore, it is sufficient to check only the case where e is folded in half. In
this case, the midpoint of e is corresponded to a vertex of a tetramonohedron,
two end points of e are glued, and another vertex of a tetramonohedron is
made. Thus, we obtain Algorithm 6.
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v1

aR(v1) = aL(v2) = π

v2

v3

v4

aL(v3) = aR(v4) = π

Figure A.3: Each leaf vi satisfies aR(vi) = π or aL(vi) = π in Type 2.

Algorithm 6: Folding algorithm for Type 2

Input : A polygon P = (p0, p1, . . . , pn−1, p0)
Output: All possible pairs (p, p′) of two points of P that correspond

to vertices of a tetramonohedron in Type 2(if one exists)
foreach edge e of P do

take the midpoints m of e and an end point s of e.
Output: (p, p′) = (m, s)
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Figure A.4: Type 3: Only v3 satisfies Condition (∗).

A.3 Type 3

In Type 3, the set of cut lines of Q contains two independent line segments,
say, v1v2 and xv4 with x �= v3. In this case, only v3 satisfies Property (∗).
For T , we have the situation shown in Figure A.4. Here, v1 and v2 are joined
by a straight line and there are three vertices x, y, w such that v4 and x are
joined by a straight line, y is on the line segment v4y, and v3 is joined to
y with some cut lines. (Note that v3 can be w.) Therefore, for ∂(P ), v3 is
the midpoint of an edge of P , we have the same sequence of length from v3
to both sides, and when we find the first pair e and e′ of |e| > |e′|, then
e′ = (w, y′) and e = (y′′, v4, y′′′, x), where y′, y′′, y′′′ are the three vertices
forming y on Q. Hence, we can find point v4 on ∂(P ) uniquely. Thus, we can
determine if P can fold onto a tetramonohedron Q in Type 3 by Algorithm
7.

Algorithm 7: Folding algorithm for Type 3

Input : A polygon P = (p0, p1, . . . , pn−1, p0)
Output: All possible pairs (p, p′) of two points of P that correspond

to vertices of a tetramonohedron in Type 3(if one exists)
foreach an edge e of P do

Take the midpoint m of e as v3
Trace the same sequence of length from v3 to both sides until we
find the first pair e and e′ of |e| > |e′|.
Take the midpoint m′ of e′.
Output: (p, p′) = (m,m′)
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A.4 Characterization

For a given polygon P , we apply three Algorithms 5, 6, and 7 individually.
It takes O(n2) time.

After that, we show that any cut lines of Q to obtain P should be one of
these types. Before the proof, we give a technical lemma for Property (∗).
Lemma 41 1. For any leaf �, it satisfies Property (∗) if its parent v has

degree 2.

2. If two leaves � and �′ share their parent v of degree 3 and the angle
between e(�) and e(�′) is not π, then at least one of � and �′ satisfies
Property (∗).

3. When four leaves share their parent r, at least two leaves satisfy Prop-
erty (∗).

Proof. (1) If the parent v is a vertex of Q, we have aR(�) + aL(�) = π and
0 < aR(�), aL(�) < π. Thus, Property (∗) holds.
(2) Because � and �′ share an angle, aR(�) = aL(�

′) or aR(�′) = aL(�). Without
loss of generality, we assume that aR(�) = aL(�

′). Then, aR(�) �= π based on
the assumption. Because aR(�)+aR(�

′)+aL(�) = 2π, we have aR(�
′)+aL(�) �=

π. Therefore, at least one of aR(�
′) and aL(�) is not equal to π. Thus, at

least one of � and �′ satisfies Property (∗).
(3) Because r has four child leaves, one angle at most can be equal to or
greater than π, and the other three angles are consecutively less than π. Let
� and �′ be the leaves between these three consecutive angles of less than π.
Then, these two leaves satisfy Property (∗). �
Lemma 42 Any cut lines of a tetramonohedron is one of either Type 1, Type
2, or Type 3.

Proof. We show that most cases are of Type 1 except for two special cases,
which imply Types 2 and 3.

X-shape: Here v1, v2, v3 and v4 are all leaves, and there is a vertex r in T
with deg(r) = 4. By Lemma 3(3), this case is of Type 1.

Y-shape: Three of among v1, v2, v3 and v4 are leaves, and the last one is a
vertex of degree 3. Without loss of generality, we assume that deg(v1) = 3
and deg(v2) = deg(v3) = deg(v4) = 1. Then, none of the three angles
∠v2v1v3, ∠v3v1v4, and ∠v4v1v2 is equal to π because v1 is a vertex of Q of a
curvature ∠v2v1v3+∠v3v1v4+∠v4v1v2 = π, and 0 < ∠v2v1v3,∠v3v1v4,∠v4v1v2.
Hence, this case is of Type 1.
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U-shape: Two of among v1, v2, v3 and v4 are leaves, and the other two are
vertices of degree 2. Without loss of generality, we assume that deg(v1) =
deg(v2) = 2 and deg(v3) = deg(v4) = 1, and v1 is closer to v4 than v2. If T
has a vertex u of degree 2 between v1 and v4, v4 has Property (∗) by Lemma
3(1). Thus, we consider the case in which v1 is the parent of v4. However, v4
has Property (∗) by Lemma 3(1) for the parent v1. The leaf v3 also satisfies
Property (∗) by the same argument with v2. Thus, this case is of Type 1.

F-shape: Three of among v1, v2, v3 and v4 are leaves, and the last one is
a vertex of degree 2, and T has another vertex r of deg(r) = 3. Without
loss of generality, v1 is the vertex of degree 2, and v2 is the leaf reachable to
v1 without going through r. Then, by the same argument of the U-shape,
v2 satisfies Property (∗). In the same way, if v3 or v4 has other vertices of
degree 2 on the way to r, it satisfies Property (∗). Thus, we consider the
other case in which both v3 and v4 are children of r. If the angle ∠v3rv4 �= π,
by Lemma 3(2), one of v3 and v4 satisfies Property (∗). On the other hand,
when ∠v3rv4 = π, we have two independent line segments v1v2 and v3v4.
This case is of Type 2. Intuitively, the cut lines v1v2 and v3v4 open Q into
a cylinder, and the cylinder is open by cutting the line segment(s) joining v1
and r.

H-shape: Here, v1, v2, v3 and v4 are all leaves, and there are two vertices
r1 and r2 in T with deg(r1) = deg(r2) = 3. We assume that r1 has children
v1 and v2, and r2 has children v3 and v4. (When the other vertices are
between them, we can reduce to the other cases above.) If ∠v1r1v2 �= π and
∠v3r2v4 �= π, by Lemma 3(2), two vertices r1 and r2 have at least one leaf
satisfying Property (∗). By contrast, when ∠v1r1v2 = π and ∠v3r2v4 = π,
we have the case of Type 2. For the last case, without loss of generality,
∠v1r1v2 = π and ∠v3r2v4 �= π. Let r′ be the third neighbor of r2 other than
v3 and v4 (which can be r′ = r2). If ∠r′r2v3 �= π and ∠r′r2v4 �= π, both v3
and v4 satisfy Property (∗), which is of Type 1. Type 3 is the last remaining
case in which ∠v1r1v2 = π and ∠v4r2r′ = π.

Because all cases are covered by the results in [2], we can conclude that
three Algorithms 5, 6, and 7 can determine whether P can fold onto Q. �
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